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Abstract

The combination of atoms and nanophotonic devices presents novel paradigm

in the field of quantum optics. Nanophotonic structures can be used to engineer

the interaction medium, allowing to mediate strong atom-light interactions,

a key component in the quest for quantum computation with neutral atoms.

In this thesis we study a nanophotonic platform, known as photonic crystal

waveguide, to harness strong atom-atom interactions mediated by photons.

This system presents a novel framework with direct applications to quantum

simulation, which will be used to solve conventionally hard computational

problems with applications in the life sciences. We focus on providing a

simulation toolbox to calculate the main Figures of Merit in atom-photon

and atom-atom interactions for arbitrary photonic crystal structures, such

as the coupling coefficients of quantum many-body Hamiltonians. With our

method we also demonstrate a general numerical approach to benchmark

the performance of different device designs, taking into account fabrication

imperfections and tolerances. Lastly, we use this toolbox to suggest possible

improved design parameters relative to state-of-the-art devices, which could

lead to enhanced performance in our quantum simulation platform.
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Constants and Abbreviations

Constants

In this thesis we have followed the standard S.I. system, and have made use of

several physical constants:

• ε0 = 8.8541878128(13) · 10−12 F·m−1: vacuum permittivity.

• µ0 = 1.25663706212(19) · 10−6 H/m: vacuum permeability.

• c = 299792458 m/s: velocity of light in vacuum

• me = 9.1093837015(28) · 10−31 kg: mass of the electron.

• e = 1.602176634 · 10−12 C: elementary charge of a proton.

• ℏ = 1.054571817 · 10−34 J·s: reduced Planck constant.

• a0 = 5.29177210903(80) · 10−11 m: Bohr radius.

• µB = 9.2740100783(28) · 10−22 J·T−1: Bohr magneton

Abbreviations

The reader will also encounter several abbreviations that are defined the first

time they are used but not thereafter. For reference we summarize them in the

following list:

• QED: Quantum Electrodynamics.

• FOM(s): Figure(s) of Merit.
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• LAQS: Light Atom Quantum Simulator.

• SEM: Scanning Electron Microscope.

• TMM: Transfer Matrix Method.

• TE: Transverse Electric.

• TM: Transverse Magnetic.

• NF: Near field.

• IF: Intermediate field.

• FF: Far field.

• DC: Direct current.

• PF: Purcell Factor.

• FDTD: Finite-Difference Time Domain.

• MPB: MIT Photonic Bands.

• RWA: Rotating Wave Approximation.

• FORT: Far-Off Resonance dipole-force Trap.

• H.C.: Hermitian Conjugate.

• FFT: Fast Fourier Transform.

• LDOS: Local Density of Optical States.
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1Introduction

“ Mais à l’instant même où la gorgée mêlée des

miettes du gâteau toucha mon palais, je tressaillis,

attentif à ce qui se passait d’extraordinaire en moi.

Un plaisir délicieux m’avait envahi, isolé, sans la

notion de sa cause. Il m’avait aussitôt rendu les

vicissitudes de la vie indifférentes, ses désastres

inoffensifs, sa brièveté illusoire, de la même façon

qu’opère l’amour, en me remplissant d’une essence

précieuse: ou plutôt cette essence n’était pas en

moi, elle était moi.”
— Marcel Proust, Du côté de chez Swann.

In this MSc. thesis we will numerically study and simulate strong atom-atom

interactions mediated by light propagation in novel nanodielectric structures.

Coupling neutral atoms to nanophotonic crystal waveguides presents a new

frontier in quantum optics with applications to quantum simulation and quan-

tum many-body problems.

1.1 Atom-photon interaction frameworks

Among the most essential physical processes in quantum optics we have the

interactions between light and matter. Light is famous for being a good carrier

of information due to low losses and neutral atoms have been proven to be an

exquisite form of information storage, in the form of qubits.

Achieving a strong coupling between photons and atoms is therefore central in

order to combine the transmission and storage of information into a unified

framework, which is key to several applications in quantum metrology and

quantum information processing [1] [2].
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Neutral atoms do not have a net electrical charge so, in the lowest order1,

they do not interact with electromagnetic fields. Thus, in general, atom-

photon interactions are weak and are found in higher moments of the charge

distribution in atoms. It is possible to describe the strength of this interaction

through the interaction Hamiltonian Ĥint = Ê · d̂, where Ê is the electric field

of light and d̂ is the dipole moment of the atoms [3].

As illustrated in Figure 1.1 there are several ways to achieve strong atom-light

coupling:

• Increasing the electric field of light: One can increase the electric field

of the interaction by tight focusing [4], as shown in Figure 1.1a. This

involves optimizing the way we focus light onto the atom; this is, to

increase the overlap of the light field and the atom so that the strength

of the field increases. Unfortunately, the smallest area the light can be

focused down in free-space is set by the diffraction limit.

• Multiplying the interaction: It is possible to enhance the interaction of

strength by summing the contributions of many individual interactions.

For instance, in Figure 1.1b we have cavity QED [5][6] where both the

atom and light field meet in a cavity formed by two mirrors, so that the

round-trips that the photon makes across the atom due to the reflection

off the mirrors result in interaction strength proportional to the number

of round-trips.

Another possibility shown in Figure 1.1c is to work with an ensemble

of atoms [7]. When the light propagation phase is negligible compared

to the atom ensemble dimension, the light decayed from atoms in the

ensemble will sum up coherently, leading to Dicke superradiance [8],

which leads to a collective interaction proportional to atom number Na.

• Increasing the dipole moment of the atom(s): It is possible to magnify

the dipole moment of the atom by exciting it to the Rydberg state [9]

[10] [11] with high principle quantum number n. Since the Rydberg

state dipole moment scales with n2 it is possible to achieve a very high

dipole moment.

1Since the monopole contribution will be equal to zero.
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(a) Tight focusing. (b) Cavity QED.

(c) Atomic ensembles. (d) Rydberg ensemble.

Figure 1.1.: Set of conventional approaches in quantum optics to achieve strong
atom-photon (atom in blue and photon in orange) interactions inspired
by [1]. (a) Focusing of an optical beam onto a tightly trapped atom, (b)
Strong interaction is achieved by a large number of photon round-trips
(c) A large atom number Na enhances the probability of interaction with
a photon, and (d) atomic ensemble of Rydberg atoms, with Rydberg
radius rb.

All the previous approaches in Figure 1.1 have been realized in free-space

settings, but making use of nanophotonic devices it is possible to combine all

their strong suits onto a holistic platform. Nanophotonics allows to manipulate

light in sub-wavelength regime and to engineer the photonic properties of the

environment. This novel framework opens up many possibilities, and as we

will describe in the next chapters, one may be able to enhance or suppress

the atoms emission of light into the structures, trap atoms using the fields

propagating through this devices [12], or even make atoms interact between

themselves in a controlled way [13] [12] which can be used to experimentally

carry out quantum simulations.

As we will see in this work, nanophotonic devices also show great promise

as a platform for scaling up light atom-interactions. In the future one could

imagine them as one of the building blocks of the Quantum Internet [2] where

different quantum systems would unite in larger networks, where information

would be transmitted through optical channels and quantum states could be

teleported [14] back and forth between channels. These networks could then

be remotely accessed by users which would have a profound scientific and

1.1 Atom-photon interaction frameworks 3



technological impact as we know it, making quantum cryptography [15] and

communication [15] [16] accessible for users globally.

1.2 Experimental setup at QUANTOP

For my MSc. Thesis project I joined the experimental group at QUANTOP,

led by Prof. Eugene S. Polzik and Prof. Jörg H. Müller, to collaborate in the

Light Atom Quantum Simulator (LAQS) experiment, led by Asst. Prof. Jean-

Baptiste Béguin. QUANTOP is an experimental group famous for manipulating

ensembles of neutral atoms to achieve strong atom-light coupling and to

harness quantum optical phenomena.

It took 3 decades to improve the coupling of a single atom and light by 9 orders

of magnitude, in cavity QED [2]. Until 2013 it was not clear how this could be

pushed even further, until Thompson, Lukin et al. achieved an extra 2 orders

of magnitude in the atom-photon interaction strength, by coupling a single

trapped atom to a nanoscale optical cavity [17]. In the past, researchers at

QUANTOP took a step towards this direction by trapping [18] [19] ensembles

of Caesium (Cs) atoms2 within the evanescent light field of on optical fiber

[20] thinner than a light wavelength, to achieve strong interactions between

the light guided by the fiber and the atoms. This system can be used to develop

quantum measurement strategies and to create quantum states [21] [22] for

quantum information and metrology purposes [23] [24].

Following the pioneering efforts by Prof. Jeff Kimble et al. (i.e. Jean-Baptiste

Béguin) at Caltech to combine cold atom physics and nanophotonics [25] [26]

[27] [28] [13] [12] QUANTOP is developing a new research direction with

the goal of trapping atoms near two-dimensional photonic crystal waveguides.

This research is highly multidisciplinary, spanning from condensed matter

physics, nanofabrication, cold atom physics, quantum optics, computational

and numerical physics, etc.

In the near future this platform will be used to build a quantum simulator

using neutral atoms and photonic crystals. As shown in Figure 1.2, atoms

will be brought and trapped close to the photonic crystal structures using

2More on Cs atoms and why they are used at QUANTOP in Appendix A.
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special lasers known as optical tweezers [29] so that the atoms can interact

with each other through the guided field of the structure. This simulator will

be then used to address hard computational challenges in the life sciences as a

part of the Quantum For Life (QFL) initiative [30].

(a) Atom-atom interactions in the chip. (b) SEM image of photonic crystal.

Figure 1.2.: Experimental platform in the LAQS group. (a) Atoms (green balls) are
inserted in the holes of a perforated membrane using laser beams. The
atoms interact with each other by exchanging photons (red lines) that
travel along the structure. (b) Scanning-Electron-Microscope (SEM)
image of a nanophotonic array made by etching holes into silicon nitride.
The membrane are used as a mean to enhance the atom-light coupling.
Figures courtesy of Anders Simonsen and Jonas Mathiassen [30].

In my MSc. in Computational Physics I mainly learnt about numerical methods

and simulation. Therefore, I decided to join LAQS to help understand and

forecast physical phenomena by numerically solving Maxwell’s equations,

in an effort to improve on the current design of their photonic crystal

chips. With my contributions my colleagues should be able to extract the main

Figures of Merit (FOMs) of their physical system to understand the interactions

between light and atoms in arbitrary photonic crystal systems.

Since this will be the first written material in the LAQS group, I wanted my

colleagues and those who will follow, to have a comprehensive theoretical

review of the main underlying physics of the platform. Therefore, I worked

hard on writing an extensive MSc. thesis that builds up from simple principles

up to the main results that may be obtained in the experiment. In addition,

I also created a comprehensive compilation of the code in this thesis’ Github
[31] so that in the future they can reproduce and expand my work.

1.2 Experimental setup at QUANTOP 5



Thesis outline

With all this in mind, throughout this thesis we will try to figure out how to

obtain strong atom-atom interactions mediated by photons, so that we can

enhance the current nanophotonic design of photonic chips that are fabricated

in the cleanroom.

We will do this in different chapters:

• In Chapter 2 we will explain what photonic crystals are and how they

can mold the flow of light [32] to allow for strong atom-photon and

atom-atom interactions.

• In Chapter 3 we will understand how atoms emit close to photonic

crystals giving rise to novel physical phenomena, such as atom-atom

interactions mediated by light.

• In Chapter 4 we will use numerical techniques to understand the disper-

sion propertiers of photonic crystals, the emission of atoms close to these

structures and how to improve on the current design of nanophotonic

devices.

• Finally, in Chapter 5 we will summarize the main learnings and results

of the previous chapters.

6 Chapter 1 Introduction



2Dispersion properties of
photonic crystals

“ A la realidad le gustan las simetrías y los leves

anacronismos.”
— Jose Luis Borges, Ficciones.

Photonic crystals are a promising environment with many potential applica-

tions that can be engineered to control light propagation to achieve strong

light-atom coupling while also offering a physical platform to mediate atom-

atom interactions with photons. Accordingly, we will illustrate and understand

several of the useful dispersion properties of photonic crystals:

• Photonic crystals can be used to obtain slow-light, which results in a

enhancement of the atom-photon coupling.

• Photonic crystals can have a band-gap, where for certain frequencies

light cannot propagate through the structures. Although the structures

will become almost perfect reflectors, the field in the structure will be

non-zero. It will then be possible to use this field to make atoms interact

with each other.

• Finite photonic crystals will have cavity resonances and as we will see

in Chapter 3 they can be used to increase the atom-light coupling.

• Photonic crystal slabs will have unwanted losses due to the finite thick-

ness of the slab, that we will later try to minimize in Chapter 4.

In this chapter we mainly follow references [32] and [33] to understand these

special dielectric structures from two complementary perspectives. The latter

reference introduces the Transfer Matrix Method, a toy model to understand

the main dispersion properties of the photonic crystals, which will be used in

Chapter 3 to understand how atoms couple with them.
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2.1 Electromagnetism in dielectric media

The propagation of light is described by the four macroscopic Maxwell equa-

tions1 [32] [34] :

∇ · B = 0 , ∇ × E + ∂B
∂t

= 0 , (2.1)

∇ · D = ρ , ∇ × H − ∂D
∂t

= J , (2.2)

where E and H are the macroscopic electric and magnetic fields, D and B
are the electric displacement and magnetic induction, and ρ and J are the

free-charge and current densities.

In our analysis we will suppose that we have regions of homogeneous dielectric

material which is not time dependent and there are no currents or charges.

Furthermore, we assume that we are in the linear regime and that our

materials are macroscopic, isotropic and transparent. This means that

our materials can be characterized by a real and positive valued dielectric

function ε(r, ω) that obeys: D = ε0ε(r)E(r). Similarly, we will also have

B = µ0µ(r)H(r). This allows us to rewrite Equation 2.1 and Equation 2.2:

∇ · H(r, t) = 0 ∇ × E(r, t) + µ0
∂H(r, t)

∂t
= 0 (2.3)

∇ · [ε(r)E(r, t)] = 0 ∇ × H(r, t) − ε0ε(r)∂E(r, t)
∂t

= 0 . (2.4)

Since the Maxwell equations in Equation 2.3 and Equation 2.4 are linear

one can separate the time and spatial dependence by means of a harmonic

expansion, where: H(r, t) = H(r)e−iωt and E(r, t) = E(r)e−iωt. Inserting

these fields into Equation 2.3 and Equation 2.4 we obtain:

∇ · H(r) = 0, ∇ · [ε(r)E(r)] = 0 . (2.5)

1in SI units.
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This means that there are no point sources in the medium and that the field

configurations are based on transverse electromagnetic waves. Taking

Equation 2.3 and Equation 2.4:

∇ × E(r) − iωµ0H(r) = 0

∇ × H(r) + iωε0ε(r)E(r) = 0 ,

(2.6)

and combining them yields the master equation [32]:

∇ ×
(

1
ε(r)∇ × H(r)

)
=
(

ω

c

)2
H(r) (2.7)

where c = 1/ε0µ0 is the speed of light. Interestingly, the master equation

is scale invariant2, which means that the solution at one length scale can

be applied to all length scales. The master equation can be understood as

an eigenvalue problem for H(r) for a given structure ε(r). To calculate the

electric field E(r) one may then use Equation 2.6. The eigenvalue problem can

be rewritten by means of an operator Θ̂:

Θ̂H(r) =
(

ω

c

)2
H(r) , (2.8)

where the differential operator is:

Θ̂H(r) = ∇ ×
(

1
ε(r)∇ × H(r)

)
, (2.9)

the eigenvalues are ω2/c2 and the eigenmodes H(r). Since the operator in this

eigenvalue problem is hermitian and we consider harmonic modes, the eigen-

values are real and the eigenmodes are orthogonal if there is no degeneracy3.

It is equally possible to define the eigenvalue problem in terms of the electric

field instead of the magnetic field as [32]:

∇ × ∇ × E(r) =
(

ω

c

)2
ε(r)E(r) , (2.10)

which is a generalized eigenproblem, since there are operators at both sides

of the equation. The eigenproblems in Equation 2.8 and Equation 2.10 may

2For example, if we rescale ε′(r) = ε(r/s) with the scaling parameter s, we get r′ = rs and
∇′ = ∇/s. This leads to a frequency ω′ = ω/s and a mode profile H′(r′) = H(r′/s).

3For photonic crystals a mode tends to concentrate its electric-field energy in regions of high
dielectric constant, while remaining orthogonal to the modes below it in frequency [32].
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be solved numerically for a given configuration of the dielectric function, for

more information please check Appendix C.

2.2 Solid-state electromagnetism

We have seen that the master Equation 2.7 can be solved for an arbitrary

dielectric media. However, we will restrict ourselves to a particular media

known as photonic crystals, which have discrete translational symmetry.

The basic step length of the discrete symmetry in a photonic crystal is known

as lattice constant a and the basic step vector is known as primitive lattice

vector a, yielding: ε(r) = ε(r + a). This means that we will have a periodic

repetition of dielectric, where the repeated region is called unit cell.

Let us consider the simplest example: the one-dimensional photonic crystal.

As we can see in Figure 2.1, the system has a primitive lattice vector a = ax̂.

It can be shown that the differential operator Θ̂ defined in Equation 2.9

commutes with the translation operator in the X direction, which means that

the eigenmodes of the system may be written as [32]:

Hkx(r) =
∑
N

ckx,m(y, z)ei(kx+mb)x = eikxx · ukx(x, y, z) , (2.11)

where b = 2π/ax̂ is the reciprocal lattice vector, k = kxx̂ is the Bloch wave

vector, m is an integer number, c are the coefficients obtained by solving

Maxwell’s equation and ukx(x, y, z) is a periodic vector function. This vector is

also known as Bloch state and acts as a periodic function that modulates the

plane waves.

Figure 2.1.: Example of a one-dimensional photonic crystal structure, where the
dielectric constant changes periodically in the X direction with lattice
constant a and is infinite in the Y Z plane.
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As a matter of fact, the problem we are solving may be directly mapped to

solid-state physics, where we have an electron propagating through a periodic

potential. Here the potential is replaced by the dielectric function and the

wave-function of the electron is now the mode profile of the light propagating

in the photonic crystal. That is, alike in solid-state physics, Equation 2.12

shows Bloch’s theorem [35]. This means that for a general 3D photonic

crystal, we may write the mode profiles as:

Hk(r) = eik·ruk(r) , (2.12)

where uk(r) = uk(r + R) is a periodic function for all lattice vectors R. As a

consequence of the periodicity of the Bloch state mode frequencies will also

be periodic. Returning to the one-dimensional photonic crystal in Figure 2.1,

frequencies will be periodic in kx: ω(kx) = ω(kx + mb). Therefore, in this

case we only need to consider kx lying in the Brillouin zone, where there

is only one period of the solution, in this case, the interval (−π/a, π/a). For

a more in-depth introduction of solid-state physics concepts please check

Appendix D.

We may return from our simple one-dimensional example to the general case,

where using the information about Bloch states uk(r) we can describe our

system together with the master Equation 2.7:

∇ × 1
ε(r)∇ × eik·ruk(r) =

(
ω(k)

c

)2

eik·ruk(r) . (2.13)

If we develop the expression further we obtain the Bloch master equation:

(ik + ∇) × 1
ε(r)(ik + ∇) × uk(r) =

(
ω(k)

c

)2

uk(r) , (2.14)

which can be written as Θ̂kuk(r) = (ω(k)/c)2uk(r), where Θ̂k is the Hermitian

operator:

Θ̂k = (ik + ∇) × 1
ε(r)(ik + ∇) × . (2.15)

Since the mode profiles are determined by Equation 2.12 they will be periodic.

Therefore, we can restrict the solution of the problem to a single unit cell.

Furthermore, since we restrict ourselves to a solution in a finite volume we

know that there will be a discrete spectrum of eigenvalues [32]. We expect

an infinite set of modes, which can be given a band number n, at discretely
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separated frequencies for each k. Therefore varying k continuously we can

find a family of continuous functions ωn(k), which is also known as the band

structure of the photonic crystal. In very few analytical cases4 we may be

able to solve for the band structure analytically. In general, however, we will

calculate it numerically by solving the eigenvalue problem in Equation 2.14,

as explained in Appendix C.

2.3 One dimensional photonic crystals

One-dimensional photonic crystals were first studied by Lord Rayleigh when

he studied the physical properties of multilayer films [36]. In Figure 2.1 we

showed the example of a multilayer film which is a one-dimensional photonic

crystal composed of alternating layers of different dielectric constant. This

means that material is homogeneous in a plane and has discrete translational

symmetry, with lattice constant a, in the directional perpendicular to that

plane. We can generalize Equation 2.12, to account for in-plane propagation

and write the modes in the Bloch form in three dimensions [32]:

Hn,kx,k∥ = eik∥·ρeikxxun,kx,k∥(x, y, z) , (2.16)

where ρ is the in-plane coordinate, k∥ is the in-plane wave-vector, x is the

out of plane coordinate, kx is the out-of-plane wave-vector and n is the band

number. One can then solve Equation 2.14 and find the mode profiles of the

fields in the Brillouin zone −π/a < kx ≤ π/a.

2.3.1 Transfer Matrix Method

We have previously studied infinite one-dimensional systems with continuous

or discrete translational symmetry along a given direction. It is possible to

gain intuition and understanding on these systems by using the Transfer

Matrix Method (TMM), a one-dimensional toy model which is based on Lord

Rayleigh’s pioneering work where he studied multilayer films based on the

reflections and refraction at the different interfaces.

4One of this cases is the Transfer Matrix Method, which we cover in Section 2.3.1.
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TMM

(a) Transfer matrix and fields. (b) Unit cell of the model of a multilayer film.

Figure 2.2.: Conventions in the TMM formalism. (a) Relation of the input and
output fields at both sides of the transfer-matrix M. (b) Unit-cell of a
one-dimensional photonic crystal δ-function barrier model.

This formalism works by modelling our system with concatenated optical

elements, where the system can then be expressed as the matrix product of

the different elements. A general transfer matrix M relates the field on the

right of the optical elements to the field on the left, by taking into account

reflection and transmission amplitudes [33]:

El = MEr ⇐⇒

Eout
L

E in
L

 = 1
t

tt′ − rr′ r′

−r 1


Eout

R

E in
R

 (2.17)

where r and t are the reflection and transmission amplitudes from the right re-

spectively and r′ and t′ are the reflection and transmission amplitudes from the

left. One can relate these to the matrix elements in M using Equation 2.17:

r = −M21

M22
, t = 1

M22
, r′ = M12

M22
, t′ = det M

M22
. (2.18)

In our case we will try to model one-dimensional photonic crystals by using

a set of scatterers in vacuum. To describe this system we just need to describe

the matrices corresponding to two optical elements. The first is the matrix that

describes isotropic propagation in free space [33]:

P(x) =

eikx 0

0 e−ikx

 , (2.19)

k = ω/c is the wave-vector and x is distance travelled by the plane wave. The

other element that we will be using is the δ-function barrier. The fields at
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both sides of the barriers can be related as in Equation 2.17, but in this case

having t = t′ and r = r′ [33]:

I(χ) = 1
t

t2 − r2 r

−r 1

 =

1 + iχ iχ

−iχ 1 − iχ

 , (2.20)

where χ = −ir/t5. Using these elements we can build the transfer-matrix for

the unit cell in Figure 2.2a of a one-dimensional photonic crystal with lattice

constant a:

Ucell(χ, a) = P
(

a

2

)
I(χ)P

(
a

2

)
=

(1 + iχ)eika iχ

−iχ (1 − iχ)e−ika .

 , (2.21)

where we model the unit cell of a photonic crystal as an infinite periodic

system where there are δ-potential barriers separated by a lattice constant

distance a, similar to the Kronig-Penney model in [33]. One may calculate

the dispersion relation of the system by taking the trace of the unit-cell transfer

matrix6[33]:

2 cos (βa) = Tr(Ucell) −→ cos (βa) = cos(ka) − χ sin(ka) . (2.22)

This equation relates the propagation constant β to the frequency ω = ck,

which allows us to reconstruct the band diagram in Figure 2.3. Since the left

hand side in Equation 2.22 will be bounded in the range (−1, 1) for β ∈ R it

means that for certain values of the the frequency the propagation constant

has no real value; in other words, in that range of frequencies, known as

band-gap, waves cannot propagate inside the crystal.

One can calculate the band-edge frequencies by setting β = π/a and solving

for ω = ck. Solving for the two roots of the equation in the Brillouin zone

yields:

ω+ = πc

a
(2.23)

ω− = c

a
cosh−1

(
χ2 − 1
χ2 + 1

)
. (2.24)

5Although in general the TMM only requires continuity (r + t = 1), in this work we only will
work with lossless scatterers, so |r|2 + |t|2 = 1.

6Since the unit-cell matrix fulfills det(Ucell) = 1 it will have the eigenvalues: λ± = e±iβa[33].
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Figure 2.3.: Band structure for a one-dimensional photonic crystal with χ = 0.4
in the Brillouin zone. We plot the real and imaginary parts of the
frequency ω = ck as a function of the propagation constant β, both in
their corresponding adimensional units.

One can prove that for small χ ≪ 1 the size of the band-gap can be approxi-

mated as:

∆ω = ω+ − ω− ≃ 2χc

a
. (2.25)

This result is telling us that we can change the size of the band gap by changing

the reflectivity of the scatterer. In the case of an interface between media we

know that from Fresnel equations at normal incidence [33]:

r = na − nb

na + nb

(2.26)

t = 2na

na + nb

, (2.27)

so that |χ| ∝ |r/t| ∝ |na − nb|. This means that increasing the index contrast

between two materials, or the reflectivity of the scatterers, will result in a

larger band-gap. We can also better understand what happens in the band-gap

of a photonic crystal by rewriting the propagation constant in Equation 2.22

using a complex propagation constant βgap = π/a + iκ, since the real part is

constant inside the gap. Substituting these values gives:

cosh (κ) = − cos(ka) + χ sin(ka) . (2.28)

The maximum propagation constant is achieved at the center of the gap

where:

κmax = arccos (
√

1 + χ2 )
a

. (2.29)
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This is important, because in the band-gap light cannot propagate. Therefore,

the field in the band-gap becomes evanescent: E(r) ∝ eikxu(x)e−κx. This

means that it will decay exponentially with a decay-length scale of 1/κ. In

our case in Figure 2.3, at the center of the gap κ a ≃ 0.5, which means that

the decay-length is l ≃ 2a.

As we will see in the following sections the group velocity of the light field

plays a central role in enhancing atom-light interactions. It is possible to

calculate the group velocity from the dispersion-relation in Equation 2.22:

vg = dω

dβ
= c sin (βa)

sin (ka) + χ cos (ka) . (2.30)

As we can see in Figure 2.3 bands tend to be flatter close to the band-edges,

which results in small group velocity. One may expand the dispersion relation

Equation 2.22 for δβ = π/a − β and then calculate the group-velocity:

ω ≃ ω± ± ca

2χ
δβ2 −→ vg ≃ ∓ca

χ
δβ . (2.31)

As expected, we see that near the band-edge the group velocity approaches

zero and therefore, the group-index ng = c/vg diverges.

The TMM formalism also allows us to calculate the field distributions by using

the eigenvectors of the unit-cell matrix Equation 2.21 [33]:

uβ = 1√
1 + f 2

1

f

 , u−β = 1√
1 + f 2

f

1

 . (2.32)

where f is defined as:

f = −

√
n2

g − 1
ng + 1 = −sgn(ng)√rg , (2.33)

where rg = (ng − 1)/(ng + 1) is the Fresnel coefficient between two interfaces

n1 = 1, n2 = ng as in Equation 2.27. Using previously obtained results we

expect reflection to approach unity at the band-edge, since the group-index

will diverge. This means that for the lower band-edge we obtain f = 1 and
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for the lower band-edge we obtain f = −1. Using these expressions we can

calculate the electric field and intensity for a field with positive wavevector:

Eβ(x) = 1√
1 + f 2 (eikx +fe−ikx) −→ |Eβ(x)|2 = 1

1 + f 2 (1+f 2 +2f cos (2kx)) .

(2.34)

For the band edges we get electric field profile that are standing waves:

EBE,+(x) =
√

2 cos k+x =
√

2 cos
(

π

a
x
)

(2.35)

EBE,−(x) = −i
√

2 sin k−x ≃ −i
√

2 sin
(

π − 2χ

a
x
)

(2.36)

As we can see from these expressions as well as from Figure 2.4, the field

intensity for the upper band maximizes at the scatterer position, whereas the

field intensity for the upper band maximizes between scatterers. This is why

the lower band is known as dielectric band whereas the upper band is known

as air band. In Figure 2.4 we consider very weak scatterers χ ≪ 1, so that

we may apply perturbation theory to Maxwell’s equations to understand why

there is a frequency difference between both modes [32]:

∆ω = −ω

2

∫
d3r∆χ(r)|E(r)|2∫
d3rχ(r)|E(r)|2 + O(∆χ2) , (2.37)

taking into account that in our model χ(r) ∝ ε(r). We can also understand

why the band-gap appears: the mode under the band-gap will have a lower

frequency because it is more concentrated in low-dielectric constant

regions, whereas the contrary is true for the upper band.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x/a

0.0

0.5

1.0

1.5

2.0

|E
(x

)|2

|EBE,+(x)|2

|EBE,−(x)|2
Scatterers

Figure 2.4.: Intensity of the Bloch modes at the upper and lower side of the band
edge for χ ≪ 1.
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In our experimental framework, we will work with non-infinite photonic

crystals that will fabricated and characterized in the laboratory. We can extend

our formalism to finite structures by writing the transfer-matrix for a N unit-

cell photonic crystal as:

UN =
N∏

i=0
Ucell = UN

cell . (2.38)

Using the transformation that diagonalizes the unit-cell matrix [33]:

O = 1
1 − f 2

1 f

f 1

 . (2.39)

We can rewrite Equation 2.38:

UN = OO−1UcellOO−1Ucell . . . O−1UcellOO−1

= ODNO−1 = O

eiNβa 0

0 e−iNβa

O−1

= 1
1 − f 2

eiNβa − f 2e−iNβa −2if sin(Nβa)

2if sin(Nβa) e−iNβa − f 2eiNβa


(2.40)

where we have used the diagonalized unit-cell matrix:

OUcellO−1 = D =

eiβa 0

0 e−iβa

 . (2.41)

We can also calculate the transmission and reflection coefficients of the struc-

ture following Equation 2.18:

tN = 1
U22

N

= 1 − f 2

e−iNβa − f 2eiNβa
rN = U12

N

U22
N

= − 2if sin(Nβa)
e−iNβa − f 2eiNβa

. (2.42)

In Figure 2.5 we have plotted the power transmission TN = |tN |2 and power

reflection RN = |rN |2 for χ = 0.2. We see that the curves are modulated by
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resonances7, that become narrower close to the band-edge. They are thus

called band-edge resonances. From Figure 2.5 we can conclude that as one

increases the number of unit-cells the resonances also become narrower. As a

matter of fact, it is possible to determine the frequency of these resonances. In

Figure 2.5 we see that at these resonances rN is zero, which means sin (Nβa) =
0. This means that we have resonances when:

βn =
(

1 − n

N

)
π

a
, (2.43)

for the resonance index n. One then may solve the dispersion relation in

Equation 2.22 to calculate the frequency of the resonance. Close to the band-

edge one can expand this as:

ω±,n = ω± ± n2cπ2

2χaN2 . (2.44)

Similarly for the group velocity one may also calculate its value near the

band-edge:

vg,n = ±nπc

Nχ
. (2.45)

This means that similar to the resonances in the transmittance and reflectance

shown in Figure 2.5 we will also have them for the group-velocity and the

group-index, since: ng,n = c/vg,n. Using the group-index it is also possible to

calculate the expect transmission and reflection amplitudes using the definition

of f in Equation 2.33 and Equation 2.42.
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Figure 2.5.: Transmission and reflection spectrum for χ = 0.2. On the left, for N = 25
unit-cells and on the right for N = 50 unit-cells.

7These resonances will also be found in the electric fields that propagate through the
photonic crystals, so that we will have an effective envelope function, known as supermode
modulation.
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2.4 Beyond one dimension

In the previous sections we have studied the physical properties of one-

dimensional photonic crystals. We have done so, because their properties

are just reproduced in higher dimensional photonic crystals. As we see in

Figure 2.6, in the case of two-dimensional photonic crystals one has discrete

translational periodicity in one plane, and this just adds some extra layers of

complexity. For two-dimensional photonic crystals the Bloch states are:

H(n,k∥,kz)(r) = eik∥·ρeikzzu(n,kz ,k∥)(x, y) . (2.46)

Remember that ρ = x + y is the in plane vector, s that the Bloch mode is

periodic as u(r) = u(r + R) for all lattice vectors R.

(a) Square lattice of dielectric rods.

Γ X M Γ
0.0

0.2

0.4

0.6

R
e{
ω
a
/2
π
c}

TM mode

TE mode

TM band-gap

(b) Photonic band-structure.

Figure 2.6.: Example of a two-dimensional photonic crystal and its band structure.
(a) Square lattice with lattice constant a, of dielectric rods with radius R.
Note that the rods should be infinite in height. (b) The associated band-
diagram where we have fixed the parameters ε = 8.9ε0 and R = 0.2a.
For a review on the (Γ, X, M) k point-notation refer to Appendix D.

In this particular geometry we have a mirror symmetry around the XY plane

so it is possible to separate the modes into two distinct polarizations [32]: the

Transverse-Electric (TE) modes, where the electric field is in the plane and

the magnetic field is perpendicular to the plane and the Transverse-Magnetic

(TM) modes, where the electric field is perpendicular to the plane and the

magnetic field is in the plane. In Figure 2.6b we show that the mode dispersion

relations differ for the two polarizations. For instance, we see that for the TM

modes we have a band-gap, whereas this is not true for TE modes. One can

prove as in [32] that TM band-gaps are favored in a lattice of isolated high-

ε regions, like in Figure 2.6a, and TE band-gaps are favored in a connected

lattice. By designing a photonic crystal that has both traits one can make the
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two band-gaps overlap and obtain a complete band-gap that is independent

of polarization. For more information on two- and three-dimensional photonic

crystal please refer to [32].

2.4.1 Finite cross sections: waveguides and slabs

In real-life it is not possible to fabricate structures that are infinite in any of

their dimensions. In our work, we will mainly be concerned with periodic

dielectric waveguides, which have a structure with discrete translational

symmetry in one dimension but finite thickess, and photonic crystal slabs,

which have discrete translational symmetry in one plane but finite thickness.

For instance, in Figure 2.7a we show an example of a photonic crystal slab.

(a) Square lattice of circular hole slab.

Γ X M Γ0.0

0.2

0.4

0.6

R
e{
ω
a
/2
π
c}

TE-like mode

TM-like mode

Light cone

(b) Photonic band-structure.

Figure 2.7.: Example of a two-dimensional photonic crystal slab and its band-
structure. (a) Slab of thickness t, with square lattice of circular holes
with lattice constant a and of radius R. (b) The associated band-diagram
where we have plotted the dielectric and air TE- and TM-like bands for
the design parameters (a, t, R) = (290, 180, 103) nm as in [12]. For a
review on the (Γ, X, M) k point-notation refer to Appendix D.

The finite thickness of the structures makes it possible to guide light through

them, by index guiding. Similar to total internal reflection, as described by

Snell’s law, there will be a set of modes that will be confined to the dielectric,

whereas others will extend into infinity. Those that extend into infinity will go

towards free-space, which means that they must be a superposition of plane

waves with ω = c|k| = c
√

k2
∥ + k2

⊥. For a certain value of k∥ there will be

modes with every possible frequency greater than ck∥, since k⊥ can take any

value. This means that the spectrum is continuous for frequencies above the

light line ω = ck∥. As we see in Figure 2.7b8, the photonic crystal structure

8Compared to their two- and three-dimensional counterparts modes in the band-diagram
cannot be separated into two distinct polarizations; instead, for thin structures fields have
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introduces new modes that lie below the light line. The region of the band

structure above the light line is known as light cone. Below the light line we

have modes that have lower frequencies relative to the corresponding values

in free space according to Equation 2.37, since ε is higher in the dielectric than

air. These index guided modes have to be localized in the dielectric, since in

air they have imaginary k⊥ = i ±
√

k∥ − ω2/c2, corresponding to evanescent

fields.

Additionally, a light cone results in incomplete band-gaps, where only the

index guided modes will be suppressed in the gap but there will still be

radiating modes for any ω, at both sides of the light cone. In our particular

application this is very important, because we want to couple as much light as

we can from the quantum emitters into the evanescent or propagating modes

of the photonic crystal, without coupling to the radiation modes.

TE- or TM-like polarizations. This happens, because in the long distance limit, or when the
thickness is smaller than the wavelength, the fields only see the dielectric shortly.
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3Atom-light interactions

“ Bainan oraingoan, isil isilikan eta arrangurarik

gabe, nahita ondoratuko naiz zure adio

mugagabearen sakonean.”

— Benito Lertxundi, Isil isilik.

Now that we understand how we can control the properties of light using

photonic crystals we will learn how these nanophotonic structures interact

with atoms and modify their way of emitting light, using the TMM and the

Green’s function formalisms, inspired by the theoretical work developed in

[37].

Specially relevant for the experimental platform is to understand the key

concepts that will be introduced in this chapter:

• Atoms can accurately be modeled as narrow band scatterers or either

as dipoles in the classical limit.

• The coupling rate of an atom and the guided mode in a photonic crystal

environment can be enhanced by positioning the atom in a location

of high Bloch mode intensity and cavity enhancement while achieving

low-group velocity and small mode area.

• It is possible to couple the atoms to the guided mode of a photonic crystal

and achieve different types of interactions between atoms:

– Collective superradiant and subradiant states, which result in

enhanced and suppressed decay rates, respectively.

– Dissipative interactions between atoms, mediated by the guided

modes of the photonic crystal.

– Dispersive interactions between atoms, mediated by the evanes-

cent fields in the band-gap of the photonic crystal.
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3.1 Atoms in the Transfer Matrix Method

To better understand how atoms behave in the presence of nanophotonic

structures we may return to the TMM formalism introduced in Section 2.3.1,

which we used as a one-dimensional toy model used to get hold of the main

physics. Now we will approximate atoms as narrow band scatterers and forget

about their inherent quantum nature, which means that all results in this

section only hold for the low saturation limit1.

As depicted in Figure 3.1 in our model the atomic scatterers will emit light with

a frequency ωA into the nanophotonic waveguides2 with a rate γ1D = σ0
2Aeff

Γ0

with the free-space decay rate is Γ0, the effective mode are Aeff, the atom’s

radiative cross-section σ0 = 6πc2

ω2
A

, and the loss into radiation modes Γ′ [39]. We

will come back to some of these concepts in more detail later in this chapter.

Figure 3.1.: Atoms can be modelled as narrow band scatterers emitting with a fre-
quency ωA. Atoms close to an unstructured waveguide will decay into
the guided modes of the structure with effective mode area Aeff at a rate
γ1D. On the flip side, some of their energy will be lost at a the rate Γ′

into free space. Figure adapted from [39].

We may understand the reflection of an atom as a saturable mirror, given in

[39] and [40] by the expression:

r = − γ1D

γ1D + Γ′
1

1 − i2∆A/(γ1D + Γ′) ,
(3.1)

1Which means that atoms will mostly be in the ground state and the atomic excited state
population can be neglected [38]. In this limit atoms effectively behave as classical dipoles.

2The waveguiudes can be modelled using the TMM formalism as introduced in Chapter 2.
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where ∆A = ω − ωA is the detuning from the transition frequency ωA. In this

context we may express the transfer matrix of an atom as [37]:

A(χ0) =

1 + iχ0 iχ0

−iχ0 1 − iχ0

 , (3.2)

where χ0 = −ir/t. Using the continuity (r + t = 1), we get that:

χ0 = i
γ1D

Γ′
1

1 − i2∆A/Γ′ . (3.3)

Let’s place this atom in a one-dimensional photonic crystal structure as in Fig-

ure 3.2. One may then write the total transfer-matrix similar to Equation 2.40

as in [37]:

U∞, atom = . . . Ucell P(−x)A(χ0)P(x)Ucell . . .

= OD∞O−1P(−x)A(χ0)P(x)OD∞O−1.
(3.4)

Figure 3.2.: Infinite photonic crystal with a single in one unit-cell at a distance x
of the next unit-cell to the left. The atom (blue) acts as a system with
losses Γ′, which are linked to the emission into radiation modes. Figure
adapted from [37].

We may rewrite this expression as the effective transfer matrix of a dressed

atom as suggested in [37]:

Aeff(x) = O−1P(−x)A(χ0)P(x)O

= P(−leff)A(χeff)P(leff)
(3.5)
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with

χeff(x) = χ0
1 + 2f cos (2kx) + f 2

|1 − f 2|
, (3.6)

leff(x) = x − 1
2k

arg
(

1 + fe2ikx

1 + fe−2ikx

)
. (3.7)

Interestingly, one can understand the physics of this equivalence better by

using Equation 2.33 and Equation 2.34 to apply them in Equation 3.5. This

tells us that χeff = χ0|ng||Eβ(x)|2 . Since in Equation 3.3 we saw that that χ0 is

proportional to the decay into the unstructured waveguide γ1D, we can define

a spatial enhanced decay rate:

Γ1D = γ1D|ng||Eβ(x)|2 . (3.8)

This means that the enhancement in the coupling rate of an atom with a

waveguide is determined by the group index and is modulated by the Bloch-

mode intensity at that point. Therefore, for high atom-light interaction we

want to increase the intensity of light at the position of the atom while we

have a low group-velocity.

−5.0 −2.5 0.0 2.5 5.0
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Figure 3.3.: Transmission for an atom in a waveguide. On the left, transmission for a
single atom for different decay rates γ1D into the infinite waveguide as a
function of the detuning. On the right, transmission and of an atom in
a finite waveguide for different overall decay rates Γ1D, where we have
accounted for cavity enhancement of |Eβ|2 = 2 and group-index ng = 5.

Using the parameter χeff one can also calculate the transmission for the effec-

tive atom:

T (∆) =
∣∣∣∣∣ 1
1 − iχeff

∣∣∣∣∣
2

= Γ′2 + ∆2

Γtot(x)2 + 4∆2 (3.9)

26 Chapter 3 Atom-light interactions



where the total decay rate is Γtot = Γ1D(x) + Γ′. In Figure 3.3 we plot the

how the transmission of an atom is modified when one accounts for Bloch

mode intensity and slow group-velocity. In fact, with the same unstructured

waveguide decay-rate γ1D, the Bloch mode intensity and low group velocity

drastically enhance the total reflectance of the effective scatterer. In the

strong coupling regimes atoms can then behave as perfect mirrors [39].

Additionally, the more the decay rate is enhanced with respect to radiation

losses, or when Γ1D ≫ Γ′, the bandwidth of the reflector increases.

Let’s now consider what happens when we have a single atom inside a finite

waveguide of scatterers. Given that we have N1 unit-cells to the left of the

atom and N2 to the right (N = N1 + N2):

UN, atom = UN1
cellP(−x)A(χ0)P(x)UN2

cell

= OΛN1P(−leff)A(χeff)P(leff)ΛN2O−1 ,
(3.10)

where we have used the same logic as in Equation 3.5. It is possible to calculate

the transmission coefficient from the total transfer matrix, and if normalized

to the transmission of the finite structure without atom:

tN,a

tN

= 1
1 − iχeffF (N1, N2, x) (3.11)

where:

F (N1, N2, x) = (1 + fe2iϕ1)(1 + fe2iϕ2)
1 − f 2e2iNβa

(3.12)

with ϕ1 = N1βa + kleff(x) and ϕ2 = N2βa + kleff(x). The term F (N1, N2, x)
has the physical meaning of the intensity profile of a cavity mode, as shown

in [37]. As we did previously, in this case we can also account for the term

F (N1, N2, x) in the definition of the overall decay rate to the finite structure

Γ1D:

Γ1D,N(N1, N2, x) = γ1D|ng||Eβ(x)|2I(N1, N2, x) . (3.13)

This means that in the case of a finite size waveguide the coupling strength

is a function of the group-index, the Bloch mode intensity and the cavity

enhancement. This means, that it is possible to achieve an even better reflector

than the one found in Figure 3.3. To put this into perspective, in the nanofiber

experiment at QUANTOP, decay rates of around 0.05 < γ1D/Γ′ < 0.1 where

found. This showcases the great potential of the photonic crystal waveguide

platform to enhance the decay rate.
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3.2 Strong atom-light interactions: Green’s
function formalism

Now that we can understand the atom-light coupling in a first order approxi-

mation using the TMM formalism, we will go to a more complete framework

using the Green’s function formalism. Let us return to Section 2.1 where we

derived the harmonic expansion of Maxwell’s equations, in Equation 2.5 and

Equation 2.6. In this case, we will have an atom, or an oscillating dipole3 in

the classical approximation, which means that we will have a null ρ charge-

density4 and a nonzero J current-density. Taking this into account we can

derive the wave equation for the electric field:

∇ × ∇ × E(r, ω) − ω2

c2 ε(r, ω)E(r, ω) = iµ0ωJ(r, ω) . (3.14)

An oscillating polarization density also results in a current given by J = dP
dt

which in the frequency domain is J = −iωP. This yields:

∇ × ∇ × E(r, ω) − ω2

c2 ε(r, ω)E(r, ω) = µ0ω
2P(r, ω) . (3.15)

In our case, our atom is an oscillating dipole source p0 at position r0, which

we can consider as a point source: P(r, ω) = p0(r, ω)δ(r − r0). The solution to

the wave equation with this point source is known as the Green’s function

[41] [42]:

∇ × ∇ × G(r, r′; ω) − ω2

c2 ε(r, ω)G(r, r′; ω) =
↔

Iδ(r − r′) , (3.16)

where
↔

I is the identity tensor. As we can see the Green’s function is inherently

dependent on the dielectric environment ε(r, ω), which means that it can be

engineered by modifying the environment. The Green’s function is useful

for calculating the electric field from an arbitrary polarization source. The

resulting electric field is obtained by integrating the Green’s function over the

polarization density, as shown by Dyson’s equation [41] [42]:

E(r, ω) = E0(r, ω) + µ0ω
2
∫

d3r′G(r, r′; ω)P(r′, ω) (3.17)

3This is a sensible approximation in our system since in general we have λ ≫ ratom. This is
not always the case with other quantum emitters; for instance, quantum dots.

4We assume this because our systems are composed of neutral atoms.

28 Chapter 3 Atom-light interactions



where E0 is the homogeneous solution, or the solution without sources. In the

case of the oscillating dipole this simplifies to:

E(r, ω) = E0(r, ω) + µ0ω
2G(r, r0; ω) · p0 . (3.18)

In general, for arbitrary systems we shall solve for the Green’s function numer-

ically. Fortunately, it is possible to calculate an analytical solution in free-space

for an oscillating dipole [41]:

Eθ = µ0ω
2|p| sin θ

ω

4πc

[
eikr

( NF︷ ︸︸ ︷
1

k3r3 −

IF︷ ︸︸ ︷
i

k2r2 −

FF︷︸︸︷
1
kr

)]
(3.19)

Er = µ0ω
2|p| cos θ

ω

4πc

[
eikr

( 2
k3r3 − 2i

k2r2

)]
. (3.20)

and the wave vector is k = ω/c. As marked in the equation and depending

on the field dependence, we have a near-field (NF), a intermediate-field (IF)

and a far-field (FF). In Figure 3.4 we have plotted the near- and far-field of

the oscillating dipole. We see that the far field only contains a transverse field

which forms the typical dipole antenna radiation pattern. In the electrostatic

limit kr → 0, the electric near-field simplifies to the DC dipole solution:

ENF = 1
4πϵ0

1
r3 [3(p · r̂) − p] .
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Figure 3.4.: Electric field intensities for an oscillating dipole-moment in arbitrary
units. On the left, intensity of the electric near-field and on the right
intensity of the electric far-field. We include the black circle to avoid
divergences and compare the scale of both plots.
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The atoms in our system will be oscillating dipoles and will thus radiate energy

into the environment. The time averaged power radiated out of a system Prad

can be calculated using [41]:

Prad = −1
2

∫
d3rRe[J(r) · E(r, ω)] , (3.21)

where J(r) = −iωpδ(r − r0) is the current generated by the oscillating dipole.

Therefore:

Prad = ω

2 Im[p∗ · E(r0, ω)] . (3.22)

Using Equation 3.18 we replace the electric field with the self-Green’s func-

tion:

Prad = ω3|p|2

2ε0c2 n̂p · Im[G(r0, r0; ω)] · n̂p (3.23)

where n̂p is the unit vector of the dipole. To calculate the decay rate from this

radiated power we consider the average energy of the dipole as a spring-mass

like oscillator:

W =
〈
m

ẋ

2 + k
x2

2
〉

=
〈 m

2q2 (ω2
0p2(t) + ṗ2(t))

〉
= mω2

0
2q2 |p0|2 , (3.24)

where m is the mass and q is the charge of the oscillator. Assuming that the

energy decays exponentially with decay rate Γ as W (t) = W (0)e−Γt, the power

is related to the energy rate as Prad(0) = dW (t)
dt

|t=0 = −ΓW (t = 0). This gives

the decay rate:

Γ = q2µ0ω

2m
n̂p · Im[G(r0, r0; ω)] · n̂p . (3.25)

This means that the decay rate of an oscillating dipole is proportional to the

imaginary part of the self-Green’s function, and thus, the decay rate of a dipole

can be engineered by modifying the environment. Usually, we will want to

calculate the ratio of decay rate in a system relative to the decay in free-space.

This ratio is known as Purcell Factor (PF) and will tell us if the environment

enhances or suppresses the emission rate of the dipole. To calculate the free-

space decay rate, we perform a Taylor series expansion of the electric fields in

Equation 3.19 and Equation 3.20 for small kr. This yields:

lim
kr→0

E(r, ω) = µ0ω
2|p| ω

4πc

[
2

(kr)3 − i
2
3

]
n̂p . (3.26)

The electric field is parallel too the dipole orientation and it diverges at zero

because we consider a point-like source. In contrast, the imaginary part is
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finite and out-of-phase with the oscillating dipole. Using Equation 3.18, the

self-Green function is:

Im[G0(r0, r0; ω)] = ω

6πc

↔

I . (3.27)

Replacing this in the decay rate expression in Equation 3.25 we get the free-

space decay rate:

Γ0 = µ0ω
2q2

6mc
. (3.28)

Now, we can calculate the PF replacing this value:

PF = Γ
Γ0

= 6c

ω
n̂p · Im[G(r0, r0; ω)] · n̂p . (3.29)

As we said previously, the Green’s function is dependent on the dielectric

configuration of the environment, so it is possible to use the photonic crystals

we introduced in Chapter 2 to enhance or suppress the spontaneous emission

of the atom. In Figure 3.5 we show the example of an atom embedded in a

one- and two-dimensional photonic crystal environment. As we saw in the

TMM formalism in Chapter 3.1, we can identify that the electromagnetic field

radiated by the atom may couple with the guided modes of these structures

Γ1D/2D, or else couple to the radiation modes Γ′ outside of the light cone. It

is convenient then to decompose the decay rate in these two components,

Γtot = Γ1D/2D + Γ′, as is shown in Figure 3.5. Next, we will see how to better

understand the emission into the guided modes by means of the eigenmode

expansion.

(a) Double nanobeam waveguide. (b) Hexagonal photonic crystal slab.

Figure 3.5.: Atom (blue) emitting in a photonic crystal environment. The total
emission rate is decomposed in the (a) one-dimensional guided mode
Γ1D or (b) two-dimensional guided mode Γ2D and the emission into
radiation modes Γ′.
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3.2.1 Eigenmode formalism

To study the coupling to guided modes, we will expand the Green function in

terms of the eigenmodes of the photonic crystal. As we have studied previously

in Equation 2.10, the electromagnetic wave equation may be written as a

generalized eigenvalue problem:

Θ̂E(r) = ω2

c2 E(r) , where Θ̂ = 1
ε(r)∇ × ∇ . (3.30)

The eigenmodes will then be dependent of the dielectric function as well as the

boundary conditions of the system. For instance, as stated in Equation 2.12,

in the case of photonic crystal structures the eigenmodes will have Bloch

boundary conditions and will form a complete set. Moreover, the eigenmodes

are orthogonal to each other, which means that it is possible expand the

Green’s function in terms of the eigenmodes [38] [43]:

G(r, r′, ω) = c2

ω2

∑
kn

(
ω2

kn

ω2
kn − ω2

)
Ekn(r) ⊗ E∗

kn(r′) . (3.31)

This implies that the Green’s function may be decomposed into the guided

modes of the system and all other modes5: G = G1D/2D + G′ where G1D/2D is

the Green’s function of the guided modes and G′ is the Green function over

the rest of the modes.

Let us consider the example of an unstructured waveguide. Expanding the

Green’s function in terms of the guided modes of the waveguide, one can prove

that the Green’s function is [38] [44] [45]:

Gwg,1D(x, x′) = i
c

2ω
eik|x−x′| . (3.32)

To model a quasi-one-dimensional system in three dimensions we have to take

into account the transverse size of the mode. To account for periodic boundary

conditions in the eigenmode formalism we integrate the wave-vector over the

Brillouin zone [38] [43]:

Gwg(r, r′, ω) = ac2

2πω2

∑
n

∫ π/a

−π/a

(
ω2

n(k)
ω2

n(k) − ω2

)
Ekn(r) ⊗ E∗

kn(r′) . (3.33)

5Usually the rest of the modes correspond to the radiation modes depicted in Figure 3.4.
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It can be proved [38] that developing the previous equation and taking our

particular case of a one-dimensional waveguide one obtains:

Gwg,1D(r, r′, ω) = i
c2

2ωvgAk

eik|x−x′| , (3.34)

where Ak is the mode area Ak is defined as:

Ak =
∫

area d2rε(r)|Ek(r)|2
max{ε(r)|Ek(r)|2|} . (3.35)

From the expression of the Green’s function we can calculate the emission

into the guided modes. For instance, for the self-Green’s function, when

x = x′, we have a purely imaginary Green’s function. This leads to a purely

dissipative interaction of the atom with itself 6. Additionally, we also confirm

the conclusions that we obtained in the TMM formalism: to enhance the

atom-light interaction we have to decrease the mode area while achieving

low group velocity.

It is possible to solve the Green’s function in other analytical cases; such as

in the case of a one-dimensional Fabry-Perot cavity. For a high finesse7

symmetry cavity it has been proven [38] [37] that the Green’s function can be

written as:

G1D, cav(x, x′, ω) = ic

mπ(κ/2 + i∆c)
cos (kx) cos (kx′) , (3.36)

where ∆c = ω − ωc is the detuning from the cavity resonance, m is the

resonance index of the cavity mode and κ ≃ 2c(1+r)
L|r| is the cavity linewidth for

a cavity of length L.

We can also solve for the example of a photonic crystal waveguide using

Equation 3.33 and the Bloch mode calculate in the TMM formalism [37]:

Gpcw,1D(x, x′, ω) =
∫ π/a

0
dβ

2c2

ω2
β − ω2 Eβ(x)E∗

β(x′) . (3.37)

Close to the band-edge, this may be approximated by:

Gpcw,1D,+(x, x′, ω) ≃ ic

kvg

ei(k− π
a )|x−x′| cos

(
π

a
x
)

cos
(

π

a
x′
)

, (3.38)

6As we shall see later this also implies that the Lamb-shift will be zero in this system.
7In a high finesse cavity we can approximate |r| ≃ 1.
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close to the upper-band-edge8 for frequency ω+ and k ≃ π/a. We can also

approximate the Green’s function close to the upper band-edge in the band-

gap:

Gpcw,1D,gap(x, x′, ω) ≃ c

kvg

e−κ|x−x′| cos
(

π

a
x
)

cos
(

π

a
x′
)

, (3.39)

where we have used the decay constant κ defined in the TMM formalism to

describe the evanescent fields in the gap. Similarly to the one-dimensional

waveguide case, if we want to generalize the one-dimensional Fabry-Perot

cavity to a three-dimensional system we have to account for the transverse

size of the mode, as is done in [37]. In our work we have focused our

attention to two-dimensional photonic crystal slab, where there is a lack of

analytical expressions for the Green’s function. This is why, in a general case

where analytical results are not available, one has to numerically calculate

the Green’s function, and resort to some techniques to separate it into its

eigenmode components. We will come back to this in Chapter 4. For more in

depth information refer to Appendix C.

3.2.2 Dipoles coupled to a mode

Now that we have an idea on how the guided modes of the photonic crystals

relate to the Green’s function, we analyze set of N dipoles coupled to each

other through an electric field, as shown in Figure 3.6. The equation of motions

for a dipole pi at the ri position are given by:

m
d2ri

dt2 + Γ′m
dri

dt
+ mω2

0ri = qE(r, t) , (3.40)

where m is the mass of the dipole, Γ′ is the damping coefficient9, ω0 is the

resonance frequency and E(r, t) is the electric field at the dipole. For simplicity,

and in our best interest, we will assume that is electric field corresponds to

the guided mode of a photonic crystal10. To solve for the case of N dipoles,

8The lower band-edge limit can be obtained in a similar fashion by replacing the cos (k+x)
by cos (k−x) as was done in the TMM formalism (see Equation 2.35).

9This arises due to the emission into the radiation modes.
10If instead we took E(r, t) to be the total electric field at the dipole position, we ought not to

include the radiation damping Γ′ on the left hand side in Equation 3.40 since the damping
would naturally arise from the total electric field. Additionally, taking the total electric
field would diverge, due to the contribution of the real-part of the Green’s function.
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we assume a harmonic time evolution and Fourier transform to the frequency

domain:

(ω2
0 − ω2 − iωΓ′)pi = q2

m
E(ri, ω) , (3.41)

where we have taken pi = qri. Taking into account that pi = α · E(ri, ω) This

equation gives the polarizability:

α(ω) = q2/m

(−ω2 + ω2
0 − iωΓ′) ≃ q2/2ωm

(∆ − iΓ′/2) , (3.42)

where ∆ = ω − ω0 is the detuning. The performed approximation is the

classical equivalent of the Rotating Wave Approximation (RWA), where we

assume a small detuning so that ω2 − ω2
0 = (ω + ω0)(ω − ω0) ≃ 2ω(ω − ω0).

Figure 3.6.: Example of three dipoles pi coupled to the electric field, where i = 1, 2, 3.
These dipoles couple through the Green’s function G(ri, rj), where ri

and rj correspond the positions of the dipoles and have radiation losses
Γ′. Figure courtesy of Jean-Baptiste Béguin [30].

The electric field has contribution of the source field E0(r, ω) and the field of

N dipoles. From Equation 3.18 we know that for N dipoles:

E(r, ω) = E0(r, ω) + µ0ω
2

N∑
j=1

G(r, rj, ω) · pj . (3.43)

If we substitute this into pi = αE(ri, ω) and assuming all dipoles are orientated

in the same direction:

1
α

pi − µ0ω
2

N∑
j=1

n̂p · G(ri, rj, ω) · n̂p pj = E0(ri, ω) (3.44)
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where n̂p is the dipole unit vector, so that pi = pin̂p and E0(ri) · n̂p = E0(ri).
Now, we substitute this in Equation 3.42 and multiply by a factor −q2/2mω,

which yields:

(∆ + iΓ′/2)pi + µ0ω
2

N∑
j=1

n̂p · G(ri, rj, ω) · n̂p pj = −E0(ri, ω) q2

2mω
. (3.45)

Using the previous expression we can define the complex coupling rate:

gij = µ0q
2ω

2m
n̂p · G(ri, rj, ω) · n̂p ≡ Jij + i

Γij

2 . (3.46)

It is common practice to separate the real and imaginary part of the coupling

rate. The real part corresponds to the spin-exchange rate Jij
11 and the

imaginary part corresponds to dissipation rate Γij:

Jij = µ0ωq2

2m
n̂p · Re{G(ri, rj, ω)} · n̂p (3.47)

Γij = µ0ωq2

m
n̂p · Im{G(ri, rj, ω)} · n̂p (3.48)

Therefore, the system of coupled equations describing N oscillating dipoles

can be described in terms of the rates:(
∆ + i

Γ′

2

)
pi +

N∑
j=1

(
Jij + i

Γij

2

)
pj = −E0(ri, ω) q2

2mω
. (3.49)

To get a better understanding, let’s see what happens in the case when there is

a single dipole p1 . The system becomes a single equation:

(
∆ + i

Γ′

2

)
p1 +

(
J1 + i

Γ11

2

)
p1 = −E0(r1, ω) q2

2mω
. (3.50)

We can understand the equation as a polarizability equation, where the inter-

action of the dipole with the mode changes its polarizabiliy. This implies that

the decay rate is Γ′ + Γ11, because of the work done on the dipole by its on

field. This is known as radiative back-action. The frequency shift J11, also

known as Lamb shift, is proportional to the electric field parallel to the dipole

moment.

11The spin-exchange rate is called Lamb Shift for i = j.
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Let’s now examine the case of two dipoles that interact through their fields:

 ∆ + iΓ′/2 + g11 g12

g21 ∆ + iΓ′/2 + g22


 p1

p2

 = − q2

2mω

 E0 (r1, ω)

E0 (r2, ω)

 .

(3.51)

Due to the reciprocity condition of the Green’s function [38] we have the

symmetries g12 = g21, J21 = J12 and Γ12 = Γ21. To solve this system of

equations we just need to solve for the eigenvalues and eigenvectors. Assuming

that self interactions are the same12, the eigenvectors and eigenvalues are:

p± =

 1

±1

 , λ± = ∆ + iΓ′/2 + g11 ± g12 (3.52)

respectively, which correspond to dipoles in phase and out of phase, as depicted

3.7. Assuming Γ12 > 0, one of the modes has enhanced decay Γ+ = Γ′ + Γ11 +
Γ12. Therefore, we call p+ the bright mode. In contrast, the other mode has

suppressed decay Γ+ = Γ′ + Γ11 − Γ12 and corresponds to the dark mode. In

the time domain the eigenmodes are:

p±(t) = p0

 1

±1

 e−(Γ′+Γ11±Γ12)t cos [(ω0 + J11 ± J12) t] . (3.53)

If we examine the situation with initial conditions p1(0) = p0 and p2(0) = 0,

this yields the solution:

p1,2(t) = e−(Γ′+Γ11+Γ22)tRe
{1

2ei(ω0+J11)t
(
±e−iJ12t + eiJ12te−2J22t

)}
. (3.54)

It is thus possible to analytically calculate the time-evolution of the dipole

moment if we know the values of the spin-exchange and dissipation rates

in our particular application. For instance, it is possible to calculate and

approximate these coefficients for some quasi-one-dimensional structures as

shown in [46]. Using the Green’s function for the unstructured waveguide in

12Which means that g11 = g22.
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Figure 3.7.: In the case of two coupled dipoles we obtain the bright p+ and dark
p− eigenmodes. The bright mode has an enhanced decay rate Γ+ and
higher frequency ω+, whereas the dark mode has a suppressed decay
rate Γ− and a lower frequency ω−. Figure adapted from [30].

Equation 3.32 and accounting for the transverse mode size the spin-exchange

and decay-rates may be written as:

Jwg,i,j = −Γ1D,wg

2 sin (k|xi − xj|), (3.55)

Γwg,i,j = −Γ1D,wg

2 cos (k|xi − xj|), (3.56)

where Γ1D,wg = 1
2Γ0

c
vg

σ0
Ak

. As we can see Equation 3.56 is consistent with the

expression obtained for Γ1D with the TMM formalism. Interestingly, the nature

of the interaction will be different depending on the distance between

the atoms; for instance, for atoms at a distance d = nλ/2 where n is an

integer, will exhibit a purely dissipative interaction. This is what is shown

on the top plot in Figure 3.8. However, if we put the atoms at a distance

d = nλ/2 + λ/4 the atom-atom interaction becomes that shown in the bottom

plot in Figure 3.8, since there will be a non-zero contribution from the real

part of the Green’s function. The self-interaction is purely dissipative as before,

but now we have Γ12 = 0. This means that there will be spin-exchanges but

there will be a a overall decay with a rate Γ′ + Γ11.

It is shown in [46] that by calculating the eigenvalues of the Green’s function

matrix one can calculate the normalized transmission for N atoms:

t(∆A)
t0(∆A) =

N∏
k=1

∆A + iΓ′/2
∆A + Jk,1D + i(Γ′ + Γk,1D)/2 (3.57)
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Figure 3.8.: Dynamics of two coupled dipoles. As initial conditions we only have p1
excited. We plot three cases: on top, the purely dissipative coupling;
in the middle, the purely dispersive coupling and on the bottom, the
waveguide dispersive coupling. Figure courtesy of Jean-Baptiste Béguin
[30].

where Jk,1D and Γk,1D/2 are the real and imaginary part of the k-th eigenvalue.

In Figure 3.9 we show the results for the particular case of one atom with

different coupling strengths. In the dissipative regime, when J = 0, we see

that we obtain a similar transmission profile as the one we got for the single

atom in the TMM as in Figure 3.3. In some special cases we will find similar

results as the one atom limit; for instance, in case the of N atoms with a

spacing d = nλ/2:

t(∆A)
t0(∆A) = ∆A + iΓ′/2

∆A + i(Γ′ + NΓ1D)/2 . (3.58)

We see that this transmission spectra looks very similar to the one in Equa-

tion 3.9, where in this case we have a superatom with total decay rate

Γtot = Γ′ + NΓ1D,wg, corresponding to a bright mode, where the dipoles in-

terfere constructively and enhance emission. In general, we expect to obtain

similar results as in Figure 3.9 but where Γ1D → NΓ1D, which will make the

peaks wider and higher. For other configurations expressions become more

cumbersome, check [46] for reference.
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Figure 3.9.: Single atom normalized transmission spectra for the dissipative and
dispersive regimes. On the left, dissipative regime (J = 0) for different
coupling strengths normalized to the emission into radiation modes. On
the right, the same for the dispersive regime (Γ1D = 0).

Next, we can see what happens with the coupling coefficients in the case of

three-dimensional Fabry-Perot cavity. If one takes into account the trans-

verse size of the mode in the cavity and uses the expression in Equation 3.36

one can calculate the spin-exchange and decay rates [37]:

Jcav,i,j ≃ −2g2 ∆c

∆2
c + κ2/4 cos (kxi) cos (kxj) = J1D,cav cos (kxi) cos (kxj) ,

(3.59)

Γcav,i,j ≃ 2g2 κ

∆2
c + κ2/4 cos (kxi) cos (kxj) = Γ1D,cav cos (kxi) cos (kxj) , (3.60)

where g =
√

|d|2ω/2ε0ℏAL is the atom-cavity coupling rate defined in cavity

Quantum Electrodynamics (QED) [47] [1]. Similar to conventional cavity QED

it is also possible to define the quantum cooperativity as C = g2/κΓ′, which

weighs the interaction strength with the losses of the system13. Interestingly,

it has been shown [37] that the atom-cavity coupling rate is related to Γ1D,wg

in a general waveguide: Γ1D,wg = 2Lg2/vg. This means that it is possible to

define an analogue to the quantum cooperativity in the dissipative regime

C = Γ1D/Γ′ and in the dispersive regime C = J1D/Γ′, which will be the main

FOMs that we will try to optimize in Chapter 4.

Using Equation 3.59 wee see that on resonance, when ∆c = 0, we have

purely dissipative interaction, since Jcav,i,j = 0. In contrast, far away from

13In free-space approaches the cooperativity was understood as a measure for the probability
of interaction since it was always C ≤ 1. With the recent developments in cavity QED and
nanophotonics C ≫ 1 has been achieved, and it is used as a parameter to characterize the
efficacy of a nanophotonic system.
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the resonance, when ∆c ≫ κ, we can approximate to have purely dispersive

interactions, since Γcav,i,j ∝ 1/∆2
c . In the most general dispersive waveguide

regime we see that the spin-exchange to decay ratio is proportional to the ratio

of detuning to linewidth: Jcav,i,j/Γcav,i,j = ∆c/κ.

In the Fabry-Perot cavity the normalized transmission can also be calculated

using Equation 3.57 [46]:

t(∆A)
t0(∆A) = ∆A + iΓ′/2

∆A +∑N
i Jcav,i,i + i(Γ′ +∑N

i Γcav,i,i)/2
. (3.61)

In contrast to the transmission for the waveguide, in the cavity there will

always be a bright mode, no matter the position or separation between the

different atoms. Similar to Dicke superradiance [8], the standing wave of

the cavity mode means that there is no propagation phase and the atoms will

emit light coherently. As we show in Figure 3.10 the transmission spectrum

becomes symmetric for the dissipative coupling regime, when ∆C = 0.
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Figure 3.10.: Normalized transmission spectra for different atom detunings ∆A with
an atom at the antinode of the cavity mode. We have chosen Γ1D,cav =
Γ′ as in [37].

The last example of Green’s function we studied in the previous section was the

one-dimensional photonic crystal waveguide. For this structure it is possible

to to approximate the spin-exchange and decay-rates close to the band-edge

using the Green’s function calculated previously in Equation 3.38:

Jpcw,i,j ≃ −Γ1D,pcw

2 sin
((

k − π

a

)
|xi − xj|

)
) cos

(
π

a
xi

)
cos

(
π

a
xj

)
, (3.62)

Γpcw,i,j ≃ Γ1D,pcw cos
((

k − π

a

)
|xi − xj|

)
cos

(
π

a
xi

)
cos

(
π

a
xj

)
, (3.63)
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where Γ1D,pcw = Γ0
σ0c

Akvg
. We see that close to the band-gap k ≃ π/a and

therefore Jpcw,i,j ≃ 0. This means that in the case of the one-dimensional

photonic crystal when the atom separation fulfills d ≪ 2π/(k − π/a) we

expect just dissipative interactions where:

Γpcw,i,j ≃ Γ1D,pcw cos
(

π

a
xi

)
cos

(
π

a
xj

)
. (3.64)

In this particular case, the Green’s matrix becomes separable and consists of

a bright mode and N − 1 dark modes [46]. For the bright mode, one can

calculate the normalized transmission using Equation 3.57:

t(∆A)
t0(∆A) = ∆A + iΓ′/2

∆A + i(Γ′ + Γ1D,pcw
∑

j cos
(

π
a
xj

)
)/2

. (3.65)

Once more, we observe superradiant behavior in this case. However, in this

case, the Bloch mode will be a standing wave near the band edge which leads

to atoms in different positions to couple with the same phase, similar to the

result we found for the Fabry-Perot cavity in Equation 3.6114.

Finally it is worth mentioning that in the band-gap of the photonic crystal

one obtains different couplings. Using the Green’s function in the band-gap

one can calculate that:

Jpcw,i,j ≃ Γ1D,pcw

2 e−κ|xi−xj | cos
(

π

a
xi

)
cos

(
π

a
xj

)
, (3.66)

Γpcw,i,j = 0 , (3.67)

where κ is the decay constant for the evanescent fields in the gap. This means

that the atom-atom dynamics in the band-gap will be completely dispersive,

similar to what we obtained in the Fabry-Perot cavity far from resonance. As

we will see in Chapter 4 this can be used to implement a quantum simulation

platform.

For a complete description on how expand the Green’s function formalism to

account for a quantum description of light and matter please check the notes

in Appendix D, where we show that the quantum coupling-rates are equivalent

to the one calculated in this chapter.

14The drawback of cavity systems is that it is difficult to scale the system up since in cavities
Γ1D,cav ∝ 1/Vk [37]. In contrast, the photonic crystal gives an advantage because
Γ1D,pcw ∝ 1/vg, which is independent of system size.
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4Engineering interactions

“Eta jo naute baina ez naute menperatu.

Hotzetik epelera noan hontan.

Zugatik egingo dut azkenengo jauzi hau.

Alienatu ezin nazazuen.”
— Unidad Alavesa, Jo naute.

In this chapter we will focus on making use of the available numerical methods

to solve Maxwell’s equations, as presented in Appendix C, to accurately de-

scribe the many exciting physics that arise when atoms are coupled to photonic

crystal waveguides.

Using the knowledge acquired in previous chapters we simulate the coupling

of an atom to photonic crystal structures using the Green’s function formalism.

For three different state-of-the art photonic crystal structures [48][12] we will

numerically study:

• The dispersion properties of the infinite structures, which can be

engineered for trapping atoms, making them emit light in preferred

directions or enabling dispersive atom-atom interactions in band-gap

regime.

• The resilience of the structures to fabrication imperfections and experi-

mental constraints.

• A systematic computational approach to calculate the emission properties

of atoms close to finite structures based on FDTD methods.

• The accuracy of the numerical methods with special detail to the conver-

gence of the results.

• The possibility of improving the atom-photon and atom-atom cooperativ-

ities Γ1D/2D/Γ′ and J/Γ′, in different frequency regimes by modifying the

design parameters of the structures.
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Note on the material properties of the structures

All the structures that we will present in the following sections consist of

silicon nitride (Si3N4) two-dimensional photonic crystal structures, as the

one we introduced in Figure 1.2b. We use silicon nitride1 mainly because of

its low optical loss in the frequency range of Cs2 transitions. For instance, in

[50] they find an absorption length3 characterized by Im{n} ≤ 10−7 for 850
nm, whereas in [50] they find Im{n} ≤ 10−5 for 935 nm. It is important to

note that this number is subject to surface roughness, fabrication imperfections

and measurement accuracy, but in the past in QUANTOP Im{n} ≃ 10−6 has

been assumed. Additionally, there is a great deal of available documenta-

tion for fabrication techniques compatible with Si and silicon nitride has

demonstrated to have excellent mechanical properties.

4.1 Double nanobeam waveguide

The double nanobeam structure developed by Hung et al. in [48] is a simple

photonic crystal waveguide. In their paper their authors mainly investigate

how it is possible to trap atoms close to the structure while achieving a strong

light-atom coupling. We have used it to learn how we can describe photonic

crystal structures numerically through electromagnetic simulation methods.

4.1.1 Dispersion properties: Trapping

Based on the structure in Figure 4.1 we first investigate what we expect

from the behavior of the infinite system. In Figure 4.2 we show the band

structure where we plot the modes with even symmetry in Z. For the calculated

dispersion diagram, the D1 line of Cs4 is closely aligned to the edge of the

Brillouin zone. As we saw in Chapter 3 this means that since the bands are

flat at the band edge, the light will have low group velocity and therefore, we

expect enhanced atom-light coupling.
1Stoichiometric Si3N4 made with Low-Pressure Chemical-Vapor-Deposition (LPCVD) [49].
2For more information on why we use Cs atoms please refer to Appendix A.
3For Si3N4 the absorption length is 0.73 m at λ = 850 nm. Therefore, in our distance regime

we expect negligible absorption processes, since the absorption length is much larger. For
comparison in a conventional SiO2 fiber the absorption length is 10 km at λ=1 µm.

4For more information on the relevant transition frequencies of Cs please check Appendix A.
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Figure 4.1.: 3 unit cells of the double nanobeam structure with lattice constant a.
The structure is characterized by design parameters: (a, w, t, d, g) =
(335, 335, 200, 116, 250) nm.

Moreover, it is fundamental to understand where we position the atoms in

the structure for stronger interaction. As a matter of fact, we will be looking

to position the atoms in zones where the concentration of the modal field

is biggest, as we learnt in Equation 3.8. Following the intensity pattern of

the lowest band’s eigenmode in Figure 4.2 we see that it is possible to put

the atoms between the two nanobeams, at the mid-distance between two

contiguous holes, where the modes of both nanobeams hybridize and produce

local saddle points, which should result in a fairly high interaction strength

[48].

Figure 4.2.: Band diagram for the Z even modes in the double nanobeam structure.
In blue we have the mode and mode intensity profile related to the
trapping mode. In red we have the mode and mode intensity profile for
the mode used for enhanced atom-light interaction.
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At the same time, it is possible to trap the atoms at the intensity minimum of

the trapping mode5 using the trapping mode (blue) in Figure 4.2 as a blue-

detuned far-off resonance dipole-force trap (FORT) at the magic wavelength

λT = 793 nm [51]. This trapping scheme presents a major advantage compared

to free-space approaches since it is possible to have two modes with different

frequency for the same k6, which is hard in free-space. For more information

on the trapping, please refer to [48], where the authors also take into account

the Casimir-Polder forces that we mention in Equation B.6, to create a stable

atom-trap in the double nanobeam structure.

4.1.2 Convergence of FDTD calculations for
one-dimensional photonic crystals

Now that we know that we satisfy the conditions for strong atom-photon

coupling, we shall have a look at the emission of the atom. Hence, we

now consider a finite structure7 and run a FDTD calculation as explained in

Appendix C. It is critical to make sure that FDTD results are sensible and do

not vary too much with our choice of simulation parameters. Therefore, we

run a convergence test.

It is extremely complicated to define a convergence method that works all

the time, but since the first want to understand the spontaneous emission

of the atoms we will converge the PF, as introduced in Equation 3.29. After

careful trial and error we verify that there are 38 main simulation parameters

that will affect the results: the mesh accuracy, the simulation time and

the frequency sampling. The mesh accuracy describes how finely we dis-

cretize our simulation volume; in other words, our spatial resolution. The

simulation time represents how long we run our simulation, which has a direct

impact on the frequency resolution. Lastly, the frequency sampling refers to

how many equally spaced frequency points we evaluate in our spectra. For

more information on these simulation parameters and more please refer to

Appendix C.

5Which is in the same position as the maximum for the interaction mode.
6And therefore with similar spatial variations.
7Similar to [48] we consider a 81 unit-cell waveguide.
8The thickness of the PML boundary conditions should also affect the results but after careful

checks we make sure that using Lumerical’s default thickness yields stable and accurate
results. For reference on these boundary conditions check Appendix C.
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To run any convergence test one conventionally defines a cost function that is

converged by gradually varying the simulation parameters. Since we have to

change the frequency sampling, or the number of frequency points, in each

iteration it is particularly difficult to define a cost function that addresses the

frequency points individually. Accordingly, we have decided to converge the

numerical integral of the Purcell factor. This involves defining the absolute

residual cost function as:

∆PFk = ∆f

∣∣∣∣∣
Nfreq,k∑

i

PFi −
Nfreq,k-1∑

j

PFj

∣∣∣∣∣ , (4.1)

where k corresponds to the number of iteration in the convergence procedure,

Nfreq corresponds to the frequency sampling and ∆f corresponds to the equal

frequency spacing in our spectra. It is also possible to calculate the relative

residual, where we just calculate the relative variation to the current integral

value: δPF = ∆PF/
∑Nfreq,k

i PFi.

Once we have defined this cost function we run for the convergence test and

gather all the results in Table 4.1. As is also depicted in Figure 4.4, when

we increase the accuracy of the simulation the residual fluctuates around a

plateau of values. However, the real time it takes to compute these simulations

increases drastically when we increase the mesh accuracy. That is why we

decided to move forward in our simulations with the parameters in the fourth

iteration, where we expect our results to be around a 2% relative error, but

where our simulations still take less than an hour to run.

Iteration Mesh accuracy Time factor Fr sampling Abs. residual Rel. residual Time [hh:mm:ss]

1 1 100 100 - - 00:02:27

2 1 150 200 3.56 · 10−3 4.14 · 10−3 00:03:36

3 2 200 300 8.15 · 10−3 9.59 · 10−3 00:31:25

4 2 250 400 2.03 · 10−2 2.33 · 10−2 00:42:58

5 2 300 500 1.76 · 10−2 2.06 · 10−2 00:56:00

6 3 350 600 1.52 · 10−3 1.78 · 10−3 05:25:59

7 3 400 700 1.25 · 10−2 1.44 · 10−2 05:59:04

Table 4.1.: PF converge scheme results for the double nanobeam structure. We vary
the simulation parameters to see the convergence of the residual for the
PF. We highlight the iteration that gives converged enough results in
useful computation time.
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Next in this analysis is to calculate how much of this emission goes into the

guided modes of the structure. As we defined in Chapter 3 it is possible to

separate the total decay rate into its guided mode and radiation contributions:

Γtot = Γ1D + Γ′. This means that if we are able to calculate the emission into

the radiation modes we can also deduce the emission into the guided modes.

Surprisingly, in the reference [48] we see that it is assumed that Γ′ ≃ Γ0. This

is however an incomplete approach to the analysis of the system, since the

emission into radiation modes will depend on many variables. This is why,

inspired in the approach used in [52] we use the box method to calculate the

emission into radiation modes by calculating the energy that flows through a

box. As shown in Figure 4.3 in red, we create a box of dimensions (w, t, L) in

our FDTD simulation and by measuring the power flowing through the faces

of the box we can determine Γ′.

Figure 4.3.: Numerical approach to measure the emission into radiation modes Γ′

for the double nanobeam structure with an atom (in blue). Results are
converged increasing the size of the dimensions (w, t, L).

Again it is necessary to run a convergence test, since we want to be system-

atically sure that we capture all the energy emitted into the radiation modes

without being exposed to evanescent fields close to the photonic crystal.

Fortunately, with the box method is it much more straightforward to define an

adequate cost function. Since we have already run the previous convergence

test we have already established how many frequency points we want to

sample from our spectra in the FDTD simulation. This means that we can now

define a cost function that addresses each frequency point individually.
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Iteration Width [a units] Length [a units] Thickness [a units] Abs. residual Rel. residual

1 0.5 5 0.25 - -

2 1 10 0.5 5.54 · 10−2 6.80 · 10−2

3 2 20 1 3.86 · 10−2 4.97 · 10−2

4 4 30 2 1.62 · 10−2 2.10 · 10−2

5 8 40 4 9.51 · 10−3 1.23 · 10−2

Table 4.2.: Box method converge scheme results. We vary the size (w, L, t) of the
box in Figure 4.14 to see the stability of the results for calculating Γ′.

Thus, we define the absolute residual cost function as the mean deviation for

each point:
∆Γ′

k

Γ0
= |Γ′

k − Γ′
k−1|

Γ0
(4.2)

where k is the iteration of the convergence procedure. Similar to the previous

convergence procedure we also define the relative residual as: δΓ′
k/Γ0 =

(∆Γ′
k/Γ0)/(Γ′

k/Γ0).

To summarize, as shown in Figure 4.4, to calculate the FOMs in our system

we have to run two convergence tests that should give us an estimate of the

error we will have in our results. The results obtained for the box convergence

method have also been gathered in Table 4.2. We see that as we increase the

size of the box we capture more and more accurately the emission into the

radiation modes without diverging towards evanescent field of the photonic

crystal.
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Figure 4.4.: Convergence test for the double nanobeam waveguide. On the left,
relative residual δPF as a function of iteration for the PF convergence
test. On the right, relative residual δΓ′/Γ0 obtained with the box method.
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4.1.3 Emission properties and cooperativity

Having determined an approximate error on our results, we can confidently

calculate the FOMs of the system.

In Figure 4.5 we calculate the spontaneous emission rate of the atoms in

the structure, by means of the PF. Similar to [48] we find that for a dipole

polarized in the Y direction we mainly couple with the interaction band in

Figure 4.2, while when the dipole is polarized in the X direction we couples

more weakly with the trapping mode. This happens due to the weaker intensity

Bloch mode at the atomic position, as we saw in the TMM formalism with

3.8.

Since the double nanobeam has a finite size the spectra show the band-edge

resonances introduced in Section 2.3.1. As expected, these resonances become

narrower as one approaches the band-edge. That is why for this simulation we

have had to increase the frequency sampling, in order to be able to resolve the

resonances better. As a matter of fact, for the broadband response we are not

able to completely resolve the spectra, so on the left in Figure 4.5 we plot a

short-impulse response close to the band edge, where we can discern the last

local maxima completely resolved.
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Figure 4.5.: PF for a dipole polarized along the cartesian axes in a 81 unit cell double
nanobeam structure. On the left, broadband response and on the right,
higher frequency resolution plot for a Y polarized dipole close to the
band-edge frequency.
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In Figure 4.6a we calculate the emission into the radiation modes of the system

with the box method, where it is evident that the assumption that Γ′(ν) = Γ0

used in [48] is incorrect, since our calculation of Γ′/Γ0 shows that we have both

a strong frequency and dipole polarization dependence. As we commented

in Section 3.1 we see that the photonic crystals allow for incredible leap in

cooperativity in the range 10 < Γ1D/Γ′ ≤ 20, 2 orders of magnitude higher

than the one in the fiber experiment at QUANTOP where the cooperativity was

in the range 0.05 < γ1D/Γ′ < 0.1.
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Figure 4.6.: Spectra of the the FOMs calculated after convergence of the box method
for the double nanobeam structure. In (a) we show the spectra for
different dipole orientations of the power flowing through the box faces.
In (b) we calculate the single-atom quantum cooperativity spectra using
the results in (a).

Interestingly, we note that for the X orientation of the dipole at some frequen-

cies the emission into radiation modes halves the emission into free-space,

which means that for certain parameters it is possible inhibit the losses of the

system. This probably happens because the field pattern emitted by the dipole

does not overlap as strongly with the radiation mode profile as the rest.

Using the result for the emission into the radiation modes in Figure 4.6b we

compute the single atom dissipative quantum cooperativity as introduced in

Section 3.2.2 when we studied atoms coupled to a Fabry-Perot cavity mode.

Interestingly, for the X orientation the cooperativity is enhanced due the

previously mentioned suppression of Γ′. This is substantial because it tells us

that it may be possible to engineer a structure to further suppress the

emission into these modes and enhance the emission into the guided

modes relative to free-space emission.
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4.2 Square lattice photonic crystal slab

In this section we move towards structures that we are most interested in and

that are currently being fabricated in the lab, such as the square lattice photonic

crystal slab shown in Figure 4.7. We follow the same design parameters9 as Yu

et al. in [12] in order to understand some of the interesting physics that can

arise in this configuration.

Figure 4.7.: Square lattice structure for three unit cells with design parameters:
(a, t, r) = (290, 200, 103) nm, where a is the lattice constant, t is the
membrane thickness and r is the hole radius.

4.2.1 Dispersion properties: directional emission

In Figure 4.8a we show the band diagram related to the infinite structure

photonic crystal slab. With this particular geometry, the Cs D2 line lies on top

of dielectric TE mode of the structure at the X point. In this high symmetry

point the dielectric mode becomes very flat, allowing for very low group-

velocities, and thus, for the possibility of strong light-atom interaction in the

dispersive waveguide regime.

Another important advantage of this platform is that it allows for directional

emission, which means that the atom will emit the photons in a preferred

direction due to the dispersion properties of the photonic crystal. In Fig-

ure 4.8b we plot a two-dimensional version of the band-diagram, known as the

isofrequency diagram. For a particular frequency, around ν = 390 THz, the

isofrequency curves become almost flat, which means that the group velocity’s

9As we will see, the geometry was chosen to allow both Cs D1 and D2 lines to couple to a
TE-like guided mode [12].
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Figure 4.8.: Band diagrams for the square lattice photonic crystal slab. (a) Ordinary
band diagram going through the edges of the Brillouin zone. (b) Isofre-
quency diagram where we plot the positive part of the first Brillouin
zone.

direction is the same for many different wave-vector combinations10. This is

known as a self-collimation effect that results in directional emission [53]

[12] [32][54].

In Figure 4.9 we show this directional emission effect for different frequencies

as done in [12]11. For a dipole polarized in the Y direction and for ν = 320
THz we find that there is no directional emission effect, as should be expected

by checking the isofrequency diagram. As a matter of fact, we obtain the

free-space dipole emission pattern that arises from the fields in Figure 3.4.

If we increase the frequency up to ν = 390 THz, we find that a Y polarized

dipole emits in the M direction. Since we have a Y polarized dipole, we see

how the radiation couples in an X-like pattern, due to the projection of the

fields into the directions symmetric to M . Therefore, we try with a diagonally

polarized dipole, so that we see how the emission only gets projected onto the

parallel M direction.

In [12] the authors explain how it is possible to adjust the lattice constant to

a = 330 nm to align the Cs D2 line to the flat dispersion region. This would

allow us to create lattices of atoms connected through the guided modes

10To understand this better, let’s remember that when the atom emits in a frequency that
corresponds to the linear regime of isofrequency curves, the group velocity vg = ∇kω will
point in the same direction perpendicular to the band, for most (kx, ky) pairs, which in
this case leads to the light field being directed in the M direction.

11Our results have also been obtained through a FDTD calculation using MEEP [55]. In this
case we have not executed our usual convergence scheme procedure because we only
wanted to include qualitative results that do, in principle, not require much numerical
accuracy.
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of the structure allowing for atom-atom interactions in the waveguide

dispersive coupling regime12 as shown in Figure 3.8.
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Figure 4.9.: Directional emission effects in the square lattice photonic crystal slab. On
the left, a Y polarized dipole emits at ν = 320 THz, where the radiation
is nearly isotropic. In the middle, at ν = 390 THz the Y polarized dipole
emits along all projected M directions following the crystal symmetry,
due to the self-collimation effect. On the right, the dipole is polarized
along the r̂ = −x̂ + ŷ direction and so it only projects onto a single M
direction.

4.2.2 Tolerances and tuning rates

The real photonic crystal slabs that are fabricated will be characterized and

compared to the idealized results in the previous section are far from perfect.

As a matter of fact, in Figure 4.10 we show a SEM image of cross section of a

real photonic crystal slab13 fabricated in the cleanroom.

One of the main fabrication constraint that arises in the when doing e-beam

lithography, as shown in Figure 4.10 is that the holes in the structure are

slightly slanted; in other words, their radius gets smaller as one goes down the

hole. We would like to see how this affects our previous results of the idealized

structure, to check for the robustness of the chip to fabrication imperfections.

Using Figure 4.10 one can conclude that for this particular sample the sidewall

angle is around 7.9◦, so we use this angle as a reference to understand the

impact of this fabrication defect.

12We have carefully checked that we have non-zero contributions from both the real and
imaginary parts of the Green’s function in the plane.

13Note that this is not a square lattice of circular holes, but the hexagonal hole lattice that
will be introduced in the next section. We use this image for illustration purposes.
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Figure 4.10.: SEM image of the cross section of a photonic crystal slab fabricated in
the cleanroom. The sidewalls of the holes in the crystal have an angle
of 7.9◦ due to the imperfect fabrication procedure. Figure courtesy of
Anders Simonsen [30].

To examine the impact of the fabrication imperfection we calculate the fre-

quency shift of the TE dielectric band at the X point14. In Figure 4.11a we

show there is a non-negligible frequency decrease for the dielectric and air

bands regardless of polarization.

After further inspection we have studied this shift more quantitatively by

varying the slope angle, as shown in Figure 4.11b. There seems to be a quasi-

linear dependence of the frequency shift with slope angle. We try a linear fit

of the type ∆ν = Aα + B, and retrieve the coefficients A = 1.13 THz / ◦ and

B = 0.35 THz. Since B should be zero there are two possibilities: either we

have to add a systematic uncertainty to our calculations to justify our error in

the parameter, or we have to try a more complex fit. Since we do not have any

a priori knowledge of the uncertainties we try to fit the data to a custom fit of

the type ∆ν = A sin(Bx + C) + Dx + E. We will not add the fitted coefficients

here since they are mostly irrelevant, but in Figure 4.11b we see that this fits

the data much better.

14Due to time constraint we were only able to study the effect of the slanted walls in the
infinite structure; nonetheless, we also expect to see a non-negligible effect on the finite
structure atom-coupling rates calculated through FDTD calculations.
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Figure 4.11.: Effect of the sidewall slope on the photonic crystal band structure. (a)
The perfect structure modes (normal line) are pulled in frequency to
imperfect modes (dashed line). (b) Frequency difference for the TE
dielectric band at the X point for different slope angles α. We also add
two fits from a linear and custom model.

4.3 Hexagonal lattice photonic crystal
slab

In this section we switch to another photonic crystal slab with a different

geometry. As we can see in Figure 4.12a, we will study an hexagonal lattice

photonic crystal slab with hexagonal holes as designed by Yu et al. in [12]15.

This structure is particularly interesting because one can employ it to exploit

coherent atom-atom dynamics mediated by photons in the band-gap

regime while also allowing for slow-group velocities at the K point,

resulting in strong atom-light interaction.

4.3.1 Dispersion properties: TE band-gap

In Figure 4.3 we calculate the band diagram of the infinite crystal slab where

we display the dielectric and air bands for both TE and TM polarizations. For

this particular geometry we have a TE band gap which covers the D1 and D2

transitions of Cs. This means that when we place an the atom in a hole, we

will excite the band-gap modes, which are evanescent in the photonic crystal

plane. Additionally, we also observe that the TE dielectric band is quite flat at

the K point, which may be used to enhance the strength of the interaction.

15This geometry has been proven to be the optimal geometric design for maximizing the TE
band-gap width using Topology Optimization techniques [56].
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Figure 4.12.: Structure and band diagram for the hexagonal photonic crystal slab. (a)
2 unit cells of a photonic crystal slab with design parameters (a, t, t′) =
(405, 200, 180) nm, where a is the lattice constant, t is the thickness and
t′ corresponds to a tether length. It is possible to relate t′ and a with the
radius of the radius R of the circumscribed circle. (b) Band diagram of
the structure with the TE and TM-like dielectric and air bands.

4.3.2 Convergence of FDTD calculations for a
two-dimensional photonic crystal

Similar to the double nanobeam waveguide we will consider a finite photonic

crystal slab which corresponds to the structure shown in Figure 4.13. We have

a slab of Si3N4 where we have punched 314 hexagonal holes in an hexagonal

supercell16, similar to what is done in [12]. Since the number of holes in

the X and Y directions will be different we expect to see different slightly

different band-edge resonances and supermode modulation in the results that

will follow.

Using this finite structure we will once again make sure that the results arising

from our FDTD calculations are converged and within acceptable error ranges.

That is why we proceed with a similar convergence scheme as the one

developed to study the double nanobeam structure, which will this time be

adapted to the two-dimensional case.

First, we converge the PF calculation similar to what we did in the one-

dimensional case. The main results are summarized in Table 4.3 and plotted

on the left plot in Figure 4.14. We check that as we increase the number of

iterations the residual goes down. We have then selected the results that refer

16We leave some homogeneous dielectric between the holes close to the boundaries of the
structure to avoid FDTD simulation errors.

4.3 Hexagonal lattice photonic crystal slab 57



−5 0 5
x (µm)

−6

−4

−2

0

2

4

6
y

(µ
m

)

−1 0 1
x (µm)

−1.0

−0.5

0.0

0.5

1.0

Figure 4.13.: Index profile of the photonic crystal slab structure for z = 0. In black
we have SiN and in white we have air.

to iteration 4 to proceed in the next sections, since the simulations will not

take a long time to execute, around 5 min, but should still yield results correct

within 0.4% of error.

Iteration Mesh accuracy Time factor Fr sampling Abs. residual Rel. residual Time [hh:mm:ss]

1 1 50 100 - - 00:00:14

2 1 100 200 3.77 · 10−2 2.23 · 10−2 00:00:46

3 2 150 300 8.20 · 10−2 5.10 · 10−2 00:03:11

4 2 200 400 6.58 · 10−3 4.07 · 10−3 00:04:21

5 2 250 500 1.56 · 10−4 9.65 · 10−5 00:09:38

6 3 300 600 2.95 · 10−3 1.83 · 10−3 00:34:40

7 3 350 700 3.03 · 10−5 1.88 · 10−5 00:41:35

Table 4.3.: Purcell Factor convergence scheme results for the hexagonal photonic
crystal slab. We vary the simulation parameters to see the convergence of
the residual for the Purcell factor. We highlight the iteration that gives
converged enough results in useful computation time.

The next step in the convergence procedure is to calculate the emission into the

radiation modes Γ′ using the box method. We determine the right dimensions

of the hat-like box that surrounds the photonic crystal slab in Figure 4.15.

Varying the dimensions (h, L, w) of this box we converge the spectra of Γ′,

as summarized in Table 4.4. We conclude that within 7 iterations we can

converge the results up to around 0.5% of error.
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Figure 4.14.: Results for convergence test for the hexagonal photonic crystal slab.
On the left, relative residual δPF as a function of iteration for the PF
convergence test. On the right, relative residual δΓ′/Γ0 obtained with
the box method.

Figure 4.15.: Numerical approach to measure the emission into radiation modes Γ′

for the hexagonal lattice slab structure with an atom (in blue). Results
are converged increasing the size of the dimensions (h, w, L).
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Iteration Length [a units] Height [a units] Width [a units] Abs. residual Rel. residual

1 2 0.2 0.1 - -

2 4 0.4 0.2 1.37 · 10−1 3.01 · 10−1

3 8 0.6 0.4 1.57 · 10−1 2.61 · 10−1

4 11 1 0.5 1.02 · 10−1 1.70 · 10−1

5 12 1.5 0.6 2.57 · 10−2 4.37 · 10−2

6 13 1.75 0.8 1.37 · 10−2 2.27 · 10−2

7 13.5 2 1 2.95 · 10−3 4.89 · 10−3

Table 4.4.: Box method convergence scheme results. We vary the size of the box in
Figure 4.14 to see the stability of the results for calculating Γ′.

4.3.3 Dispersive interactions in the band-gap

Using the converged FDTD simulation parameters we calculate the PF in

Figure 4.16 for the three dipole orientations, which agrees with the results

found in [12]. As expected the atom couples to the TE bands when it is

in-plane polarized and to the TM polarized when it is Z polarized. Likewise,

for in-plane polarization which corresponds to the Green function components

Gxx and Gyy, we obtain the same results due to the rotational symmetry of the

hexagonal structure17.
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Figure 4.16.: PF spectrum for the hexagonal lattice photonic crystal slab for the three
possible cartesian dipole orientations.

17This is not entirely true in our results, but should be true in the infinite structure limit. In
Figure 4.13 we showed the finite structure with different amount of unit-cells in the X
and Y directions, and that is why we see that the blue and red curve in Figure 4.16 don’t
exactly lie on top of each other.
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For the Z orientation of the dipole the PF does not vary too much, but for the

in-plane polarization we see a strong coupling to the air band after around

370 THz. Interestingly, we also perceive the effect of the TE band-gap, which

results in the suppression of emission of around 8dB of spontaneous emission,

similar to what is observed in [12]. Once more, as a consequence of the the

finite boundaries of the structure we spot narrow resonances in the spectrum

that get narrower close to the band-edge.

With the converged boxed dimensions calculated in Table 4.2 we compute the

converged spectra for the normalized emission into the radiation modes in

Figure 4.17a. We observe that for in-plane polarization of the dipole the radia-

tion modes are suppressed in the band-gap but increase once the frequency

crosses to the TE dielectric band. Once again, we see the modulation by the

band-edge resonances, which become extremely narrow close to the band-edge.

We use this spectra to compute the single-atom dissipative quantum coopera-

tivity Γ2D/Γ′ spectra for the different dipole orientations. As expected, in the

band-gap regime Γ′ will become dominant and Γ2D will be negligible, while at

both bands next to the band-gap we can achieve a dissipative cooperativity on

the order of 10.
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(a) Emission into radiation modes.
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Figure 4.17.: Spectra of the the FOMs calculated after convergence of the box method
for the hexagonal photonic crystal slab. In (a) we show the spectra
for different dipole orientations of the power flowing through the box
faces. In (b) we calculate the single-atom cooperativity spectra using
the results in (a).

The strong suppression of emission in the band-gap allows us to work with

evanescent fields of light while also expecting fairly (≤ 0.5Γ0) low emission

into the radiation modes. Remember that in the band-gap the modes will be
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evanescent waves emitted by the atom that decay exponentially as distance

grows far from the emitter. As we saw in Figure 3.8 and in Equation 3.66 and

Equation 3.67 it is possible to use these fields to harness coherent interactions

between atoms. Following Appendix A and taking into account the hyperfine

energy transitions with Zeeman splitting we may calculate the spin-exchange

rate between Cs atoms as:

Jijqq′ =
µ0ω

2
qq′

ℏ

∣∣∣⟨F ||d̂||F ′⟩
∣∣∣2êq · Re{G(ri, rj, ωqq′)} · ê∗

q′ , (4.3)

where q, q′ correspond to the ∆mF for the back and forth transition between

the energy levels, i, j correspond to atom position indices, F, F ′ correspond

to the hyperfine numbers, d̂ is the dipole operator and ê corresponds to the

polarization of light. In our case, we mainly will work with the |F = 4, mf = 4⟩
to |F = 5, mf = 5⟩ transition that, as explained in Appendix A, can act as a

closed transition for σ+ polarized light, and thus as a two-level system. In

Figure 4.18 we evaluate the real part of the Green’s function for the circularly

polarized transition. There is, as expected, an evanescent field modulated by

the supermodes of the finite photonic crystal structure with circular rotation

symmetry, similar to what is found in [12].
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Figure 4.18.: Real part of the Green’s function in the band-gap regime at the Cs D2
line. The colorscale has been saturated to avoid the divergence of the
real part of the Green’s function at the atom position.

With these coherent spin-exchange interactions it is possible to generate Hamil-

tonians of the form:

ĤI =
∑
i,j

= Ji,jσ
i
pqσ

j
qp , (4.4)
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where σi
pq = |gp⟩i ⟨q|i and gp and q are the ground and excited states respec-

tively. As suggested in [12] the geometrical pattern of the spin-exchange

rate can be used to engineer the form of the interaction Hamiltonian. As

is currently being done in the LAQS experiment it is possible to use optical

tweezers to address individual atoms and arrange them in superlattices, where

one can get the desired interaction Hamiltonian18.

This interaction Hamiltonian may then be chosen to map a given physical

problem and by studying its dynamics and measuring its quantum states

one can achieve a quantum simulation platform [57]. Note that it is also

possible to build quantum simulator platforms using tunable and long-range

interactions. This is possible, for instance, using the dissipative interactions

available in this crystal or in the square photonic crystal slab at the edge of the

Brillouin zone. For more information on quantum simulators based on these

interactions refer to [58] [59].

4.3.4 Tolerances and tuning rates

Similar to the circular photonic crystal slab we have also calculated the effect

of having slanted sidewalls in the hexagonal photonic crystal structure, based

on the SEM image in Figure 4.10. Once more, we see a general downward

shift of the frequency for the bands when the slopes are added. Therefore,

in Figure 4.19 we compute the absolute value of the frequency shift of the

dielectric band at the K point for a sweep of the slope angle and we try a

linear and a custom fit. The linear fit does not seem to fit the data well but

it may prove of use as a first order approximation for the underlying scaling

laws. We find the coefficients: A = 0.4 THz/◦ and B = 1.82 THz. For a better

fit, we try a custom power law fit ∆ν = A αB. We find that this function fits

the data much better with the fitted coefficients A = 1.62 THz and B = 0.57.

Another experimental constraint that we have addressed in this platform is

that there will always be some uncertainty on the atom position even when

trapped with optical tweezers [29]. In consequence, we shall test the effect

that displacing the atom from the center of the hole has on the spontaneous

emission rate.

18For more information on this please refer to [12].
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Figure 4.19.: Scaling of the absolute value of the frequency shift of the dielectric TE
band as a function of the slope of the hexagonal hole sidewalls. On top
of the data we add a linear and a power law fit.

In Figure 4.20 We have moved the atom in the three cartesian directions by

100 nm steps and studied the effect on the PF. In general and as expected, the

band-edges are not shifted in frequency but the displacement of the atom from

the position of maximum of the guided mode fields weakens the coupling.

Interestingly, when we move it 200 nm in the X direction we will no longer

be inside the hole, resulting in weaker coupling to the TM mode and higher

coupling to the TE mode. Anyhow, since this just gives us an overall qualitative

understanding, we have used this data points to calculate the tuning rates of

the coupling. In the case of coherent atom-atom interactions we will assess

how the atom displacement shifts the global minimum of the Purcell factor19.

With a linear fit20 of the three data points we find that the results in Table 4.5.

Note that we expect similar results for the tuning of the maxima.

∆ PFmin,∆x ∆ PFmin,∆y ∆ PFmin,∆z

X orientation 0.09 0.12 0.33

Y orientation 0.22 0.11 0.38

Z orientation 0.03 0.03 0.24

Table 4.5.: Tuning rates of the minimum global value of the PF when the atom is
displaced in either o the cartesian directions. The units of the tuning rates
are Γ0/100 nm.

19For a more complete assessment one should do more simulations for a broader range of dis-
tances and and study how the spin-exchange coefficient Jij varies with atom displacement.

20We have not included the last data point in the case of the ∆x displacement for the X
orientated dipole, since it is we have the previously mentioned unexpected stronger
suppression.
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Figure 4.20.: Change in the Purcell factor spectrum when the atoms are displaced
inside of the unit cell for three different distances: 0 nm, ±100 nm and
±200 nm. The very narrow resonances are due to low time simulation
and hence numerical uncertainty.

4.4 Different atoms, new possibilities

Now that we are able to calculate the FOMs for an arbitrary photonic crystal

slab structure with the methods presented in the previous sections we want

to extend this formalism to other frequency ranges to see if this may lead to

improved results. We will focus on studying the hexagonal photonic crystal

structure and the coherent interaction regime in the band-gap.

Changing frequency ranges means that we have to change the transition

frequency of the atoms. In our case, we have decided to try out a small sample

size of atoms that have already been used in experimental setups, where
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proper trapping and cooling is possible, and therefore it should be possible to

integrate them21 to the LAQS platform. The list of atoms we will try is: Rb,

He∗, Sr and the aforestudied Cs. In the case of Rubidium we will work with
85Rb an its D2 line22 at 780.24 nm [60], in the case of metastable Helium ∗He

we choose the 2 3S1 → 2 3P2 transition at 1083 nm [61] and for Strontium we

choose 87Sr and the 5 3P2 → 4 1D2 transition at 1.8 µm [62]23.

4.4.1 Maximizing the bang-gap width

As a starting point, we will try to numerically maximize the band-gap of the

structures. Using the workflow defined in Figure 4.21 this involves modifying

three parameters: the lattice constant a, the radius of the hexagon’s circum-

scribed circle R (see Figure 2.4.1) and the thickness of the slab t. We try to

maximize the band-gap of the structures because we expect this should confine

the fields more tightly and results in fewer losses to the radiation modes, so

we expect higher Jij/Γ′ dispersive quantum cooperativity.

To maximize the band-gap of the structures we use MEEPs MPB frequency-

domain solver [55]. First we calculate the frequencies for the dielectric and air

TE bands at all k points at the edge of the Brillouin zone. Then, we compute

size of the band-gap ∆ by subtracting the minimum of the lower band to the

maximum of the higher band, and we maximize that quantity. In other words,

we minimize a cost function:

f(t, a, R) = − [min{ω2(t, a, R)} − max{ω1(t, a, R)}] = −∆ , (4.5)

where ω1(t, a, R) and ω2(t, a, R) correspond to the the dielectric and air band

respectively. We then use the scipy.optimize.minimize [63] minimizer li-

brary and the Nelder-Mead [64] algorithm to find the parameters that yield

the maximum band-gap.

Once we have maximized the band-gap size we can use the fact that Maxwell’s

equations are scale-invariant to align the relevant transition frequency

21With more or less technical efforts.
22Corresponding to the transition 5S1/2 → 5P3/2. This is similar to the D2 line in Cs as

explained in Appendix A.
23In this reference they use 88Sr but isotope shifts from mass effects will be on the order of

GHz so we will not take them into account.
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Figure 4.21.: Flow chart for the the optimization scheme. Using the relevant cost
function we follow this procedure for each of the different atoms to
retrieve the optimized parameters and then calculate the FOMs.

ωtrans. to the mid gap frequency (max{ω1} + min{ω2})/2, allowing for the

highest confinement possible. This gives us a photonic crystal design for each

of the atoms where we can now compute the FOMs, which are summarized in

Table 4.6. We see that in general, aligning the transition frequency up with

the midgap frequency does not yield the expected extra suppression of the

radiation modes. In fact, due to the larger thickness of the membrane and

thin film effects the atoms couple more with the radiation modes. In that

sense, in neighboring holes we find lower values for J/Γ′ than in our reference

simulation. If we think about it this makes sense because we obtain a more

confined field close to the atom, which also results in an unforeseen lower

spin-exchange coupling to neighboring unit-cells. We also noted the values

for the dissipation rate couplings, but in this case they are also lower than the

reference.

4.4.2 Fixing the slab thickness

Now, we go a step further by taking into account some fabrication constraints.

As a matter of fact, it is not possible to fabricate a photonic crystal slab with

arbitrary dimensions in the cleanroom. For instance, the thickness is limited

by the internal stresses, as too thick a layer will shatter. It is possible to

make the membrane thinner, but this may be undesirable because the modes

propagating through the structure will become more evanescent and may see

surface roughness more. It is safest to stay in the range (200 ± 50) nm, where
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Atom Ref. Caesium [Cs] Opt. Caesium [Cs] Rubidium [Rb] Met. Helium [He∗] Strontium [Sr]

ν [THz] 351.73 351.73 384.23 276.82 166.50

t [nm] 200.00 530.11 485.27 673.56 1119.50

a [nm] 405.00 403.73 369.58 512.98 852.60

R [nm] 138.56 151.17 138.38 192.07 319.24

∆ [THz] 28.26 63.58 69.45 50.03 30.10

PFmax 10.73 8.69 6.29 5.32 4.87

PFmin 0.15 0.37 0.34 0.35 0.37

Γ′
min[Γ0] 0.14 0.28 0.26 0.26 0.25

Γ′ (ν)[Γ0] 0.16 0.42 0.32 0.32 0.32

Γ2D, max[Γ′] 12.17 5.82 3.25 5.52 9.67

J2D(r1, ν)[Γtot] -1.23 -0.56 -0.55 -0.49 -0.25

J2D(r2, ν)[Γtot] 0.98 0.21 0.20 0.28 0.12

J2D(r3, ν)[Γtot] -0.30 -0.06 -0.05 -0.08 -0.04

Table 4.6.: FOMs for a freely optimized hexagonal photonic crystal slab where the
design parameters (t, a, R) have been chosen to have a maximal band-
gap ∆ while aligning the relevant transition frequency ν to the midgap
frequency. Note that ri, for i = 1, 2, 3 refers to the position of the ith

nearest neighbor.

there is also low Fabry-Perot reflectivity. That is why in the next section we

will work with a fixed membrane thickness24 of 200 nm.

Since we fix the membrane thickness it is no longer possible to conformally

modify the design parameters to maximize the band-gap anymore. Therefore,

we use the thickness constraint and adjust the other two parameters to fix the

transition frequency of the atom at the midgap frequency. For this we create a

cost-function f(t, a, R) that will be minimized:

f(t, a, R) =


∣∣∣∣ωtrans. − min{ω2} − max{ω1}

2

∣∣∣∣ if min{ω2} − max{ω1} > 0,

Ω else
(4.6)

where Ω corresponds to a penalty term. We have fixed this penalty at an arbi-

trary unit 10, that exceeded the values of the function by an order of magnitude,

so that the minimizer is able to see that we just want a solution that has a

positive band-gap size. Once more we make use of scipy.optimize.minimize
[63] minimizer library and the Nelder-Mead [64] algorithm to calculate the

geometrical parameters that set the transition frequency at the midgap fre-

24There are other fabrications constraint that we will take into account in the simulation. For
instance, the aspect-ratio (the ratio between a hole’s depth and its diameter) must not be
extreme. Although the e-beam writer can go down to 10 nm hole sizes, we will limit the
hole radius at 50 nm, so that etching process remains manageable.
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Atom Ref. Caesium [Cs] Opt. Caesium [Cs] Rubidium [Rb] Met. Helium [He∗] Strontium [Sr]

ν [THz] 351.73 351.73 384.23 276.82 166.55

t [nm] 200.00 200.00 200.00 200.00 200.00

a [nm] 405 383.65 353.51 488.20 941.55

R [nm] 103.56 115.62 113.88 120.30 271.80

PFmax 10.73 12.49 14.94 6.42 5.77

PFmin 0.15 0.17 0.15 0.19 0.30

Γ′
min[Γ0] 0.14 0.16 0.14 0.12 0.30

Γ′ (ν)[Γ0] 0.16 0.19 0.18 0.23 0.31

Γ2D, max[Γ′] 12.17 26.04 28.81 33.97 13.37

J2D(r1, ν)[Γtot] -1.23 -1.24 -0.55 -1.60 -0.62

J2D(r2, ν)[Γtot] 0.98 0.97 0.20 1.84 0.77

J2D(r3, ν)[Γtot] -0.30 -0.29 -0.05 0.70 -0.32

Table 4.7.: FOMs for an hexagonal photonic crystal slab under thickness constraint,
where we optimize to position the transition frequency at the midgap
frequency of the photonic crystal. Note that ri, for i = 1, 2, 3 refers to the
position of the ith nearest neighbor.

quency. These results are gathered in Table 4.725 alongside the FOMs derived

from the standard calculation, as we did when we optimized for the maximum

band-gap.

From Table 4.7 we can learn several promising results. First of all, we learn

that several FOMs may be improved by using different atoms. For instance,

in general, even though not aligned with the transition frequency, the max-

imum value of the dissipative quantum cooperativity Γ2D/Γ′ is up-to almost

three times higher with the optimized Cs, Rb and He∗ atoms. As shown in

Figure 4.4.2 this happens because the emission into the radiation modes ex-

periences some local minima that align with band-edge resonances at the

dielectric air band. It is also worth noting that even if in general the dispersive

quantum cooperativity J2D/Γ′ is lower than for the reference Cs platform, we

find that for the second nearest neighbor we can improve its value by 30%
for the He∗ atom. Specially promising is the fact that although the FOMs are

slightly lower for the Sr atom, since we would be working with much bigger

spatial dimensions this could in principle facilitate the fabrication process.

There might exist the possibility to purchase this crystals from a company26

which would result in very few fabrication imperfections.

25Since Sr has a smaller frequency we have run the simulations using a pulse of 50 THz
bandwidth, which allows us to capture the results of the band-gap and the band-edges.

26For example, this could be the MEMS technology company NORCADA [65].
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Figure 4.22.: Spectra of the FOMs for the optimized structure for Cs. (a) PF spectra
for different dipole orientations. (b) Emission into radiation modes
using the converged box method.

As we have seen in Figure 4.22b the change of dimensions has allowed some

local minima from the radiation modes that had a higher value in Figure 4.17a

which have resulted in an increase of the FOMs. It has been suggested in

[32] that certain designs of the dielectric environment may lead to Fabry-Perot

resonances and local polarization effects that could counteract the emission

into radiative modes. If we find such phenomena it may lead to much better

results than those in Table 4.7.

4.5 Back to Caesium: Improving the
current design

From the learnings in the previous section we want to go back to more realistic

objectives that line up with the current experimental timeline. That being the

case, we will try to improve even further the design of the photonic crystal

for the Cs atom. Accordingly, we will try to scan the design parameters space

and see where we can expect the best results for the dissipative quantum-

cooperativity, while being aligned to the Cs D2 transition.
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In Figure 4.527 we try a range of lattice constants and hole factors (the ratio

of the hole radius to the lattice constant), and show the corresponding PF,

dissipative cooperativity and detuning from the D2 line.
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Figure 4.23.: Parameter sweep for the Cs design optimization. We calculate the main
FOMs (PF, C and absolute value of the detuning from the D2 line) for
a range of values of the hole factor and the lattice constant a.

Although it is possible to obtain a cooperativity as high as 150, this maximum

cooperativity peak is more than 60 THz away from the D2 line, at 415 THz.

Ideally, we would need an atom with a transition frequency at 415 THz to

achieve such a high cooperativity and study the tuning of this frequency with

a slight variation of refractive index and thickness. Another possibility would

be, forgetting our constraint of the membrane thickness, to use the design

parameters from Figure 4.5 and conformally vary them together with the

thickness to align this maximum to the D2 line.

27Note that in this plot there are many cells that show almost null PF and cooperativity. This
happens because our broadband source had a bandwidth of 150 THz, and for certain
designs the maxima go so high in frequency and we do not measure them anymore.
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In the range of our fabrication constraint it is possible to improve the coopera-

tivity found in Table 4.7 by taking a = 342.86 nm and a hole radius R = 61.58
nm to find C = 26 at 351.53 THz, 0.2 THz away from the D2 line. Therefore,

by using these design parameters we can expect to double the dissipative

quantum cooperativity found with the design in [12], similar to what we

found in the preceding section, although now aligned with the transition

frequency.

Interestingly, if we search for the detuning from D2 line for Rb28 we find that

we can achieve C = 45 at 384.24 THz, 0.01 THz away from the transition

frequency, with a = 364.29 nm and R = 100 nm. With this configuration we

can expect to enhance the dissipative cooperativity up to almost 4 times

compared to the reference in [12].

Last but not least, there are other ways to increase the single atom spin-

exchange and dissipation cooperativities. In fact, it is possible to create a local

defect in the photonic crystal structure, which can act as an effective cavity.

This cavity may then be engineered as in [66] to suppress further the emission

rate into the radiation modes and therefore enhance the spin-exchange coop-

erativity for the atom. This cavity could also be engineered to enhance the

emission into propagating modes in the structure while suppressing the emis-

sion into radiation modes, to enhance the dissipative cooperativity. One could

then imagine a series of defects in the photonic crystal structure connected

by optical channels29. This, however limits the flexibility of using photonic

crystal structures holistically, and therefore in our optimization approach we

have avoided optimizing local defects and have tried to optimize the whole

photonic crystal structure.

28Using the same transition frequency as in Table 4.6 and Table 4.7.
29One may even create superlattices of defects inside the photonic crystal structure to work

with a subsystem of atoms with different emission properties.
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5Conclusion and outlook

“ Nothing behind me, everything ahead of me, as

is ever so on the road.”
— Jack Kerouac, On the road.

Nanophotonic devices offer rich possibilities to modify the propagation of

light at sub-wavelength length scales. In this thesis we have learnt how the

properties of novel nanophotonic devices, such as photonic crystal waveguides,

may be designed to engineer atom-photon and atom-atom interactions. First,

we have discovered what the key ingredients for strong atom-light coupling are,

and how we can take advantage of them to design photonic crystal structures.

Next, we have studied how atoms couple to each other through the modes of

the nanostructures and how it is possible to engineer their coupling coefficients

by modifying the dielectric environment.

Most of all, with this work we have demonstrated a general numerical

approach to calculate the main FOMs in strong atom-atom interactions

mediated by photons. Using this framework, which is available online [31],

it is now possible to evaluate the performance of different device designs by

using FOMs such as the quantum cooperativity, which takes into account the

strength of the interaction relative to the losses of the system into the radiation

modes. It is now also possible to use this framework to engineer interaction

Hamiltonians between several atoms by calculating the coupling coefficients

introduced in the Green’s function formalism. This will be then used in the

future to find nanophotonic designs that match a custom Hamiltonian1, so that

its dynamics can be studied by running a quantum simulation experiment.

The simulation framework may also be used to optimize the design of the

photonic crystal waveguides and achieve stronger interactions while min-

imizing the loss mechanisms. In the last sections of Chapter 4 we have

1This Hamiltonian will mapped onto a a Hamiltonian from the life-sciences.
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studied the FOMs for different frequency regimes and different design pa-

rameters. The results suggest possible improvements to the designs that if

verified by experimental work, would yield a two-fold improvement on the

dissipative quantum cooperativity Γ2D/Γ′ in comparison to current-state of

the art designs [12]. In order to find the best design possible one ought to

expand the parameter search in Section 4.5 to achieve a higher cooperativity

while being close to the Cs D2 line. An alternative in an ideal scenario would

be to, either find an atomic transition that matches the highest cooperativity

peak, or if one had a perfect fabrication process, to directly use the optimized

parameters and conformally vary them using the scale invariance of Maxwell’s

equations. In the future, it would be even possible to take the design optimiza-

tion one step further by inverse designing the unit cells of the photonic crystal

with state-of-the-art techniques, such as the Topology Optimization framework

[56]. Although the results for the very high cooperativity peaks are promising,

further numerical studies would be necessary to study the tuning rates and

tolerances for these novel designs.

As mentioned previously, there exists the possibility to enhance the quan-

tum cooperativities by finding a physical mechanism that suppresses the

emission into radiation modes. Perhaps, one could use the TMM to find a

frequency range for which the in-plane modes have high transmittance2 but

there is high reflection in the out-of plane direction, which would mean that

all the light would stay inside the crystal. Using the TMM one would model

the in-plane directions using a finite 1D photonic crystal and the out-of plane

direction as as a Fabry-Perot film. Actually, if there was no thickness constraint

one may effectively eliminate most of the emission into the radiation modes

by studying the reflection of a Fabry-Perot film as a function of the membrane

thickness3. Finally, one should try to obtain the design parameters for an

omnidirectional mirror4 in the out-of-plane direction [32], to make sure that

all the field stays in the photonic crystal slab.

It is likewise important to talk about the limitations of this thesis. First and

foremost, and as hinted in Appendix C simulations are still simulations, and

although they can be used to grasp many physical processes our approach still

2Or null transmittance if we want to work with dispersive interaction in the band-gap.
3In this case one would take the dielectric constant of the film as a variable, which would

come from the ratio of air-dielectric in the structure, and therefore determined by the hole
radius: neff = (Lhole/Ltotal)nair + (LSi3Ni4/Ltotal)nSi3Ni4 , where Ltotal = Lhole + LSi3Ni4 .

4A mirror for every possible incidence angle at the interfaces.
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ignores the inherent quantum nature of atoms, not to mention most of the

fabrication imperfection. It was also not easy to construct a sensible numerical

framework to extract all the FOMs from our system of interest. In fact, we had

many difficulties setting up a coherent convergence scheme to be sure that the

calculation of the emission into the radiation modes would be correct. One

could improve this procedure by having an alternative way of calculating Γ′

and comparing it to the box-method results, as is done in [52]. For instance,

this could be done by computing the Green’s function for the guided modes

G1D
5 and subtracting it to the one calculated using our FDTD method. Then,

we would just obtain G′ = G − G1D and we would use Equation 3.25 to

calculate the decay rate into the radiation modes.

Lastly, the completion of this MSc. thesis opens up many different research

questions that require further exploration. Novel designs may be useful to

improve on atom-trapping close to nanostructures, by using the guided fields

of the structures and the Casimir-Polder forces, as suggested in [48]. To get

a guided field into the photonic structure one should also design couplers to

efficiently couple outside light into the structure. On another note, specially

relevant for our σ+ polarized atomic transition6 is the prospect of exploring the

possibilities of chiral emission in the nanophotonic waveguides, as explained

in [12], so that it is possible to engineer light polarization dependent emission.

Finally, since the ultimate goal is to address quantum simulation problems, as

introduced previously, it will be necessary to engineer the coupling coefficients

for each atom so that we are able to construct a desired Hamiltonian. In this

sense, the numerical studies carried out in this thesis should prove very useful

for future experiments in LAQS and to continue theoretical research in many

exciting fronts.

5This could be done using a frequency-domain solver and calculating the eigenmodes of the
infinite structure. Then one just needs to extend this periodically to the finite structure.

6See Appendix A.
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AReal atoms

“ When it comes to atoms, language can be used

only as in poetry. The poet, too, is not nearly so

concerned with describing facts as with creating

images.”

— Niels Bohr

In all previous theoretical and computational considerations we have idealized

our atoms as being a classical monochromatic dipole point source. This is an

acceptable first approximation when the wavelength of the source is much

bigger than the radius of the atom; however, atoms in the real world are

more complex than our simplified two-level system. In this appendix we study

this in the case of our atom of interest: 133Cs. Not only do we work with

Cs atoms because they have been used in QUANTOP throughout the years

[18] [19] [20] [21] [22] [23] [24] and there is excellent experience and

documentation available, but also because the atoms have a simple electronic

configuration ([Xe]6s1) and a heavy mass, which facilitates laser cooling and

trapping experiments.

A.1 Electronic structure of the Caesium
atom

Alkali metals are defined by their electronic configuration, with one valence

electron on their most outer s orbital. In particular, the electronic configuration

of a caesium atom is [Xe]6s1. Taking this into account we can calculate the

fine structure of caesium from the coupling between the orbital angular

momentum L of the valence electron and its spin angular momentum S. This

yields a total angular momentum quantum number J = L
⊕

S, which can

take values |L − S| ≤ J ≤ L + S. For instance, for the ground state of Cs
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we have L = 0 and S = 1/2, so J = 1/2 and for the excited state we have

L = 1 and S = 1/2, so J = 1/2 or J = 3/2. These levels are related to the

6P1/2 and 6P3/2 states. The transitions from ground state correspond to the

lines D1 (6S1/2 → 6P1/2), with λ ≃ 852.357 nm or ν ≃ 351.726 THz, and D2

(6S1/2 → 6P3/2), with λ ≃ 894.593 nm or ν ≃ 335.116 THz.

One can go one step further by calculating the hyperfine structure of Cs. This

structure arises from the coupling between J and the total nuclear angular

momentum I. Similarly as before, we have F = J
⊕

I and |J − I| ≤ F ≤ J + I.

For instance, for the ground state of caesium we have J = 1/2 and I = 7/2, so

F = 3 or F = 4. Applying the same principle for the D1 line, F = 3, 4 and for

the D2 line F = 2, 3, 4, 5.

Figure A.1.: Hyperfine electronic structure of Cs for the experimentally interesting
D1 and D2 lines. Next to the lines we see the effect of the hyperfine
splitting. Note that energy levels are not at scale. Figure courtesy of
Isaac Roca and adapted from [67] [68].

Additionally, if there is an external field the hyperfine levels can split into

sublevels. For example, if there is a DC magnetic field along the Z axis Bz,

each of the hyperfine levels splits into 2F + 1 sublevels |F, mF ⟩. This is known

as Zeeman spliting and the energy shift is approximately [69]:

∆E|F,mF ⟩ = µBgF mF Bz , (A.1)

86 Appendix A Real atoms



where µB is the Bohr magneton, gF is the hyperfine Landé g factor [69]. This is

important in our analysis because this magnetic shifts can happen even without

an external magnetic field, as a result of vector light shifts of an optical field.

This is known as the AC Stark shift.

A.2 Selection rules and effective two-level
system

It is important to note that despite the complexity of real atoms the two level

system can still be useful in some cases. For instance, when we have lasers with

a linewidth narrow enough to address hyperfine levels we can experimentally

approximate a two-level system.

For a two-level system we need to have a ground and excited state and be

able to transition from one to another. First, we prepare the ground state

J = 1/2, F = 4, mF = 4 by using a pump laser. At room temperature atoms

are equally distributed in all the Zeeman sublevels for F = 3 and F = 4. The

probe laser will then make transitions happen, obeying the selection rules,

which are a consequence of the conservation of energy and momentum [70]:

∆L = ±1 ,

∆S = 0 ,

∆J = 0, ±1 ,

∆F = 0, ±1 ,

∆mF = 0, ±1 .

Using these rules, we will use a pump laser with σ+ polarized light, which has

a ∆mF =1 and ∆F = 0, as show in orange in Figure A.2. The state will then

decay by spontaneous emission with ∆mF = 0, ±1, so that in the long run we

reach the state with mF = 4 because it is not possible to drive it to another

state using the pump laser. This is known as dark state. Following the selection

rules it is still possible that atoms decay to the hyperfine levels with F = 3,

so we use a repump laser to bring the atomic population back to the F = 4
state, as shown in red in Figure A.2. Once we have pumped and repumped our

atoms, we can use the σ+ polarized probe laser in blue in Figure A.2, to drive
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the closed transition J = 1/2, F = 4, mF = 4 → J = 3/2, F = 5, mF = 5 [71],

which will act as an effective two-level system. Since this closed transition is

not perfect and there is possibility of decay to other sublevels, once again the

pump and repump laser come in handy to keep the closed transition going.

Figure A.2.: Optical pumping and probing scheme. The pump (orange) and the
repump lasers (red) bring the atom to the ground state and then we
drive the close transition using the probe laser (blue). Figure courtesy
of Isaac Roca [67].

A.3 Strength of transitions

As we saw in Chapter 3 the interaction of atoms and light can be written in

terms of the dipole moment. Therefore, for the fine and hyperfine structures

we can evaluate the transition strength as a function of the dipole moment

elements ⟨FmF | d̂ |F ′m′
F ⟩. Using the Wigner-Eckart theorem and expressing

the the matrix elements in terms of Clebsch-Gordan coefficients one can

calculate that [69] [37] 1:

⟨FmF |d̂q|F ′m′
F ⟩ = ⟨F ||d̂||F ′⟩CmF ,q (A.2)

= ⟨F ||d̂||F ′⟩(−1)F ′−1+mF
√

2F + 1

 F ′ 1 F

m′
F q −mF

 , (A.3)

where q refers to the components of r in the spherical basis: ê±1 = ∓ 1√
2(x̂ ± iŷ)

and ê0 = ẑ. Then, we can write d̂ = ∑
q d̂qê∗

q. Returning to the aforementioned

1The double bar notation in the dipole operator indicate matrix reduction as in [69] and the
matrix corresponds to a Wigner 3-j symbol [69].
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selection rules, ê±1 corresponds to σ± light whereas ê0 corresponds to Π
polarized light. The reduced matrix element for F can be written as [69]:

⟨F ||d̂||F ′⟩ = ⟨J ||d̂||J ′⟩(−1)F ′+J+1+I
√

(2F ′ + 1)(2J + 1)

 J J ′ 1

F ′ F 1

 , (A.4)

where the matrix represents a Wigner 6-j symbol [69]. Experimentally, it is

possible measure the decay in free space of the J ′ state. For the Cs D1 and D2

line the values have been measured to be [69]:

⟨J = 1/2||d̂||J ′ = 1/2⟩ = 3.1822ea0 , (A.5)

⟨J = 1/2||d̂||J ′ = 3/2⟩ = 4.4786ea0 , (A.6)

where then we can use Equation A.3 and Equation A.4 to determine the

transition strengths for hyperfine transitions.

A.4 Coupling rates

With the basic understanding on how to calculate the the dipole transitions

for the hyperfine structure of Cs it is possible to recalculate the coupling rates

in Equation B.20 and Equation B.21 to account hyperfine structure dipole

operators as is done in [46] and in [37]. Defining the hyperfine structure

Green function matrix element as gijqq′ = Jijqq′ + iΓijqq′/2 the spin-exchange

and dissipation rates are:

Jijqq′ =
µ0ω

2
qq′

ℏ

∣∣∣⟨F ||d̂||F ′⟩
∣∣∣2êq · Re{G(ri, rj, ωqq′)} · ê∗

q′ , (A.7)

Γijqq′ =
2µ0ω

2
qq′

ℏ

∣∣∣⟨F ||d̂||F ′⟩
∣∣∣2êq · Im{G(ri, rj, ωqq′)} · ê∗

q′ . (A.8)
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BQuantum atom-light
interactions

“ You must take your opponent into a deep dark

forest where 2+2=5, and the path leading out is

only wide enough for one."

— Mikhail Tal

It is possible to expand the Green’s function framework introduced in Chapter 3

to account for fully quantized interactions. In this chapter, we explain how

this can be done and how in some limits the results are analogue to the

classical case. For a further in depth review with applications to photonic

nanostructures please refer to [46].

B.1 QED in dielectric media

It is possible to expand the previous Green’s function formalism to a framework

where the atom-light interactions are fully quantized. In this picture one can

write the Hamiltonian of the system as:

Ĥ = ĤF + ĤA + Ĥint (B.1)

where ĤF is the field Hamiltonian, ĤA is the atom’s Hamiltonian and Ĥint

is the Hamiltonian that describes the interaction of the field and the atom.

Many textbooks, such as [3] cover the description and quantization of this

Hamiltonian in free space and describe the Jaynes-Cummings model of atom-

light interaction [3]. However, things are more complex in the presence

of dielectric media since losses affect the commutation relation of operators.

We follow the approach by Welsch et al. [72] [42] [38] that use the Green’s

function for the quantization of the field with dielectric media.
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To describe the field Hamiltonian we need to understand the field as a set of

harmonic oscillators that represent material polarization, as well as a reservoir

of oscillators where the system can dissipate energy to. It is shown in [73] that

the Hamiltonian can be solved for bosonic operators f̂ †(r, ω) and f̂(r, ω) :

Ĥ =
∫

d3r3
∫ ∞

0
dω ℏω f̂ †(r, ω)f̂(r, ω) . (B.2)

which obey the commutation relations:

[f̂k(r, ω), f̂ †
k′(r′, ω′)] = δkk′δ(r − r′)δ(ω − ω′) , (B.3)

[f̂k(r, ω), f̂k′(r′, ω′)] = 0 . (B.4)

It can also be shown [73] that it is possible relate the bosonic operators to

other field variables. In particular, the electric field can be expressed as:

Ê(r, ω) = i
ω2

c2

√
ℏ

πε0

∫
dr′3

√
εI(r′, ω)G(r, r′, ω)f̂(r′, ω) + H.C . (B.5)

Interestingly, using the properties of the electric field with the Green’s function

formalism one can calculate the vacuum fluctuations of the electric field which

are related to the imaginary part of the Green’s function as:

⟨0| ∆E(r, ω)∆E†(r′, ω′) |0⟩ = ℏω2

πε0c2 Im{G(r, r′, ω)}δ(ω − ω′) , (B.6)

which can be obtained by using the Green’s function identities as in [72].

These vacuum fluctuations are strictly related with Casimir-Polder forces [74]

[72] and are specially relevant in our research are; for instance, for trapping

atoms close to nanostructures [48].

B.2 Atom-light interactions with Green’s
functions

As we saw previously, in our system one can treat atoms as dipoles, which in

quantum mechanics can be expressed as two-level systems with a ground-state
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|g⟩ and an excited state |e⟩, which are separated by an energy shift ℏωA, as

introduced in Appendix A. This means the single atom Hamiltonian is:

ĤA = ℏωA
1
2 (|e⟩ ⟨e| − |g⟩ ⟨g|) = ℏωA

2 σ̂Z . (B.7)

In our nanophotonical structures the atom will interact with the electromag-

netic field. The interaction between a dipole and the field can be expressed as

[3]:

Ĥint = −Ê(r, t) · d̂(t) , (B.8)

where d̂(t) = er̂(t) is the dipole operator of the atom. This dipole operator

may be projected into two states using a unitary transformation:

d̂(t) = (|g⟩ ⟨g| + |e⟩ ⟨e|) d̂(t) (|g⟩ ⟨g| + |e⟩ ⟨e|) = dσ̂(t) + d∗σ̂†(t) (B.9)

where we have introduced the Pauli spin operators σ = |g⟩ ⟨e| and σ† = |g⟩ ⟨e|,
and the dipole matrix elements d = ⟨g| d̂ |e⟩ and d∗ = ⟨e| d̂ |g⟩1.

Using the previously defined Green’s function formalism for field quantization,

we can incorporate the atom and atom-field interactions to get the total

Hamiltonian for N identical atoms:

Ĥ =
∫

d3r3
∫ ∞

0
dω ℏω f̂ †(r, ω)f̂(r, ω)+

N∑
j=1

ℏωA

2 σ̂Z−
N∑

j=1
Ê(rj, t)·

(
dσ̂(t) + d∗σ̂†(t)

)
.

(B.10)

Note that the electric field in this expression can be expressed in terms of the

Green’s functions and the bosonic operators of the field by using Equation B.6.

To understand the time-evolution of different operators in the system we can

use Heisenberg’s equation of motion:

˙̂
O(t) = 1

iℏ
[Ô(t), Ĥ] . (B.11)

Using the identity σ̂ = 2σ†σ̂ − 1 and the following commutation relations for

Pauli spin operators:

[σ̂†, σ̂] = σ̂z [σ̂z, σ̂] = −2σ̂ [σ̂z, σ̂†] = 2σ̂† , (B.12)

1Note that due to the odd parity of the dipole operator the rest of matrix elements equal
zero: ⟨e| d̂ |e⟩ = ⟨g| d̂ |g⟩ = 0.
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we can get the time evolution of the Pauli matrices:

˙̂σj = −iωAσ̂ + 1
ℏ

σ̂z
j Ê(rj, t) · dj (B.13)

˙̂σz
j = 2i

ℏ
σ̂†Ê(rj, t) · dj + H.C. (B.14)

It can be proven that solving for the time evolution of the bosonic field opera-

tors and using the properties of the Green’s functions one can also solve for

the time evolution of the electric field operator [38], which gives:

˙̂E(r, ω, t) = iωÊ(r, ω, t) +
N∑

j=1
i
µ0ω

2

π
Im{G(r, rj, ω)} · d̂j(t) (B.15)

Equation B.13, Equation B.14 and Equation B.15 form a set of nonlinear

coupled equations that can be solved self-consistently. First of all, one needs

to solve for the electric field2 and then substitute it into the above system. It

is possible to further simplify our system of coupled differential equations by

performing the very well-known Markov approximation, where one performs

the frequency integral by supposing the time integral only contributes over

a small correlation time [75] and supposes that scale of atomic operators is

much longer than the correlation length [38]. Applying the approximation

gives the expression for the electric field as [37]:

Ê(r, t) = Ê0(r, t) + µ0ω
2
A

N∑
j=1

G(r, rj, ωA) · djσ̂j(t) . (B.16)

If one takes a closer look at this equation, we will see that it has a very

similar form to electric field resulting from the emission of a classical dipole in

Equation 3.43, but that in this case we are in the time domain.

As was our objective, we can now substitute this expression for the electric

field in. Equation B.13 and Equation B.14, to obtain the time evolution of

the atomic operators as a function of the Green’s function:

σ̇j = −iωAσ̂k − iσ̂Z
k

N∑
j=1

σ̂j
µ0ω

2

ℏ
d∗

kG(rk, rj, ωA)dj − iΩ̂kσ̂Z
k (B.17)

σ̇Z
k = 2i

µ0ω
2

ℏ
∑

j

[
d∗

kG(rk, rj, ωA)djσ̂
†
kσ̂j − H.C.

]
+ 2i(Ω̂kσ̂†

k − H.C.) . (B.18)

2The total electric field E(r, t) =
∫∞

0 dωE(r, ω) can be obtained by integrating over the total
frequency space.
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where we have introduced the electric free-field operator Ω̂k = dk·Ê0(rk, ω)/ℏ.

In the low saturation limit3, where atoms are well approximated by classical

dipoles, we can take ⟨σ̂z⟩ ≃ −1, since most atoms will be in the ground state

[37]. Let us define, as we did for the classical case, the complex coupling

rate:

gij = Jij + i

2Γij = µ0ω
2
A

ℏ
d∗

i · G(ri, rj, ωA) · dj (B.19)

and the spin-exchange and dissipation rates as:

Γij = 2µ0ω
2
A

ℏ
Im{d∗

i · G(ri, rj, ωA) · dj} (B.20)

Jij = µ0ω
2
A

ℏ
Re{d∗

i · G(ri, rj, ωA) · dj} . (B.21)

This makes Equation B.17 take the form of the classical system of radiatively

coupled dipoles in Equation 3.45. The difference is, however, that in this

case we take into account the dipole moment of the atoms4. The quantum

equivalent in this case is:

˙̂σk = i(ωA + Jkk)σ̂k − 1
2Γkkσ̂k + i

∑
j ̸=k

σ̂j

(
Jkj + i

2Γkj

)
+ iΩ̂k (B.22)

As we saw in the classical case, for a single atom Jkk corresponds to a frequency

shift, whereas Γkk corresponds to the decay rate. When one wants to describe

the interactions between two atoms both Jkj and Γkj are needed.

3The system of equations can be solved beyond the low saturation limit by using the quantum
regression theorem [40] [76].

4For a more in-depth analysis of the dipole moments of real atoms and their effect on the
Green’s function formalism , please refer to Appendix A
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CComputational photonics

“... Nature isn’t classical, dammit, and if you

want to make a simulation of nature, you’d better

make it quantum mechanical, and by golly it’s a

wonderful problem, because it does not look so

easy."

— Richard Feynman,

1st Physics of Computation Conference.

Throughout this thesis we want to understand the behavior of optical systems

that inherently have a quantum nature. It is however, still possible to extract

some knowledge about this quantum properties even from classical simulations.

Indeed, as we have described in the previous chapters, in most of the cases the

FOM one would like to calculate stem from the Green’s function, which is the

electric field response for a classical dipole point-source. We can therefore gain

a deep understanding about our system by solving Maxwell’s equations using

numerical methods. This is in turn, would allows us to optimize the design of

the waveguides, that could be fabricated and manufactured thereafter.

In this section we will introduce two of the main approaches to solving

Maxwell’s equations numerically: frequency-domain simulation and time-

domain simulations. The theory behind comes mainly from [32] but also from

from what was learnt by using MEEP [55], Lumerical’s FDTD solver [77] and

all the related documentation.

C.1 Frequency-domain simulations

It is possible to solve Maxwell’s equations in different ways, but one of the

most fundamental insights that we want to calculate are the eigenvalues and
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eigenstates of a periodic system, such as a photonic crystal. This is possible by

using a frequency domain eigensolver. It involves solving Equation 2.14:

[
(ik + ∇) × 1

ε(r)(ik + ∇)×
]

uk(r) =
(

ω(k)
c

)2

uk(r) , (C.1)

which as we saw previously is an eigenvalue problem. Remember that uk(r) are

the periodic Bloch states for the magnetic field1 Hk = eik·ruk(r). In addition

to this, the eigenstates of the system have to fulfill the transversality condition

(ik + ∇) · uk = 0. If one calculates the solution of Equation C.1 as a function

of k one can calculate the band structures of periodic systems, as was done

in this thesis2. This is usually done by discretizing the problem by means

of a function expansion3 which will give us a generalized eigenproblem of

the form Ax = ω2Bx where we want to solve for x and ω and A and B are

matrices defined by the discretization.

It is very numerically costly to solve this problem completely using linear-

algebra packages and since we usually only need the lowest energy eigenvalues

and eigenvectors the go-to approach is using iterative methods. An iterative

method starts from a random guess for the eigenvector and applies an iterative

approach to converge towards the true eigenvector. For instance, one can

use the variational theorem to prove that for a eigenproblem of the type

Ax = ω2Bx the minimum eigenvalue ω0 is [32]:

ω2
0 = min

x

{
x†Ax

x†Bx

}
(C.2)

where x† is the adjoint of the vector x. This is also known as Rayleigh quotient

minimization [32]. Then, one just uses a numerical minimizer to find the

smallest eigenvalue and subsequently calculates the second lowest eigenvalue

that is orthogonal to x.

Additionally, it is worth noting that the previous method may also be applied

when we study a non-periodic system. For an aperiodic system one needs

to apply the supercell approximation: with periodic boundary conditions

we surround the localized dielectric with a large simulation volume in the

1It is unwise to use the electric field formulation in Equation 2.10 for numerical calculations
since one has to manually enforce the transversality condition of the field.

2In particular, we used the MPB free-source python library [55]
3Usually the planewave basis is employed since it automatically ensures the transversality

condition is fulfilled.
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aperiodic direction so that in the periodic limit the images of the dielectric

do not see each other. This is possible because in this limit the fields will be

exponentially localized and we do not risk any interference between localized

structures.

Apart from calculating the eigenvalues and eigenvectors of a system in the

frequency domain one can also calculate the response of a monochromatic

source J(r)eiωt in linear media. We can formulate Maxwell’s equations as in

Eq. 2.10 where now we have to add the contribution for a current source:

[
(∇ × ∇×) −

(
ω

c

)2
ε(r)

]
E(r) = iωµ0J(r) , (C.3)

which is a linear equation that can be discretized to form a linear system

of equations that take the matrix form Ax = b. This method is usually

employed for calculations with open boundaries. These open boundaries can

be mimicked with perfectly matched layers (PML) as boundaries of the

simulation volume. These layers act as a perfect absorbing material so that the

electromagnetic fields that reach them do not reflect back.

C.2 Finite-difference time-domain method

If we think about replicating electromagnetism experiments in a computer, the

approach that comes the closest may be to simulate the full time-dependent

Maxwell equations. Time domain solutions can give rise to nonlinear phe-

nomena, in contrast to frequency domain methods, and can also be applied to

solve frequency domain problems.

The most widespread method for time-domain simulations is the finite-difference

time domain method, or FDTD. This implies that the fields will be discretized

in space and time, so that derivatives may also be approximated numerically.

The time-evolution of the field usually relies on the leap-frog scheme, where

the calculation of the electric and magnetic field are off-set by a time-step

∆t:
∂u(t)i

∂t
= u(t)i+1/2 − u(t)i−1/2

∆t
+ O(∆t2) , (C.4)

where ui is a field component at time-index i. The spatial configuration of

the fields relies on what is known as the Yee grid where the different field
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components have different locations on a grid-cell. This cell also relies on a

spacing ∆x between different field components so that the same scheme of

time-derivatives in Equation C.4 may also be applied in the spatial domain.

For more information on the Yee grid please refer to [78] and [79].

One of the strong suits of FDTD lies in that it is possible to compute the response

of a particular system for many frequencies by a single computation. This is

done by taking the Fourier transform of a single short pulse. Since Maxwell’s

equation are linear it is possible to calculate the frequency response of a field

by taking it’s Fourier transform. As a matter of fact, many FDTD solvers take

advantage of very efficient ways of calculating this transforms, such as the

Fast Fourier Transform (FFT). Of course, there are some drawbacks: using

Fourier’s method means that to resolve a spectrum very precisely requires a

long run-time. Additionally, one needs to overcome the transient response of a

system by turning on the source smoothly and waiting until the steady-state

is reached. Finally, these methods require high temporal resolution for high

spatial resolution, so that numerical stability is preserved [32].

C.3 Computational photonics for LAQS

With a general understanding on how the frequency- and time-domain solvers

work we shall explain how we have run the simulations in this thesis. We

have used the LAKS PC in the LAQS laboratory, which has 64 AMD Ryzen

Threadripper 3970X 32-Core Processor CPUs4 with a mean of 3 GHz of clock-

speed. With this configuration we have scripted and run all the code that can

be found in this thesis’ Github [31].

All the band-diagrams and eigenmode profiles in this thesis have been cal-

culated using MEEP’s MPB frequency domain eigensolver [55]. The usual

workflow for setting up these simulations involves defining the unit-cell dimen-

sions, the lattice vectors, the dielectric structure, the k points5 and the number

of bands. One also has to define the mesh resolution, which tells us in how

many grid points we discretize the unit-cell of our photonic crystal. Then, we

run the simulation and retrieve the frequency for each one of the bands in each

4This has allowed us to parallelize our simulation and run on multiple cores, which we have
defaulted to 8 cores.

5For more information on these please refer to Appendix D.
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of the k points and reconstruct the band-diagram. To calculate the fields one

just has to use the built-in get_efield functions in Meep and call the solver

to retrieve the field value in each point of the discretized simulation domain,

which is defined by the previously mentioned mesh resolution parameter.

To perform FDTD simulations we have used both Meep [55] and Lumerical

[77]. We started using Meep to get familiarized with FDTD simulations

and then transitioned to Lumerical after finding lower simulation times for

similar setups. As an example, I will try to explain the workflow of running

a photonic crystal slab simulation as is explained in the phc_example.ipynb
Jupyter Notebook in the Github [31]. In this example we have defined the

following parameters of the FDTD simulation:

• Simulation domain: We define the discretization of the simulation

volume as well as the dimensions of it.

The discretization of the simulation volume is defined by the mesh ac-

curacy, which can have a value from 1 to 5. The mesh accuracy setting

of 2 which corresponds to 10 mesh points per wavelength6 is consid-

ered reasonable for the FDTD method, and mesh accuracy 4 or 5 which

corresponds to 18 or 22 mesh points per wavelength is considered high

accuracy [77]. Additionally, we use Lumerical’s Conformal-Mesh Tech-

nology (CMT) [77] which effectively discretizes the simulation domain

and gives better accuracy at the boundaries between simulation objects

and reduces simulation time7.

Next, we define the time the simulation is going to run for, in units of

the time it takes for light in vacuum to cross the simulation volume. We

call this time factor, as we saw in Chapter 4.

Finally, we define the boundary conditions that will be applied. In this

case, we use PML boundary conditions so that we consider an isolated

finite photonic crystal structure, similar to what one should encounter in

the lab.

6This is true when using the auto non-uniform mesh [77].
7We apply the CMT 1 configuration which should only handle materials. Due to the 1/(∆x)4

dependence of the simulation time on the mesh size, where ∆x is the discretization length,
results can often be achieved in roughly 1/10 the time [77].
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• Dielectric function: We define the value of the dielectric function of

the photonic crystal for the discretized volumes in the simulation. This

involves defining a Si3N4 plate with finite thickness and punching holes

on it. For reference, please see the structure defined in Figure 4.13,

where Si3N4 is shown in black and air is shown in white. Note that in

our analysis we have modelled the dielectric function of Si3N4 as a real

constant with ε = 2 and we have not accounted for the dispersion of the

material, assuming a frequency independent dielectric function. For a

more complete analysis these points should be added to the simulation.

• Sources: We add the sources to the simulation.

To model the atom we use a broadband dipole source with the a frequency

span centered at the transition frequency and with a bandwidth according

to the spectral results we want to calculate. In our case, for a Cs atom

emitting into a photonic crystal slab we may choose a bandwidth of

around 150 THz.

We also specify the sampling resolution, as we saw in Chapter 4, which

tells us in how many points we evaluate the spectral functions8.

Finally, we position this dipole at a particular spatial point in the photonic

crystal simulation domain.

• Monitors: We set the surfaces where we want to measure fields or

record power flux. For instance, in the case of the photonic crystal slab

we measure the power and field at the dipole position to calculate the

Purcell Factor and we measure the power flowing through the boxes in

Fig. 4.15 to determine the radiation power.

• Running: We have to run the simulation file with all the previous

specifications defined in it.

• Results9: Once the simulation is finished we can retrieve the FOMs from

the monitor information. For instance, the Purcell Factor is equivalent to

8The sampling resolution should not be confused by the frequency resolution that is deter-
mined by the Fourier transform and the time signal of the source.

9To calculate the dispersive quantum cooperativity we have to measure the real part of the
Green’s function in the middle plane of the slab and normalize it to the total emission rate.
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dividing the power emitted by a dipole source in the environment by the

power emitted by the dipole in a homogeneous environment. This is so

because the emission rate is proportional to the Local Density of Optical

States (LDOS), and the LDOS is proportional to the power emitted by

the source [77]. As a matter of fact, the LDOS can be calculated as [79]

[55]:

LDOSl(r, ω) = −2ε(r)Re{El(r, ω)p∗(ω)}
π|p(ω)|2 , (C.5)

where l is the dipole orientation, El(r, ω) is the electric field which is

calculated using the Green’s function and p(ω) is the dipole moment of

the source. As we can see the this is proportional to the power radiated

by a dipole, as shown in Equation 3.21.

Finally, we calculate the emission into the radiation modes by summing

the contributions of all surfaces in Figure 4.15 and normalizing by divid-

ing by the power emitted by the dipole in the homogeneous environment.

Then, we can directly calculate the emission into the guided modes

Γ2D = Γtot − Γ′. With all this information it becomes straightforward to

calculate the dissipative cooperativity: Γ2D/Γ′.

A similar approach can be followed to solve the problem for the one-dimensional

waveguide in Chapter 4.
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D
More on solid state
electromagnetism

“ Entzuten duzue? Melodia bat da, aire bat, arnas

bat, burdin artetik ihes eta jostari. Sentimendu

bat, ahoz aho, ura harri artean bezala iritsi gara,

belaunaldiz belaunaldi berri bihurtu den kantu

bat gara inoiz eta inork ixildu ez duena.”

— Jon Maia, Kantu bat gara.

Crystal lattices are one of the main pillars of solid-state physics. These are usu-

ally first introduced in undergraduate courses to study the electrical properties

of materials. This involves a quantum mechanical description of electrons,

which means solving the Schrödinger equation in periodic energy potentials.

In our case, we want to do something similar, but instead, we want to solve

Maxwell’s equations to study the propagation of electromagnetic fields in

periodic dielectric structures. Therefore, we can transfer much the knowledge

from solid-state physics to our particular problem of photonic crystals. For

these explanations we will follow [32] but we will also complement with

information from classic solid-state physics textbooks as [80].

D.1 Reciprocal lattice and Brillouin zone

A crystal structure is defined as a structure whose components are arranged

periodically. These components may be periodic on a lattice so that the function

f(r) that defines a lattice fulfills f(r) = f(R + r), where R are known as the

lattice vectors.
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Let’s take the Fourier transform of our function:

f(r) =
∫

d3q g(q)eiq·r . (D.1)

where g(q) is the coefficient for a plane wave with wave vector q. If we

apply the periodicity condition to the Fourier transform we find that g(q) =
g(q) eiq·R. The only non-trivial solutions to this are those that fulfill eiq·R = 1,

or equivalently q · R = 2πN , with N ∈ Z, for all R. The vectors q that satisfy

this relationship are known as reciprocal lattice vectors and are denoted with

the symbol G. These also form a lattice and the periodic function that defines

the lattice may also be expanded in terms of the lattice:

f(r) =
∑
G

fGeiG·r . (D.2)

Every lattice vector can be written in terms of the primitive lattice vectors

which are the smallest vectors that connect lattice points between each other.

This means that we can write R = la1+ma2+na3 where a1,2,3 are the primitive

lattice vectors. This principle also applies to the reciprocal lattice where we

can write G = lb1 + mb2 + nb3 where b1,2,3 are the primitive reciprocal lattice

vectors. Taking into account that G · R = 2πN , this means that ai · bj = 2πδi,j.

This allows us to relate the primitive reciprocal lattice vectors to the primitive

lattice vectors [35]:

b1 = 2πa2 × a3

a1 · (a2 × a3)
, b2 = 2πa3 × a1

a1 · (a2 × a3)
, b3 = 2πa1 × a2

a1 · (a2 × a3)
. (D.3)

In Chapter 2 we saw that according that in a photonic crystal lattice the field

distribution is modulated by the Bloch state, which is periodic as uk(r) =
uk(r + R). Now we have seen that the spatial periodicity means that we also

have a reciprocal lattice that is periodical. This means that there will also be a

periodicity in k space, as in uk(r) = uk+G(r). There is therefore a finite zone

in the reciprocal lattice that gets repeated over and over again, known as the

Brillouin zone1. It is possible to use the point symmetries in the lattice to

further restrict this area, giving the irreducible Brillouin zone.

1It is possible to geometrically calculate the Brillouin zone by finding the zone that is closer
to one lattice point than to its nearest neighbors [32].
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D.2 Two-dimensional lattices

The photonic crystals slabs that are fabricated for our experimental setup are

based on two lattice structures: the square and hexagonal lattices. Let’s see

what the lattice vectors and Brillouin zone are for each of them.

We can define the square lattice by using vectors that define a square; for

instance: a1 = ax̂ and a2 = aŷ as in Figure D.1. If we calculate the reciprocal

lattice vectors using Equation D.3 we see that the reciprocal lattice is also

a square lattice with lattice vectors b1 = (2π/a)x̂ and b2 = (2π/a)ŷ. The

Brillouin zone can be determined selecting a crystal point in the reciprocal

lattice and drawing bisectors to every lattice vector [32]. The section that gets

enclosed by these lines close to the crystal point corresponds to the Brillouin

zone, marked in orange in Equation D.3.

The square lattice has a symmetry group in IUC notation as p4m [81], which

means that due to rotation symmetries we can divide the Brillouin zone in 8

equivalent irreducible Brillouin zones. This is shown in yellow in Figure D.1

together with the 3 critical points at the edge of the irreducible zone: Γ = (0, 0),
M = (0.5, 0.5) and X = (0.5, 0.0), in lattice vector units.

Figure D.1.: Two-dimensional square lattice structure. On the left, real-space lattice
structure and on the right the reciprocal lattice structure. In orange the
Brillouin zone and in yellow the irreducible Brillouin zone with the most
important symmetry points.
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Regarding the hexagonal lattice we proceed in similar fashion. The lattice

vectors in this case are a1 = a(x̂ + ŷ
√

3)/2 and a2 = a(x̂ − ŷ
√

3)/2. Applying

Equation D.3 we see that the reciprocal lattice is also an hexagonal lattice

where the lattice vectors are rotated 90◦, with b1 = (2π/a)(x̂ + ŷ/
√

3) and

b2 = (2π/a)(x̂ − ŷ/
√

3). In this case the Brillouin can also be calculated using

bisectors, and yields an hexagon, as colored in orange in Figure D.2.

Additionally, the hexagonal lattice has a symmetry group in IUC notation as

p6m [81], which means that due to rotation symmetries we can divide the

Brillouin zone in 8 equivalent irreducible Brillouin zones. This is shown in

yellow in Figure D.2 together with the 3 critical points at the edge of the

irreducible zone: Γ = (0, 0) , K = (2/3, 1/3) and M = (0.5, 0.5), in lattice

vector units.

Figure D.2.: Two-dimensional hexagonal lattice structure. On the left, real-space
lattice structure and on the right the reciprocal lattice structure. In
orange the Brillouin zone and in yellow the irreducible Brillouin zone
with the most important symmetry points.
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