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Abstract

In this thesis we want to find a Boltzmann equation describing the kinematics in the surface states
of a topological insulator. We start by using a variational method to get a semi-classical Boltzmann
equation, which includes an anomalous velocity term, caused by a non-vanishing Berry curvature. Having
established the Boltzmann equation we showed that we could get the anomalous Hall effect by solving
the equation in a special chase. With a phenomenological result at hand we turned to the challenge
of deriving the same result form the non-equilibrium approach of the Keldysh formalism. The main
problem it posed was the non-trivial matrix structure of the Hamiltonian of a topological insulator, after
we neglect collision terms. These difficulties were resolved by perturbatively diagonalizing the inverse
Green’s function, introducing minimal coupling of the Berry connection to both space and momentum.
The minimal coupling eventually lead to a quantum Boltzmann equation in each band, with different
Berry curvature terms in the equation. Finally we integrate, with respect to the energy yielding a
renormalized semi-classical Boltzmann equation, which could be restricted to the same limit in which we
calculated the anomalous Hall effect.
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Chapter 1

Introduction

1.1 Electronic Transport in Topological Insulators

In recent years a whole new type of conductive materials has been discovered; the so called topological
insulators. Topological insulators are, in the ideal case a material which has the bulk properties of an
insulator, meaning a large energy gap above the last full band, in its interior, while on their surface the
gap closes, giving rise to conducting surface states. A sketch for the band structure of such a system is
shown in figure 1.1. Theoretical predictions of materials with such a band structure have a long history.

Figure 1.1: A sketch of the band structure of a topological insulator: On the first axis we have momentum
and on the second axis we have energy, the stippled line is the chemical potential denoted by µ. The two
boxes represent the bulk bands where the grey filling means that the band is full . Lastly, the red lines are
the so called surface states, with a typical Dirac-cone.

They where first predicted in 1987 by Pankratov, Pakhomov and Volkov in Mercury-Telluride MgTe
compounds, using super-symmetry, to show that they have symmetry protected surface states. However
the fact that these surface states of Mercury-Telluride are indeed a topological property was not empha-
sized until Bernevig, Hughes and Zhang in 2006[1] rediscovered the result of Pankratov, Pakhomov and
Volkov using a different approach. The first experimental observation of the surface sates in HgTe was
done by Köning et. al. [4] ,in 2007. The same year Fu and Kane[2] found that some bismuth compounds
where promising candidates to be strong 3-dimensional topological insulators. That a hand full of bis-
muth compounds in fact had the supposed surface band structure was observed in the following years
using ARPES1 on such samples[5]. While band structure measurements were obtained quit rapidly after
their prediction, measurements of the transport in the surface sates has turned out to be much harder.
The reason is that due to impurities in the bulk, the bulk also becomes conducting, hence it is difficult

1Angle Resolved PhotoEmission Spectroscopy
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to get an isolated measurement of the surface current. Recently, due to refinement in crystal growth,
Cao et. al.[17] have been able to measure and control surfaces currents in Bismuth-Telluride-Selenide
(Bi2Te2Se). Measurements like these raises the need for a theoretical prediction or understanding of the
transport phenomena of the surface of a topological insulator.

Let us motivate what new transport phenomena one would expect on the surface of a topological insu-
lator, compared to that of a normal 2 dimensional-Fermi liquid. In the bismuth compounds the electrons
in the bands are prone to what is called spin-momentum locking, meaning that a specific momentum
direction is locked to a specific spin direction. With this locking in mind, let us think what that might
imply to a Boltzmann equation with an external force , like an electric field. The effect of an external
electric field is a change in momentum of the electrons without changing its spin, but as momentum an
spin are locked to each other one would imagine that electrons will changes their velocity to compensate
for the change in momentum. Such corrections to the velocity is for historical reasons referred to as
the anomalous velocity. It can be related to the Berry curvature. It turns out that if this effect should
have a measurable effect on the electric current the band crossing of the surface sates have to be lifted
by a Zeeman splitting which also tilts the spin slightly. The spin structure in both cases is sketched in
figure1.2.

With the intuition that transport on the surface of a topological insulator is richer than in conven-

Figure 1.2: A sketch of the band structure and the spin structure of different energy contours. The circles
are energy contours and should be thought of as being confined to the xy-plain in momentum space. The
arrows lie in the plane for the none split chase(left side), but they rotate in different directions in the upper
and lower band. In the split case (right side) the arrows have a projection along the z axis. In the lower
band they point up, as the magnetic field is thought of as being in that direction, and in the upper band
they point downwards. Note that for high momenta, the effect of the magnetic field is suppressed.
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tional metals, and that this richness originates form the spin structure of the system, one can conclude
that it is intrinsically a two band effect. This means that we can not hope to achieve a realistic result from
standard one band calculations, as reviewed by Rammer and Smith[10]. So, in order to make the same
kind of systematic derivation as Rammer and Smith, we need to consider a multi-band Keldysh-Dyson
equation. Such equations have been considered before in the chase of superconductors [10] and in the case
of semi-conductors by Haug and Jauho [27]. Since we are mainly interested in the electric properties at
half filling, we can avoid some of the difficulties by projecting on to the bands, however this an approach
need to be carry out carefully so one still active a systematic development of the resulting Boltzmann
equation. Methods to derive such a band projecting equation form the Keldysh-Dyson equation have
been studied for the past decade, first by Shindou and Balents in 2006[6] and 2008[7], later by Wong
and Tserkovnyak in 2011[8] and finally Wickles and Belzing in 2013[9]. We would like to make it more
accessible and establish the semi-classical limit with renormalization effects.

As the Keldysh approach to derive the Boltzmann equation is quite technical, results form a more
phenomenological treatment have existed for some time. Such work was started in the modern context of
Berry curvature by Change and Niu in 1996[14] and refined by Sundaram and Niu in 1999[13], however
the anomalous term of the velocity had been noted by Karplus and Luttinger as early as 1954[12], in the
context of ferromagnetics. The main problem of the method used by Niu and collaborators is that it can
only capture effect allowed by the chosen wave function and it has no way of including renormalization
effects. None the less the method gives a valuable intuition of the dynamics of the system as well as
symmetries which become rather obvious in the calculatios. We will work through this method in order
to get some insight before moving on to the previously mentioned Keldysh Derivation.
With this short introduction concerning the development of transport in systems of non-trivial topology,
we will now give an outline of the structure of the thesis. The rest of the present chapter will concern the
definition of the Berry connection and the Berry curvature as thy are used extensively in the calculations
to come. An introduction the toy model we have used to perform simple calculations, along a brief
comment on how to extend the definition of the Berry connection to a two band-calculation. The second
chapter contains a phenomenological derivation of a Boltzmann equation for a multi-level system where
the driving terms will be found through a variational method. The third chapter contains the full non-
equilibrium quantum derivation of first a quantum Boltzmann equation, and then after an integrating
out the energies, a semi-classical Boltzmann equation. The final chapter is reserved for summery and
outlook. Let us turn to the definition of the Berry connection and the Berry curvature.

1.2 Definition of the Berry Connection and the Berry Curvature

As the concept of the Berry connection and the Berry curvature is used extensively throughout thesis,
we will give the definitions on which we will rely on.

The Berry connection and the Berry curvature can be defined2 for any quantum mechanical system
that depends on a continuous parameter. In some systems it gives rise to new physical phenomena, such
as the anomalous Hall effect. In this thesis however we will not discuss when the Berry connection gives
rise to such new physical effects, for treatment on that see Bernevig[18]. For a Hamiltonian H that
depends on a set of continues parameters R eigenstates are defined as

H(R) |n(R)〉 = εn(R) |n(R)〉 : (1.2.1)

where the n refers to some band, spin or an other quantum number3. From here the Berry connection is
defined as

An(R) = i 〈n(R)| ∂R |n(R)〉 , (1.2.2)

where ∂R ≡ ∂
∂R . We note that the Berry connection is hermitian due to normalization of the eigenstates.

This can be shown by

∂R 〈n(R) |n(R) 〉 = (∂R 〈n(R)|) |n(R)〉+ 〈n(R)| ∂R |n(R)〉 = 0. (1.2.3)

2For a more thoroughly discussion of Berry curvature see [11]
3We will use the term band and spin synonymous more ore less through the thesis as we are only considering non-

degenerate eigenstate for the Hamiltonian, hence different spin just give raise to the double amount of bands.
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Hence there exist the following relation:

〈n(R)| ∂R |n(R)〉 = − (∂R 〈n(R)|) |n(R)〉 . (1.2.4)

So now taking the hermitian conjugate of An(R) as it is defined in (1.2.2) gives

(An(R))
†

= −i (∂R 〈n(R)|) |n(R)〉 = i 〈n(R)| ∂R |n(R)〉 = An(R). (1.2.5)

Having showed that the Berry connection is hermitian, lets continue with noting that the Berry connection
also transforms under gauge transformation of states. Transforming the states as

|n(R)〉 → eiξ(R) |n(R)〉 (1.2.6)

transforms the Berry connection as

An(R)→ An(R)− ∂Rξ(R). (1.2.7)

So the Berry connection is not a gauge invariant quantity in itself but it behaves like the electromagnetic
vector potential. In the case of the electromagnetic vector potential we typically define the magnetic field
in order to restore gauge invariance, and for the Berry connection we can analogously define the Berry
curvature Ωn(R) is defined as

Ωnij(R) = ∂RiAnj (R)− ∂RjAni (R). (1.2.8)

Which in 3-dimensions can be defined as the curl of the Berry connection

Ωn(R) = ∂R ×An(R). (1.2.9)

In the following section we will calculate the Berry curvature for a simple model:

1.3 The Rashba Hamiltonian with Zeeman-Splitting

One of the simplest examples of a model with none-trivial Berry curvature is the Rashba Hamiltonian
model with Zeemann splitting. The Rashba Hamiltonian does in fact describe the low energy physic of
surface states in bismuth selenide, and the Zeemann splitting can of course be induced by an external
magnetic field. The Hamiltonian takes the form:

H =
∑
k,σ′σ

c†kσ′hσ′σ(k)ckσ =
∑
k

(c†k↑ c
†
k↓)

(
∆ vf (kx − iky)

vf (kx + iky) −∆

)(
ck↑
ck↓

)
(1.3.1)

where vf is the Fermi velocity and ∆ is the Zeeman splitting. The energies for each point in momentum
are

ε± = ±
√
v2
f

(
k2
x + k2

y

)
+ ∆2. (1.3.2)

The normalized eigenvectors can be written as:

ψ+ =
1√
2

(
u+e

−iθ

u−

)
, (1.3.3)

ψ− =
1√
2

(
u−e

−iθ

−u+

)
, (1.3.4)

where u± is

u± =

√√√√1± ∆√
v2
f

(
k2
x + k2

y

)
+ ∆2

, (1.3.5)
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with θ = arctan(
ky
kx

). The Berry connection in each band can be calculated to be

A±(k) =
1

2
(
k2
x + k2

y

)
1± ∆√

v2
f

(
k2
x + k2

y

)
+ ∆2

(−ky
kx

)
. (1.3.6)

Now, as we are considering a two-dimensional model, only the z-component of the Berry curvature is
finite and is:

Ω+(k) = −
v2
f∆

2(∆2 + v2
f

(
k2
x + k2

y

)
)3/2

k̂ (1.3.7)

Ω−(k) = +
v2
f∆

2(∆2 + v2
f

(
k2
x + k2

y

)
)3/2

k̂ (1.3.8)

Note that the sum of the Berry curvatures is zero, which a general property of Berry curvatures[11, 18]. In
the final section of this chapter we will discuss the unitary transformation that diagonalized Hamiltonians
like the one in equation (1.3.1).

1.4 Unitary transformation

As advertised we will here discuss the unitary transformation that diagonalizes a Hamiltonian given in
momentum space as

H =
∑
k

c†k hkck, (1.4.1)

where h is a general finite dimensional hermitian matrix that depends on the continuous momentum k and
has non-degenerate spectrum of every value of k. ck is a vector of annihilation operators which annihilate
a state with momentum k value in the discreet space of the Hamilton. Now as it often convenient to have
the Hamiltonian in its diagonal basis we have to find the its eigenvectors. Such eigenvectors called ψ(i)

ψ(i)(k) = (u(i)1(k), u(i)2(k), ..., u(i)n(k)), (1.4.2)

where u(i)j(k) is the jth component of the ith eigenvector which in general will depend on momentum
and can be found using the eigenvector equation. After obtaining all the eigenvectors and normalizing
them properly, the unitary transformation that diagonalizes the Hamiltonian is given as

U(k) =
(
ψ(1)(k), ψ(2)(k), ..., ψ(n)(k)

)
, (1.4.3)

along with its hermitian conjugate,

U†(k) =


ψ†(1)(k)

ψ†(2)(k)
...

ψ†(n)(k)

 . (1.4.4)

Now lets us look at the derivative of U† U with respect to momentum

∂k 1 = ∂k

(
U† U

)
=
(
∂k U

†
)
U + U†

(
∂k U

)
. (1.4.5)

Obvious this implies the following identity

U†
(
∂k U

)
= −

(
∂k U

†
)
U, (1.4.6)
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but it also suggests the following generalization of the Berry connection or equation (1.2.2)

A(k) = i U†
(
∂k U

)
= −i

(
∂k U

†
)
U =

(
A(k)

)†
. (1.4.7)

First we see that A is Hermitian. A could be called the matrix Berry connection, however we will just
call it the Berry connection. For the two level system, the Berry connection can formally be written as

A =

(
u†(1)1∂ku(1)1 + u†(1)2∂ku(1)2 u†(1)1∂ku(2)1 + u†(1)2∂ku(2)2

u†(2)1∂ku(1)1 + u†(2)2∂ku(1)2 u†(2)2∂ku(2)2 + u†(2)1∂ku(2)1

)
. (1.4.8)

We note that the diagonal entries are the Berry connection as defined in equation (1.2.2). The off diagonal
entries will only play a minor role an their physical interpretation are not clear. With this remark we
conclude the introduction. In the next chapter we will derive a semi-classical transport equation form
phase space arguments and the time dependent variational principle of quantum mechanics.
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Chapter 2

Semi-classical Anomalous Transport

This chapter is centered on how to get the anomalous Hall response from semi-classical considerations.
We will dissus the steps in the process of constructing a semi-classical Boltzmann equation, how to solve
it in the cases where a anomalous velocity is perpendicular to the electric field, then use that solution to
obtain the current density along with the conductivity.

2.1 Phenomenological Derivation of the Boltzmann Equation

The Boltzmann equation was originally developed to study transport in thin classical gases by Boltzmann
in 1872, however it has also found wide application in transport phenomena of metals and semi-conductors.
That electrons in metals can be treated as a non-interacting gas is not obvious, but due to the Fermi liquid
picture provided by Landau in 1956 this is well justified. For completeness we give simple derivation of
the Boltzmann equation from phase-space analysis. This is to set the basis for a further discussion of the
Boltzmann equation. For a more detailed discussion of how to obtain the Boltzmann equation and its
semi-classical use see Smith and Højgaard Jensen[20].

Lets consider the particle number dN(t,1) in a small region around a point called (1) or (r,k) in
phase-space. We then can define a non-equilibrium distribution function f(t,1) as

dN(r,k, t) = f(r,k, t)
dr dk

8π3
. (2.1.1)

The continuity equation for f is obtained by considering the distribution function f at two infinitesimal
separated times t and t+ dt

f(r,k, t)dr dk + Icolldr dk dt = f(r′,k′, t+ dt)dr′dk′, (2.1.2)

where Icoll is the collision integral and is included to handle scattering effects the colloquial, interactions ,
etc.. The collision integarl will depend on the distribution function along with some explicit dependence on
coordinates and time. One imported physical constraint on the collision integral is that its k integration
must be zero to conserve particle number1[27]. The evolution of the particles in phase-space has be
sketched in figure 2.1. The primed and unprimed coordinates are connected by 1′ = 1 + 1̇dt. Due
Liouville’s theorem[25] who states that the phase-space volume does not change, hence dr′dk′ = dr dk.
Applying this gives

f(r,k, t) + Icolldt = f(r + ṙdt,k + k̇dt, t+ dt). (2.1.3)

Now Taylor expanding the right side to linear order

f(r,k, t) + Icolldt = f(r,k, t) +
d

dt
f(r,k, t)dt. (2.1.4)

1Note that in the case of a multi-band system, this is no longer true as scattering to another band is possible, while
keeping the positions
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Figure 2.1: An sketched of phase-space evolution of a bunch of particles. Here the effect of the collision
integral is illustrated by particles scattering in and out, note the thy only scatter to different k values as
discontinuous parts in the space coordinate would violate causality.

Rearranging the terms, expanding the total derivative and suppressing the arguments in the distribution
function, we finally arrive at the Boltzmann equation

Icoll =
∂

∂t
f + ṙ · ∂

∂r
f + k̇ · ∂

∂k
f. (2.1.5)

By simple continuity arguments we where able to establish the Boltzmann equation, however we will need
the equation of motion for r and k. This will be done in the following section.

2.2 Semi-Classical Equation of Motion

In section 2.1 we derived the Boltzmann equation from phase-space consideration whicho has the form

∂

∂t
f + ṙ · ∂

∂r
f + k̇ · ∂

∂k
f = Icoll. (2.2.1)

However the phase-space consideration gives no equation of motion for r and k. So one has to turn to
the specific physical problem at hand. For example if we were to consider a charged classical gas we
would have simply identified k̇ with the Lorentz force and ṙ with the velocity. However as we in general
want to consider electrons with non-trivial spin structures a classical approach does not capture effects
related to these degrees for freedom. Hence we have to use a method where we can include such quantum
mechanical effects, but that raises the question on how to make sense of both well-defined position and
momentum simultaneous with out violating the uncertainty principle. The answer to which would be
some wave packet as they can be centred around point in both space and momentum, but at the same
time satisfy the uncertainty principle. So let us restate the Boltzmann equation in terms of such centre
of mass wave packet coordinates and denote them as rc and kc. We then find the equation of motion
of rc and kc which is usually done through the time dependent variational principle as discussed by Niu
and collaborators [13, 14]. To do such calculation we will need to define the time dependent variational
principle, which will be the subject of the next section.

2.2.1 The Time Dependent Variational Principle in Quantum Mechanics

In this section we will go through the arguments leading to the time dependent variational principle of
quantum mechanics, which is based on the idea that by calculating the Lagrangian of quantum mechanics
in a Hilbert space restricted by some parameters and do variational calculation one can obtain the
equations of motion of those parameters.
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Our starting point is Kramer and Saraceno[23] who define the following action for quantum mechanics

S =

∫ t2

t1

dtL(ψ, ψ̄; t), (2.2.2)

where the Lagrangian L(ψ, ψ̄) is:

L(ψ, ψ̄; t) =

〈
ψ(t)

∣∣∣∣i ∂∂t −H
∣∣∣∣ψ(t)

〉
, (2.2.3)

〈ψ(t) | and |ψ(t)〉 have to be normalized at all times. Now let us show this is consistent with the
Schrödinger equation. First note that 〈ψ(t) | and |ψ(t)〉 are treated as they where independent, and
think of them as fields 2we vary the action in equation (2.2.2).

δS =

∫ t2

t1

dtδ

(〈
ψ(t)

∣∣∣∣i ∂∂t −H
∣∣∣∣ψ(t)

〉)
(2.2.4)

=

∫ t2

t1

dt (i 〈δψ(t) |∂tψ(t)〉 + i 〈ψ(t) |∂tδψ(t)〉 − 〈δψ(t) |H|ψ(t)〉 − 〈ψ(t) |H| δψ(t)〉)

=

∫ t2

t1

dt (i 〈δψ(t) |∂tψ(t)〉 − i 〈∂tψ(t)| δψ(t)〉 − 〈δψ(t) |H|ψ(t)〉 − 〈ψ(t) |H| δψ(t)〉) ,

where in the second equality we used partial integration. Now as |ψ(t)〉 and 〈ψ(t) | where treated as
they were independent and | δψ(t)〉 and 〈δψ(t) | can vary arbitrary except at the end points, the only
way to get the variation of the action S to be zero, hence using Hamilton’s principlem, is if the following
two equation is zero

i
∂

∂t
|ψ(t)〉 −H |ψ(t)〉 = 0 (2.2.5)

−〈ψ(t) | i ∂
∂t
− 〈ψ(t) |H = 0, (2.2.6)

which is precisely the Schrödinger equation and its complex conjugate.
An equivalent, more transparent way to obtain the Schrödinger equation is to expand the wave

function in a complete basis of eigenstates of the Hamiltonian and then do the variation with respect to
the coefficient, hence complex numbers. First step is to rewrite the Lagrangian in equation (2.2.3) by
expanding it in such a basis:

L(ψ, ψ̄; t) = L(c∗1, ..., c
∗
∞, c1, ..., c∞) =

∑
n,m

c∗m(t)

〈
m

∣∣∣∣i ∂∂t −H
∣∣∣∣n〉 cn(t) (2.2.7)

=
∑
n,m

ic∗m(t) 〈m | ṅ〉 cn(t) + ic∗m(t) 〈m | n〉 ċn(t)− c∗m(t) 〈m |H|n〉 cn(t)

=
∑
n,m

ic∗m(t) 〈m | ṅ〉 cn(t) + ic∗m(t)δmnċn(t)− c∗m(t)Hmncn(t).

2Think of them being projected on to the position basis, if varying states in a Hilbert space seems strange.

11



Varying the action using this Lagrangian leads to

δS =

∫ t2

t1

dt δ

(∑
n,m

ic∗m(t) 〈m | ṅ〉 cn(t) + ic∗m(t)δmnċn(t)− c∗m(t)Hmncn(t)

)
(2.2.8)

=

∫ t2

t1

dt
∑
n,m

(iδc∗m(t) 〈m | ṅ〉 cn(t) + ic∗m(t) 〈m | ṅ〉 δcn(t) + iδc∗m(t)δmnċn(t)

+ ic∗m(t)δmnδċn(t)− δc∗m(t)Hmncn(t)− c∗m(t)Hmnδcn(t))

=

∫ t2

t1

dt
∑
n,m

i (δc∗m(t) 〈m | ṅ〉 cn(t)− ic∗m(t) 〈ṁ | n〉 δcn(t) + iδc∗m(t)δmnċn(t)

− iċ∗m(t)δmnδcn(t)− δc∗m(t)Hmncn(t)− c∗m(t)Hmnδcn(t)) ,

where we in the third equality we used partial integration on the fourth term. As c∗m and cn are treated
as being independent the following two equations have to be zero:∑

n

i 〈m | ṅ〉 cn(t) + iδmnċn(t)−Hmncn(t) = 0, (2.2.9)∑
m

−ic∗m(t) 〈ṁ | n〉 − iċ∗m(t)δmn − c∗m(t)Hmn = 0, (2.2.10)

which is consistent with the result in equation (2.2.5) by making the same expansion on a complete set
and taking the inner product with a specific sate from the same complete set. This gives explicitly the
insight that one have to vary infinitely many parameters to get the Schrödinger equation, at least for a
Hamiltonian that depends on a continues variable.
Now having shown that the variational principal can be used to derive quantum mechanics in general,
we turn to the problem of getting equations of motion for parameters for a specific problem. These
parameters can in principal be any ting, but if the reason for doing variational calculations is to get some
semi-classical equations for motion, the parameter should in this case corespondet to classical variables.
The process of getting an equation of motion for some parameter can be divided in to three steps:

Step

I Choose a trial wave function , written as ψ(x1(t), x2(t), ..., xn(t)), depending on a finite number
of time dependent parameters and with no other time dependences. The choice should be based
on some physical reasoning, for example if we have a parameter that corresponds to position, the
expectation value of the position operator should give that parameter.

II Calculate the Lagrangian given in equation (2.2.3) on the basis of the wave function chosen in I.
Note that the Lagrangian will be a functional of (x1(t), x2(t), ..., xn(t)) and (ẋ1(t), ẋ2(t), ..., ẋn(t)).

III Use the Euler-Lagrange equations to get equations of motion for (x1(t), x2(t), ..., xn(t)). In general
this will yield n, which is the number of parameters, coupled differential equations.

As pointed out in Step I, there is no formal way to choose the trial wave function. It is therefore up to
intuition, symmetry considerations and that one should be able to calculate the Lagrangian in a closed
form to choose the wave function. The arbitrariness of the trial wave function is also at the root of the
problems with this method as there is no way to quantify how good the results from this method are.
One should also note that this treatment relies heavily on Fermi liquid theory as we here relay on a one
particle calculation. Having introduced the variational principle we will now use it in the context of a
quantum system with a non-trivial spin structure.

2.2.2 Determination of ṙ and ṗ through Variational Principle

The following derivation is based on the book by Marder[24], but works along the same lines that was
first made by Niu and collaborators [13, 14]. However we have simplified it in some respect to make it
more compehedable and clarified some of the more involved steps.
In this subsection we will derive equations of motion for r and p though the method developed in
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subsection 2.2.1. To make the process as transparent as possible the derivation will be carried out
through the three steps introduced above.

Step I: The Trial Wave Function

Defining a trial wave function for the problem of transport is done through the following consideration.
We first define a wave packet centred at a point in space. The form of the wave packet could for an
example be Gaussian. The packet should have a width much larger than the atomic spacing but still
much smaller that variation in the external fields. This also means that one can only use a small range of
momentum space compared to the size of the Brillouin zone making the momentum distribution sharp.
We have made a construction that enabled us to talk about a coordinates in both momentum space
and real space at the same time in the sense of center of mass coordinates, called rc and kc. It is
important to note that rc and kc should not be considered variables, rather parameters with an explicit
time dependence. The time dependence, however will be suppressed in the notation. With this in mind
we define a wave packet Wrckc(r):

〈 r |Wrckc 〉 = Wrckc(r) =
1√
V

∑
k

wkkce
−iχ(r)−ik·rcψk(r), (2.2.11)

where wkkc are the amplitudes of the Fourier transform, where the subscript specifies that the weight
factors depends one the centre of mass coordinate, V is the volume of the system and ψk(r) is given as:

ψk(r) = uσ,k,ne
ik·r. (2.2.12)

Where uσ,k,n is a normalized eigenspinor of the Hamiltonian of the problem studied, the σ is the spin
index and n is the band 3, lastly χ(r) is a local gauge phase. The normalization of Wrckc(r) requires

1 = 〈Wrckc |Wrckc〉 (2.2.13)

=
1

V
∑
kk′

∫
drei(k

′−k)·rcw∗k′kcwkkcψ
∗
k′(r)ψk(r)

=
∑
kk′

δk′kw
∗
k′kcwkkc .

where we use that the eigenspinors are orthonormal and the exponential function gives a delta function
when integrated. This gives the constrain on wkkc :∑

k

|wkkc |
2

= 1 (2.2.14)

Now we require Wrckc(r) to be centered around kc even when electromagnetic fields are present, where
the kinetic momentum operator is given as p̂ = −i∂r + eA(r). So to get an equation for χ(r) let us
calculate the expectation value of −i∂r + eA(r) and require that it is equal to kc

kc = 〈Wrckc | − i∂r + eA(r) |Wrckc〉 (2.2.15)

=
1

V

∫
dr
∑
k,k′

w∗k′kce
iχ(r)+ik′·rc−ik·ru∗σ,k′,n (−i∂r + eA(r))wkkce

−iχ(r)−ik·rc+ik·ruσ,k,n

=
1

V

∫
dr
∑
k,k′

w∗k′kce
ik′·rc−ik·ru∗σ,k′,n (k + eA(r)− [∂rχ(r)])wkkce

−ik·rc+ik·ruσ,k,n

= kc +
1

V

∫
dr
∑
k,k′

w∗k′kce
ik′·rc−ik·ru∗σ,k′,n (eA(r)− [∂rχ(r)])wkkce

−ik·rc+ik·ruσ,k,n.

3Marder for good reasons considers uk,n to be dependent periodical (Bloch modulations) on space which gives a term
in the final equation for the rc concerning magnetisation of the magnetic unit cell.
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Now we see that if

eA(r) = ∂rχ(r), (2.2.16)

The expatiation value of the momentum operator is kc. Solving equation (2.2.16) for χ one gets

χ(r) = e

∫ r

A(r′)dr, (2.2.17)

which is know as the Aharonov-Bohm phase. The Aharonov-Bohm phase can be simplified in our case,
because the wave packet are required to be centered around rc and the magnetic fields are required to be
small. Therefor the vector potential can be viewed as constant in a region around rc comparable to the
spread of the wave pack, which means that the Aharonov-Bohm phase can be approximate as eA(rc) · r.
This means that our wave function should take on the form

〈r |Wrckc 〉 = Wrckc(r) =
1√
V

∑
k

wkkce
−ieA(rc)·r−ik·rcψk(r). (2.2.18)

However we still need to make sure that rc is the expectation value of the position operator r. It turns
out, in the presence of spinors that depends non-trivially on momentum, one has to choose the amplitudes
wkkc carefully, if the wave pack is to be centered around rc. To show this we will simply calculate the
expectation value of the position operator r and observe which constraints on wkkc this will lead to, if
the expectation value is required to be rc:

rc = 〈Wrckc | r |Wrckc〉 =
1

N

∑
kk′

∫
drei(k

′−k)·rcw∗k′kcwkkcψ
∗
k′(r)ψk(r)r (2.2.19)

=
1

N

∑
kk′

∫
drei(k

′−k)·(rc−r)w∗k′kcwkkcu
∗
σ,k′,nuσ,k,nr

=
1

N

∑
kk′

∫
drw∗k′kcwkkcu

∗
σ,k′,nuσk,n

(
∂

∂ik
ei(k

′−k)·(rc−r) + rce
i(k′−k)·(rc−r)

)
= rc −

1

N

∑
kk′

∫
drw∗k′kcu

∗
σ,k′,ne

i(k′−k)·(rc−r) ∂

∂ik
[wkkcuσ,k,n]

= rc −
∑
kk′

w∗k′kcu
∗
σ,k′,nδk,k′

∂

∂ik
[wkkcuσ,k,n]

= rc −
∑
k

|wkkc |
2
u∗σ,k,n

1

wkkc

∂

∂ik
[wkkcuσ,k,n]

= rc +
∑
k

|wkkc |
2

(
iu∗σ,k,n

∂

∂k
uσ,k,n −

∂

∂ik
lnwkkc

)
(2.2.20)

We see that the momentum sum must vanish. In order for that to happen we can assume a certain
form for the amplitudes wkkc . First the norm should only depend one the relative coordinate written as

|wk−kc |, more over we will also need that |wk−kc |
2

is sarply peaked at kc, where sarply peaked is used in
the senses that we will treat it as a delta function for the sake of calculations. which meas that |wk−kc |
also have to has a maximum there. Lastly the phase of wkkc is useful to specified as

wkkc = |wk−kc | ei(k−kc)·An(kc). (2.2.21)
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Where An(kc) is a vector function to be specified later. Evaluating the last term in the sum in the last
line of equation (2.2.20):∑

k

|wk−kc |
2 ∂

∂ik
lnwkkc =

∑
k

|wk−kc |
2 ∂

∂ik
(ln |wk−kc |+ i(k− kc) ·An(kc)) (2.2.22)

=
∑
k

|wk−kc |
2

(
1

|wk−kc |
∂

∂ik
|wk−kc |+ An(kc) + (k− kc)

∂

∂k
An(kc)

)
= An(kc),

where we in the last equality used that |wk−kc | does only depend on the relative coordinate k−kc and is
peaked at kc. We now observe that if the expectation value of the position operator is to be rc, An(kc)
has to be

An(kc) =
∑
k

|wkkc |
2
iu∗σ,k,n

∂

∂k
uσ,k,n = iu∗σ,k,n

∂

∂k
uσ,k,n

∣∣∣∣
k=kc

. (2.2.23)

Now An can be recognized as the Berry curvature as it is of the form given in equation (1.2.2). We have
now defined how a wave function centered in phase space around (rc,kc) looks:

〈r |Wrckc 〉 =
1√
V

∑
k

|wk−kc | ei(k−kc)·An(kc)−ieA(rc)·r−ik·rcψk(r) (2.2.24)

Note that the Berry connection enters in the same way as the vector potential, namely as Berry-
”Aharonov-Bohm phase”, but it depends on momentum instead of position hence we have a gauge phase
which is local in phase space instead of real space

We have now defined a wave function |Wrckc〉 that according to our intuition captures the important
physical concepts of the type of systems we want to study, and that has a sufficiently simple form with
respect to our goal of obtaining a closed expression of the Lagrangian. With a trial wave function at
hand we can proceed to the next step.

Step II. Calculate the Lagrangian

Now we have to calculate the Lagrangian defined in (2.2.3), using the trail wave function found in the
previous step. Note that this calculation takes place in the Hilbert space restricted by the two parameters
rc and kc and the form of the wave function, and will there for only yield result that are achievable within
this subspace. The Lagrangian in our specific case including the vector potential and the electric potential
for including external fields is

L = 〈Wrckc | i~
∂

∂t
|Wrckc〉 − 〈Wrckc |H − eϕ(r) |Wrckc〉 , (2.2.25)

H =
1

2m
[p+ eA]

2
,

p2

2m
ψk = ξkψk,

where ϕ is the electric potential. Note that we have take an explicit form of the Hamiltonian, the
quadratic kinetic energy to simplify the calculations. However in some case one might want to consider
other dispersions. The only change to the result will then be the terms derived from the Hamiltonian.

We start by treating the partial time derivative. Here we can use the explicit time dependence of kc
and rc to expand it as

i
∂

∂t
= iṙc ·

∂

∂rc
+ ik̇c ·

∂

∂kc
. (2.2.26)
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Let us continue by evaluating the two resulting terms. We start with the ṙc term:

〈Wrckc |i~ṙc ·
∂

∂rc
|Wrckc〉 (2.2.27)

=
i~
V

∫
dr
∑
k,k′

w∗k′kce
ieA(rc)·r+ik′·rcψ∗k′(r)ṙc ·

∂

∂rc
wkkce

−ieA(rc)·r−ik·rcψk(r)

=
i~
V

∫
dr
∑
k,k′

w∗k′kcwkkce
i(k′−k)rcψ∗kc(r)ψkc(r)ṙc,i ·

(
−ie ∂

∂rc,i
(rjA(rc)j)− iki

)

= erj

(
ṙi
∂

∂ri

)
A(rc)j +

∑
k

w∗kkcwkkc (ṙc,iki)

= erc ·
(

ṙc ·
∂

∂rc

)
A(rc) + ṙc · kc,

where we have use Einstein’s summing convention. The term proportional to the vector potential can be
rewriting using symmetric gauge as A(rc) = −rc ×B/2.

erc ·
(

ṙc ·
∂

∂rc

)
A(rc) =

e

2
rc ·

(
B×

(
ṙc ·

∂

∂rc

)
rc

)
= −eA · ṙc (2.2.28)

We proceed with the k̇c term:

〈Wrckc | ik̇c ·
∂

∂kc
|Wrckc〉 =

i~
V

∫
dr
∑
k,k′

w∗k′kce
−ieA(rc)·r−ik′·rcψ∗kc(r)k̇c ·

∂

∂kc
wkkce

−ieA(rc)·r−ik·rcψkc(r)

(2.2.29)

=
i

V

∫
dr
∑
k,k′

w∗k′kce
i(k−k′)rcψ∗kc(r)ψkc(r)k̇c ·

∂

∂kc
wkkc

= i
∑
k

|wk−kc |
2 1

|wk−kc |
k̇c ·

∂

∂kc
wkkc

= i
∑
k

|wk−kc |
2 1

|wk−kc |
ei(k−kc)·An(kc)k̇c ·

[
∂

∂kc
|wk−kc |

+ i |wk−kc |
(
−An(kc) + (k− kc)

∂

∂kc
An(kc)

)]
= k̇c ·An(kc),

where we have used that |wk−kc |
2

is delta function i momentum in order to preform the last integration.
Hence we have now determined the time derivative term in the Lagrangian, which is:

〈Wrckc | i
∂

∂t
|Wrckc〉 = −eA · ṙc + ṙc · kc + k̇c · An(kc) (2.2.30)

Now we turn our attention toward the Hamiltonian term in the Lagrangian. For this calculation one can
reduce the trouble by first noting that the following equation holds for arbitrary polynomial f

f(− i∂r + eA(r))e−ieA(rc)·r−ik·rcψk(r) (2.2.31)

= e−ieA(rc)·r−ik·rceik·rf (−i∂r + k + e [+A(r)−A(rc)]) uk,n

From this relation we see that

〈Wrckc |H − eϕ(r) |Wrckc〉 =
i

V

∫
dr
∑
k,k′

w∗k′kce
i(k−k′)·(rc−r)u∗k,n (2.2.32)

×
(

1

2m

[
−i∂r + k +

e

c
(+A(r)−A(rc))

]2
− eϕ(r)

)
wkkcuk,n.
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Let us now expand the squared terms:[
−i∂r + k +

e

c
(+A(r)−A(rc))

]2
= −∂2

r + k2 − 2i∂rk +
e

c
(−i∂r + k) (+A(∂r)−A(rc)) (2.2.33)

+
e

c
(+A(r)−A(rc)) (−i∂r + k) +

e2

c2
(+A(r)−A(rc))

2
,

then integrate the terms without the vector potentials along with the electric potential ϕ(r) term. To
ease the calculation we will Taylor expand the electric potential around rc

ϕ(r) ≈ ϕ(rc) + (r− rc)
∂

∂rc
ϕ(rc), (2.2.34)

note that we could have expanded to infinite order and achieved the same result because the expectation
value of r is rc. So the integral of the terms with no vector potentials becomes

1

V

∫
dr
∑
k,k′

w∗k′kce
i(k−k′)·(rc−r)u∗σ,k,n

(
− 1

2m
∂2
r +

1

2m

2

k2 − i

m
∂rk (2.2.35)

− e

(
ϕ(rc) + (r− rc)

∂

∂rc
ϕ(rc)

))
wkkcuσ,k,n

=
i

V

∫
dr
∑
k,k′

w∗k′kce
i(k−k′)·(rc−r)u∗σ,k,n

(
1

2m
k2 − e

(
ϕ(rc) + (r− rc)

∂

∂rc
ϕ(rc)

))
wkkcuσ,k,n

=
k2
c

2m
− eϕ(rc) = ξkc − eϕ(rc).

Where At last we will calculate the reaming terms. However term proportional to (+A(r)−A(rc))
2

will
be discarded as thy are small for small magnetic fields, as they can be view as the gradient for the vector
potential squared. Lastly remember that we chose the vector potential to be A = −r×B/2:

1

2mV

∫
dr
∑
k,k′

w∗k′kce
i(k−k′)·(rc−r)u∗σ,k,ne ((−i∂r + k) (A(r)−A(rc)) (2.2.36)

+ (A(r)−A(rc)) (−i∂r + k))wkkcuσ,k,n

=
−1

4mV

∫
dr
∑
k,k′

w∗k′kce
i(k−k′)·(rc−r)u∗σ,k,ne ((r− rc)×B) · (−i∂r + k)wkkcuσ,k,n + c.c.

=
eB

4mN
·
∫

dr
∑
k,k′

w∗k′kce
i(k−k′)·(rc−r)u∗σ,k,n ((r− rc)× (−i∂r + k))wkkcuσ,k,n + c.c.

=
eB

4mN
·
∫

dr
∑
k,k′

w∗k′kcu
∗
σ,k′,n

(
− ∂

∂ik′
ei(k−k

′)·(rc−r)

)
× (−i∂r + k)wkkcuσ,k,n + c.c.

=
eB

4mN
·
∫

dr
∑
k,k′

ei(k−k
′)·(rc−r)

(
∂

∂ik′
w∗k′kcu

∗
σ,k′,n

)
wkkcuσ,k,n × (−i∂r + k) + c.c.

=
eB

4m
·
∑
k

(
∂u∗k,n
∂ik

w∗kkc + u∗σ,k,nw
∗
kkc

∂ ln(w∗kkc)

∂ik

)
wkkcuσ,k,n × (−i∂r + k) + c.c.

=
eB

4m
·
(
∂u∗kc,n
∂ikc

− u∗kc,nAn(kc)

)
ukc,n × kc + c.c.

=
eB

4m
·
(
−i
∂u∗σ,kc,n
∂kc

uσ,kc,n −An(kc)

)
× kc + c.c.

=
eB

4m
·
(
iu∗σ,kc,n

∂uσ,kc,n
∂kc

−An(kc)

)
× kc + c.c. = 0,

where in the last equality we have used that |uσ,kc,n|2 = 1 to realize that
(
∂kcu

∗
σ,kc,n

)
uσ,kc,n =

−u∗σ,kc,n (∂kcuσ,kc,n). By combining equations (2.2.30),(2.2.35) and (2.2.36) the Lagrangian in our re-
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stricted Hilbert space can be written as

L(rc, ṙc; kc, k̇c) = −eṙc ·A(rc) + ṙc · kc + k̇c ·An(kc)− ξkc + eϕ(rc) (2.2.37)

Note that this Lagrangian has the following ”extend” gauge invariance under the transformation

A 7→ A +
1

e
∂rχ,

An 7→ An − ∂kχ, (2.2.38)

ϕ 7→ ϕ− χ̇.

Where χ is a differentiable function of space, momentum and time. Under this transformation the
Lagrangian becomes:

L̃(rc, ṙc; kc, k̇c) = −eṙc ·
(

A(rc) +
1

e
∂rχ

)
+ ṙc · kc + k̇c · (An(kc)− ∂kχ)− ξkc + e (ϕ(rc)− χ̇)

= L(rc, ṙc; kc, k̇c)− eχ̇− k̇c · ∂kχ− eṙc · ∂rχ (2.2.39)

= L(rc, ṙc; kc, k̇c)−
dχ

dt
,

and as a total time derivative does not change the equation of motion, hence the L̃ contains the same
physique as L. Having noted this peculiar 6-dimensional gauges invariance, we can proceed to the third
and final step.

Step III. Apply the Euler-Lagrange’s Equations

This step is straightforward. We only have to differentiate and remember some vector identities to get
the result precedented in a nice reconcilable way. We start by noting the Euler-Lagrange equations of
the two parameters:

∂L

∂rc
=

d

dt

∂L
∂ṙc

, (2.2.40)

∂L

∂kc
=

d

dt

∂L

∂k̇c
. (2.2.41)

Let us first consider the centre of mass momentum through equation (2.2.40). For transparency we
calculate each side separately

∂L
∂rc

= −e
(

ṙc ·
∂

∂rc
A(rc)

)
+ e

∂

∂rc
ϕ(rc) (2.2.42)

d

dt

∂L
∂ṙc

= − d

dt
eA− d

dt
(kc) = −e ∂

∂t
A(rc)− e

(
ṙc ·

∂

∂rc

)
A(rc) + k̇c. (2.2.43)

Then solving for k̇c, using that E = − ∂
∂rc

ϕ− ∂
∂tA and the general vector identity:

D×
(
∂

∂x
×C(x)

)
=

∂

∂x
(D ·C(x))−

(
D · ∂

∂x

)
C(x), (2.2.44)

we obtain the familiar Lorentz force:

k̇c = −e (E + ṙc ×B) . (2.2.45)
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We turn to the center of mass position through equation (2.2.41) and again calculate each side separately:

∂L
∂kc

= ṙc +
∂

∂kc
(k̇c ·An(kc))−

∂

∂kc
ξkc (2.2.46)

d

dt

∂L
∂k̇c

=
d

dt
(An(kc)) =

(
k̇c ·

∂

∂kc

)
An(kc). (2.2.47)

Remembering that the we defined the Berry curvature in equation (1.2.9), use equation (2.2.44) and
solving for k̇c:

ṙc =
∂

∂kc
ξkc − k̇c ×Ωn (2.2.48)

Let us state the equation of motion for r,k together.

ṙc =
∂

∂kc
ξkc − k̇c ×Ωn (2.2.49)

~k̇c = −e (E + ṙc ×B) (2.2.50)

The second term in equation (2.2.49) is known as the anomalous velocity and was first found by Karplus
and Luttinger[12] in the context of the Hall effect in ferromagnetics and explained the derivation from
the ordinary Hall conductances due to Spin-Orbit coupling and induced magnetization.

As mentioned earlier one should be careful to apply this result as it is based on a variational calculation
where only a limited part of the Hilbert space is included. For example there is no reason to believe that
this equation will hold in cases where the magnetic or electric field vary on a scale smaller than the
with of the wave packed. One should also note that this result as presented here is only valid for
quadric dispersions (due to our choice of Hamiltonian), but the Lorentz force and the anomalous velocity
are obtained independent of the Hamiltonian. Only the ordinary group velocity changes if another
Hamiltonian that commute with the canonical momentum is considered. Having ṙmk̇ established, we
now turn to actually solving the Boltzmann equation in a specific case.

2.3 The Anomalous Hall Effect

Probably the most notorious consequence of having an anomalous velocity in the driving terms of the
semi-classical Boltzmann equation is the possibility of having a Hall current without applying a magnetic
field, an effect called the anomalous Hall effect. To derive this from, the Boltzmann equation (2.1.5) and
the equations (2.2.49) and (2.2.50) is rather straightforward. To avoid a normal Hall response we assume
that the magnetic field is zero, leading the following expression for the ṙ and k̇ 4

k̇ = −eE (2.3.1)

ṙ =
∂ξk
∂k

+ eE×Ωn.

Note that one needs at least two bands to have a non-vanishing Berry curvature[18], and on should
think of the resulting Boltzmann equation as an equation for the electrons in the lowest band. Hence
the collision integral can in general contain inter band terms. The resulting Boltzmann equation which
determine the dynamics for the lower band is:

∂

∂t
f +

(
∂ξk
∂k

+ eE×Ωn

)
· ∂
∂r
f − eE · ∂

∂k
f = Icoll. (2.3.2)

We approximate the collision integral by the relaxation time approximation[20]. Linearising the Boltz-
mann equation, assuming that there is no spacial dependencies of temperature and chemical potential,
no time dependents of the electric fields, then to linear order in the electric field the Boltzmann equation

4We have droped the subscript c again as we do not have to consider operators any more, and to make the notation
more sleek.
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becomes

−eE · ∂ξk
∂k

∂

∂ξk
f0 = −f − f

0

τ
. (2.3.3)

Where f0 is the Fermi distribution and τ is the relaxation time. The linearisation procedure have rendered
the otherwise complicated Boltzmann equation straightforward to solve. The solution is

f = f0 + eE · ∂ξk
∂k

τ
∂

∂ξk
f0. (2.3.4)

To get the actual Hall conductivity one needs to find the current density and then differentiate with
respect to the electric field. The current density is in the literature of semi-classical transport theory
given as[20]5:

j = −e
∫

dk

(2π)2
vf, (2.3.5)

where v is the velocity, that one naively would understand in the semi-classical picture as the movement
of the center of mass coordinate of the wave packed, hence ṙ. However the procedure of finding the
current density can be formalized by considering the conservation laws obtained from the Boltzmann
equation. This is done along the lines of Kadanoff and Baym[21]. Particle conservation is obtain form
the Boltzmann equation by integrating it over momentum k 6:∫

dk

(2π)2

∂

∂t
f +

∫
dk

(2π)2

(
∂ξk
∂k

+ eE×Ωn

)
· ∂
∂r
f −

∫
dk

(2π)2
eE · ∂

∂k
f =

∫
dk

(2π)2
Icoll, (2.3.6)

we note again that the momentum integral of the collision integral must vanish do to particle conservation[27]
if we neglect any inter band scattering, which we do. The last term is a bit more tricky, now in case were
f can be argued to go to zero when momentum goes to infinity, one would simply the partial integrating
the last term and as the electric field dose not depend on momentum i would be zero. But in the case
where this is not true one can often make it vanish to liner order in the electric field, as f0 only depends
on momentum through the dispersion7. So the expression simplifys as:

∂

∂t

∫
dk

(2π)2
f +

∂

∂r
·
∫

dk

(2π)2

(
∂ξk
∂k

+ eE×Ωn

)
f = 0. (2.3.7)

We are left with a continuity equation for the particles, where we can identify the following as respectively
the particle density and the particle current density

ρ =

∫
dk

(2π)2
f, (2.3.8)

jp =

∫
dk

(2π)2

(
∂ξk
∂k

+ eE×Ωn

)
f. (2.3.9)

The current density j equals −ejp if the particles at hand are electrons. We have now form particle
conservation shown that naive choice of velocity in the current density was right.
The found velocity leads to the following explicit expression for the current density to linear order in the
electric field:

j = −e
∫

dk

(2π)2

(
∂ξk
∂k

(
f0 + eE · ∂ξk

∂k
τ
∂

∂ξk
f0

)
+ eE×Ωnf

0

)
. (2.3.10)

So we see that the normal Drude response is present but there is also an additional term including the
Berry curvature, who can induce transport if the specific k integration dose not vanish. More over one
sees that it will be perpendicular to both the Berry curvature and the electric field, hence it is similar to
the Hall response. Let us now specify the electric field to point in the x direction and the Berry curvature

5We are here specifying to 2 dimensions, as we would like to apply it to a 2-dimensional model
6Note this is only a derivation of the current operator for the problem at hand!
7This is the case in the Rashba Hamilton
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Ωn to point in the z direction. As we will consider a 2-dimensional model we will have the normal Hall
geometry as shown in figure 2.2. Ignoring the Drude response as it is well known and only considering

Figure 2.2: A sketch of the geometry behind the anomalous velocity term in a 2-dimensional system. The
cross product between E and Ωn is here called va.

the anomalous velocity term we see that the only non-trivial component of the conductivity tensor is σyx,
where the conductivity tensor is the current density differentiated with respect to the electric field.

σyx =
∂j

∂Ex
· ĵ = −e2

∫
dk

(2π)2
Ωnf

0, (2.3.11)

where ĵ is the unit vector in the y-direction. Now to get the actual value of σyx we need to specify to
a model which has a non-trivial momentum integrated Berry curvature, Such and example is given with
the Rashba Hamiltonian with Zeeman splitting defined in equation (1.3.1), the Berry curvature in the
lowest band is as we calculated in equation (1.3.8) :

Ω− =
v2
f∆

2
(
v2
f

(
k2
x + k2

y

)
+ ∆2

)3/2
k̂, (2.3.12)

where k̂ is the unit vector in the z direction, ∆ is the spin-orbit coupling and vf is the Fermi velocity.
Now we plug this into (2.3.11), and assume half filling so that the lower band is completely filled. Hence
the Fermi function is unity for all momenta. We obtain that the conductivity can be written as

σyx = −e2

∫
dk

(2π)2

v2
f∆

2
(
v2
f

(
k2
x + k2

y

)
+ ∆2

)3/2
= − 1

4π
e2 = − 1

4π

e2

~
= −1

2

e2

h
, (2.3.13)

Where we have reinstalling ~ in the third equality. We have found the anomalous Hall coefficient from
semi-classical consideration in the Rashba Hamiltonian. The result is consistent with the results obtained
from the Kubo formula[15, 26].
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Chapter 3

Quantum Anomalous Transport

In this chapter we will go though a full quantum calculation to get a collision less semi-classical Boltzmann
equation for each band. The basic idea is to consider Keldysh formalism as done by Rammer and Smith
[10], though in the context of a multi-band system which gives raise to anomalous transport phenomena.
We then systematically approximate the Keldysh equation through the gradient expansion. However it
turns out that in order to get gauge invariant result one has to introduce kinematic variables in both
4-position and 4-momentum. As the Chapter relies on some basic Keldysh formalism which will not be
covered one should consult Rammer and Smith[10] for an introduction. Finally it should be mention
that one should be able to reach the same result by using the Kadanoff-Bayn contur Green’s function
introduced by Kadanoff and Baym [21].

3.1 The Keldysh Dyson Equation

In principal we want to treat the behaviour of the multi-band system out of equilibrium exactly (at
least formally) by Green’s function so we need a non-equilibrium extension of the Dyson equation for
non-equilibrium Green’s functions. A way to do this according to Rammer and Smith [10] is through the
Keldysh formalism1. The normal Dyson equation is replaced by the Keldysh Dyson equation, which has
the form: [(

G−1
0 − Σ

)
⊗, G
]
− = 0, (3.1.1)

where [...⊗, ...]− are the anti commutators with respected to the composition ⊗. The composition is defined
as the following convolution between to matricides in Keldysh space:

(M ⊗N) (1, 1′) =

∫
dr

∫
dt2M(1,2)N(2,1′). (3.1.2)

Where M and N are matrix functions, 1 and 1′ denote respectively (t, r) and (t′, r ′) and 2 is (t2, r2).
The matrix structure of the different terms in equation (3.1.1) is in the rotated Keldysh-space:

G(1,1′) =

(
GR GK

0 GA

)
, Σ(1,1′) =

(
ΣR ΣK

0 ΣA

)
, G−1

0 (1,1′) =

(
G−1

0
0

0 G−1

0

)
. (3.1.3)

The double underlining means the object is a matrix, of dimension n × n and where n is number of
bands, spin , etc. discrete degrees for freedom. Exemplify the form of thesis the matrix functions: GR,

h which is the distribution function matrix, ΣR, ΣA, G−1

0
2 and GA one can writ them out for the

1The from of the Keldysh formalism we are using here, we do not take care of initial correlated system as we are not
interested in transit effects.

2Note that G−1
0

is of the form: [i∂t1 − ε(1)]δ(1− 1′)[10].
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two-dimensional case, as in Rammer and Smith [10]:

GR(1,1′) =

(
GR11(1,1′) GR12(1,1′)
GR21(1,1′) GR22(1,1′)

)
, GA(1,1′) =

(
GA11(1,1′) GA12(1,1′)
GA21(1,1′) GA22(1,1′)

)
,

G−1

0
(1,1′) =

(
G−1

0(11)
(1,1′) G−1

0(12)
(1,1′)

G−1
0(21)

(1,1′) G−1
0(22)

(1,1′)

)
, ΣR(1,1′) =

(
ΣR11(1,1′) ΣR12(1,1′)
ΣR21(1,1′) ΣR22(1,1′)

)
, (3.1.4)

h(1,1′) =

(
h11(1,1′) h12(1,1′)
h21(1,1′) h22(1,1′)

)
, ΣA(1,1′) =

(
ΣA11(1,1′) ΣA12(1,1′)
ΣA21(1,1′) ΣA22(1,1′)

)
.

Having an idea of the structure of this Dyson equation all which is left is to solve the equation for
the Green’s functions. However as we are mainly interested in transport phenomena and the Keldysh
component which is responsible for kinetics [10], we might be able to get an independent equation for the
Keldysh component by making some smart tricks. The first step in getting an independent equation for
the Keldysh component is to make the following ansatz for GK

GK(1,1′) =
(
GR ⊗ h

)
(1,1′)−

(
h⊗ GA

)
(1,1′), (3.1.5)

where h is the matrix distribution function that in its diagonal basis and in equilibrium is h
0
(χ) =

tanh(β( ξ − µ)1/2) = (1 − 2nf ), where ξ the dispersion and µ is the chemical potential. We can insert

equation (3.1.5) using the Keldysh space structure given in equation (3.1.3), into the Keldysh Dyson
equation (3.1.1). Form this one can show that the so called Keldysh component (the (12) component in
Keldysh space) of equation (3.1.1) is3

[
G−1

0
− ReΣ⊗, GR ⊗ h− h⊗ GA

]
−
−
[

ΣK⊗,
1

2

(
GR + GA

)]
−

(3.1.6)

=
i

2

[
ΣK⊗, i

(
GR +GA

)]
+
− i

2

[
Γ⊗, GR ⊗ h− h⊗ GA

]
+

where Γ is the imaginary path of the self-energy. We can similarly find the form of the retarded (the
(11) component in Keldysh space) and advandsed (the (22) component in Keldysh space) components of
3.1.1

(11) = (G−1

0
− ΣR)⊗ GR − GR ⊗ (G−1

0
− ΣR) = 0 (3.1.7)

(22) = (G−1

0
− ΣA)⊗ GA − GA ⊗ (G−1

0
− ΣA) = 0 (3.1.8)

Hence basically stating that GR commutes with (G−1

0
− ΣR) and GA commutes with (G−1

0
− ΣA).

Expanding the (anti)commutators in equation (3.1.6) along with the use of equations (3.1.7) and (3.1.8)
one can show that:

GR ⊗
[
G−1

0
− ReΣ⊗, h

]
−
−
[
G−1

0
− ReΣ⊗, h

]
−
⊗ GA (3.1.9)

− 1

2
ΣK ⊗ GR − 1

2
ΣK ⊗ GA +

1

2
GR ⊗ ΣK +

1

2
GA ⊗ ΣK

= −1

2
ΣK ⊗ GR +

1

2
ΣK ⊗ GA +

1

2
GR ⊗ ΣK − 1

2
GA ⊗ ΣK

− i

2
GR ⊗

[
Γ⊗, h

]
+

+
i

2

[
Γ⊗, h

]
+
⊗ GA.

3Note the following relation form Rammer and Smith[10] A = i(GR− GA),ReG = 1
2

(GR+ GA), Γ = i( ΣR− ΣA) and

ReΣ = 1
2,

( ΣR + ΣA)
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Now by rearranging the terms it is possible to obtain the following equation

− iGR ⊗
[
G−1

0
− ReΣ⊗, h

]
−

+ i
[
G−1

0
− ReΣ⊗, h

]
−
⊗ GA (3.1.10)

+ iΣK ⊗ GR − iGA ⊗ ΣK +
1

2
GR ⊗

[
Γ⊗, h

]
+
− 1

2

[
Γ⊗, h

]
+
⊗ GA

= 0.

Introducing the matrix function B

B = −i
[
G−1

0
− ReΣ⊗, h

]
−

+
1

2

[
Γ⊗, h

]
+
− iΣK , (3.1.11)

one can get the simpler looking form

GR ⊗ B − B ⊗ GA = 0, (3.1.12)

Another way of writing equation (3.1.12) which turns out to be nice in conjunction with the gradient
expansion is

1

2

[
B⊗, GR − GA

]
+
−
[
B⊗, ReG

]
− = 0 (3.1.13)

Now to make further progress we will note that equation (3.1.12) can be satisfied by requiring B = 0.
Which means we have the following equation for h:

B = −i
[
G−1

0
− ReΣ⊗, h

]
−

+
1

2

[
Γ⊗, h

]
+
− iΣK = 0. (3.1.14)

This is result is exact within our ansatz in equation (3.1.5). Note that we in principle has n2 coupled
equations. However that the equations are coupled is not the only problem as we in general are also
not able to perform the convolution integrals. So in order to proceed we need to transform to the
Wigner representation where we will have a Moyal product instead of the convolution integral. This
transformation will be the topic of the next section.

3.2 Wigner Representation and the Gradient Expansion

The transformation to Wigner representation mainly serves as a way to avoid the convolution integral in
favour of a so called Moyal product. The Moyal product is in general not easier to deal with than the
convolution integral, however the Moyal product can be viewed as an expansion in the gradients, which
under the right conditions may be truncate at finite order. The truncation of the Moyal product is know
in the literature as the gradient expansion[10] and is used where a quantum Boltzmann equation for a
system is wanted

Now lets us start develop the a Wigner transformation. First note the form of the convolution integral,
which we would like to transform is

C (x1, t1,x1′ , t1′) =

∫
d3xdsA (x1, t1,x2, s) B (x2, s,x1′ , t1′) (3.2.1)

=
(
A⊗ B

)
(x1, t1,x1′ , t1′) . (3.2.2)

Lets start by first rewriting the our variables in terms of center-of-mass and relative coordinates4:

r = x1 − x1′ , R =
1

2
(x1 + x1′) , t = t1 − t1′ , T =

1

2
(t1 + t1′) . (3.2.3)

To make the calculation more convenient we introduce 4-vectors. Note that we use the following conven-
tion for the metric ηνµ = diag(−1, 1, 1, 1) which will be used throughout the rest of thesis. The 4-vectors

4The following is based on Jørgen Rammer’s Master thesis (1981) section 2.5
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are given as

xµ1 ≡ (−t1,x1) , (3.2.4)

xµ ≡ (−t, r) = xµ1 − x
µ
1′ ,

Xµ ≡ (−T,R) =
1

2
(xµ1 + xµ1′).

Note that any function of the variables xµ1 and xµ
1′

can be expressed in terms the center of mass and the

relative variables. For a given function A(xµ1 , x
µ
1′) we define a new function Ă(Xµ, xµ) as

Ă(Xµ, xµ) ≡ A(Xµ + 1
2x

µ, Xµ − 1
2x

µ) = A(xµ1 , x
µ

1′
). (3.2.5)

However to be able to perform the Wigner transformation we will also need to note some properties of
the Fourier-transform. To do this we need to define the 4-momentum and recall how the scalar product
between two 4-vectors is defined:

pµ1 ≡ (−E1,p1), (3.2.6)

pµ1ηµνx
ν
1 = pµ1x1µ = −E1t1 + p1 · x1.

So now we can write the Fourier-transform in the following way, both for Ă and A

A(pµ1 , p
µ
1′) =

∫
d4x1µ

∫
d4x1′ µ exp(−i(pµ1x1µ + pµ1′x1′ µ))A(x1µ, x1′ µ), (3.2.7)

Ă(Pµ, pµ) =

∫
d4xµ

∫
d4Xµ exp(−i(pµxµ + PµXµ)) Ă(Xµ, xµ)

=

∫
d4xµ

∫
d4Xµ exp(−i(pµxµ + PµXµ))A(Xµ + 1/2xµ, Xµ − 1/2xµ).

From this one sees that we can relate the center of mass/the ralative variables with pµ1′ and pµ1 as

pµ1 =
1

2
Pµ + pµ, pµ1′ =

1

2
Pµ − pµ. (3.2.8)

Hence we can also relate the functions Ă and A in momentum space similar to their relation given in
equation (3.2.5)

Ă(Pµ, pµ) = A

(
1

2
Pµ + pµ,

1

2
Pµ − pµ

)
= A (pµ1 , p

µ
1′) . (3.2.9)

With this relation in place we can now proceed with the Wigner transformation of equation (3.2.1).
Staring by looking at the center of mass

C̆(Xµ, xµ) =

∫
d4xµ2 A(Xµ +

1

2
xµ, xµ2 )B(xµ2 , X

µ − 1

2
xµ) (3.2.10)

=

∫
d4xµ2 Ă(

1

2
(Xµ +

1

2
xµ + xµ2 ), Xµ +

1

2
xµ − xµ2 ) B̆(

1

2
(Xµ − 1

2
xµ + xµ2 ), xµ2 −Xµ +

1

2
xµ),

where xµ2 = (s,x2) and we in the second line have used equation (3.2.5).
We proceed by noting that the integration over xµ2 does not change if we make the following shift of

xµ2 due to the fact that we integrate over all of space-time

xµ2 7→ xµ2 −Xµ − 1

2
xµ. (3.2.11)

So equation (3.2.10) can be state as:

C̆(Xµ, xµ) =

∫
d4xµ2 Ă(Xµ +

1

2
xµ2 , x

µ − xµ2 ) B̆(Xµ − 1

2
xµ +

1

2
xµ2 , x

µ
2 ). (3.2.12)
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To get an equation for the Wigner transformation of C̆, we have to Fourier transform in the relative
coordinate xµ:

C̆(Xµ, pµ) =

∫
d4xµ exp(−ipµxµ)

∫
d4xµ2 Ă(Xµ +

1

2
xµ2 , x

µ − xµ2 ) B̆(Xµ − 1

2
xµ +

1

2
xµ2 , x

µ
2 ). (3.2.13)

Now in order to be able to define the Moayl-product we first write Ă and B̆ as the Fourier transform in
the second variable:

C̆(Xµ, pµ) =

∫
d4xµ exp(−ipµxµ)

∫
d4xµ2

∫
d4p′µ
(2π)4

exp(ip′µ(xµ − xµ2 )) Ă(Xµ +
1

2
xµ2 , p

′
µ) (3.2.14)

×
∫

d4p′′µ
(2π)4

exp(ip′′µx
µ
2 ) B̆(Xµ − 1

2
xµ + 1/2xµ2 , p

′′
µ).

To this point we have not introduced any approximation. To proceed however one has to do a Taylor
expansion around Xµ and if one only goes to finite order it will of course be an approximation. We will
now do a first order expansion to show how the integral can be evaluated order by order. The expansion
point Xµ can be motivated by the classical view that things tend to move around the center of mass.
Hence one would think the quantum system would tend to do same up to fast fluctuations. We drop the
explicit distinction between the breve and non-breve function and write

C(Xµ, pµ) ≈
∫

d4xµ
∫

d4xµ2

∫
d4p′µ
(2π)4

∫
d4p′′µ
(2π)4

exp(i(−pµxµ + p′µ(xµ − xµ2 ) + p′′µx
µ
2 )) (3.2.15)

×
[
A(Xµ, p′µ) +

1

2
xµ2∂Xµ A(Xµ, p′µ)

] [
B(Xµ, p′′µ) +

1

2
(xµ2 − xµ)∂XµB(Xµ, p′′µ)

]
=

∫
d4xµ

∫
d4xµ2

∫
d4p′µ
(2π)4

∫
d4p′′µ
(2π)4

exp(i(−pµxµ + p′µ(xµ − xµ2 ) + p′′ − µxµ2 ))

×
[
A(Xµ, p′µ)B(Xµ, p′′µ) +

1

2
xµ2∂Xµ A(Xµ, p′µ)B(Xµ, p′′µ)

+
1

2
A(Xµ, p′µ)(xµ2 − xµ)∂Xµ B(Xµ, p′′µ)

]
.

In the second equality we have dropped second order terms in the spacial gradient as we only consider
a first order expansion. The partial derivative with respect to the 4-vectors of real-space/time and
momentum-space/energy are defined as

∂Xµ ≡ (−∂T ,∇R), ∂pµ ≡ (−∂E ,∇p). (3.2.16)

This allow us to write C as

C(Xµ, pµ) ≈
∫

d4xµ
∫

d4xµ2

∫
d4p′µ
(2π)4

∫
d4p′′µ
(2π)4

(3.2.17)

×
[
A(Xµ, p′µ)B(Xµ, p′′µ) exp(i(−pµxµ + p′ − µ(xµ − xµ2 ) + p′′µx

µ
2 ))

+
1

2
∂Xµ A(Xµ, p′µ)(−i)∂p′′µ exp(i(−pµxµ + p′µ(xµ − xµ2 ) + p′′µ · x

µ
2 ))B(Xµ, p′′µ)

+
1

2
A(Xµ, p′µ)i∂p′µ exp(i(−pµxµ + p′µ(xµ − xµ2 ) + p′′µx

µ
2 ))∂Xµ B(Xµ, p′′µ)

]
=

∫
d4xµ

∫
d4xµ2

∫
d4p′µ
(2π)4

∫
d4p′′µ
(2π)4

exp(i(−pµxµ + p′ − µ · (xµ − xµ2 ) + p′′µ · x
µ
2 ))

×
[
A(Xµ, p′µ)B(Xµ, p′′µ)− i

2
∂p′µ A(Xµ, p′µ)∂Xµ B(Xµ, p′′µ)

+
i

2
∂Xµ A(Xµ, p′µ)∂p′′µ B(µ, p′′µ)

]
,
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where in the second equality we used integration by parts. The expression above can now be integrated.
To demonstrate the technique, integration of the first term is shown here

C0(Xµ, pµ) =

∫
d4xµ

∫
d4xµ2

∫
d4p′µ
(2π)4

∫
d4p′′µ
(2π)4

exp(i(−pµxµ + p′µ(xµ − xµ2 ) + p′′µx
µ
2 )) (3.2.18)

× A(Xµ, p′µ)B(Xµ, p′′µ)

=

∫
d4xµ exp(−ipµxµ)

∫
d4xµ2 A(Xµ, xµ − xµ2 )B(Xµ, xµ2 )

= A(Xµ, pµ)B(Xµ, pµ).

where the superscript on C refer to the order and we in the third line used that the integral is a convolution
in the variable xµ2 . The integration of the two other terms gives

C1(Xµ, pµ) = − i
2
∂pµ A(Xµ, pµ)∂Xµ B(Xµ, pµ) +

i

2
∂Xµ A(Xµ, pµ)∂pµB(Xµ, pµ). (3.2.19)

By considering the infinite order Taylor expansion one can show that Wigner transform can be written
exactly as

(A⊗ B)(Xµ, pµ) = A(Xµ, pµ) exp

(
i

2
(
←
∂Xµ

→
∂ pµ −

←
∂ pµ

→
∂Xµ)

)
B(Xµ, pµ) (3.2.20)

= A(Xµ, pµ)FB(Xµ, pµ).

Where the arrows above the differentials denote in which direction thy act. The composition F is called
the Moyal product5 but in the context of transport theory it is also denoted the gradient operator [27, 22].
For the proof of equation (3.2.20) see[22].

Now we have reformulated the convolution of A and B in the Wigner representation in terms of
the Moyal product between the Wigner representationof A and B. From the definition seams easy to
approximate by simply truncating the Moyal product at finite order, which is typically motivated by
assuming that potential is slowing varying compared to the typical energy scale of the system.

Let us state the explicit result of the second order gradient expansion of both the commutator and
anti commutator with respect to the Moyal product. However we will later consider only the first order
as is customary[10][

AF, B
]
−

= A exp

(
i

2

(
←
∂Xµ

→
∂ pµ −

←
∂ pµ

→
∂Xµ

))
B − B exp

(
i

2

(
←
∂Xµ

→
∂ pµ −

←
∂ pµ

→
∂Xµ

))
A (3.2.21)

'
[
A, B

]
− +

i

2

([
∂Xµ A, ∂pµ B

]
+
−
[
∂pµ A, ∂Xµ B

]
+

)
− 1

8

([
∂pµ∂pν A, ∂Xµ∂Xν B

]
− +

[
∂Xµ∂Xν A, ∂pµ∂pν B

]
−

−
[
∂Xµ∂pν A, ∂pµ∂Xν B

]
− −

[
∂pµ∂Xν A, ∂Xµ∂pν B

]
−

)
.

Note especially that the zeroth and the second order always vanish if A and B are scaler quantities6, and
that the zeroth order can be made to vanish if A and B have the same eigenvectors. The anti-commutator

5As a side remark it can be mention that the Moyal product is closely relate to the phase-space or Weyl-Wigner-Moyal
representation of quantum mechanics which is a non-operator based formulation of quantum mechanics.

6It is customary to write the first order term in the scalar case as [A,B]R ≡ (∂XµA)
(
∂pµB

)
− (∂pµA)

(
∂XµB

)
which is

referred to as the generalized Poisson brackets
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have the following expansion:[
AF, B

]
+

= A exp

(
i

2

(
←
∂Xµ

→
∂ pµ −

←
∂ pµ

→
∂Xµ

))
B + B exp

(
i

2

(
←
∂Xµ

→
∂ pµ −

←
∂ pµ

→
∂Xµ

))
A (3.2.22)

'
[
A, B

]
+

+
i

2

([
∂Xµ A, ∂pµ B

]
− −

[
∂pµ A, ∂Xµ B

]
−

)
− 1

8

([
∂pµ∂pν A, ∂Xµ∂Xν B

]
+

+
[
∂Xµ∂Xν A, ∂pµ∂pν B

]
+

−
[
∂Xµ∂pν A, ∂pµ∂Xν B

]
+
−
[
∂pµ∂Xν A, ∂Xµ∂pν B

]
+

)
.

These two equations, along with the fact that we can transform the convolution to Moyal products, allow
us write equation (3.1.14) using the Wigner representation as

B = −i
[
G−1

0
− ReΣF, h

]
−

+
1

2

[
ΓF, h

]
+
− iΣK = 0. (3.2.23)

Note that G−1

0
is now a function of the form 1ω − H(Xµ, pµ). However there is still the problem that

we have n2 coupled differential equation. In the next section we will show how to decouple the equations
order by order in the gradient expansion and develop an intra-band kinetic equation for each band.

3.3 Decoupling of the Matrix Kinetic Equation

In this section we will go through the process of decoupling the equations contained in (3.2.23) however
only in the case where we can safely ignore the collision terms, hence where Γ and ΣK can be set to zero.
The real path of the self energy is not as complicated to include as it’s imaginary or Keldysh counterparts.
So we will show how to decouple the equations

B = −i
[
G−1

0
− ReΣF, h

]
−

= 0. (3.3.1)

Note that in the rest for the section we will use the inverse Green’s function G−1 to make the notation

more smooth which is defined as G−1 = G−1

0
− ReΣ.

The naive guess on how to decouple the equations would be to use the unitary transformation
U

(0)
(Xµ, pµ)7 that diagonalizes the matrix G−1(Xµ, pµ):

U
(0)
U†

(0)
= U†

(0)
U

(0)
= 1, (3.3.2)

U
(0)
G−1 U†

(0)
≡ G̃

−1

(0)
(3.3.3)

where the subscript in a parenthesis on the U is the order in the gradient which will be come clear in
following, the tilde denotes that the matrix is diagonal and the index (0) is on the inverse Green’s function
means that diagonalization is done by the matrix product with U

(0)
8 . However the only way to include

U
(0)

in equation (3.3.1) is to insert it as complete sets as follows

B = −i
[
U†

(0)
U

(0)
G−1 U†

(0)
U

(0)
F, h
]
−

= 0. (3.3.4)

This obviously does not make any change to the left hand side of the equation, so we have to find an
other way to diagonalize it. Now assuming there exist a more general unitary transformation U(Xµ, pµ)9

7This transformation will not denpend on the energy if no self-energy is included as the energy dependence of
G−1

0
(Xµ, pµ) is proportional to the identity.

8Comparer with section 1.4: U
(0)

should be identified with U† and U†
(0)

should be identified with U
9This will also only depend on energy in the presence of a slef-energy.
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which has the following properties

UFU† = U†FU = 1 (3.3.5)

UFG−1FU† = G̃
−1

(3.3.6)

where the tilde denote that the function is diagonal. Now applying this to equation (3.3.1) and by using
that the Moyal product is associative we can get the following

UFBFU† = −iUF
[
G−1FU†FUF, h

]
−
FU† (3.3.7)

= −i
[
UFG−1FU†F, UFhFU†

]
−

= −i
[
G̃
−1F, h

]
−

= 0,

where h = UFhFU† is just a matrix. The same can be defined for B. Now let us writ out this equation
explicitly for the two by two case, to see that this in fact decouples the diagonal equations:

B = −i

[(
G̃−1

1 0

0 G̃−1
2

)
F,

(
h11 h12

h21 h22

)]
−

(3.3.8)

= −i

(
G̃−1

1 Fh11 − h11FG̃−1
1 G̃−1

1 Fh12 − h12FG̃−1
2

G̃−1
2 Fh21 − h21FG̃−1

1 G̃−1
2 Fh22 − h22FG̃−1

2

)
= 0.

We see that the intra-band equations decouples, hence the equations on the diagonal, by the transfor-
mation U . So as we interested in are the intra-band transport we can introduce the band-projectors Pi.
Applying the band projectors to B and summing them gives:

n∑
i=1

PiBPi = −i

(
G̃−1

1 Fh11 − h11FG̃−1
1 0

0 G̃−1
2 Fh22 − h22FG̃−1

2

)
= 0. (3.3.9)

However we are left with one rather significant problem: We do not known the transformation U In the
general U depends on both Xµ and pµ ans it is not possible to obtain it exactly. However in the case
where the gradient expansion is valid one can obtain it perturbatively. This case will be the subject of
the following subsection.

3.3.1 Perturbative Treatment of the Unitary Transformation and the Diag-
onalization of the Inverse Green’s Function

Even though it is in general not possible to find U exactly, we can find it perturbatively in the cases
where the gradient expansion is valid. The reason is that the Moyal product in this case can the viewed
as an expansion in some small parameter λ. The idea of doing this kind of expansion stems form Wickles
and Blezig [9]. Others have used similar methods [8]. To get started on the perturbativ diagonalization

let us expand both the unitary transformation U and the diagonalized inverse free Green’s fuction G̃
−1

in the small parameter λ as follows

U = U
(0)

+ Ū
(1)
U

(0)
+ Ū

(2)
U

(0)
+ ... (3.3.10)

G̃
−1

= G̃
−1

(0)
+ G̃

−1

(1)
+ G̃

−1

(2)
+ ..., (3.3.11)

where the extra index in parentheses on the function gives the order in λ, Ū
(1)
U

(0)
= U

(1)
and G̃

−1

(0)
is

given through equation (3.3.3). Now let us explore the definition in equation (3.3.6) to first order in the
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gradient. Before we start on this we need to define the matrix Berry connections A

A
xµ

= iU
(0)
∂Xµ U†(0)

= −i
(
∂Xµ U (0)

)
U†

(0)
= A†

xµ
(3.3.12)

A
pµ

= iU
(0)
∂pµ U†(0)

= −i
(
∂pµ U (0)

)
U†

(0)
= A†

pµ
. (3.3.13)

The second equality comes from differentiating equation (3.3.2) with respect to Xµ and pµ respectively.
In the third equality we recognize the Hermitian conjugate of the Berry connection so we see that it is in
fact Hermitian, which will important later. To avoid complications with defining the Berry curvatures and
to make the process as clear as possible we will restric ourselves to the case of Abelian Berry connections.
Hence we will not consider degenerate bands nor will we treat the problem of a band crossing10. With
the expansions of equations (3.3.12), (3.3.13) in place we are ready to handle equation (3.3.6) to first
order in the gradient, as we already know how to treat the zero order through equation (3.3.3). Let us
start by rewriting the left side of equation (3.3.6):

UF
(
G−1FU†

)
= UF

(
G−1

(
1 +

i

2

(
+
←
∂Xµ

→
∂pµ −

←
∂pµ

→
∂Xµ

))
U†
)

(3.3.14)

= U
(

1 +
i

2

(
+
←
∂Xµ

→
∂pµ −

←
∂pµ

→
∂Xµ

))
×
(
G−1 U† +

i

2

(
+∂Xµ G

−1∂pµ U†(0)
− ∂pµ G−1∂Xµ U†(0)

))
+O(λ2)

= G̃
−1

(0)
+ Ū

(1)
G̃
−1

(0)
+ G̃

−1

(0)
Ū†

(1)

+
i

2

(
−U

(0)
∂pµ G

−1∂Xµ U†(0)
+ U

(0)
∂Xµ G

−1∂pµ U†(0)

)
+
i

2

(
−∂pµ U (0)

∂Xµ
(
G−1 U†

(0)

)
+ ∂Xµ U (0)

∂pµ
(
G−1 U†

(0)

))
+O(λ2),

where we have expanded to first order in the gradient. Then using equation (3.3.3) we get

G̃
−1

(0)
+ Ū

(1)
G̃
−1

(0)
+ G̃

−1

(0)
Ū†

(1)
+
i

2

(
−U

(0)
∂pµ

(
U†

(0)
G̃
−1

(0)
U

(0)

)
∂Xµ U†(0)

(3.3.15)

+ U
(0)
∂Xµ

(
U†

(0)
G̃
−1

(0)
U

(0)

)
∂pµ U†(0)

)
+
i

2

(
−∂pµ U (0)

∂Xµ
(
U†

(0)
G̃
−1

(0)

)
+ ∂Xµ U (0)

∂pµ
(
U†

(0)
G̃
−1

(0)

))
+O(λ2),

expanding the equation leads to

G̃
−1

(0)
+ Ū

(1)
G̃
−1

(0)
+ G̃

−1

(0)
Ū†

(1)
(3.3.16)

+
i

2

(
−U

(0)
∂pµ U†(0)

G̃
−1

(0)
U

(0)
∂Xµ U†(0)

− ∂pµ G̃
−1

(0)
U

(0)
∂Xµ U†(0)

− G̃
−1

(0)
∂pµ U (0)

∂Xµ U†(0)
+ U

(0)
∂Xµ U†(0)

G̃
−1

(0)
U

(0)
∂pµ U†(0)

+ ∂Xµ G̃
−1

(0)
U

(0)
∂pµ U†(0)

+ G̃
−1

(0)
∂Xµ U (0)

∂pµ U†(0)

)
+
i

2

(
−∂pµ U (0)

∂Xµ U†(0)
G̃
−1

(0)
+ ∂pµ U (0)

U†
(0)
∂Xµ G̃

−1

(0)

+ ∂Xµ U (0)
∂pµ U†(0)

G̃
−1

(0)
− ∂Xµ U (0)

U†
(0)
∂pµ G̃

−1

(0)

)
+O(λ2).

10The complications in treating non-Abelian Berry connections are manageable and Wickles and Blezig [9] do it
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The using the equations (3.3.12) and (3.3.13) to rewrite the equation yield

G̃
−1

(0)
+ Ū

(1)
G̃
−1

(0)
+ G̃

−1

(0)
Ū†

(1)
+
i

2

(
+A

pµ
G̃
−1

(0)
A
Xµ

+ i∂pµ G̃
−1

(0)
A
Xµ

(3.3.17)

− G̃
−1

(0)
A
pµ
A
Xµ
− A

Xµ
G̃
−1

(0)
A
pµ
− i∂Xµ G̃

−1

(0)
A
pµ

+ G̃
−1

(0)
A
Xµ
A
pµ

)
+
i

2

(
−A

pµ
A
Xµ

G̃
−1

(0)
− iA

pµ
∂Xµ G̃

−1

(0)
+ A

Xµ
A
pµ
G̃
−1

(0)
+ iA

Xµ
∂pµ G̃

−1

(0)

)
+O(λ2).

Finally rewriting it using (anti)-commutators

G̃
−1

(0)
+ Ū

(1)
G̃
−1

(0)
+ G̃

−1

(0)
Ū†

(1)
− 1

2

{
A
Xµ
, ∂pµ G̃

−1

(0)

}
(3.3.18)

+
1

2

{
A
pµ
, ∂Xµ G̃

−1

(0)

}
− i

2

{
A
pµ
A
Xµ
, G̃
−1

(0)

}
+
i

2

{
A
Xµ
A
pµ
, G̃
−1

(0)

}
− i

2

(
A
Xµ

G̃
−1

(0)
A
pµ
− A

pµ
G̃
−1

(0)
A
Xµ

)
+O(λ2).

Note that if G̃
−1

only depends on either Xµ or pµ, the diagonalization of the inverse Green’s function
becomes exact at first order in the gradient. Now using the expression in equation (3.3.11) to first order

in the gradients one arrives at the following equation for G̃
−1

1
:

G̃
−1

(1)
= Ū

(1)
G̃
−1

(0)
+ G̃

−1

(0)
Ū†

(1)
− 1

2

{
A
Xµ
, ∂pµ G̃

−1

(0)

}
(3.3.19)

+
1

2

{
A
pµ
, ∂Xµ G̃

−1

(0)

}
− i

2

{
A
pµ
A
Xµ
, G̃
−1

(0)

}
+
i

2

{
A
Xµ
A
pµ
, G̃
−1

(0)

}
− i

2

(
A
Xµ

G̃
−1

(0)
A
pµ
− A

pµ
G̃
−1

(0)
A
Xµ

)
However we also need an equation for Ū

(1)
in order to find G̃

−1

(1)
. Such an equation can be obtained

simply by replacing G̃
−1

(0)
with the identity 1 in equation (3.3.18) along with using equation (3.3.5). This

gives

Ū
(1)

+ Ū†
(1)
− i

2

[
A
pµ
, A

Xµ

]
= 0. (3.3.20)

This equation fixes the Hermitian part of Ū
(1)

. It is intriguing to make the following ansatz

Ū
(1)

= +
i

4

[
A
pµ
, A

Xµ

]
+ Y

(1)
. (3.3.21)

Where Y
(1)

is taken to be anti-Hermitian, that is Y
(1)

= −Y†
(1)

, in order to satisfy equation (3.3.20).

Now plugging the ansatz form equation (3.3.21) into equation (3.3.19), gives

G̃
−1

(0)
=
[
Y

(1)
, G̃
−1

(0)

]
−
− 1

2

{
A
Xµ
, ∂pµ G̃

−1

(0)

}
(3.3.22)

+
1

2

{
A
pµ
, ∂Xµ G̃

−1

(0)

}
− i

4

{
A
pµ
A
Xµ
, G̃
−1

(0)

}
+
i

4

{
A
Xµ
A
pµ
, G̃
−1

(0)

}
− i

2

(
A
Xµ

G̃
−1

(0)
A
pµ
− A

pµ
G̃
−1

(0)
A
Xµ

)
.

The imagery part of the diagonal of Y
(1)

is in contrast to its real part not restricted by the requirement

that Y
(1)

is anti-Hermitian to be zero. However it can be put to zero with our loss of generality as it can

be absorbed by the U(1) gauge freedom in each band. The detailed discussion of the gauge freedom will

be postponed. With this observation at hand we can choose
[
Y

(1)
, G̃
−1

(0)

]
−

to be completely off diagonal.
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Hence we can use it to absorb the off-diagonal components of the remaining terms in equation (3.3.22).
Now calling these off-diagonal components R

(0)
we, for the two band case, get the following equation if

the of diagonal part of equation (3.3.22) should vanish 0
(
G̃−1

(0) 1 − G̃
−1
(0) 2

)
Y12(1)(

G̃−1
(0) 2 − G̃

−1
(0) 1

)
Y21(1) 0

 =

(
0 R12

R21 0

)
. (3.3.23)

Hence the solution for Y
(1)

is

(
Y12(1) 0

0 Y21(1)

)
=

 R12

G̃−1
(0) 1
−G̃−1

(0) 2

0

0 R21

G̃−1
(0) 2
−G̃−1

(0) 1

 . (3.3.24)

Here we see that the off-diagonal components are inversely proportional to the energy spacing of the
bands in the system. Hence it is reasonable to use the gradient expansion if R(0) is small compared to
the energy gap. This is actually the statement that has been used to justify of the Boltzmann equation
in Smith and Jensen[20]. Note this result can be extended to more than two bands but it gives no new
insight in our discussion[9].

Having shown that we can systematic get rid of the off-diagonal components of G̃
−1

(0)
, let us just

project the off-diagonal out of G̃
−1

to first order in the gradient. This will be done with the previously
used band projectors P

i
. Before doing this let us define the band projected Berry connection as

Ã
pµ

=

n∑
i=1

P
i
A
pµ
P
i
, (3.3.25)

where we notice that Ã
pµ

is a diagonal matrix. Note that diagonal matrices commute. So the projected

inverse free Green’s function can to first order in the gradient be written as

G̃
−1

= G̃
−1

(0)
+ Ã

pµ

[
∂Xµ G̃

−1

(0)

]
− Ã

Xµ
∂pµ G̃

−1

(0)
(3.3.26)

+

n∑
i=1

P
i

[
− i

4

{
A
pµ
A
Xµ
, G̃
−1

(0)

}
+
i

4

{
A
Xµ
A
pµ
, G̃
−1

(0)

}
− i

2

(
A
Xµ

G̃
−1

(0)
A
pµ
− A

pµ
G̃
−1

(0)
A
Xµ

)]
P
i
+O(λ2).

The projection sum(the fourth term) can quite straightforwardly be shown to be zero because G̃
−1

(0)
is

diagonal an the Berry connection is Hermitian. Our finally result for the form of G̃
−1

is

G̃
−1

= G̃
−1

(0)
+ Ã

pµ
∂Xµ G̃

−1

(0)
− Ã

Xµ
∂pµ G̃

−1

(0)
+O(λ2). (3.3.27)

With this equation at hand we will now turn to the problem that U
(0)

is not uniquely defined. In fact

there is a local gauge phase that depends on both Xµ and pµ in each band. The gauge phase originates
because the eigenvectors of a matrix are only defined up to a complex phase. This means that both

the unitary transformation U
(0)

and U ′
(0)

will diagonalize G̃
−1

if they are related by the transformation

Φ̃U
(0)

= U ′
(0)

, where Φ̃ is Given in the two band case as

Φ̃(Xµ, pµ) =

(
eiχ1(Xµ,pµ) 0

0 eiχ2(Xµ,pµ)

)
. (3.3.28)
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Here χi(X
µ, pµ) is an arbitrary real function. However such a transformation does not leave our Berry

connection invariant. In fact it is straightforward to calculate that it transforms as11

A′
pµ

= iU
′

(0)
∂pµ U

′†
(0)

= Φ̃A
pµ

Φ̃
†

+ i Φ̃∂pµ Φ̃
†
. (3.3.29)

Hence band projecting the transformed Berry curvature gives

Ã′
pµ

= Ã
pµ

+ i Φ̃∂pµ Φ̃
†
. (3.3.30)

This kind of transformation look all most like the gauge transformations known form electrodynamics.

Note that the ith component of i Φ̃∂pµ Φ̃
†

is just

∂pµχi. (3.3.31)

The relation (3.3.30) implies that equation (3.3.27) transforms to

G̃
−1

= G̃
−1

(0)
+ Ã′

pµ
∂Xµ G̃

−1

(0)
− Ã′

Xµ
∂pµ G̃

−1

(0)
+O(λ2). (3.3.32)

This is obviously not a the same as before, hence not gauge invariant quantity. So we need, like in the
case of electromagnetism, to find some kinetic variables which yield gauge invariant equations. Instead
of introducing kinetic variables we can obtain the same result by going to second order i the Moyal
product while keeping only terms which are of first order in the gradient[8]. However this is extremely
cumbersome. We now find the kinetic variables by first writing equation (3.3.27) with all it arguments
explicitly:

G̃
−1

= G̃
−1

(0)
(Xµ, pµ) + Ã

pµ
(Xµ, pµ)∂Xµ G̃

−1

(0)
(Xµ, pµ)− Ã

Xµ
(Xµ, pµ)∂pµ G̃

−1

(0)
(Xµ, pµ) +O(λ2).

(3.3.33)

Now this can be viewed as a first order Taylor expansion around pµ and Xµ of G̃
−1

(0)
if it had the following

variables:

G̃
−1

(0)
(Xµ + Ã

pµ
, pµ − Ã

Xµ
) +O(λ2). (3.3.34)

Note this only holds as both G̃
−1

(0)
, Ã

pµ
and Ã

Xµ
are diagonal and hence effectively act as scalars under

multiplication. However this also implies that one could introduce kinetic variables in each band as:

Υ̃
µ

= Xµ + Ã
pµ

(3.3.35)

Π̃
µ

= pµ − Ã
Xµ
, (3.3.36)

which should be understood in the way that in the i-ed band the variable will be Xµ − ( Ã
pµ

)ii. So

equation (3.3.27) can now be put to first order in the gradient in the following elegant form

G̃
−1

= G̃
−1

(0)
(Υµ,Πµ) +O(λ2). (3.3.37)

As the Berry connections only occur in first order terms, one dose not need to distinguish between
Ã
pµ

(Xµ, pµ) and Ã
pµ

(Υµ,Πµ) as the differences are of first order in the gradient. With this result at

hand we can rewrite equation (3.3.7) to first order as

−i
[
G̃
−1

(0)
(Υµ,Πµ)F, h̆(Υµ,Πµ)

]
= 0. (3.3.38)

Note that we have also changed variables in the distribution function and hence it is principle not the
same function as before which is expressed through the breve over the distribution function h. The only
problem left is that the Moyal product is taken with respect to the variables Xµ and pµ and we would

11Of cause the same equality holds similarly for A
Xµ
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like it to be with respect to the kinetic variables. So all there is left to do is to find the Moyal product
in the kinetic variables. This is in principle the same approach Rammer and Smith[10] used to derive a
quantum Boltzmann equation that contained electromagnetism, but with some expect complication due
to the facet that the Berry connection depends on both real-space and momentum. This processes will
also show that the kinetic variables in fact restore gauge invariants. Let us find the derivatives with
respect to Xµ and pµ expressed through the band kinetic variables to first order in the gradient

→
∂Xµ =

∂Υν

∂Xµ

→
∂Υν +

∂Πν

∂Xµ

→
∂Πν =

→
∂Υµ +

∂ Ã
Πν

∂Υµ

→
∂Υν −

∂ Ã
Υν

∂Υµ

→
∂Πν +O(λ2), (3.3.39)

←
∂Xµ =

←
∂Υν

∂Υν

∂Xµ
+
←
∂Πν

∂Πν

∂Xµ
=
←
∂Υµ +

←
∂Υν

∂ Ã
Πν

∂Υµ
−
←
∂Πν

∂ Ã
Υν

∂Υµ
+O(λ2), (3.3.40)

→
∂ pµ =

∂Πν

∂pµ

→
∂Πν +

∂Υν

∂pµ

→
∂Υν =

→
∂Πµ −

∂ Ã
Υν

∂Πµ

→
∂Πν +

∂ Ã
Πν

∂Πµ

→
∂Υν +O(λ2), (3.3.41)

←
∂ pµ =

←
∂Πν

∂Πν

∂pµ
+
←
∂Υν

∂Υν

∂pµ
=
←
∂Πµ −

←
∂Πν

∂ Ã
Υν

∂Πµ
+
←
∂Υν

∂ Ã
Πν

∂Πµ
+O(λ2). (3.3.42)

This we can use to expand
←
∂Xµ

→
∂ pµ −

←
∂ pµ

→
∂Xµ separately

←
∂Xµ

→
∂ pµ =

(
←
∂Υµ +

←
∂Υν∂Υµ ÃΠν

−
←
∂Πν∂Υµ ÃΥν

)
(3.3.43)

×
(
→
∂Πµ − ∂Πµ ÃΥδ

→
∂Πδ + ∂Πµ ÃΠδ

→
∂Υδ

)
+O(λ2)

=
←
∂Υµ

→
∂Πµ −

←
∂Υµ∂Πµ ÃΥδ

→
∂Πδ +

←
∂Υµ∂Πµ ÃΠδ

→
∂Υδ

+
←
∂Υν∂Υµ ÃΠν

→
∂Πµ −

←
∂Υν∂Υµ ÃΠν

∂Πµ ÃΥδ

→
∂Πδ +

←
∂Υν∂Υµ ÃΠν

∂Πµ ÃΠδ

→
∂Υδ

−
←
∂Πν∂Υµ ÃΥν

→
∂Πµ +

←
∂Πν∂Υµ ÃΥν

∂Πµ ÃΥδ

→
∂Πδ −

←
∂Πν∂Υµ ÃΥν

∂Πµ ÃΠδ

→
∂Υδ +O(λ2)

and

−
←
∂ pµ

→
∂Xµ =

(
−
←
∂Πµ +

←
∂Πδ∂Πµ ÃΥδ

−
←
∂Υδ∂Πµ ÃΠδ

)
(3.3.44)

×
(
→
∂Υµ + ∂Υµ ÃΠν

→
∂Υν − ∂Υµ ÃΥν

→
∂Πν

)
+O(λ2)

= −
←
∂Πµ

→
∂Υµ −

←
∂Πµ∂Υµ ÃΠν

→
∂Υν +

←
∂Πµ∂Υµ ÃΥν

→
∂Πν

+
←
∂Πδ∂Πµ ÃΥδ

→
∂Υµ +

←
∂Πδ∂Πµ ÃΥδ

∂Υµ ÃΠν

→
∂Υν −

←
∂Πδ∂Πµ ÃΥδ

∂Υµ ÃΥν

→
∂Πν

−
←
∂Υδ∂Πµ ÃΠδ

→
∂Υµ −

←
∂Υδ∂Πµ ÃΠδ

∂Υµ ÃΠν

→
∂Υν +

←
∂Υδ∂Πµ ÃΠδ

∂Υµ ÃΥν

→
∂Πν +O(λ2).

Combining this two terms, gives to first order in the gradients

←
∂Xµ

→
∂ pµ −

←
∂ pµ

→
∂Xµ =

←
∂Υµ

→
∂Πµ −

←
∂Πµ

→
∂Υµ +

←
∂Υν

(
∂Πν ÃΠµ

− ∂Πµ ÃΠν

)→
∂Υµ (3.3.45)

+
←
∂Πν

(
∂Υν ÃΥµ

− ∂Υµ ÃΥν

)→
∂Πµ −

←
∂Πµ

(
∂Υµ ÃΠν

− ∂Πν ÃΥµ

)→
∂Υν

−
←
∂Υµ

(
∂Πµ ÃΥν

− ∂Υν ÃΠµ

)→
∂Πν +O(λ2).

Let us now expand all of this expression by dropping the 4-vector notation. The terms containing
the Berry connection will be treated term by term. Note that the 4-vector is given as Υµ = (τ,ρ),
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Πµ = (−ω,π). letus start with the term

←
∂Υν

(
∂Πν ÃΠµ

− ∂Πµ ÃΠν

)→
∂Υµ = −

←
∂ τ

(
∂ω Ãπ

− ∂π Ãω
)
·
→
∂ ρ (3.3.46)

−
←
∂ ρ ·

(
∂π Ãω − ∂ω Ãπ

)→
∂ τ +

←
∂ ρi

(
∂πi Ãπj − ∂πj Ãπi

)→
∂ ρj

= +
←
∂ τEπω ·

→
∂ ρ −

←
∂ ρ · Eπω

→
∂ τ −

←
∂ ρ ×Ωπ ·

→
∂ ρ,

where the last equality defines Eπω and Ωπ. we turn to the next term:

←
∂Πν

(
∂Υν ÃΥµ

− ∂Υµ ÃΥν

)→
∂Πµ = −

←
∂ ω

(
∂τ Ãρ

− ∂ρ Ãτ
)
·
→
∂π (3.3.47)

−
←
∂π

(
∂ρ Ãτ − ∂τ Ãρ

)→
∂ ω +

←
∂ πi

(
∂ρi Ãρj − ∂ρj Ãρi

)→
∂ πj

= +
←
∂ ωEρτ ·

→
∂π −

←
∂π · Eρτ

→
∂ ω −

←
∂π ×Ωρ ·

→
∂π,

where the last equality defines Eρτ and Ωρ. The next term yields

−
←
∂Πµ

(
∂Υµ ÃΠν

− ∂Πν ÃΥµ

)→
∂Υν = +

←
∂π ·

(
∂ρ Ãω − ∂ω Ãρ

)→
∂ τ (3.3.48)

+
←
∂ ω

(
∂τ Ãπ

− ∂π Ãτ
)
·
→
∂ ρ −

←
∂ πi

(
∂ρi Ãπj − ∂πj Ãρi

)→
∂ ρj

−
←
∂ ω

(
∂τ Ãω − ∂ω Ãτ

)→
∂ τ

= +
←
∂π · Eρω

→
∂ τ −

←
∂ ωEπτ ·

→
∂ ρ −

←
∂ πiΘ

ρπ
ij

→
∂ ρj −

←
∂ ωΞ

→
∂ τ ,

where the last equality defines Eρω ,Eφτ ,Θρπ
ij and Ξ. We turn to the last term

−
←
∂Υµ

(
∂Πµ ÃΥν

− ∂Υν ÃΠµ

)→
∂Πν = +

←
∂ ρ ·

(
∂π Ãτ − ∂τ Ãπ

)→
∂ ω (3.3.49)

+
←
∂ τ

(
∂ω Ãρ

− ∂ρ Ãω
)
·
→
∂π −

←
∂ ρi

(
∂πi Ãρj − ∂ρj Ãπi

)→
∂ πj

+
←
∂ τ

(
∂ω Ãτ − ∂τ Ãω

)→
∂ ω

= +
←
∂ ρ · Eπτ

→
∂ ω −

←
∂ τEρω ·

→
∂π +

←
∂ ρi

(
Θρπ
ij

)T →
∂ πj +

←
∂ τΞ

→
∂ ω.

With all this we can write equation (3.3.45) as:

←
∂Xµ

→
∂ pµ −

←
∂ pµ

→
∂Xµ =

←
∂ ρ ·

→
∂π −

←
∂π ·

→
∂ ρ −

←
∂ τ
→
∂ ω +

←
∂ ω
→
∂ τ +

←
∂ τEπω ·

→
∂ ρ (3.3.50)

−
←
∂ ρ · Eπω

→
∂ τ −

←
∂ ρ ×Ωπ ·

→
∂ ρ +

←
∂ ωEρτ ·

→
∂π −

←
∂π · Eρτ

→
∂ ω

−
←
∂π ×Ωρ ·

→
∂π +

←
∂π · Eρω

→
∂ τ −

←
∂ ωEπτ ·

→
∂ ρ −

←
∂ πiΘ

ρπ
ij

→
∂ ρj −

←
∂ ωΞ

→
∂ τ

+
←
∂ ρ · Eπτ

→
∂ ω −

←
∂ τEρω ·

→
∂π +

←
∂ ρi

(
Θρπ
ij

)T →
∂ πj +

←
∂ τΞ

→
∂ ω.+O(λ2)

This is in principled the fist order correction to the Moyal product, and we see that it is explicitly gauge
invariant, so the kinetic variables restored the guage invariants.

The Berry Field Strength and The Quantum Boltzmann equation

With equation (3.3.50) at hand we can now straightforwardly write down a collision-less quantum Boltz-
mann equation for a multi-band system by applying our result from equation (3.3.50) to equation (3.3.38).
Similarly straightforwardly we can apply equation (3.3.50) to the band projection of equation (3.3.38).
This yields independent equation for all the bands.

Before doing this we would like to first note the that equation (3.3.50) can be written in terms of a
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field strength F , which will be called the Berry field strength as:

←
∂Xµ

→
∂ pµ −

←
∂ pµ

→
∂Xµ =

←
∂Υµ

→
∂Πµ −

←
∂Πµ

→
∂Υµ +

(
←
∂Π

←
∂Υ

)
F

(→
∂Π
→
∂Υ

)
+O(λ2) (3.3.51)

where:

(
←
∂Π,

←
∂Υ

)
= (−ω,π,−τ,ρ) ,

(→
∂Π
→
∂Υ

)
=


−ω
π
−τ
ρ

 (3.3.52)

Hence the Berry field strength is defined in the following way:

F =


0 −Eρτ −Ξ Eπτ

Eρτ εijkΩρ k −Eρω −Θρ,π
ij

Ξ Eρω 0 −Eπω

−Eπτ

(
Θρ,π
ij

)T Eπω εijkΩπ k

 , (3.3.53)

or in the more compact way

F = ∂i Ãj − ∂j Ãi (3.3.54)

where, i an j runs over ω,π, τ,ρ. Having this field strength we can to first order in the gradient write
the Moyal product as

F = exp

(
i

2

(
←
∂Υµ

→
∂Πµ −

←
∂Πµ

→
∂Υµ +

(
←
∂Πν

←
∂Υν

)
F

(←
∂Πν
←
∂Υν

)))
+O(λ2). (3.3.55)

We now apply this exprission of the Moyal product to the band projection of equation (3.3.38). We get
a quantum Boltzman equation for each of the bands:

−iPi
[
G̃
−1

(0)
F, h̆
]
Pi =

[(
−(1− Ξi)∂τ G̃

−1
(0) i − ∂πG̃

−1
(0) i · E

ρτ
i + ∂ρG̃

−1
(0) i · E

πτ
i

)
∂ω (3.3.56)

+
(
∂ωG̃

−1
(0) iE

ρτ
i − ∂πG̃

−1
(0) i ×Ωρ

i − ∂τ G̃
−1
(0) iE

ρω
i + ∂ρG̃

−1
(0) i(1−Θρπ

i )
)
· ∂π

+
(

(1− Ξi)∂ωG̃
−1
(0) i + ∂πG̃

−1
(0) i · E

ρω
i − ∂ρG̃

−1
(0) i · E

πω
i

)
∂τ

+
(
−∂ωG̃−1

(0) iE
πτ
i − ∂πG̃

−1
(0) i(1− (Θρπ)Ti )

+ ∂τ G̃
−1
(0) iE

πω
i − ∂ρG̃−1

(0) i ×Ωπ
i

)
· ∂ρ
]
h̆i = 0,

where the index i refers to the band and a single underlining means a matrix in real-space and momentum-
space.

Physical Understanding of the Berry Curvature

Having derived a quantum Boltzmann equation we now want to understand the different terms. This will
be done by comparison with a one band quantum Boltzmann equation with a general electromagnetic
field present. The derivation of such an equation is in principle contained above, so it will not be discussed
here. However it can be found in Rammer and Smith [10] or in Maciejko [22]. It yields the following one
band quantum Boltzmann equation:

−i
[
G−1

0
F, h̃
]

=
[
∂ωG

−1
0 ∂T −

(
∂TG

−1
0 + ∂πG

−1
0 · eE

)
∂ω − ∂πG−1

0 · ∂R (3.3.57)

+
(
∂ωG

−1
0 eE− e∂πG−1

0 ×B + ∂RG
−1
0

)
· ∂π

]
h,

37



where E is the electric field and B is the magnetic field. So now by comparing equation (3.3.56) and
(3.3.57) one straightforwardly sees that Eρτ

i orcures in the same way as the electric field does and that
Ωρ
i orcures in the same way as the magnetic field does. Hence they can be viewed as a renormalization

to respectively the electric and magnetic fields. The term Ωπ
i can be seen as a momentum-”magnetic”

field and is in the literature typical refereed to as the anomalous velocity. This term the anomalous Hall
response in section 2.3. The term Eπω

i can similarly be viewed as momentum-”electric” field, it should
be mentioned that this term is only non-vanishing if the real part of the self energy ReΣ depends on the
energy E. The reaming terms can be viewed as the changes of the metric by the transformation from the
canonical to the kinetic variables in the following way

dΥµ =
(
δ νµ + ∂XνApµ

)
dXν (3.3.58)

dΠµ = (δ µν − ∂pνAXµ) dpν . (3.3.59)

We take the inner product between them to first order in the small parameter λ

dΥµdΠµ = dXν (δ νδ + (∂XνApδ − ∂pδAXν )) dpδ +O(λ2) (3.3.60)

The last two terms containing the Berry connection is precisely the term expanded in equation (3.3.48).
The next section will be concerned with energy integrating the quantum Boltzmann equation to get

a semi-classical Boltzmann equation.

3.4 Energy integration of the Quantum Boltzmann Equation

In this section we will energy integrate(integration over ω) our quantum Boltzmann equation in order to
get an equation which is comparable with the semi-classical Boltzmann equation we found in the second
chapter. But there is some subtlety in integration of the quantum Boltzmann equation which was derived
by letting the matrix function B be equal to zero, because it is the Keldysh Dyson equation that gives the
actual physics. The equation that actually governs the physics is equation (3.1.13) which in the Wigner
repesentation is

1

2

[
B(Xµ, pµ)F, GR(Xµ, pµ)− GA(Xµ, pµ)

]
+
−
[
B(Xµ, pµ)F, ReG(Xµ, pµ)

]
−

= 0 (3.4.1)

Off course this equation has the full matrix structure and as we want a equation for the band projected
equations for h. So we need to motivate that we can in fact meaningfully restrict this equation to band
projected equations. To do this we transform the equation with the generalized unitary transformation
U to first order in the gradient. Equation (3.4.1) becomes

1

2

[
B̆(Υµ,Πµ)F, Ğ

R
(Υµ,Πµ)− Ğ

A
(Υµ,Πµ)

]
+
−
[
B̆(Υµ,Πµ)F, ˘ReG(Υµ,Πµ)

]
−

= 0. (3.4.2)

Now we need the matrix structure of the spectral function Ă12 along with the real part of the Green’s

function ˘ReG. As our inverse bare Green’s function plus real part of the self-energy is diagonal in the
basis we have transformed to, their inverse, the Green’s function, would also be diagonal. Now as the
spectral function is proportional to imaginary part of the Green’s function[19], we should be able to write
Ă and ˘ReG as Ã and ˜ReG. With this constrain on the matrix form of Ã and ˜ReG we again see that we

decouple the bands. Moreover we note as B̃ is first order in the gradient(λ) already the term involving
˜ReG will vanish when projected into the bands to first order in the gradient. So we end up with the

following band projected equation

i
∑
i

Pi B̆(Υµ,Πµ) Ã(Υµ,Πµ)Pi = 0. (3.4.3)

12Remember That Ă = i
(
Ğ
R − Ğ

A
)
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More explicitly using the result from equation (3.3.56) the ith equation gives

Ai

[(
−(1− Ξi)∂τ G̃

−1
(0) i − ∂πG̃

−1
(0) i · E

ρτ
i + ∂ρG̃

−1
(0) i · E

πτ
i

)
∂ω (3.4.4)

+
(
∂ωG̃

−1
(0) iE

ρτ
i︸ ︷︷ ︸

DωI

− ∂πG̃−1
(0) i ×Ωρ

i︸ ︷︷ ︸
DπI

− ∂τ G̃−1
(0) iE

ρω
i︸ ︷︷ ︸

DτI

+ ∂ρG̃
−1
(0) i(1−Θρπ

i )︸ ︷︷ ︸
DρI

)
· ∂π

+
(

(1− Ξi)∂ωG̃
−1
(0) i︸ ︷︷ ︸

DωII

+ ∂πG̃
−1
(0) i · E

ρω
i︸ ︷︷ ︸

DπII

− ∂ρG̃−1
(0) i · E

πω
i︸ ︷︷ ︸

DρII

)
∂τ

+
(
−∂ωG̃−1

(0) iE
πτ
i︸ ︷︷ ︸

DωIII

− ∂πG̃−1
(0) i(1− (Θρπ)Ti )︸ ︷︷ ︸
DπIII

+ ∂τ G̃
−1
(0) iE

πω
i︸ ︷︷ ︸

DτI

− ∂ρG̃−1
(0) i ×Ωπ

i︸ ︷︷ ︸
DρIII

)
· ∂ρ
]
h̆i = 0,

where Ai is the spectral function of the ith band. The D are placed to mark the different terms for

later use. Remember that G̃−1
(0) i = ω − Pi

(
H̆ + ˘ReΣ

)
Pi which we want to write as G̃−1

(0) i = ω −
ξi(π, τ,ρ) − ReΣi(Υµ,Πµ) to make look similar to the normal one-band case [10]. Now our quantum
Boltzmann equation also takes the spectral function into account explicitly. Hence we are ready to energy
integrate as soon as we establish the form of the spectral function. However in order to also be in the
semi-classical regime the spectral function should be sharply peaked so there is a unique relation between
the renormalized dispersion ξi +ReΣi

13 and the energy ω i.e. the spectral function can be approximated
by a delta function. Let us first consider the typical form for a spectral function in case of a scattering
potential, namely the Lorentzian, it should be stressed that this is in fact the from for the spectral
function out of equilibrium for the one band case as shown by Kadanoff and Baym [21]:

Ai =
Γi

(ω − ξi −ReΣi)2 + (Γi
2 )2

. (3.4.5)

Here Γi is the imagery part of the self-energy in the ith band. Now we see that the semi-classical criterion
is satisfied either by having an altogether vanishing self-energy or just having a real self-energy. To have
a vanishing imaginary part it is also necessary to have a collision-less Boltzmann equation which we have
restricted ourselves to. If the real part of the self-energy is kept it gives rise to a renormalized Boltzmann
equation which will be seen later. In the case of a vanishing imaginary part of the self-energy the form
of the spectral function simplifies to

A(Υµ,Πµ) ≈ 2πδ(Ω− ξi(τ,ρ,π)−ReΣi(Υµ,Πµ)). (3.4.6)

Having the from of the spectral function in place we are nearly ready perform do the energy integration of
equation (3.4.4). However with the delta function form of the spectral function it is normal to make the
ansatz 14 that the distribution function is independent of energy. Hence the three terms that dependences
on an energy derivative of the distribution function are zero. To make it clear we call the ω independent
distribution function hπi
Finally before the integration lets remember how to shift variables in a delta function:

A = 2πδ (ω − ξi −ReΣi) =
2π

1− ∂ReΣi
∂ω

∣∣
ω=ξ∗i

δ (ω − ξ∗i ) = Zi2πδ (ω − ξ∗i ) . (3.4.7)

Here Zi is defined by the last equality and ξ∗i is self-consistently defined as ξ∗i = ξi + ReΣ|ω=ξ∗i
. Now

all is in place to perform the energy integration of equation (3.4.4). Let us start by doing all the terms

13Be awere that ξ can depend on both position, time and momentum.
14This ansatz on h seems to be good in the sens that it leads to solvable equations. Most works on the topics assume this

with out hardly any discussion, Kadanoff and Baym 1961 page 142 mentions that in the case of a delta function spectral
function one can clearly do this!? How ever under this ansatz the resulting Boltzmann equation remains possible to solve
as seen more or less throughout all of Højgaard and Smith 1989, and the Berry curvature doses not seem to introduce new
complication in that sense.
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where the inverse Green’s function is differentiated with respect to energy:

DωI = +

∫ ∞
−∞

dω

2πi
2πiδ(ω − ξi −ReΣi)∂ω (ω − ξi −ReΣi)Eρτ

i · ∂πhπi (3.4.8)

= Zi (1− ∂ωReΣ)|ω=ξ∗i
Eρτ
i

∣∣
ω=ξ∗i

· ∂πhπi

= ZiZ
−1
i Eρτ

i

∣∣
ω=ξ∗i

· ∂πhπi,

DωII = +

∫ ∞
−∞

dω

2πi
2πiδ(ω − ξi −ReΣi)(1− Ξi) ∂ω (ω − ξi −ReΣi) ∂τhπi (3.4.9)

= Zi (1− ∂ωReΣ)|ω=ξ∗i

(
1− Ξi|ω=ξ∗i

)
∂τhπi

= ZiZ
−1
i

(
1− Ξi|ω=ξ∗i

)
∂τhπi

DωIII = −
∫ ∞
−∞

dω

2πi
2πiδ(ω − ξi −ReΣi)∂ω (ω − ξi −ReΣi)Eπτ

i · ∂ρhπi (3.4.10)

= −Zi (1− ∂ωReΣ)|ω=ξ∗i
Eπτ
i |ω=ξ∗i

· ∂ρhπi
= −ZiZ−1

i Eπτ
i |ω=ξ∗i

· ∂ρhπi

So we se that these terms only renormalise due to the changes in the dispersion and only if our U
0

depends on ω. Now let us integrate the terms where the inverse Green’s function is differentiated with
respect to momentum:

DπI = −
∫ ∞
−∞

dω

2πi
2πiδ(ω − ξi −ReΣi)∂π (ω − ξi −ReΣi)×Ωρ

i · ∂πhπi (3.4.11)

= Zi (∂πξi + ∂πReΣi)|ω=ξ∗i
× Ωρ

i |ω=ξ∗i
· ∂πhπi

DπII = +

∫ ∞
−∞

dω

2πi
2πiδ(ω − ξi −ReΣi)∂π (ω − ξi −ReΣi) · Eρω

i ∂τhπi (3.4.12)

= −Zi (∂πξi + ∂πReΣi)|ω=ξ∗i
· Eρω

i

∣∣
ω=ξ∗i

∂τhπi

DπIII = −
∫ ∞
−∞

dω

2πi
2πiδ(ω − ξi −ReΣi)∂π (ω − ξi −ReΣi)

(
1− (Θρπ)

T
i

)
· ∂ρhπi (3.4.13)

= Zi (∂πξi + ∂πReΣi)|ω=ξ∗i

(
1− (Θρπ)

T
i

∣∣∣
ω=ξ∗i

)
· ∂ρhπi

This can be simplified by noting the following relation:

∂π

(
(ξi +ReΣ)|ω=ξ∗i

)
= ∂ωReΣ|ω=ξ∗i

∂π

(
(ξi +ReΣ)|ω=ξ∗i

)
+ (∂π(ξi +ReΣ))|ω=ξ∗i

, (3.4.14)

which can be rearranged as

(∂π(ξi +ReΣ))|ω=ξ∗i
= ∂π

(
(ξi +ReΣ)|ω=ξ∗i

)(
1− ∂ωReΣ|ω=ξ∗i

)
. (3.4.15)

As we would like to think of ∂πξi as the velocity v. We now define the renormalizes velocity v∗ in the
following way

v∗ = ∂π

(
(ξi +ReΣ)|ω=ξ∗i

)
. (3.4.16)
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Hence the three equations (3.4.11),(3.4.12) and (3.4.13) can respectively be written as

v∗ × Ωρ
i |ω=ξ∗i

· ∂πhπi (3.4.17)

−v∗ · Eρω
i

∣∣
ω=ξ∗i

∂τhπi (3.4.18)

v∗
(

1− (Θρπ)
T
i

∣∣∣
ω=ξ∗i

)
· ∂ρhπi (3.4.19)

We proceed by integrating the terms where the inverse Green’s function is differentiated with respect to
time:

DτI = −
∫ ∞
−∞

dω

2πi
2πiδ(ω − ξi −ReΣi)∂τ (ω − ξi −ReΣi)Eρω

i · ∂πhπi (3.4.20)

= Zi (∂τξi + ∂τReΣi)|ω=ξ∗i
Eρω
i

∣∣
ω=ξ∗i

· ∂πhπi

DτII = +

∫ ∞
−∞

dω

2πi
2πiδ(ω − ξi −ReΣi)∂τ (ω − ξi −ReΣi)Eπω

i · ∂ρhπi (3.4.21)

= −Zi (∂τξi + ∂τReΣi)|ω=ξ∗i
Eπω
i |ω=ξ∗i

· ∂ρhπi

As in the momentum case this can be simplified by noting a similar relation:

∂τ

(
(ξi +ReΣ)|ω=ξ∗i

)
= ∂ωReΣ|ω=ξ∗i

∂τ

(
(ξi +ReΣ)|ω=ξ∗i

)
+ (∂τ (ξi +ReΣ))|ω=ξ∗i

. (3.4.22)

This can be rearranged as

(∂τ (ξi +ReΣ))|ω=ξ∗i
= ∂τ

(
(ξi +ReΣ)|ω=ξ∗i

)(
1− ∂ωReΣ|ω=ξ∗i

)
. (3.4.23)

As we would like to think of ∂τξi as a power P. We define the renormalizes power P∗ in the following
way :

P∗ = ∂τ

(
(ξi +ReΣ)|ω=ξ∗i

)
. (3.4.24)

Hence we can rewrite equations (3.4.20) and (3.4.21) respectively as

P∗ Eρω
i

∣∣
ω=ξ∗i

· ∂πhπi (3.4.25)

−P∗ Eπω
i |ω=ξ∗i

· ∂ρhπi (3.4.26)

Finally we take care of the integration of the terms where the inverse Green’s function is differentiated
with respect to position:

DρI = +

∫ ∞
−∞

dω

2πi
2πiδ(ω − ξi −ReΣi)∂ρ (ω − ξi −ReΣi) (1−Θρπ

i ) · ∂πhπi (3.4.27)

= −Zi (∂ρξi + ∂ρReΣi)|ω=ξ∗i
(1−Θρπ

i )|ω=ξ∗i
· ∂πhπi

DρI = −
∫ ∞
−∞

dω

2πi
2πiδ(ω − ξi −ReΣi)∂ρ (ω − ξi −ReΣi) · Eπω

i ∂τhπi (3.4.28)

= Zi (∂ρξi + ∂ρReΣi)|ω=ξ∗i
· Eπω

i |ω=ξ∗i
∂τhπi

DρI = −
∫ ∞
−∞

dω

2πi
2πiδ(ω − ξi −ReΣi)∂ρ (ω − ξi −ReΣi)×Ωπ

i · ∂ρhπi (3.4.29)

= Zi (∂ρξi + ∂ρReΣi)|ω=ξ∗i
× Ωπ

i |ω=ξ∗i
· ∂ρhπi
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Once again we can simplify this in the same way in the previous two cases

∂ρ

(
(ξi +ReΣ)|ω=ξ∗i

)
= ∂ωReΣ|ω=ξ∗i

∂ρ

(
(ξi +ReΣ)|ω=ξ∗i

)
+ (∂ρ(ξi +ReΣ))|ω=ξ∗i

, (3.4.30)

which can be rearrange like so

(∂ρ(ξi +ReΣ))|ω=ξ∗i
= ∂ρ

(
(ξi +ReΣ)|ω=ξ∗i

)(
1− ∂ωReΣ|ω=ξ∗i

)
. (3.4.31)

We would like to think of ∂ρξi as a force F. So we now defining the renormalizes force F∗ in the following
way

F∗ = ∂ρ

(
(ξi +ReΣ)|ω=ξ∗i

)
. (3.4.32)

Hence the three equations (3.4.27),(3.4.28) and (3.4.29) can respectively be written as

−F∗ (1−Θρπ
i )|ω=ξ∗i

· ∂πhπi (3.4.33)

F∗ · Eπω
i |ω=ξ∗i

∂τhπi (3.4.34)

F∗ × Ωπ
i |ω=ξ∗i

· ∂ρhπi (3.4.35)

Having done the energy integration we can now write down a fully renormalized collision-less semi-classical
Boltzmann equation. However to get it into a more recognizable form let us write it as an equation of
the function f = 1

2 (1− hπi)[(
F∗ · Eπω

i |ω=ξ∗i
− v∗ · Eρω

i

∣∣
ω=ξ∗i

+
(

1− Ξi|ω=ξ∗i

))
∂τ (3.4.36)

+
(
P∗ Eρω

i

∣∣
ω=ξ∗i

− F∗ (1−Θρπ
i )|ω=ξ∗i

+ Eρτ
i

∣∣
ω=ξ∗i

+ v∗ × Ωρ
i |ω=ξ∗i

)
· ∂π

+

(
v∗
(

1− (Θρπ)
T
i

∣∣∣
ω=ξ∗i

)
− Eπτ

i |ω=ξ∗i
−P∗ Eπω

i |ω=ξ∗i
+ F∗ × Ωπ

i |ω=ξ∗i

)
· ∂ρ
]
f = 0

We see that we have obtained a much richer equation due to the multi-band structure of our original
problem, even without considering electromagnetic effects. General electromagnetic fields can be intro-
duced rather straightforwardly, see Wickles and Belzig[9]. However it is a tedious procedure, and we can
without more work include static electric fields, so we will not bother to inculde the full electromagnetic
gauge freedom. It should be stated that the result in (3.4.36) have not been found before, and it is the
most general form a semi-classical Boltzmann equaiton can have without including electromagnetic fields,
by only considering first order terms. Having found the rather general equation (3.4.36) we should try
to specify to the case we discuessed in the first chapter, namely the anomalous Hall effect. This will be
done in the following section.

3.4.1 The Anomalous Hall Effect, Revisited

In order to get the anomalous Hall effect let us consider a two band Hamiltonian of the following form

H(r,p) = ξ(p)− eϕ(r) 1, (3.4.37)

where ξ is some general hermitian matrix function of momentum which gives am energy gap. ξ also

includes the chemical potential, and ϕ is the electric potential of a static electric field such that ∂rϕ = −E.
This along with neglecting all self-energy effect leads to the following semi-classical Boltzmann equation
as can be seen from equation (3.4.36)

(∂t − Fi · ∂π + (v + Fi ×Ωπ
i ) · ∂ρ) f = (∂t − eE · ∂π + (v + eE×Ωπ

i ) · ∂ρ) f = 0. (3.4.38)

Note that there are no differences between p and π in this case. Now in order to get the transport
properties from this equation we need to solve it. But in order to do that we will need to specify a
chemical potential. We will put it in the gap as in section 2.3. In this case there is however a simple
solution, namely that f = f0, where f0 is the Fermi-Dirac distribution, which will in the lover band will
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be a constant as we place the chemical potential in the gap.
Having a solution we just have to find the continuity equations by performing the momentum inte-

grations as in equation (2.3.6)15. Hence we get that the particle density and the particle current density
are given as

ρ =

∫
dπ

(2π)2
f, (3.4.39)

jp =

∫
dπ

(2π)2
(v + eE×Ωπ

i ) f. (3.4.40)

Now plugging our solution for f in we get the following expression for the current density

j = −e
∫

dπ

(2π)2
(v + eE×Ωπ

i ) f0. (3.4.41)

Now let us find the conductivity tensor in the case of the Hall geometry in figure 2.2. The result is given
in equation (2.3.11) which we restate here for convenience, note that ρ = (x, y, z),

σyx =
∂j

∂Ex
· ĵ = −e2

∫
dπ

(2π)2
Ωπ
i f

0, (3.4.42)

If we specified the model to the Rashba Hamiltonian with Zeeman splitting we will of course get the same
result as in equation (2.3.13). So we have shown that the more generally derived semi-classical Boltzmann
equation is able to reproduce this well established result. However we now have better understanding of
its validity, in the sens that we have a clear expansion parameter giving in equation (3.3.24). More over
we have the possibility to account for self-energy effects.

15This case is in fact simpler as it is collision-less.
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Chapter 4

Summary and Outlook

4.1 Summary

We have, in this thesis first given a derivation of a semi-classical Boltzmann equation, using the time
dependent variational method. This gave us an understanding of which kind of new terms to expect
form a more general approach. It also enabled us to investigate the underlying symmetries of the semi-
classical equation, as one step was to calculate a Lagrangian for the semi-classical variables. Surprisingly,
the symmetry found was a local gauge symmetry in both space and momentum. Having a Boltzmann
equation with an anomalous velocity term made it possible to derive the anomalous Hall effect, which is
one of the hallmark phenomena for Berry curvature in transport theory.

With some physical insight to what properties to expect form a multi-band system we proceed with
the Keldysh based derivation. One of the important steps in that derivation was to do the Wigner
transformation so we could treat momentum and space on equal footing, leading to the insight that
the local gauge symmetry in both space and momentum is in fact present in quantum mechanics, one
just has to choose the right representation. Using the gauge symmetry we where able to perturbatively
decouple the kinetic equation and show that in the band-projected chase, this could be viewed as a
minimal coupling to the space and momentum Berry connection. Transforming to the kinetic space and
momentum we where able to arrive at a renormalized collision-less quantum Boltzmann equation for a
multi-band Hamiltonian. With a quantum Boltzmann equation at hand we continued by integrating out
the energies arriving at a semi-classical Boltzmann equation, which have not been done before. From
the semi-classical Boltzmann equation we could again derive the anomalous Hall effect, hence showing
consistency.

4.2 Outlook

As we have not considered the full effect of electromagnetism, this would be the natural next step. This
has in fact to some extent been discussed by Wickles and Belzing[9] and should not pose major new
difficulties. The real challenges of further progress will be the systematic inclusion of collision terms with
none trivial matrix structure. Trivial meaning they are proportional to the identity and therefore only
able to induce intra band scattering, in fact such terms could have been introduced in our calculation
nearly without any further complications. We did not do it since such simple collisions-terms seems to be
unphysical. The Keldysh treatment should be done in order to establish a more systematic understanding
of side-jumps and skew-scattering as reviewed by Sinitsyn in 2008[16] possibly yielding new phenomena.
A Keldysh derivation will also allow for renormalization to be discussed in conjunction with collision.

One could in principal also try to refine the variational method by choosing a more elaborate wave
function. However, it is unlikely tolead to any new insight because of the limitation of the method. So
this should not be pursued, except for purely academic reasons.
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