
Energy regression at ATLAS using graph

neural networks

Exploring a more general approach to energy regression combining tracking
and calorimetry.

Master Thesis in Computational Physics

Written by Aske Rosted
2021-2022

Supervised by
Troels C. Petersen

University of Copenhagen



Name of Institute: Faculty of Science

Name of Department: The Niels Bohr Institute

Author(s): Aske Rosted

Email: ksn733@alumni.ku.dk

Title and subtitle: Energy regression at ATLAS using graph neural networks
- Exploring a more general approach to energy regression
combining tracking and calorimetry.

Supervisor(s): Troels C. Petersen

Handed in: 2021-2022

Defended: 2021-2022

Name

Signature

Date



Abstract

The resolutions of the Z and higgs bosons is dependent on the elec-
tron and photon resolutions. These energy resolutions can only be
improved on by either improving the algorithms behind the regres-
sion or by upgrading/building new detectors, the latter which is an
extremely expensive endeavor.

The ATLAS collaboration currently uses boosted decision tree al-
gorithms for their energy regression. These have proven quite ef-
fective but developments within the machine learning field have
brought about newer algorithms capable of including spatial infor-
mation about input data. This thesis implements a cutting edge ma-
chine learning method called graph neural network to improve upon
energy regression of Z → ee. A relative improvement over currently
implemented methods of

ReIQR = 12.5± 3× 10−3

and

⟨1−
σGNN

CB

σATLAS
CB

⟩ = 10.56± 0.008

using two different evaluation metrics is found for the final model.
The relative improvement was found to be robust across different

detector regions although and largest for lower energy electrons.
The relative performance over the currently implemented method

is found to increase with pile-up, resulting in expected greater rela-
tive performance in future high-luminosity runs.

Two different model architectures have been tested, but only one
lead to improvements over currently implemented methods. Sugges-
tions for additional model improvements are given and further test-
ing of the model using real data and Z → µµγ can be achieved with
only little additional development.
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1 Introduction

The aim of this thesis is to further the range of machine learning
(ML) implementations at the Large Hadron Collider (LHC) experi-
ment called A Toroidal LHC Apperatus (ATLAS) to include Graph
Nueral Networks (GNN). There are several benefits inherent to a
GNN implementation. The currently implemented method in AT-
LAS is a Boosted Decision Tree method which does not include any
of the raw cell or track data, but is based solely on global event sum-
mary variables also called scalar variables.

Previous students have researched Convolutional Neural Network
(CNN) implementations in an attempt to include raw cell data into
the energy regression scheme. These theses have shown large po-
tential gains in resolution compared the BDT. However, these meth-
ods require an up-sampling of the lower resolution calorimeter units
which increases the calorimeter data size by roughly a factor 10. The
CNN implementation also does not have a good way of including
track data which have a variable size per event, and have resorted to
including a fixed number of tracks disregarding the rest or 0 padding
if fewer tracks are available.

A GNN implementation would solve both those issues as it can
handle data input which is both of variable size and non-equidistant.
At high rates of pileup one of the largest causes of lost resolution is
the inability to include auxiliary track features. As pileup increases
along with luminosity the benefit of a GNN implementation is ex-
pected to grow along with the increase in luminosity of run 3 and
high-lumi run 4.

These first four chapters on particle physics (chapter 2), detec-
tor physics (chapter 3), reconstruction (chapter4) and machine learn-
ing (chapter 5), will be introductory chapters which aim to give the
reader knowledge of the ATLAS experiment and the jargon used
within high energy particle physic; as well as a foundation for un-
derstanding the motivation behind looking for new ML methods for
implementation in regression and classification.

The following 2 chapters on the data-pipeline in chapter 6 and
model architecture in chapter 7 will describe the data sets and the
algorithms, that have been develop in this thesis.

The final 2 chapters will be a presentation of the results in chapter
8 and a summary of the most important conclusions along with an
outlook into further applications of the model and possible improve-
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ments in chapter 9.
We will unless otherwise stated work in natural units (h̄ = c =

me = ϵ0 = 1) throughout this thesis, as this is common practice
and simplifies mathematical expressions within the particle physics
domain.



2 Particle physics

This chapter seeks to give the reader an insight into the particle
physics necessary to understand the motivations and reasoning used
in the rest of the thesis. This thesis is much more applied than it is
theoretical in nature and therefore this chapter does not try to give a
full understanding of particle physics at the energy frontier, but only
cases relevant to the specific data used in this thesis.

2.0.1 The existence of elementary particles

Before the Standard Model (SM) The makeup of atoms; protons,
neutrons, and electrons1 were the smallest constituents of matter, 1 Which was a known elementary parti-

clethese subatomic particles were the furthest physicist had been able
to probe the matter that makes up the universe. In 1964 Murray Gell-
Mann and George Zweig both independently came up with a theory,
that could explain the interaction and properties of these strongly in-
teracting particles. These theories both proposed that the subatomic
particles protons and neutrons were made up of smaller particles
with electrical charge 1/3 and spin 2/3 that of the electron in a sym-
metry scheme based on the mathematical SU(3) symmetry, and as
such the theory of quarks were born.

In 1968 the linear accelerator proton-electron scattering experi-
ments revealed signs of the inner structure of the nucleons[29]. We
will return to how later in section 2.1.1.

2.1 Standard model

The behaviour and interaction of elementary particles2 are currently 2 subatomic particles that aren’t com-
posed of other particles.best explained in the Standard Model (SM). The particles currently

contained within the SM can be seen in Figure 2.1. The elementary
particles are divided into two categories, fermions or the matter par-
ticles3 and bosons, which are the force carrier particles. 3 although Z, W and Higgs bosons too

are massive

Bosons and forces

There are 5 different bosons, plus one opposite charge W boson: the
gluon which mediates the strong force, the photon which mediates
the electromagnetic force and the Z and W± bosons which mediate
the weak force. The Higgs boson is also considered a force carrier
particle. However, it does not mediate any force. Instead the Higgs
potential interacts with all particles of mass.
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Figure 2.1: An overview of the
different elementary particles or-
dered in their different categories,
borders illustrating coupling. Cre-
ated by David Galbraith and
Carsten Burgard at CERN Webfest
2012.[72][59]. Values updated ac-
cording to PDG[77]

The electromagnetic force and the weak force are unified in the
electroweak theory which Sheldon Glashow, Abdus Salam and Steven
Weinberg shared a Nobel Prize for in 1979. The strong force is de-
scribed through the theory of Quantum ChromoDynamics (QCD).
The gravitational force is not included in the Standard model, how-
ever the influence of gravitational forces are negligible at the scale of
particles physics, and therefore we do not need to concern ourselves
with it in this thesis.

Fermions

The fermions are subdivided into two types quarks and leptons.
Quarks which are coupled4 with the gluon, and leptons which are4 coupling here is synonymous with in-

teracting, the couplings or interactions
are described through Yukawa coupling
and the Yukawa potential.

not. Quarks also cannot be observed freely but are bound in hadrons
due to a phenomenon called color confinement, which is futher ex-
plained in chapter 2.3 .

For every elementary particle there also exists an anti-particle, ex-
cept for the gluon, photon, Z boson and Higgs boson which are their
own anti-particles, that is they turn into themselves under charge
conjugation, the anti-particles are not portrayed in Figure 2.1 and are
not of much interest for this thesis. It should however be mentioned
that the familiar term electron are sometimes hijacked to loosely de-
scribe both electrons and their anti-particles positrons.



particle physics 5

Composite particles; Hadrons & Baryons

Composite particles are called hadrons and consist of 2 or more
quarks, where a 2 quark particle is called a meson and a 3 quark par-
ticle is called a baryon. Anything that consists of more than 3 quarks
is usually labeled an exotic variant of those two. Of the hadrons only
protons are of interest in this thesis, since that is what is collided
within the ATLAS experiment.

2.1.1 Parton distribution functions

Returning to discovering the existence of quarks, this was done by
looking at the Parton Distribution Functions (PDF) in Deep Inelastic
Scattering (DIS) events. We consider the proton-electron experiment
mentioned in section 2.0.1. A schematic of the interaction can be seen
in Figure 2.2.

Figure 2.2: schematic representa-
tion of a deep-inelastic scattering
event between an electron and a
proton, the electron striking out a
parton (quark or gluon) from the
proton.

The electron interacts with one of the partons of the proton by an
electroweak interaction i.e. through a photon. In the deep inelastic
event that knocks out the partons, which results in showers in two
directions, one in roughly the original directions of the proton and
another for the parton. The momentum of the electron before and
after the exchange can be measured, the energy momentum of the
two jets can also be measured. Through complicated kinematics it is
possible to determine which parton was hit (up/down quark, gluon
etc.). Q2 is related to the squared energy-momentum transfer (q2)
through.

Q2 = −q2 = −[(E− E′)2/c2 − (p− p’)] (2.1)

where E and E′ are the electron energy-momentum before and
after, p and p’ are the 3 momentum vector of the proton and the jet
in the direction of the proton. Q2 also represents the absolute value
of the 4-momentum of the virtual photon5 in the proton-electron 5 denoted γ in figure 2.2

collision, which delivers the energy to the parton.
Now if the proton consists of 3 quarks, we would expect to see that

a DIS will knock out one of the quarks with x = 1/3, with x being
the fraction of momenta pertaining to the knocked out quark. How-
ever, since the quarks interact with each other through the strong
force what would have otherwise been a delta function at x = 1/3
now becomes smeared out, and this is what was seen in the early
experiments.

There is a large discrepancy between the proton mass (Mp ≈
938MeV) and the sum of the quark masses which are approximately
Muud ≈ 9MeV. In fact, we are off by a factor of about a 100. Fur-
thermore, when increasing Q2 we find that the PDF og the proton is
pushed towards smaller values of x. This is due to what is sometimes
called "sea-quarks". It turns out that the proton consist of 3 quarks
namely two up and one down quark also called valence-quarks and
additional quark anti-quark pairs, which are continuously produced
and annihilated through radiation of virtual gluons, and as we in-
crease the energy we are more likely to hit these particles.
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In the ATLAS experiment we are not studying proton electron
collision but instead proton-proton collisions. This produces consid-
erably more complicated PDFs, but the concept remains the same.
Figure 2.3 shows the Next to Leading Order (NLO) PDFs for dif-
ferent particles at two different Q2 values. The figures show how a
smaller x equates hitting either the sea-quarks or the virtual gluons.

These figures have been generated using data from several exper-
iments, not only the ATLAS experiment.

Figure 2.3: Showing the NLO PDFs
at Q2 = 10GeV2 and Q2 =

104GeV2 Figure from [39]. Note the
factor x on the y-axis

2.2 Decay chains and Feynman diagrams

The decays chains which are of interest in this thesis are listed below.

H → γγ∗

H → Zγ

H → γγ

H → ZZ∗ ⇒ eell

H → HH ⇒ bbγγ

Z → ee

Z → γγ

Z → lγ∗

Z → µµγ

(2.2)

66 H = Higgs, Z = Z boson, γ = photon, e
= electron/positron, l = lepton,
b = bottom quark,
* = indicates off-shell particle

Section 2.5 will try to explain why we are interested in these spe-
cific decays. These different decay chains span a wide range of en-
ergies and final state particles, for a large part of them we have the
inclusion of the Z boson. The Z boson has a very short mean lifetime,
roughly 3× 10−25 s, this leads to a width on the mass of the Z boson



particle physics 7

through time energy uncertainty principle.7[11]. 7 The more controversial counterpart
to the position-momentum uncertainty
principle since time is not well defined
and there does not exist a "time" opera-
tor.

∆T∆H =
1
2

h̄ (2.3)

The Z boson mass appears to follow a Breit-Wigner distribution

dN
dm

=
Ntot

π

Γ/2
Γ2/4 + (m−m0)

(2.4)

with mean m0 = 91.1876± 0.0021 GeV and Full-width Γ = 2.4952±
0.0023 GeV[77]

The Z boson is neutral and as a result the charge of the decay
products too must be neutral following charge conservation 8, which 8 Here we are considering all charge not

just electromagnetic charge.leads to decay products consisting of particle and anti-particle pairs.
9 9 In some cases with additional neu-

trally charged particles, usually pho-
tons.

These decays are not treated equally and some happen more fre-
quently than others, the probability for a process to occur is calcu-
lated through the cross-section. The fraction of total decays that one
decay channel constitutes is called the branching ratio and is deter-
mined by the width of the specefic final state, here the i’th branching
ratio Bri = Γi/Γ.

A selection of Feynman diagrams showing Higgs boson produc-
tion is shown in Figure 2.4. Looking at (c), reading from left to right,
we see an incoming quark and anti-quark pair annihilating in order
to create either a W or Z boson which in term produces a Higgs
through an effect known as Higgs-strahlung.

q

q′′ q′′′

q′

(b)

H

(c)

q′

q
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W,Z

g

g

(d) (e)

g
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Figure 2.4: Figure from[77]
(Cropped) Feynman diagrams
showing Higgs production from
(a) gluon fusion, (b) Vector-boson
fusion (c) Higgs-strahlung, (d)
associated production with gauge
boson, (e) associated production
with a pair of top quarks

2.3 Quark Color confinement.

As previously mentioned quarks are confined in hadrons, and can
therefore never be observed on their own. The explanation for this
confinement is to be found in the potential of the strong force, which
is linearly increasing with the distance between the quarks.

q q̄

q̄q

q q̄

q q q̄q̄

distance

Figure 2.5: Illustration of a meson
being stretched ie. provided energy
and as result spontaneously creates
a new qq̄ pair which then form a
new meson.

This energy comes from what is usually called a gluon flux tube,
the energy of this tube per unit length is roughly k = 1GeV/ f m =

0.2GeV2, and the potential can be considered to be linearly increasing
with distance V(r) = kr. A small Coulumb term should be included
but is considered negligible [8]. This means that if energy is applied
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to quarks seperating them, the potential energy of the gluon flux
tube increases linearly, until it becomes energetically advantageous
to create new set of hadrons, at this point the potential energy will
spontaneously convert into mass, i.e. new quarks, and new hadrons
are formed. An illustration of this hadronization can be seen in Fig-
ure 2.5. It should be mentioned that there are two competing models
for predicting hadronization. In this thesis we will be using the Lund
string model, as it is the one used in Monte Carlo (MC) event gener-
ator PYTHIA[67], which is used for ATLAS’ MC event generation.

2.4 Particle interaction in matter

In this project we will mainly be looking at end products of photons
and electrons, however these electrons and photons will when origi-
nating from a collision in ATLAS will be very energetic (Magnitudes
of MeV or larger).

2.4.1 Bremsstrahlung

Figure 2.6: A shows
Bremsstrahlung of an electron
while B shows the photons pair-
production of an electron positron
pair. Figures from [50]

A) Bremsstrahlung of electron B) Pair production of photon

The dominant effect for electrons and photons 10 at energies present10 π0 also have some interaction
through bremsstrahlung, but it is not a
dominating effect.

in ATLAS are bremsstrahlung. Since photons are massless and with
no charge their bremsstrahlung effect only occurs due to an effect
called electron-positron pair-production where an electron and positron
are created through a photon’s interaction with the nucleus of a mat-
ter material, which leads to further bremsstrahlung from the daugh-
ter particles, creating a cascading effect that results in a shower of
particles in the material. For an electron the average rate of energy
loss is given through

−dE/dx = E/LR, (2.5)

where LR is a function of Z (the atomic number) and na the num-
ber density of atoms in the medium. Integrating over the distance
travelled one gets

E = E0exp(−x/LR), (2.6)

And it can be seen that the radiation length LR is the average
thickness of the material that reduces the mean energy of the electron
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by a factor of e. For the photon the resulting equivalent expression
becomes

I(x) = I0exp(−7x/9LR). (2.7)

The Feynmann diagrams of the processes can be seen in Figure
2.6 [50]

In Table 2.1 radiation lengths and interaction lengths for some
materials relevant to ATLAS detector has been listed.

Material Radiation length
Pion interaction
length

Copper 1.436 cm 18.51cm
Lead 0.5612 cm 19.93cm
Tungsten 0.3504 cm 11.33cm
Silicon 9.370 cm 59.14cm
Iron∗ 1.757 cm 20.42cm

Table 2.1: Table of radiation lengths
of materials relevant to the ATLAS
detector.[77]. ∗ representing steel

2.5 Physics beyond the standard model

So far, I have not explained why we are so interested in increasing
available statistics for the Higgs or Z boson, which are the parent
particles of the decays we are interested in. This next section will
seek to amend that fact. I started of this chapter proclaiming that
the SM is the most effective model we have for describing particle
physics, the so-called status quo. However, it is not all-encompassing
and there are areas that it fails to describe, for an example, how the
gravitational force is tied in with the other forces. Therefore, we are
looking for phenomena which can not be described by the SM so-
called new physics or physics Beyond the Standard Model (BSM).

In the most general terms we could say that if ASM is the theo-
retical amplitude of a specific final state from phenomena contained
within the SM, and ABSM is then the amplitude of contributions not
contained within the standard model. Then we seek to answer

|Ameasured| = |ASM + ABSM|2
?
= |ASM|2. (2.8)

While this equation is general, it does not provide us much in
terms of where to look. This is decided upon by looking at competing
theories, and areas, where they differ from the SM. Some of these
competing theories which go beyond the SM predict the existence
of a particle coined the dilaton, however, this theory predict no self-
coupling in the Higgs particle. The reasoning behind this is compli-
cated and grounded in the lagrangian for the standard model. Very
briefly, the Higgs potential is of the form

V(ϕ∗ϕ) = µ2(ϕ∗ϕ) + λ(ϕ∗ϕ)2 (2.9)

Figure 2.7: showing the higgs po-
tential with µ > 0.[28]

If µ > 0;the potential will be of the form seen in figure 2.7 which
leads to the spontaneous symmetry breaking that gives mass to the
matter particles and the massive bosons. In the resulting lagrangian
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there is also a quartic term which the standard model predicts as
self-coupling of the Higgs, however if this is the case then the dila-
ton particle cannot exist [33]. That means with enough statistics, one
should be able to see the contribution from decays which include a
Higgs self-coupling node like the one seen in figure 2.8.

Figure 2.8: Example of a Higgs de-
cay, with a point like self-coupling
decay node, as predicted by Elec-
troweak symmetry breaking. Fig-
ure from [24] (cropped)

The decays listed in 2.2 all include either the Higgs or the Z-boson,
the Z-boson is also included in one of the Higgs particle decays,
namely H → zγ. Initially the goals for which data should be tested
were high, it was hoped that the thesis could cover both MC and
real data for Z → ee, z → µµγ and H → γγ11 The inspiration

11 Only in MC as real data does not ex-
ist.

for these lofty ambitions were that they had been tested by Malte
Alghren in his thesis about CNN performance in ATLAS [6], what
was not considered was that his starting point for his thesis were
a fully functional CNN model developed for ATLAS data. It would
slowly over the course of the project become apparent, that develop-
ing a functional graph neural network along with the data pipeline
to make it possible was enough on its own and therefore the Z → ee
decay channel was chosen, as it is considered the easiest. However,
the model has been constructed with both expanding to other decay
channels and evaluating on real data as well as training in real data
in mind, and not much further work needs to be done to test these
scenarios.

2.5.1 Energy resolution of the daughter particles.

Both the Higgs and Z mass increase in precision with an increase
in precision of the daughter particles, but while the Z-boson has a
full-width of ΓZ = 2.4952± 0.0023 GeV the width of the H-boson is
much smaller with an upper limit of only ΓH < 0.013GeV, CL = 95%
[77], why an increase in resolution of the daughter particles of the
Higgs decay will continue to bring about an increased resolution for
the Higgs particle.



3 Detector physics

This section aims to give the reader an understanding of the mega
experiment at Conseil Européen pour la Recherche Nucléaire more com-
monly known as CERN. While some explanation of different detector
sub-units will be given, it will be no deeper than what is necessary
to understand the data used in this project.

CERN is a research institution which houses numerous accelera-
tors. The accelerators are linked such that, each accelerator acceler-
ates a beam of particle bunches before injecting it into the next more
powerful accelerator in the sequence. The final and most powerful
accelerator in this sequence is the Large hadron collider (LHC). Most
of the accelerators have their own experiment units or detectors.

Figure 3.1: The accelerator complex
at CERN showing the injections of
the accelerators into the next one in
the sequence.

The LHC has 4 main experiments: Compact Muon Solenoid (CMS),
A Toroidal LHC ApperatuS (ATLAS), A Large Ion Collider Experi-
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ment (ALICE) and LHC beauty (LHCb), where the accelerated parti-
cle bunches are put on collision course.

The inarguably most well known discovery made at CERN is the
joint discovery of a neutral boson with a mass of about 125GeV in
2012 by ATLAS and CMS. [20][15]

3.1 The Large hadron collider and ATLAS

With a circumference of roughly 27 km the LHC is the largest and
most powerful accelerator at CERN. The LHC has so far seen two
runs with the third scheduled for startup later in 2022. In 2018 the
second run finished and within ATLAS proton-proton collisions with
Center of Mass (CoM) energies at

√
s = 13TeV were studied. When

in operation during run 2, particles bunches1 collided every 25 ns in1 Particle bunches contain upwards of
1011 particles the center of the ATLAS collision chamber. The experiment reached

a time integrated luminosity of Lint = 146.9fb−1[3]. The time inte-
grated luminosity is as the name suggest a time integration over the
luminosity, luminosity is defined as

L =
1
σ
· dN

dt
, (3.1)

where σ is the cross-section. Unfortunately an increase in lumi-
nosity also brings about an increase in pileup equating an increase in
noise. Pileup is quantified by the mean number of interactions per
crossing. Pileup is the amount of extra data unrelated to the inter-
action of interest. It can be split into two parts, in-time pileup and
out of time pileup referring to whether the extra particles are from
the same bunch crossing or an earlier bunch crossing. As luminosity
will be increased in run three and drastically in run four the noise
from pileup is considered one of the largest challenges for currently
implemented algorithms.0 10 20 30 40 50 60 70 80
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Figure 3.2: A plot showing the
recorded luminosity as a function
of the Mean number of interac-
tions per crossing, which quantifies
pileup. Figure from [48]

Detector and coordinate-system

The detector is shaped like a cylinder around the beam pipe. We
define a coordinate system where z is in the direction of the beam
pipe. x points inwards towards the center ofs the LHC and y pointing
upwards. Due to the symmetrical nature of the detector, the azimuth
ϕ is often used to describe the direction in the xy-plane. Furthermore,
θ is used to derive the Lorentz boosting invariant feature η

η = − ln
(

tan
(

ϕ

2

))
. (3.2)

η is defined in the zy-plane and becomes infinite when directed
along the z-axis and 0 along the y-axis. See Figure 3.3

The detector consists of five submodules which can be further sub-
divided. Four of these modules are, from closest to the beam pipe to
farthest, in the xy-plane: The Inner Detector (ID); the Electromag-
netic CALorimeter (ECAL); the Hadronic CALorimeter (HCAL) and
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Figure 3.3: Diagram showing the
coordinate system used to de-
scribe the ATLAS experiment. Fig-
ure from [64].

the muon spectrometer. The final module is the ForwardCALorime-
ter(FCAL), which covers the very forward η region 3.1 < |η| < 4.9.

3.2 Inner detector

The purpose of the inner detector is the track reconstruction of charged
particles. We differentiate between two different areas of the ID, the
barrel which surrounds the beampipe and then the two endcaps
which are perpendicular to the beampipe and situated on both ends
of the barrel unit. This configuration gives coverage in η < 2.5. The
ID tries to minimize the amount of energy deposited in the unit such
that the calorimeter will be able to most accurately reconstruct the
energy of the created particles. It consists of a Silicon pixel detector,
a SemiConductor Tracker (SCT) and a Transition Radiation Tracker
(TRT). The two semiconductor based modules achieve low amounts
of deposited energy by having a small band gap between the valence
band and the conduction band (1.21eV)[36]. This results in a cost of
3.6eV in order to liberate an electron for readout. For the TRT, which
uses a noble gas, the price to liberate an electron is ∼ 30eV

A Solenoid Magnet situated between the ID and the HCAL covers
the ID in a magnetic field of 2TeV, which bends the charged parti-
cles, allowing for a reconstruction of the path or track taken by the
particle. Charge and transverse-momentum estimations can then be
made through,

pT =
r

q · B , (3.3)

where r is the trajectory radius of the particle

3.2.1 The Pixel detector

The silicon pixel detector consists of semiconductors placed in 4-
layers in a circular pattern surrounding the beam pipe as seen in fig-
ure 3.4. The units are slightly angled compared to the tangent of the
beampipe cylinder and are overlapping in order to ensure full cov-
erage in ϕ. The detector consists of 1736 modules plus an additional
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288 modules in 3 disks in the endcap, totaling 92 million pixels. The
3 outer layers have pixels of size 50× 400µm2. The newer innermost
layer (The Insertable B-Layer (IBL)) have pixels of size 50× 250µm2

and was intended to better identify "long-lived" particles e.g. b/τ. A
schematic showing the the different layers in the pixel detector can
be seen in figure 3.4

Figure 3.4: A schematic showing
the construction of the pixel detec-
tor [58]

3.2.2 The SCT

The SCT, like the pixel detector, uses semiconductors. It consists
of 4088 modules assembled from 4 rectangular single sided silicon
micro-strip sensors, two pairs are daisy-chained2 together, resulting in2 Nomenclature from electrical engi-

neering meaning that the units are
wired in sequence

a sensor of approximately 12 cm in length, and an identical pair is
then placed in a back to back configuration with a stereo angle of
40 mrad. This is done to save on number of readout channels (total-
ing ∼6 million), whilst keeping good resolution in the azimuth, at
the cost of precision in the z-axis. Saving number readout channels
reduces both mass in the ID and monetary cost.

The sensors are situated in 4 barrel layers surrounding the pixel
detector and 9 disks in each endcap with units perpendicular to the
beam-axis. In the barrel layer the modules are placed with a slight
angle to the tangent of the beam-pipe cylinder, and overlapping with
a few millimeters in order to ensure full coverage in the azimuth [18].
A schematic of the SCT can be seen in figure 3.5

Figure 3.5: A schematic of the AT-
LAS SCT. Figure from [65]
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3.2.3 The TRT

The final part of the ID is the TRT. It is built with less precision
but gives more continuous readout of a track averaging ∼35 hits
per track. It consists of hollow straw-tubes with a 4 mm diameter
with centered 0.03 mm gold-plated tungsten-wire. A high voltage
is induced between the tube and the center wire and a gas mixture
of Xe/Ar/CO2/O2 flows through the tube. A charged particle will
ionize the gas which creates a measurable current that can be read-
out. The TRT has considerably less readout channels when compared
with the two semiconductor based modules with only 350.000 read-
out channels. Like the other modules, it is split into a barrel and
endcap region, with 50.000 straws of length ∼144 cm in the barrel
and 250.000 shorter straws of length ∼39 cm in both endcaps. The
TRT data is especially used for particle identification tasks [71]. An
overview of the specifications of the ID can be seen in table 3.1

Intrinsic accuracy (µm)
readout
channels

Average
# hits†

Pixel detector 10×115 in (R− ϕ)×z(R)∗ 80.4M 4

SCT 17×580 in (R− ϕ) ×z(R)∗ 6.3M 8

TRT 130 in (R− ϕ) 0.35M 36

Table 3.1: Summary of ID specifi-
cations. (†per track.) (∗ in endcap.)
[4]3.3 The calorimeter units

While the ID tries to track the particles without interference, the
calorimeters are sampling detectors, which mean they are built to en-
sure that the particles are completely stopped3 within the calorimeter 3 deposits all their energy

units. This happens primarily through bremsstrahlung effects which
were discussed in section 2.4. The calorimeters consist of an active
and a passive material .The particles passing through the calorime-
ter interact with the passive material creating showers of particles
which are measured in the active material allowing for energy esti-
mations. Once again the structure of the calorimeter units are split
into a barrel and endcap part.

3.3.1 The electromagnetic calorimeter

The ECAL ensures the deposit of energy from lightweight particles
such as electron and photons (massless), while heavier particles along
with neutrinos 4 mostly pass through without detection. The barrel 4 neutrinos are for the most part not de-

tectable in the ATLAS experimentregion covers an η area between 0 ≤ |η| < 1.475 and the endcap
covers 1.375 < |η| < 3.2. The active material in the ECAL Liquid Ar-
gon (LAr) and the passive material or absorber material is lead5. The 5 See table 2.1

absorbers have an accordion shape and are interleaved with readout
electrodes. This allows for several active layers in R, three in the pre-
cision region (|η| < 2.5) + a pre-sampler (|η| < 1.8) all shown in
Figure 3.6.
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The crack region

Output channels as well as power input and cooling have to en-
ter/exist the detector somewhere. This is done within the |η| range of
roughly |η|crack[1.37− 1.52]. Here, the resolution is lower than other
in areas of the detector. There is also a larger amount of energy es-
caping the detector undetected in this region, which is why many
experiments avoid using data from the crack region entirely.

Figure 3.6: Schematic of the ECAL
barrel module, showing the accor-
dion shape along with the differing
granularities of the 4 different lay-
ers.[45][4]

3.3.2 The hadronic calorimeter

The central part of the hadronic calorimter system is called the Tile
calorimeter as it is constructed of tiles of steel plates6 and plastic6 See table 2.1 for information about the

Pion (Representing hadrons as a whole
and) interaction length with iron substi-
tution for steel alloy

scintillator tiles. It consist of a barrel and extended barrel part. The
barrel operates in < 1.0 and the extended barrel in 0.8 < |η| < 1.7.
A schematic of the hadronic tile calorimeter can be seen in 3.7

The endcap part of the hadronic calorimetry system is a Copper/liquid-
argon sampling calorimeter with a flatplate design. It consists of two
wheels in each endcap (4 total), it operates in the 1.5 < |η| < 3.2
range. [4]

An overview of the differing granularities of the central calorime-
try system is given in table 3.2.

3.3.3 The muon system (MS)

The final layer of the detector is not of much interest in this project,
but should be mentioned briefly. The only particles to reach the
Muon system are muons and neutrinos due to their low interaction
rate. Neutrinos continue without interacting the in the (MS)7. The7 presence of neutrinos is measured al-

most solely on missing transverse mo-
mentum
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Table 3.2: Granularities of the lay-
ers within the central (|η| < 2.5)
calorimeters. The differing granu-
larities pose a problem for a CNN
algorithm, however using a GNN
circumvents this problem, more on
this in chapter Graph Neural Net-
works. Table borrowed from previ-
ous master student Malte Algren,
input data originally from ATLAS
codebase

Layer Granulartity in η × ϕ |η| coverage

ECAL barrel
Layer 0 0.025× 0.1 |η| ≤ 1.52

Layer 1

0.025/8× 0.1
0.025× 0.025

|η| ≤ 1.40
1.40 < |η| ≤ 1.475

Layer 2

0.025× 0.025
0.075× 0.025

|η| ≤ 1.40
1.40 < |η| ≤ 1.475

Layer 3 0.050× 0.025 |η| ≤ 1.35

ECAL end-caps
Layer 0 0.025× 0.1 1.5 < |η| ≤ 1.8

Layer 1

0.05× 0.1
0.025× 0.1
0.025/8× 0.1
0.025/6× 0.1
0.025/4× 0.1
0.25× 0.1

1.375|η| ≤ 1.425
1.425 < |η| ≤ 1.5
1.5 < |η| ≤ 1.8
1.8 < |η| ≤ 2.0
2.0 < |η| ≤ 2.4
2.4 < |η| ≤ 2.5

Layer 2

0.05× 0.025
0.025× 0.025

1.375|η| ≤ 1.425
1.425 < |η| ≤ 2.5

Layer 3 0.05× 0.025 1.5 < |η| ≤ 2.5

HCAL LAr end-caps
Layer 0,1,2,3 0.1× 0.1 1.5 < |η| ≤ 2.5

HCAL tile gap
Layer 1 0.1× 0.1 0.9 < |η| ≤ 1.0
Layer 2 0.1× 0.1 0.8 < |η| ≤ 0.9

Layer 3

0.1× 0.1
0.2× 0.1

1.0 < |η| ≤ 1.2
1.2 < |η| ≤ 1.6

HCAL tile barrel
Layer 1 0.1× 0.1 |η| < 1.0
Layer 2 0.1× 0.1 |η| < 0.9
Layer 3 0.2× 0.1 |η| < 0.7

HCAL tile extended barrel
Layer 1 0.1× 0.1 1.1 < |η| < 1.6
Layer 2 0.1× 0.1 1.0 < |η| < 1.5
Layer 3 0.2× 0.1 0.9 < |η| < 1.3
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Figure 3.7: A schematic of the
hadronic Tile calorimeter. Figure
from [7]

muons are bend in ϕ using a 3.5 T magnetic field which allows for a
momentum estimate through eq. 3.2. The MS operates in |η| < 2.7.



4 Reconstruction

Now that we are familiar with the detector it makes sense to look at
how this data is processed at the ATLAS collaboration. This section
will give a brief overview of how ATLAS processes the data deter-
mining clusters in the calorimeter, reconstructs tracks in the inner
detector, and produce particle identification as well as energy regres-
sion. The section will focus on the reconstruction of electrons and
photons.

4.1 Triggering system

Before even starting the reconstruction the data has to be slimmed
down to only contain possibly interesting events. The first trigger
(L1) system is a hardware implementation that works in real time
on a subset of detector information and reduces the event rate to
a design maximum of 100kHz from up to 40 MHz[2].1 The data is 1 Based on the 2015 proton-proton colli-

sion data with event rates in run 2 being
even higher

then passed on to the L2 trigger and the High Level Trigger (HLT),
which is a software implementation, that makes use of about 40 -
50 thousands processing units. It reconstructs on either full-detector
information or uses Region of Interest (RoI) information identified in
the L1. The HLT stores the information for offline analysis at a rate
of about 1 kHz. [76]

4.1.1 Calorimeter clustering

Clusters of energy depositions are found in topologically connected
calorimeter cells. These clusters are called topo-clusters. The process
starts with a cell significance ςEM

cell breaking a predefined noise thresh-
old and becoming a proto-cluster initializing cell. The requirement is

|ςEM
cell | =

∣∣∣∣∣EEM
cell

σEM
cell

∣∣∣∣∣ ≥ 4, (4.1)

where EEM
cell is the cell energy and σEM

cell is the expected cell noise,
which is a combination of known electronic noise and pile-up noise
expected from the instantaneous luminosity in run 2. The pre-sampler
and first LAr EM layer are excluded from the generation of proto-
clusters. Neighboring cells surpassing a significance of |ςEM

cell | ≥ 2 are
collected into the cluster and become seed cells for the next iteration.
If proto-clusters share a cell with significance above the threshold the
proto-clusters are merged. A crown of nearest neighbors is then added
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to the clusters independently of their energy. Proto-clusters can be
separated if they contain two or more local maxima2. [27]2 The requirements for a local maxima

are at least four neighbors of which
none have a larger signal and a EEM

cell >
500MeV 4.2 Track finding

First the raw ID and TRT data are turned into space-points, through
a clustering of the readout. Hereafter, seeds are generated; seeds are
combinations of three space points. This maximizes the candidates
while still allowing for a rough momentum estimate. The seeds are
extended with additional space-points that are compatible with a
perfect helical trajectory in a uniform magnetic field. Multiple track
candidates can occur per seed. Following this is a stage of ambiguity
solving, which seeks to deal with track candidates overlapping and
using the same clusters. The algorithm also seeks to identify merged
clusters, i.e. clusters containing charge deposits from multiple par-
ticles, and shared clusters which are clusters used in multiple track
candidates that do not fulfill the requirements for a merged cluster.
The tracks are scored on different features such as χ2 − f it, penaliz-
ing tracks with a bad fit.

Figure 4.1: Diagram showing a
simplified overview of the track re-
construction algorithms and work-
flow. Figure from [35].

The ambiguity solver rejects tracks that do not meet the following
criteria, solving for higher scoring tracks first.

• pT < 400MeV,
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• |η| < 2.5,

• Minimum of 7 pixel or SCT clusters,

• Maximum of 1 shared pixel cluster or two shared SCT clusters on
the same layer,

• no more than a total of two holes3 in the combined pixel and SCT, 3 holes are expected but missing clus-
ters

• no more than one hole in the pixel detector.

• and two additional requirements to the transverse impact param-
eter and the longitudinal difference.4 4 more detailed description of these pa-

rameters can be found in [19] p.7

The final step extends the track into the TRT region of the detector
[19]. An overview of the track reconstruction workflow can be seen
in figure 4.1.

4.3 Matching clusters

The reconstruction starts from determining energy clusters in the
calorimeters. Energy deposits that can be matched with an ID track
consistent with the characteristics of an electron originating from the
interaction point are classified as electrons. Clusters that cannot be
matched to an ID track are labelled as an unconverted photon. Con-
verted photons are a bit more complex and can be determined in two
ways. As a cluster matched with a track consistent with the charac-
teristics of a photon conversion in the ID material, or matched to
a two-track vertex. There are also rules for how the reconstruction
handles ambiguities such as clusters fulfilling both electron candi-
date and converted photon requirements. [1]. The clustering match-
ing algorithm seems to have some inaccuracies which causes False
labels even in MC, which use the same algorithm for matching clus-
ters to tracks and thus obtaining the truth energy label. More on this
in section 6.2.1.





5 Machine Learning

Since it is still, at least for a little while longer, possible to complete
an education within physics without ever touching upon machine
learning, I will start off by describing some core elements of a ma-
chine learning algorithm, how they came about and what kind of
tasks they excel at. The chapter will be based on the publicly avail-
able textbook Deep Learning by Goodfellow et al. [34]. The chapter
strives to use the notation described by the book in the preliminary
pages.

5.1 Supervised learning

Within machine learning there exists two distinctly different branches,
that is supervised and unsupervised learning. The difference between
the two is the existence of labels or a target. A supervised learning
algorithm will make a prediction which can then be compared to a
label of truth or pseudo-truth1. Unsupervised learning does not need 1 More on pseudo-truth labels for train-

ing in data in 6.3.2any labels but is instead used to order or categorize the data based
on structures inherent in the data 2. 2 Examples of unsupervised algorithms

are clustering and autoencoders.For supervised learning, given an input-space X and an output-
space Y, we wish to determine a function capable of transforming an
input x(i) ∈ X to the corresponding y(i) ∈ Y, for all inputs, that is
the function f (x; θ) (denoted h for hypothesis) takes h : X → Y. In a
probabilistic setting we assume the existence of an underlying joint
probability distribution P(x, y) and wish to determine h such that it
matches the conditional distribution P(x|y). According to the princi-
ple of risk minimization originally from [73], the optimal function h
is the one that minimizes the Risk defined as,

R(h) = E[ℓ(h(x, y)] =
∫

ℓ(h(x, y))dP(x, y) (5.1)

Where ℓ is the loss function, that describes the distance between
the "truth" y and the by h predicted value ŷ.

Unfortunately, we do not know the true underlying probability
distribution, as such we estimate the risk through the empirical risk,
henceforth called loss and denoted L.

Remp(h) =
1
N

N

∑
i=1

ℓ(h(x(i), y(i))) (5.2)

Requiring a finite set of example data-target pairs. S = {x(i), y(i)}N
i=0

independently drawn from P(x, y).
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5.1.1 Over- and underfitting.

While it for a modern computer is quite a simple matter to find
the minimizing function h∗ = argminh(L(h, S)) it is unfortunately
not what we are looking for. It is easy to imagine a model that has
such high complexity3, that it is simply able to memorize every input-3 Read many trainable parameters.

output pair which would lead to minimizing the loss. However the
real objective is not a minimization of the empirical risk but rather
the true risk. While one could set out to determine the error between
empirical risk and the true risk, often called the generalization error

G(h) = R(h)− Remp(h), (5.3)

there is in most cases a much more practical method. That is split-
ting the data into independent and identically distributed (iid) sets
one for training and one for validation. 4. This grants us a tool with4 We are actually splitting the data into

a training, validation and a test-set which we can inspect this generalization and balance the model op-
timally between over- and underfitting. Figure 5.1, shows how in-
creasing the complexity of a model will lead it to learn the statistical
fluctuations of the finite training dataset. However too simple of a
model will not be able to capture all the underlying structures of the
data.

Figure 5.1: Showing the diverting
nature of the risk in the training
and test iid sets, often called the
bias variance tradeoff. Figure is a
snippet of a figure from [9], which
questions whether this holds for
large models such as deep neural
networks

When we apply this method we run into the issue of once again
being biased towards the train-validation set combination. This is
why we hold out on a test set, which will never be included as part
of the training or optimization of the model, for unbiased evaluation.

We can estimate the bound of the generalization error through the
Probably Approximately Correct (PAC) theory and the Hoeffding’s
inequality to be,

G(h∗) = Remp(h∗) +

√
ln
(

2M/δ

2N

)
. (5.4)

[40][53], where N are the data points available in the training, h∗ is
the best model among M models tested. M increases with the com-
plexity of the model as more learnable parameters increase number
of feasible models. δ is the confidence of the model. it can be seen
that complex models are possible as long as we have large amounts
of data.

5.2 Neural Networks (NN)

With the most basics of fundamentals in place, the next section will
relate to the history and theory of NNs, along with more detailed
explanations of the models related to this project.

5.2.1 Early algorithms

The earliest algorithms were a linear combination of weights on a
feature space f (x, w) = w1 · x1 + ... + wn · xn. The resulting number
could then be used as a binary classifier5 depending on whether the5 A binary classifier simply splits data

points into two different groups e.g.
healthy v. sick, cat v. dog or car v. not-
car etc. (The last example is called a one
v. all)
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resulting number was positive or negative. The weights initially had
to be set by a human operator. The two next natural evolutions of the
science were the inclusion of algorithms that could automatically set
the weights and algorithms that return a real number allowing for
regression tasks.6 6 Regression task are simply a task

where instead of trying to group the in-
put, we wish to use the input features
to determine a related feature not part
of the input features e.g. housing prices
or survival rates.

The training of the weights were accomplished using an algorithm
called stochastic gradient descent[61][44]. This algorithm or modified
versions of it are still the status quo for training algorithms within
machine learning today.

The deep learning field has over time seen increasing and wan-
ing interest, as a result of scientific breakthroughs, unrealistic claims
and the failure to deliver on those claims, as well as the increase in
computation hardware and data availability.

The deep learning algorithms are, when compared to other ma-
chine learning counterparts, computationally expensive and usually
requires a large amount of data for training.

5.2.2 Alternatives to deep learning and currently implemented meth-
ods

ATLAS has historically opted for Likelihood based algorithms or tree
based algorithms. One could, with good reason, ask oneself if these
algorithms have been around for so long, why have they not previ-
ously been used for energy regression tasks at ATLAS. The answer
is in part the conservative nature of large organizations as well as
the maturity or rather immaturity of the deep learning field at the
time when the Likelihood method was chosen, as well as limitations
of the hardware when considering the choice between Boosted Deci-
sion Trees (BDT) and more complex models deep learning models.

The choice of using tree based algorithms seems very reasonable
as these algorithms still in part dominate the machine learning space
especially when it comes to tabulated data.7 7 Tabulated data being different key fea-

tures with single values each, an exam-
ple of non-tabulated data is image data.

However, improvements in hardware mean a push for the imple-
mentation of deep learning methods that while more resource heavy
and harder to implement should be able to achieve equal or better
performance to these "simpler" methods. Especially, when we wish
to include more "raw" detector data such as the calorimeter cell data,
more on the specific data structure in Chapter 6.

5.2.3 Components of neural networks

Loss function

The loss function which was briefly mentioned in section 5.1, as a
function that describes the distance between the predicted values ŷ
and the true/labeled target values y. There are a plethora of different
functions which fit this description, the most common examples are,
the Mean Absolute Error (MAE) [62]
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LMAE =
1
N

N

∑
i=0
|(ŷ(i) − y(i)|, (5.5)

or the Mean Squared Error (MSE).[63]

LMSE =
1
N

N

∑
i=0

((ŷ(i) − y(i))2 (5.6)

Network, layers & neurons.

In essence, a NN is simply a function of learnable or trainable param-
eters. Using a network of the type feed-forward NN coined multi-
layer perceptron, it consists of layers of neurons which are fully con-
nected.88 Fully connected refers to each output

of the previous layer being fed into all
neurons of the consecutive layer.

The output of the neuron is a real number. The function for the
neuron i in layer l of the feed-forward NN can be defined as,

f (l)i = σl

(
b(l)i

n(l−1)

∑
j=1

W(l)
ji f (l−1)

j (x)

)
, (5.7)

where n(l) is the number of neurons in layer l and σ : R → R is an
activation function which introduces non-linearity.

The layer can then, using vectors and matrices, be described as,

f (l) = σl
(

W(l)⊤ f (l−1)(x)
)

, (5.8)

where W(l) is the weight matrix of layer l, consisting of real num-
bers with shape n(l − 1)× n(l) and bl is the vector of biases.

The chain rule allows for the full network to be seen as a compo-
sition9 of the layers.9 combining the function using output

of following function as input to the
other

f (x) =
(

f (L) ◦ f (L−1) ◦ ... f (2) ◦ f (1)
)

(5.9)

An illustration of a fully connected feed forward neural network
of the type also used in this thesis can be seen in figure 5.2

Figure 5.2: A classic illustration ex-
ample of a fully connected neural
network with two hidden layers.
Figure from [37].
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Activation functions

The REctified Linear Unit (ReLU) is one of the most popular activation
functions it is defined as,

f (x) = max(0, x). (5.10)

It was first introduced by Hahnloser et al. in [38], a variant of it
coined LeakyReLU,

LeakyReLU(x) = max(αx, x), (5.11)

where α < 1, is currently one of the most widely used activation
functions. The sigmoid function,

σ(x) = 1/1(+e−x), (5.12)

is also widely popular, especially as the final output layer in a
binary classifier, where the output between 0 and 1 can be a proxy
for model confidence or probability for the data point to belong to
the signal group.

Figure 5.3: Plots of some of the pos-
sible activation functions for intro-
ducing non-linearity, snippet of fig-
ure from [42].

As previously stated these activation functions introduce non-
linearity to the network, without them the network would just be
a composition of summations over linear functions which would re-
sult in a linear separation line.

Figure 5.3 show graphical representations of the activation func-
tions mentioned in this section.

5.2.4 Training the network

Backpropagation

We now have all the necessary components of a NN. However miss-
ing still, is a method in order to determine the learnable or trainable
parameters of the network.10 10 The weights and biases.

This is done using backpropagation, which takes advantage of the
chain rule in order to determine the gradient of the network loss
described by equation 5.9, that is calculate,

∇xL =(ω1)⊤ · ( f 1)′... ◦ (ωL−1)⊤ · ( f L−1)′

◦ (ωL)⊤ · ( f L)′ ◦ ∇( f L)L,
(5.13)

where f L is the output of the final layer, and ω is the collection
of both weights and biases. It makes sense to introduce the partial
gradients of layer l, this also accentuates the fact that this process is
best calculated iteratively starting from the output layer and moving
backwards, hence the name.

δl =( f l)′ ◦ (ωl+1)⊤... · ( f L−1)′

◦ (ωL)⊤ · ( f L)′ ◦ ∇( f L)L
(5.14)

.
We can then use this to define the gradient of weights and biases

in layer l.
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∇ωlL = δl( f (l−1))⊤ (5.15)

The weights11 are then updated according to this gradient, push-11 And biases, however biases do not de-
pend on previous input and just uses 1

instead.
ing it in the opposite direction of the gradient. The k’th neurons
weight is updated through

wkl ← ∆wkl = −λ
∂L

∂wkl

= −λokδl
(5.16)

Where o is the output of the neuron. The amount of pushing for
each step is determined by λ, which is called the learning rate and
is one of the most important hyperparameters of the network. This
method of updating weights is called gradient descent. The stochas-
tic part of stochastic gradient descent (SGD) enters, when updating the
weight several times per epoch12 on what is called mini-batches.12 An epoch is one full run through all

the available data While the model in this project does not employ the original SDG
algorithm, two more modern variants of it have been tested, these
optimizing algorithms are known as optimizers

Figure 5.4: Examples of different
levels of learning rates. Figures
from [22] Learning Rate

The learning rate, which was mentioned in the previous section, is
as stated one of the most, if not the most, important hyperparameter
in most machine learning algorithms. Too high of a learning rate will
result in the algorithm not being able to accurately converge to a so-
lution and might even cause divergence, while too low of a learning
rate can result in the algorithm getting stuck in local minima and ex-
tremely slow convergence times. Examples of the different learning
rates (in a 2d learning space) can be seen in Figure 5.4
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Learning rate schedulers

Instead of having a fixed learning rate, it is often favorable to use a
learning rate scheduler to change the learning rate over the course of
training. In [68], they argue that cyclical learning rates are beneficial,
especially because they allow quicker escapes of saddle-points in the
loss landscape. A saddle point will have a very small gradient which
slows down the learning. Increase the learning rate with a cyclical
learning rate to quickly escape these saddle-points. It is also argued
that if one’s ranges straddle the optimal learning rate, then one will,
for some time, use the optimal learning rate or a near optimal learn-
ing rate. Examples of cyclical learning rates can be seen in figure
5.5

Figure 5.5: Examples of different
learning rate schedulers[41].
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5.3 Convolutional Neural Networks

As this work builds upon previous students work with Convolu-
tional Neural Networks (CNN), a brief description is required before
moving on to Graph Neural Networks (GNN). The section will to a
large degree make use of graphical representations when posssible.

CNNs as they are used today were first introduced in 1989 [46],
but it did not gather much immediate attention due to the limited
computation power of the time and the large amount of data that a
CNN requires.

A CNN takes a regular input X , usually an image, and maps
a learnable weight matrix called a kernel to X . The kernel can be
thought of as a neuron with dimensions m× n. The input is of con-
stant size H ×W × D, (height, width, dimension). D is the depth of the
data or usually when considering image data, the number of chan-
nels 13. An example of a 3× 3 kernel can be seen in figure 5.6.13 most commonly D = 3 for red, green

and blue color channels

5.3.1 Convolution layers

The name Convolution is in most cases a misnormer as the function
most implementations of CNNs use 14 is the cross-correlation func-14 Including pytorch

tion.

Cross-correlation

S(i, j) = (I ⋆ K)(i, j) = ∑
m

∑
n

I(i + m, j + n)K(m, n) (5.17)

Convolution

S(i, j) = (I ⋆ K)(i, j) = ∑
m

∑
n

I(i−m, j− n)K(m, n) (5.18)

The difference between them being only the signage before m and
n. The result is a flip in both axis of the matrix. Eqn. 5.18 is com-
mutative, while Eqn. 5.17 is not. In the rest of this thesis convolution
will mean Cross-correlation and refer to the expression in Eqn. 5.17

This operation is much easier to comprehend through visualiza-
tion with a graphic. Figure 5.6 shows a 3× 3 kernel on a 5× 5× 1
input. The kernel will then glide over the image with a predeter-
mined stride15. In this case the stride is 1, which results in an image15 stride; the step size of the sliding pane

as it goes from left to right and top to
bottom much like an old typewriter.

of size 3× 3× 1.
One can perform what is called padding (usually zero padding), by

putting a border of arbitrary values (zero) around the original image,
as not to reduce the size of the image.

One convolution layer can consist of several k kernels and the
number of learnable parameters is given by.

Nparams = ((Cin ×Wkernel × Hkernel) + 1)× k (5.19)

Increasing k increases the number of feature maps outputted from
the layer. Modern CNN algorithm usually employ several kernels
and several convolution layers in the model. [75]
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Figure 5.6: An illustration of the
convolution operation using a 3× 3
kernel using a stride of 1 on a
5 × 5 × 1 image. (1 channel could
for an example be a grayscale im-
age.) Snippet of a figure from [75]

Pooling layers

In order to decrease the dimensionality of the model as not to fill out
the computer memory with parameter weights, a down-sampling
operation is often included, one such operation is pooling. A pool-
ing operation has no learnable parameters, it is much like the kernel
defined by its height, width and stride. The operation used in the
pooling layer is also a hyperparameter. Some common operations
are max pooling, which takes the highest value within the filter, and
mean pooling which passes on the mean. Figure 5.7 illustrates a max
pooling operation with dimension 2× 2 and a stride of 2 which re-
duces the size of the feature map by a factor of 2. Aside from the
decrease in computational cost, pooling also introduces translational
variance. [75]

Figure 5.7: Max pooling operation
with dimensions 2× 2 and a stride
of 2 figure from [75].

5.4 Graph Neural Networks

The idea of Graph neural networks was first introduced in 1997 [69]
in an attempt to improve neural networks capabilities when deal-
ing with complexly structured data, and varying input sizes16. GNN 16 It is also considered a solution to data

in non-euclidean space, although that is
not the focus of this project.

combines the mathematical theory of graphs with neural networks
in order to generalize the function of CNN to data that is variable in
number of inputs and non equi-distant between data-points.

5.4.1 Graphs; a mathematical concept.

Graphs are a mathematical concept described by the aptly named
graph theory. This project (luckily) does not require a full under-
standing of this theory, however some basic knowledge of the defin-
ing features of a graph and the notation and nomenclature is neces-
sary in order to explain the function and benefit of GNNs.

A graph is denoted G = (V, E) where V is a set of vertices, equiv-
alent to nodes or datapoints, and E a set of Edges. An edge is defined
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by a connection between two endpoints e = u, v, here u is said to be
a neighbor of v. Graphs can be directed and undirected, a directed
graph means that all edges have a direction e = u, v does not nec-
essarily lead to e = v, u. Undirected meaning that all edges go both
ways, that is if u is the neighbor of v then v is necessarily also the
neighbor of u. d(v) is the number of connections to v.

The Adjacency matrix for a simple graph G = (V, E) without self
connections can be described through

Ai,j =

1, if
{

vi, vj
}
∈ E and i ̸= j,

0, otherwise.
(5.20)

An illustration showing a 2d graphical representation of a graph
structure and illustrating the difference between direct and undi-
rected graphs can be seen in figure 5.8.

There are two different ways in which one can describe attributes
of the graph, spatial and spectral. The spectral method uses the graphs
laplacian eigenbasis, and is dependent on graph structure. The spa-
tial approach, which is the one used in this project, works through
operations on spatially17 close neighbors. [47]17 Spatially does not necessarily mean in

euclidean distance

Figure 5.8: Figure from [12]
(Cropped), which illustrates the
difference between directed, undi-
rected and fully connected versus
partially connected graphs.

5.4.2 Learnable graphs through message passing schemes and up-
dating functions

In [31] a general framework for supervised learning on graphs was
proposed, it is based upon two phases, a message passing phase and a
readout phase. The message passing phase can be run for T timesteps
and is constructed using two sub-functions, a message passing func-
tion denoted Mt and a message updating function denoted Ut, where
t denotes a given timestep. mt

v is the message at time t for the spe-
cific node v and ht

v is the hidden state again at time t for node v. The
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updating of messages can then be expressed as

mt+1
v = ∑

w∈Nv

Mt(ht
v, ht

w, evw), (5.21)

with evw representing the features of the edge between node v and
w. which leads to the updating of hidden states through

ht+1
v = Ut(ht

v, mt+1
w ) (5.22)

There are many different message and updating functions. The
requirements on the functions are that they are differentiable and
contain learnable parameters.

The readout phase consists only of the readout function, which is
expressed as,

ŷ = R(hT
v , |v ∈ G) (5.23)

The readout function looks at the entirety of the final graph state
and produces some sort of output.

In this thesis the Dynamic Graph Convolutional Neural Network
(DGCNN) method described in [74] is used.

The edge features are described as

eij = hΘ(xi, xj), (5.24)

where xi is the feature vector of a node in the graph.
with hΘ being a non-linear function of learnable parameters hΘ :

RF ×RF → RF′

The update of xi can be described through

x′i = □j:(i,j)∈E , (5.25)

where xj : (i, j) ∈ E are the neighboring nodes of the central node
xi, and □ is a symmetric aggregation operator. The method allows
for a choice of (h and □) and in this thesis we are using a fully
connected multi layer perceptron (MLP) as the non liner function hΘ

and we use mean as the aggregation operator. Figure 5.9 shows a
graphical representation of the EdgeConv operator

Figure 5.9: Figure from [74], which
shows the EdgeConv operator here
with a single fully connected layer
as hΘ and 5 neighboring nodes to
the central nodes, with 3 features
in each of the nodes.

It is relevant to note here that, when xi..., xn represents images on
a regular grid and the graph has connectivity which can be described
as a patch of fixed size each pixel, with the choice of Θm · xj as the
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edge function and using the sum as the aggregation operator the
standard convolution operation described in 5.3.1 is found.

x′im = ∑
j:(i,j)∈E

θm · xj, (5.26)

with Θ = (θ1, ..., θM) encoding the weights of M different filters
each filter having the same dimensionality as x.

In this way the Edgeconv operator on the graph structure can be
seen as a generalization of the convolutional method [74].



6 Data Pipeline

6.1 xAOD & DxAOD

The data from the ATLAS experiment is in the order of petabytes.
This size introduces many additional challenges compared to exper-
iments with data of a size that can be handled by a normal personal
computer. The software framework used to access, reconstruct and
simulate ATLAS data is called Athena [17]. This project will not go
into depth about the ATHENA framework as it has not been a focus
of the project. The data used in this thesis, before transformation into
graph format, has been procured by previous students Lukas Erhke
and Daniel Nielsen with additions from Malte Algren [6], leaving
only a few changes to be made for this thesis1. 1 such as generating/including [x,y,z]

coordinates for the track featuresBy far the largest part of data simulated or recorded at ATLAS is
irrelevant to any specific analysis. Since computation resources are
not infinite it is of great importance to create a derivation of the full
data, which only includes events and features relevant to the specific
analysis.

The largest data files that one can use for analysis are called xAOD
these are meant to contain a wide amount of data for different types
of analysis, they can be accessed through the CERN managed database
Rucio2 2 Given that you have the authority to

do so, data from CERN is not publicly
available.

The Derivation Framework (DF) aims to bring down the size of the
data to orders of gigabytes, these files are called DxAOD. The smaller
size allows for local storage and manipulation at tier 3 computers.3 3 tier 3 computers are local supercom-

puters belonging to any ATLAS collab-
orator institution

[23].
While this model has been developed with usage across differ-

ent decay channels in mind there has not been time to implement
these, therefore only the DxAOD called EGAM1 has been used. This
file is created with cuts optimized for, z ⇒ ee central electrons. This
DxAOD selects central electron pairs based on the Likelihood func-
tions with minimum energy requirements. [26]

6.1.1 DxAOD to Graphs

The EGAM1 ensures that the files are in a workable format, but they
still contain more information than what is used by the model, and
more importantly the format is currently in a root format. The first
step is what is called the NTuple production. The NTuple production
uses the Athena framework to extract only the necessary information
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from the DxAOD files, aswell as generate new features if needed.
This script has in large part been inherited from previous students,
however some additions and modifications have been made in or-
der to extract different track features as well as a rework of the ∆R
calculation, which had a faulty implementation of circularity in ϕ.

Initially calculations of (x,y,z) coordinates at the endpoint of the
inner detector calculated by using the momentum of the track was
implemented, then disregarded in favor of using η, ϕandR, however
towards the end of the project the (x,y,z) coordinates were reimple-
mented this time instead of using a generated coordinate at the point
of entry to the calorimeter the coordinate of the last measurement
was used4. The different benefits and problems with using either are4 This was mainly done as the enetry

to the calorimetry x,y and z coordi-
nates were found using an approximate
method.

discussed in section 6.3.1
The NTuple production takes .root files as input and outputs .root

files. The data has now been slimmed down sufficiently and all needed
features have been produced.

The next piece of code takes the .root output files of the Ntuple
production, where lists of features are ordered in event level struc-
tures, and outputs the data in graphs representing each event, along
with the relevant event wide scalar features, ready for prediction or
training by the model.

This script has been developed specifically for this thesis with in-
spiration from the graph production from [78] as well as selection
criteria also implemented in [6].

• Event selection.

• Gather statistics for rescaling/normalization.

• Rescale/normalize

• Order things in graph format 55 Nodes containing track, probe or cell
features.

• Save to a data format that allows for "easy" reading. 66 here a pickle format is used, although
it seems this is generally disparaged
though mostly due to security con-
cerns. The gold standard would prob-
ably be to structure the data in an SQL
database such as sqlite.[70]

DxAOD(.root)

Ntupleproduction(.c++) Athena

files.root

xAOD(.root)

DerivationFrameworkEgamma
(Athena)

root2graph(.py)

graphs.pkl

train_test_val_split(.py)

train_graphs.pkl val_graphs.pkl test_graphs.pkl

Figure 6.1: Overview of the data
pipeline, blue indicates data-files,
red indicates CERN produced
code, green indicates code devel-
oped for this thesis, yellow indi-
cates code developed by CERN,
previous students and modified for
this thesis.

The statistics for the choice of rescaling/normalization scheme is
gathered first. Hereafter the data that passes a selection cut, is simul-
taneously organized into nodes and rescaled and the set of nodes
relating to the same event is gathered in a graph, the scalar features
of the same event are collected and rescaled. The energy labels and
accordion energy are also collected before everything is saved in a
pickle format.

The script allows for parallelization and is written such that the
files only need to be opened twice, once for gathering statistics and
once for everything else.

The final step before the data is ready for training is splitting it
into a training, validation and test set. The data is distributed as
70%, 20% and 10% for training, validation and test respectively.

An overview of the entire process and which parts have been de-
veloped specifically for this project can be seen in figure 6.1.
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6.2 Pre-processing

A common saying in the machine learning space is garbage in garbage
out.. This expression is mostly used to warn followers of machine
learning against dataism7 and poorly labelled data. While this sec- 7 blind faith in complex algorithms

tion will cover handling of mislabelled data it is also going to cover
scaling and transformation of input data which are necessary meth-
ods to avoid exploding or disappearing gradients in large neural net-
works.

6.2.1 Mislabelled data

Even though we are training on Monte Carlo generated data, inspec-
tion of discrepancies between the Ecalib(BDT) and Etruth revealed two
possible labelling flaws in the Monte Carlo algorithm. The first one
being a mislabelling, where the particle pair in the same event are
given the exact same Etruth, which statistically would be exceedingly
unlikely. These are searched for and removed.

The other group of discrepancies is more speculative, but the sus-
picion is that the cluster matching algorithm sometimes matches a
daughter electron instead of the true initial electron for early decays.
This leads to the ATLAS BDT algorithm guessing much lower values
compared to the MC truth label. In an attempt to not confuse the
algorithm these events are sorted out by making a cut on the ATLAS
BDT classification score through

keep event : |1− EATLAS(BDT)
Etruth

| < k, (6.1)

where k is a tuneable hyperparameter. the result of the selection
criteria can be seen in figure 6.2
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Figure 6.2: On the left we can
see the distributions of the ATLAS
BDT prediction result divided by
the truth label energy, on the right
the resulting energy distributions
and the fractions of rejected in the
different energy bins.

, this selection should not give an unfair advantage to the model as
we are removing the most poorly reconstructed ATLAS BDT events,
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which should greatly benefit the ATLAS BDT’s results.
A decision was made by previous students to keep the selection

symmetric, however one could also consider to keep the selection
one-sided, as there are no good explanations as to why we should
discard events where the ATLAS BDT guesses the energy to be too
high.

It is also required that the candidates pass the Likelihood Loose.
Another selection criteria which is unique to this thesis when com-
pared to earlier projects is that the p_track container is not empty, as
we use those features where previously the p_ container had been
used.

6.3 Features

There are a lot of different considerations to be made when deciding
on the features which are to be included in the model, and a large
part of it depends on the structure of the model. However, there has
not been any time to start a feature importance analysis. Therefore,
the selection of features builds on in office discussions as well as
drawing inspiration from previous theses.

In a frustration with the lack of readily available information about
the features, the table of features seen in table (6.1, 6.2 & 6.3) has
been created. It does not only include a short description the name
of the features as they might appear in papers but also the name
with which they are generated through the Ntuple production such
that future students might have an easier time finding the correct
features.

6.3.1 (x, y, z) vs η, ϕ, R

During the data production it was discussed whether η, ϕ, R were not
a better measure of relation/distance between the data points, these
would also seem more familiar to researches at ATLAS as the (x, y, z)
are hardly used. The η, ϕ, R where therefore tested meaning that the
distance between the graphs were no longer in terms of euclidean
distance but some arbitrary distance which better corresponded to
the expected connection between the data points. Unfortunately a
naive implementation did not lead to improved performance. The
reasons for this could stem from the following issues which would
have to be taken into consideration if η, ϕ, R where to be used.

• Differing scales

unlike the (x, y, z) coordinates which are naturally all on the
same scale, the η, ϕ, R are all on different scales. This might
be fixed using a MinMax scaler see (section 6.3.3).

• The cyclical nature of ϕ

Since phi is cyclical in nature one would have to take that into
consideration when calculating the distance to the neighboring
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datapoints. There currently was no option to do this using the
pytorch geometric library. It would therefore require replacing
the function for calculating the neighbors with a custom func-
tion.

The belief is still that a correct switch to η, ϕ, R might bring about
increased performance. The option of weighting the distance calcu-
lation so that R for an example might be weighted less than η and ϕ

even after getting them on the same scale, could also be an interest-
ing feature.

A counterargument against seeking out such an implementation is
that it only affects the initial graph and already after one EdgeConv
the distance is some unknown distance in 3-dimensional space, why
the effect might not be all that apparent.

6.3.2 pseudo-truths for training in real data.

While there was not enough time to generate, evaluate or train on
real data the pipeline was constructed with the possibility of train-
ing in real data in mind, as that had shown promising results in
earlier theses. A pseudo truth label can be generated by using Eq.7.4,
picking one of the electrons in the electron pair, and determining the
energy of the remaining electron through the ATLAS BDT energy, the
invariant mass is then set to the mean Z-mass (M = 91.19GeV). The
energy of the chosen electron can then be determined, and the ener-
gies can be used as pseudo truth labels. It is noted that the Z mass
is defined by a Breit-wigner distribution with a width of ∼ 2.5GeV
which means that this energy is just an approximation. The approx-
imation is considered good enough when used in combination with
a cut on the invariant mass of the electrons. This method will in-
evitably have a dependency on the ATLAS BDT model, which the
severity of should be checked upon implementation.
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Scalar features

Name code ID Description
⟨µ⟩ averageInteractions-

PerCrossing
Average Proton-proton interaction per crossing

nvertexReco NvtxReco Number of reconstructed vertices
ntracks p_nTracks Number of reconstructed tracks
RHAD p_Rhad Ratio of energy in hadronic calorimeter
RHAD1 p_Rhad1 Ratio of energy in first layer of hadronic calorime-

ter.
fTRT p_TRTTrackOccupancy Fraction of detector parts (straws) with hits in TRT.
Etop40 p_topoetcone40 Energy (in EM calorimeter) in cone of ∆R < 0.4

around cluster barycenter excluding electron can-
didate (topological) energy.

ETG3 p_fTG3 fraction of energy in crack region (tile-gap) scintil-
lator detectors.

ϕModCalo p_phiModCalo relative ϕ w.r.t. the cell edge of Layer 2 in ECAL
(assumes constant cell size.)

ηModCalo p_etaModCalo relative η w.r.t. the cell edge of Layer 2 in ECAL
(assumes constant cell size.)

E f 0 p_f0Cluster fraction of energy in pre-sampler.
ηCluster p_etaCluster η of electron candidate (topological) cluster
R12 p_R12 ratio between energy deposited in EM calorimeter

layer 1 and 2.
∆ϕTH3 p_dPhiTH3 Relative position of ϕ in a cell. mod(2π + ϕ, ϕ/32)−

π/32
ηIndex p_cellIndexCluster η cell index of cluster in layer 2

Eacc p_eAccCluster Total energy deposited in layer 1-3 of the ECAL
η p_eta η as determined by the tracking
∆ϕ2 p_deltaPhiRescaled2 Difference in ϕ between extrapolated track and the

barycenter of the cluster ϕcluster

poscs2 p_poscs2 Difference in eta between the most energetic cell
ηmostEcell and ηcluster the barycenter of the cluster
2 · ηcluster − ηmaxEcell/0.025− 1

ptrack
T p_pt_track ptrack

T estimated from the tracking algorithm †
Table 6.1: An overview of all the
different scalar input features used
in the final model.

Cell features

Name code ID Description
xcell p_cell_x x location of the calorimeter cell.
ycell p_cell_y y location of the calorimeter cell.
zcell p_cell_z z location of the calorimeter cell.
Ecell p_cell_energy Total energy measured in the calorimeter cell.
∆Rcell p_cell_dR Distance from the calorimeter cell to the barycenter

of the topological cluster.
Areacell p_cell_area surface area of the calorimeter cell.
tcell p_cell_time time of calorimeter cell activation relative to bunch

crossing.
Table 6.2: An overview of all the
different cell input features used in
the final model.
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Track features

Name code ID Description
xtrack (p_)tracks_x x location of last track measurement in the ID.
ytrack (p_)tracks_y y location of last track measurement in the ID.
ztrack (p_)tracks_z z location of last track measurement in the ID.
pT

track (p_)tracks_pt The derived momentum of the track
∆Rtrack (p_)tracks_dR Vicinity of track particle to the candidate particle.

∆R =
√
(ϕ0 − ϕ)2 + (η0 − η)2

d0
σd0 track

(p_)tracks_d0Sig The track d0
σd0

, where d0 is the signed transverse dis-
tanve between the point of closest approach and the
z-axis where σd0 is the accompanying uncertainty

nSCT (p_)tracks_scthits Number of SCT hits for the track
z0 (p_)tracks_z0 longitudinal distance between point of closest ap-

proach and the z-axis.
θtrack (p_)tracks_theta θ of the track at reconstructed vertex.
ηtrack (p_)tracks_eta η of the track at reconstructed vertex.
ϕtrack (p_)tracks_phi ϕ of the track at reconstructed vertex.
vertextrack (p_)tracks_vertex The index of the track vertex. (ordered by trans-

verse momentum)
npixel (p_)tracks_pixhits Number of pixel hits for the track.
∆P
P track (p_)tracks_dPOverP Change in momentum over the track.

qtrack (p_)tracks_charge Charge of the track.
Table 6.3: An overview of all the
different track input features used
in the final model. Note the two
different types of containers for the
different track types
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6.3.3 Data distributions

The following distributions are made using the test data-set, which
should be a sufficient amount to represent the full distributions, as
we also use this assumption when checking the results.

These distributions were used as an analytic tool to not only see
if the data representations are as expected, but also to see which
transformation methods should be implemented for which features.

Below in figures 6.3,6.4,6.5,6.66.7,6.8 and 6.9. The log distribution
of the features are shown before and after rescaling using Scikit
learns [57] RobustScaler for all features except the energy type fea-
tures Ecell , pt,tracks and pt,p_tracks. The QuantileTranformer also from
Scikit learn is used in this case as an attempt to combat the extremely
long energy tails. The QuantileTranformer is non-linear and as such
might ruin linear correlations between the features, which is why it
is only used on a small subset of the features.

The figures symbolize one of the difficulties with working with
ATLAS data, there are many features, and they might all need differ-
ent treatments in terms of rescaling. Most of the distributions even
after rescaling would leave some machine learning enthusiast hesitat-
ing to include them in their model as some of them span quite large
ranges and still have persistent outliers. Another rescaling which one
could consider implementing is the MinMax scaler which forces the
features to lay within a certain range; [-1,1] and [0,1] are common and
preferred ranges for neural networks. All figures have frequency on
the y-axis and the feature relevant unit on the x-axis.88 There is no easy way to apply the axis

labels or even figure out what units the
different features are entered with. Dur-
ing some introduction days I attended
virtually with the ATLAS collaboration
it was mentioned that the easiest way to
figure out the contents of different fea-
tures was to confer with the code...
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Figure 6.3: Histograms of all the
different scalar variable distribu-
tions which are included in the
final model, with the y-axis log
scaled. See also 10.1
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Figure 6.4: Histograms of all the
different scalar variable distribu-
tions which are included in the
final model, as they appear after
transformations with the y-axis log
scaled. See also 10.2
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different cell variable distributions
which are included in the final
model, with the y-axis log scaled.
See also 10.3



46 masters thesis

2 1 0 1 2

103

104

105

106

p_cell_x

2 1 0 1 2

103

104

105

106

p_cell_y

4 2 0 2 4

104

105

106

107
p_cell_z

0 100 200 300 400 500 600

101

103

105

107

p_cell_energy

0 2 4 6 8 10 12 14

100

101

102

103

104

105

106

107
p_cell_dR

0 10 20 30 40 50 60

105

106

107

p_cell_area

150 100 50 0 50 100

101

103

105

107

p_cell_time

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
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Figure 6.7: Histograms of all the
different probe track variable dis-
tributions which are included in
the final model, with the y-axis log
scaled. See also 10.5
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7 Model Architecture

Setting out to construct a GNN, which is considered a relatively new
deep learning method, that can reconstruct energy in an experiment
as complicated as the ATLAS experiment is quite an arduous task.
There are only few papers that combine the ATLAS experiment and
GNN’s the ones I were able to find are [43], [25] and and [60]. The
latter being the paper which most closely relates to the methods im-
plemented in this thesis. In [60] they implement a DGCNN called
particle net, which like the method in this thesis treats each parti-
cle as a node. The network structure is almost identical to the one
found in this thesis, though it is used for classification tasks and
the input features are different. The paper was found rather late in
the process, it is therefore remarkable how similar the two network
structures turned out regardless. The only method directly inspired
from the ParticleNet paper is linearly increasing the node features in
the generated graph layers as a function of the layer number.

One of the largest challenges with the development of this model
is the mixed data input1. In this thesis two different models were 1 Data from the calorimeter and the data

derived from the tracksconstructed which take different approaches to the issue of mixed
data types.

The contents of the following section is mostly based on in of-
fice discussions and tinkering with the model, therefore there will,
when compared to the rest of the thesis be noticeably fewer cita-
tions. While it would be preferrable to support every single decision
made in the model development process with a link to an article stat-
ing the expected performance gain from a certain implementation or
proving the correctness of the method. These unfortunately for the
most part do not exist or do not often generalize well across differ-
ent data-sets. Therefore, the search for the best or even a functioning
model is based on trial and error and chasing results. If a result plot
or even a simple number were to be included for the entire history
of the model development this thesis would quickly grow to an un-
wieldy size, not to mention the extra time it would take to carefully
log and create graphical representations whenever a change was im-
plemented, as such I have taken the liberty to include descriptions
of tested methods and state whether it led to and increase in per-
formance or not without providing much further proof of testing.
Under any circumstance it would make sense to go back and test
some of the applied methods again now that a functional model has
been developed.
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7.1 Performance metrics

The purpose of the loss function is to provide a smooth estimate of
the error between a label and a prediction, however it does not carry
much meaning beyond that, therefore it is necessary to come up with
a different method for evaluating the final model.

7.1.1 Performance metric in MC data

For MC simulated data this is done with the Relative Inter Quantile
Range (ReIQR), which is inspired from [1]. First the Relative Error
(RE) is calculated through.

RE =
Epred

Etruth
. (7.1)

This calculation is done with energy predictions Epred from both
the GNN model and EBDT

ATLAS. This will produce Gaussian distribu-
tions around 1 for both models. The smaller the width the more pre-
cise the model. Hereafter, the effective InterQuartile Range (eIQR) is
calculated through.

eIQR =
P75 (RE)− P25 (RE)

1.349
. (7.2)

Once again this is done for both models. The factor 1.349 is a nor-
malization term due to the gaussian nature of RE. For a gaussian
distribution the 75th percentile corresponds to µ + 0.6745 likewise
the 25th percentile corresponds to µ− 0.6745 Therefore the IQR rep-
resents 1.349σ. The normalization term cancels out in the final eval-
uation metric. The choice of 25th and 75th are completely arbitrary,22 although they should fullfill lower =

upper− 1 and one could consider any pair of percentiles. The choice of 25th
and 75th is based on previous theses.

We are now capable of comparing the relative performance of the
models through

relative metric = 1− candidatemodel
benchmarkmodel

reIQR = 1− eIQRcandidate
eIQRbenchmark

.
(7.3)

In the following section concerning model development a compar-
ison between models will always mean a comparison of the reIQR
as all of the model development has been done using MC simulated
data.

7.1.2 Performance metric in real data

In real data we are lacking a truth label, which is required for both
the training process and also the calculation of the eIQR. Therefore
another metric is needed when comparing performance in real data.
As mentioned in section 2.2 the distribution of the Z-boson mass
follows a Breit-wigner distribution. It is therefore possible to generate
an invariant mass estimate of the particle candidate pairs through,
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M2
inv = 2 · PT1PT2 (cosh(η1 − η2)− cosh(ϕ1 − ϕ2))

k = cosh (η1 − η2)− cos (ϕ1 − ϕ2)

MInv =

√
2 · E1 · E2

cosh(η1) · cosh(η2)
· k,

(7.4)

using the energy estimates generated by the models we can gen-
erate different invariant mass distributions. With a perfect noise-free
detector and a perfect model we would be able to fit the resulting
distribution with the Breit-Wigner mentioned earlier. However due
to noise and imperfections in both detector systems and models the
Breit-Wigner is convoluted3 with a Crystal-Ball (CB) function devel- 3 a convolution is the integral of the

product over the two functions, with
one reversed and shifted.

oped by the Crystal Ball collaboration [54], Described by

f (x; α, n, x̄, σ) = N ·

exp
(
− (x−x̄)2

2σ2

)
, for x−x̄

σ > −α

A ·
(

B− x−x̄
σ

)−n , for x−x̄
σ ≤ −α

where

A =

(
n
|α|

)n
· exp

(
−|α

2
|2
)

B =
1

σ (C + D)

C =
n
|α| ·

1
n− 1

· exp
(
−|α|

2

2

)
D =

√
π

2

(
1 + er f

(
|α|√

2

))

(7.5)

4 4 Equation written as seen at [21]

It is now possible to create a fit where the parameters of the Breit-
Wigner are fixed to the Z-boson mass values while the CB function
parameters are fitted. The resulting width σCB of the CB function will
then, in the same spirit as the reIQR, be a measure of the performance
of the model, where a smaller width is the result of a better fit. Sanity
checks can be made by looking at the MC truth values, the fit of the
MC truth values are shown in Figure 7.1.

The fit shows a low σCB, which indicate that the Breit-Wigner
mostly explains the full fit. It is important to mention here that this
fit seems to have a larger value of σCB compared to dataset used by
previous students. The cause of this is not known but could be the
result of poorer selection criteria, however this has not been investi-
gated further. The larger σCB should not have any effect on the final
measure due to errors being added in quadrature and with final σCB

values of ∼ 2.5 the contribution from 0.073 becomes neglible.

7.2 Model development

A model inherited from Rasums Ørsøe’s thesis project[78]. Was used
as a basis for the development as such the choice of which python
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Figure 7.1: Bret-Wigner convolved
with a crystal-ball function fitted to
the truth MC values.

ML package library to use for the NN had already been made. The
two big contenders that are usually considered for large NN projects
are the PyTorch [56] or Keras [16]. The decision landed on PyTorch
and the PyTorchGeometric library which is specific to graph neural
networks. No other libraries have been tested in this thesis.

The first question to consider is whether we want to separate the
track and calorimeter cell data into two separate graphs whose out-
puts are then concatenated towards the end of the model.

7.2.1 Combined model

Initially efforts were focused on constructing a model that would use
one graph to treat both the calorimeter data and the derived track
data. The choice of pursuing this model is from the belief that there
exists information in the Edges between track data and the calorime-
ter data.

Representing ATLAS data as one graph

Do we want to make the different types of data as similar as possi-
ble5, or do we want to ensure that the model understands the exis-5 That is if a feature represents the de-

posited energy in the calorimeter then
try and find the counterpart in the track
data, which would be the momentum

tence of two different data-types and not risk confusion that might
occur from the previous method, the second goal can be accom-
plished by simply having the inputs skewed and zero-pad the fea-
tures6. This is a question that arises from the combination of different6 This again quickly leads to a discus-

sion of whether the values should be
zero-padded or given an entirely differ-
ent value entirely since after rescaling
the input features they are all centered
at 0
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data-types into the same graph and as such there is not much help
to be found in previous studies.

Two different versions were tested one with zero-padding and one
with similar input features. Since no model seemed more performant
than the other, the one with similar features was chosen as not having
the zero-padding would at least mean smaller sizes of the graph files.
7 7 It should be noted that this was quite

early on in the project, where neither of
the models had any noteworthy perfor-
mance

Jumping straight to the conclusion of this model, After much test-
ing the model seemed somewhat performant and competing with
the ATLAS BDT model, at one time even outperforming the ATLAS
model with about 10%. Unfortunately this result was obtained rather
early in the process before applying reasonable cuts to the input data,
which would ultimately be a disadvantage to the BDT, and the re-
sult was not reproducible after implementing the correct selection
criteria.

At this point it became clear that a somewhat significant disadvan-
tage with the combined model was the inseparability of the model.
That is since the graphs and the cells are combined into one large
graph it is hard to gain any insights into what contributed to the
models predicting power and also extremely difficult to diagnose
why the model was struggling and thereby which measures to take
to improve the model. The model also seemed to be quite volatile of-
ten running into exploding or vanishing gradients. These issues led
to a painful process of researching cutting edge methods for GNNs
and blindly implementing and subsequently removing one after an-
other in the hopes of better results.

7.2.2 Dual-graph model

This ultimately led to a shift to the dual-graph model since this
would at least allow for inspection of each of the sub-models in-
dividually by including or excluding each of them when training.

The benefit of this model is that we can inspect the different sub-
models individually and then with the assumption that a stand-alone
model tuned for better energy regression on its own will have better
contributions to a combined model. We also have the added benefit
of being able to check whether the inclusion of cell and track data
lead to an increased performance in the model.

The full final model can be seen in Figure 7.2. The figure highlight
the different sub-modules by a colored dashed line.

7.2.3 Tools for model development.

People often describe NN models as black box models, as a means
to express the difficulty in gaining any kind of insights into the in-
ner workings of the model. There do exist some tools and methods,
which are mentioned in [51] [14] [66]. However, none of these pa-
pers make any mention of graph neural networks and most of these
methods are not focusing on model development but rather result
interpretation.
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4.
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A permutation of input feature method contributed to [30] allows
for a feature importance estimate in deep neural networks however
this too is not of much help doing the early stages of development
but certainly are interesting ones you have a working model, as it
allows you to cut away meaningless features reducing computation
time and freeing up vital RAM. During the initial phases of model
development one is generally left with two tools, the training/vali-
dation loss plot,8 which is shown in figure 7.3 and the result of the 8 It is useful to plot the learning rate

along with the loss, assuming the learn-
ing rate to be one of the most important
hyperparameters.

tested model. Which can basically be summed up to trial and error.

Figure 7.3: The training and vali-
dation loss of the final model, it
should be noted that this model
was initialized from a well predict-
ing initial state, otherwise a larger
error in the very early epochs
would be expected

Once a functioning model has been obtained we enter into what is
called the hyperparameter optimization or hyperparameter search phase,
and salvation from the cumbersome trial and error task is at hand,
since one can implement an automated bayesian optimization scheme.
In this thesis optuna [5] was initially implemented. The optuna frame-
work allows the developer to make use of a bayesian optimization
scheme with added benefits such as early stopping and quick pro-
duction of resulting graphs.



58 masters thesis

7.2.4 Bayesian optimization

The goal is finding a global optimization of a combination of hy-
perparameters 9 which results in the best performing model10. The9 User tuneable parameters

10 Based on the user defined objective
function

Bayesian optimization model achieves this task by iteratively build-
ing a probabilistic model of the hyperparameter space based on an
assumption of smoothness between results. The specific sampling al-
gorithm employed by Optuna is the TPE Sampler [55]. A Bayesian
optimization algorithm seeks to determine an acquisition function
that balances exploitation, which can be described as where the al-
gorithm thinks a good resulting model is likely to be and exploration,
which are areas of the hyperparameter space which have yet to be
explored figure 7.4, shows an illustrative model of the scenario.

Figure 7.4: An illstrative fig-
ure showing the principles of a
bayesian optimization algorithm,
which visualizes the acquisition
functions trade-off between ex-
ploration and exploitation. Figure
from [10]

Unfortunately the implementation of the optuna optimization model
was set up and ran earlier in the process while the model still used
the unified graph format, and since implementing the new model
structure there have not been enough time to implement and run op-
timization on the new model, or any of the sub-models, meaning the
resulting model is using user tuned hyperparameters. An example
of the graphs resulting from using optuna can be seen in figure 7.5



model architecture 59

(a) Shows the intermediate objective values at different epochs called steps in optuna

(b) The figure shows the different hyperparameter combinations tested and the resulting objective
values with a color gradient

Figure 7.5: Examples of using Op-
tuna, which unfortunately has not
been applied to the final model.

7.3 Additional architecture

The following section seeks to highlight some different methods,
which have been tested during the development phase.

7.3.1 Methods related to learning

A lot of different solutions to learning rate schedulers, optimizers,
methods for finding optimal upper or lower bounds on the learning
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rate as well as different loss functions were tested.

optimizers

For optimizers the two main optimizers which were tested where
the NAdam optimizer and the SGD with nesterov momentum. In
the final model the SGD with nesterov momentum is implemented,
both optimizers are available from the pytorch package [56].

learning rate schedulers

Several learning rate schedulers were tested amongst others; One-
cycle cyclical with an exponential decay tail, cyclical with no decay,
cyclical with linear decay of max learning rate, cyclical learning rate
with exponential decay of max learning rate, and finally the one cho-
sen a cyclical learning rate with exponential decay of both the max
and min learning rate, along with a cyclical schedule for the Nesterov
momentum which is non decaying but cycles opposite the learning
rate cycle. The final scheduler is created for this model.

This schedule/optimizer combo was preferred as it seemed more
stable than previously tested schedules had better results and was
not dependent on max number of epochs like some other schedules
with decay were. An example of the learning rate over a training run
can be seen in figure 7.3.

learning rate finder

For this model it was not managed to produce a working learning
rate finder. The idea of a learning rate finder is to, after a short train-
ing period, increase the learning rate exponentially while recording
the training loss the see how the loss initially does not move much
before then descending, hitting a plateau and then exploding, as seen
in the toy model in figure 7.6 b. However, this was never observed
when attempted on this model and the results would instead look
like what is shown in figure 7.6 a. Testing afterwards also found that
the learning rate limits found by ignoring the unexpected structure
would not necessarily be effective. The method was therefore ulti-
mately abandoned.

Loss function

Several different loss functions were tested in this thesis, the logcosh
loss

L(y, ŷ) = ∑ |log(cosh(y2 − ŷ2))| (7.6)

[52]
was considered a top contender as it was both used in the IceCube

model developed by Rasmus Ørsøe[78] and in the CNN developed
by Malte Algren[6].

Instead the final architecture uses the SmoothL1Loss[32] with mean
as the optional reduction parameter
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(a) An attempt at employing a learning rate finder, which would
after a brief warmup at a low learning rate, record the training loss
and increase the learning rate exponentiallyto determine lower
and upper bounds for the learning rate.

(b) This figure shows the expected result after employing a learn-
ing rate finder, figure from [49] which also questions the utility of
the method

Figure 7.6: Figures showing train-
ing loss as a function of learning
rateL(y, ŷ) =

1
N ∑{l1, ..., lN} (7.7)

ln =

0.5(ŷ− y)2/β, if |ŷ− y| < β

|ŷ− y| − 0.5 · β, otherwise
(7.8)

from the pytorch library [56] with a very low beta of β = 0.0005,
it should be noted that with this β value the SmoothL1Loss is al-
most equivalent to the MAE loss, however during development it
was found to be more stable. Examples of the different loss functions
tested in this thesis can be seen in figure 7.7
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Figure 7.7: An illustrative figure of
some different loss fucntions tested
in this thesis.

7.3.2 Graph normalization layers

One could consider to include graph normalization layers as they are
described in [13]. The graph normalization layer would be included
twice in each of the MLPs in the EdgeConv layers. However upon
testing it was found to be costly in terms of both computation time
and RAM to the point where an implementation with the currently
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available resources would only be barely feasible with the model
architecture used in this thesis. Moreover, the implementation did
not find any considerable performance increases immediately upon
implementation and the method was therefore left out of the final
model.



8 Results

The following section will contain all the results of the final model.
Results of earlier model versions, have not been included since only
rough plots, if at times any, were generated during the development
phase.

8.1 Performance of GNN vs ATLAS BDT in Z→ ee

This section will cover all the performance plots of the full GNN
model and how it compares the boosted decision tree model cur-
rently implemented in ATLAS

8.1.1 ReIQR.

The main result is the relative effective interquartile range measure
described in section 7.1.1.

The uncertainty of the medians are calculated as

σMed = σx̄ ·
√

2/π (8.1)

where σx̄ is the uncertainty of the mean.
And the uncertainty of the ReIQR is then calculated through er-

ror propagation assuming the eIQR for the GNN and ATLAS BDT
models to be independent.

Figure 8.1, shows the resulting peaks around 1 when plotting the
predicted energies over the truth label energies. The figure shows no
weird artifacts or skewing in neither the GNN model or the ATLAS
BDT model.

The final results of ReIQR is

ReIQR = 12.5± 3 · 10−3 (8.2)

In section 7.1.1 it was mentioned that the choice of 25th and 75th
percentile were arbitrary choices and in order to show that the selec-
tion is not a nitpicking of the best result a plot of the ReIQR as result
of the chosen percentile has been plotted in figure 8.2

Looking at Figure 8.2 We see that the GNN performances is better
across all ranges and that the mean of the full range is better than
the value posted at the 25th/75th percentile. Thus showing that there
has been no accidental cherry picking. It should be noted that when
getting extremely close to the 100th/0th percentile the GNNeIQR con-
verges at 7.4 while the ATLASeIQR converges at 1.25, however at
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Figure 8.1: Histograms of the GNN
and ATLAS BDT predictions over
the MC truth value, as well as the
cluster energy in the Accordion

that "percentile" we cannot really be considered on the peak yet. A
more reasonable range from 5-45 and 95-55 for the lower and upper
percentiles have been plotted. Excluding the low statistics area at the
very peak as well as the outlier dominated area at the base.
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Figure 8.2: Plot showing the full
range of ReIQR using different per-
centiles.
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8.1.2 Further investigative plots

The plots in the following section tries to investigate whether there
are specific regions of the data set where the GNN model performs
better or worse. Comparing it to the ATLAS BDT model in order to
see if there are regions where one model has a relative advantage
over the other. The plot shown in figure 8.3 is a common ATLAS
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Figure 8.3: |η| and energy (color)
binning of the eIQR and the ReIQR.performance plot, where not only the energy ranges but also the |η|

ranges are evaluated. The plot shows eIQR for both the GNN model
and the ATLAS model as well as the ReIQR binned in |η| for differ-
ent energy ranges. The first thing to note is the performance drop
between |η| ∼ [1.35 − 1.75] this is as expected and is due to the
lower resolution in the crack region as mentioned in section 3.3.1.
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The main thing to note about |η| are that the eIQR are very simi-
lar for both models, which lead to constant increase in performance
over the |η| range. Another interesting result is that relative perfor-
mance increase is highest for low energy events and lowest for high
energy events. In the high energy there are some |η| bins, where the
GNN performs worse than the ATLAS BDT counterparts, however
this is also the area, with the lowest statistics. The ReIQR seems to
be slightly higher with the low energy electrons. It should be noted
that the BDT uses a cut-off at |η| < 2.5 and therefore the large ReIQR
above the cut-off is not a fair evaluation point.
The plot shown in figure 8.4 does not rely on the ReIQR as a per-
formance measure, but instead a 2d heatmap or histogram of the
distance from the predictions to the truth label as a function of the
truth label energies. This plot is used to gain insights into the shape
of the prediction errors. The figure shows no obvious bias towards
over or underestimating at any energy regions. The rigid cone shape

in the ATLAS BDT are a result of the cut in |1− EBDT
ATLAS
Etruth

| and therefore
expected.

Figure 8.5 shows the eIQR and the ReIQR as a function of average
interactions per crossing which is strongly correlated with pileup.
The figure clearly shows an increase from ∼ 9% to ∼ 16% ReIQR
over the pileup range. This is expected since the GNN includes track
information which helps resolution in high pileup. As mentioned
earlier pileup increases with an increase in luminosity and it is there-
fore very beneficial for any new implementation to perform better in
these high pileup areas in preparation for run 3 and high luminosity
run 4.
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Figure 8.4: A two dimensional his-
togram (heatmap), of the GNN
or ATLAS BDT predicted energy
against the truth label energy.
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Figure 8.5: a binned plot of the
eIQR for the GNN and ATLAS BDT
models along with the ReIQR as
a function of MinMax scaled ⟨µ⟩
binned in 5 bins.
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8.1.3 Z-mass peak fitting.

Figure 8.6 shows the z mass peak fits. As explained in 7.1.2 we can
create another relative performance metric using the σCB in place of
the eIQR. From the fit values we get

⟨1−
σGNN

CB

σATLAS
CB

⟩ = 1− 2.107± 0.014
2.356± 0.015

= 10.56± 0.008 (8.3)

The increase in performance seems consistent with the ReIQR
metric although be it slightly lower. It should be mentioned that the
other fitting parameter nCB also have small influence on the width
and it is therefore required that they are similar in order for the
method to be representative. In our case there is some difference in
nCB between the two, but the performance measure is still consid-
ered valid.

(a) The figure shows the Breit-Wigner convoluted with a crystal-ball function fit of the ATLAS BDT model

(b) The figure shows the Breit-Wigner convoluted with a crystal-ball function fit of the full GNN model

Figure 8.6: The two figures shows
BW

⊗
CB fits using the energy esti-

mations from the two models. Only
truth labeled electrons have been
used in the fit.
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8.2 Comparison to CNN

Finally it should be mentioned that the CNN implementation in [6]
developed by previous students which have been mentioned through-
out the thesis managed a

ReIQRCNN = 22.4± 0.7% (8.4)

at the 75th/25th percentile in Z → ee and is therefore outper-
forming the GNN model developed in this thesis. It should be noted
that there are slight differences in the data selection steps between
the two models and the feature distributions have not been checked
against each other, the CNN model has also worked with more data
than the GNN model.

8.3 Performance of the GNN sub-models

This section will contain a brief overview of the performance of the
different sub-models of the GNN model by excluding parts of the
model shown in Figure 7.2.

The results can be seen in table 8.1

ReIQR
cell net -0.03

track net -0.79

scalar net -0.03

cell + track net Not tested
cell + scalar net +0.04

track + scalar -0.032

Full +0.125

Table 8.1: small table that shows
the performance of the different
sub-models the figures and uncer-
tainties of the results can be found
in 10.2.

It can be seen that not a single one of the networks on their own
give better performance than the ATLAS BDT, and gain in perfor-
mance stems from inclusion of both cell, track and scalar data. This
proves that the increase in performance does not stem from includ-
ing additional scalar features but rather from the inclusion of the
different data types. Unexpectedly the combination of track net with
scalar net did not see a significant improvement when compared to
using just the scalar-net.





9 Conclusion & Outlook

9.1 Z → ee performance and comparisons

The goal of this thesis was to construct a graph neural network im-
plementation for energy regression using track and calorimetry data
from the ATLAS experiment. Comparisons were made to the boosted
decision tree model currently implemented at ATLAS, and a perfor-
mance increase of

ReIQR = 12.5± 3× 10−3, (9.1)

was found using the Relative effective InterQuartile Range. A per-
formance increase of

⟨1−
σGNN

CB

σATLAS
CB

⟩ = 10.56± 0.008 (9.2)

was found using the z-peak fit method.
The weaknesses and strengths of the GNN model across different

energy and |η| ranges was found to be similar to that of the AT-
LAS BDT model. Where the model seemed to have a slightly larger
increase in performance for the low energy electrons.

The GNN developed in this thesis ended with a poorer perfor-
mance gain compared to a CNN method developed by previous stu-
dents. It should be mentioned that there are differences in the data
used, and also the GNN has not gone through any kind of effective
hyperparameter optimization process.

9.2 Analysis of the sub models

The analysis of the submodels shows that the combination of differ-
ent data types (cells, tracks and scalars) is what drives the increased
performance and not the inclusion of additional scalar features.

9.3 Final architecture

The dual graph architecture shown in figuer 7.2 was used in the final
model, as it proved to be easier to develop. It is not argued that a
functional single graph model cannot be developed, this thesis just
did not successfully do so.

The following are a description of some of the key components of
the model.
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• EdgeConv operater

The EdgeConv operater uses an MLP as the non-linear function
and the average as the aggregation function.

The edges are defined as the n nearest neighbors in euclidean
distance.

• Loss function

The SmoothL1Loss from the pytorch library [56] was used as the
loss function.

• Optimizer

• The model implements a SGD optimizer from the pytorch li-
brary [56] with Nesterov momentum.

• Schedulers

The learning rate scheduler was developed for this model and is
a cyclical learning rate with exponentially decaying upper and
lower limits.

The momentum scheduler for the Nesterov momentum uses a
cyclical momentum with fixed limits shifted a half cycle com-
pared to the learning rate scheduler.

• Activation functions

The model uses LeakyReLU as the activation function through-
out the network.

• Target

The target is the logged MC truth label energy.

• Multiplication layer

The final MLP output is multiplied by the logged cluster energy
in the accordion before the final output.

9.4 Next steps

Owing to the promising results of the model the following further
work exploring the performance of GNN for energy regression in
calorimetry and track data is encouraged. However, it should be
noted that the current leading model is the CNN, why it might be
reasonable to try and start with improving the model.

9.4.1 Further, model development

The work done in this thesis provided a working model with relative
improvement over the ATLAS BDT model, however it is suspected
that further improvement might be found through the application of
the following additions
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• A hyperparameter optimization scheme like Optuna, see section7.2.4.

• Input feature analysis and subsequent removal of irrelevant fea-
tures.

• Switching from x,y,z to η, ϕ, R, along with switch in calculation of
distance for nearest neighbor calculation.

• Reimplementation of a combined model once a better idea of the
model structure has been found.

• Usage of more data1. 1 This thesis did not use all the available
data due to time constraints, and it has
not been checked if the model still ben-
efits from more.9.4.2 Additional implementation in ATLAS

Implementation of the model in both MC and real data for z → ee
z→ µµγ and H → γγ (only MC). This could be done for a more full
comparison with other contending models.

As well as creating a universal model which can be trained for
both e&γ regression in both MC and DATA and hopefully providing
an overall improvement over models trained only on the specific data
which it tries to predict, a so-called ensemble model.

As well as implementations for classification tasks rather than re-
gression tasks2 2 requires another activation function at

the output layer, as well as another data
selection.

9.4.3 Detector output data

In this thesis we used derived features for the track instead of more
raw detector output data, the cell data is also picked after the cluster-
ing algorithm has picked the RoI. One could imagine applying more
raw detector output level data. It should be noted that the amount
of data increases drastically as we go to more raw output data. The
choice of using the derived track data was deliberate. The tracking
algorithm is quite precise and data output of the inner detector is
massive. But using the cell data before the clusters have been gath-
ered could be of some interest.

9.4.4 Expanding to other calorimetry and tracking experiments.

The model can handle both varying input sizes and also varying
numbers of features through either splitting up the graphs into sub-
models or by zero-padding. The method should therefore be able to
be quickly adopted to other experiments that use both tracking and
calorimetry data with totally different detector structures without
much changing of the base model.





10 Appendix

10.1 Distribution figures

The data distributions without the logged y-axis.
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Figure 10.1: Histograms of all the
different scalar variable distribu-
tions which are included in the fi-
nal model.
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Figure 10.2: Histograms of all the
different scalar variable distribu-
tions which are included in the
final model, as they appear after
transformations
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which are included in the final
model



appendix 79

2 1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
1e6 p_cell_x

2 1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1e6 p_cell_y

4 2 0 2 4
0

1

2

3

4

5

6

7

8 1e6 p_cell_z

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

1e7 p_cell_energy

0 2 4 6 8 10 12 14
0

1

2

3

4

5

1e6 p_cell_dR

0 10 20 30 40 50 60
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 1e7 p_cell_area

150 100 50 0 50 100
0

1

2

3

4

5

6

1e7 p_cell_time

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.4: Histograms of all the
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which are included in the final
model, as they appear after trans-
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Figure 10.5: Histograms of all the
different track variable distribu-
tions which are included in the fi-
nal model.
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Figure 10.6: Histograms of all the
different track variable distribu-
tions which are included in the fi-
nal model.
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Figure 10.7: Histograms of the
combined track distributions for
both tracks and probe tracks as
they appear in the graphs, that is
after transformations.



appendix 83

10.2 Sub-model figures

The results from the testing of the sub-models.
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Figure 10.8: Histogram of the GNN
and ATLAS BDT predictions over
the MC truth value for the cell net
sub-model.
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Figure 10.10: Histogram of the
GNN and ATLAS BDT predictions
over the MC truth value for the
scalar net sub-model.
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