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Abstract

Matter-Neutrino Resonance (MNR) has been proposed to heavily influence the flavor evolution of
neutrinos and anti-neutrinos emitted from binary merger remnants with consequences to heavy ele-
ment production in these environments. This resonant phenomenon is quite unexplored as it can be
influenced by multi-angle effects in the neutrino-neutrino interactions occurring close to the source
of emission as shown in the literature.

In this work we explore the robustness of this phenomenon near the decoupling region which is
close to the neutrino-emitting object, by approaching it in two ways. We begin by studying the multi-
angle dependence of MNR by assuming a forward peaked angular distribution, individually, and
on both neutrino and anti-neutrino beams. We study how the resonance is affected by increasing
the angular contribution in steps, to the beams. We find that the Matter-Neutrino resonant flavor
transformations are most suppressed when there is more angular dependence on neutrinos, though
all the cases studied show a reduction in flavor transformation in accordance with what is reported
in the literature. A difference in the flavor evolution of neutrinos and anti-neutrinos between normal
and inverted mass hierarchies is observed which, in the context of MNR, is a new result. We then
include the advective term to the flavor equations of motion and it is applied to model potentials to
study its effects on MNR along two angular beams. It is found that the contributions from advection
drastically suppresses the resonant flavor transformations.

We apply our understanding of this resonance to a realistic scenario by looking at the hydrodynam-
ical simulation datasets of a Binary Neutron Star merger remnant. The parameters from the dataset
are directly used to calculate the potentials occurring around the merger remnant. The system was ex-
plored for locations where Matter-Neutrino Resonance could happen using the potentials calculated
and these resonance points were approached along multiple kinds of trajectories, which showed po-
tential profiles quite different from what is studied in the literature thus far, and we find that none of
them could produce the Matter-Neutrino Resonance.
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Chapter 1

Neutrinos

Neutrinos are the neutral fermionic partners of the other charged leptons in the Standard Model, such
as electrons, muons and tauons. They participate only in the weak interactions & the gravitational
interactions. They are identified with their ‘flavor’, which refers to the partner charged lepton they
were produced or absorbed in an interaction with, thus neutrinos have three flavors.

They were initially proposed to be electrically neutral particles with zero mass, to explain the elec-
tron energy spectrum in the beta decay of neutrons by W. Pauli in 1930 and they were discovered
experimentally in 1956 by Fred Reines & George Cowan.

Neutrinos are unique for many reasons, one of which is that they are the only neutral leptons to
have been observed. They got the spotlight of modern physics with the discovery in 1998, which
showed that they possess mass and they ‘mix’ their flavors, i.e, their mass and flavor states are not
equal, which leads to flavor transformations while propagating, even when passing through vacuum.
Neutrinos are important pointers in multi-messenger astronomy as the interaction scales governing
neutrino interactions are minute and hence they can be used to infer the exact direction of the source.
Neutrinos are the only evidence so far, for physics beyond the Standard model with a high degree of
confidence.

1.1 Neutrinos & the Standard Model interactions

The Standard Model (SM) of Particle Physics is the best theoretical model we have to describe the
behavior of fundamental particles. It is a gauge theory with the gauge group SU(3)C × SU(2)L ×
U(1)Y and all the fundamental particles can be treated to be the irreducible representations of this
gauge group.

In the Standard Model, the fundamental particles are categorized into fermions and bosons. There are
three generations of fermions with two particles in each generation, further divided into quarks and
leptons, hence adding up to 12 particles. The bosons act as force mediators, W±, Z0-bosons mediate
the weak interactions, the photon γ, mediates the electromagnetic force and there are 8 gluons g, that
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mediates the strong nuclear force. The Higgs boson is also included in the SM which gives mass to
the bosons through the Higgs mechanism and to fermions through the Yukawa coupling.

The neutrinos in the SM, participates in only two kinds of weak interactions namely the charged cur-
rent (CC) interaction and the neutral current (NC) interaction. The Lagrangians for the corresponding
processes are,

LCC =
−g′√

2
∑

l
ν̄Llγ

µl−L W+
µ + h.c, (1.1)

LNC =
−g′

2 cos θW
∑

l
ν̄Llγ

µνLlZ0
µ, (1.2)

where g′ is the coupling constant, θW is the electroweak Weinberg angle, νLl is the left-handed neu-
trino spinor of flavor l and γµ are the Dirac gamma matrices. The above Lagrangians characterize
the interaction of neutrinos of a particular flavor with their corresponding charged lepton through a
W-boson and the scattering of neutrinos with other neutrinos through Z-boson.

Yukawa coupling is possible only if the fermions have both left-chiral and right-chiral components,
where chirality is the way the Dirac spinors transform under the chiral projection operators, defined
to be PR ≡ (1 + γ5)/2 and PL ≡ (1 − γ5)/2, where γ5 = iγ0γ1γ2γ3 and PR, PL refer to the right
and left chiral projections respectively [1]. This is also called as the particle’s ‘handedness’. This
quantity is purely quantum mechanical and cannot change between frames of references. Since only
left-handed neutrinos and right-handed anti-neutrinos are observed in nature, the SM describes neu-
trinos to be massless. Neutrinos appear as a part of the SU(2) doublets, one for each charged lepton
as mentioned above and they do not participate in the interactions of the SU(3)C & U(1)Y group.

The discovery of neutrino masses and flavor mixing can be attributed to two problems and their
resolution, namely, the solar neutrino problem and the atmospheric neutrino problem. Neutrinos are
abundantly produced through nuclear fusion in the Sun and in hadronic shower reactions of cosmic
rays in the atmosphere.

We can estimate the neutrino flux and the energies of the emitted neutrinos from the Sun and in the at-
mosphere using our understanding of the underlying processes. The Homestake experiment in 1968
detected the neutrinos from the Sun and reported a 2/3 deficit. Neutrino flavor deficits were also de-
tected in the observations of atmospheric neutrinos produced by the interaction of cosmic rays with
the Earth’s atmosphere. The resolution to these problems came with the discovery of flavor transfor-
mations inside the Earth and resonant flavor transformations in the Sun by the Super-Kamiokande
experiment and Sudbury National Observatory collaboration respectively in 1998 [2][3][4][5].

The flavor transformations are possible because neutrinos have small but non-zero masses and the
different flavor eigenstates of the neutrino field are in coherent mixtures of the different mass eigen-
states. Thus the propagation eigenstates develop different phases leading to flavor oscillations while
travelling through vacuum or a medium. The Standard Model can be extended to include neutrino
masses, but we need more experiments to confirm the right theory to explain the low value for the
neutrino mass. We have some good experimental estimates about the various mixing angles between
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the three different flavors, but the CP-violating phase associated with the flavor mixing is yet to be
measured. [6].

Astrophysically, neutrinos are also produced copiously in Supernovae [7][8][9] and Binary Neutron
Star (BNS/NS) mergers [10][11][12]. These processes emit a massive fraction of their energy in the
form of neutrinos. The study of the flavor evolution of neutrinos is important in these sites because
they can influence the dynamics, in the case of supernova and the rate of nucleosynthesis in the
case of NS mergers. NS mergers are sites of r-process nucleosynthesis, referring to the rapid neutron
capture process, which accounts for some of the production of heavier elements in the universe which
requires an abundance of neutrons. The weak processes that converts a proton into a neutron or vice-
versa, cannot happen without neutrinos, as seen below where typical reactions happening in these
environments are presented,

n + νe → p + e−

p + νe → n + e+

Hence it is important to understand the role of neutrinos and their flavor evolution mechanisms in
these systems. The flavor evolves through various potentials experienced by the neutrinos through
their interactions with matter particles and other neutrinos in the media, all of which will be briefly
described in the following sections.

1.2 Overview of the thesis.

This thesis studies the flavor transformation properties of neutrinos in neutrino-dense media where
they are subjected to what is called ‘Collective oscillations’. In particular, we focus on the BNS merger
systems where more anti-neutrinos are produced than neutrinos. This can create a cancellation be-
tween the matter potential and the neutrino-neutrino potential leading to a resonant flavor trans-
formation called the ‘Matter-Neutrino Resonance’ (MNR). We aim to study the angular dependence
of this novel phenomenon, which can occur in dense regions surrounding the NS mergers and the
effects of advection on MNR occurring in such systems. We then apply our understanding to a hy-
drodynamical simulation of a BNS merger and we check the various kinds of potentials that occur in
such a merger to produce flavor transformations through MNR to compare them with the kinds of
profiles studied in the literature so far.

The thesis is organized in the following way, in chapter 2 we cover the basic theoretical phenomenol-
ogy associated to the neutrino flavor transformations, where the equations of motion and the corre-
sponding potentials are described in detail. In chapter 3, the theory behind the MNR phenomenon
is described. The results obtained during the thesis are discussed and presented in chapter 4 and 5.
Chapter 4 presents the work undertaken to study the angle dependence of MNR and discussion of
the results. Chapter 5 covers the work done to study the possibilities of this resonance occurring in
an actual astrophysical scenario and the various effects associated with it. Finally in chapter 6, the
overall findings and results obtained through the project are discussed and summarized.
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Chapter 2

Flavor Transformations

Neutrino flavor transformation is a rich phenomenological subject with a lot of interesting effects and
resonances with significant implications on many astrophysical and cosmological processes.

For neutrinos there is no one-to-one correspondence between the mass states and the flavor states
and so the flavor states are a coherent mixture of the mass states and vice-versa. Analytically, it
means [6],

|να〉 = Uαi |νi〉 (2.1)

where α refers to the flavor states (e, µ, τ), the index i refers to the mass states and Uαi is the unitary
mixing matrix relating the two kinds of states.

For two flavors, this matrix is just the simple rotation matrix of the form,

U =

(
cos θ sin θ

− sin θ cos θ

)
(2.2)

For three flavors, this becomes the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, which is the
equivalent of CKM-mixing matrix for quarks. That is of the form,

UPMNS =

 c12c13 s12s13 s13e−iδCP

−s12c23 − s23c12s13eiδCP c12c23 − s12s23s13eiδCP s23c13

s12s23 − c12c23s13eiδCP −c12s23 − s12c23s13eiδCP c23c13

 (2.3)

where cij = cos θij and sij = sin θij.

For any generic n × n unitary matrix, there are n2 parameters, n(n − 1)/2 angles and n(n + 1)/2
phases. But for the case of the leptons, not all the phases are physical. For n generation of leptons,
we need to have 2n fields corresponding to the matter and anti-matter fields, and including the
conserved lepton number we can absorb 2n − 1 phases from the total. Hence for our 3 neutrino
case we have n = 3 and so n(n − 1)/2 = 3 angles and n(n + 1)/2− (2n − 1) = 1 CP-phase. It should
be noted that this is true only if neutrinos are Dirac particles. If neutrinos are Majorana particles there
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would be two more additional phases.

With the mixing matrices defined for two and three neutrino cases, we can switch from flavor basis
to mass basis through unitary transformations.

2.1 Formalism and EOMs

Neutrinos can exist in mixed mass or flavor states and they are generally described through two
formalisms, namely the density matrix formalism and the polarization vector formalism [13]. Both
the formalisms are completely equivalent to each other as we shall see in this section.

In the density matrix formalism, the density matrix operator, defined as ρ̂ij = ∑i,j |ψi〉
〈
ψj
∣∣, where

|ψ〉 is the state vector of the neutrinos, has a expectation value matrix for the neutrino system, which
we call as the density matrix. The diagonal elements of this matrix accounts for the occupation
numbers of the individual neutrino flavors and the off-diagonal components describe the states that
are existing as coherent superpositions of the individual flavor states in the diagonal. For two flavors,
this density matrix takes the form,

ρ =

(
ρee ρex

ρ∗xe ρxx

)
; x = µ (or) τ, (2.4)

where, ρee, ρxx denotes the individual flavor occupation numbers and ρex and its complex conjugate
denotes the flavor mixing. A similar density matrix is assumed for the anti-neutrinos as well, denoted
by ρ.

The time evolution of such a density matrix will be equal to ρ(t) = e−iHtρ(0)eiHt. If we differentiate
this time-evolved density matrix with respect to time, we immediately obtain the von-Neumann
equation, which governs the time evolution of the density matrices for neutrinos and anti-neutrinos.
In natural units (c = h̄ = 1) it takes the form,

i
∂ρ

∂t
= [H, ρ], (2.5)

i
∂ρ

∂t
= [H, ρ], (2.6)

where, the right hand side is a commutation between the density matrix and the Hamiltonian matrix
for neutrinos H and anti-neutrinos H.

We can map this 2 × 2 matrix into a 3-dimensional space, which we call the flavor space, as a vector.
This is done by decomposing ρ in the following way,

ρ =
Tr(ρ)

2
(1 + ~P ·~σ)

~P is called as the polarization vector for the system, and~σ are the Pauli matrices. Similarly for anti-
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neutrinos, we get ~P. The polarization vector encodes all the physical information of the neutrino
system, being completely equivalent to the density matrix.

Since the density matrix can be a function of energy, momentum and (space)time, the corresponding
polarization vector also inherits the same dependencies. The components of the polarization vector
are given by,

~P =

 Re(ρex)

Im(ρex)

ρee − ρxx.

 (2.7)

The Hamiltonian matrix is also decomposed into a vector in the following way,

H =
1
2
(1 + ~H ·~σ)

The decomposition is normalized by the trace of the density matrix which signifies the neutrino
population density, i.e Tr(ρ) = n = ρee + ρxx, hence the polarization vectors have unit magnitude. By
performing the decomposition, the von-Neumann equation becomes a classical Bloch equation [14]
of the form (see 7.1 for the derivation),

d~P
dt

= ~H × ~P; (2.8)

and for anti-neutrinos,
d~P
dt

= ~H ×~P, (2.9)

which is just the equation describing the vector precessing around the Hamiltonian, similar to the
spin precession around an external magnetic field. Hence the polarization vector formalism helps in
giving us a geometric picture of neutrino flavor transformation phenomena. This picture can then be
used to understand many underlying mechanisms for neutrino flavor evolution [15]. In this thesis,
we work with the polarization vector formalism.

From the definition of the polarization vector, Eq. (2.7), we can immediately see that if the system
begins in a purely electron flavor state, the vector points in the +z direction in flavor space, and
−z direction if it starts in purely x flavor state. This means that if the system undergoes complete
flavor transformation from electron flavor, then the polarization vector flips its direction. In doing
so, it would obey the classical Bloch equation of motion. The survival probabilities for neutrinos and
anti-neutrinos after a time t in this formalism, is given by,

Pee = P(νi
e → ν

f
e ) =

1
2

(
1 +

P f
z

Pi
z

)
(2.10)

Pee = P(νi
e → ν

f
e ) =

1
2

(
1 +

P f
z

Pi
z

)
(2.11)
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where Pi
z and Pi

z are the initial values of the z components of the polarization vectors. The Hamilto-
nian contains all the relevant interactions that can influence the flavor transformation.

In this thesis we consider contributions from three factors, namely, vacuum, matter and self inter-
actions. Hence our Hamiltonian essentially is made up of three terms corresponding to each of the
fore-mentioned potentials.

~H = ~Hv + ~Hm + ~Hνν

The polarization vector, is then influenced by the cross-product with the total Hamiltonian vector
as the system evolves in flavor space, thus resulting in flavor transformations if possible, as shown
in the figure below. For flavor transformation to occur, the directions of the vector must change. In
the potential profiles we study in this thesis, the Hamiltonian vectors change with the evolution of
the system and since the polarization vectors precess around the corresponding Hamiltonians, they
are responsible for guiding the polarization vectors to flavor transform. For such a transformation to
occur, the change in the Hamiltonian must be very close to being adiabatic, i.e very slow compared
to the precessional frequency of the polarization vector. This process is depicted in the figure below.

Figure 2.1: Graphical representation of flavor transformation occuring through adiabatic MSW reso-
nance. (from [16])

2.2 Potentials

Neutrinos and anti-neutrinos interact very rarely with matter and are neutral. This simplifies the
neutrino dynamics a little, but the equations of motion obeyed by them are still complicated, due to
the inclusion of non-linear terms in dense environments. Below we very briefly discuss the various
potentials that arise to be included into the Hamiltonian.
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2.2.1 Vacuum

This term in the Hamiltonian arises simply because of the fact that the flavor eigenstates are not
exactly equal to the mass eigenstates. As mentioned earlier, the flavor states and the mass states are
related through the unitary matrix.

The Hamiltonian for the two neutrino system in the mass basis is diagonal and is given as,

Hmass =
1

2E

[
m2

1 0
0 m2

2

]
+ p1 (2.12)

where E is the energy of the neutrino, and p is the momentum. Since the momentum term is pro-
portional to the identity matrix it cannot influence the flavor transformations, hence we can drop it.
We can rewrite the matrix in a traceless form by writing the individual masses in terms of the mass
difference, which is the physical observable, ∆m2 = (m2

2 − m2
1). By performing unitary transforma-

tion using the matrix U, we can transform this to the flavor basis, which, for two flavors is the two
dimensional rotation matrix as defined in Eq. (2.2).

Hflavor = UHmassU† =
UM2U†

2E
(2.13)

In doing so, the matrix picks up non-diagonal terms which causes the neutrinos to flavor transform. If
we call ω = ∆m2

2E , then when mapping this matrix onto a vector, we get the vacuum term Hamiltonian
vector to be,

~Hv = ω~B; ~B =

 sin(2θV)

0
∓ cos(2θV)

 (2.14)

where θV is the vacuum mixing angle for the two neutrino flavors we consider, which is set to
θV = 0.15 throughout this thesis unless specified otherwise. This value is within the bounds set
experimentally [6][17][18]. The sign of ω is negative for anti-neutrino vacuum Hamiltonian and the
cosine term is negative for normal mass hierarchy & positive for inverted hierarchy.

2.2.2 Matter interactions

Neutrinos undergo charged current (CC) interactions with their partner charged lepton present in
the medium. But since the fraction of x flavor neutrinos and the leptons, in astrophysical sites, are
overwhelmingly outnumbered by the fraction of electrons and electron (anti-)neutrinos present, we
need to consider only the CC interaction between electron (anti-)neutrinos, electrons and positrons.

We can ignore the neutral current interactions of neutrinos on nucleons, as it is equally favorable for
all flavors hence its Hamiltonian is proportional to the identity matrix and it does not affect flavor
conversions. Thus the only set of Feynman diagrams to be considered is for the coherent neutrino-
electron forward scattering charged current interactions, which is essentially refraction. These dia-
grams are given in Fig. 2.2.
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e+

νe

e+

νe

W

νe e−

e− νe

W

Figure 2.2: Charged current scattering of neutrino on electrons and positrons in the medium.

This interaction is dependent on the number of scatterers present in the medium and takes the form,√
2GF Ne(r), where GF is the Fermi constant and the term Ne(r) is the electron density in the medium.

This can be a function of distance since the distribution of matter in the astrophysical system can vary
with distance in whichever direction we choose to look. Since this interaction is flavor dependent and
the media in most astrophysical sites are dominated by electrons, the Hamiltonian of this process is
not proportional to identity matrix. It takes the form,

Hm =

(√
2GF Ne(r) 0

0 0

)
, (2.15)

corresponding to the electron flavored (anti-)neutrino population number in the density matrix for-
malism. This matrix when converted into a vector accounts for,

~Hm =

 0
0

λ(r)

 , (2.16)

where λ(r) =
√

2GF Ne(r).

When this term cancels the vacuum term of the Hamiltonian, a resonant flavor transformation occurs
which is called the MSW resonance. This resonant phenomenon has been widely studied in the
literature [19][20][15][21].

2.2.3 Self Interactions

The self-interaction potential arises and becomes significant when the medium is densely populated
by neutrinos and anti-neutrinos. In such a medium, neutrinos can undergo coherent forward scatter-
ing with other neutrinos and anti-neutrinos in the medium. Because of the nature of this interaction,
this potential is dependent on the momentum unit vectors, which signifies the direction of propaga-
tion. The Feynman diagrams of the interactions responsible for this potential are given in Fig. 2.3.
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νx(~k) νx(~p)
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νx(~k)

νx(~p)

Z

Figure 2.3: Feynman diagrams for coherent forward scattering of neutrinos on other neutrinos
and anti-neutrinos in the medium. Flavor changing contribution to the Hamiltonian is from the
momentum-exchanging interactions.

The potential corresponding to this type of scattering interaction just from their kinematics obtain
a direction dependent term of the form (1 − p̂ · p̂′) [13][22]. This is because this forward scattering
is a type of current-current interaction between the neutrino and the background neutrino with de-
pendence on the dot product of their 4-momenta. Hence if the two neutrino beams are travelling
parallel then this term cannot contribute. It must be pointed out that such a momentum dependent
term also appears for the neutrino-electron coherent forward scattering discussed above for matter
potentials, but since the electrons interact strongly with other particles in the medium and respond
to the electromagnetic profile of the astrophysical system, they isotropize themselves thereby making
the (1 − p̂ · p̂′) unimportant. This is not the case with neutrinos, therefore this term is significant for
the self-interaction potential. Physically, this can be understood to imply that the test neutrino beam
and the background neutrino beam can interact and refract only if their trajectories intersect or makes
them to come close enough. This type of scattering can occur between neutrinos and anti-neutrinos
in the background medium as well as shown in the diagrams above. As a consequence, this potential
also develops dependency on the anti-neutrino population numbers and the anti-neutrino density
matrix.

So this term of the Hamiltonian has the form,

Hνν(r) =
∫

v′

√
2GF Nν,ν(r)(1 −~v · ~v′)(ρv′ − ρv′)dv′, (2.17)

where Nν,ν(r) is a term proportional to the number density of neutrinos and anti-neutrinos in the
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system, and the integration is over the momentum of the background neutrino as we consider con-
tributions on the test neutrino, from all the scatters present in the medium.

For the general geometries of the astrophysical systems we consider, we can assume the dot product
of the momentum vectors to be constituted by just the product of the cosines of the direction of the
test neutrino beam and the direction of the background neutrino beam, if we assume an azimuthal
symmetry along the z-axis [23][24][25]. The neutrinos for both the test and the background beams
can be emitted along multiple directions and energies, leading to interactions with the test beam
along multiple directions. Accordingly, we have to integrate along the possible values of energies
and angles at each point in space(time) as we evolve the system. So the density matrix is now a
function of energy, angle and the radial distance point along which we solve the equations, ρ(E, θ, r).
The self-interaction term accounts for the contributions from all possible directions and energies by
integrating over the angles and energies.
The polarization vectors of neutrinos and anti-neutrinos must be normalized to unity irrespective of
their dependencies. The normalization factor can be different for the neutrino vector and the anti-
neutrino vector and can also possess energy dependence. In literature, the normalizations are done
with respect to the flux function of neutrinos and anti-neutrinos for a particular system. The self
interaction term for multi-energy scenario then becomes,

Hνν(r) =
√

2GF Nν,ν(r)
∫
(1 − cos θ cos θ′)(jρ(E, θ′)− jρ(E, θ′))d cos θ′dE, (2.18)

which in the polarization vector formalism is given by,

~Hνν(r) =
√

2GF Nν,ν(r)
∫
(1 − cos θ cos θ′)(j~P(E, θ′)− j~P(E, θ′))d cos θ′dE, (2.19)

where j and j are normalization terms proportional to the flux of the neutrinos and anti-neutrinos.
These factors are typically functions of energy. Thus, we see that this term couples the anti-neutrino
polarization vector with the neutrino polarization vector, and makes the problem non-linear. But
for the majority of the thesis, we will work with single energy approximations and so the energy
dependence in the self interaction terms would be relaxed and the factors j and j can be replaced by
some constants proportional to the number density of (anti-)neutrinos for the particular energy along
the direction we are solving for.

The inclusion of the self-interaction term gives rise to many interesting phenomenology associated
with the collective oscillations as we shall see in the following sections.

2.3 Equations of Motion

With the terms of the Hamiltonian discussed, we can now write down the full equations of motion
to be solved. As mentioned above, we predominantly work with single energy approximation since
the phenomenon of Matter-Neutrino Resonance is independent of energy.
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While approaching this problem numerically, it is common to also use single-angle approximation,
where we assume that neutrinos and anti-neutrinos are emitted only at a single angle. This ap-
proximation is often done with the assumption that the geometry is spherically symmetric, so that
a simulation along one radial direction would be enough to explain the flavor evolution from the
whole neutrino emitting body. This is called as the ‘neutrino-bulb model’ [16][23], which would be
an approximation for a SN environment. But in the case of BNS mergers, the geometries are more
complicated as we will see in chap. 5.

The full equations of motion for the single angle scenario, with mono-energetic neutrinos, are given
by,

d~P
dr

= [+ω~B + λ(r)ẑ + µ(r)(α~P − β~P)]× ~P; (2.20)

d~P
dr

= [−ω~B + λ(r)ẑ + µ(r)(α~P − β~P)]×~P, (2.21)

where µ(r) =
√

2GF Nν,ν(r) and λ(r) =
√

2GF Ne(r). The factors α and β are kept to regulate the frac-
tion of neutrinos and anti-neutrinos in the system, they are the replacements to the energy dependent
normalizations j and j.

As we can see, the self-interaction term of the equations of motion is significantly simplified, but it
still couples the equations of motion for neutrinos and anti-neutrinos. This term is significant only
when the medium is neutrino rich and dense. This is the simplest form of neutrino flavor evolution
that can be considered, which includes the vacuum, matter and the neutrino forward scattering con-
tributions. It essentially makes up a coupled system of 6 ordinary differential equations, that have
to be solved with respect to the distance the neutrino/anti-neutrino beams travel. If there is a range
of values for the energies of ν and ν, then we split that range into NE bins and we integrate over
the energies in the self interaction term of the equation of motion. This will increase the number of
coupled ODEs to solve to 6 × NE.

Without making the single angle assumption, we get a fixed range of emission angles with θ ∈ [0, π].
We then split this range into Nθ number of bins. For such a scenario, the equations of motion becomes,

d~Pi

dt
= [+ω~B + λ(r)ẑ + µ(r)

∫
σ
(1 − cos θi cos θσ)(α~Pσ − β~Pσ)d cos θσ]× ~Pi (2.22)

d~Pi

dt
= [−ω~B + λ(r)ẑ + µ(r)

∫
σ
(1 − cos θi cos θσ)(α~Pσ − β~Pσ)d cos θσ]× ~Pi (2.23)

where the index σ sums over all the angular bins (angle integration) and the index i denotes the
corresponding angular bin of the polarization vector. The term d cos θ is just a multiplicative constant
with value

∣∣∣ (cos θmax−cos θmin)
Nθ

∣∣∣. Since we do not consider the emission surface, we do not include the

(cos θi)
−1 term in the RHS of the equations of motion.
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The problem gets complicated when we remove the single angle assumption as seen from Eq. (2.22),(2.23).
If we have an angular dependence on ~P and ~P, then we will have one polarization vector for ν and
ν, corresponding to each angular bin, which is indexed as i in the above equations. The other index
σ denotes the integration index of polarization vectors over all the angular bins. Because neutrinos
are neutral, the only way for them to scatter off other neutrinos is when their respective paths inter-
sect. This introduces a geometric dependence on the equations as explained in the previous section.
The directionality of the beams are governed by the (1 − cos θi cos θσ) term. Thus, with one value of
energy, the number of coupled equations to solve in the multi-angle scenario becomes 6 × Nθ .

2.4 Collective Oscillations

In neutrino dense systems, the flavor evolution undergoes many interesting phenomena, which are
broadly classified as collective oscillations [26][25][27][16]. This is because in such dense systems
with very high (anti-)neutrino number densities, the self-interaction term of the Hamiltonian be-
comes significant and since it couples all the energy modes of neutrinos together, it forces the many
different neutrino vectors to undergo coherent, synchronized flavor oscillations. This is called as the
‘synchronized mode’ of collective oscillations. This is different because usually the different energy
modes flavor evolve independently in the absence of the self interaction term as the vacuum term is
energy dependent.

The coherence is broken at some point and the polarization vectors completely swap their signs
thereby producing significant flavor transformation. This is called the ‘bipolar evolution’. But through-
out the process the system conserves the Electron-Lepton Number (ELN). The distance at which the
synchronization breaks into bipolar evolution is determined by how large the self interaction term is
compared to the vacuum term. The presence of matter, in the case of collective oscillations neither
influences the flavor evolution nor suppresses it in the single angle limit. The dependency of this
phenomena is only on the magnitude of µ(r) and the vacuum term. The system ultimately results
in a state where the fluxes of electron neutrinos and anti-neutrinos swap their values with the x-
flavored counterparts at some discrete energy. This phenomenon is called as the ‘spectral split’ or
‘spectral swap’ [26][23][25][28][29][30]. The effects of collective oscillations on neutrino flavor evo-
lution have been extensively studied with respect to Core-Collapse Supernovae in the literature as it
can influence the dynamics of the system [31][27][32][33][34][35].

As an example scenario, we consider the system solved in [25], to build our solver code (sec. 7.2.1).
Here the system has a potential distribution of the form in Fig. 2.4. It clearly shows the distances
where the system enters the bipolar regime and it also marks the distance where spectral split hap-
pens.
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Figure 2.4: Potential profile for the system considered from [25].

The evolution of the z component of the polarization vectors is shown in the figure below,

Figure 2.5: Evolution of z-component of neutrino (left) and anti-neutrino (right) polarization vectors
of different energies. We can see that the blue curve in the left plot returns to its original value in the
spectral split limit.

Until ≈ 61 km, the self interaction magnitude is high enough to sustain the vectors in a synchronized
mode as seen from the figure above, where all the vectors of different energies are seen to be evolv-
ing uniformly. But once it crosses 61 km, µ(r) enters the limits where it forces the system to undergo
oscillations and sign swapping which results in flavor transformation. This is equivalent to the po-
larization vector nutating and flipping its orientation in the flavor space. But after ≈ 100 km, the
oscillations fade out and the system enters the spectral split limit. This is because the bipolar regime
cannot cause complete flavor transformation of all neutrinos and anti-neutrinos since the system has
to conserve the electron lepton number (ELN). If the ELN > 0, then the spectral split happens for
neutrinos only above a critical energy value below which the neutrinos remain in their initial flavor.
But anti-neutrinos can completely flavor transform. The value of this critical energy, above which
the neutrinos flavor transform, can be computed from the ELN conservation condition. For the sys-
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tem considered, this value is somewhere around 7 MeV. This can be seen to be happening in Fig. 2.5
where for neutrinos the blue curve (≈ 5 MeV) is seen to return to its original value while all the other
curves flip their signs completely. If we plot the z-component of the energy integrated polarization
vectors for neutrinos and anti-neutrinos and their difference in Fig. 2.6, we can see that the system
conserves the ELN. We can also see that the anti-neutrinos completely change their orientation to the
equal and opposite signed value but the same does not happen with the neutrinos.

Figure 2.6: The value of z-component of the energy and angle integrated polarization vectors of
neutrinos (blue) and anti-neutrinos (orange) with their difference (green) is presented. We can see
that the difference is conserved throughout the distance interval.

Anti-neutrino polarization vector can always reverse its direction completely because its polarization
vector is smaller than the neutrino polarization vector (when ELN > 0) which can undergo this only
to an extent. The same happens in the multi-angle scenario but the oscillations are smeared out
due to interference between the various angular modes. Collective oscillations are interesting, also
because they can be compared to classical oscillating systems like coupled pendulums [25][36], and
the synchronized oscillations can be compared with the oscillations of spin for a system of electrons
in an external magnetic field [37].

Now that we have covered the basic phenomenology of collective oscillations we can now move onto
a situation where the sign of the self-interaction term is negative and opposite to that of the matter
term in the next section.
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Chapter 3

Matter-Neutrino Resonance

Matter-Neutrino resonance is one of the consequences of collective oscillations covered in the pre-
vious chapter. At distances very close to a supernova or a merger, the density of neutrinos would
be very high and as previously stated, the self interaction term cannot be neglected. Neutrinos dif-
fuse and decouple very quickly from the medium, thus the self potential decreases very quickly
when compared to the matter potential. At such high densities if there are more neutrinos than anti-
neutrinos in the medium, usual collective oscillations and the associated phenomena could occur. All
of these only depends on how big the self potential is when compared to the vacuum term.

But when there is an abundance of anti-neutrinos over neutrinos, the self potential term is of the
opposite sign to the matter term, which results in a cancellation between the matter potential and
self-interaction potential when they cross each other. This cancellation creates a resonance which is
called as the Matter-Neutrino Resonance (MNR). A brief but comprehensive overview of MNR is
given in the following sections.

3.1 Matter-Neutrino Resonance in Astrophysical scenarios

Matter-Neutrino Resonance has the potential to play a very important role in the nucleosynthesis
[38][39] of heavy elements in astrophysical systems like Binary Neutron Star mergers [40]. Since this
phenomenon has the capacity to completely flavor transform neutrinos, certain important processes
of nuclear capture responsible for the nucleosynthesis cannot happen. It is unique, because it creates
an asymmetry in the flavor evolution by flavor transforming neutrinos almost completely in the
single angle case [18], and partially in the multiangle case [24][41]. This process can keep happening
over a large distance and happens for both mass hierarchies of neutrinos. From the previous studies,
we know that certain conditions must be satisfied for the MNR to occur in astrophysical systems [18].
The conditions are listed as follows,

1. The number flux of anti-neutrinos must be greater than the flux of neutrinos. This condition is
trivially understood because only then will the self-interaction term of the Hamiltonian acquire
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a negative sign to cancel the matter term.

2. There should be a crossing between the matter potential and the self interaction potential and
before the point of crossing we should have µ(r) > λ(r). This condition is worth understand-
ing, which is described in the following subsection.

3. The vacuum mixing angle θV , should be of suitable order for a significant MNR to occur, since
for smaller vacuum mixing angles, the system will not be adiabatic enough to allow resonance
to happen. In other words, it is important because by setting θV we are defining how perturbed
the system is when it starts. The system becomes resonant only above a certain value of vacuum
mixing angle. We should also keep in mind that we cannot arbitrarily decide the value of θV . It
should be in accordance with the range allowed by the experimental bounds set for it.

4. The fluxes of the other flavors of neutrinos should be lesser than the flux of electron flavored
(anti)neutrinos to make sure that the self interaction terms of the Hamiltonian has a significant
magnitude. This is because the EOMs we evolve are for the electron flavor, if they are domi-
nated by the other flavors then the polarization vectors ~P and~P will not be big enough to induce
MNR

3.1.1 Theory behind Matter-Neutrino Resonance

As mentioned in the previous sections, when the Hamiltonian matrix is decomposed into a three
component vector, the diagonal elements of the matrix are mapped onto the z-component of the
vector, while the real and imaginary parts of the off diagonal terms become the x and y components
of the vector respectively. When we write out the full Hamiltonian vector, it takes the form,

~H =

 ω sin 2θV + Vx
νν

Vy
νν

∓ω cos 2θV + λ(r) + Vz
νν

 ; where ~Vνν = µ(r)
∫

d cos θ(α~P − β~P) (3.1)

The condition for Matter-Neutrino Resonance occurs when λ(r) + Vz
νν ≈ 0. When this happens, the

z-component of the Hamiltonian becomes minimum which means the off-diagonal components of
the Hamiltonian matrix are much bigger than the on-diagonal terms thereby enabling flavor trans-
formations to happen. This resonant transformation occurs very close to the source when compared
to the MSW resonance, which happens at a large distance from the origin as seen from the image
below where we solve the flavor equations of motion for a model potential profile.
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Figure 3.1: Comparison of resonance distance between MNR and MSW. In the left plot we see the
survival probabilities of neutrinos (blue) and anti-neutrinos (orange) with the MNR region and MSW
region highlighted in pink and green color bands respectively. We can see that MNR occurs very close
to the source of neutrinos while MSW resonance happens only around 103 km. In the right plot the
three potential profiles for the case the equations were solved are presented.

Although there is much left to be understood with respect to the full multi-angle Matter-Neutrino
resonance, in [18], an analytical description to describe single angle MNR was attempted. An under-
standing of this phenomenon by drawing similarities to the well understood MSW resonance were
also attempted [42]. The z-components of the flavor isospin vector [26] around the resonance region
was described in [18], to be,

sz ≈
(β2 − 1)µ(r)2 − λ(r)2

4λ(r)µ(r)
; sz ≈

−(β2 − 1)µ(r)2 + λ(r)2

4βλ(r)µ(r)
(3.2)

where β is the ratio between anti-neutrinos and neutrinos, which describes the anti-neutrino excess.
If we then assume R = λ(r)/µ(r), then from these expressions the survival probability for electron
neutrinos and anti-neutrinos can be obtained to be,

Pee ≡ P(νe → νe) =
1
2

(
1 +

β2 − R2 − 1
2R

)
(3.3)

Pee ≡ P(νe → νe) =
1
2

(
1 +

β2 + R2 − 1
2βR

)
(3.4)

Since this description does not take the effects of multi-angle trajectories into account, we cannot
expect this to successfully describe the evolution of survival probability, for multi-angle simulations.
But this does correctly describe the evolution for the single angle case as checked in the plot below.
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Figure 3.2: Comparison between the numerical (solid lines) and analytical solutions (dashed lines)
for the evolution of survival probability for a single angle scenario. The analytic values coincides
with the numerical result only within the resonance region.

We can also see that the analytical solution fits only for the resonance region while it diverges from
the numerical result outside the region. The duration for which the resonance lasts is dependent on
how steep the crossing between the potentials are. This duration is described to be [18],

δt1 ≈ τln
(

β + 1
β − 1

)
, (3.5)

where τ is called the scale height between the potentials, with the form,

τ =

∣∣∣∣ d
dr

ln
(

λ(r)
µ(r)

)∣∣∣∣−1

, (3.6)

which has the slope of the potentials. For the plots of the model presented above, τ ∼ 63.2 resulting
in δt1 ∼ 102 km, which coincides with the duration of MNR undergone in Fig. 3.2. The duration
of the resonance is also characterized by its dependence on the vacuum mixing angle θV through
another timescale δt2 given by,

δt2 ≈ β

ω sin 2θV〈Vy
νν〉

(3.7)

where 〈Vy
νν〉 is an average of y-component of the self-interaction potential. During the resonance,

δt1 = δt2 condition is satisfied, from which we can infer the dependence of MNR on the vacuum
mixing angle, the anti-neutrino excess and the potential profiles.

The basic understanding of the flavor transformations happening during MNR is explained as fol-
lows. The resonance begins with λ(r) ' Vz

νν, where Vz
νν = µ(r)(αPz − βPz) for notational conve-

nience. At this point, the flavor evolution for both ~P and ~P begins. But for the system to sustain the
resonance, the self-interaction term should keep cancelling the matter term by staying negative. This
can happen in two ways,
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1. βPz term in Vz
νν stays large thereby maintaining the overall term negative.

2. αPz term in Vz
νν becomes negative by flavor transforming.

The system realizes both of these conditions to maintain the resonance for as long as possible. This
ultimately results in a large flavor transformation for neutrinos and very low flavor transformation
for anti-neutrinos. The system breaks out of resonance in the single-angle case only when all available
neutrinos are flavor transformed, which mostly happens when µ(r) � λ(r).

From Eq. (3.7), we can infer that the vacuum mixing angle should be greater than a certain value to
allow for the resonance. The requirement for second condition from the listing in 3.1 to be satisfied
is explained as follows. In Eq. (3.6), we can see that MNR depends on the gradient of λ(r) and µ(r),
but we do not necessarily see why µ(r) > λ(r) is required before the crossing. The basic condition
for MNR to occur is λ(r) + µ(r)Dz ' 0, where Dz = (αPz − βPz)

The crossing enables maximal flavor mixing condition to be possible as we saw above. If before cross-
ing µ(r) > λ(r) and µ(r) gradually decreases with distance, then after crossing, the multiplicative
factor can change its value to compensate for the decrease in µ(r) by flavor transforming neutrinos
and anti-neutrinos in the way described above. This sustains the resonance and continues cancel-
lations to keep happening. But on the other hand, if λ(r) > µ(r) before crossing and the value of
µ(r) keeps increasing with distance then even though the sum of potentials crosses zero, the system
is not compelled to change the multiplicative factor, Dz and hence no flavor transformation happens
and as a result the system does not undergo resonance. This can also be understood in terms of the
adiabaticity parameter as defined in [43] where the above mentioned scenario is equivalent to the
system being highly non-adiabatic thereby not resulting in any resonant phenomena.

This means that only for certain profiles of potentials with crossings and conditions satisfying those
mentioned and discussed above can support this type of resonant flavor transformation.

3.1.2 Standard and Symmteric MNR

In the literature, there have been two kinds of Matter-Neutrino Resonance spotted so far. The type
of MNR we study throughout this thesis is called as the ’Standard MNR’, where the neutrinos alone
flavor transform to a much greater extent when compared to anti-neutrinos. The second kind of
MNR is undergone by the system which results in a complete flavor transformation for both neutri-
nos and anti-neutrinos equally [39],[44]. An an example where standard, and symmetric neutrinos
were spotted is given below, where we can see that in the symmetric MNR region, the survival prob-
abilities drop together for neutrinos and anti-neutrinos, but in the standard MNR region, only the
anti-neutrino survival probability comes back while neutrino probability stays low,
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Figure 3.3: Simulation results from [44] showing symmetric and standard MNR for neutrinos and
anti-neutrinos. We can see that the symmetric MNR results in a drop of survival probability for both
neutrinos and anti-neutrinos.

From previous studies, it has been noted that a necessary condition for symmetric MNR to occur
is that the sign of the self-interaction potential Vνν should turn from negative to positive [43]. This
means that the system, initially dominated by anti-neutrinos should eventually enter a neutrino dom-
inated regime. This transition is called symmetric, because this MNR occurs close to the region where
the ratio of anti-neutrinos to neutrinos, β is around 1. But this type of MNR doesn’t occur in the sce-
narios studied in this thesis.

3.2 Description of the Models studied

In this thesis, we mainly try to study two properties of MNR, the angle dependence of MNR and the
influence of neutrino advection to MNR. These two checks to MNR are important as they contribute
to the understanding of the validity of this phenomenon. With these conditions in our mind, we first
choose a simple toy model, with constant matter potential λ and an exponentially decreasing µ(r) as
seen in Fig. 3.4.
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Figure 3.4: Constant matter potential and exponentially decreasing neutrino self potential with cross-
ing around 65 km corresponding to the values in Eq. (3.8).

We model our potentials in such a way that they equivalently resemble the astrophysical environment
of a Binary Neutron Star merger remnant. Thus we want both λ and µ to decrease and intersect at a
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Figure 3.5: Exponentially decreasing matter and self interaction potentials with crossing around 62
km corresponding to the values in Eq. (3.9)

short distance, preferably around 50-70 km. We have chosen the matter and self-interaction potentials
to be,

λ = 250 km−1

µ = 2.53 × 103 × e−
0.38
15 r km−1

(3.8)

where µ(r) starts out a high value and exponentially decreases with distance r (km).

For such a distribution of the potentials, we set α = 1 and β = 1.5, where these constants just signify
the flux of neutrinos and anti-neutrinos at that particular energy. We work with θV = 0.15 throughout
this thesis.

The second model we consider is the case where both the matter and the self interaction potentials
decrease exponentially with distance as seen in Fig. 3.5. In functional form, we have chosen,

λ(r) = 1.58 × 103 × e−(0.235/25)r km−1

µ(r) = 5 × 103 × e−(0.253/15)r km−1
(3.9)

In the upcoming sections, we shall investigate the flavor evolution, for single angle and multi-angle
scenarios and study the angle dependence of the Matter-Neutrino Resonance. We will also use the
models described above to study the effects of advection to the resonance, before we move on to
apply the concepts and study the robustness of the resonance using the simulation dataset of a Binary
Neutron Star merger.
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Chapter 4

Study of Angle Dependence of MNR

Angle dependence of MNR has been previously studied for neutrino bulb model, for particular an-
gular emission ranges, and have also been investigated along trajectory dependent cases in neutron
star merger scenarios before [41][24][45]. It was seen from previous studies that the inclusion of
multi-angle emission and trajectories suppressed the effects of the Matter-Neutrino resonance.

Here we study the effects of different angular distributions for neutrinos and anti-neutrinos, on the
results of the resonant phenomena without considering the emission surface. The cases presented in
this section are,

• Angle Independent results

• Angle Dependence only on ~P

• Angle Dependence only on ~P

• Non-uniform Angle Dependence on both ~P & ~P

We find that the effects of MNR are most suppressed when there is angular dependence on neutri-
nos. We also find that when multiangle flavor equations of motion are solved with MNR conditions
satisfied, there is a drastic difference in the evolution of the survival probability between normal and
inverted mass hierarchies which has not yet been reported in the literature. The results obtained in
this section are included to be published in a paper which is under process.

We first look at the angle independent flavor evolution results. Then we move on to various cases
in which we include angle dependence on the initial values of the polarization vectors for neutrinos
and anti-neutrinos, using the Eq. (2.22) and (2.23). We look at the angular range θ0 ∈ [0, π]. We bin
the interval into 25 Nθ bins and results are converging well for this choice.
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4.1 Angle Independent results

4.1.1 Single Angle Scenario

The survival probabilities for neutrinos and anti-neutrinos for the constant λ and for the case where
both potentials decrease with distance, with the parameters α and β set to be 1 and 1.5 respectively
are presented. The results are in Fig. 4.1,
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Figure 4.1: Survival probabilities of electron flavored neutrinos and anti-neutrinos for constant matter
potential from Fig. 3.4 (left) and for the case where both λ and self interaction potential decrease
exponentially with distance, from Fig. 3.5 (right)

The results presented above can be understood as follows. Since we set β > α, abiding to the first
condition to produce MNR in the listing in 3.1, we will be starting with a negative self interaction term
in the Hamiltonian. The sum of the matter potential and the self-interaction potential slowly increases
as µ(r) decreases. It then gradually hits the point where self-interaction is equal and opposite sign of
λ. At this point the sum is,

λ(r) + µ(r)(αPz − βPz) = 0 (4.1)

which is the Matter-Neutrino Resonance condition. This condition enables flavor transformation to
happen, which is by definition asymmetric for neutrinos and anti-neutrinos in the case of MNR as
described in the previous sections.

This is very evident by looking at the evolution of the sum in Eq. (4.1), for the cases presented above,
in Fig. 4.2. First we look at the case with constant matter potential, and we see that the flavor evolu-
tion begins at exactly the point where the sum of the matter and self interaction potentials hit zero,
and it gets stuck in resonance for around 60 km as seen in Fig. 4.2
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Figure 4.2: Evolution of potential sum (blue line) for the case with constant λ. We can see that the
sum gets stuck to 0 in the pink region signifying the occurrence of MNR

The system breaks out of resonance after the survival probability of all the neutrinos drops to zero,
thus resulting in a complete flavor transformation as theoretically expected.

If we now look at the case where both the potential terms are dropping exponentially in Fig. 3.5. We
immediately observe that the distance where resonance is sustained is very large. This is expected
because here both λ(r) & µ(r) are decreasing in a very similar fashion. Thus the difference that the
self potential term has to compensate for is increasing at a much slower rate when compared to the
case where λ was a constant. Hence the system can keep sustaining the resonance for a longer time
while flavor transforming ν & ν at a slower rate. This is exactly realized in Fig. 4.3, where the overall
result matches Fig. 4.1, but this happens at a much slower rate and for a longer distance.
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Figure 4.3: Evolution of the sum of the potentials (blue line) for the case where both λ(r) & µ(r) drop
exponentially with distance
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We can also calculate the duration for the resonance to be sustained using Eq. (3.5) for both the
cases discussed above, since we have not yet included angular dependencies on the vectors. For
the constant λ profile, the value of τ ' 40 and it corresponded to δt ' 63.5 km, which matches the
duration of resonance in Fig. 4.2. Similarly for the case with both potentials exponentially decreasing,
we get τ ' 134, which results in δt ' 216 km, which is seen to happen in Fig. 4.3.

Any potential distribution satisfying the conditions to produce MNR, will produce similar results
in the single angle case. Complications and interesting effects arise in the multiangle case which is
covered in the following sections.

4.1.2 Multi-angle Scenario

The survival probability for neutrinos and anti-neutrinos in the multi-angle limit but without any
angle dependence looks like Fig. 4.4
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Figure 4.4: Survival probabilities of neutrinos (blue) and anti-neutrinos (orange) in the multi-angle
limit without any angular dependence. We can see that it resembles the single angle result in Fig. 4.1

Since there is no angle dependence on the initial vectors, we expect the result to agree exactly with
the single angle result, though there are more than one angular bins. This is because there is no
distinction between them as all the bins would evolve together as a single angular bin. We see that
happening in Fig. 4.5. We can also see that the results match the single angle results for the case
where both the potentials are decreasing, which was presented in the previous section.
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Figure 4.5: Survival probability for multiangle scenario, without any angular dependence on the ini-
tial vectors. We see that all the angular bins evolve together like the single angle case. It is reminded
that we have 25 equally spaced angular bins in the range [0, π].

Next we move on to include angular dependence on the vectors in the following sections.

4.2 Angle dependence only on ~P

We include a forward peaked angular distribution into the initial value of ~P, while ~P remains in-
dependent of angular contributions. The form of the angular distribution we choose is 1 + x cos θ

where θ here refers to the emission angle and x is simply a constant of the range x ∈ [0.1, 1]. We
want to study how the survival probability and the overall evolution of the the sum of the potentials
terms differ, when we slowly increase the fraction of angular contribution to the initial values of the
polarization vectors. We normalize the vectors such that the polarization vectors add up to 1 when
integrated over the cosine of the emission angle, i.e

∫
~P × d(cos θ) = 1, and ~P is also normalized in

the same manner.

Thus the polarization vectors are initialized as,

~Pi = [0, 0, 1 + x cos θi]

~Pi = [0, 0, 1]
(4.2)

We increase x in steps of 0.1 to see if there are any changes in the way the angular bins evolve. We
present the results for this setup applied to the potential profiles described in Fig. 3.5 below.

The survival probabilities for select values of x are plotted in Fig. 4.6. The corresponding plots that
shows the evolution of the sum of the potentials term, for just three representative angles of tangen-
tial, radial and anti-tangential angular bins for x = [0.1, 0.2, 0.4, 0.5, 0.7, 0.9] in Eq. (4.2) is shown in
Fig. 4.7. This should help us understand the overall behavior as all the other bins are bound between
these three.
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Figure 4.6: Survival probabilities with increasing angle dependence only on ~P, for the cases x =
[0.1, 0.2, 0.4, 0.5, 0.7, 0.9]. We can see that as the angular contribution on neutrinos increases, the flavor
transformation due to MNR decreases.
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Figure 4.7: Evolution of the sum of the potentials, with angle dependence only on ~P for tangen-
tial (red), radial (blue) and anti-tangential (black) angular bins with x = [0.1, 0.2, 0.4, 0.5, 0.7, 0.9] in
Eq. (4.2).

To let the system reach its asymptotic steady state, we increase the simulation range from 350 km to
500 km as seen in Fig. 4.6 and 4.7. The following observations can be made by looking at the plots
presented,

• We can immediately observe that the plots for survival probability looks very different, in terms
of behavior compared to Fig. 4.4. We see that with increasing value of x, the effect of MNR
decreases, i.e, if the neutrinos are more forward peaked then, the change in survival probability
due to MNR is suppressed.

• In the evolution of the potential sum, Fig. 4.7, we observe that the order of the bins hitting the
resonance is in such a way that the MNR boundary is in the front, thus the bins emitted at
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θ0 = 0 hits it first while the bins emitted at θ0 = π hits it last.

• We observe that the radially emitted bin always undergoes MNR as seen in Fig. 4.7 and the tan-
gentially emitted bin, never undergoes MNR. The bin emitted anti-parallel to the tangential bin,
seems to undergo resonance for small values of x, but the distance for which it resonates slowly
decreases, upto the limit where it just passes through the zero point. This lack of sufficient
bins undergoing resonance would explain the rather quick decrease of MNR characteristics in
Fig. 4.6.

4.3 Angle Dependence only on ~P

In this section we include angle dependence only on ~P while keeping ~P independent. Thus we ini-
tialize the polarization vectors as,

~Pi = [0, 0, 1]

~Pi = [0, 0, 1 + x cos θi]
(4.3)

We present the results for four values of x = 0.1, 0.4, 0.6, 0.9. The survival probabilities are shown in
Fig. 4.8, while the corresponding the sum of the potentials evolution is shown in Fig. 4.9, followed by
the discussion of results.
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Figure 4.8: Survival probabilities with Angular dependence only on ~P for cases x = 0.1, 0.4, 0.6 and
0.9
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Figure 4.9: Evolution of the sum of potentials, with angle dependence only on~P for tangential, radial
and anti-tangential angular bins with x = 0.1, 0.4, 0.6 and 0.9

The following observations are made from the plots presented above,

• In Fig. 4.8, we see that there is a some significant MNR for all the cases as opposed to how it was
when neutrino vectors had angular dependence, Fig. 4.6. This is substantiated by the Fig. 4.9
as well.

• With increasing angular contribution, we see that the point where the process begins keeps
shifting to the right, and ultimately it starts at a much larger distance, and happens quicker
than the case with less angular dependence.

• We can also see that the survival probability slowly approaches 0.5 with gradual increase in the
value of x, it almost reaches 0.5 for x = 0.9.

• It is also interesting to see the resonance taking place for different angular bins at drastically
different distances. Here, although the actual self interaction potential goes to zero around 250
km (since µ(r) goes to zero around 250 km), the resonance seems to be happening well beyond
that distance.

• In the plots for evolution of the sum of the potentials, we can see that the order of the bins
hitting MNR boundary has reversed when compared to how it was in Fig. 4.7 as we can see
that the bin emitted anti-tangentially θ0 = π hits the MNR boundary first as opposed to the bin
emitted at θ0 = 0.
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• We can also observe the way the resonance happens in all the cases and infer the reason why
x = 0.1 case looks more like an actual MNR result when compared to x = 0.9. This is because of
the fact that at any point there are a significant number of bins undergoing MNR in the former
case, while in the latter, there is a lag in between them. The distance at which the red curve hits
the MNR boundary keeps shifting to the right with increasing values of x. For instance, both
the tangential and radial bins are undergoing MNR in the x = 0.1 case, while in for x = 0.9,
there is a gap of around 10 km, between where the radial bin breaks off and the tangential bin
resonates. Ultimately the last bin, also breaks off at around 380 km, which is where the flavor
transformation stops happening in Fig. 4.8.

4.4 Non-uniform angle dependence on both ~P & ~P

In this section we present the results for the case where we include angular dependence in ascending
order of x for ~P and in descending order for ~P. Thus we initialize the polarization vectors in the
following way,

• ~Pi = [0, 0, x cos θi]

• ~Pi = [0, 0, (1 − x) cos θi]

The survival probabilities for this case is presented in Fig. 4.10, while the evolution of the the sum of
the potentials is shown in Fig. 4.11, followed by a discussion of results. We also present the zoomed
in version of the evolution of potentials for select values of x and 1 − x with some more additional
bins in Fig. 4.12.
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Figure 4.10: Survival probabilities for non-uniform angle dependence. The plots are arranged in a
way where x and (1 − x) plots are in a single row. It starts from the left, goes till x = (1 − x) with
equal angular contribution of 0.5 on both neutrinos and anti-neutrinos, then goes up on the right
from it. The exact values of the angular dependence for neutrinos and anti-neutrinos are given in
the plot titles as x ν|(1 − x) ν̄. We can see that the system evolves from the case dominated by angle
dependence on neutrinos to the case dominated by angle dependence on anti-neutrinos.
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Figure 4.11: The evolution of the sum of the potentials for non-uniform angle dependence. The plots
are arranged in a way where x and (1 − x) plots are in a single row. It starts from the left, goes
down till x = (1 − x) at 0.5, 0.5, then goes up on the right from it. The exact values of the angular
dependence for neutrinos and anti-neutrinos are given in the plot titles as x ν|(1 − x) ν̄
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The following observations can be made from the plots presented above,

• The Fig. 4.10 shows that there is very clear Matter-neutrino resonance happening for most of the
combinations of x and 1− x except when the angle dependence is significantly large for neutri-
nos when compared to the anti-neutrinos. Then it starts to show the familiar decrease, which
was observed in the survival probabilities in Fig. 4.6. So it can be thought of as a characteristic
trend when the angle dependence on neutrinos dominates.

• We can also observe in Fig. 4.10 that the there is a persistent MNR, for all the cases where the
angle dependence of anti-neutrinos dominates. Looking at it sequentially, we can observe that
the system starts behaving in a way similar to the model presented in Fig. 4.8, then slowly turns
into behaving like the model presented in Fig. 4.6. This makes sense because the values of x
and 1 − x is very similar to the values studied separately in those cases.

• If we now look at Fig. 4.11, we see that all angular bins decouple from resonance before ≈ 370
km and there are no bins in the MNR boundary above it, for all the seven scenarios. This is
correlated by where the flavor evolution stops in Fig. 4.10, which is very close to 370 km in the
cases where it is distinctly seen.

• There is a swapping of the order of bins hitting MNR which is clearly seen in Fig. 4.11, where
the system transitions from more angle dependence on neutrinos to more angle dependence on
anti-neutrinos, by observing the black and red curves. We have plotted the curves in such a
way that the swapping of red and black curves is visible, in the left and right plots of a row.

• It is also seen that although the red and black curves swap places, the bin corresponding to the
black curve does not participate in the resonance anywhere. It just passes through it.

• In Fig. 4.12, some interesting cases of the behavior of angular bins are presented to observe the
way the tangential and the anti-tangential bins swap places.
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Figure 4.12: The evolution of the sum of potentials zoomed in, with a bit more bins for some select
values of x and 1 − x

From the results presented, we can observe that in all the cases discussed so far, the Matter-Neutrino
Resonance ultimately, does not affect the survival probability of anti-neutrinos. Thus interestingly,
although the extent of the suppression of MNR effects brought by inclusion of angular dependence
on the polarization vectors can be seen for neutrinos, the anti-neutrinos are still preserved in the
original electron flavor, for all combinations of angle distributions on the initial values.

4.5 Comparing Normal and Inverted Mass Hierarchies

As stated in the previous chapters, neutrinos have small but non-zero masses with no one-to-one cor-
respondence with their flavor states. Due to the minuteness of the neutrino mass, we cannot measure
the individual mass states directly. Instead, we rely on the neutrino flavor oscillations to calculate the
mass-squared differences. We have measured two values of the mass-squared difference [6], from so-
lar neutrino observations and atmospheric neutrino observations but we have no means to determine
the hierarchy of the three masses since we have not been able to measure the values of the individual
mass states as depicted in Fig. 4.13. The hierarchy could be normal (m3 > m2 > m1) or inverted
(m2 > m1 > m3). This is the neutrino mass hierarchy problem [46].
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Figure 4.13: Since we have not been able to measure the individual neutrino masses, we cannot
determine if the mass hierarchy is normal or inverted. This is known as the neutrino mass hierarchy
problem. The mass ordering for normal and inverted hierarchy is presented in the figure. (image
from Wikipedia)

Although MNR is a common resonance undergone by the (anti-)neutrinos of both mass hierarchies,
there are some differences in the end result between them. In this section we study this occurrence.
In [42], the flavor evolution for both hierarchies was studied in the single angle limit and there is
no major difference in the survival probabilities, which matches what we find when we solve the
single angle flavor equations of motion. But when we include multiangle effects with angular distri-
butions on the polarization vectors, the inverted hierarchy shows angle dependent instabilities. The
following plots were made by solving the multiangle equations of motion with α = 1 and β = 1.5
for normal and inverted hierarchy. Angular dependence of the form 1 + x cos θ is assumed, where
x ∈ 0.1, 0.9 For angular dependence only on the neutrino polarization vector, the results look like,
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Figure 4.14: Survival probabilities with angle dependence only on ~P in normal (left) and inverted
(right) mass hierarchies for the minimum and maximum angular contribution i.e. x = 0.1 & 0.9.
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For angular dependence only on anti-neutrinos, the results are,
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Figure 4.15: Survival probabilities with angle dependence only on ~P in normal (left) and inverted
(right) mass hierarchies for the minimum and maximum angular contribution i.e. x = 0.1 & 0.9.

As we can see, although the behavior inside the MNR region is very similar for both hierarchies, there
is a distinct downward trend observed in the survival probability for the inverted hierarchy which
results in a drastic difference at the end of the interval. And the effects are much more significant
for the cases with angular dependence on neutrino polarization vector. To understand this better, we
choose to look at the angular distribution of the polarization vectors for neutrinos and anti-neutrinos
at the point where the difference kicks in between normal and inverted hierarchies, which is ' 287
km for the case with angular dependence on neutrinos and ' 370 km for angular dependence on
anti-neutrinos.
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Figure 4.16: Angular Distributions of the polarization vectors at the point where the difference in fla-
vor evolution between normal and inverted mass hierarchies kick in for the four cases discussed. The
solid lines in the plots present the angular distribution for the inverted hierarchy while the dashed
lines present the normal hierarchy. The cases for which the plots correspond to is given in the titles
as xν for angular dependence on neutrinos and xν̄ for angular dependence on anti-neutrinos.

We observe that only the polarization vectors corresponding to some angles are undergoing MNR
while the others are not disturbed. This is dependent on the type of angular distribution chosen for ~P
and ~P. We can also observe a downward trend for polarization vectors in the inverted hierarchy after
a particular value of θ. This tells us that for inverted hierarchy, the polarization vectors after MNR,
seem to follow some instability that has an angular distribution. This is in agreement to what was
reported in [47], where the authors point out an alternate version of what we present. They report
that only the normal hierarchy can experience angle dependent instability while the inverted cannot
be subjected to instabilities dependent on θ based on Eq. 24 in the paper. Here we are notice the
opposite, because the scenario we study has more anti-neutrinos than neutrinos in the system which
includes a Matter-Neutrino Resonance while the system studied in that paper had more neutrino
abundance, which flips the effects. This result, showing angle dependent instabilities for the case
with more anti-neutrinos than neutrinos in the system has not been reported in the literature so far.

Till now, we have been assuming an equivalence between the radial distance r and the time evolved
t, when we solve the equations of motion, because we have been solving the equations along only
one direction and since we assume relativistic neutrinos, the equivalence is valid. But in a realistic as-
trophysical scenario, the flow of neutrinos will not be strictly restricted along one direction. Suppose
there occurs a situation where some fraction of neutrinos are flowing simultaneously in different di-
rections with respect to the direction we evolve the system, in order to take the effects induced by
those beams into account, we need to modify the flavor equations of motion. We can do this by in-
cluding the advection term at the expense of the r-t equivalence. This is covered in detail in the next
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section.

4.6 Advective effects

In this section we first discuss the inclusion of advection into the flavor equations of motion and then
we present the results for various model cases studied.

4.6.1 Motivation

Advection is an important process that is responsible for the transportation of particles in an astro-
physical system. We choose to look at the effects of advection on Matter-Neutrino Resonance for two
reasons, the first being that by including advection, we study the phenomena with more relevance to
the actual neutrino flavor transformations happening in real-time astrophysical scenarios, the second
being that although multiple studies have been undertaken to understand the fast flavor evolution
and pairwise conversion phenomenon including the advective term [48][49][50][51], MNR has not
been studied in detail with spatial advection. When the spatial advection is factored into the equa-
tions of motion, we can no longer apply r = t condition. The density matrices, hence the polarization
vectors, become explicit functions of space and time, while r and t are independent of each other.
Thus the equations of motion have to be modified. The advection operator has the form~v · ~∇r where
~v is the velocity of the particle we consider and ∇r is the spatial gradient. The modified equations of
motion for multiangle flavor evolution with the advection operator is given as,(

∂

∂t
+ (v̂ · r̂)

∂

∂r

)
~Pi = [+ω~B + λ(r)ẑ + µ(r)

∫
σ
(1 − cos θi cos θσ)(α~Pσ − β~Pσ)d cos θσ]× ~Pi,(

∂

∂t
+ (v̂ · r̂)

∂

∂r

)
~Pi = [−ω~B + λ(r)ẑ + µ(r)

∫
σ
(1 − cos θi cos θσ)(α~Pσ − β~Pσ)d cos θσ]× ~Pi.

(4.4)

For the case we consider we focus only on the flavor evolution along the radial direction, hence the
‘vectorness’ of the velocity and gradient can be dropped. The value we choose for velocity can also
be simply put to be 1 since we consider only relativistic neutrinos and we work in natural units.

4.6.2 Advection for two beams

We select a trajectory with the potential profile shown in the Fig. 3.5 and we want to look only at two
beams, moving forward and backward along that trajectory. Advection along multiple angles could
influence the flavor evolution significantly but as a first step with minimal complications involved,
we focus only on two angles along a trajectory.

We do this by choosing the emission angle θ to be equal to 0 for the forward beam and π for the
backward beam so that the cosine of these angles would equal 1 and −1. Corresponding to the
(anti)neutrino flow in forward direction, v̂ · r̂ = +1 and backward direction, v̂ · r̂ = −1. Now for
neutrinos going forwards, the initial value is not going to depend on angles since it must have cos θ =

+1 for the z-component, and similarly for flow backwards, cos θ = −1 and d cos θ in Eq. (4.4) becomes
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unity. We also choose different values of β for the forward and backward beams to study the effects
of advection explicitly. This would be reasonable since the anti-neutrino excess would not be exactly
constant in a real astrophysical scenario, consequently the backward beam and forward beam would
experience slightly different potentials. For the case with β f = 1.5 and βb = 1.45, if we plot the matter
and self interaction potentials, we can see that there are now two crossings instead of one, because
the unoscillated self potential depends on the values of β.

There are now two different values of anti-neutrino excess, therefore the self potential of the forward
beam will not intersect the matter potential at the same point where the backward beam intersects,
as seen in the Fig. 4.17.
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Figure 4.17: Same potential profile as Fig. 3.5, but for different values of β, we see two crossings
corresponding to each beam.

For such a setup, when we solve the equations of motion with zero advection, we can immediately
spot the two points of crossing where there is a change in the survival probability as seen in the
Fig. 4.18. It resembles a MNR type conversion since the neutrinos are affected more when compared
to the anti-neutrinos.

Figure 4.18: The survival probabilities for neutrinos (left) and anti-neutrinos (right) without the ad-
vective contribution are presented. The plots clearly show the two points of MNR crossings where
the survival probability has decreased by a small amount but without any advection, this drop stays
within the two points for the entire time interval.

We can also look at the state of the polarization vectors at the end of the simulation, and we can clearly
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spot the two crossings. For an explanation of how the advection code is designed refer section. 7.2.4
of the Appendix.
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Figure 4.19: The polarization vectors for neutrinos and anti-neutrinos without advection at the end
of the simulation time. This again shows the dips at the two points of crossings.

If we then turn on the advective contribution, we can then see that the advection, propagates the
disturbance to a wider range of distances with increasing time, as seen in the Fig. 4.20

Figure 4.20: The survival probabilities of neutrinos (left) and anti-neutrinos (right) with advection.
Advection makes the MNR affect more distance range with time.

To look at how much flavor transformation has occurred, we can also look at the r-bin averaged
survival probability as a function of time in Fig. 4.21. We can see that although there is a trace of
MNR, its effects are severely suppressed with the inclusion of advection.
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Figure 4.21: r-bin averaged survival probability (right) as a function of time, with an enlarged version
(left), for the potentials described in Fig. 4.17.

We can also look at various combinations of values of β f and βb. In all the cases studied it was noted
that the advection moves the disturbance in the direction with a lesser anti-neutrino excess as seen
from the figures below where we plot the angle integrated polarization vectors for neutrinos and
anti-neutrinos for the initial state and the final time snapshot.
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Figure 4.22: The polarization vector configuration in the initial state (left) and the final state (right)
are presented. For β f = 1.5 and βb = 1.25, we see that advection moves the disturbance backwards.
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Figure 4.23: The polarization vector configuration in the initial state (left) and the final state (right)
are presented. For β f = 1.25 and βb = 1.5, we see that advection moves the disturbance forwards.

Now we move on to look at the potential profile with a constant matter potential described in Fig. 3.4.
We can set the values of β for forward and backward beams to be similar but functions of the dis-
tance, as seen in Fig. 4.24, so that they have their MNR crossings close to each other. We solve the
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equations, in a very similar way as before with first solving it without the advective contribution to
spot the crossing points and then including the advection. It results in a very slight change in survival
probability but it produces a result that fits the trend we expect as shown in the Fig. 4.25
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Figure 4.24: Potentials described in Fig. 3.4 but with two beams with crossings close to each other
(left) and the ratio of anti-neutrino number density to neutrino number density for the region close
to the crossings (right).
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Figure 4.25: Heatmaps presenting the change in the survival probability for neutrinos and anti-
neutrinos with (right column) and without (left column) advection as a function of distance r and
time t for the potential profile in Fig. 4.26

Even we if we choose a different kind of potentials and ratios, with a larger MNR region and crossings
being indistinguishably close, we see very similar results.
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Figure 4.26: Potentials described in Fig. 3.4 but with two beams with crossings close to each other
and the ratio of anti-neutrino number density to neutrino number density for the region close to the
crossings.

Figure 4.27: Heatmaps presenting the change in the survival probability for neutrinos and anti-
neutrinos with (right column) and without (left column) advection as a function of distance r and
time t.

From looking at Fig. 4.26, we can see that if the profiles of the self potentials and λ(r) were swapped,
so that the self potential remains constant while the matter potential exponentially decreases from
a larger value, there would be no MNR if we solve the equations with increasing distance, i.e from
left to right of the plot. But if we solve the equations in the other way, i.e from right to left, the
conditions required for MNR to occur would be satisfied thus producing an MNR. We have checked
individually without advection if an MNR occurs when solved in the reverse direction.

So for such a setup, we solve the equations including the advective term with two beams moving in
opposite directions to see if we get any interesting results. But as shown in the figures, we do not see
any signs of MNR occurring. One possible explanation for the lack of MNR would be because the
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dependency of the Hamiltonian for the forward beam, is entirely on the backward beam evolution
and vice-versa, due to the (1 − cos θ cos θ′) in the equations of motion. Thus the dependency matrix
for the case took the form,  Forward Backward

Forward : 0 2
Backward : 2 0


The evolution gave MNR in the previous case when evolved without advection because there was
only one beam and the Hamiltonian depended only on itself.

To test if changing the dependency resulted in a different output, we changed values of θ for both
beams thereby effectively changing the beam direction in which case the dependency matrix looked
like,  Forward Backward

Forward : 0.708 1.433
Backward : 1.428 0.36


As it can be seen, the dependency is still highly swapped for the forward and backward beams but
there is also a slightly significant contribution from the corresponding beam evolution as well.

When solved for such a setup, again there was no sign of MNR occurring anywhere, as seen in the
figures below.

Figure 4.28: No signs of MNR even after changing the dependencies as seen from the survival prob-
abilities for neutrinos (left) and anti-neutrinos (right).

This could mean that the flavor equations of motion become incompatible with the MNR conditions
irrespective of the dependencies for the beams if λ(r) > Vνν(r). This result is significant because such
a potential occurs in the Binary Neutron Star Merger scenario studied in the following section.
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4.7 Summary

In this chapter, we have studied the angle dependence of Matter-Neutrino Resonance by assuming a
forward peak angular distribution which we applied to the neutrino and anti-neutrino polarization
vector and we observed that the effects of MNR are indeed suppressed when multiangle effects are
included, which is in accordance with what is reported in the literature. In particular we observed
that the suppression of MNR was most significant for the case with maximum angular contribution
to the neutrino polarization vector. We also observed the difference in the flavor evolution between
normal and inverted mass hierarchies in the context of MNR, which occurs only when multiangle
effects are included. In addition, we also checked the effects of advection on MNR, for the first time,
by assuming a two-beam system along a particular trajectory with the potentials profiles defined in
chapter 3. It was observed that inclusion of advection makes the effects of MNR almost negligible
which makes us question the occurrence of MNR in realistic settings.
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Chapter 5

Binary Neutron Star Merger Data

All compact binary mergers are interesting in their own respects but we focus on NS-NS merger.
NS-NS mergers are highly complicated in their geometries and are quite unique in their emission
properties [12],[10].

Figure 5.1: Emission schematic for a Compact Binary Merger taken from [40]

Compared to the supernova case discussed in the earlier sections, this is a totally unique astrophysical
scenario because of the abundance of neutrons in the region surrounding the remnant. This makes
Binary mergers a valid location for the production of elements heavier than Iron as it requires a
neutron rich medium. The process by which the heavy element production happens is theorized to
be r-type nucleosynthesis which is viable to occur in the equatorial disk regions of the remnant. This
process of nucleosynthesis involves rapid capture of neutrons in the medium (hence the name r-type)
and converting it into protons. This ’protonization’ completely depends on the neutrino abundance
in the medium since the weak process corresponding to it cannot happen without neutrinos of the
correct flavor.

Binary neutron star mergers are also an important site to study the phenomenology of neutrino fla-
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vor evolution with non-negligible contributions from the self-interaction of neutrinos due to the am-
ple neutrino and anti-neutrino number densities. It also offers a unique scenario where due to the
abundance of neutrons and protonization taking place, the emission is dominated by anti-neutrinos,
which has a smaller decoupling radius when compared to neutrinos. This is important because it im-
mediately makes the self interaction potential negative thereby creating many possibilities of Matter-
Neutrino Resonance to occur and as we have seen in the previous sections, MNR has the capacity to
completely flavor transform neutrinos which could significantly impact the r-type nucleosynthesis
of heavy elements [52],[53]. Thus it becomes significant to understand the flavor evolution of neu-
trinos through the various potentials in the media. The emission timescales and geometries are also
interesting as seen in Fig. 5.1 where the dynamical ejecta is followed by ν-driven ejecta and finally the
viscous ejecta is emitted from the accretion disk. The geometry of the system is toroidal as opposed
to almost spherical geometries for Core-Collapse Supernovae.

In this thesis we study the possibilities of the occurrence of MNR along with the effects it creates in
the vicinity of the neutrino and anti-neutrino decoupling region. We use the data sets from the results
for a hydrodynamical simulation of a binary Neutron Star merger remnant for three different time
snapshots of 10-ms, 20-ms and 50-ms. The simulation data used in this thesis corresponds to one of
the models (M3A8m3a5) presented in [52], which as described in the paper to be the simulation result
of one 1.1 M� NS and 2.3 M� NS, producing a 3 M� Black-Hole remnant with dimensionless spin
parameter 0.8 and accretion torus mass 0.3 M�. The data set contained the values for 12 different
parameters along 172 angular points and 428 radial distance points. (data shape - 428 × 172 × 12).
Out of which the first six and the last six angular bins were redundant so the data was reshaped
accordingly, the final shape was 428 × 160 × 12. After reshaping, the angular bin distribution was
from θ = [0, π]. The radial distance spanned from 8 km to 28000 km. The distances focused in thesis
is only till around 300 km which encloses the neutrino decoupling regions.

The 12 different parameters are listed below,

• Radial Distance (cm)

• Polar Angle (rad)

• Mass Density (g/cm3)

• Neutrino number density (1/cm3)

• Anti-Neutrino number density (1/cm3)

• Neutrino Number flux along radial direction (1/cm2/s)

• Neutrino Number flux along angular direction (1/cm2/s)

• Anti-Neutrino Number flux along radial direction (1/cm2/s)

• Anti-Neutrino Number flux along angular direction (1/cm2/s)

• Temperature (MeV)
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• Electron chemical potential (MeV)

• Electron fraction

respectively.

5.1 Calculation of Potentials

We can calculate the matter and the self interaction potential using the following quantities from the
dataset directly as explained below.

• Mass density ρ(r)

• Neutrino number density Nν(r)

• Anti-neutrino number density Nν(r)

• Electron Fraction Ye(r)

While keeping the dimensions of units in mind, the formulae we use to calculate the potentials is
described in the following section.

Matter Potential λ(r):

The dataset contains the mass density and the electron fraction so we can take the following infor-
mation to calculate the matter potential,

•
√

2GF = 6.422 × 10−43 km2,

• Mass Density ρ(r) = F(r)× 1026 g
cm3 ,

• Electron Fraction Ye(r) =
(

ne
np+nn

)
,

where F(r) is some function for the value of mass density at each radial point, GF is the Fermi con-
stant, ne, np, and nn are the number of electrons, protons and neutrons in the medium. But since
neutrinos interact specifically only with electrons we need to convert the mass density into baryon
number density so that the product nBYe gives the number of electrons required for the matter po-
tential.

To convert the mass density into baryon number density we simply divide the mass density ρ(r) by
the mass of a nucleon. We choose the mass of the proton as our divisor. Choosing to use the mass of
the neutron does not change the result since the mass of a neutron is almost equal to the mass of a
proton. Thus,

nB(r) =
ρ(r)
mp

(5.1)
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Hence the matter potential in our case becomes,

λ(r) =
√

2GFnB(r)Ye(r) (5.2)

Self Interaction Potential µ(r):

To calculate the self interaction potential, we just use the same Fermi constant as above and we use
the neutrino and anti-neutrino number densities directly from the data as they are in the desired
units of 1/Length3. With the neutrino and anti-neutrino number densities Nν(r) and Nν(r) from the
dataset, we can directly calculate the self interaction potential to be,

µ(r) =
√

2GF(Nν(r)− Nν(r)). (5.3)

But since this difference can be negative, we usually work with the absolute value of this quantity.

5.2 Spatial distribution of potentials

Now that we know how the parameters appear we can use the formulae to calculate the relevant
potentials. First, we look radially outwards from the centre of the merger remnant, hence we plot the
potentials in the polar coordinates, R, θ. For the three data sets of 10-ms, 20-ms and 50-ms snapshots,
the matter potential λ, the modulus of neutrino self potential µ and sum of the two looks like,
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Figure 5.2: The potentials |µ(r)| (middle column) and λ(r)(left column) along with the total potential
|µ(r) + λ(r)| (last column) for the three snapshots, where λ(r), µ(r) have been explained in the
previous sections. The blue and cyan surfaces in the middle column shows the boundary separating
regions which are neutrino-dominated from the regions which are anti-neutrino dominated. The
blue spots on the cyan boundary in the last column signifies the points where there is a cancellation
between µ(r) and λ(r).

It can be seen from the contours of the matter potential that with increasing time, more matter is
getting dispersed outwards. For the 10-ms snapshot, most of the matter is concentrated close to the
merger remnant and also is highly dense in the equatorial region. But for 20-ms and 50-ms, the whole
contour is glowing which confirms that the matter has been dispersed to greater distances.

The blue(cyan) contours in the second column signifies the boundary separating the regions which
are neutrino-dominated from the regions dominated by anti-neutrinos. We can see that this boundary
is compactly bound around the equatorial region at the early time snapshots before it expands in both
the radial and the angular directions as it can be inferred from the 50-ms snapshot.

The distinct cyan surfaces with blue spots in the last column of the figures above signify the points
where there is a cancellation happening between the neutrino self potential and the matter potential.
These are the points where MNR could occur. It can be seen that there are no MNR points for the 50
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ms snapshot as the matter and self potentials do not cancel in the radial distance range we are looking
at. But there are potential cancellation points in both 10ms and 20 ms snapshots. The cancellation
surface expands along the θ axis and the R axis from 10-ms to 20-ms. For 50-ms, it is nowhere to be
seen.

This cancellation is not sufficient to produce Matter-Neutrino Resonance as |µ(r)| is not the whole
self interaction term. The cancellation should happen between λ(r) and |µ(r)(1 − β(r))|, where β(r)
is the ratio of anti-neutrino number density to the neutrino number density. This basically signifies
the anti-neutrino excess. MNR occurs only if β(r) > 1 because only then the self term is negative.

If we now call Ve f f = |µ(r)(1 − β(r))|, then the contours for the sum of λ(r) + Ve f f (r) for the three
snapshots are given below.
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Figure 5.3: The log of effective potential |µ(r)(1 − β(r)) + λ(r)| for the three time snapshots.

As seen from the above figures, the locations of MNR are heavily constrained. The boundary where
the effective potential vanishes keeps expanding along the θ axis with each time snapshot. For the
20-ms, the vanishing boundary has moved very close to the poles compared to the near-equatorial
positioning in 10-ms snapshot and for 50-ms it is not present anywhere in the radial distance range
we are looking at.

Even then not all the points in 10ms data, where the effective potential goes to zero, can contribute to
MNR because the plot only shows the points where the potentials cancel, but it does not show if the
cancellation satisfies the second condition from the listing in 3.1 to produce MNR. Almost all the blue
dots above 50 km has λ(r) > |µ(r)(1 − β(r))| just before the point of cancellation and so the change
in potential is very non-adiabatic to produce MNR as discussed in the previous sections.

By considering the above plots for the three snapshots, it makes more sense to focus on the 10ms
snapshot as the cancellation points are at relatively close distance along a particular radial trajectory.
It is also seen that along the angles which pass through the cancellation surface when looked at
radially, there are always two cancellation points.

This gives us the freedom to choose how to approach these cancellation points as the potentials are
trajectory dependent. We choose to look at a few representative trajectories from the dataset that
crosses the cancellation points, to see if MNR happens in any of them. The results are presented for
solving the flavor equations of motion along the following trajectories,
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• Radial trajectories.

• Vertical trajectories.

• Horizontal trajectories.

• Reversed vertical trajectories.

Finally we move on to include the advection term into the equations of motion and study the effects
explored in the final section of chapter 4 as we get a promising scenario where advection could
influence the flavor evolution.

5.3 Radial Trajectories

We choose to look at the radial trajectories for the angles θ = 0.5, 0.52 & 0.56 with respect to the y-axis
presented in the plots above. For these radial trajectories, the effective potentials Ve f f (r) and λ(r) are
plotted below.
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Figure 5.4: Ve f f (r) & λ(r) for 0.5, 0.52, & 0.56 radian trajectories.

We can see a direct correlation between the blue spots in the contour and the crossings in the above
plots signifying cancellations. The profiles of the potentials we obtain are interesting because the first
point of crossing satisfies MNR condition Ve f f (r) > λ(r), but the second point of crossing does not. It
can also be seen that after crossing the first point the matter potential reaches a peak and falls down
steeply after the maximum. As a result, we see that although at the second crossing, λ(r) > Ve f f (r),
it steeply goes to zero. For these trajectories, when we calculate the survival probability by solving
the equations of motion for the polarization vectors without including any angle dependence, we get
the results presented in Fig. 5.5.
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Figure 5.5: The survival probabilities for the 0.5, 0.52, & 0.56 radian trajectories from the 10ms data
set. We can see that the resonance does not produce any significant flavor transformations.

Discussion: From the above plots we can identify the following points,

• We identify a new type of MNR happening. There is a dip in the survival probabilities for both
neutrinos and anti-neutrinos almost exactly at the first crossing point in the potentials for all
the three cases and it shows typical MNR like drop.

• The duration of MNR seems to be bounded between the two crossing points as there is no
change in the survival probabilities after the second crossing is passed.

• The ’gap’ between the survival probabilities for neutrinos and anti-neutrinos is proportional to
the difference between λ & Ve f f in the potentials plot.

• This is not a standard MNR as the system brings the survival probabilities of both neutrinos
and anti-neutrinos to the original value, while being bounded between the crossing points,
nor is it the symmetric MNR. This is a new type of MNR which does not produce any flavor
transformation even though it went through the resonance.

To understand this better, we look at the evolution of the sum of the potentials which is given below,
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Figure 5.6: The evolution of sum of potentials for the three selected trajectories.

• From the above plots we can confirm that the system is indeed undergoing MNR since the sum
of potentials is getting stuck at zero by cancelling each other.

• It can be seen that opposed to the other plots of the evolution of the potential sum, where, after
starting out negative the sum passes over to the positive axis, here, the sum starts negative, and
after getting stuck in resonance it dips into the negative axis again.
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• The reason for dipping into the negative axis after resonance can be understood by looking at
Fig. 5.4. In that plot after the second crossing point, we see that λ(r) drops to zero faster than
the effective self potential term. The matter term is responsible for the positive contribution
to the sum of potentials. Because here it goes down to zero quickly after the second crossing,
the positive contribution goes to zero thus the sum is dominated by the negative self potential,
hence the sum dips into the negative axis.

• Now to explain the shape of the survival probabilities, we have to realize that the flavor trans-
formation occurs because the system tries its best to stay negative to cancel the matter potential.
It does this by converting neutrinos thereby changing its sign while keeping anti-neutrinos in
its original flavor, hence increasing its magnitude while staying negative to sustain the cancel-
lation. But here since λ(r) is going down faster when compared to Ve f f the system has to flavor
transform only for the short duration where λ(r) ≈ Ve f f to maintain cancellation. After λ be-
comes less than Ve f f , the difference is reversed and the system has to make the self interaction
term more positive to keep cancelling and so it brings the neutrinos and anti-neutrinos to their
original flavor. It might also be dependent on the slope of the two potentials, if ∆λ < ∆Ve f f ,
then positive flavor transformation is favored, if it is the other way then negative flavor trans-
formation is favored which undoes the conversion done at the start of the resonance.

Thus, the system undergoes MNR, but ultimately there is no significant change in the survival prob-
ability as the system undoes whatever change it made during the initial stages of the resonance. The
analytical understanding of why the transformations are bound within the two crossings are yet to
be explored.

5.3.1 Angle Dependence on radial trajectories

If we now introduce angle dependence into the initial conditions of the polarization vector, we see
that it actually suppresses the flavor transformation drastically. We choose a forward streaming an-
gular distribution of the form 1 + x cos θ with x = 0.5. Applying this condition to the 0.52 radian
trajectory, shows a clear suppression of the flavor transformation as seen below,
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Figure 5.7: The survival probability (left) and evolution of sum of potentials (right) for 0.52 radian
trajectory with angle dependence.
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It can be seen that dip is very small and that only the radially emitted bin undergoes resonance while
almost all other bins do not contribute to MNR. This means that radial trajectories does not support
Matter-Neutrino resonance to occur.

5.4 Generic trajectories

We transform the parameters into cartesian co-ordinates (x, y) to look for more sites for MNR. We
choose to focus only on the 10-ms dataset as it gives the most promising scenarios for MNR to occur.
The transformed versions of the potentials are given below.
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Figure 5.8: The matter (left) and the neutrino potential (right) for the 10ms data-set in cartesian co-
ordinates.

The total potential contour map with cancellation points highlighted is given as follows,
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Figure 5.9: Contour map for the sum of potentials with cancellation points for 10-ms data-set in
cartesian co-ordinates.

From the plots presented in Fig. 5.8, we can clearly see the torus in the equatorial region surrounding
the merger remnant as depicted in Fig. 5.1. The region where the cancellation between the matter and
self-interaction potentials could occur forms a boundary above and below the torus equatorial disk.
The points where the sum of the potential vanishes can be spotted from the blue spots in Fig. 5.9.
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5.4.1 Vertical Trajectories

We choose to look at the cancellation points vertically from the equator and track the potentials
through the trajectories that hit the cancellation points marked in Fig. 5.10 to see if MNR can occur.
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Figure 5.10: Total potential contour marked with the trajectories focused on.

But it is seen that though such a trajectories have a crossing, it cannot produce MNR since the matter
potential is greater than the self potential as seen in Fig. 5.11. This is reasonable as it matches the
contours for the matter potential and the neutrino potential in Fig. 5.8. For these trajectories, the
matter potential is way bigger when compared to the neutrino potential.
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Figure 5.11: The evolution of matter and effective self interaction potential along vertical trajectories
from the points (45, 0) (left)& (52, 0) (right). It can be seen that λ(r) > Ve f f (r) along these trajectories.

Thus looking at radial trajectories and vertical trajectories for the 10 ms data-set shows no promising
scenarios for standard MNR to occur. Although MNR happens for radial directions, because of the
way the potentials change for those directions, the system does not produce any significant change
in the neutrino and anti-neutrino flavor after the crossing points are passed.
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5.4.2 Horizontal trajectories

By looking at the contours for the distribution of the matter potential and the self interaction po-
tential, we then look at horizontal trajectories that hit the cancellation points, because for horizontal
trajectories, the matter potential starts out to be much less than how it was for vertical trajectories.
This would mean that there is a good chance that the MNR conditions are fulfilled.

So the shape of the potentials along the lines connecting the points (05, 65) and (155, 65), along with
lines connecting (05, 77) to (155, 77) & (05, 83) to (155, 83) were explored. It can be seen that the self
interaction potential is greater than the matter potential before the crossing happens as expected, but
it can also be seen that the matter potential jumps to high values very quickly while the self potential
stays relatively constant. Unlike the potential profile for the radial trajectories, there are no double
crossings and the matter potential stays much larger than the self potential for a large distance. This
is also in accordance with the contours made for the potentials.
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Figure 5.12: The evolution of matter and effective self interaction potential along horizontal trajecto-
ries from the points (05, 65), (05, 77) & (05, 83). It can be seen that the MNR conditions are fulfilled
with Ve f f > λ.

We simulate the flavor equations of motion for y = 65 km trajectory with the vacuum mixing angle
θV ≤ 0.2 and we see that the system does not undergo MNR. It is because the jump of magnitude
for λ(r) is very quick. Therefore, though the system passes through the cancellation point of λ(r) +
Ve f f = 0 very quickly and does not have enough time to start flavor transforming. This is seen to be
the case for the plot of potentials where it passes by zero in Fig. 5.13.

MNR is also dependent on the vacuum mixing angle as explained in the previous sections, Eq. (3.7).
Given the sharp jump in the matter potential, for a successful MNR to occur, the value of θV must be
greater than the usual value used in all the previous simulations. When the vacuum mixing angle is
slightly increased to θV = 0.35, the initial perturbation of the polarization vector system is sufficient
to make it undergo resonance as seen from the second row of plots in Fig. 5.13. But this cannot be
considered as a realistic result since this value of mixing angle is slightly higher than the upper bound
found experimentally [6]. So it is seen that there is a threshold where a slightly greater perturbation
is enough to make the system undergo the resonance.
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Figure 5.13: Survival Probability and the sum of potentials for the y = 65km trajectory. Though the
potentials fulfill the MNR conditions, for θV = 0.2 (first row) there is no resonance. But θV = 0.35
produces resonance (second row).

5.4.3 Reversed vertical trajectories

As a next step, we consider the same potentials found in Fig. 5.11, but this time we check if a neu-
trino beam travelling in the opposite direction from right to left undergoes MNR, since the potential
profiles and the system would satisfy the MNR conditions from the listing in 3.1, seeing that when
viewed from right to left, Ve f f > λ.

Specifically, we consider the vertical trajectory from (45,0) to (45,150). When the flavor equations of
motion are solved for the potentials in the fore-mentioned trajectory, for a short distance around the
point of crossing, it is noted that it does produce standard MNR as expected.
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Figure 5.14: This plot shows the survival probability (left) and evolution of the potential sum (right)
when the system is made to solve in the opposite direction.
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It should also be noticed that this point of MNR crossing, ≈ (45, 77) is way outside the neutrino
emission surface for the remnant which means technically there should not be any neutrino beam
travelling backwards which then would make the above result insignificant.

To get an idea of how forward peaked the distribution is, the ratio of neutrino flux in polar directions
to the number density for neutrinos and anti-neutrinos are plotted as contours, which is given in a
set of images below.

0 25 50 75 100 125 150 175 200
100

75

50

25

0

25

50

75

100
(r)/N

0.504

0.336

0.168

0.000

0.168

0.336

0.504

0.672

0.840

0 25 50 75 100 125 150 175 200
100

75

50

25

0

25

50

75

100
(r)/N

0.504

0.336

0.168

0.000

0.168

0.336

0.504

0.672

0.840

Figure 5.15: Contours for ratio of r-flux to number density individually for neutrinos (left) and anti-
neutrinos (right) which clearly shows the trapping region and the decoupling region.

By looking at the above plot, Fig. 5.15 we can immediately identify the trapping region and hence the
neutrino emission surface. We can also see that difference in the emission radius for neutrinos and
anti-neutrinos, the anti-neutrinos have a smaller emission radius when compared to the neutrinos
because they decouple quicker.
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Figure 5.16: The ratio of total flux to the number density, individually in r direction (top), θ-direction
(bottom right) and the sum of both (bottom left), for both neutrinos and anti-neutrinos

By looking at the total fluxes for both neutrinos and anti-neutrinos in r, θ directions in the above plot,
Fig. 5.16, we can see that the value of the ratio of r-flux to number density at ≈ (45, 77) is around 0.7,
which means there could be a significant number of neutrinos travelling in the backward direction.
So the reversed run for the vertical trajectory might be explaining something worthwhile. Although it
has to be mentioned that the dataset used presents the values of the number flux and number density
only along the radial direction, so the value of the ratio we get, might not be exactly applicable to the
trajectory we focus on.

But if there is a good fraction of neutrinos moving backwards, then the flavor equations of motion or
the initial conditions should be slightly modified to account for this fraction moving in the opposite
direction. This is done by including the advective term as explained in chapter 4.

5.5 Inclusion of advective term

As explained above, there is a decent fraction of (anti)neutrinos which could be travelling in the
backward, and the fact that the beam flowing forwards do not experience MNR but the beam flow-
ing backwards does, presents an interesting scenario to study. To study this in a consistent way,
an advective term is included into the EOMs and only two angular beams along this trajectory are
considered, just forward flowing and backward flowing beams are included into the EOMs as it is

66



described in the advection study section in chapter 4. We focus on the particular trajectory that shows
such behavior, and we apply the advection code for the potential profiles of that trajectory. The results
are presented below.

As explained in the advection results of chapter 4, when the matter potential dominates the self-
interaction potential at the point of crossing, the equations of motion becomes incompatible to favor
flavor transformations. We get similar results when applied to the dataset as well.
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Figure 5.17: r-bin averaged survival probability (enlarged in the right side plot) as a function of time
around the point of crossing in the left plot of Fig. 5.11

We can see that although there is a trace of MNR happening, the magnitude of its effects are of the
order 10−4 which is negligible and it can be seen that it does not affect the survival probability on the
whole.

77.0 77.5 78.0 78.5 79.0 79.5 80.0 80.5 81.0
Distance (km)

1.30

1.35

1.40

1.45

1.50

1.55

Ra
tio

 

/

Figure 5.18: Ratio between ν and ν near the point
of resonance

Since the values of β for the forward and back-
ward beams are similar, there is no preferred
direction for the advection to move the distur-
bance, although it being small. Thus it can be
seen to propagate the disturbance in both direc-
tions in Fig. 5.19.

67



77.0 77.5 78.0 78.5 79.0 79.5 80.0 80.5 81.0
r (km)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60 Advection 
P
P

77.0 77.5 78.0 78.5 79.0 79.5 80.0 80.5 81.0
r (km)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60 Advection 
P
P

77.0 77.5 78.0 78.5 79.0 79.5 80.0 80.5 81.0
r (km)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60
Advection - tfinal

P
P

Figure 5.19: Polarization vectors of neutrinos and anti-neutrinos at three different time snapshots
(top left - initial, top right - intermediate, bottom - final) for the advection code applied to the vertical
trajectory.

We can see that as opposed to a significant dip in the polarization vectors around the crossing point
seen in Fig. 4.23 and 4.22, all we see are small wiggles that propagate from the crossing point on both
directions as expected, hence there is no change in the flavor of neutrinos and anti-neutrinos.

5.6 Summary

In this chapter, we studied the various potential profiles produced in a hydrodynamical simulation
of a binary Neutron Star merger remnant and we chose a few representative trajectories to check if a
scenario suitable to produce MNR was present. We observed that conditions for MNR were present
only for the 10ms snapshot which was earliest time snapshot of the merger simulation. From the
dataset corresponding to the 10-ms snapshot, we observed the potential profiles and concluded that
MNR was a heavily constrained phenomenon, even in the case of a merger. By pointing out the
MNR points, we chose three main types of trajectories and we found that none of these trajectories
produced significant flavor transforming MNR. We identified a new type of MNR happening in the
radial trajectories which ultimately did not produce any flavor transformations. We also included the
advection for the case of vertical trajectories and we found no MNR, which complements the results
obtained in the previous chapter. Thus after exploring the dataset along multiple trajectories, we can
safely conclude that for this dataset there are no possibilities for MNR to occur.
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Chapter 6

Discussion & Summary

In the literature, Matter-Neutrino Resonance has been studied mainly in the single angle limit, and
the multiangle limit is considered only in a few papers. The multiangle effects are important to
accurately describe the flavor evolution of neutrinos in the vicinity of the source. The advective
effects that occurs in the dense media close to the source has not been accounted for in the studies
undertaken so far with respect to MNR and the angular distributions used have also been simple.
The implications for nucleosynthesis cannot be determined accurately without understanding MNR.
This requires us to study this phenomenon in increasingly complicated situations.

In this thesis, we aimed to study the effects and prospects of Matter-Neutrino Resonance and its angle
dependence properties with advective effects included, in Compact Binary merger systems using the
datasets obtained from hydrodynamical simulation of a Binary merger remnant, which would be a
good representation of the potentials to be expected in real astrophysical mergers.

After introducing the basic concepts of flavor transformation, in chapter 2 and collective oscillation
phenomena briefly, we moved on to explain the theoretical basis for Matter-Neutrino Resonance by
explicitly pointing out the conditions required for MNR to occur and other analytical results obtained
in the literature, in chapter 3.

As a part of the thesis we independently developed a flavor simulation code including all three terms
of the Hamiltonian (vacuum, matter and self) with the capability to simulate the polarization vectors
with energy and angular dependence, as explained in the Appendix 7.2.1. We then applied that code
to two model situations designed with similarity to a source of dense neutrino emission in mind,
with and without angular dependence on the polarization vectors in chapter 4. We studied the effects
of choosing a forward peaked angular distribution in steps, by slowly increasing the contribution of
angle individually for neutrinos and anti-neutrinos, before moving on to including angle dependence
on both. We found that there is a drastic suppression of Matter-Neutrino resonance when there was
a forward peaked angle dependence on neutrinos and there was significant decrease in the effects of
the resonance when there was a angular distribution only on anti-neutrinos, although not as much
as it was with the neutrino case.
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We saw that the system simply transitioned from a case where angle dependence was dominant on
anti-neutrinos to a case where it was dominant on neutrinos, when we included the forward peaked
distribution non-uniformly to neutrinos and anti-neutrinos. The suppression of MNR with the inclu-
sion of multiangle effects is in accordance with what is reported so far in the literature. The results
obtained in this thesis differ from the literature only with the fact that the anti-neutrinos are not af-
fected in any case studied for a forward peaked angular distribution. We identified and discussed
the difference in the flavor evolution of the polarization vectors between normal and inverted mass
hierarchies in the multiangle limit, with an angular dependence on them. This difference between
the survival probabilities of normal and inverted mass hierarchies in the context of MNR is a new
result. We then attempted to study the effects of including the advective contribution to the equa-
tions of motion to understand the realistic implications of MNR and also with an ulterior motive to
apply it to a particular scenario in the dataset. We found that the inclusion of advection very radically
decreased the effects of MNR, but the system still showed MNR characteristics albeit being almost
negligible in some cases. We also found that even with significant advective contribution, there was
no change in the survival probabilities if the second condition in the listing 3.1 is not satisfied. The
analytic reason for the equations becoming incompatible for flavor evolution has to be explored in
future works.

We then looked into the merger simulation dataset for prospective MNR along multiple kinds of tra-
jectories, which could cause implications to the nucleosynthesis theorized in the literature. We found
that although there are possibilities for Matter-Neutrino Resonance to occur, it was only in the early
stages of the merger. Though there were locations where the matter and the self-interaction potential
cancelled, for the representative trajectories chosen, the potential profiles did not produce any sig-
nificant Matter-Neutrino resonant flavor transformations. In the process, we identified a new type
of MNR transformation, which, although does not produce any significant change in the flavor of
neutrinos and anti-neutrinos, was a new result. We confirmed the results obtained in the advection
studies done in chapter 4, that showed substantial decrease in resonant flavor transformation, by
applying the advection code to a particular trajectory in the dataset. We have refrained from includ-
ing angle dependence on the polarization vectors for most trajectories, simply because the potential
profiles does not produce MNR even without including it.

Since these results have not been reported so far in the literature, a paper focusing on the results
obtained from chapter 4 and 5 is under process.

From all the studies undertaken during the thesis, we have obtained enough results to arrive at the
conclusion that Matter-Neutrino Resonance is a highly constrained and case-specific phenomenon,
which can be produced only in very particular kinds of potential profiles and astrophysical scenarios.
The datasets used in the thesis did not have any prospective situation to produce a significant flavor
transformation due to Matter-Neutrino Resonance.
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Prospects and Outlook

As mentioned above, Matter-Neutrino Resonance is an extremely case-specific phenomenon, which
means there could be possibility of this resonance occurring in some other Compact Binary Merger
with different emission characteristic and potential profiles. But the realistic implications of the res-
onance might not be as significant as reported in the literature since the inclusion of advection made
the effects of MNR almost negligible and inclusion of angle dependence also decreased its conse-
quence. In a realistic scenario, the astrophysical system would have significant contributions due
to matter and neutrino advection and based on the results obtained, it is highly doubtful that MNR
would be produced in such a situation.

The cases studied in this thesis are only better approximations to the actual scenario, and are by no
means conclusive. We mainly worked with two flavor and mono-energetic system, which are sig-
nificant simplifications. Near the decoupling region, a purely forward peaked distribution is a good
approximation in itself. But the forward peaked angular distribution we assumed to study the angle
dependence, must be made more accurate. Including the collision terms to the equations of mo-
tion would help in determining the angular distributions of neutrinos and anti-neutrinos accurately
as it is the main factor that influences the directional dependence of the neutrino and anti-neutrino
emission. The collision terms are energy-dependent and we can no longer use the mono-energetic
assumptions, this can complicate the problem significantly. The energy independent property of
MNR must also be re-investigated when the collision terms are included as that property may be
influenced.

There is scope for further investigations to be done with respect to Matter-Neutrino Resonance.
Though this phenomenon is highly case-specific, we observed that advective effects made the con-
sequence of MNR almost negligible. Thus the judgement of whether MNR is a realistic occurrence
and whether it can influence the nucleosynthesis to the extent it is proposed in the literature must be
left for future studies with more accurate choice of neutrino systems and more advanced simulation
techniques.
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Chapter 7

Appendix

7.1 Derivation of Bloch equation for Polarization vector

Starting from the von-Neumann equation,

i
∂ρ

∂t
= [H, ρ] (7.1)

if we now insert the decompositions for ρ and H,

ρ =
Tr(ρ)

2
(1 + ~P ·~σ) ; H =

1
2
(1 + ~H ·~σ)

into the von-Neumann equation, after expanding the commutation we obtain,

i
Tr(ρ)

2
∂

∂t
(1 + ~P ·~σ) = Tr(ρ)

2
1
2
((1 + ~H ·~σ)(1 + ~P ·~σ)− (1 + ~P ·~σ)(1 + ~H ·~σ)

After some algebraic simplifications we arrive at,

i
d~P
dt

·~σ =
1
2
[(~H ·~σ)(~P ·~σ)− (~P ·~σ)(~H ·~σ)] (7.2)

If we then make use of the identity,

(~a ·~σ)(~b ·~σ) = (~a ·~b)1 + i(~a ×~b) ·~σ (7.3)

Then after simplification, eq.21 becomes,

i
d~P
dt

·~σ =
i
2
[(~H × ~P)− (~P × ~H)] ·~σ
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which then reduces to the Bloch equation,

d~P
dt

= ~H × ~P (7.4)

7.2 Method of designing solver code

Since the flavor equations of motion are too complicated they can only be solved numerically. For this
thesis, the code is developed in Python, using the RK45 method from scipy.integrate package. This
method uses Dormand-Prince pair of formulae with adaptive stepping, using fourth-order method
accuracy to control error and fifth order accurate formula for taking steps. The design of the code is
described in the following sections.

7.2.1 Numerical scheme

In functional form, the multi-angle, multi-energy equations, simplified and rewritten in terms of just
the emission angle, energy and the distance from the neutrinosphere, we have to solve would look
like,

d~Pij

dr
=

1
cos θj

(+ω~B + λẑ +
n2

∑
β=1

Aβj(
n1

∑
α=1

(xα~Pαβ − yα
~Pαβ)d cos θdE)× ~Pij (7.5)

d~Pij

dr
=

1
cos θj

(−ω~B + λẑ +
n2

∑
β=1

Aβj(
n1

∑
α=1

(xα~Pαβ − yα
~Pαβ)d cos θdE)×~Pij (7.6)

and n1, n2 are the number of E bins and θ bins, respectively. The explicit angular bin dependence is
through the 1

cos θj
term.

For the n1 = 2, n2 = 2 bin scenario, there would be 24 equations of motion to solve, since there
would be P11, P12, P21, P22 and similarly for anti-neutrinos, P11, P12, P21, P21, where Pij = P(Ei, θj) and
each polarization vector has 3 components in them. Thus the flavor evolution problem becomes a
huge set of coupled differential equations. (6 × NE × Nθ)

For such a scenario, the coupling self interaction term with the double integration, would have to be
of the form,

A1j((x1P11 − y1P11) + (x2P21 − y2P21)) + A2j((x1P12 − y1P12) + (x2P22 − y2P22)) (7.7)

where,

Aβj =
L cos θβ√

1 − L(1 − cos2 θβ)
(1 − cos θβ cos θj) (7.8)

and L = R2

r2 . where we have already simplified the problem and have rewritten it in terms of just the
emission angle, distance and energy and with, x = φν(E)/〈Eν〉 and y = φν/〈Eν̄〉, where φ(E) denotes
the distribution function of neutrinos and anti-neutrinos and 〈E〉 signifies the average energy.
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So if there are two θ bins with say θ1 = 0.25, θ2 = 0.75, then for the equation of motion of a
polarization vector of the first angle bin, j = 0.25 and β index is summed over the two angle bins,
while j stays the same in both terms, as it is shown in Eq. (7.7).The integration happens in a similar
way for the other polarization vectors of other angular bins, as well. Such a double integration
happens at each time-step that the ODE solver takes. The geometric dilution of the neutrino density
is taken care of by the r-dependence of the cos θ terms. Explicitly, the r-dependence is,

cos θj,β =
√

1 − L(1 − cos2 θ0=j,β) (7.9)

where, (j, β) denotes that the expression is same for all cos θ, whether it is the bin dependent variable
or the integration variable. And finally dE = 50−0

n1
and d cos θ = 1

n2

7.2.2 Implementation of the integrals

First we can readily fix the initial values of the polarization vectors since we assume that the vectors,
at the beginning are all fixed in the same direction for all the emission angles. Hence we create a
tensor object P0 with three indices m, n, 6, where m is the index for the energy bins, n is the index for
the angular bins and there are a total of six components inside this object, which includes three for
neutrinos and three for anti-neutrinos.

So to simply state, the energy integration now picks up two θ dependence. The integration now
depends on the particular angle bin and the angle that is being integrated over, which are the j index
and β index respectively in eq. (7.5) and (7.6).

We also create a new three index tensor object I, which will hold the distribution functions of the two
flavors of neutrinos and anti-neutrinos which are hiding inside j and j in Eq. (2.22) and (2.23). The
I object ideally contains 3 copies of the distribution functions of neutrinos and 3 copies of the same
for anti-neutrinos, which includes both the flavors in them. Hence we actually have two tensors with
three indices, namely Imnk and Pmnk where the k = 1, 2, ..6, out of which k = 1 − 3 accounts for the
neutrino components and k = 3 − 6 is for anti-neutrino components of the polarization vector.

In the first step we contract the energy index for the two tensor objects, which for just 2 bins each,
looks like,

ImnkPm
nk =

[
I11kP1

1k + I12kP1
12k

I21kP2
1k + I22kP2

2k

]
(7.10)

We can then split the k index into two parts, from 1-3 and 4-6, to subtract them, which would look
like the terms (xα~Pαβ − yα

~Pαβ) in equations (7.5) and (7.6), with x containing the copies of the energy
distributions of neutrinos and y containing the same of anti-neutrinos. Thus the angle bin dependent
energy integration now looks like,

Enk =
3

∑
k=1

ImnkPm
nk −

6

∑
k=4

ImnkPm
nk (7.11)
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Then to create Aβj we create another tensor object with indices β, n, here both β and n have the
dimensions of the angle bins. This is justified because A has dependence on the two θs, the integration
variable and the angular bin itself. Then we contract the integration variable index of this tensor
object with the n index of Eq. (7.10), and this will give us the correct result for the double integration
we need, i.e, in the code we will be doing something like,

D = Aβn(
3

∑
k=1

In
mkPmn

k −
6

∑
k=4

In
mkPmn

k ) (7.12)

or

D = Ajn


In

m1Pmn
1

In
m2Pmn

2

In
m3Pmn

3

−

In
m4Pmn

4

In
m5Pmn

5

In
m6Pmn

6


 (7.13)

where n is the integration variable index which is contracted with the corresponding A’s, and j is the
angular bin index.

The k index is now explicitly expanded in (13) with (1, 2, 3) being the (x, y, z) components of ~P,
and (4, 5, 6) are the (x, y, z) components of~P. This whole double integration would result in a simple
3 vector, because the "vectorness" comes only from Ps and Ps and we are just subtracting the two.
This then enters the Hamiltonian to act on the Pij’s or Pij’s in Eq. (7.5) and (7.6). Thus we have
developed a vectorized flavor evolution code with capacity to handle energy and angle dependence
on the system.

7.2.3 General Multiangle-Single Energy case

The cases of MNR studied in this thesis concerns only mono-energetic systems with just angle de-
pendence and excludes the emission surface. We also remove the spherical symmetry assumed in
the previous section. This simplifies the problem a little. By removing the energy dependence of
the system, the tensor Imnk simply reduces to Ink, where n is corresponds to the number of angular
bins like usual. The energy integration simply amounts to multiplying by 1 and so that can also be
removed.

The form of the object Aij also changes because we consider general geometry and so it reduces to
(1 − cos θi cos θj). Thus the modified set of equations are,

d~Pi

dr
= (+ω~B + λẑ +

n2

∑
j=1

(1 − cos θi cos θj)((α~Pj − β~Pj)d cos θ)× ~Pi, (7.14)

d~Pi

dr
= (−ω~B + λẑ +

n2

∑
j=1

(1 − cos θi cos θj)(α~Pj − β~Pj)d cos θ)×~Pi, (7.15)

where α and β are now simple scalar numbers. We always set α = 1 and we set β to be equal to the
ratio of anti-neutrinos to neutrinos in the medium. Thus β simply signifies the anti-neutrino excess.
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This quantity can also be made to be a function of r. The implementation of the angle integration
remains the same and the code converges even for low number of angular bins.

7.2.4 Advection Code

The new equations with the advective modification, for two beams corresponding to θ = 0 and
θ = π, in functional form are,(

∂

∂t
+

∂

∂r

)
~P1(r, t) = [+ω~B + λ(r)ẑ + µ(r)∑

σ

(1 − cos θσ)(ασ~Pσ − βσ
~Pσ)]× ~P1 (7.16)

(
∂

∂t
− ∂

∂r

)
~P2(r, t) = [+ω~B + λ(r)ẑ + µ(r)∑

σ

(1 + cos θσ)(ασ~Pσ − βσ
~Pσ)]× ~P2 (7.17)

(
∂

∂t
+

∂

∂r

)
~P1(r, t) = [−ω~B + λ(r)ẑ + µ(r)∑

σ

(1 − cos θσ)(ασ~Pσ − βσ
~Pσ)]×~P1 (7.18)

(
∂

∂t
− ∂

∂r

)
~P2(r, t) = [−ω~B + λ(r)ẑ + µ(r)∑

σ

(1 + cos θσ)(ασ~Pσ − βσ
~Pσ)]×~P2 (7.19)

where the subscript 1 on the polarization vectors refer to the forward beam and 2 refer to the back-
ward beam. Because these are partial differential equations and the polarization vectors have become
explicit functions of r and t, we have to consider them as independent variables. To do this we adopt,
finite difference method of the form,

f ′(r) =
f (r + h)− f (r − h)

2h

for evolution along r-dimension, thereby making Nr bins, and let solver take adaptive steps along
the t-dimension. And so we need an initial condition for t-dimension and a whole set of initial con-
ditions for each of the r-bins. Thus ultimately we need to solve, 4 × 3 × Nr equations of motion. We
apply periodic boundary condition with central difference method to the r-bins to avoid numerical
instabilities.

The influence/feedback of the backward travelling neutrinos undergoing resonance would be ac-
counted for because all the bins are coupled by the angle integration term of the self-potential. The
implementation of the angle integration is exactly the same but the terms obtain an additional index
corresponding to the r-bin.
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