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Abstract

The top quark, as the most massive of all observed elementary par-
ticles, has the exclusive advantage of being the optimal candidate to
reveal the mystery of physics beyond the Standard Model of particle
physics (BSM). Anomalous contributions to tt production can be in-
vestigated in the framework of Standard Model Effective Field Theory
(SMEFT). The potential new contributions are expected to affect the
production cross section and angular distributions of the top decay
products due to changed spin configurations. The Future Circular
Collider (FCC) process e+e− → tt will be simulated using the IDEA
detector setup and investigated with the aim to gauge the potential
experimental sensitivity to anomalous top contributions. The project
will focus on all decay configurations of a tt system, which is ex-
pected to be possible in the very clean conditions of e+e− colliders.
Event selection is used to select the collision events of interest with
respect to background and apply a kinematic reconstruction to deter-
mine the complete kinematic configuration of each event. This allows
to determine the production cross section and investigate potential
observables (production & decay angles and optimal observables a.o.)
for their sensitivity to BSM contributions. The final goal is to fit
the anomalous gauge coupling parameters using both the kinematical
observables and cross section information.
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Introduction

Since ancient times, the human race has sought understanding of the funda-
mental principles that control nature. It was once believed that everything
consisted of four elements: earth, wind, fire and water. We now know that
the ”elements” are more complicated than that. Elementary particle physics
is the study of the fundamental constituents of matter, the elementary parti-
cles, and the forces that act between them. The goal of particle physics is to
discover the unifying principles of the universe use them to form a complete
picture of physics.
Great effort have been made in unifying the four forces of nature. The elec-
tromagnetic and weak forces were combined in a consistent theory today
known as the electroweak theory. Quantum Chromodynamics (QCD), the
theory behind the strong force, was combined with the electroweak theory
to create the Standard Model. The Standard Model is based on a underly-
ing symmetry called local gauge invariance and a neutral particle, the Higgs
boson. In 2012 the Higgs boson was discovered at the Large Hadron Col-
lider (LHC) [1] and verified the most important predictions of the Standard
Model.
The Standard Model is not a complete theory, however. It cannot give a fully
predictive model for the gravitational force and fails to encompass phenom-
ena such as non-baryonic dark matter, neutrino masses and the cosmological
baryon-antibaryon asymmetry. This leads particle physicists to look for phe-
nomena beyond the predictions of the Standard Model. One place to begin
the search is with the top quark. The top quark is the heaviest particle in
the Standard Model with a mass around 173 GeV [2] and is comparable with
the Higgs expectation value. The high mass of the top quark indicates a
stronger coupling to fields outside the Standard Model.
The European Organisation for Nuclear Research (CERN) is the leading fron-
tier within the field of high energy particle physics, owing responsibility for
the LHC and the discovery of the Higgs boson. CERNs next project is the
Future Circular Collider (FCC), where in the FCC-ee experiment electron
positron collisions seek to produce measurements with unprecedented levels
of precision. With higher levels of precision, smaller and smaller variations
from predictions can be observed.
This thesis seeks to determine the measurement sensitivity of anomalous top
quark coupling constants at the FCC-ee. The anomalous coupling constants
to the top quark are couplings that do not exist within the Standard Model
but can be introduced through supplementing the original framework with
Effective Field Theories. By comparing simulations of particle physics at the
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FCC-ee with and without anomalous coupling constants, the measurement
sensitivity is determined by performing the necessary steps to select and re-
construct top quark collisions.
The section Theoretical Basis gives an overview of gauge invariance and
some of the Standard Model relevant to the top quark production exper-
iment. The relevant anomalous coupling constants are introduced and an
overview of the the top quark production through electron-positron annihi-
lation is given. The Experimental Apparatus section gives an overview of the
experimental conditions planned at the FCC and the IDEA detector. The
exact details of the experiment still require finalization and many aspects are
prone to change. The framework used to simulate the particle physics and
the anomalous physics at the FCC is outlined. This study is performed on the
semileptonic decay channel of top pairs produced at a centre-of-mass energy
of

√
s = 365GeV. The Event Selection & Reconstruction section outlines

the event selection and the considerations made in association with it. The
event selection is performed in two parts. In the first part the reconstruction
of the event is ensured through manual selection. In the second part machine
learning algorithms are used to differentiate between events. Through a kine-
matic fit the event reconstruction is performed after the event selection. The
resulting confidence intervals of the anomalous coupling constants are shown
in the Analysis section where the effects of the event selection on the event
samples is also studied.
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Theoretical basis

Gauge invariance

One of the most profound insights in theoretical physics is that interactions
are dictated by principles of symmetry. Analytical mechanics tells us that
invariance under translation, time displacement and rotation leads to con-
servation of momentum, energy and angular momentum, respectively. In
a similar vein, the conservation of charge, both electric charge and colour
charge, is derived from a different type of invariance under gauge transfor-
mation. For a gauge theory, the Lagrangian must be gauge invariant, i.e. it
must be invariant under gauge transformations of the particle fields, like the
one shown in equation (1).

ψ(x) → eiαψ(x) (1)

the implication here is that the phase α cannot be measured and can thus
be chosen arbitrarily. If α is a fixed as constant across all of space and time,
we call equation (1) a global gauge transformation. If the phase instead were
space and time dependant α = α(x), the equation would be a local gauge
transformation. A local gauge transformation is a much stronger requirement
for gauge theories. The standard model is based on the assumption that
gauge theories describes the fundamental forces of the universe, and as we
shall see, the electroweak theory is a gauge invariant quantum field theory.

Quantum electrodynamics

Quantum electrodynamics (QED) is the gauge theory that describes elec-
tromagnetic interactions and is gauge invariant under the local gauge trans-
formation U(1). QED can be described somewhat simply with Lagrangian
formalism by the following equation [3]

LQED = −1

4
FµνF

µν + ψ(iγµ∂µ −m)ψ − qψγµψAµ (2)

Where ψ represents the half-spin spinor field of a fermion with charge q
and mass m while Aµ represents the photon field. Fµν is the electromagnetic
tensor and is dependent only on Aµ, such that the first term describes the free
photon, the second term describes free fermions and the last term describes
the interaction between fermions and photons. The notation of an upper
index with the same symbol as a lower index indicates a sum over all indices,
such that aµbµ =

∑4
µ=0

∑4
ν=0 gµνaµbν and p

µpµ = E2−|p⃗|2 = m2. The γµ are
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the gamma matrices and we will often abbreviate them with slash notation
γµaµ = /a. Using the Euler-Lagrange equation on the second term of equation
(2) with respect to ψ, we see that the Lagrangian satisfies the Dirac equation
[3]

i/∂ψ −mψ = 0 (3)

Equation (2) also needs to satisfy local U(1) gauge symmetry, which means
that the Lagrangian must be invariant under transformations of the fields.
The spinor field and the photon field transforms as

ψ(x) → eiα(x)ψ(x) (4)

Aµ(x) → Aµ(x) + ∂µα(x) (5)

In order for the Lagrangian to satisfy these transformations we need to re-
place the partial derivatives ∂µ with the covariant derivative Dµ

∂µ → Dµ = ∂µ + iqAµ (6)

This leads to the Lagrangian to take the form

LQED = −1

4
FµνF

µν + ψ(i /D −m)ψ − qψ /Aψ (7)

In the same manner this technique can be applied to other symmetry groups
to derive lagrangians for the weak and strong interactions by requiring a lo-
cal SU(2) gauge symmetry and SU(3) gauge symmetry, respectively, for a
lagrangian that satisfies the Dirac equation. This study will omit an expla-
nation of the strong interaction and instead focus on the unification of QED
with weak interactions.

The Standard model

The Standard Model of Particle Physics (SM) is the theory that postulates
that all matter is made up of point-like spin-half particles known as fermions,
and that the interactions between these fermions is dictated by the force car-
rying bosons. The fermions are spin ½ particles divided into leptons and
quarks, where the distinction is that the quarks interacts with the strong
force. Each fermion has an anti-particle with equal and opposite quantum
numbers, while the bosons are their own anti-particles. The gauge bosons
are spin 1 particles and are responsible for the electromagnetic force, which
mediated by the photon, the weak force, which is mediated by the W and Z
bosons, and the strong force which is mediated by the gluons. Additionally,
the Higgs boson is a scalar particle with spin 0, which is required in order for
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Figure 1: The Standard Model of Particle Physics. Each of the 17 particles
that SM predicts is displayed. The fermions are displayed in the first three
columns, the gauge bosons in the fourth column and the higgs boson in the
final column. The fermions are divided into three generations, one for each
column. Each generation has a quark with electric charge +2

3
, a quark with

electric charge −1
3
, a negatively charged lepton and a corresponding neutrino

with no charge.
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Figure 2: The allowed interactions of the Standard Model. The electrically
charged particles interact with the photon, the quarks interact with the gluon,
the Higgs interacts with particles wiht mass, and the weak bosons are the
only particles that interact with neutrinos.

the W and Z bosons to have mass. It is believed that the Higgs mechanism
is also responsible for giving the fermions their masses.
The electrically charged particles interact with the photons, the quarks inter-
act with the gluons and every fermion interacts with the W and Z bosons. Ad-
ditionally, the bosons can interact with each other. Gluons can self-interact,
photons can interact with W bosons and the weak bosons can interact with
each other. There is also the Higgs boson which is a scalar boson with spin
0 where the particles have mass because of their interaction with the Higgs
field, as such the Higgs boson interacts with all particles with mass, including
itself. A diagram of which particles interact with which is shown in Figure
2. The standard model is not a complete theory of fundamental interactions,
however, since it does not fully incorporate gravity and baryon asymmetry.
The Standard Model is based on the gauge group

SU(3)C × SU(2)L × U(1)Y (8)

where the SU(3)C represent the gauge group of Quantum Chromodynamics
(QCD) with color charge C, SU(2)L × U(1)Y represents the gauge group of
the electroweak interactions, with L and Y representing the weak isospin and
weak hypercharge, respectively.
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Electroweak unification

Electroweak is a gauge theory based on the SU(2)×U(1) group and has four
gauge fields, the photon, the Z boson and the W± bosons. In the 1960s,
Glashow, Salam and Weinberg (GSW) developed a unified picture of the
electromagnetic and weak interactions. One consequence of the GSW model
is the prediction of a weak neutral-current mediated by the neutral Z bo-
son [3]. The charged-current weak interaction is associated with SU(2) local
gauge symmetries. The generators for SU(2) can be written in terms of the
three 2× 2 Pauli spin matrices, requiring three gauge fields corresponding to
three gauge bosons, W (1), W (2) and W (3), to satisfy the local gauge invari-
ance. The wavefunction is described as weak isospin doublets, since they are
required to have two components to satisfy the dimensions of the Pauli ma-
trices. Particle states can either have left-handed or right-handed chirality.
Chirality does not have any simple physical interpretation, but is related
to the helicity combinations that give non-zero matrix elements, where he-
licity is the spin projection onto the movement direction of a particle. The
weak charged bosons only couple to left-handed chiral particle states and and
right-handed chiral antiparticle states, which corresponds to SU(2) doublets
and singlets, with weak isospin IW = 1

2
and IW = 0, respectively.(

νe
e−

)
L

,

(
νµ
µ−

)
L

,

(
ντ
τ−

)
L

,

(
u
d′

)
L

,

(
c
s′

)
L

,

(
t
b′

)
L

(9)

e−R, µ−
R, τ−R , uR, cR, tR, dR, sR, bR (10)

The weak isospin doublets are given in (9) and the weak isospin singlets are
given in (10). Since the singlets are unaffected by the SU(2) local gauge
transformation, they do not couple to the gauge bosons. The physical W
bosons can be identified as a linear combination of W (1) and W (2)

W± =
1√
2
(W (1) ∓ iW (2)) (11)

Since the gauge bosons only couple to left-handed particles and right-handed
antiparticles, we expect the Z boson to do the same. However, experimen-
tation shows that Z bosons couple to both left-handed and right-handed
particles. From this came the idea that the photons and Z bosons, with
corresponding fields Aµ and Zµ, each come from a mixing of the U(1) gauge

field Bµ and the neutral SU(2) field W
(3)
µ

Aµ = +BµcosθW +W (3)
µ sinθW (12)

Zµ = −BµcosθW +W (3)
µ sinθW (13)
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where θW is the weak mixing angle. The Bµ field couples to a new kind of
charge, termed weak hypercharge Y , which causes the electromagnetic charge
to be derived from the more fundamental weak hypercharge and weak isospin

Q =
Y

2
+ I

(3)
W (14)

where Q is the electric charge and I
(3)
W is the third component of the weak

isospin. The weak mixing angle θW relates the weak bosons and the photon
through their coupling terms

e = gW sinθW = gZsinθW cosθW = g′cosθW (15)

where e is the electric charge of an electron, gW is the coupling strength of
the W± bosons, gZ is the coupling strength of the Z boson and g′ is the
coupling strength of the Bµ field. With this electroweak unification, the Z
boson can now couple to both the left-handed and right-handed chiral states,
though with different coupling strengths, which are given by

cL = I
(3)
W −Qsin2θW , cR = −Qsin2θW (16)

with cL being the coupling to left-handed states and cR being the coupling to
right-handed states. By requiring the Lagrangian for the electroweak theory
be invariant under U(1) and SU(2) local gauge transformations, we get the
covariant derivative for the U(1)Y × SU(2)L group

∂µ → Dµ = ∂µ + igWT ·Wµ(x) + ig′
Y

2
Bµ (17)

where T = σ
2
are the three generators of SU(2), Wµ is the vector of gauge

fieldsWµ of SU(2) and Bµ is the U(1)Y gauge field with hypercharge Y . This
covariant derivative ensures that the Lagrangian is invariant under U(1)Y ×
SU(2)L local gauge transformations, such that the electroweak Lagrangian
becomes a valid. Thus we have shown that the U(1) QED gauge theory and
the SU(2) weak interaction gauge theory can be unified into one U(1)Y ×
SU(2)L electroweak gauge theory. We need one more element however, since
local gauge symmetry of (17) requires that the bosons are massless, and
does not account for the Bµ field. This local gauge symmetry breaking is a
problem that can only be mitigated through the introduction of the Higgs
mechanism.
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Figure 3: The Higgs potential. On the left with
µ2 > 0. On the right with µ2 < 0.

Higgs

The Higgs mechanism and the associated Higgs boson are essential parts
of the Standard Model. The Higgs mechanism is the way that the W and
Z bosons acquire mass without breaking the local gauge symmetry of the
Standard Model [3]. Since the gluon and the photon are massless, there was
no breaking of local gauge symmetry in QED and QCD, but since the weak
bosons do have mass, introducing mass via the Higgs mechanism makes once
again makes the theory renormalizable. In the Salam-Weinberg theory, the
Higgs mechanism is embedded in the U(1)Y ×SU(2)L local gauge symmetry.
Because the Higgs mechanism is required to generate masses of the elec-
troweak gauge bosons, one of the scalar fields must be neutral and one must
be charged. Thus the minimal Higgs model consists of two complex scalar
fields, placed in a weak isospin doublet

ϕ =

(
ϕ+

ϕ0

)
=

1√
2

(
ϕ1 + iϕ2

ϕ3 + iϕ4

)
(18)

The Lagrangian for this doublet of complex scalar fields is

LHiggs = (Dµϕ)
†(Dµϕ)− V (ϕ) (19)

where V (ϕ) is the Higgs potential and the covariant derivative Dµ is given
by equation (17). The self interaction term of the Higgs field, the potential
V , is chosen to be the right potential in Figure (3).

V (ϕ) = µ2ϕ†ϕ+ λ(ϕ†ϕ)2 (20)
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where µ2 < 0 and λ > 0. The potential has an infinite set of degenerate
minima satisfying

ϕ†ϕ =
1

2
(ϕ2

1 + ϕ2
2 + ϕ2

3 + ϕ2
4) =

v2

2
= −µ

2

2λ
(21)

The Vacuum Expectation Value (VEV) v = 246GeV is the energy of the
lowest energy state of the field i.e. the vacuum state. Since the photon is
required to remain massless after symmetry breaking, the minimum of the
potential must correspond to a non-zero VEV of the neutral scalar field ϕ0

⟨0|ϕ|0⟩ = 1√
2

(
0
v

)
(22)

then we can expand the field about this minimum and perform some suitable
gauge transformations to obtain

ϕ(x) =
1√
2

(
0

v + h(x)

)
(23)

where h(x) is the physical Higgs field. The Lagrangian from equation (19)
describe the massive Higgs scalar, the massive and massless gauge bosons,
the interactions between the Higgs and the gauge bosons as well as the Higgs
self-interaction. This means we can derive the gauge boson masses from the
(Dµϕ)

†(Dµϕ) term and the Higgs mass from the self-interaction term. By
substituting for equation (17) and (23) and reducing we get

mH =
√
2λv (24)

mW =
1

2
gWv (25)

mZ =
1

2

√
g2W + g′2 =

1

2

gWv

cosθW
(26)

mA = 0 (27)

mf =
1√
2
gfv (28)

where mH , mW , mZ and mA are the Higgs mass, the W± boson mass, the Z
boson mass and the photon mass, respectively. Additionally an equation for
the fermion masses mf can be obtained, using the Yukawa coupling gf even
though this coupling is not necessarily predicted by the Higgs mechanism,
but can be chosen to be consistent with the observed fermion masses.
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Extending the Standard Model with
Effective Field Theories

Imagine a theory for new physics at a high energy scale, Λ. At lower energies
the operators that describe the new theory would become almost completely
negligible. In such cases it can be more efficient to make an Effective Field
Theory (EFT), which instead of describing the full theory simply describes
the contribution of the total theory. This is especially useful for describing
the effects of the theory without knowing the exact theory. As an example,
quantum gravity can be described at low energy scales quite well with an
EFT. Since the Standard Model is a consistent but not complete theory, it
can be considered an EFT at low energies.
The idea behind EFT is to add an effective Lagrangian to our existing SM
Lagrangian that describe higher-order contributions which will become more
relevant at higher energy colliders. The SM is a theory based on dimension
4, which is the lowest possible dimension that can be both Lorentz invariant
and satisfy the SU(3)C × SU(2)L × U(1)Y gauge symmetries of the SM. As
such the total Lagrangian for the SM with EFT contributions (SMEFT), can
be described by

LSMEFT = LSM +
∑
i

c
(6)
i

Λ2
O

(6)
i +

∑
j

c
(8)
j

Λ4
O

(8)
j + . . . (29)

where O
(d)
i are operators with dimension d, ci are the coefficients for the op-

erators and Λ is the characteristic length scale, which ensures the coefficients
remain dimensionless. Only operators that obey the symmetries of the SM
are included. Operators with uneven dimension cannot conserve both baryon
number and lepton number. Thus the lowest dimension contribution to the
SM Lagrangian is of dimension-6. Higher dimension terms are suppressed
by the characteristic energy 1

Λd−4 . For the purpose of this study we choose
to neglect contributions of higher orders and simply focus on the dimension
6 operators, since their contributions are larger. A total of 59 independent
operators exist at the dimension 6 level [7], however we are only interested
in the anomalous top quark behaviour, so we can reduce this number to only
those relevant for the top quark decay.
Since we examine electron positron collisions and we choose not to examine
flavour changing vertices, the vertices we are interested in are the Wtb, Ztt
and γtt vertices. There are 7 independent operators that contribute to the
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Wtb, Ztt and γtt vertices and in the notation of [8] they are

O
(3)
ϕq = i(ϕ†τ IDµϕ)(qLγ

µτ IqL) (30)

O
(1)
ϕq = i(ϕ†Dµϕ)(qLγ

µqL) (31)

Oϕϕ = i(ϕ̃†Dµϕ)(tRγ
µbR) (32)

Oϕt = i(ϕ†Dµϕ)(tRγ
µrR) (33)

OtW = (qLσ
µντ ItR)ϕ̃W

I
µν (34)

ObW = (qLσ
µντ IbR)ϕW

I
µν (35)

OtBϕ = (qLσ
µνtR)ϕ̃Bµν (36)

(37)

with covariant derivative

Dµ = ∂µ + igs
λa

2
Ga

µ + ig
τ I

2
W I

µ + ig′Y Bµ (38)

where Ga
µ, W

I
µ and Bµ are the gauge fields for SU(3), SU(2) and U(1),

respectively. λa are the Gell-Mann matricies with a = 1, . . . 8, τ I are the
Pauli matrices for I = 1, 2, 3, and Y is the hypercharge. ϕ is the SM Higgs
doublet with ϕ̃ = ϵϕ∗ = iτ 2ϕ∗. The quark weak interactions eigenstates are
denoted by

qL =

(
uL
dL

)
, uR, dR (39)

as we did in equation (9) and (10). The effective Wtb vertex including SM
contributions and those from dimension-six operators can be parameterised
as [8]

LWtb = − g√
2
bγµ(VLPL + VRPR)tW

−
µ

− g√
2
b
iσµνqν
MW

(gLPL + gRPR)tW
−
µ +H.c.

(40)

where q is the outgoing boson momentum, PR and PL are the right- and
left-handed chiral projection operators, and gL, gR, VR and VL are couplings.
Within SM, only the VL coupling remains while gR, gL and VR vanish at tree
level. The contribution to these couplings from the operators in equation
(30) are

δVL =C
(3)
ϕq

v2

Λ2
, δgL =

√
2CbW

v2

Λ2

δVR =
1

2
Cϕϕ

v2

Λ2
, δgR =

√
2CtW

v2

Λ2

(41)
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all the new physics on the Wtb can be described by these four parameters.
We parameterise the Ztt vertex including the SM contributions in the same
vein as with Wtb

LZtt =− g

2cW
tγµ(XL

ttPL +XR
ttPR − 2s2WQt)tZµ

− g

2cW
t
iσµνqν
MZ

(dZV + idZAγ5)tZµ

(42)

with sW = sinθW , cW = cosθW and Qt =
2
3
as the top electric charge. XL

tt and
XR

tt are couplings in terms of the chiral parts while dZV and dZA are couplings
parameterised in terms of vecor and axial parts. In SM only XL

tt contributes,
while the three other couplings XR

tt = dZV = dZA = 0 at tree level. The
contributions from dimension-6 operators are

δXL
tt =Re[C

(3)
ϕq − C

(1)
ϕq ]

v2

Λ2
, δdZV =

√
2Re[cWCtW − sWCtBϕ]

v2

Λ2

δXR
tt =− Re[Cϕt]

v2

Λ2
, δdZA =

√
2Im[cWCtW − sWCtBϕ]

v2

Λ2

(43)

where Re[. . .] denotes the real part and Im[. . .] denotes the imaginary part.
The γtt vertex can be parameterised as

Lγtt = −eQttγ
µtAµ − et

iσµνqν
mt

(dγV + idγAγ5)tAµ (44)

where the couplings dγV and dγA are real and related to the top quark magnetic
and electric dipole moment, respectively.

δdγV =

√
2

e
Re[cWCtBϕ + sWCtW ]

vmt

Λ2

δdγA =

√
2

e
Im[cWCtBϕ + sWCtW ]

vmt

Λ2

(45)

Thus we have a total of 10 relevant anomalous couplings depending on 7
operator coefficients relevant for electron positron collisions. A more detailed
explanation can be found in [8]. Since the physical observables depend on
the matrix element squared, we can modify our SM matrix element with our
new effective field theory

MSMEFT = MSM +MEFT (46)

Since the Lagrangian for the sum of dimension-6 are all proportional to
changes in the operator coefficients c

(6)
i = ci, the dependence can be fac-

tored out, giving us the following anomalous matrix element squared

|MSMEFT |2 = |MSM + c
(6)
i M′

EFT |2

= |MSM |2 + ci(M∗
SMM′

EFT +MSMM′∗
EFT ) + c2i |MEFT |2

(47)
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This indicates that the matrix element squared, and thus the cross section,
has a parabolic dependence on the operator coefficients c

(6)
i . When varying

a single coefficient we expect to see a parabola, while changing multiple
operators will give a more complicated co-linear dependence. However the
parabolic behavior can remain while multiple parameters are changed at the
same time if they change proportional to each other. Those are exactly
the relationships gauge invariance forces between the parameters in equation
(41), (43) and (45).
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Figure 4: The Feynman diagram for e+e− into a semileptonic top event. [4]

Top pair production at e+e−

The focus of this study, the top quark, is the heaviest fermion in the SM
and the heaviest elementary particle we know of, with a mass of around
mt ≃ 173GeV. While the huge mass of the top quark makes it extremely
unstable, causing it to decay before it can even form any hadrons, it also
makes it an interesting point of study. The Yukawa coupling of the top quark
to the Higgs field is given by

√
2mt

v
≃ 0.99 which is very close to unity. While

it might be just a coincidence that the heaviest fermion has a coupling to the
Higgs field of 1, it seem like an observation worth investigating and might
yield a deeper understanding of the Higgs mechanism and its coupling to
fermions. In order to produce top quarks in an experiment the most obvious
way is through electron positron annihilation. It is also possible to produce
the top quark through other means, but those methods do not produce top
quarks in isolation. In the top pair production system, the e+e− annihilates
into either a virtual photon or a Z boson, which then decays into a tt pair.
Due to the very large mass of the top quark at around mt ≃ 173GeV, it
has an extraordinarily short lifetime, meaning unlike other quarks it decays
before hadronization. Additionally, the top quark decays almost exclusively
into bW+ [3]. The W can either decay hadronically W → qq′ or leptonically
W → l νl. This study focuses on semi-leptonic decays, where one W boson
decays hadronically and one decays leptonically. The W decays hadronically
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67.5% of the time [3], so using simple math we calculate the semi-leptonic
case with 2 · 0.675 · (1− 0.675) = 0.44, meaning the semi-leptonic case occurs
in 44% of cases. These types of decays produce a high energy lepton and
neutrino, as well as 4 quarks. The Feynman diagram for the semileptonic
decay is shown in figure 4.
The top quark is the only fermion with a mass high enough that it decays
into an on-shell W boson, meaning the W boson produced is not a virtual
particle and its mass can be found by taking the invariant mass of its decay
products. A convenient characteristic of semileptonic the event is that the
lepton and the neutrino share an invariant mass of close to the W boson mass
at around mW = 80.37GeV [2].
It is possible for either the e+e− pair to radiate photons or the tt pair to
radiate photons or gluons. We call these processes initial state radiation and
final state radiation, respectively. After the initial decay products have been
produced, they hadronize, a QCD process which is not calculable through
perturbative QCD, so phenomenological models are used to simulate the
process. This hadronization form 4 distinct jets from each of the quarks
produced in the semileptonic decay. When the top quark radiates a gluon
that decays into quarks, it can form a fifth jet, which can effect the jet al-
gorithms we use later on. After hadronization the unstable particles decay
into experimentally observable particles, which is determined by experimen-
tally observed branching ratios. Finally the detector measures the produced
particles.
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Experimental Apperatus/setup

FCC description

Since the discovery of the Higgs boson in 2012, there has been an increasing
interest in a higher precision measurement of both the Higgs boson as well
as other elusive particles. This led to the proposal of the Future Circular
Collider (FCC), a circular collider with a circumference of 100km, allowing
for collisions with centre-of-mass energies up to 100 TeV. The proposed FCC
experiment would be divided up into two stages, the FCC-ee experiment,
which seeks to study particles like the Higgs boson and the top quark at
high precision, and the FCC-hh experiment, which seeks to study the fun-
damental particles at very high energy collisions. The FCC-ee experiment
will focus on e+e− collisions and is the focus of this thesis. The two stages
of the experiment bears resemblance to the successful LEP-LHC experiment
in its design. The Conceptual Design Report (CDR) for the FCC [5] covers
the physics discovery opportunities, accelerator design, performance reach,
civil engineering, detector designs, technical infrastructure, cost and sched-
ule. The timeline for the construction of the FCC is detailed in Figure 5.
The 100 km circumference collider requires a great deal of forethought when
choosing where to place it. As such, many aspects are taken into account
when considering the placement of the FCC. From the construction of LEP
and LHC it has been shown that sedimentary rock, known as molasse, pro-
vides very good conditions for drilling, while drilling through limestone pro-

Figure 5: Overview of the FCC-ee implementation timeline starting in 2020.
Non technical tasks marked in grey and green are compulsory for any new
particle collider project and precede the actual construction. Numbers in the
top row indicate the year. Physics operation would start in 2039 according
to this schedule [5].
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vides significant problems. As such the placement of the FCC seeks to min-
imize the amount of limestone and maximize the amount of molasse in its
path. Another concern was minimizing the depth of the collider shaft in
order to reduce pressure on the underground structures. The depth of lake
Geneva was also a concern. These concerns led to the definition of the study
boundary, shown in figure 6, wherein the FCC must be placed. Figure 6 also
shows the proposed placement of the FCC.
When the LHC observed the production of the Higgs boson in 2012 for the
first time, it was at a mass well compatible with this prediction in the context
of the SM. Similarly, the measured W mass mW and the weak mixing angle
θW are also very compatible with the SM. The current overall situation of
the SM fit to the precision measurements available to date is summarised in
Figure 7a. The issue with this global fit is that there are many experimen-
tal facts that are not explainable with the SM, such as as dark matter, the
cosmological baryon-antibaryon asymmetry and the neutrino masses. The
FCC-ee seeks to test the global fit at an unprecedented level of precision. A
theoretical global fit with the expected FCC-ee experimental data is shown
in figure 7b, where the global fit would be unable to support the current SM,
providing exciting opportunities for new physics.
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Figure 6: The proposed location and size of the FCC with geological and
topographical information [5]. In this case, the circumference of collider is
97.75km [5].
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(a) Contours of 68% and 95% confidence level obtained from fits
of the standard model to the precision measurements available
to date, in the (mt,mW ) plane. The grey area is the result of
the fit without the direct measurements of the W, top, and Higgs
masses, while the narrower blue area includes the Higgs boson
mass measurement at the LHC. The horizontal and vertical green
bands and the combined green area indicate the 1σ regions of the
mW and mt measurements [24].

(b) Contours of 68% confidence level as in figure 7a from fits of
the SM expected from expected measurement in the FCC-ee. [5]

Figure 7
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Parameter Z WW ZH tt1 tt2

Beam energy (GeV) 45.6 80 120 175 182.5

Bunches / beam 16640 2000 328 59 48

Average bunch spacing (ns) 19.6 163 994 2763 3396

Bunch population (1011) 1.7 1.5 1.8 2.2 2.3

Energy loss / turn (GeV) 0.036 0.34 1.72 7.8 9.2

Run time (year) 4 2 3 1 4

Integrated luminosity (ab−1) 100 10 5 0.2 1.5

Table 1: Machine parameters of the FCC-ee for different beam energies.

Expected running conditions at the FCC-ee

The FCC-ee’s focus on precision is important for determining the validity
of the standard model. This gives the FCC-ee a focus on improving the
luminosity of the experiment. Luminosity, the amount of collisions over a set
timeframe, gives a higher precision, since the more collisions are performed
the more precise the measurement of the experiment will be. An overview of
the expected performance of the FCC-ee for different beam energies is shown
in table 1.
Since we dont know where we might find new physics, the FCC-ee aims to
have as broad a scope as possible, examining many different physics processes.
The main centre-of-mass operating points for the FCC-ee are around 91 GeV
(Z-pole), 160 GeV (W-pair production threshold), 240 GeV (Higgs factory)
and 340-365 GeV (at and above the tt threshold). At the tt threshold a
scan over the energies between 340GeV and 350GeV around 2mt would be
performed.
This study will focus on the e+e− → tt process at a centre-of-mass collision
energy of

√
s = 365GeV, which will run for a total of 4 years. The FCC-ee

aims for a luminosity of at least L = 1.5ab−1 for a centre-of-mass collision
energy of

√
s = 365GeV.
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Figure 8: The IDEA detector

The IDEA detector

The Innovative Detector for Electron-positron Accelerator (IDEA) is one of
the proposed detector concepts which has been developed for FCC-ee. The
predicted detector performance is demonstrated in the FCC-CDR [5], yet
there are still aspects of the design that needs to be finalized.
The innermost detector, surrounding the beam pipe, is a silicon pixel de-
tector. These very light detectors with high resolution are the basis for the
vertex detector, which will be used in b- and c-tagging. The drift chamber
surrounds the vertex detector. It is large-volume extremely-light short-drift
wire chamber which extends from a inner radius of Rin = 0.35m to an outer
radius of Rout = 2m for a length of L = 4m and consists of a total of 56448
drift cells. The chamber is operated with a very light gas mixture, 90% He -
iC4H10 (isobutane), which is designed to improve tracking by allowing clus-
ter counting and timing techniques to be employed to improve both spatial
resolution and particle identification. The angular coverage of this chamber
extends down to 13◦. A layer of silicon micro-strip detectors surround the
outside of the drift chamber providing an additional accurate space point as
well as precisely defining the tracker acceptance. The IDEA tracking system
is expected have a spatial resolution better than 100µm, a transverse mo-

22



mentum resolution of σ(1/pT ) ≃ a
⊕

b/pT , with a ≃ 3 × 10−5GeV−1 and
b ≃ 0.6× 10−3GeV and angular resolutions of better than 0.1 mrad in both
azimuthal and polar angle for momenta exceeding 10GeV.
The 2T magnetic field is provided by a thin, low-mass superconducting
solenoid coil that sits just outside the tracking chambers in the barrel re-
gion. It works as an absorber of about 1X0, is followed by one layer of
Micro Pattern Gas Detector (MPGD) chambers, another 1X0 absorber and
a second layer of MPGD chambers. The MPGD chamber layers acts as
a preshower detector which provides tracks to be matched to calorimeters
showers in case they are close. After the preshower layers is the lead-fibre
dual-readout calorimeter. The calorimeter is 2m deep and the total number
of fibres is in the order of 108. the calorimeter is sensitive to scintillation light
and Cherenkov light which provides good energy resolution for both electro-
magnetic and hadron showers, providing a resolution close to 10%/

√
E for

isolated electrons and 30%/
√
E for isolated pions. The outermost layer is the

muon chambers which sits within a magnet return yoke. The yoke protects
the beams and limits the impact on the luminosity from the magnetic field.
There is still additional work that needs to be done to finalize the design of
the IDEA detector. For example, the magnet system requires a significant
R&D effort in order to make the solenoid be made much smaller, ultra-thin
and radiation-transparent [5]. The clean experimental environment of an
electron-positron collider allows the detector to run on a so called ”trigger-
less” scheme, since the initial state is known with every event any processed
data can be accepted as an event. This scheme could be similar to previ-
ous electron-positron colliders, but the feasibility of such a scheme is under
investigation.
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Simulation framework

This study is performed using a simulated data that has been generated us-
ing the Future Circular Collider Software (FCCSW). FCCSW uses several
modular components, of which the components important for this study are
Delphes, Pythia8 and EDM4HEP which all fall under the Key4HEP framework
[14]. Key4HEP aims to be the complete software solution for the full exper-
iment life-cycle of several future colliders, such as the FCC, the Circular
Electron Positron Collider (CEPC), the Compact Linear Collider (CLIC)
and International Linear Collider (ILC). Key4HEP seeks to gather software
components and tools into one common framework that can be tailored to
each specific experiment. Key4HEP also makes sure the different experiments
use a common Event Data Model in the form of EDM4HEP, creating ease
of access of data. EDM4HEP is a data model that specifies how data in the
output files is structured. The Monte Carlo samples are generated by call-
ing the DelphesPythia8 EDM4HEP command with a Delphes card relating
to the IDEA detector and a Pythia command card that specifies the event
characteristics. With Pythia the hard processes are specified, the amount
of events simulated at a collision energy are selected and effects like initial
state radiation is specified. Pythia then generates the Monte Carlo samples
and simulates the decays and hadronization. Delphes then reconstructs the
particles using fast detector simulation using the environment described in
the IDEA detector card. From the Delphes process an EDM4HEP output file
is created. The data is stored and handled using ROOT. ROOT is a framework
for data processing developed by CERN. ROOT can save, access and analyze
very large amounts of data at fast speeds.

The ReconstructedParticles framework

Pythia8 is used to generate simulated event samples and compute cross
sections for hard scattering an decay processes of particles at high-energy
colliders. Pythia can simulate particle collisions to a large variety of specifi-
cations. Pythia can select the hard process of a collision event and calculate
its effective cross section, specify additional parameters such as initial state
radiation (ISR) and final state radiation (FSR), change the masses of parti-
cles and specify which types of decays are permitted, including some not in
the SM. Pythia generates Monte Carlo data and hold information about all
of the event particles at all stages before detection. A weakness of Pythia is
in its inability to select hard processes of higher order perturbation theory,
which is one of the reasons we must also use Whizard in our simulations. An
overview of Pythia can be found here [22].
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Whizard is another program that can simulate particle physics [16]. The
advantages of Whizard is its ability to simulate higher order SM processes as
well as the anomalous coupling terms. The 10 coupling parameters relating
to the dimension-six operators relevant to our top interactions exists within
Whizard via Feynman rules in a predefined model named ”SM top anom”.
The parameters from (41), (43) and (45) has its corresponding Whizard pa-
rameter specified in table 2. The parameters are linked to other parameters
by way of the internal operators from equation (30) and which Whizard cal-
culates internally. Due to the 10 parameters being dependent on 7 operators
we only have 7 degrees of freedom, meaning we can only variate 7 parameters,
while three of the parameters are fixed in order to retain gauge invariance.
The choice of which parameters to keep fixed is based on the work in [9]
and [10]. Delphes is a C++ framework performing a fast multipurpose

Parameter Coupling Gauge freedom

vr tbW Re δVL Free

vl tbW Re δVR Free

tl tbW Re δgL Free

tr tbW Re δgR Free

tv ttA δdγV Free

ta ttA δdγA Free

vr ttZ δXR
tt Free

vl ttZ δXL
tt Fixed

ta ttZ δdZA Fixed

tv ttZ δdZV Fixed

Table 2: List of model parameters and their corresponding expressions in
equations (41), (43) and (45). ”Free” means the variable can be freely
changed, while ”Fixed” means it is internally calculated depending on the
other parameter values.

detector response simulation for collider experiments. This simulation in-
cludes a tracking system, calorimeters and a muon system. The simulation
of the detector response takes into account the effect of magnetic field, the
granularity of the calorimeters and sub-detector resolutions [15]. Delphes
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performs a fast simulation of detectors, which unlike a total simulations only
approximately simulates the detector. This is necessary in our case, since
many of the details of the IDEA detector is yet to be finalized. Delphes is
modular in its design and can couple to both Pythia and Whizard as well
as output its data into the EDM4HEP format we are interested in. Delphes

takes our input, simulates the IDEA response, reconstructucts our particles
and saves our simulated particles as ReconstructedParticles. These are
the detected particles. When referring to the ”true” simulated particles, we
call them Monte Carlo (MC) particles. Not every MC particle is detected by
the detector and many of the particles are detected with 4-momentum dif-
fering from the MC particle momentum and sometime the detector detects
non-existant particles. When handling the MC particles and reconstructed
particles, we use FCCAnalyses.
FCCAnalyses is a common framework for FCC related analyses, using EDM4HEP
input ROOT files for analysis and production of plots [12]. As part of this the-
sis, minor functionalities were developed for FCCAnalyses that help identify
the MC particles associated with the reconstructed particles. FCCAnalyses

has a Jet Clustering Interface which uses FastJet, a software package for jet
finding in high energy collisions. FastJet was mainly developed for hadron
collider experiments, but it also supports algortihms for lepton collider ex-
periments. FastJet provides a variety of jet algorithms for e+e− collisions.
Previous analysis of jet algorithm for the semileptonic top decay at FCC-ee
shows a favourable outcome in choosing the Durham algorithm with 4 exclu-
sively clustered jets, so that is the algorithm we choose [10]. Details on the
Durham algorithm, also called kt algorithm for e+e− collisions, can be found
in the FastJet user manual [17].
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Event selection & reconstruction

After simulating our tt events, we want to reconstruct the events and identify
the 4-momentum of the top particle, the bottom particle and the W boson.
This is possible thanks to the fact that in a e+e− collision, we know the ini-
tial state of the system. One issue arises when you consider that while it is
possible in the simulation framework to simulate any collision event desired,
in experiments we don’t get to select the processes that take place in the
detector. In order to correctly perform our analysis on simulated events we
need to take background events into account by simulating them and adding
them to our tt sample before we perform our analysis. Since the cross sec-
tion of top pair production is lower than many other processes, the amount
of background events will far overshadow the signal events, meaning we will
need to perform an event selection to differentiate between them.
The plan is to use machine learning algorithms to classify events as either
background or signal. Before that method is used we will perform a manual
pre-selection, where we ensure that we have the necessary tools for recon-
struction later on. This also gets rid of the most obvious background events.
Once the event selection has been completed, machine learning is used to
identify any possible initial state radiation particles and remove them from
the event, after which the event is reconstructed through a Kinematic Fit.
Over the four year run of the FCC-ee at

√
s = 365 we expect an integrated lu-

minosity of 1.5ab−1. In order to approximate the expected amount of events
for a given type of particle collision, we simply use the following formula

Nexpected = L · σ (48)

where L is the integrated luminosity and σ is total cross section of the event
at the relevant centre of mass energy. Using Pythia we can get the cross
sections of these events. Table 3 shows a summary of the tt process, relevant
processes that can occur, their cross sections and number of expected events
given the integrated luminosity L = 1.5ab−1. These processes have been
simulated using Pythia, with the execption of the ZWW , the ZZZ and the
single top events, which had to be simulated using Whizard. One relevant
process that is not included is the e+e− → γZ. This is due to the process
being poorly defined within Pythia when including initial state radiation.
The contribution to the background sample is not small but can be reduced
through event selection. In order to perform analysis of the ISR contribution
we are forced to neglect the contribution of γZ events in this study.
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Process σ[pb] Nexpected

tt 0.452± 0.003 678000

bb 4.065± 0.0008 6097500

qq 17.03± 0.002 25545000

µ+µ− 1.902± 0.0005 2853000

τ+τ− 1.901± 0.0005 2851500

W+W− 11.20± 0.001 16800000

ZZ 0.8565± 0.0003 1284750

ZH 0.1296± 0.0001 194400

ZZZ (7.644± 0.026) · 10−4 1146

ZWW (1.594± 0.002) · 10−2 23850

Single top (4.572± 0.012) · 10−3 6850

Table 3: Relevant processes and their statistics at
√
s = 365 and L = 1.5ab−1.

tt event characteristics

In order to distinguish between signal and background we analyze the ob-
servables and their features in tt events. We are not just interested in the
top quark event, but the semi-leptonic decay mode of the top quark, since
those events are useful when attempting a reconstruction of the event. The
semileptonic decay mode is the decay where one of the two W decay bosons
decays into leptons and the other decays into hadrons. This decay mode is
written as

e+e− → tt→ bbqq′lνl (49)

The semileptonic top quark event has a branching ratio of 44%, meaning if
Ntop = 678000 then Nsemileptonic ≈ 298000. The semileptonic decay of the tt
pair produces 6 identifiable objects, the lepton, the neutrino, 2 b-quarks and
2 light flavour quarks (d, u, s, c). The nearly undetectable neutrino can be
identified by assigning the total 4-momentum lost in the collision, the missing
momentum, to the neutrino. The quarks will hadronize in an experiment and
produce clusters of hadrons in particle jets, giving us a total of 4 jets. The
two jets produced by light flavour quarks will essentially be indistinguishable
from each other, while the b-jets will be distinguishable from the other jets
by its associated W boson. Since the W bosons are produced on-shell, the
invariant mass of the two light flavour jets and the invariant mass of the
lepton and neutrino should both approximately be equal to the W boson
mass at mW = 80.37 [2]. This is one of the advantages of the semileptonic
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decay mode: the two W boson can easily be distinguished from one another,
since in hadronic cases the light quark jets will not be easily distinguished
from one another and in fully leptonic cases the undetected neutrinos cannot
easily be reconstructed from the missing momentum.
In semileptonic events there can be multiple observed leptons. The lepton
from the W → lνl decay process is assumed to carry the highest energy of all
the leptons, since that lepton was generated at an earlier stage of the decay
chain. By creating a ”Highest Energy Selector”, the highest energy lepton of
a top event can be selected. Figure 9 shows the energy of the highest energy
lepton (if there are any) from a sample of 1 million simulated tt events at√
s = 365GeV. The graph distinguishes between hadronic decay cases (red)

and in semileptonic and fully leptonic cases (blue). Even though hadronic
cases are the majority of events at a branching ratio of 45.5%, there a very
few leptons produced in those cases, and those leptons are of low energy
compared to the leptonic cases.
Lepton universality is assumed, meaning it is equally likely for a the W to de-
cay to any of the three leptons l = {e, µ, τ}. In collider experiments electrons
and muons can usually be quite easily identified in the detector. The tau par-
ticles are special due to their high mass, and since the lifetime of a particle
is inversely proportional to its mass to the fifth power ττ ∝ (mτ )

−5 the tau
particles will decay before exiting the detector. The tau decays through the
W boson and its decay modes are τ− → e−νeντ (17.4 %), τ− → µ−νµντ
(17.4 %), τ− → π−(nπ0)ντ (48 %) and τ− → π−π+π−(nπ0)ντ (15 %) where
n is usually between 0 and 2 [3]. Only 34.8 % of the time will we be able to
identify a lepton from the tau decay, meaning we expect that at least 21.7 %
of semileptonic event will not even have a high energy lepton, if any lepton
at all.
When identifying the neutrino, we add the total 4-momentum of the system
and subtracts it from the initial state 4-momentum vector p⃗i = (0, 0, 0, 365GeV).
The momentum vector we end up with is the expected momentum vector of
the neutrino. The IDEA detector has a small hole where the electron positron
beams enter that inevitably some of the produced particles will fly out of.
Any particles with an angle of θ = 0.1 to the electron beam will fly out of the
detector hole and be undetected. This will effectively reduce the accuracy
our identification of the neutrino.

Event selection

To differentiate between the signal events and the background events, ma-
chine learning is used. In order to improve the distinguishing of events a
pre-selection is performed which intends to sort the most obvious of back-
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Figure 9: The highest energy lepton detected for 1 million simulated tt events.
We distinguish between events where at least one of the W bosons produced
in the top decay decayed leptonically (blue) and those where neither of them
did (red).

grounds events from the rest. Additionally, when reconstructing the event
we have to require being able to identify a lepton and four jets.
Since we are in the semileptonic case, we only consider those types of events
as our signal events. Every other type event is considered as a background
event. When discussing the event selection and how many events were se-
lected of each type, it is useful to define the efficiency ε and the purity P

εS =
S

Stotal

, P =
S

S +B
(50)

where S is the signal accepted, B is the background accepted and Stotal is the
total signal. Before any event selection has been made the efficiency trivially
is εS = 1.0 while the purity for our event is P = 0.0053.
Since we plan to use machine learning for most of the event selection, we
need a pre-selection to both make sure we have the lepton and the four jets
needed for reconstruction of the event, as well as to improve the performance
of the machine learning algorithm.
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Since the lepton from the W → lνl decay is assumed to have a high energy,
we require that the event has at least one high energy lepton. Requiring a
lepton will also be necessary for the later analysis where a kinematic fit will
be performed. In order to define the energy required for a lepton to be a
”high energy” lepton, figure 9 is used. As can be seen, there appears to be
a large difference between in the amount of events under and over 20GeV,
as well as hadronic event mostly having leptons of under that energy. From
this observation a cutoff for high energy lepton of 10GeV is chosen, such
that only events that have a lepton of at least 10GeV are accepted. The
highest energy lepton of these events are isolated, such that it is not used to
construct jets with. If there are additional lepton over 10GeV, that are also
accounted for for later analysis.
Requiring an identified lepton gets rid of a lot of signal events, since we ex-
pect it to get rid of at least 21.7 % of semileptonic events from the hadronic
tau decays. Requiring a lepton gives us an efficiency of εS = 0.59, mean-
ing requiring just a single identified lepton costs us 0.41 % of signal events,
which is much larger than the expected 21.7 %. The reason is that when
the detector simulation attempt to identify leptons it does not always suc-
ceed. Around ∼ 18 % of the semileptonic decay events are not identified by
Delphes as a lepton. Without an identified lepton we cannot reconstruct the
event and must reject the event. The remaining ∼ 1 % lost is most likely due
to leptons that flew out of the detector hole or otherwise evaded detection.
After also requiring that at least one identified lepton has an energy of at
least 10GeV the efficiency becomes εS = 0.565.
After events with at least one high-energy lepton has been selected, use the
Durham jet algorithm from FastJet with exclusive clustering such that ex-
actly 4 jets are created. In the case where it is not possible to create 4 jets
(such as when the event has less than 4 reconstructed particles), the event
is discarded, since the 4 jets will be necessary for reconstruction of the event
later on. This requirement doesn’t get rid of any signal events.
To finalize the preselection and further distinguish between signal and back-
ground, we place a cut on the amount of charged tracks, the trajectory of
electromagnetically charged particles reconstructed by Delphes. We require
that a minimum of 10 charged tracks to be reconstructed, a conservative
number, considering that we expect dozens of charged particles. This is a
gets rid of some of the most obvious background events. Table 4 gives an
overview of the effect of the preselection cuts had on the signal and different
types of background events. The most numerous types of background events
at this point are the W+W− and ZZ events.
After the total preselection the signal efficiency εS = 0.565 and the purity
is P = 0.188, which is already a significant improvement from the original
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sample. Now that the preselection has been completed, it is time to perform
an event selection using machine learning algorithms from ROOT.

Process Before preselection (103) After preselection (103)

Semileptonic tt decay 297.4 168.1

Other tt decays 380.6 60.6

bb 6097.5 25.19

qq 25545 12.1

µ+µ− 2853 0.13

τ+τ− 2851.5 0.07

W+W− 16800 411.6

ZZ 1284.8 174.7

ZH 194.4 30.4

ZZZ 1.14 0.23

ZWW 23.85 9.34

Single top 6.850 3.35

Table 4: Total amount of events before and after the preselection for both
signal and background events.

Machine learning with TMVA

In order to perform the last of the event selection, machine learning is used to
get rid of the most ambiguous of background events. The Toolkit for Multi-
Variable Analysis (TMVA) is the ROOT library that provides the interfaces
and implementations of different multivariate classification machine learning
techniques [20]. We will be using this library for classifying events as ei-
ther signal events or background events. The machine learning algorithms in
TMVA need to be trained on signal and background before they can classify
events as one or the other. Before we can get stated we need to consider
which parameters the algorithms will use to analyze the events and which
algorithm should be used for the event selection. As mentioned previously,
a preselection was performed. This is partly because if the machine learning
algorithm is trained on background events trivially classified as such, it will
place an equal weight on distinguishing the obvious events and the ambigu-
ous events when it should be placing more weight on the ambiguous events.
Before we can get started with TMVA, we need to determine which parame-
ters we want to train on. These parameters should have physical reasons for
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being able to distinguish between signal and background. We have already
given reason why the energy of the highest energy lepton and the amount
of charged tracks are important for distinguishing events, so we will also be
using those parameters for training. In order to sort fully leptonic events
as well as some background events like tau or muon production, the energy
of the second highest energy lepton with El,2nd > 10GeV is selected as a
parameter. The thrust of the event is also a selected parameter. The thrust
of an event is a measure used to quantify the event shape and is defined as
[23]

T = max

∑
i |p⃗i · n̂T |∑

i |p⃗i|
(51)

where |p⃗i| are the particle momenta and n̂T defines the thrust axis that max-
imises the energy flow [19]. We expect the lepton-neutrino pair and the two
jets produced by light quarks to have invariant masses (ml,ν andmjets, respec-
tively) near the mass of the W boson. Additionally when the jet algorithm
makes 2 jets out of what should have been 1 jet, the invariant mass of those
two jets are usually low. The general expectation is therefore that there will
be a lot of information to be extracted from those variables. The missing
energy of the event is also a variable to consider. Energy conservation tells
us that the total energy of the decay particles should be equal to the ini-
tial energy

√
s = 365GeV. Events with high energy neutrinos are expected

to have an energy much lower than the initial energy, since the undetected
neutrinos carried that energy. The semileptonic event has exactly one high
energy neutrino to take into account, meaning the missing energy is also a
good parameter. We also look at the invariant mass of every reconstructed
particle except the lepton, mrest, which we also expect to be comparably high
due to the production of massive particles. An overview of the parameters
used is shown in table 5 and has taken much inspiration from [10], which
performed manual cuts on the same parameters.
After determining the variables that will be used, the machine learning al-
gorithm has to be determined. TMVA offers many different classification
algorithms, but for this section we examined 4 methods: Boosted Decision
Tree (BDT), Projective likelihood estimator (Likelihood), K-Nearest Neigh-
bors (KNN) and Rectangular cut optimization (Cuts). An examination on
the efficiency of the algorithms it becomes clear that BDT is superior in this
case. Figure 11 shows the rejected background as a function of the signal
(also known as a ROC curve), wherein it can be seen that BDT is more
efficient at distinguishing the background from the signal in all cases except
fringe cases where the efficiency is near 0 or 1. For our classification we will
be using BDT.

33



100−

80−

60−

40−

20−

0

20

40

60

80

100

l
E

l,2nd
E T rest

m
miss

E
νl, 

m
jets

m
tracks

N

lE

l,2ndE

T

restm

missE

νl, m

jetsm

tracksN

100 1 -1 -19 -64 2 -8 -1

1 100 -3 2 3 -1 -2

-1 100 3 -1 -33 -8

-19 -3 3 100 -59 -60 40 22

-64 2 -1 -59 100 58 -24 -17

2 3 -60 58 100 -24 -22

-8 -1 -33 40 -24 -24 100 13

-1 -2 -8 22 -17 -22 13 100

100 10 8 -26 -68 -18 -15 -15

10 100 -23 42 -30 -12 16 8

8 -23 100 -17 -9 -19 -26 -20

-26 42 -17 100 -43 -34 51 34

-68 -30 -9 -43 100 69 -19 -10

-18 -12 -19 -34 69 100 -15 -13

-15 16 -26 51 -19 -15 100 50

-15 8 -20 34 -10 -13 50 100

Correlation Matrix (signal)

Figure 10: The Correlation matrix from the variables in table 5. The black
numbers tell the correlation between signal parameters while the red numbers
tell the correlation between the background parameters. The colors are based
on the signal correlation matrix. Negative numbers means the parameters
are anticorrelated. This demonstrates both how much information is added
with each parameter as well as how the correlation might differ from signal
to background. While there is a slight correlation between Ntracks and mjets

for signal events, the correlation is much larger for background event, giving
additional information that is nontrivial for manual cuts.
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Parameter Description

El Energy of the highest energy lepton

El,2nd
Energy of the 2nd highest energy

lepton with E > 10GeV

T Thrust of the event

mrest
Invariant mass of reconstructed particles

(excluding the HE lepton)

Emiss Missing energy of the event

ml,ν
Invariant mass of the HE lepton and

misssing 4-momentum (neutrino)

mjets Smallest invariant mass between two jets

Ntracks Amount of charged tracks able to be reconstructed

Table 5: Parameters used to distinguish between events in the TMVA ma-
chine learning algorithms.

The BDT machine learning algorithm works by creating decision trees, which
are binary trees where repeated yes/no decisions are taken on a single param-
eter a time until some condition is met, such as classifying an event as signal
or background. Figure 12 shows a decision tree. Boosting a decision tree
extends this concept to several trees that are derived from the same training
sample by re-weighting events then are combining them into a single classifier
which is given by a single weighted average of all the trees. The specifics of
how the algorithm works can be found in the TMVA user manual [20].
The BDT algorithm is trained on a sample of already classified signal and
background events with an amount of events equal to half of number of
pre-selected events. When the training has completed a file that stores the
weights of the final decision tree is created, which can be used to classify
events to a specified efficiency. In order to classify events we need to choose
a desired efficiency of our event selection. A good baseline for this is to op-
timize for the signal efficiency times the purity εS · P . Optimizing for this
value we get a signal efficiency of εS = 0.965 and a purity of P = 0.923 for
the algorithm, which are very good numbers compared to a manual cut se-
lection. This brings the total signal efficiency of the preselection and TMVA
to εS = 0.548.
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Figure 11: The rejected background as a function of signal efficiency for the
four tested machine learning algorithms. BDT essentially always has the
highest background rejection for a given signal efficiency.

Figure 12: Schematic view of a decision tree, the type of selection algorithm
that the BDT method is based on. Starting from the top, at each node
the data is split into one of two categories by comparing its values x to a
parameter ci until it is either labeled as signal (S) or background (B) [20].
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Figure 13: Feynman diagram showing initial state radiation in a e+e− colli-
sion.

Isolating initial state radiation.

Initial state radiation (ISR) is when the e+e− pair emit a photon before an-
nihilation, thus changing the initial state conditions of the collision. This
means that a total reconstruction of the event will be inaccurate and we will
have difficulty when making a kinematic fit of the event. For this reason we
have an interest in isolating and removing these ISR photons from the event.
The method we use to identify these photons is by using TMVA to train
machine learning algorithms on photons to classify them as either ISR or
decay photon. A sample of 50000 semileptonic events was generated to train
the algorithms on photons. Taking all of the ISR and decay photons from
semileptonic events as our signal and background, the purity is P = 0.0055.
Similarly to the event selection we are going to perform a pre-selection on
our photons to make sure that the relevant photons are selected. First, the
photons need to be identified, which is done by taking all reconstructed par-
ticles which are both chargeless and massless. Since low energy photons will
have a negligible effect on the reconstruction of the event, we are mostly
interested in photons of high energy. We also expect there to be a lot of low
energy photons in the event, so in order to help the training algorithm in
distinguishing between the ISR we are interested and the decay photons we
are not interested in, we choose to only train on photons with energy higher
than 2.0GeV. This cut gives a signal efficiency of εS = 0.758 and a purity of
P = 0.0063.
Many of the photons generated in the event are going to be generated
from the π0 meson. The π0 meson predominantly decays into two photons
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Figure 14: The smallest invariant mass between two photons mγ,γ plotted
against the smallest invariant mass of the photon to a charged particle mγ,ch

for ISR photons (left) and decay photons (right). The photons are drawn
from the same sample of ∼ 50000 semileptonic events. The ISR photons
number 6737 while the decay photons number 1235510.

π0 → γγ. These photons are expected to be relatively close to each other,
while the ISR photons are expected to be isolated from most other particles.
These two photons are going to have an invariant mass equal to the π0 mass
at around 0.135GeV, which is relatively low assuming that we are dealing
with high energy photons. In fact, even if photons did not originate from the
same particle, if they are close to each other the invariant mass will generally
be quite low compared to isolated photons. The higher energy photons will
generally also have a higher invariant mass with other photons. However,
the low energy of some photons might make the invariant mass of our high
energy ISR photons very low, so we choose to calculate the invariant mass
only with photons that have an energy of at least 500MeV. In order to im-
prove the machine learning, we choose to have a pre-selection cut on mγγ,
requiring it to be at least 0.25GeV. This value cut is based on observations
of the invariant mass distributions between signal and background. This cut
gives a signal efficiency of εS = 0.703 and a purity of P = 0.0361. We now
move on to consider the training variables to select.
The ISR photons generally look distinct from other photons in the detector.
If the transverse momentum of the ISR photon is very high, the expecta-
tion is that it is less likely that the e+e− annihilation occured in the first
place. The angle between the photon and the electron beam θγ,e and its
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Parameter Description

θγe Angle between the photon and the z-axis

pt,jet Transverse momentum of the nearest jet

pt,e Transverse momentum of the photon

p⊥,jet
Momentum of the photon perpendicular

to the nearest jet

θγ,jet Angle between the photon and the nearest jet

mγ,γ
Smallest invariant mass between the

photon and another photon

mγ,ch
Smallest invariant mass between the

photon and a charged particle

Table 6: Parameters used to distinguish between ISR photons and decay
photons in the TMVA machine learning algorithms.

transverse momentum pt,e are both used as training parameters because for
this reason. We generally expect the decay photons to originate from the
original decay particles, meaning they should be close to the jets. We quan-
tify distance from jets by the momentum of the photon perpendicular to the
nearest jet p⊥,jet as well as the angle between the photon and the nearest
jet θγ,jet. Comparing the transverse momentum of the nearest jet pt,jet with
the transverse momentum of the photon can also yield information about
the photons. These three values related to the jet are all used as training
parameters. Charged particles can radiate photons, so the invariant mass of
the photon and its nearest charged particle mγ,ch, as well as the the invariant
mass of the photon with its nearest other photon above 0.5GeV are used as
training variables.
Figure 14 shows a 2D histogram of these two parameters for ISR and de-
cay photons. This graph shows the motivation behind using exactly mγ,γ =
0.25GeV as the preselection cut. A large chunk of decay photons have mγ,γ

around 0 to 0.25GeV while the ISR photons are more randomly distributed,
meaning a lot of background can be removed by this cut without sacrificing
too many ISR photons. Appendix A shows plots that show how these 7 pa-
rameters differ between signal and background as well as how they relate to
each other. Table 6 has an overview of every parameter used in the machine
learning algorithm.
The ISR photons are trained on 7 different machine learning algorithms, Mul-
tidimensional likelihood estimator (PDERS), H-Matrix discriminant (HMa-
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Figure 15: The Correlation matrix from the variables in table 6. The black
numbers tell the correlation between the parameters for ISR while the red
numbers tell the correlation between the parameters for normal photons. The
colors are based on the ISR correlation matrix. Negative numbers means the
parameters are anticorrelated. Many of the variables are correlated, but
there is also a significant deviation in the correlation values from signal and
background.

trix), Fisher discriminants (Fisher), BDT, Likelihood, KNN and Cuts. The
details of these algorithms can be found in the TMVA user manual [20]. Sim-
ilarly to the event selection, we plot a ROC curve to determine the difference
in the efficiency between the algorithms. Figure 16 shows the background re-
jection as a function of signal efficiency for each algorithm. The ROC curve
shows a larger background rejection for BDT in the range εS = [0.1, 0.8]
while Likelihood is higher for εS = [0.8, 0.85]. To know which range of signal
efficiency we expect, optimize both methods for εS · P . The optimization
gives εS · P = 0.601 · 0.533 = 0.32 for BDT and εS · P = 0.581 · 0.529 = 0.31
for Likelihood, meaning BDT is better. We choose BDT as our classifier,
giving us a signal efficiency of εS = 0.601 and purity of P = 0.533. The total
signal efficieny for the entire ISR tagging now becomes εS = 0.423. This
classification scheme is used to tag photons as ISR, which are removed from
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Figure 16: The rejected photons as a function of ISR efficiency for the seven
tested machine learning algorithms. BDT has the highest background rejec-
tion for signal efficiencies between 0.10 and around 0.80, while likelihood is
higher when between around 0.80 and 0.85.

the event and subtracting its 4-momentum from the total 4-momentum of
the event P = (0, 0, 0,

√
s)− pISR.

The ISR tagging scheme was initially constructed on a data sample of ∼
50000 semileptonic events. When the scheme was used on the ∼ 176000 sig-
nal and background sample events, we tagged 75 % less photons as ISR than
we expected given the sample size. Closer investigations showed that the
detection scheme for photons had been changed inbetween generation of the
samples. Previously, the detector was set to never detect photons of energy
less than 0.5GeV, but this cutoff had been lowered, among other possible
changes. While that is unfortunate, both the training sample and the signal
sample are simulations of particle physics at the FCC-ee. We will therefore
hold on to the assumption that the ISR tagging scheme still holds up to the
desired specifications.

Kinematic fitting

One of the main benefits of e+e− over pp collisions is the near complete
knowledge of the initial state. In a hadronic collision, it is not known which
partons of the proton were used in the collision or exactly how much energy
was used in the collision. e+e− are different in that aspect, since the initial
energy is completely focused on the electron positron pair, we know the
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exact initial conditions of the event. There is still some difficulty, since
inevitably some particles will be poorly measured or entirely lost, but the
e+e− experiments have much better knowledge of the initial and final state
of an event. Because of this knowledge of the event, we are able to perform a
kinematic fit, a fit where we impose the physical laws governing the particle
interactions on our event in order to improve our understanding of it. For
example, we can demand that 4-momentum of the event is conserved and
demand that certain particles together share an invariant mass equal to the
mass of their mother particle. A kinematic fit where we impose physical
conditions on the event is called a constrained fit and is the type of fit we
shall use.
In a constrained fit, the underlying model for a system is expressed in the
form of constraints

f⃗ (⃗a, y⃗) =


f1(⃗a, y⃗)

f2(⃗a, y⃗)
...

fm(⃗a, y⃗)

 = 0⃗ (52)

where fi(y⃗) are the functions used to express constraints of the system, with
y⃗ being the vector of n measurements and a⃗ is the vector of p parameters that
the model depends on. The measurements will lie within some confidence
region of the true underlying distribution, and they are unlikely to fulfil the
conditions exactly, but corrections ∆y⃗ can be added such that the conditions
are fulfilled exactly by y⃗ +∆y⃗.
The idea behind the constrained fit is to use the method of least squares [21]
wherein we construct a function, χ2, which measures the ”cost” or difficulty
of an event to satisfy our constraints and then minimize said function while
preserving the constraints. There exists various ways to minimize a func-
tion subject to constraints. One very effective method is to use Lagrange
multipliers and introduce a new function to be minimized

S (⃗a, y⃗) = χ2(y⃗) + 2λ⃗ · f⃗ (⃗a, y⃗) (53)

where λ⃗ are the Lagrange multipliers. The problem of minimising S (⃗a, y⃗)
now reduces to a simultaneous solution of the equations

∂S

∂y⃗
= 0⃗,

∂S

∂a⃗
= 0⃗,

∂S

∂λ⃗
= 0⃗ (54)

We are interested in a parametrisation where χ2 is quadratic in the parame-
ters and thus can be written as

χ2(y) = ∆y⃗ T V−1∆y⃗ + g(x) (55)
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where ∆y⃗ is the vector corrections to the measurements such that χ2 obtains
a minimum and V is the covariance matrix. Assuming the measurements are
uncorrelated, the covariance matrix is a diagonal matrix

V = δijσiσj (56)

where σi is the resolution of the i-th measurement. We also allow for an
additional function g(x), which only depends on a scalar variable. This
function is included such that it can take the form of a penalty function, which
takes the form g(x) = −2ln(p(x)), where p(x) is a probability distribution
function connected to the variables y⃗ via suitable constraints. Generally
equations (54) is solved by iteration. In the special case where the problem
is linear, it can be solved analytically. Nonlinear problems can be reduced to
a set of linear problems by linearisation techniques and solved numerically.
In order for the solution to converge the initial values should be given some
thought. The initial values for y⃗ should be the measurements themselves,
while the unmeasured parameters depend on the problem. For the semi
leptonic case we have the unmeasured neutrino can be partially found using
the missing 4-momentum. The issue with this approach is that the missing
momentum is very dependent on the quality of the detection and the effects of
the event reconstruction. The neutrino momentum cannot be reconstructed
and must be kept as 3 free parameters, but using the missing 4-momentum
is a reasonable initial value for the neutrino.

ABC-parametrisation

In the constrained fit the underlying parameters for the jets and leptons
should be Gaussian distributed in order to ensure convergence of the fit. We
choose to write a reconstructed jet as

p⃗ r
j = aj|p⃗ m

j |p⃗ a
j + bj p⃗

b
j + cj p⃗

c
j (57)
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where the unit vectors p⃗aj , p⃗
b
j and p⃗cj, are determined from the measured jet

momentum and form a Cartesian system.

p⃗ a
j =

p⃗ m
j

|p⃗ m
j |

p⃗ b
j =

1√
p2x,m + p2y,m

py,mpx,m

0


p⃗ c
j =

1√
|p⃗ m

j |2(p2x,m + p2y,m)

−px,mpz,m
−py,mpz,m
p2x,m + p2y,m


(58)

where p⃗ m
j is the measured jet momentum. As can be seen, p⃗ a

j follows the
direction of the measured jet, p⃗ b

j and p⃗ c
j are defined to be orthogonal to

the both p⃗ a
j and each other. The initial values of the parameters are set to

aj = 1, bj = 0, cj = 0, so that the reconstructed particle vector initially is
identical to the measured particle.

Performing a kinematic fit with ABCfit++

The ABCfit++ software package was used and improved upon in order to per-
form a kinematic fit on our event samples. ABCfit was originally developed
by Oliver Buchmuller and Jørgen Beck Hansen. It was then converted to
C++ by Julie Torndal. In ABCfit++, the constrained fit supports constraints
with a probability distributed function. This in necessary in order to per-
form constraints on the masses of particles due to the particles being highly
unstable and have a Breit-Wigner resonance. The particles are therefore not
expected to be exactly on resonance. The fit handles this by incorporating
the distribution functions into the penalty function g(x). The details of how
ABCfit++ performs its fit can be found on [13]. As part of this thesis, the
speed of computations with ABCfit++ was optimized make fits with more
constraints more feasible.
In our constrained fit, we will be imposing 4-momentum conservation

N∑
i=1

p⃗i = 0⃗,
N∑
i=1

Ei = 365GeV (59)

as well as Gaussian distributed masses of the W boson and the top particle

µW = 80.5GeV, σW = 2.1GeV µt = 173GeV, σt = 1.5GeV (60)
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the standard deviations of the masses are loosely based on a mix between
the measured standard deviation and the standard deviation from the invari-
ant mass distribution jets that were matched to the top quark decay. It is
generally better to be more lenient with the standard deviations, since jets
are rarely measured perfectly and particles can be lost in the detector hole.
Imposing these conditions means that we have 8 constraints that has to be
satisfied.
Using these constraints in ABCfit, we can perform a kinematic fit on our
events. When doing so we assign each jet to the quark that produced it.
One jet is assigned to the bottom quark whose sister decay W boson decayed
into a lepton neutrino pair, one jet is assigned to the other bottom quark
and the last two jets are both assigned as indistinguishable light quark jets.
The high energy lepton is assigned as the lepton and the missing momentum
is assigned to the neutrino as an unmeasured particle. This gives a total
of 12 different combinations of assigning jets. In order to find the correct
combination we perform the kinematic fit for each of the 12 combinations
on each event and use equation (55) to calculate their χ2 value. Then we
take the combinations that returned the lowest value and keep the correc-
tions returned by the fit. The initial covariance matrices used for the leptons,
b-jets and light quark jets are the default values in the software package for
semileptonic events. They are

Vlepton = diag(0.003, 0.003, 0.003, 10)

Vb−jet = diag(0.07, 1.2, 1.2, 10)

Vlq−jet = diag(0.07, 1.4, 1.4, 10)

(61)

the fourth element of the matrix is the resolution of d, the mass resolution
and is not used for the fit since instead the mass parameter is kept fixed after
rescaling the energy and momentum of the input particles to have zero mass.
The default covariant matrix values were originally chosen by performing a
kinematic fit on semileptonic events with 6 constraints and measuring the
standard deviation of the distributions, so they might differ from events with
8 constraints. When the kinematic fit is performed on our selected events, the
photons tagged with the ISR photons are removed from the event beforehand
to improve the fit.
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Analysis

Determination of Anomalous contributions/couplings

When the SMEFT terms were initially introduced, we observed from equation
(47) that the anomalous coupling matrix elements has a parabolic dependence
for variations of a single anomalous coupling constant α. This parabola we
can be determined from three of its points. By performing three simulations
for three different values of the anomalous coupling constant α, we can use
the signal data to find the parabola in equation (47). Since the SM has
no anomalous couplings it is equivalent to α = 0. By simulating events
with model parameters of two different values, say α = 1 and α = −1, we
are able to construct the parabola associated with the anomalous coupling
constant. For each free parameter we simulate e+e− → tt events with the
parameter set to either +1 or −1, except the vl tbW Re, which is varied by
±0.5. Calculating the cross section of these events using Whizard we can
calculate the expected amount of events, which determines the size of our
simulated samples. Table 7 shows the values of the parameters that were
used for simulation, the associated cross section and the amount of events
simulated for each value of the parameters.
Generally the cross sections of the Whizard simulations are a higher than
that of the Pythia simulations. There can be many reasons for this, but
a large contributor is that our Whizard simulations are without ISR. The
solution is not so simple as just enabling ISR in our Whizard simulations,
since Whizard and Pythia handles ISR in vastly different ways. Calculating
the cross sections of the Whizard simulations with ISR enabled reduces the
cross section of the SM top pair production to σ = 0.368pb, which is much
lower than our Pythia cross section of σ = 0.452pb. The cross section for
the anomalous couplings are reduced in a similar way with the cross section
being approximately reduced by a factor 0.76 when enabling ISR.

Observables

In this analysis the observables investigated are the cross section and angular
distributions. There are a total of 5 angles of interest, one for the e+e− → tt
interaction, and two each for the t→ Wb andW → lν interactions. The first
angle is the polar angle between the electron-beam and the reconstructed top
particle which is given by

cos θet =
pe · pt

|pe||pt|
(62)
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Parameter Value σ[fb] NExpected

SM 0 483.36486± 0.00881 725047

vl tbW Re
+0.5 830.76864± 0.0198 1246095

-0.5 445.32765± 0.00117 667990

vr tbW Re
+1.0 483.36919± 0.00883 725053

-1.0 483.36758± 0.00971 725047

tl tbW Re
+1.0 483.37136± 0.00895 725050

-1.0 483.37002± 0.00903 725068

tr tbW Re
+1.0 2590.9401± 0.00707 3886404

-1.0 4129.1537± 0.0137 6193785

tv ttA
+1.0 2874.0235± 0.0157 4311045

-1.0 7415.8362± 0.0320 11123775

ta ttA
+1.0 650.49347± 0.0132 975750

-1.0 650.51152± 0.0130 975735

vr ttZ
+1.0 790.68660± 0.00204 1186029

-1.0 485.36979± 0.0159 728055

Table 7: The model parameters values used in simulations, the resulting
Whizard cross section and expected amount of events. The expected events
were found by multiplying the cross section with the expected luminosity of
L = 1.5ab−1.

where pt is the momentum of the top particle and pe is the vector of the
electron beam. Since we are only interested in the angle, we choose this to be
a unit vector along the z-axis pe = ẑ. The second and third angle of interest
is the polar and azimuthal angle between the top product and its decay
product. The polar angle between a particle and its decay product can be
calculated by boosting the reference frame from the laboratory frame to that
of the top particle. In order to simplify this transformation we decompose
the decay product momentum into components parallel and orthogonal to
the mother particle. These components are calculated from

pd∥ = (pm · pd)
pm

(pm)2
(63)

pd⊥ = pd − pd∥ (64)
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where pm is the mother particle and pd is the daughter particle. The parallel
component tranforms by

p∗
d∥ = γ(pd∥ − βE) (65)

where γ = 1√
1−β2

is the Lorentz factor and E is the energy of the mother

particle. We can now find the polar and azimuthal angles. The polar angle
between a particle and its decay product is given by

cos θ∗md =
p∗
d∥√

(p∗
d∥)

2 + (pd⊥)2
· pm

|pm|
(66)

In the reference frame of the mother particle, the z-axis lies parallel to its
flight direction with ẑ′ = pm

|pm| . Using this reference frame, the decay product

can be decomposed into x′ and y′ and used to calculated the azimuthal
angle. The x′-axis is found by taking the cross product between ẑ′ and the
ẑ, giving x′ = ẑ′ × pe. Then we find y′ by taking the cross product of the
two other vectors y′ = x′ × ẑ′. x′ and y′ are not unit vectors, but they
point in the directions of the x′-axis and y′-axis and have the same length
|x′| = |y′| = |sinθet|, they cancel when the azimuthal angle is calculated by

ϕ∗
md = arctan

x̂′ · pd

ŷ′ · pd

(67)

One issue from this approach is that the arctan function only gives values in
the range ϕ ∈ (−π/2, π/2), but we want values in the range (−π, π). In order
to fix this, we need to extract extra information from the decomposition of
the decay product momentum. If the true azimuthal angle is between −π/2
and π/2, then the function works fine. But since tan(ϕ+ π) = tan(ϕ), when
the true angle is in the range [π/2, π] we get an angle of ϕ ∈ (−π/2, 0].
Similarly, when the true angle is in the range [−π, π/2], we get ϕ ∈ [0, π/2).
This means if the x component is negative a factor π is either added or
subtracted, depending on the sign of the y-component. The new formula for
the true azimuthal angle is thus

ϕ∗
md = arctan

x̂′ · pd

ŷ′ · pd

+
1

2
sgn (ŷ′ · pd)(1 + sgn (x̂′ · pd))π (68)
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Systematic effects from the event selection

With the event selection and reconstruction completed we have our final
event sample with our vastly improved purity of P = 0.923, but with a signal
efficiency of εS = 0.565, nearly 44 % of signal events were lost. We would
therefore like to understand if the signal efficiency is constant over the range
of observables. We examine this by comparing the angular distributions
before and after the event selection. Most of the lost events were due to
being unable to detect or identify the lepton, meaning the events removed
by preselection cuts were mainly due to them containing W bosons that
decayed into taus, which then decayed hadronically. By examining angular
distributions of the simulated quark level particles before and after the event
selection, we can examine how the distribution changes. Figure 17 shows the
normalized distributions of cos(θet), θ

∗
tb and ϕ

∗
tb for events before and after the

event selection. Examining the plots closer it seems that there is not much
difference. To quantify the effect we can perform a Kolmogorov-Smirnov
(KS) test.
A KS test is a test on the equality of two one-dimensional distributions
which can be used to either compare a sample to a analytical distribution
or to compare two samples. The two sample KS test gives a probability
that two samples were drawn from the same distribution by converting the
samples into Empirical Distribution Functions (EDFs). In laymans terms,
an EDF is a numerical estimation of a Cumulative Distribution Function
(CDF) that approaches the true CDF with larger and larger sample sizes.
The KS test measures the largest difference between the two EDFs and used
it to get a probability that the two samples came from the same probability
distribution. We will be using a KS test to compare our two samples, before
and after event selection. ROOT has a built-in function that can perform
a KS test on two distributions. The more bins in a histogram, i.e. the
higher the resolution, the better the KS test will work, so using the ROOT

functionality we perform a KS test on the distributions with 100 bins then
re-bin the histograms to get the plots in figure 17. The KS test on cos(θet)
yields a p-value of exactly 1, θ∗tb yields a p-value of 1.6 · 10−3 and ϕ∗

tb yields
a p-value of 0.94. Both cos(θet) and ϕ∗

tb have high p-values indicating that
the distributions are almost completely unaffected by the event selection.
Meanwhile the very low p-value of θ∗tb indicates that the event selection,
either the preselection or TMVA, causes systematic errors to our sample.
The signal efficiency is not guaranteed to be equal for all the anomalous
couplings. Figure 18 shows the efficiency for all the couplings as well as for
the SM. The efficiency is higher for the couplings by about 1 % except for the
tr tbW Re model parameter, which corresponds to the δgR coupling, which
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gives a lower signal efficiency by about 1 %. The plot has been made to fit to
a parabola since the observable effects of the anomalous coupling constants
have been shown to be parabolic. The efficiencies for two opposite values of
the coupling are similar, indicating that the SM is the parabola’s extremum.

Results

After the event selection, the constrained fitting technique is applied to our
signal, background and anomalous coupling events. We perform the fit with
8 constraints given by equations (59) and (60) with 3 free parameters in the
form of the neutrino momentum, which is given the missing 4-momentum as
its initial values. The fit gives us the reconstructed jets, leptons and neu-
trino, their a, b and c parameters, the lepton charge and which quarks are
associated with which jets. Figures 19 and 20 show the distributions of the a,
b and c parameters for the leptonic b-jets, hadronic b-jets, light flavour jets
and leptons. The values from the covariant matrices from equation (61) were
found from the standard deviations of the ABC distributions for constrained
fits with 6 parameters. Said constrained fit thus did not distinguish between
b-jets, giving the same covariant matrix to both of them.
In the constrained fit for 8 parameters, the observed resolution of a for
the leptons is 0.04, for leptonic b-jets 0.17, hadronic b-jets 0.18 and light
quark jets 0.19. The b and c parameter resolutions are equal for each object,
with them being 0.0006, 0.14, 0.17 and 0.21 for the leptons, leptonic b-jets,
hadronic b-jets and light quark jets, respectively. ABCfit++ also changes the
parametrisation of the jets (a, b, c) = (1.03, 0, 0) due to the mean of the jet
a distributions being 1.03. In our case we get that the mean of a is 1.07 for
the leptonic b-jets, 1.06 for hadronic b-jet and 1.01 for the light quark jets.
These values differ from the ones found from a fit with 6 constraints used
in the covariant matrices in equation (61) and interestingly gives differing
resolutions for leptonic and hadronic b-jets, with the leptonic b-jets being
lower in standard deviations but higher in mean. This is likely due to the
effects of the neutrino. The leptonic b-jet constraints are mostly dependent
on the unmeasured neutrino, which the fit can vary freely instead of varying
the b-jet.
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Figure 20: a,b and c parameter distributions for leptons.

After the constrained fit has been completed we are left with a reconstruction
of the original 6 objects of the semileptonic tt process, the bb pair, the lepton
neutrio pair and the light quark pair. Using 4-momentum conservation we
can reconstruct the original tt pair and W+W− pair and we can distinguish
between particle and antiparticle by the charge of the lepton. From these
reconstructed particles, we can calculate the angles.
It follows quite intuitively that if the anomalous couplings are extremely
small, the variation from the SM is so small that it is nearly impossible to
detect. Correspondingly if the couplings are extremely large, we could easily
detect the variation. This means that if we know the contribution to the ob-
servables as a function of the coupling value, we can construct a confidence
interval on the coupling which can provide some insight into the FCC-ee sen-
sitivity to the anomalous coupling terms. As seen previously, the anomalous
coupling matrix elements has a parabolic dependence for variations of a sin-
gle coupling parameter α. For any parabola Ax2 +Bx+ C the A, B and C
parameters can be determined from three of its points. We have three differ-
ent samples for three different values of the model parameters {α+, α0, α−},
with α0 = 0 being the SM parameter value. Using these three points we can
construct the parabola from equation (47) and find the full function f that
describes the contribution of the anomalous couplings as a function of its
value α. Using this technique we get

f(α0) = C

f(α+) = Aα2 +Bα + C

f(α−) = Aα2 −Bα + C

(69)

where f(α) is one of the angular distributions. The parameters can thus be
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determined

A =
f(α+) + f(α−)

2α2
− f(SM)

α2

B =
f(α+)− f(α−)

2α2

C = f(SM)

(70)

Including the background the fit model becomes

f(α) = A · α2 +B · α + f(SM) + f(Bkg) (71)

By using this technique on each bin of three histograms of the same angular
distribution at the three values (α+, α0, α−), a function fi(α) for each bin can
be acquired. Now that we have the functions associated with the anomalous
couplings, we can find the confidence intervals. The confidence intervals are
determined by using a least-squares method where the histograms of the
signal region are fitted to the model above. The χ2 is calculated from the
sum of bin

χ2 =
n∑

i=1

(yi − fi(α))
2

σ2
yi
+ σ2

fi(α)

(72)

where the numerator is the square of the difference in the bin content be-
tween the signal region histogram and the fit model for the ith bin and the
denominator is the square of the error of the difference found from error
propagation. According to Poisson statistics, the error on each bin is the
square root of the bin content. In order to get the errors for the histograms
we simply square the bin content of the sum of the signal and background
histograms. Since the Whizard cross sections from table 7 are slightly higher
than the Pythia cross sections, the Whizard angular distributions have been
scaled with a factor 0.452

0.4834
= 0.935 to compensate for the difference. Figure

21 shows the angular distributions of the semileptonic events for the values
α = −1, 0, 1 of the Whizard parameter ta ttA, while figure 22 shows the
associated 1σ fit. Figures 23-26 shows the fit for the other angular distribu-
tions of the ta ttA parameter. The fit figures for the other parameters can
be found in Appendix B. The left side shows the χ2 fit with the The right
side shows how the fit data coincided with the fit model.
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Wl fit for ta ttA.

Table 8 shows the final results in the form of the 35 1σ confidence intervals for
the anomalous coupling constants. The anomalous coupling terms with high
cross sections show a much smaller confidence interval than couplings with
cross sections comparable to the SM. The cross sections for the couplings
can be shown is table (7). The tv ttA and tr tbW Re coupling parameters
have the two the highest cross sections and the lowest confidence intervals
of the parameters. This behaviour is to be expected since a higher cross
section will give unexpectedly high amounts of signal events. Couplings
vl tbW Re and vr ttZ also have smaller confidence intervals, possibly due to
the large difference in cross section between the parameter values. Couplings
vr tbW Re and tl tbW Re have relatively large confidence intervals due to
the similarity of their cross sections to that of the SM.
It is important to consider the changes in signal efficiency when different
coupling parameters are enabled. Since the main sensitivity to the couplings
comes from how they affect the cross section, the fact that the efficiency
changes at the same time means we will have an additional uncertainty when
measuring our confidence interval. Figure 18 demonstrates the efficiency
deviations from the SM for each of the couplings. For couplings with a cross
section higher than the SM, a higher efficiency will cause a smaller confidence
interval and a lower efficiency will cause a large confidence interval. This
means that for an event selection with equal efficiency for all the couplings,
the tr tbW Re term is expected to actually have a smaller confidence interval
than the one given.
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Conclusion

From the analysis the expected sensitivity of the FCC-ee to the anomalous
top couplings was determined and characterized by 1σ confidence intervals
shown in table 8. These confidence intervals were constructed through a
least squares fit for each coupling and angular distribution by comparing a
fit function to the angular distribution of the SM sample events. The fit
function is a parabola and was determined for each angle and coupling from
three angular distributions at three different values of the same coupling.
The SM samples are obtained by simulating tt pair production through the
semileptonic decay channel and associated background events at the FCC-ee
at

√
s = 365. Using the framework of FCCSW, a fast simulation of the exper-

imental environment of the IDEA detector was performed on the simulated
events before reconstruction.
An event selection was performed partly by manual cuts and partly by ma-
chine learning. The initial manual cut both improves the machine learning
selection and ensures the ability to reconstruct the semileptonic tt event.
A variety of machine learning algorithms were examined before using the
Boosted Decision Tree algorithm. The trained algorithm had a signal ef-
ficiency of εS = 0.965 while the signal efficiency of the manual cuts were
εS = 0.565, giving a total signal efficiency of εS = 0.548 with a purity of
P = 0.9225. After the event selection initial state radiation is taken into
account by attempting to tag ISR photons through machine learning algo-
rithms. A two manual cuts were performed before using the BDT algorithm
to tag photons as ISR.
Once ISR has been tagged and removed from the event, the event is recon-
structed using a constrained fit. The constrained fit was performed using
the ABCfit++ software package to obtain a reconstruction of the original
decay particles whose angular distributions are examined and fitted to the
parabolic fit function. The anomalous coupling confidence intervals show
that even small variations of the couplings could be observed at the FCC-ee
and offers a fast way to either confirm or deny certain beyond the standard
model physics provided the FCC-ee lives up to its specifications.
As part of this study functionalities were developed for the FCCAnalyses

framework and improvements were made to optimize the speed of ABCfit++.
This thesis hopefully serves as a stepping stone for more sophisticated in-
vestigations of the anomalous couplings. As the FCC-ee project progresses,
new software developments and more information about the kinematics can
be taken into account for future studies and can hopefully improve on the
sensitivity reach and accuracy of this study.
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Appendix A: ISR plots
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Figure A.1: pt VS momentum perpendicular to nearest jet for ISR (left) and
decay photons (right).
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decay photons (right).
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for ISR (left) and decay photons (right).
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Appendix B: Fits on the couplings
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Figure B.1: cos θet for vl tbW Re.
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Figure B.2: θ∗tb for vl tbW Re.
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Figure B.3: ϕ∗
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Figure B.4: θ∗Wl for vl tbW Re.
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Figure B.7: θ∗tb for vr tbW Re.
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Figure B.8: ϕ∗
tb for vr tbW Re.
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Figure B.9: θ∗Wl for vr tbW Re.
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Figure B.11: cos θet for tl tbW Re.
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Figure B.12: θ∗tb for tl tbW Re.
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Figure B.14: θ∗Wl for tl tbW Re.
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Figure B.15: ϕ∗
Wl for tl tbW Re.
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Figure B.16: cos θet for tr tbW Re.
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Figure B.17: θ∗tb for tr tbW Re.
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Figure B.18: ϕ∗
tb for tr tbW Re.
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Figure B.19: θ∗Wl for tr tbW Re.
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Figure B.20: ϕ∗
Wl for tr tbW Re.
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Figure B.21: cos θet for tv ttA
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Figure B.22: θ∗tb for tv ttA
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Figure B.23: ϕ∗
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Figure B.24: θ∗Wl for tv ttA
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Figure B.26: cos θet for vr ttZ
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Figure B.27: θ∗tb for vr ttZ
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Figure B.28: ϕ∗
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Figure B.29: θ∗Wl for vr ttZ
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Figure B.30: ϕ∗
Wl for vr ttZ
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