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Abstract

In this thesis we aim to to fully automate the segmentation
and analysis of materials in high-resolution synchrotron radi-
ation micro-computed tomography tomograms consisting of
(I) a titanium implant, (II) bone mineral, (III) blood vessels,
(IV) osteocytes and (V) air/resin to develop a fully automatic,
quantitative model of healthy bone and a fully automatic re-
generated bone health evaluation.

The regenerated bone is separated from the old bone by ob-
taining the boundary between two different screw threads of a
titanium implant implanted in the bone sample. The titanium
implant is segmented through threshold-based segmentation
restricted to an area of interest bounded by a bounding box.
The screw thread of the implant is evaluated through wave
analysis, through which the boundary between different screw
threads is identified.

A fully automatic quantification of bone mineral volume is
given through a bone mineral density test. The bone min-
eral is segmented through a Gaussian mixture modelling of
the histogram of voxel intensities in the tomogram. The total
bone volume is found through morphological closing of the
segmented bone mineral, and the air/resin is segmented as
material outside the bone volume. We find that the regener-
ated bone consists of 57.7% bone mineral, in comparison with
70.3% bone mineral in the old bone.

We further propose a new metric for a fully automatic eval-
uation of regenerated bone health through assessment of the
distribution of blood vessels and osteocytes, respectively. The
blood vessels are segmented through connected component
analysis, as the blood vessel network comprises the largest
connected component of soft tissue. We design a recursive
multi-resolution analysis method for segmentation of the blood
vessels to alleviate RAM requirements. As the osteocytes have
a characteristic volume, they are extracted through a volumet-
ric segmentation method. A threshold for maximum distance
to an osteocyte or blood vessel, obtained through a distance
transform, will determine the quantity of healthy regenerated
bone. Using this metric, 99.85% of the regenerated bone is clas-
sified as healthy, in comparison with 99.69% of the old bone.

The algorithm is tested on one 3D tomogram of size (3279 ×
3480 × 3480). The evaluation method should be run on ad-
ditional bone sample tomograms from the same experiment
to substantiate the developed quantitative model of healthy
bone, as we expect an accurate model to quantify the old bone
in any of these tomogram as healthy.
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1 Introduction

Bone is a rigid organ that protects other organs, stores minerals, cre-
ates blood cells, regulates hormones and metabolic processes, en-
ables mobility, provides structure and support and is a living tissue
undergoing constant change[1]. With so many critical functions, it is
essential to maintain good bone health. Bone is subject to a number
of impairments, including fractures and cancers, but also bone dis-
eases that arise gradually with advanced age. These include osteo-
porosis, where the bone mineral density is decreased, as shown in
Fig. 1.1, leading to greater chances of fractures. With a world popu-
lation that is getting older and older, age-progressive bone deficiency
diseases such as osteoporosis in particular have become a rising is-
sue, affecting more than an estimated 200 million people worldwide
[2]. Thus, the need for understanding bone microbiology and the
causes, mechanisms, and effective treatment of bone disease, such as
discovering effective methods for stimulating bone regeneration and
the evaluation of these methods, is more present than ever[3].

Figure 1.1: Biopsies from a patient
with normal bone health (left) and
a patient with osteoporosis (right).
The healthy bone is denser and
strongly interconnected, while the
osteoporotic bone is sparse and
demonstrates a weaker structure
and thus weaker bone strength [4].

In [5] and [6], five experiments with the goal of studying bone
regeneration methods were conducted on seven goats, with four ex-
periments testing methods for bone regeneration and one experi-
ment for control. Synchrotron radiation micro-computed tomogra-
phy (SRµ-CT) at the at the European Synchrotron Radiation Facility
(ESRF) was used to produce 35 ultra-precise computed tomography
(CT) tomograms1 of the 35 bone samples, each of size (3279× 3480× 1 A 3D volume image produced

through tomography.3480).
The goal of this thesis is (I) to automate the segmentation of ma-

terials in the tomograms to (II) develop an automatic, quantitative
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model of healthy bone through analysis of the old bone, and (III)
to automate the evaluation of the quality of the bone regeneration
through analysis of the regenerated bone and quantitative compari-
son of this with the old bone.

This thesis is part of the research project OsteoMorph2, which uses2 "OsteoMorph: Understanding Bone
Micro-physics through Computational
Morphology of SRµ-CT" (Villum Exper-
iment 00041017).

a combination of image analysis methods and computational physics
to derive mathematical models of the microbiology and microphysics
of bone based on SRµ-CT images from [5] and [6]. This work, in col-
laboration with surgeons at Region Syd Hospitals and University
of Southern Denmark, will also provide the computational analy-
sis component for the European MAXIBONE project3, a programme3 http://www.maxibone.eu

funded by the European Commission for developing personalised
maxillary bone4 regeneration due to the concern that tens of millions4 A pair of bones that form the part of

the face surrounding the nose and hold
the tooth roots.

of European citizens are edentulous5, but have insufficient bone for
5 Lacking of teeth. placement of dental implants. MAXIBONE involves a trial of 150 hu-

man patients across 12 countries, whose bone biopsies will likewise
be scanned at the ESRF. In this thesis, the automatic segmentation
of materials, quantification of healthy bone and evaluation of bone
regeneration will be developed on data obtained in [5] and [6] on
biopsies from goats, to later be applied for bone regeneration in hu-
man patients through projects such as the MAXIBONE.

This chapter presents the motivation, problem formulation, and
solution overview of this thesis.

1.1 Motivation

The evident and prevalent evaluation metric for assessing the qual-
ity of regenerated bone is the bone mineral density test, a test for the
volume of bone mineral within the total bone volume. This evalua-
tion is simple, fast, and can be accomplished with segmentation of
the bone mineral alone. However, there is more to bone health than
the quantity of bone mineral, as healthy bone contains other tissue
types, including blood vessels, which supply nutrients to the bone,
and osteocytes6, which govern the remodelling of bone and direct the6 Ellipsoidal bone cells located inside

the bone mineral[3]. transport of the nutrients throughout the bone [3]. Bone that is com-
prised of only bone mineral is thus not healthy, living tissue, which
must contain blood vessels and osteocytes distributed throughout. It
is thus essential to identify and assess these materials in evaluations
relating to the bone.

We must thus identify the material class to which each voxel7 in7 "Volume elements", the 3D equivalent
of the 2D pixels, "picture elements". the tomogram belongs in order to automatically assess the quality of

regenerated bone based on the distribution of materials throughout
the bone volume.

Previously, a semi-automatic labelling method involving manual
sparse labelling in the form of seeding has been used, where se-
lected voxels or sections are roughly labelled manually as seeds,
from which a region-growing algorithm determines the remaining
labels [5]. However, this method involves time-consuming and cum-
bersome manual intervention. In this thesis, we aim to transfer the
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entire labour burden to the computer, fully automating the labelling
of materials, the quantitative modelling of healthy bone, and the
quantitative evaluation of the health of regenerated bone.

1.2 Problem Formulation

In the manual process of labelling, the human brain automatically
translates the visual information about the voxel in question from the
eyes into the cortical information that this voxel belongs to a certain
material class. Transferring this task to the computer involves the
formulation of mathematical rules from which the computer is able
to automatically separate the voxels into their material classes. This
image processing classification process is known as segmentation,
where each voxel in a 3D image is classified as one of N classes. For
these tomograms, the segmentation is based on the material type,
where the material types present are (1) titanium implant, (2) bone
mineral, (3) blood vessel, (4) osteocyte, and (5) air/resin. The air and
resin will be treated together, as they are not part of the bone sample,
but rather materials introduced in the imaging phase.

This segmentation will allow us to make conclusions based on
analysis of the segmented image, principally the quantitative mod-
elling of healthy bone and the evaluation of the health of the regen-
erated bone. For this, we will propose a new automatic bone health
evaluation method that is similarly simple and fast to the bone min-
eral density test, but considers the presence of blood vessels and
osteocytes distributed throughout the bone mineral in order to pro-
vide a more comprehensive and accurate measure for the quality of
regenerated bone. We will use this automatic bone health evaluation
method to create an automatic quantitative model for "healthy bone"
using the old bone, against which the regenerated bone can be eval-
uated. This proposed bone health evaluation method, along with the
automatic bone health quantification and the material segmentation
methods, will be outlined in Section 1.3.

Based upon the introduction above, we formulate the following
problem statement.

Using image processing methods, is it possible to create a fully automatic
quantitative model of healthy bone and evaluation of regenerated bone health
through automatic segmentation of bone samples imaged through high-
resolution synchrotron radiation micro-computed tomography into material
classes?

In the section below, we will provide details on the proposed so-
lution for answering the problem statement.

1.3 Solution Overview

This section presents an overview of the solution composed to an-
swer the problem statement. In order to obtain an automatic quan-
tification of healthy bone and evaluation of regenerated bone health,
we fully automate the segmentation of voxels into one of five mate-
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rial classes present in the tomograms, (I) titanium implant, (II) bone
mineral, (III) blood, (IV) osteocyte, or (V) air/resin, using a flight
of image processing methods, as will be outlined below. We then
propose and implement a method for obtaining an automatic quan-
titative model of healthy bone and for an automatic evaluation of the
regenerated bone against this model based on the segmented tomo-
gram.

In Appendix A, we include a suggested hierarchy of image pro-
cessing steps that outline a typical path from image formation to
image comprehension8.8 Image comprehension follows the

recognition of the contents of an image
and involves making conclusions based
on the segmented image, e.g., evalua-
tion of bone health.

The tomograms produced are of ultra-high resolution, which is
necessary for distinguishing small structures, but unnecessary for
larger structures, where the high resolution only carries a superflu-
ous RAM and computational burden. We will use a multi-resolution
representation of the tomogram data to analyse large structures at a
lower computational cost, while smaller structures can be analysed
the original resolution level, as detailed in Chapter 3.

For segmentation of the titanium implant in the tomogram, we
employ voxel-based thresholding to roughly segment the implant, as
the implant is comprised of voxels of much higher intensity than the
rest of the tomogram. However, this approach is sensitive to noise, as
surrounding voxels may appear as bright as the implant and thus be
misclassified as implant voxels. Thus, we draw an oriented bound-
ing box which limits the area of interest, and the implant can then be
segmented through voxel-based thresholding restricted to this area.
The methods, implementation and results of the implant segmenta-
tion will be given in Chapter 4.

The titanium implant is comprised of a head, a section with a mi-
cro screw thread and a section with a macro screw thread. In Chap-
ter 5, we separate the implant into its regions of interest, as these
distinguish the old bone from the regenerated bone. A wave charac-
teristic analysis will be used to do this. The outline of the implant
is obtained through an image projection, and the orientation and in-
dividual components of the implant can be determined through the
difference in wavelength and amplitude of the two screw threads.

For segmentation of the bone mineral, a Gaussian mixture model
will be used to model the histogram with probability density distri-
butions, where K-means clustering is used to provide a minimisa-
tion algorithm with starting guesses for distribution parameters. The
method, implementation and the results of the bone mineral segmen-
tation will be given in Chapter 6.

In Chapter 7, we give an intermediate bone regeneration assess-
ment using the segmented bone mineral and a bone mineral density
test. We obtain the volume of bone mineral by computing the area
under the curve of the projection profile of the segmented bone min-
eral, and take the ratio of this against the total volume of bone for the
bone mineral density test. This gives us a preliminary evaluation of
bone regeneration through assessment of bone mineral quantity. For
evaluation of the quality of the regenerated bone, we must obtain a
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measure of the distribution soft tissue throughout the bone volume.
The soft tissue voxels, hereunder blood and osteocyte voxels, are

near identical in voxel intensity value and cannot be separated through
voxel-based thresholding methods. Instead, the blood vessel network
segmentation will involve connected component analysis, as the blood
vessel network comprises the largest connected component of soft
tissue. The blood vessel network includes very small blood vessels,
which require the full resolution of the tomograms in order to be dis-
cerned, and it is not feasible to perform connected component anal-
ysis on the full high-resolution tomograms, as this would require
enormous amounts of RAM. To alleviate the RAM requirements, we
design a recursive multi-resolution analysis, as detailed in Chapter 8.

The osteocytes have characteristic volume, by which they will be
extracted using a volume based segmentation method in Chapter 9.

Finally, we require a metric for the automatic evaluation of the
health of the regenerated bone. For this, a distance transform will be
used to obtain the distance from each bone voxel to the closest osteo-
cyte voxel, as well as the distance from each bone voxel to the closest
blood voxel, and a threshold for maximum distance to osteocyte and
blood, respectively, will determine the quantity of healthy regener-
ated bone. The method, implementation and results of the improved
bone health quantification will be given in Chapter 10.

The fully automatic segmentation and evaluation methods will
be tested on one 3D tomogram of size (3279 × 3480 × 3480), but
the resulting code is developed to run on any of the 35 tomograms
produced in [5] and [6] with no additional intervention.

All the source code in the project was coded in Python and is
available at: https://github.com/annaxtan/master-thesis.git.

https://github.com/annaxtan/master-thesis.git


Part I: Background



2 Data and Image Formation

The data analysed in this thesis are 3D high-resolution SRµCT tomo-
grams. Computed tomography (CT) is an imaging technique that in-
volves the reconstruction of a three-dimensional (3D) volume image
from two-dimensional (2D) projections from several angles around
the sample. In this chapter, a brief history motivating the use of
SRµCT for imaging is given. The tomogram data analysed in this
thesis is described. An introduction to the formation of tomograms,
hereunder X-ray physics, X-ray image formation geometry, the ESRF,
and the reconstruction of 2D projections into a 3D volume image will
be given as well. Finally, we will briefly relay the methods used in
this thesis for visualisation of the 3D data. This chapter serves to
provide the background for the thesis.

2.1 From Histology to Synchrotron Radiation CT

Traditionally, bones have been examined through histology, in which
a sample, in the form of a 2D slice of bone, is sawed off from a biopsy
using a diamond blade, and the sample is then examined under a mi-
croscope. To record the presence and distribution of tissue types in
the sample, a transparent film with a grid may then be placed over
the sample, on which a technician can assign a label to each grid el-
ement, which describes the material class to which it belongs. This
time-consuming collection and evaluation method carries a substan-
tial manual labour burden. It also invariably requires the removal as
well as the destruction of the bone in order to obtain the slices for
histological study.

An advancement in imaging technology that circumvented the re-
moval and destruction of an internal structure to enable the study
hereof was the 2D X-ray image, where a 2D projection image through
a volume is obtained from a single angle using electromagnetic radi-
ation. In Fig. 2.2, one such 2D X-ray projection image is shown. The
production of X-rays will be detailed further in Section 2.3. These 2D
X-ray images work quite well for examining larger, denser structures,
useful for applications such as the identification of broken bones, but
are entirely unable to capture finer structures or soft tissue, as they
are only able to represent the shadow image from one projection
through the whole object volume.

In 3D CT, a 3D volume image is reconstructed through 2D projec-
tion images obtained from many angles. Once the 3D volume image
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Figure 2.1: Two X-ray images ob-
tained through projection from two
angles [7].

is reconstructed, a slice through the 3D volume image can be visu-
alised as a 2D slice image. CT image reconstruction will be detailed
further in Section 2.6. In Fig. 2.2, we compare a single projection X-
ray image with a slice of a 3D CT volume image. We see that CT
imaging is able to capture soft tissue and far finer details than the
2D X-ray image.

Figure 2.2: 2D X-ray image (left)
and 2D slice of 3D CT image (right)
of a skull, adapted from [8]. Note
that the two are not images of the
same patient and are included for
a basic illustration of the difference
between the two imaging modali-
ties only.

The primary difference lies in that a 2D X-ray image is the result
of passing one X-ray beam from one angle through the sample, ob-
taining a single projection, while 3D CT involves the reconstruction
of several X-ray projections from several angles into a 3D volume
image. In other words, through CT, we are able to simulate histol-
ogy without the removal or destruction of the sample. The sample is
represented by the reconstructed 3D volume image, and the virtual
sample can be examined in slices1. 1 This is the etymology of the word "to-

mography", which is derived from the
Ancient Greek tomos, which means to
section or to slice.

Another significant advantage of the 3D CT is that the samples
themselves are three-dimensional and are far better represented by
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a 3D volume image. In our case, this property of the CT is critical,
as there are structures of interest, such as the blood vessel network,
where its three-dimensional connectivity is essential for the segmen-
tation and subsequent analysis.

Some of the structures of interest, such as the osteocytes, are very
small and require a high resolution in order to be discerned. The res-
olution of a CT image is given by the voxel length, which is the phys-
ical distance represented by the voxel and thus a limit for the small-
est representable structure. The resolution can also inversely be cited
through the number of voxels used to represent the image. The CT
images produced by hospital X-ray equipment have a voxel length
of 0.5–0.625mm [9]. A volume of, e.g., (10 × 10 × 10) = 1000mm3 is
thus represented by ∼ 1000

0.53 = (20 × 20 × 20) = 8000 voxels.
This resolution is fine for imaging larger structures, such as bone

fractures or tumors, but some of the critical structures we are inter-
ested in require a much higher resolution to discern. The tomograms
analysed in this thesis were produced through synchrotron radia-
tion CT, which is able to achieve far finer resolution than hospital
X-ray setups, and have a voxel length of 1.875µm. The example vol-
ume from above of 1000mm3 would in this case be represented by

1000
0.001853 ≈ 1.579 · 1011 voxels. Synchrotron radiation will be detailed
further in Section 2.5.

2.2 SRµCT Image Data

The SRµCT data analysed in this thesis was obtained in [5] and [6],
where five experiments investigating different methods for bone re-
generation were conducted.

Bone is regenerated through the work of three bone cell types,
osteoclasts, osteoblasts, and osteocytes. Osteoclasts resorb old bone
and osteoblasts follow in their path, replacing the old bone with re-
generated bone. Osteoblasts may mature into osteocytes, the most
abundant bone cell type2, which are responsible for monitoring and2 Comprising 90 − 95% of bone cells,

with an estimated total population of 42
billion within a fully developed human
skeleton[3].

coordinating bone health maintenance. The osteocytes respond to
bone tissue in need of remodelling by communicating this need to
the osteoblasts and osteoclasts. The osteocytes are also responsible
for directing the transport of nutrients throughout the bone tissue
through the lacunae-canaliculi network, the space where the osteo-
cytes reside, and are thus integral to maintaining bone health [3].
When a bone defect arises that the bone cells fail to regenerate spon-
taneously, surgical intervention in the form of a bone graft may be
necessary[10]. Bone grafting is a technique for stimulating the natu-
ral bone regeneration process. The bone grafting material is placed
in the bone defect, stimulating and accelerating the natural bone re-
generation processes to the defect.

For the data analysed in this thesis, the five bone grafts were made
of (I) synthetic, resorbable β-tricalcium phosphate (β-TCP), (II) syn-
thetic, partially resorbable β-TCP, (III) autologous bone chips3 cov-3 The bone that is removed to create the

defect is ground up into small chips
and placed in the defect of the same
goat.

ered by a titanium membrane, (IV) autologous bone chips with no
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membrane and (V) an empty defect covered by a titanium membrane
for control [6].

For each experiment, a defect was artificially created in the mandible4 4 The bone that forms the lower jawline
and holds the lower teeth in place.of a goat. as shown in Fig. 2.3, a titanium dental implant measuring

8mm in length and 3.5mm in diameter was installed for the purpose
of distinguishing the original bone from the regenerated bone. The
lower 5.5mm of the implant is comprised of macro threads, and the
upper 2.5mm is comprised of of micro threads. The lower 5.5mm of
the implant was implanted in the mandible and the upper 2.5mm
stood free, so that the regenerated bone would grow around the
2.5mm micro threads, distinguishing it from the original bone.

Figure 2.3: Goat mandible defect
and titanium dental implant (left)
and illustration of implant (right)
[5]. The lower half of the implant,
with a larger screw thread, is im-
planted in the mandible, with the
upper half of the implant, with
a smaller screw thread, standing
free to be encompassed by regener-
ated bone, distinguishable from the
original bone through the disparity
in screw thread.

Following 20 weeks of regeneration, the samples were removed
and separated in two parts, where one was used for histological
studies and one was fixated in 10% formaldehyde, dehydrated in
graded alcohol solutions, embedded in an acrylic cylinder and taken
to the ID19 beamline5 at The European Synchrotron Radiation Fa- 5 ESRF experimental station.

cility (ESRF) for scanning. The results of this scanning are the 35
SRµ-CT tomograms.

In the following sections, a summary of the X-ray physics involved
in CT image formation, the optical geometry of CT image formation,
the ESRF, and the reconstruction of a number of 2D X-ray projections
into a 3D volume image will be given.

2.3 X-Ray Physics of Image Formation

In the following sub-sections, an introduction to the formation of
X-rays through electron radiation, and the various interactions of X-
ray radiation with matter which determine the attenuated intensity
values recorded by the sensor, will be given. Note that the X-ray gen-
eration process described in the sub-section below pertains specif-
ically to X-rays generated in hospitals6, as X-rays generated at the 6 In a synchrotron, X-rays are produced

by decelerating the electrons via mag-
netic fields, rather than through inter-
action with atoms in an anode. The
method of production and the energy
of the incoming electrons are the major
differences between hospital setup X-
rays and synchrotron radiation X-rays,
as will be detailed in Section 2.5.

ESRF will be given treatment in its own section in Section 2.5, but
the physics involved in both processes, as well as the subsequent
interactions of the X-rays with matter in the sample, are identical.
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2.3.1 Electron Radiation

X-rays produced by hospital equipment are generated through the
interaction of high-energy electrons from an electron beam with atoms
in a rotating anode, as shown in Fig. 2.4.

Figure 2.4: An illustration of the
generation of X-rays in a typical
hospital setup. Electrons interact
with target atoms in the anode, re-
sulting in the emission of X-ray
photons. [11].

When an electron interacts with the electron cloud surrounding a
nucleus, the negative charged field of the electron will interact with
the field of the electron cloud. The positive charge of the nucleus will
attract the electron via the Coulomb force7 and the electron will be7 The force of attraction or repulsion be-

tween particles as a result of their elec-
tric charge.

deflected from its path.
Due to energy conservation, this change in momentum causes

the electron to lose energy, and this energy is emitted in the form
of X-ray photons, as shown in Fig. 2.5, in an effect also known as
Bremsstrahlung8.8 From German, bremsen “to brake” and

Strahlung “radiation”.

Figure 2.5: An illustration of the
interaction which causes the emis-
sion of X-ray photons, adapted
from [11]. The incident electron
interacts with the electron cloud
around the nucleus of the target
atoms in the anode. The electron is
deflected and decelerated, causing
the electron to lose energy emitted
in the form of X-ray photons.

As photons have no mass or charge, they interact differently with
tissue than charged particles, as they do not form electromagnetic
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fields that can interact with tissue. Instead, the intensity of the in-
coming X-ray beam is reduced exponentially as it passes through the
tissue. This is due to the fact that there is a probability for the occur-
rence of interactions with material in the tissue, given by Lambert-
Beer’s law,

I(d) = I0e−µd [12], (2.1)

where I(d) is the intensity at depth d of the tissue, I0 is the intensity
at the starting point, and µ is a linear attenuation coefficient that is
dependent on the energy of the incoming photons and the material
being irradiated. The linear attenuation coefficient depends on the
ways the X-rays have interacted with the matter in the sample and is
what is solved for during the image reconstruction.

In Eq. 2.1, we assume that the sample is homogeneous, i.e. that
it consists of a single material. When the sample is inhomogeneous,
as is the case for the the 3D tomogram analysed in this thesis, the
Lambert-Beer law is instead given by

I(d) = I0e−
∫ d

0 µ(x)dx , (2.2)

The projections recorded by the sensor represents the X-ray at-
tenuation9. The X-ray beam interacts with the matter in the sample, 9 The reduction of the intensity of an X-

ray beam as it traverses matter.which causes the X-ray beam to lose energy with penetration depth.
The projections are recordings of the X-rays that exit the object. The
higher the measured value is, the lower the X-ray attenuation, as
more of the X-rays have passed through the matter without being
absorbed or deflected. The probability of interactions increases with
density of the tissue, and higher density tissues will cause higher
degrees of attenuation, causing denser materials in the reconstructed
tomogram to be represented brighter. The five basic radiographic 10 10 i.e. pertaining to medical imaging

through X-ray radiation.densities are air, fat, water (soft tissue), bone, and metal, where the
denser the material, the brighter it will be represented on the tomo-
gram, as shown in Fig. 2.6.

Figure 2.6: The five basic radio-
graphic densities [13]. Higher den-
sity materials will cause higher
degrees of attenuation, leading to
high density materials appearing
brighter.

X-rays interact with matter in three primary ways, photo-absorption,
Compton scattering, and pair formation, through which the radia-
tion can deposit energy in the tissue, resulting in reductions in the
X-ray beam intensity. These interactions, and the probability of their
occurrence, will be summarised below.
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2.3.2 Photo-absorption

In photo-absorption, the photons in the X-ray beam interact with
the atom in a process where an electron is released from the atom
and the photon is completely absorbed, as shown in Fig. 2.7. Part
of the energy of the photon is used to break the binding energy of
the electron, which receives the residual energy as kinetic energy. As
energy is required to break the binding energy of the electron, photo-
absorption occurs only if the energy of the X-ray beam exceeds the
binding energy of the electron.

For an electron from an outer shell to fill the place of the released
electron, a photon with an energy corresponding to the difference in
the energy levels of the shells between which the electron jumps is
required. This is called characteristic radiation. If the characteristic
radiation is absorbed internally in the atom, so that it is excited11, an11 A quantum mechanical process

where an electron temporarily occupies
an energy state greater than its ground
state.

Auger electron will be emitted. The electron or electrons emitted are
able to interact in further interaction throughout the matter in the
same way as electron radiation.

Figure 2.7: An illustration of an
electron interacting with matter
through photo-absorption, adapted
from [12]. A photon is absorbed
and the energy from the photon,
and, if the energy of the photon
exceeds the binding energy of the
electron, an electron is released.
Part of the energy of the photon is
used to break the binding energy
of the electron, which receives the
residual energy as kinetic energy.

The probability of the photoelectric effect occurring is directly pro-
portional with the number of electrons in the absorbing material, and
therefore the density of the material and its atomic number, and in-
versely proportional with the photon energy [14],

PPE ∝
(Zabs)

5

Eγ
7/2 , (2.3)

where Zabs is the atomic number of the absorbing atom and Eγ is the
energy of the X-ray beam.

2.3.3 Compton Scattering

Compton scattering is a process in which a photon from the incident
X-ray beam collides with a free electron12 in the tissue, where some12 An electron where the binding energy

of the electron is much lower than the
energy of the X-ray.

of the photon’s energy is used to break the bond between the electron
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and the nucleus and transfer kinetic energy to the electron, as in
photo-absorption. From here, the released electron will be emitted at
an angle θ, as shown in Fig. 2.8. It will interact in the same way as
electron radiation.

In addition, a new photon will be emitted, whose path will be
deflected by an angle ϕ from the path of the incoming photon, which
will continue at a lower energy than that of the incoming photon.
The scattered photons may make the final image appear less sharp,
as they are able to enter into new interactions with the matter, but
as they have a lower energy, they have a larger probability of being
absorbed en route to the sensor, as the probability of interaction is
inversely proportional with the photon energy.

Figure 2.8: An illustration of
an electron interacting with mat-
ter through Compton scattering,
adapted from [12]. An incident
photon collides with an electron
whose binding energy is much
lower than the energy of the pho-
ton, and an electron and a new
photon with a lower energy than
that of the incident photon is emit-
ted.

The probability of the occurrence of Compton scattering is depen-
dent on the energy of the incoming photon, the electron density of
the absorbing tissue and in particular on its atomic number, but since
Compton scattering involves free electrons it is independent of the
total binding energy of the electrons. The probability is given by

PCompton scattering ∝
Zabs
Eγ

[14], (2.4)

where Zabs is the atomic number of the absorbing material and Eγ

is the X-ray energy.

2.3.4 Pair formation

Pair formation is the last significant way in which X-ray radiation
interacts with tissue. During pair formation, X-ray radiation is trans-
formed via interaction with the irradiated material into an electron
and a positron, i.e. the electron’s antiparticle, which behaves as a
positively charged electron, as shown in Fig. 2.9.

The probability of interaction via pair formation is described by

PPair production ∝ (log Eγ)(Zabs)
2 [14], (2.5)
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Figure 2.9: An illustration of an
electron interacting with matter
through pair production, adapted
from [12]. The incident photon
is absorbed and an electron and
a positron are emitted. Pair-
formation only occurs at very
high X-ray energies ( 1.02MeV),
and is thus not observed at the
X-ray energy at which the bone
samples analysed in this thesis
were imaged.

where Zabs is the atomic number of the absorbing material and Eγ is
the energy of the incident photon.

Note that as an electron has a rest mass of 0.511MeV/c2 of en-
ergy, pair formation occurs only for X-ray radiation with an energy
of at least 1.02 MeV, since the formation of the electron-positron pair
requires energy at least equivalent to two rest masses. The bone
samples analysed in this thesis were imaged with a X-ray energy
of 67.4KeV [6], an energy at which pair formation is not observed.

From Eqs. 2.3, 2.4 and 2.5, we see that the probability of interac-
tion for all interactions increase with increasing the electron density,
or simply density, of the material. This results in the radiographic
densities shown in Fig. 2.6, where the denser the material, the higher
X-ray attenuation.

2.4 Geometry of Image Formation

In Fig. 2.10, we show an example of X-ray imaging geometry. The
X-rays are sent through the sample, which is placed a distance of R1

from the X-ray source. The X-rays that exit the sample are recorded
by a detector placed a distance of R2 from the sample. These dis-
tances determine the amount the image is magnified with respect to
the sample. Some structures of interest in the bone samples are mi-
cron sized, and in order to view them, the magnified image must be
greater than 100 times the size of the sample[15]. The magnification
is given by the ratio between the distance between the detector to
the X-ray source and the distance between the sample and the X-ray
source,

Magnification =
R1 + R2

R1
(2.6)

Fig. 2.10 showed an ideal point source, i.e. a source of negligible
size. The size of the X-ray source is known as the focal spot, and is
determined by the area of contact with the anode. The size of the
focal spot is a decisive factor in the sharpness13 of images produced13 Sharpness of an image generally

refers to the contrast in images, es-
pecially near the boarders of objects.
Sharpness and resolution, whilst some-
times used interchangeably in layman
terms, are two distinct features, both of
which are sought optimised for the best
quality images.

by hospital X-ray setups. The X-rays travel in a straight line from
their source. When these focal spot from which the rays are emitted
is of a finite size, i.e. not a point source, the X-rays originate from
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Figure 2.10: An example of X-ray
imaging geometry [16]. The X-rays
are sent through the sample, which
is placed a distance of R1 from the
X-ray source, and the X-rays that
exit the sample are recorded by a
detector placed a distance of R2
from the sample. These distances
determine the amount the image is
magnified with respect to the sam-
ple.

different points and therefore their projections of a particular feature
is not received by exactly the same sensor in the detector, causing
a blurring effect around the edges of objects [17]. Ideally, the focal
spot is as small as possible, as this will produce the sharpest image,
as shown in Fig. 2.11. However, a smaller focal spot runs the risk of
melting the anode, as the incoming electrons are concentrated on a
small area. A balance must thus be achieved in that the focal spot
must be small enough to create a sharp image, but large enough to
relieve the thermal stress on the anode.

Figure 2.11: The difference in
sharpness with a focal spot of finite
size (left) and an idealised focal
spot of negligent size (right)[18].
The smaller the focal spot, the
sharper the image.
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2.5 The European Synchrotron Radiation Facility and High-
Brilliance X-rays

The European Synchrotron Radiation Facility14 (ESRF), founded in14 https://www.esrf.fr/

1988 and located in Grenoble, France, is the X-ray facility that pro-
duces the highest brilliance X-rays in the world, and the facility at
which the bone samples investigated in this thesis were scanned.

The amount of detail that can be discerned from an X-ray image is
highly governed by the brilliance15, B, a measure of the total flux of15 X-ray brightness.

photons in a given six-dimensional phase space per unit bandwidth,
of the X-ray source [19],

B = I · (4π2σxσyσx′σy′
dw
w

)−1, (2.7)

where I is the intensity of the beam, given by number of photons
per second, σx and σy are the root mean square values 16 of the16 For a set of n values {x1, x1, ..., xn},

the root mean square value is given by

σx =
√

1
n (x2

1 + x2
2 + ... + x2

n).
width of the beam for the two axes perpendicular to the direction
of travel of the beam, σx′ and σy′ are the root mean square values
of the beam solid angles17 for the two axes perpendicular to the di-17 The fraction of source particles that

enter the detector aperture[20]. rection of travel of the beam, and dw
w is the bandwidth18. Thus, the

18 The variance in beam frequency from
the central frequency. brilliance is maximised when the beam intensity I is maximised and

the (4π2σxσyσx′σy′
dw
w ) term in Eq. 2.7 is minimised.

The standard X-rays used in hospitals have a brilliance in the ball-
park around 106 photons s−1 mm−2 mrad−2 0.1%BW−1 19. This res-19 We have here used the industry stan-

dard units for brilliance, in favour of the
SI units of s−1 m−2 rad−2 100%BW−1

[21].

olution is excellent for the imaging needs of hospitals, where X-ray
imaging is used for e.g. identification of bone fractures, tumors, or
pneumonia in the lungs. For specific research purposes, such as the
study of microscopic structures in bone, even finer resolution is re-
quired.

The European Synchrotron Radiation Facility answers this high
resolution requirement, producing X-rays 10 trillion times brighter
than the X-rays used in hospitals, capable of imaging structures in
matter to the atomic level. In Fig. 2.12, we include a diagram of the
ESRF.

To produce synchrotron radiation X-rays at the ESRF, the linear ac-
celerator (Linac) emits electrons through an electron gun, which are
packed closely together and accelerated by electric fields until they
are travelling near the speed of light. The electrons are then sent
into the booster synchrotron, a ring with a circumference of 300m,
round which the electrons travel a few several thousand times, gain-
ing energy for each lap, until they reach an energy of up to 6 billion
electron-volts (6GeV)20. As mentioned in Section 2.3, the emission20 Compared to 30 − 150 eV in normal

hospitals. of X-ray photons becomes more likely as the energy of the electron
beam increases, and the 6GeV electron beam of the ESRF boasts enor-
mous energy. The resulting X-ray beam will proportionately have a
very high intensity.

The high-energy electrons are subsequently released into the stor-
age ring, a ring with a circumference of 844 metres. Once in the stor-
age ring, the electrons will be deflected from their path by magnets,
causing the electrons to lose energy in the form of electromagnetic
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Figure 2.12: Experimental hall with
beamline location markers at the
European Synchrotron Radiation
Facility [22]. The ID19 beamline
used for obtaining the tomograms
for this thesis is highlighted in red.

radiation due to deceleration, including X-ray radiation, which are
sent through the sample for imaging.

Due to this method of generating X-ray radiation, the synchrotron
is designed with a massive advantage over hospital X-ray setups
when it comes to the geometry of X-ray imaging. In hospital X-ray
setups, the incident electrons produce X-rays via interactions with
an anode. This places a limit on how small the focal spot can be. As
the X-rays from synchrotron radiation are produced when the high-
speed electrons are decelerated by magnetic fields, rather than their
contact with an anode, the focal spot in synchrotron radiation can
be made extremely small. The ID19 beamline used for obtaining the
tomograms for this thesis can achieve a focal spot below 100nm.

In Fig. 2.13, we show the difference in resolution-capability be-
tween an X-ray scan made at a hospital and that obtained at the
ESRF.

Figure 2.13: Difference in
resolution-capability between
an X-ray scan made at a hospital
(left) and that obtained at the ESRF
(right) [22].
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While the ESRF produces CT images of extraordinary resolution,
they are not immune to noise. An effect related to the physics of the
X-ray beam is beam hardening, which causes the intensity of the im-
age to vary with penetration depth. This is because the lower energy
photons are preferentially attenuated, leaving only higher energy
photons to continue interactions deeper in the sample. A few arte-
facts21 may arise from beam hardening, including streaking, where21 Any feature that appears in an im-

age which was not present in the sam-
ple[23].

streaks of dark bands are formed between denser objects, and cup-
ping, where the center of the tomogram appears darker than the edge
[24]. Voxel bleeding is an effect of concern during the image recon-
struction process when imaging high density materials, such as the
titanium implant, where the signal from the bright implant contami-
nates the signal from the surrounding voxels, causing these voxels to
appear brighter than those further away from the implant [25]. Ring
artifacts may arise due to miscalibrations or failures of detector ele-
ments in the X-ray sensor. The effect appears as a ring superimposed
on the tomogram, as the defective detector element gives a erroneous
reading at each angular position [26].

2.6 Image Reconstruction

The CT scanner has obtained a number of 2D projections and now
requires a method of reconstructing these into a 3D volume image.
A way to obtain such a method is to formally define a mathemati-
cal model that simulates the way a CT scan obtains 2D scans from
a 3D object, and subsequently derive its inversion formula. For an
object function, f (x, y), the Radon transform, R{ f (x, y)}, computes
the projections of an object at different angles, i.e. gives the sum
of the voxel intensity values at each angle through a line integral,
R{ f (x, y)} =

∫
L f (x, y)dl, as shown in Fig. 2.14

22, just as a detector22 Note that the physical sample is con-
tinuous, hence why the Radon trans-
form theoretically is an integral, but the
reconstruction is discrete as we only
have a finite number of projections. In
practice, the Radon transform is thus a
sum, as it is used to transform images
with finite pixel representations, rather
than a physical sample, into sinograms
for reconstruction algorithm testing.

records the projections of an object at different angles as it moves
around the sample.

For better suited maths, as we are concerned with angles, we in-
troduce a change of coordinate system

x cos θ + y sin θ = p and − x sin θ + y cos θ = q (2.8)

where p and q are the new axii and θ is the angular displacement of
p with regards to the axis x [11].

We can now define the two-dimensional continuous Radon trans-
form as

P(p, θ) = R{ f (x, y)}

=
∫

L
f (x, y)dl

=
∫ ∞

−∞
f (x, y)δ(p cos θ − q sin θ, p sin θ + q cos θ)dq

(2.9)

The Radon transform of an image is also called a sinogram of the
image. For a 2D image, the sinogram is a 2D mapping of original
image, where each column of the sinogram corresponds to a 1D pro-
jection, i.e. integral, from a particular angle. Due to symmetry, we
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Figure 2.14: Illustration of the
Radon transform [11].

only need an angular range of [0, 180[ degrees or [π,2π[ radians, as
P(p, θ) = P(−p, θ + π).

In Fig. 2.15, we show the Shepp-Logan Phantom image, a test im-
age created by [27] for the specific purpose of testing image recon-
struction algorithms. We also show the Radon transformed sinogram
of the Shepp-Logan Phantom image, from which a reconstruction al-
gorithm will attempt to reconstruct the original image.

Figure 2.15: The original Shepp-
Logan Phantom image [28]
(left) and a sinogram of the
Shepp-Logan Phantom image,
constructed using the radon trans-
formation from the Python library
scikit-image (right).

The most common method for image reconstruction is back-projection,
a Radon transform inversion formula. Through the Radon transform,
a sum of pixel intensities, I , is obtained from a set of angles. Back-
projecting "smears" this sum onto the corresponding column in the
reconstruction space, i.e. each pixel in that column in the recon-
structed image receives the value 1

∑ I , as shown in Fig. 2.16. Through
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this, an impression of the Radon transformed object will eventually
appear.

Figure 2.16: An illustration of back-
projection [11].

In Fig. 2.17, on the left, the back-projection from the Python library
scikit-image has been used with a ramp filter23 to reconstruct the23 Various types of filters may be used

in the image reconstruction process to
suppress noise in the reconstruction.

original Shepp-Logan Phantom image from the sinogram in Fig. 2.15.
On the right, we show the reconstruction error.

Figure 2.17: The reconstructed
Shepp-Logan Phantom image (left)
and the reconstruction error (right).

We see that the algorithm performs quite well. However, in the ex-
ample above, the back-projection was not applied as simply as back-
projecting the projection from each angle in the sinogram once, but
rather through an iterative reconstruction algorithm. In Appendix B,
we include two examples which illustrate and motivate the rising
application of iterative reconstruction. In summation, we can think
of the image reconstruction problem as being multiple equations re-
quired to solve for multiple unknowns. The tomograms produced
for this thesis are of size (3279 × 3480 × 3480), yielding over a tril-
lion unknowns for a single tomogram. Further, due to noise, arising
from anything between movement of the sample to beam hardening,
the generated equations are not consistent, adding to the difficulty of
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resolving the linear attenuation values. To bypass the need to solve
these systems of unknowns exactly, which is not always possible due
to noise, iterative reconstruction can be used.

Computationally, image reconstruction is an extremely complex
problem, and many algorithms have been created in the effort to
solve it. The specific imaging method used for obtaining the tomo-
grams analysed in this thesis is known as Paganin Phase-Contrast
CT, which excels in imaging of materials that have naturally low
inter-material contrast with other materials in the sample. It thus
lends itself well for reconstructing the bone sample tomograms, as
blood and osteocytes both belong to the radiographic density of soft
tissue, causing them to appear similar in voxel intensity in the to-
mogram. Further treatment of this imaging method can be found in
[29], but is beyond the scope of this thesis.

2.7 Visualisation of 3D Data

In this thesis, we will primarily treat the images as discrete 3D arrays,
I(n, m, l), where the indices (n, m, l) define the coordinates of a voxel
in the array with respect to the image coordinate frame, a frame of
reference with origin (n, m, l) = (0, 0, 0) in the top left corner of the
image.

As mentioned, the data is 3D, while the medium through which
it is being presented in this thesis is not. Throughout most of the
thesis, we will simply visualise a 2D slice of the 3D data. In Fig. 2.18,
we show an example with slices n = 1740, m = 1740 and l = 1740,
respectively, of the tomogram. In the visualisation, it can be seen
that the sample was cut in half before being embedded in an acrylic
cylinder, surrounded by air.

Figure 2.18: Visualisation of slices
n = 1740, m = 1740 and l = 1740,
respectively, of the tomogram.

We may also use a 3D rendering software when this is appropriate.
For this purpose, we will use vedo24, a Python library specifically 24 https://vedo.embl.es/

developed for the visualisation of three-dimensional scientific data.
vedo allows us to view the data in its 3D form and to examine it from
every angle. This is useful for analyses where the connectivity of the
data is important, for example for viewing the blood vessel network.
In Fig. 2.19, we visualise the implant segmented through the analysis
in Chapter 4 and the implant surface using the Python library vedo.
Both of these representations are 3D interactive volume images that
we can rotate or scale in real time.

https://vedo.embl.es/


22 automating medical image analysis of srµ-ct and evaluation of regenerated bone

health

Figure 2.19: 3D visualisation of
segmented implant (left) and seg-
mented implant surface (right).

In Appendix C, we consider visualisation of a 3D surface though
projection onto a 2D plane, which can be used for visualising the
distributions of materials in contact with the implant surface.



Part II: Analysis



3 Multi-resolution Representation

In this chapter, we will describe the use of a multi-resolution repre-
sentation of the data in this thesis, and the method through which
this representation is obtained. The data is of an extremely high res-
olution, which translates to a large RAM and computational require-
ment for processing. The multi-resolution representation of the data
will be used to alleviate these requirements when possible.

3.1 Multi-resolution Analysis

Bone is a hierarchical organ, with important structures at a wide
range of length scales, from the microscopical to the macroscopi-
cal[3]. The successful segmentation of some of the materials in the
tomogram is highly dependent on the resolution of the tomogram.
As stated in Chapter 2, the resolution of an image is given by the
number of pixels or voxels in the array used to represent the image.
Changing the resolution will have a number of consequences. When
we decrease the resolution, we lose information, as the resolution
determines the smallest structure that we are able to represent. Any
details smaller than the voxel will not be reproducible. This effect,
where structures become indistinguishable, is known as aliasing.

For the finer structures, such as the capillaries1 in the blood vessel 1 The smallest and most abundant of the
blood vessels[30].network, or the osteocytes, we in fact require the full resolution of the

tomograms in order to avoid aliasing. For the larger, more coarsely
defined materials, such as the implant and the bone mineral, it is un-
necessary to work with data of such high resolution, as these features
will be distinguishable even with fewer voxels to represent them.

Luckily, we are not required to analyse all structures at the same
resolution level. We can produce a multi-resolution representation
of the tomograms through down-scaling in order to analyse large
structures at a lower computational cost, while smaller structures
can be analysed the original resolution level. For this purpose, we
introduce the image pyramid.

3.1.1 The Image Pyramid

The image pyramid is a visual representation of the same imaged
physical space represented in levels of decreasing resolution, as shown
in Fig. 3.1. The lower resolution representations represent the same
physical space, only with fewer voxels. The base image of the pyra-
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mid, on level 0, is the full resolution image of size (N × N). The
image on the next level of the pyramid, level 1, is the 2 times down-
scaled image of size (N/2 × N/2) and so on until the apex image of
size (1 × 1) on level n. In Fig. 3.2, we show an example of a multi-
resolution representation of a 1D image of shape (1 × 16).

Figure 3.1: An illustration showing
an image pyramid. Level 0 repre-
sents the (N × N) full resolution
image, level 1 the (N2× N2) down-
scaled image, and so forth, until the
pinnacle level n of size (1 × 1). [31]

Figure 3.2: A multi-resolution rep-
resentation of a 1D image of shape
(1 × 16). The lower resolution rep-
resentations represent the same
physical space, only with fewer
voxels.

3.1.2 Down-Scaling

As mentioned, the lower resolution representations for the multi-
resolution representation are achieved through down-scaling. Down-
scaling of an image involves converting an image to the same image
with a lower resolution. The factor by which the lower resolution
image is smaller, i.e. represented by fewer pixels or voxels, than the
higher resolution image is given by sd, where s is the down-scaling
factor and d is the dimension of the image. For a 3D image of shape
(N × M × L) that we wish to down-scale by a down-scaling factor
s = 2, the down-scaled image is 23 = 8 times smaller at size (N/2 ×
M/2× L/2). Each image volume that was previously represented by
(2 × 2 × 2) voxels must now be represented by just 1, as the number
of voxels in each axis is reduced to half.

There are many ways to down-scale an image, dependent on the
chosen method of condensing the information of the original num-
ber of voxels to the number of voxels available for the new resolu-
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tion. The most commonly used method, and the one used for down-
scaling in this thesis, is the averaging method.

In Fig. 3.3, we show an example of an image, B, with an original
resolution of (2 × 2), where the values in the pixels represent the
intensity value of a grey-scale image. If we down-scale this image to
half the resolution using the averaging method, the 2x down-scaled
image, A, is of size (1 × 1) and has an intensity value given by the
average of the four pixels in the original resolution image, B,

A1,1 =
B1,1 + B1,2 + B2,1 + B2,2

22 =
3 + 1 + 4 + 2

4
= 2.5. (3.1)

where s is the down-scaling factor and d is the number of dimen-
sions.

Figure 3.3: Illustration of down-
scaling an image by a factor of 2.
The down-scaled image is of size
(1 × 1) and has an intensity value
given by the average of the four
pixels in the original resolution im-
age

3.2 Working with Multi-Resolution Image Representation

The tomograms are constituent of five material classes of interest:
implant, bone mineral, blood, osteocyte, and air/resin.

The implant measures (8 × 3.5)mm, but some of the implant fea-
tures, namely the micro screw threads, are far smaller. For this rea-
son, we choose the 16x down-scaled tomograms for segmentation of
the implant, where the voxel length is 1.875 · 16 = 30µm, as the rep-
resentation at this resolution level sufficiently retain all the features
of the implant.

The method for segmentation of the bone mineral, described in
Chapter 6, merely requires sufficient voxels to create a faithful his-
togram of voxel intensities in the tomogram. In Fig. 3.4, we show
the histograms of voxel intensities in the full resolution tomogram,
the 16x down-scaled and the 32x down-scaled tomograms, respec-
tively. We see that the histogram of the 16x down-scaled tomogram
appears distributed with similar characteristics as the full resolution
histogram, while the histogram of the 32x down-scaled tomogram
is too rough due to insufficient statistics. We will thus use the 16x
down-scaled tomogram for segmentation of the bone mineral.
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Figure 3.4: The histograms of voxel
intensities in the full resolution,
16x down-scaled and 32x down-
scaled tomograms. The 16x down-
scaled histogram appears similarly
distributed with the full resolution
histogram, while the 32x down-
scaled histogram is rougher due to
insufficient statistics.

The blood vessel network within the bone is itself a material with
important structures at varying length scales, varying from a diame-
ter of 3− 45µm in nonhuman samples [32][33]. The 16x down-scaled
image with a voxel length 30µm is sufficient for segmentation of the
largest blood vessels, while the full-resolution image with a voxel
length 1.875µm is required for segmentation of the smallest blood
vessels. Thus, to segment the full blood vessel network, we will use
multiple levels of representation in tandem. This method is described
in detail in Chapter 8.

The osteocytes will be segmented through their characteristic vol-
ume. This volume varies from 31.25 − 2000 µm3 [3]. To segment the
smallest osteocytes, we will thus require the full resolution repre-
sentation of the tomogram, with a voxel volume of (1.875 × 1.875 ×
1.875) ≈ 6.592µm, as the next finest resolution has a voxel volume of
(3.75 × 3.75 × 3.75) ≈ 52.73µm, neglecting the smallest osteocytes.

For most purposes, and certainly for ours, it is not practical to ap-
proximate the full resolution image at level n of the image pyramid.
Instead, we truncate our image pyramid at level 4, where the down-
scaled image is of size (204 × 217 × 217), as representations at lower
resolutions will not be useful for our analyses, as argued above. Our
image pyramid thus has five levels, named as levels 0 through 4, as
image pyramids traditionally are zero-indexed.

As we are working with 3D data, each down-scaling by a factor 2
of a higher resolution image, B, results in a lower resolution image,
A, that is 23 = 8 times smaller,

An,m,l =
Bn′ ,m′ ,l′

8
(3.2)

where Bn′ ,m′ ,l′ = (Bn,m,l +Bn+1,m,l +Bn,m+1,l +Bn,m,l+1 +Bn+1,m+1,l

+Bn+1,m,l+1 +Bn,m+1,l+1 +Bn+1,m+1,l+1).
The image pyramid thus consists of representations ranging from

the full resolution image of size (3279 × 3480 × 3480) to the 16x
down-scaled image at size (3279/24 × 3480/24 × 3480/24) = (204 ×
217 × 217)2, which is represented by 4134 times fewer voxels. In2 The edges of the tomogram is not vi-

tal to the analysis, so these are trimmed
by up to 15 voxels in each dimension to
ensure an exact down-scaling.

Fig.3.5, we visualise the tomogram for reach resolution representa-
tion in the image pyramid. In Table 3.1, we include a table of reso-
lution, shape, total number of voxels and memory requirement for
each level of representation on the image pyramid.
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Figure 3.5: Full resolution tomo-
gram (top left), 2x down-scaled
tomogram (top centre), 4x down-
scaled tomogram (top right), 8x
down-scaled tomogram (bottom
left), 16x down-scaled tomogram
(bottom left). Note that the down-
scaled tomograms represent the
same imaged physical space, only
with fewer voxels.

Table 3.1: Table of resolution,
shape, total number of voxels and
memory requirement for each level
of representation on the image
pyramid.

Lvl Resolution Shape Voxels Size

0 Full (3279 × 3480 × 3480) 3.971 · 1010 40GB
1 2x Down-scaled (1639 × 1740 × 1740) 4.962 · 109 5GB
2 4x Down-scaled (819 × 870 × 870) 6.199 · 108 625MB
3 8x Down-scaled (409 × 435 × 435) 7.739 · 107 78MB
4 16x Down-scaled (204 × 217 × 217) 9.606 · 106 9.8MB



4 Implant Segmentation

The first step in image processing processes often involves feature
extraction, where the information in the original data is transformed
into into numerical features that are more easily processed than the
original data. An example is using the histogram of an image rather
than the image for further processing.

In Fig. 4.1, we show the histogram of voxel intensities in the tomo-
gram. The x-axis represents the voxel intensities and the y-axis the
number of voxels in the tomogram with that intensity. The voxels
comprising the implant can be seen on the far right of the histogram,
as highlighted by the red circle, separate from the rest, as their in-
tensities are far higher than those of the rest of the tomogram. This
would lead it to be simply segmented through voxel-based thresh-
olding. Thus, we will begin the segmentation of the tomogram into
material classes with segmentation of the implant. In Appendix D,
we include a flow chart of the implant segmentation solution.

Figure 4.1: Histogram of voxel in-
tensities in the tomogram with ti-
tanium implant voxels highlighted
by a circle in red..

4.1 Voxel-based Thresholding

The simplest method of image segmentation is through voxel-based
thresholding. For this, feature extraction is performed by obtaining
a histogram of voxel intensities in the image, which is then used to
determine the voxel value threshold(s) at which to split the image
into partitions.

Thresholding is an example of a voxel-wise operation, namely a
group of image processing operations applied to each voxel indi-
vidually, where the position of the voxel, and therefore the order in
which the operation is applied to each voxel, are inconsequential.
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When the threshold, τ, has been chosen, the image Iin(x, y) is bina-
rised so that all voxels with values below the threshold are given the
value 0, and all voxels with values above the threshold are given the
value 1, i.e.,

Iout(x, y, z) =

0, if Iin(x, y, z) ≤ τ.

1, if Iin(x, y, z) > τ.
(4.1)

Thresholding is simple and fast, applying one principle to the
whole image at once, but has limited usage, as the voxels of inter-
est must be very similar to each other and very different from the
background voxels in order to yield a meaningful result.

Reasons global thresholding becomes problematic include noise,
uneven illumination, objects with similar pixel intensity values with
the background or several objects with overlapping pixel intensity
values. In Appendix E, we include three examples that illustrate
these limitations of threshold-based segmentation.

For the segmentation of the implant in the tomogram, the implant
appears trivial to segment upon initial inspection, as it is comprised
of voxels with values far higher than the rest of the tomogram. In
Fig. 4.2, where we show a proposed threshold for segmentation of
the implant based on visual inspection of the histogram.

Figure 4.2: Histogram of voxel in-
tensities in the tomogram with pro-
posed threshold for voxel-based
segmentation of the implant.

However, bleeding from the implant leading to brightening of
voxel values close to the implant, along with beam hardening caus-
ing the voxel range to shift with tomogram depth can cause other
voxels to have a high enough value to be incorrectly segmented as
implant [6].

One way to combat this misclassification is to consider the spatial
information of the voxels rather than merely their numerical value.
This is the purpose of region identification, which we can accomplish
through the drawing of a bounding box for restricting the region of
interest for implant segmentation to the area bounded by the box. In
Appendix F, we include an introduction to the bounding box in the
context of its most frequent application, instance segmentation.
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4.2 Bounding Box

We are interested in constructing a minimum bounding box, which
is defined as the minimum volume box that encloses every point of
interest within it. By nature, minimum bounding boxes for a single
object are also oriented bounding boxes, as there is no non-oriented
box which can contain every point of interest in a smaller area than
an oriented box, as shown in Fig. 4.3. Oriented bounding boxes are
defined by having faces parallel with the object coordinate frame
axes, known as the principal axes, of the object they are enclosing,
as opposed to with faces parallel with the image coordinate frame
axes. The object coordinate frame and principal axes will be defined
in Section 4.3.

Figure 4.3: Example of an ori-
ented object with its oriented mini-
mum bounding box (left) and the
same object with a non-oriented
bounding box. The area of the ori-
ented bounding box will always be
smaller, unless the object is entirely
symmetric, in which case the two
bounding boxes will be identical.
The discrepancy in area will in-
crease as the asymmetry increases.
The areas are presented unitlessly,
as this is irrelevant for comparison.

To draw an oriented bounding box that we can use for restricting
the region of interest for implant segmentation to the area bounded
by the box we wish to find the vectors that define the principal axes
of the implant in order to orient the bounding box.

4.3 Principal Axes Analysis

The object coordinate frame is a frame of reference which gives the
coordinates (u, v, w) of a voxel in relation to the object and has origin
(u, v, w) = (0, 0, 0) in the center of mass of the object. The three axes
of object coordinate frame, known as the principal axes, are given by
the three vectors ū, v̄, w̄ in the direction of maximum variance from
the center of mass of the object. In Fig. 4.3, we illustrated the object
coordinate frame in 2D, with principal axes u, v in the direction of
vectors ū, v̄.

For a 3D object, the vectors that define the principal axes are given
by the three eigenvectors associated with the three eigenvalues of the
moment of inertia matrix of the implant data, as these eigenvectors
give the directions of maximum variance of the data.

The moment of inertia is a measure of the rotational inertia of an
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object, i.e. its resistance to change in angular velocity about a given
axis of rotation[34]. The rotational inertia of an object about a given
axis of rotation is highly dependent on how the mass of the object
is distributed about the axis, as mass further away from the axis of
rotation will need to move at a higher velocity than mass nearer to
the axis. Changing the rotational velocity of an object about a longer
axis thus requires more force than changing the rotational velocity of
an object about a shorter axis[34].

Therefore, the moment of inertia is a measure of variance of the
mass distribution around a given axis, and the eigenvectors of the
moment of inertia matrix will give the directions of maximum vari-
ance of the data. The extent of the implant in the directions of the
principal axes can further be used for determining the dimensions of
the bounding box.

The first step in obtaining the principal axes of the implant is the
construction of a moment of inertia matrix, Σ, given by

Σ =

µ200 µ110 µ101

µ110 µ020 µ011

µ101 µ011 µ002

 [35] (4.2)

where the elements of the moments of inertia matrix for an image
I(n, m, l) are given by

µpqr = ∑
n

∑
m

∑
l
(n − nc)

p(m − mc)
q(l − lc)

r I(n, m, l)[36] (4.3)

where nc , mc and lc are the indices of the center of mass of the object
in I, in our case the implant.

We can now find the eigenvalues of the moment of inertia matrix
through the determinantal equation,

det

µ200 − λ µ110 µ101

µ110 µ020 − λ µ011

µ101 µ011 µ002 − λ

 = 0 (4.4)

which we can solve for its three roots to obtain the three eigenvalues,
λ1, λ2, λ3. To obtain their corresponding eigenvectors, ē1 , ē2 , ē3, we
can find these by solvingµ200 µ110 µ101

µ110 µ020 µ011

µ101 µ011 µ002


ei,1

ei,2

ei,3

 = λi

ei,1

ei,2

ei,3

 (4.5)

for i ∈ [1, 2, 3].
We now wish to apply the eigenvectors in the transformation of

the box from the image coordinate frame, (n, m, l), to the object coor-
dinate frame, (u, v, w), in order to make the bounding box oriented.
This firstly involves the translation of the bounding box to make
it centered in the origin of the object coordinate frame, and subse-
quently rotation using the eigenvectors as a rotation matrix to make
align the box with the principal axes of the implant. This transfor-
mation between reference frames for image analysis is affectionately
known as Procrustes analysis.



32 automating medical image analysis of srµ-ct and evaluation of regenerated bone

health

4.4 Procrustes analysis

To transform bounding box from (n, m, l) to (u, v, w) coordinates,
we will use the Procrustes analysis1, which displaces, rotates and1 Named after the mythical Greek fig-

ure, Procrustes, a bandit who stretched
or cut off the limbs of his victims to
forcibly fit them to an iron bed. This is
analogous with what we are attempting
to do with the bounding box, albeit a bit
less grisly.

scales2 an object to align the object with another without altering the

2 Note that scaling is not used in this
thesis work.

shape of the object.
In Fig. 4.4, we give an example of the Procrustes analysis be-

tween two objects, defined by the coordinates of their points, A =

[(xa1 , ya1), (xa2 , ya2), ..., (xan , yan)] and B = [(xb1 , yb1), (xb2 , yb2), ..., (xbn , ybn)],
where we wish to align A with B. The first step is the translation of
A to center it in the center of B. For this, we calculate the centers of
both A and B,

cA,x =
xa1 + xa2 + ... + xan

n
(4.6)

and
cA,y =

ya1 + ya2 + ... + yan

n
(4.7)

and likewise for B. We subtract the center of A from the center of B
to obtain the the offset, t = [tx, ty][

tx

ty

]
=

[
cB,x

cB,y

]
−

[
cA,x

cA,y

]
(4.8)

which we add to the coordinates of A to displace it, so for each
coordinate of A, [xai , yai ], for i = [1, n],[

x′ai

y′ai

]
=

[
xai

yai

]
+

[
tx

ty

]
(4.9)

To scale A, we obtain the sizes of both A and B,

sA,x =

√
||xa1 ||+ ||xa2 ||+ ... + ||xan ||

n
(4.10)

and

sA,y =

√
||ya1 ||+ ||ya2 ||+ ... + ||yan ||

n
(4.11)

And likewise for B. We obtain the ratio between the two to obtain
the scaling factor,

sx =
sB,x

sA,x
(4.12)

and
sy =

sB,y

sA,y
(4.13)

and scale A with this factor for each coordinate of A,[
x′ai

y′ai

]
=

[
xai

yai

] [
sx

yy

]
(4.14)

Finally, we rotate A, which, as mentioned above, we do by find-
ing the eigenvectors, ū = [u1, u2] and v̄ = [v1, v2], of the moment
of inertia matrix of B, and using these as the rotation matrix for a
coordinate system change. For every A coordinate,

[x′ai
, y′ai

] =

[
u1 u2

v1 v2

] [
xai

yai .

]
(4.15)
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Figure 4.4: An illustration of the
Procrustes analysis. A is translated,
scaled and rotated with respect to
B.

The Procrustes analysis is complete.
Before we carry on with the technical details of the solution, we

bring an interlude introduction to morphology, which we will use
frequently in this thesis, presently for pre-processing of the implant
before the drawing of the bounding box.

4.5 Morphology

The implant has a hollow space in the center, which we would like
to close, as it may lead to a skewed distribution of the implant mass
for computation of the principal axes. For this purpose, we will use
morphological processing. Morphological processing lends itself pri-
marily to the analysis and manipulation of binary images. Binary im-
ages have no intensity, colour, contrast, gradients, texture or depth,
but have form, shape, structure, size, location and orientation, which
are the features that morphology concerns itself with.

Morphological operators are neighbourhood operators, i.e., the
operation applied to each voxel depends on the neighbouring vox-
els. A neighbourhood is defined by a structural element chosen by
the user, which moves over the input image data array and applies
the morphological operation at each step.

The user-defined structural element is usually a small3 binary im- 3 i.e. suitably smaller than the input im-
ageage that can have any shape and reach, but there are only two ways

of defining nearest neighbours, as seen in Fig. 4.5. For 2D images,
a 4-neighbourhood of an I(m, n) pixel are the pixels I(m, n ± 1) and
I(m ± 1, n). An 8-neighbourhood extends the definition to include
the diagonal neighbours, I(m ± 1, n ± 1).

For 3D images, a 4-neighbourhood of an I(m, n, l) pixel are the
pixels I(m, n± 1, l), I(m± 1, n, l), and I(m, n, l ± 1). The 3D 8-neighbourhood
furthers includes the diagonal neighbours, I(m± 1, n± 1, l) and I(m±
1, n ± 1, l ± 1).

The simplest of morphological operators, and the basis for all
other operators, are erosion and dilation. If we have an input image,
A, and a structuring element B, and we obtain the output image C
through morphological processing, we write the expression for mor-
phological erosion as

A ⊖ B = {z|(B)z ⊆ A and A ⊆ I} ∪ {Ac|Ac ⊆ I} = C (4.16)
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Figure 4.5: 4-Neighbourhood
Nearest Neighbours (left), and
8-Neighbourhood Nearest Neigh-
bours (right).

and dilation as

A ⊕ B = {z|[(B̂)z ∩ A] ⊆ A} = C (4.17)

Erosion and dilation are both commutative4 and distributive5, but4 An operation ◦ is commutative only if
x ◦ y = y ◦ x for all x and y.
5 An operation ◦ is distributive only if
x ◦ (y ∪ z) = (x ◦ y) ∪ (x ◦ z) for all x,y,
and z.

while dilation is associative6, erosion is not. Rather,

6 An operation ◦ is associative only if
(x ◦ y) ◦ z = y ◦ (x ◦ z) for all x, y and z.

(A ⊖ B)⊖ C = A ⊖ (B ⊕ C). (4.18)

However, erosion and dilation do not commute with each other, a
fact from which two simple composite operators can be made: open-
ing and closing. Opening of an image performs erosion on the orig-
inal image and then dilation on the eroded image, removing small,
isolated objects and separating bridged objects, and is written as

A
⊙

B = (A ⊖ B)⊕ B. (4.19)

Closing of an image performs dilation on the original image and
then erosion on the dilated image, filling small holes inside objects
and strengthening the bridge between bridged objects, and is written
as

A • B = (A ⊕ B)⊖ B. (4.20)

We will use morphological closing to close the hollow space in the
center of the titanium implant to obtain an even distribution of im-
plant mass for computing the implant principal axes.

All four basic morphological operations are illustrated in Fig. 4.6

4.6 Implementation and Results

In order to find the central image moments of the implant, we must
obtain the implant through segmentation first. Although we have es-
tablished that a voxel-intensity based thresholding is insufficient to
properly segment the implant, we can use it as a pre-processing step
in order to obtain a crude segmentation of the implant that we can
use for computing the principal axes, as the few misclassified voxels
due to noise in the tomogram contribute negligently to the total seg-
mented mass and will thus not impact the principal axes analysis. We
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Figure 4.6: Original image of
size (200 × 200) created with
skimage.data.binary_blobs (top
left), disk structuring element of
radius (10) (top centre), mor-
phologically eroded image (top
right), morphologically dilated im-
age (bottom left), morphologically
opened image (top centre), mor-
phologically closed image (bottom
right).

also binarise the image as to not give bias to brighter implant vox-
els, as these might falsely reflect a higher mass, and perform binary
morphological closing to eliminate any gaps in the implant, as these
gaps may likewise give undue bias to some facets of the implant. The
visual output of the pre-processing is shown in Fig. 4.7.

Figure 4.7: Tomogram pre-
processing: Tomogram before
pre-processing (top left), threshold-
segmented implant (top right),
binarised threshold-segmented
implant (bottom left) and mor-
phologically closed binarised
threshold-segmented implant
(bottom right).

We find the principal axes by constructing a moment of inertia ma-
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trix and finding the eigenvalues, λ = [λ1 , λ2 , λ3 ], and eigenvectors,
ū = [u1 , u2 , u3 ], v̄ = [v1 , v2 , v3 ], w̄ = [w1 , w2 , w3 ], as described in
Section 4.3.

We wish to draw a box where the lengths are given by the lengths
of the implant, i.e. given by the distance between the outermost im-
plant voxels in the ū, v̄ and w̄ directions. However, we cannot simply
take the outermost threshold-segmented implant voxels in the ū, v̄
and w̄ directions as the lengths, as this is highly susceptible to noise,
such as a rogue misclassified voxel far out in the tomogram. Thus,
we propose another method for obtaining the lengths of the implant,
which involves including only the voxels which fall within the area
that contains 99.9% of the threshold-segmented implant voxels.

To this end, we obtain the cumulative sum of the number of threshold-
segmented implant voxels in ū, v̄ and w̄ directions and divide the
cumulative sum element-wise with the total number of threshold-
segmented implant voxels in the tomogram to obtain the cumula-
tive sum as a percentage. We then take the lengths of the implant
to be the difference between two thresholds, determined by requir-
ing > 0.0005% for the first threshold and > 0.9995%, for a total
> 99.9% of the voxels included within the thresholds for the ū, v̄
and w̄ directions, respectively. We draw the lengths of the bounding
box accordingly.

To obtain number of threshold-segmented implant voxels in ū, v̄
and w̄ directions, we first obtain the (u, v, w)-coordinates by trans-
forming the (n, m, l)-coordinates of the implant by dotting the (n, m, l)-
coordinates with the eigenvectors found above,

[u, v, w] =

u1 u2 u3

v1 v2 v3

w1 w2 w3


 n

m
l

 (4.21)

We separate the (u, v, w) coordinate array into three arrays that
hold the u, v and w-coordinates separately. The array of u-coordinates
contains the u-coordinates of several voxels that have identical u-
coordinates but varying (v, w), and likewise for the two remaining
axes. Therefore, we obtain a histogram of u, v, and w coordinates,
respectively, which give the distribution of voxels along the implant
in ū, v̄ and w̄ directions. We can then take the cumulative sum of
these and find the thresholds for each direction, as described above.

In Figs. 4.8, 4.9, and 4.10, we show, for ū, v̄ and w̄ directions,
respectively, the closed, crudely segmented implant, the projection
profile, and the normalised cumulative sum of voxels.

We have now drawn a bounding box with the desired dimensions,
but with respect to the image coordinate frame, (n, m, l). We now
wish to apply Procrustes analysis to transform the box from the im-
age coordinate frame (n, m, l) to the object coordinate frame, (u, v, w)

in order to make the bounding box oriented.
First, we translate the box. The object coordinate frame has its ori-

gin in the mass center of the implant, so we calculate the mass center
of the bounding box, cbox, and subtract this from implant center,
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Figure 4.8: The closed, crudely seg-
mented implant sliced in the l di-
rection (left), the projection pro-
file for voxels in ū direction (cen-
tre), and the normalised cumula-
tive sum of voxels (right).

Figure 4.9: The closed, crudely seg-
mented implant sliced in the m di-
rection (left), the projection pro-
file for voxels in v̄ direction (cen-
tre), and the normalised cumula-
tive sum of voxels (right).

Figure 4.10: The closed, crudely
segmented implant sliced in the n
direction (left), the projection pro-
file for voxels in w̄ direction (cen-
tre), and the normalised cumula-
tive sum of voxels (right).

cimplant, to find the offset, t = [tn, tm, tl ],

[tn, tm, tl ] =

cimplant,n

cimplant,m

cimplant,l

−

cbox,n

cbox,m

cbox,l ,

 (4.22)

which we add to the (n, m, l)-coordinates of mask to displace the
bounding box,

[n ′ , m ′ , l ′ ] =

 n
m
l

 +

 tn

tm

t l

 , (4.23)

obtaining new coordinates for the bounding box, still in (n, m, l)-
coordinates but centered in the origin of the object coordinate frame,
i.e. the center of the implant.

We can forego the scaling step, as we already drew the box in the
desired size. We finish the Procrustes analysis by transforming the
(n, m, l)-coordinates of the bounding box to (u, v, w)-coordinates by
dotting the (n, m, l)-coordinates with the eigenvectors found above,
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which serve as the rotation matrix,

[u, v, w] =

u1 u2 u3

v1 v2 v3

w1 w2 w3


 n

m
l

 (4.24)

The resulting bounding box is shown in Fig. 4.11. We have padded
the tomogram with zeros, as the bounding box may extend beyond
the original image. Finally, we use the bounding box mask to the
tomogram to restrict the implant area to the area bounded by the
mask.

Figure 4.11: Bounding box mask
shown from the three tomogram
orientations.

We use voxel intensity based thresholding and multiply the results
with the bounding box mask to segment the implant from the rest
of the tomogram. We unpad the tomogram to obtain the resulting
segmented implant shown in Fig. 4.12.

Figure 4.12: The segmented im-
plant shown from three orienta-
tions.



5 Implant Orientation and Separation
into Parts

In order to quantify the regenerated bone, we must be able to distin-
guish the regenerated bone from the old bone. As shown in Fig 2.3
in Chapter 2, the regenerated bone is grown around the part of the
implant with the micro threads. Thus, we can find the threshold be-
tween old and regenerated bone by finding the boundary between
the macro and micro threads.

To determine the threshold between the old and regenerated bone
we want to obtain the screw thread outline, which we can view as
a set of consecutive waves. We can then separate the screw threads
by their amplitudes and wavelengths, as the macro threads will have
larger amplitudes and larger wavelengths when compared with the
micro threads.

In Chapter 4, Section 4.6, we obtained histograms of voxel coordi-
nates along each principal axis. These histograms are also known as
projection profiles, and we can obtain the screw thread outline as the
projection profile of the segmented implant onto the plane that runs
vertically through it.

5.1 Image Projection Profile

The projection profile of the ū principal axis exhibits troughs and
peaks reflective of the screw thread outline. We will thus use the
projection profile of the implant onto this axis as the screw thread
outline in order to evaluate this as a sequence of waves, where we
can use wave analysis to differentiate between the micro and macro
threads.

In Chapter 4, Section 4.6, we found the projection profiles along
each principal axis by obtaining histograms of voxel coordinates, but
as the projection profile for a given axis of an image gives the sum
of pixels along each increment of the axis, we may also obtain the
projection profile by "summing away" the other axes,

proj(u) = ∑
v

∑
w

I(u, v, w). (5.1)

Producing the projection profile through summation will often
produce a smoother result, as the deliberation over optimal binning
of a histogram is eliminated. For the analysis in Chapter 4, smooth-
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ness of the projection profile was not of concern, as only the posi-
tion of the extremities was required to determine the lengths of the
bounding box. However, for the analyses in this chapter, we will use
the projection profile of the tomogram as the screw thread outline,
for which smoothness becomes essential, as any noise will greatly
influence the later analysis.

In Appendix G, we include an example of the projection profile of
an image with text.

5.2 Wave Characteristics

To evaluate the screw thread as waves, we first have to find a way
to define them as so. A wave is a propagating disturbance that de-
viates from equilibrium and is defined by two main characteristics,
its wavelength, λ, and amplitude, A. The wavelength is defined as
the horizontal distance between two subsequent peaks, or two sub-
sequent troughs, and the amplitude as the vertical distance between
a peak and a trough, as shown in Fig. 5.1.

Figure 5.1: An example of a prop-
agating wave, f (x) = sin (x),
with the wavelength, amplitude, a
trough and a peak illustrated.

In order to define the wavelengths and amplitudes of the micro
and macro threads, respectively, we must find the peaks and troughs.

5.3 Peak Finding

We begin the wave definition by finding the peaks and troughs of
the projection profile. The projection profile is one dimensional, for
which the construction of a peak finding algorithm is trivial. For
an array [a, b, c, d, e...N], we define b as a peak if and only if b ≥ a
and b ≥ c. For the edges, the only conditions are a ≥ b and N ≥
(N − 1), respectively. To find the troughs, the opposite conditions
must simply be true, i.e. for an array [a, b, c, d, e...N], we define b as a
trough if and only if b ≤ a and b ≤ c, and, for the edges, if and only
if a ≤ b and N ≤ (N − 1).
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5.4 Implementation and Results

We recall that the implant is not aligned with the image coordinate
frame. To simplify the computations, we can transform the implant
from the object coordinate frame to the image coordinate frame. As
we used the eigenvectors of the implant to rotate the bounding box
to transform the bounding box from image coordinate frame (n, m, l)
to the object coordinate frame, (u, v, w), in Eq.4.24, we can do the
reverse transform to rotate the implant by transforming the implant
from the object coordinate frame to the image coordinate frame. As
the inverse of a rotation matrix is its transpose,

[n, m, l ] =

u1 u2 u3

v1 v2 v3

w1 w2 w3


T u

v
w

 (5.2)

The result is an implant that is upright with respect to the image
coordinate frame, as shown in Fig. 5.2, where we have once again
padded the image as the rotation may extend the implant beyond
the original image.

Figure 5.2: Segmented implant be-
fore rotation (left), and segmented
implant after rotation (right).

As we are working with 3D data, we must sum away two axes
to obtain the desired projection profile. The screw thread outline is
obtained as the projection profile of the segmented implant onto the
plane that runs vertically through it, i.e. the plane aligned with the ū
axis,

pro j(u) = ∑
v

∑
w

I(u, v, w). (5.3)

The result is shown in Fig. 5.3.
In Section 5.3, we discussed the straight-forward nature of 1D

peak-finding. However, this implementation is rather frail in the face
of noise. The principal solution to this frailty is often to include a
requirement for the minimum amplitude of the peak, i.e. b is a peak
if and only if (b − a) ≥ x and (b − c) ≥ x, where x is the cho-
sen minimum amplitude. However, this is not a feasible fix for our
implementation, as we are looking for peaks at greatly varying am-
plitudes. We may attempt to limit the noise in our data instead.
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Figure 5.3: Morphologically closed
segmented implant (left), and im-
plant screw thread projection pro-
file (right).

An examination of our data shows that there is some noise due
to asymmetry of the implant. Particularly the increasing of implant
girth half-way through the region of the micro threads is of note.

Thus, for the sake of robustness, we take the gradient of the screw
thread outline, which retains the wave characteristics of the projec-
tion profile but reduces noise, as shown in Fig. 5.4. We see that this
gives a much cleaner representation of the various screw threads. We
append the first and last non-zero values in the array as troughs, as
they necessarily are troughs.

Figure 5.4: Screw thread projection
profile gradient (left), and peaks
and troughs in the screw thread
projection profile gradient (right).

We define each wave as consisting of two troughs and one peak, or,
alternatively, as two peaks and one trough, as shown in Fig. 5.5. We
define the waves in this dual manner with the intention of taking the
mean of their results as the final wave definitions to further boost the
robustness. We thus create two arrays, lvalls and lpeaks, which contain
the indices of troughs and peaks, respectively. If there is no peak
between two troughs, we automatically add a peak at the highest
value between two troughs. Similarly, we automatically add a trough
at the lowest value between two peaks if none exists.

When we have ensured that there is one peak between any two
troughs, and one trough between any two peaks, we calculate the
wavelength as the distance between subsequent troughs as well as
the distance between subsequent peaks, resulting in two arrays, λvalls

and λpeaks, where

λvalls,i = lvalls,i+1 − lvalls,i (5.4)

and
λpeaks,i = lpeaks,i+1 − lpeaks,i (5.5)

As shown in Fig. 5.6, we take the element-wise mean of the two to
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obtain an array with the mean wavelength, λmean, where

λmean,i =
1
2
(lvalls,i + lpeaks,i) (5.6)

We obtain the value of the projection profile gradient at the index
between subsequent troughs and calculate the difference between
this value and the value of the projection profile gradient at the index
of the peak between the troughs,

Avalls,i = ∇
[

1
2
(lvalls,i+1 − lvalls,i)

]
(5.7)

And similarly,

Apeaks,i = ∇
[

1
2
(lpeaks,i+1 − lpeaks,i)

]
(5.8)

We take the element-wise mean of the two as the amplitudes, as
shown in Fig. 5.7.

Figure 5.5: Waves found through
definition of two troughs and
one peak (left), and waves found
through definition of two peaks
and one trough (right).

Figure 5.6: Wavelengths found
through definition of two troughs
and one peak (left), and through
definition of two peaks and one
trough (centre), and the mean of
the two (right).

Figure 5.7: Amplitudes found
through definition of two troughs
and one peak (left), and through
definition of two peaks and one
trough (centre), and the mean of
the two (right).

Having obtained the characteristics that define the waves, we re-
quire a similarity measure in order to distinguish groups of similar
waves. The amplitudes and wavelengths of each thread of the two
screw threads will not be exactly the same. Rather, the amplitudes
and wavelengths of each oscillation of the micro threads will be simi-
larly small, while the amplitudes and wavelengths of each oscillation
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of the macro threads will be similarly large. In order to separate the
screw threads by their amplitudes and wavelengths, we must find a
definition for similarity. For this, we will use the central limit theo-
rem. The central limit theorem states that for large data samples, the
sample mean will be approximately Gaussian distributed, regard-
less of the distribution from which we are sampling. In practice, this
means that if we perform an experiment enough times, e.g. measur-
ing the length of a table, the value measured will eventually become
Gaussian distributed. This is because uncertainties lead to the values
of the measurements to deviate slightly, even though the length of
the table has not changed.

If we take the amplitudes of, e.g., the micro threads as a measure-
ment experiment of the same amplitude several times with small
deviations due to uncertainties, we can view the amplitudes as a
Gaussian distributed variable. For a Gaussian distribution, 98.7% of
values fall within the interval of ±2.5σ, so can choose our measure-
ment of amplitude similarity to be values that fall ±2.5σ above or
below the mean, as 98.7% of values of measurements of the same
physical quantity should fall within this interval. We can do the same
with the wavelengths.

We will look for similarly small amplitudes to define the micro
threads. As we are only considering small amplitudes, we calculate
the mean of the amplitudes and only consider the amplitudes below
the mean. Amongst these small amplitudes, we are only interested
in the ones within our definition of similarity, so we take the mean of
these small amplitudes and set a threshold as 2.5σ above and below
this mean to separate the similarly small amplitudes that comprise
the amplitudes of the micro threads, as shown in Fig. 5.8.

For the wavelengths, we can only say something meaningful in
relation to the larger wavelengths, as the wavelengths of the head
and smaller screw thread of the implant are fairly indistinguishable.
Thus, we only endeavour to separate the larger wavelengths. For this,
we extract all the wavelengths above the mean, take the mean of
these wavelengths and separate the similarly large wavelengths that
comprise the wavelengths of the macro threads with a threshold 2.5σ

above and below this mean, as shown in Fig. 5.8.

Figure 5.8: Mean amplitude and
amplitude threshold (left), and
mean wavelength and wavelength
threshold (right).

From the amplitude we are able to segment the head and macro
threads from the micro threads, and from the wavelength we are able
to segment the head from the macro thread using the thresholding
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criteria set above, as shown in Fig. 5.9.

Figure 5.9: Small screw thresholds
found through amplitude thresh-
olding shown on projection profile
gradient (left), and shown on seg-
mented implant (right).

From Fig. 5.9, we see that the separation of the head of the implant
and the micro threads is poor. This is because the end of the head
of the implant has an amplitude sufficiently close to the amplitudes
of the micro threads when the first threshold was found using all
the amplitudes, including those of the macro threads. However, now
that we have obtained the point of separation between the micro and
macro threads, we can disregard the section of the implant with the
macro threads to separately analyse the remainder of the implant.

We perform the same analysis as above with only the head and
micro threads, as shown in Fig. 5.10, and obtain a new threshold, as
seen in Fig. 5.11. When the macro threads are removed, the head of
the implant is far easier distinguishable from the micro threads, as,
with the very large amplitudes removed, the amplitudes of the head
now no longer fall within the similarity measure.

Figure 5.10: Gradient of projection
profile excluding the large screw
thread (left), amplitude threshold-
ing (center) and new implant head
threshold (right).

Figure 5.11: Small screw thresholds
found through amplitude thresh-
olding shown on projection profile
gradient with a implant head seg-
mentation fix (left), and shown on
segmented implant (right).

We can now also use the gradient of the projection profile from
Fig. 5.4 in conjunction with the threshold between the macro and mi-
cro threads to determine the orientation of the image. We see the end
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of the macro threads is indicated by the largest peak in the projec-
tion profile gradient, so we extract the index of the largest deviation
from the mean of the gradient as the end of the macro threads, and if
this index is larger than the threshold between the macro and micro
threads, the implant is upside down and we can rotate the image π

radians to obtain an upright implant.
Finally, we have a segmented, upright, vertically oriented implant,

separated into its three constituents, as shown in Fig. 5.12. From this
we also know the region of original bone, surrounding the macro
threads, and the region of regenerated bone, surrounding the micro
threads.

Figure 5.12: Implant head (left),
small screw thread (center), and
large screw thread (right).



6 Bone Segmentation

Returning to the histogram of voxel intensities from Fig. 4.2, we see
that the rest of the tomogram will be an even greater challenge to
segment than the implant, as there is significant overlap in the voxel
values comprising the various remaining materials in the tomogram,
rendering segmentation through simple thresholding unserviceable.
However, this fact far from excludes thresholding from contributing,
or the histogram from being valuable information in the segmenta-
tion of these materials.

The limitation of thresholding-based segmentation is that it draws
a hard limit between groups of materials, even when there is grave
uncertainty about the correct class. We wish to find a way to assign a
probability that each voxel is belongs to a specific class, rather than
a binary classification. We can use the histogram to this end.

The histogram is a representation of the frequency distribution of
voxel intensities in the tomogram, giving the count of the number
of voxels with each specific intensity or over a each specific inten-
sity range. If we normalise the histogram, it becomes the probability
density function of the image.

The histogram probability density function is the superposition
of the probability density functions of voxel intensities of individual
object classes in the tomogram. If we can model these individual ob-
ject class probability density functions, we can use these to assign a
probability that each voxel belongs to a specific class, as desired. We
will thus attempt to model the probability density functions using
Gaussian functions. This method of describing a histogram with a
mixture of Gaussian distributions is aptly named the Gaussian Mix-
ture Model.

6.1 Gaussian Mixture Model

The Gaussian Mixture Model is defined as the weighted sum of mul-
tiple Gaussian components that represent a density of a particular
random variable[37], given by [38]

G(x | µi, σi) =
M

∑
i=1

αig(x | µi, σi), (6.1)

where x is the D-dimensional data vector, αi are the scalar Gaus-
sian Mixture Model weights and g(x | µi, σi) are the Gaussian den-
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sity components, [38]

g(x | µi, σi) =
1

(2π)D/2|σi|1/2 exp
(
−1

2
(x − µi)

Tσ−1
i (x − µi)

)
,

(6.2)
where µi is the (1 × D) mean vector, giving the center, and σi the
(D × D) covariance matrix, giving the width.

As the histogram consists of a 1D array of points, for our case, the
data vector is the 1D image intensity value array, I, and the mean
vector and covariance matrix simply scalar values.

Thus, we describe the individual object class probability density
functions as Gaussian distributions,

gm(I) = αme−σm |I−µm |2 , (6.3)

where m is a given material class, αm is the height, σ is the width, µ is
the center, and the histogram H(I) as the sum of these distributions,
along with a rest component grest(I), which contains everything our
model does not describe, so that

H(I) = ∑
m

gm(I) + grest(I). (6.4)

We can estimate the probability that a given voxel belongs to a
given material class as

p(m|I) = gm(I)
H(I)

(6.5)

and

p(rest|I) = grest(I)
H(I)

(6.6)

which must satisfy the constraint,

∑
m

p(m|I) + p(rest|I) = 1. (6.7)

As seen above, a Gaussian is characterised by its center and its
standard deviation. The challenge is now to determine the optimal
values for these parameters so that the Gaussian Mixture Model best
describes the histogram. To find such best parameter values, we de-
fine an objective function that mathematically describes the target
output so that the optimal parameters are the ones that minimise or
maximise the objective function.

For our purpose, we define our objective function as

f (θ) = ||H(I)− ∑
m

αmgm(I)||2, (6.8)

where θ = [α, µ, σ]1 contains the parameters for optimisation, H(I)1 α = [α1, ..., αm], µ = [µ1, ..., µm], σ =
[σ1, ..., σm]. is the histogram and ∑m αmgm(I) is and what is described by our

Gaussian Mixture Model. As the optimal model is the one where
this difference is zero, f (θ) = 0, we aim to minimise the objective
function. In Appendix H, we include further discourse on minimisa-
tion.
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It is inefficient to blindly choose starting guesses for the parame-
ters to feed to the minimising algorithm, as choosing well qualified
guesses can significantly shorten the minimisation algorithm conver-
gence time. To obtain good starting guesses, we will use a segmenta-
tion method known as K-means clustering.

6.2 K-Means Clustering

K-means clustering is an unsupervised classification algorithm that
divides input data into K clusters, where K ∈ N is chosen by the
user.

In the simple 1D example in Fig. 6.1 we have an artificial data set
of 20 values and choose the number of clusters K = 3. The clus-
ters are defined by their respective centroids, the data point with the
mean position of all the points in a given cluster. Three random ini-
tial centroids are initially selected by the algorithm. The algorithm
assigns each data point to the same cluster as the nearest centroid.
The measure used to define distance between two points in 1D is
simply the difference between their numerical values. The centroids
are then updated to be the mean data point of each cluster, and the
data points are re-assigned to the cluster containing the nearest up-
dated centroid. This recurs until the centroids do not change. The
algorithm has converged.

Figure 6.1: An illustration of K-
means clustering in 1D. Centroids
are initiated, data points are as-
signed to clusters, centroids are up-
dated, data points are re-assigned
to clusters, centroids are updated,
until the algorithm converges.

We can use this method to cluster the voxel intensity values that
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constitute the histogram, from which thresholds can be obtained as
the border between clusters. We can then choose the distance be-
tween subsequent thresholds as starting guesses for the variances,
the mean value of each cluster as starting guesses for the centres,
and the maximum value of the histogram for a cluster as starting
guesses for the heights of the Gaussian distributions.

The methods used in this chapter for segmentation of the bone
mineral, hereunder the Gaussian Mixture model and the K-means
clustering for obtaining starting guesses, were first developed and
implemented for 2D analysis in [39]. In this thesis, these methods
are adapted for fully automatic segmentation of the bone mineral in
3D.

6.3 Implementation and Results

A K-Means Clustering algorithm is dependent on three variables,
the data vector of points to cluster, the number of clusters, and the
dimension of the data. The histogram contains information only re-
garding the intensity of the voxels, not their position in space, so the
dimension is 1. We know there are at least four radiographic densi-
ties represented in the tomogram, excluding the implant: bone, soft
tissue (blood, osteocytes), fat (resin), and air. We thus wish to cluster
the points into 4 clusters, one for each of the known materials.

The time complexity of the K-Means Clustering algorithm is O(ndk+1)

[40], where d is the dimension, k is the number of clusters and n is
the number of points to be clustered. The K-Means Clustering algo-
rithm used in this thesis is from the Python library Scikit-learn

and relies on a linear time approximation algorithm which reduces
the complexity to O(n). The computation time is thus entirely de-
pendent on the number of points to be clustered.

The histogram in Fig. 4.2 is comprised of 9.606 · 106 points, one for
each voxel in the 16x down-scaled tomogram, which is redundant, as
we are not interested in the absolute value of the amplitude of the
histogram, only the distribution of voxel intensities. Thus, we sample
5000 points that are distributed as the histogram to use for the K-
Means Clustering algorithm. In Fig. 6.2, we check that the points are
correctly distributed.

Figure 6.2: Histogram of tomogram
voxel values (left), and histogram
of 5000 values distributed as the
original histogram (right).

The final intervals of voxel groups will thus be identical to those
obtained with all 9.606 · 106 points, but the algorithm will converge
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9.606·106

5000 = 1921 times faster.
We use the K-Means Clustering algorithm from scikit-learn with

k = 4. The output of the algorithm are the beginning and end inten-
sities of each cluster, which we use to construct the cluster regions
shown in Fig. 6.3.

Figure 6.3: Histogram of voxel in-
tensities with cluster regions found
through K-Means Clustering.

As starting guesses, we take the widths of each cluster to be the
widths of the distributions, the mean of the intensities in each cluster
to be the means of the distributions, and the maxima in each clus-
ter to be the heights of the distributions, as shown in Fig. 6.4. This
crude peak-finding method is not perfect, but it provides a sufficient
starting guess.

Figure 6.4: Histogram of voxel in-
tensities with maxima of each re-
gion.

We feed these starting guesses to the minimising algorithm, sub-
ject to three inequality constraints, α ≥ 0, σ ≥ 0, and µ ≥ 0, i.e.
the constraints that the parameters cannot be negative, as the vari-
ance and amplitude of a Gaussian distribution cannot be negative.
The mean of a Gaussian distribution can be negative, but, as our
histogram data is comprised of intensity values, the means cannot
be negative either. Further, the fitted function must never exceed the
histogram in value, as the sum of probabilities may never exceed 1,
following the constraint given in Eq. 6.7. We include an overshoot
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penalty to the optimisation algorithm to ensure this.
In Fig. 6.5, we show the best fit distributions returned by the min-

imising algorithm, as well as the portion of the histogram additively
explained by them.

Figure 6.5: Total parts of histogram
explained by distribution (left) and
individual distributions (right)

.

We find the probabilities that any voxel belongs to any material
class using Eq. 6.4 and obtain the probability distributions shown in
Fig. 6.6. From left to right, the distributions represent the probability
that a voxel belongs to air, resin, soft tissue (blood or osteocytes), and
bone, respectively, as the higher density materials are represented by
higher intensity values, following the radiographic densities.

Figure 6.6: Probability distribu-
tions. The x-axis represents voxel
intensity values, and the y-axis rep-
resents the probability of belong-
ing to a given material class. For
any voxel intensity, the probabil-
ity of the voxels with the intensity
value belonging to a material class
is given by the value of the prob-
ability distribution of the material
class.

.

For illustration, in Fig. 6.7 we show a slice of the tomogram, with
the implant removed, where each voxel is coloured according to the
material it is most likely to comprise.

We can see from the probability distributions visualised in Fig. 6.6
there is a high proportion of the range of voxel intensities for the
bone mineral probability that demonstrates a high probability of a
voxel in this intensity range being a bone voxel, i.e. many of the
voxels in the bone mineral probability array are higher than 90%
certain that the voxel in question is a bone mineral voxel, while the
probabilities for the other materials are waning in certainty. We will
therefore not use the probabilities for segmentation of the osteocytes
or blood vessels.

However, we obtain a bone mineral mask by binarizing the bone
probability array to obtain an index map of voxels that comprise
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Figure 6.7: Tomogram colored
using probability distributions,
where each voxel is coloured
according to the material it is most
likely to comprise.

.

bone with a certainty higher than 95%. The bone mineral mask is
shown in Fig. 6.8.

.

Figure 6.8: Segmented bone min-
eral mask overlaid on tomogram
slice.

We see that there are some misclassified bone mineral voxels in ar-
eas that must contain no bone, such as in the acrylic cylinder on the
other side of the implant. We can improve on the segmentation using
information we obtained during the implant segmentation. Having
segmented the implant, we can begin by using the inverse of the
segmented implant as a mask to remove any voxels within the im-
plant area that have been misclassified as bone mineral, as shown in
Fig. 6.9.

.

Figure 6.9: Improving on the bone
mineral segmentation by limit-
ing the bone mineral segmenta-
tion to outside the implant. The
segmented implant mask for slice
n = 60 (left), the original seg-
mented bone mineral mask (cen-
tre), and the improved segmented
bone mineral mask (right).
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Further, the bone grows around the implant in a half moon. We
thus know that for each n-slice, down the implant, there should be no
bone voxels before the first implant voxel in the w-direction. We ob-
tain coordinates for each voxel belonging to the implant and impose
the condition that there should be no bone voxels before the first im-
plant voxel in the w-direction. In Fig. 6.10, we show an example for
slice n = 60, where we see that it removes some of the misclassified
voxels before the onset of the implant, although the half-moon shape
of the implant preserves the misclassified voxels inside the crescent
shape.

Figure 6.10: Improving on the bone
mineral segmentation by limiting
the bone mineral segmentation to
after the first implant voxel. The
segmented implant mask for slice
m = 108 (left), the once im-
proved segmented bone mineral
mask (centre), and the twice im-
proved segmented bone mineral
mask (right).

.

Further, we know that there should be no bone growth above the
smaller screw thread, i.e. the bone mineral mask should be limited to
below the threshold between the implant head and the smaller screw
thread. Luckily, we have already found this threshold as well, so we
can imply impose this condition to remove the misclassified voxels
in this area from the segmentation. The final, improved bone mineral
segmentation is shown in Fig. 6.11.

Figure 6.11: Improving on the
bone mineral segmentation by lim-
iting the bone mineral segmenta-
tion to under the threshold be-
tween the implant head and the
smaller screw thread. The twice
improved segmented bone mineral
mask for slice l = 108 and the
threshold (left), and the thrice im-
proved segmented bone mineral
mask (right).

.

Having obtained a good separation at the top of the implant be-
tween the bone mineral and the imperfection in Fig. 6.10, we may
now hope to remove this. To remove this imperfection, we notice that
it is relatively small and separate from the bone mineral. This lends
the bone mineral to be segmented from the imperfection through
largest connected components analysis 2. We perform morphological2 Connected component analysis imple-

mentation details will be given in Chap-
ter 8, Section 8.1.

closing on the bone mineral mask in order for the bone mineral to be
recognised as one connected component. We then extract the largest



bone segmentation 55

connected component, obtained simply as the connected component
associated with the most frequently occurring connected component
label. We take this as the closed bone mineral mask and multiply
this with the thrice improved bone mineral mask to obtain the final
improved bone mineral mask, as shown in Fig. 6.12.

.

Figure 6.12: Closed thrice im-
proved bone mask (left), largest
connected component of closed
thrice improved bone mask (cen-
tre), and final improved bone mask
(right).

In Fig. 6.13, we show the final segmented bone mineral mask for
slices n = 108, m = 108 and l = 108, respectively.

.

Figure 6.13: The final segmented
bone mineral mask for slices n =

108, m = 108 and l = 108, respec-
tively.

With the bone segmented, we are able to assess the regenerated
bone by quantifying the amount of regenerated bone. In the follow-
ing chapter, we will perform such an intermediate quantification of
the amount of the regenerated bone.



7 Intermediate Bone Health Assessment

The bone grows around the implant and upwards from the old bone
region, starting at the surface of the artificially created defect. Thus,
we would like the quantification of regenerated bone to reflect the
amount of regenerated bone as a function of position along the im-
plant. We will obtain both a measure of the amount of regenerated
bone and conduct a bone mineral density test.

We can obtain a measure of the quantity of regenerated bone min-
eral as a function of position along the implant simply by taking the
projection profile of the bone mineral mask obtained in Chapter 6.
However, the segmented bone mineral mask is not a direct represen-
tation of the amount of bone regeneration, only the amount of bone
mineral regeneration, as the segmented bone mineral mask neglects
the volume of blood and osteocytes, which are part of the total re-
generated bone volume. For the quantification of regenerated bone
through a bone mineral density test, we require a measurement of
both the regenerated bone mineral volume and the total regenerated
bone volume in order to find the ratio between the two. We can ob-
tain a measure of the quantity of total regenerated bone by perform-
ing morphological closing on the segmented bone mineral mask and
taking the projection profile of this.

7.1 Implementation and Results

We obtain a measure of the amount of regenerated bone mineral
by taking the projection profile of a binary mask of the segmented
bone mineral. We close the segmented bone mineral mask to obtain
the total bone volume mask, as shown in Fig. 7.1, which reflects the
amount of regenerated bone, as it encompasses the blood vessels
and osteocytes as well. We then obtain a measure of the amount of
total regenerated bone by taking the projection profile of the total
bone volume mask. The projection profile of bone mineral mask and
the projection profile of the bone volume mask are both shown in
Fig. 7.2.

It is now quite simple to perform a bone mineral density test. We
simply take the area under the curve of projection profile of the bone
mineral mineral, f (i), which is a representation of only the volume of
bone mineral, and divide this by the area under the curve of the pro-
jection profile of the bone volume mask, g(i), which is a representa-
tion of the total bone volume. We can obtain these areas by summing
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Figure 7.1: Visualising a slice l =

108 of bone mineral mask (left) and
total bone volume mask, obtained
through morphological closing of
the bone mineral mask (right).

Figure 7.2: Projection profile of
bone mineral mask and projection
profile of bone volume mask.

away the remaining axis in each projection profile. Multiplying the
areas under the curve of the projection profiles with the voxel volume
will give the volumes of bone mineral and total bone, respectively.
As the bone mineral mask was obtained using the 16x down-scaled
tomograms, the voxel volume is (30× 30× 30)µm= 27000µm3. Thus,

VBone Mineral =
n

∑
i=0

f (i) · 27000µm3

= 2177206 · 27000µm3 = 5.8785 · 1010µm3

(7.1)

and

VBone =
n

∑
i=0

g(i) · 27000µm3

= 3135940 · 27000µm3 = 8.4670 · 1010µm3

(7.2)

which yields a bone mineral density of

BMD =
VBone Mineral

VBone
=

2177206
3135940

≈ 0.694 (7.3)

Thus, the bone mineral comprises 69.4% of the total bone volume.
However, we have performed this bone density quantification us-

ing all of the bone in the tomogram, when we would like to obtain
a quantification of the old and regenerated bone separately. We can
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then use the quantification of the old bone as a model for healthy
bone, and evaluate the bone mineral density of the regenerated bone
against the bone mineral density of the old bone to evaluate the bone
mineral quantity of the regenerated bone. We can separate the old
and regenerated bone by the threshold between the micro and macro
threads found in Chapter 5.

In Fig. 7.3, we visualise the separate projection profiles of the bone
mineral and bone, respectively.

Figure 7.3: Projection profiles of
bone mineral masks of old and re-
generated bone (left), and projec-
tion profiles of total bone masks of
old and regenerated bone (right).

We obtain the bone density of the old bone first by calculating the
area under the curve of the projection profile of the bone mineral
mask for the old bone,

VOld Bone Mineral =
n

∑
i=0

fOld Bone Mineral(i) · 27000µm3

= 795251 · 27000µm3 = 2.1472 · 1010µm3

(7.4)

and the area under the curve of the projection profile of the bone
mask for the old bone,

VOld Bone =
n

∑
i=0

gOld Bone(i) · 27000µm3

= 1131986 · 27000µm3 = 3.0564 · 1010µm3

(7.5)

which yields a bone mineral density of

BMDOld Bone =
VOld Bone Mineral

VOld Bone
=

908357
985984

≈ 0.703 (7.6)

Thus, the bone mineral comprises 70.3% of the total bone volume for
the old bone.

We then obtain the bone density of the regenerated bone for com-
parison. We once again divide the area under the curve of the projec-
tion profile of the bone mineral mask for the regenerated bone with
the area under the curve of the projection profile of the total bone
mask for the regenerated bone,

Vregenerated bone Mineral =
n

∑
i=0

fregenerated bone Mineral(i) · 27000µm3

= 1155364 · 27000µm3 = 3.1195 · 109µm3

(7.7)

Vregenerated bone =
n

∑
i=0

gregenerated Mineral(i) · 27000µm3

= 2003954 · 27000µm3 = 5.4107 · 1010µm3

(7.8)
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which yields a bone mineral density of

BMDregenerated bone =
Vregenerated bone Mineral

Vregenerated bone
=

1493435
1829618

≈ 0.577

(7.9)
Thus, the bone mineral comprises 57.7% of the total bone volume
for the regenerated bone. This is 12.6% less than for the old bone,
indicating that the regenerated bone is more porous than the old
bone.

In Fig. 7.4, we also obtain a slice by slice bone mineral quantifica-
tion. We see that the bone of the regenerated bone at the top of the
implant is significantly less dense in bone mineral than further down
the implant. This could indicate that regenerated bone nearer the old
bone is regenerated structurally more similar to the old bone. Look-
ing at Fig.7.1, this may also be contributed to an effect of the bone
mineral segmentation, as the segmentation at the edges at the top of
the implant is subpar.

Figure 7.4: Slice by slice bone min-
eral density quantification for re-
generated bone (left) and old bone
(right).

In [41], the normal bone mineral density for men aged 20 − 29
is given as (1.134 ± 0.112)g/cm3. To obtain the measurement of
bone mineral content for the regenerated bone in units of g/cm3, we
take the volume of bone mineral for the regenerated bone, 3.1195 ·
109µm3 and convert this to units of cm3 by multiplying by a factor
of 10−12, obtaining a bone mineral volume of 3.1195 · 10−2cm3.

As bone weighs 1.9g/cm3[42], the weight of the regenerated bone
mineral is 3.1195 · 10−2cm3 · 1.9g/cm3 = 5.771 · 10−2 g.

To obtain the measure in g/cm3, we must find the total volume
of the bone in units of cm3, which we can find by converting the
volume of the total bone to units of cm3, 5.4107 · 1010µm3 · 10−12 =

5.4117 · 10−2cm3.
We can now obtain the measure bone mineral content for the re-

generated bone in units of g/cm3 as 5.771·10−2 g
5.4117·10−2cm3 = 1.0666g/cm3.

We repeat the calculation for the old bone and obtain a measure of
bone mineral content of 1.2997g/cm3.

For bone to be characterised as healthy, the t-score,

t =
measured − mean
standard deviation

(7.10)

must satisfy t > −1 [43], where no industry standard upper limit
exists [44]1. However, we know that bone comprised of 100% bone 1 In [44], the drawbacks related to the

lack of an upper limit for the bone min-
eral density test are discussed.

mineral is not healthy, as living tissue requires, e.g., blood vessels
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for the transport of oxygen and nutrients. In [45], an upper limit of
2.5 was suggested. We will use this moderated condition and classify
bone with a t-scores between −1 and 2.5 as healthy bone.

For the regenerated bone,

t =
1.0666 − 1.134

0.112
= −0.6 (7.11)

and for the old bone,

t =
1.2997 − 1.134

0.112
= 1.5 (7.12)

The old and regenerated bone are thus both classified as healthy.
This bone regeneration evaluation should be run on all of the 35

tomograms produced in [5] and [6] to substantiate this quantitative
model of healthy bone, as we expect an accurate model to classify
the old bone in all 35 tomograms as healthy.

While we have have now obtained a quantification of the amount
of bone regeneration, this evaluation metric faces a glaring flaw in
that we are in fact unable to say much accurately about the health of
this regenerated bone, despite traditional evaluation methods, such
as the bone mineral density test above, considering the two equiva-
lent. Below, we provide a simple illustration of the limitations of the
bone mineral density test.

Say that a checkerboard is a representation of healthy bone, where
the white squares represent bone. In this case, a bone mineral density
test will characterise all of the cases in Fig. 7.5, where black and white
squares each have equity of about half the total area, as healthy bone.
By the criteria for healthy bone given in [43], it will even characterise
a board comprised entirely of white squares as healthy bone. It is
indifferent to the distribution of bone mineral, as well as the pres-
ence, or absence, and distribution of critical materials, such as blood
vessels and osteocytes.

Figure 7.5: Illustration of the short-
comings of the bone mineral den-
sity test.

(a) A checkerboard
representing healthy bone.

(b) An image with equal
area covered by black and

white squares, respectively,
representing unhealthy

bone that is inobservable by
the bone mineral density

test.

(c) An image with equal
area covered by black and

white squares, respectively,
representing unhealthy

bone that is inobservable by
the bone mineral density

test.

Of particular note, two of the regeneration methods from [5] and
[6] involve the placement of bone chips, i.e. 100% bone mineral, in
the defect, which is intended to be resorbed by the osteoclasts and
remodelled into living bone by the osteoblasts. However, a test in-
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volving merely the amount of bone mineral could mistakenly clas-
sify the bone chips as healthy bone, even if no remodelling had taken
place and the bone chips remained unresorbed.

Thus, the quantification above gives the amount of bone regen-
eration but reveals little about the health of the regenerated bone.
For that, we must know information about the distribution of other
materials throughout the bone, namely blood and osteocytes.



8 Blood Vessel Segmentation

The blood voxels are almost indistinguishable from osteocytes by
voxel intensity value, especially with the noise present in the tomo-
grams. However, the blood vessels have the distinction of belonging
to a connected network of blood vessel voxels running throughout
the bone. The blood vessels must thus comprise the largest connected
component in the soft tissue of the tomogram.

In Chapter 6, we refrained from using the probabilities for seg-
mentation of the soft tissue, as the analysis was not sufficiently con-
fident in identifying the voxel intensities belonging to these tissue
classes, i.e. blood and osteocyte. Inspecting Fig. 6.7, we see that the
parts of the tomogram outside the bone volume, obtained through
morphological closing of the bone mineral mask, is responsible for
quite some noise, with the acrylic cylinder that the bone sample
was suspended in for imaging possessing voxel intensities similar
to those of the blood vessels and osteocytes. It is irrelevant to search
for soft tissue in these volumes, as it exclusively exist inside the bone.
We can thus use the segmented bone mineral to limit the segmenta-
tion efforts to the volume of interest, namely the bone volume.

For this purpose, we would like a binary mask that reflects the
volume occupied by bone, including bone mineral, blood vessels,
osteocytes, and anything else that exists within this volume. We al-
ready obtained this bone volume mask in Chapter 7 by performing
morphological closing on the segmented bone mineral mask.

The bone mineral mask was obtained in the 16x down-scaled res-
olution, so to obtain the closed bone volume mask in the full resolu-
tion, we can simply resize or up-scale it, producing a multi-resolution
representation of the mask as well. This resizing is the inverse to
down-scaling. Rather than condensing the information from N vox-
els into 1 voxel, the information of 1 voxel is spread out on N voxels.
As we are dealing with a binary image, the voxel intensity of the
n voxels will not be distributed over the N voxels, but rather all N
voxel will receive the value of its equivalent voxel in the lower reso-
lution image. In Fig. 8.1, we illustrate this with a 2D example, where
resizing the image by a factor of 2 results in the voxel intensity of
1 voxel to be received by (2 × 2) = 4 voxels in the resized image.
In 3D, for resizing the closed bone volume masks, resizing by a fac-
tor 2 will result in the voxel intensity of 1 voxel to be received by
(2 × 2 × 2) = 8 voxels in the resized image.

Multiplying the binary bone volume mask with the tomogram,
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Figure 8.1: A 2D example where re-
sizing the image by a factor of 2
results in the voxel intensity of 1
voxel to be received by (2 × 2) = 4
voxels in the resized image.

we are left with only the bone volume of the tomogram, with bone
mineral, blood vessels and osteocytes included, but without the sur-
rounding acrylic cylinder surrounding the bone. Using the bone vol-
ume mask, we segment the air/resin surrounding the bone sample
as the material in the tomogram not within the bone volume mask or
implant mask. We separate the soft tissue from the bone mineral in
the bone volume through automatic Otsu thresholding, which com-
putes a suitable threshold by minimising the within-class variance
between the voxels on both sides of the threshold. We can now per-
form a connected component analysis on the soft tissue in order to
identify the largest connected component herein.

8.1 Connected Component Analysis

As the name implies, connected component analysis identifies dis-
tinct, disjoint objects in an image, for which we would like the com-
puter to recognise their pixels or voxels as connected components
and label each object with a unique ID[46].

Connected component analysis originates from graph theory. The
binary mask is viewed as a graph, where each foreground voxel is a
node, which is connected to all neighbouring foreground voxels. The
connected components are subgraphs, within which all nodes have a
path to all other nodes in the subgraph.

The most commonly used connected component algorithms in
image analysis identify the connected components by performing
a raster scan. Whenever a foreground voxel is encountered, the al-
gorithm checks the prior neighbourhood, and one of the following
three steps are performed for the voxel in question,

1. If all the neighbouring voxel are background voxel, the voxel in
question is labelled with a new label, i.e. it belongs to a new object.

2. If there is only one foreground voxel in the neighbourhood, the
voxel in question is given the same label as the label of this fore-
ground voxel, i.e. they belong to the same object.

3. If there is more than one foreground voxel and they do not have
the same label, the labels are merged: one label is chosen and all
voxel(s) with the other label(s) are updated to have the chosen
label, as they must all belong to the same object.
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In Fig. 8.2 we show an example of connected component labelling.
On the left, the original image is shown. Four shapes are imme-
diately discernible for human perception. Through connected com-
ponent analysis, four shapes are likewise discernible for computer
perception, as shown on the right, where each shape of connected
component is labelled.

Figure 8.2: Image with four dis-
cernible shapes (left), and con-
nected component labels of image
(right).

When attempting to segment the blood vessels, a few problems
are encountered, most pressingly the problem of large data. The res-
olution of a down-scaled tomogram is too poor for the smaller cap-
illaries to be made out, while the tomogram at full resolution is too
large to be processed in RAM. Simply cutting the tomogram at full
resolution into boxes and performing connected component analy-
sis on these separately is faulty, as the separation of the tomogram
may sever the very capillaries in question from the blood vessel net-
work, leading the connected component analysis to misclassify them
as separate objects, when they are in fact connected to the blood ves-
sel network.

To circumvent this quandary, we propose a multi-resolution anal-
ysis method as a solution. The larger blood vessels can be obtained
through the extraction of the largest connected component in a con-
nected component analysis of low resolution data. The finer blood
vessels can be extracted separately through finer resolution data and
connected to the blood vessel network through multi-resolution anal-
ysis.

8.2 More Multi-resolution Analysis

As described in Chapter 3, we have been using multi-resolution anal-
ysis for the entirety of the thesis. We used down-scaled low resolu-
tion samples for the segmentation of the implant and bone, as this
was sufficient for the identification of these high contrast or large
structures. Smaller, low contrast objects, such as capillaries or osteo-
cytes, require higher resolutions. For the segmentation of the entire
blood vessel network, we require a number of various resolutions,
and thus we will use multi-resolution analysis more explicitly.
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We begin our multi-resolution analysis at the top of the image
pyramid, the level n = 4 image of size (204 × 217 × 217). At this
resolution level, the voxel length is (1.875 · 24)µm = 30µm, which is
just fine enough to segment the largest blood vessels. At lower reso-
lutions, even the largest blood vessels, at a diameter of ∼ 45µm[33],
will be lost to aliasing.

We want the computations for the next layer of the image pyra-
mid, the level 3 image of size (3279/23 × 3480/23 × 3480/23) =

(409 × 435 × 435), to cost the same as the level 4 image, which we
can accomplish by processing eight (204 × 217 × 217) blocks of the
(409 × 435 × 435) image separately. The trick is that we will like-
wise split the level 4 image into eight (102 × 108 × 108) blocks and
compare each of these blocks to their equivalent (204 × 217 × 217)
block of the level 3 image, as each down-scaled image voxel corre-
sponds to eight image voxels of the image twice its resolution, i.e.
one level higher on the image pyramid.

For each non-zero voxel in the level 4 segmented blood vessel
image, we look at its corresponding eight voxels in the level 3 con-
nected component labelling. If any of these eight are non-zero, we
label them as blood, regardless of their component size, as they are
connected to the blood vessel network through the lower resolution
image. Further, any voxels in the level 3 image with the same label as
the connected voxel in the given block are likewise labelled as blood,
as they are connected to the blood vessel network through the con-
nected voxel. We repeat this process until we reach the full resolution
at level 0.

When we refer to splitting an image into blocks, we mean that
we load only the part of the image that we are currently processing.
We do this as we want out of core computation to avoid having the
entire problem in RAM at once but rather continuously read partial
problems from and write partial solutions to the disk. This means
that when we are on level 4 of the image pyramid, we load the entire
image, perform connected component analysis on this and extract
the largest component as the blood vessel network for this level. On
level 3 of the image pyramid, we load the first of eight blocks. How-
ever, in same same fashion as there are eight level 3 image blocks for
the level 4 image, there are eight level 2 image blocks for each of the
eight level 3 image blocks for a total of 64 level 2 image blocks and
so on until we reach the base of the pyramid.

In Appendix I, we include a 2D toy example that was constructed
to test and illustrate the multi-resolution analysis method.

In short, we have designed a set of sub-problems where each sub-
problem is structurally identical to its parent problem. We have done
so as there is a genus of algorithms, the recursive algorithms, that
specifically lend themselves to this problem structure. Recursive al-
gorithms are algorithms that arrive at a solution by calling itself un-
til the solution, a stopping condition in the form of the base case, is
reached. In Appendix J, we include a quip on the best known exam-
ple of recursion, the Fibonacci sequence.
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The elegance of the recursive algorithm is that it works as proof by
induction. This will provide us with confidence in the performance
of the algorithms on levels of the image pyramid that may be too
large for us to visualise in full in three dimensions.

In the section below, we will detail how we construct and apply a
recursive algorithm for segmentation of the blood vessel network.

8.3 Implementation and Results

As the sub-problems of a recursive algorithm are structurally iden-
tical to the parent problem, we design a solution for going from the
base case f0 to the first sub-problem f1 and combine it with the re-
cursive pattern. We will therefore first consider the problem of con-
necting the level 3 image connected component blocks with the level
4 segmented blood vessel image.

The level 4 image is of size (204 × 217 × 217), while the level
3 image has twice as many voxels on each axis, yielding an image
with eight times as many voxels at (409 × 435 × 435). This means
each level 4 voxel (n, m, l) corresponds to the eight level 3 vox-
els (n, m, l), (n + 1, m, l), (n + 1, m + 1, l), (n + 1, m, l + 1), (n, m +

1, l), (n, m + 1, l + 1), (n, m, l + 1), (n + 1, m + 1, l + 1). Therefore,
we need to process eight blocks of the level 3 image separately to pro-
ceed with an computational cost identical to the level 4 image. We
will describe the blocks by their down-sampling factor and the posi-
tion of the top, leftmost, front voxel of the block, i.e. the first level 3
block, comprised of the voxels with indices [0:204,0:217,0:217], will
be referred to as 8(0,0,0) , the next block, comprised of the voxels with
indices [204:409,0:217,0:217], as 8(204,0,0) and the final block, com-
prised of the voxels with indices [204:,217:,217:], as 8(204,217,217) .

To avoid holding the entire solution in RAM at once we create
an empty .hfd5 file to hold the level 3 segmented blood vessel im-
age, to which we can write the partial solutions. We load the first
of the eight level 3 image blocks, 8(0,0,0) , which spans the indices
[0:204,0:217,0:217] of the full level 3 tomogram image, along with
the corresponding 16(0,0,0) block spanning the indices [0:102,0:108,0:108]
of the full level 4 segmented blood vessel image, which holds infor-
mation about the same volume of the tomogram, only at half the
resolution. We perform connected component analysis on the level 3
image block.

We are only interested in the voxels in the level 3 connected com-
ponent analysis that connect to blood voxels in the level 4 segmented
blood image, so we extract all the indices for which the level 4 seg-
mented blood vessel image is non-zero, (n̄, m̄, l̄). The corresponding
indices for corresponding voxels in the level 3 tomogram can be ob-
tained as (n̄ + i, m̄ + j, l̄ + k), where i, j and k can be either 0 or
1.

We obtain a unique list of the values occupying positions in the
level 3 tomogram by the indexes found as above. We create a zero
array of the same size as the level 3 tomogram block and set all voxels



blood vessel segmentation 67

that was occupied by a value in the unique list to be 1, i.e. we label
these as blood, and write this to the .hfd5 file.

We iteratively load each of the eight level 3 image blocks, overrid-
ing the previous block each time to relieve the RAM.

Now, for each of the eight level 3 image blocks, there are eight
level 2 image blocks, for a total of 64 level 2 image blocks, that re-
quire connection to the level 3 segmented blood vessel image in the
same manner as the connection of the level 3 image blocks to the
level 4 segmented blood vessel image. This is where we turn to the
recursive algorithm.

In order to set up a recursive algorithm, a formal relation between
the layers that constitute its solution is required. For our case, the
relation between an image on level n and level n − 1 is that the image
on level n has half as many voxels on each axis and thus has eight
times fewer voxels. We already set up our initial solution to consider
the eight corresponding blocks at a level higher on the pyramid.

We require, as input, information about the position of the algo-
rithm on the recursive algorithm tree, i.e. which layer and which
node of the layer is currently being processed. For our case, this in-
formation is provided by the block notation we introduced earlier,
the down-sampling factor indicating the layer and the position of
the top, leftmost, front voxel of the block indicating the node.

In short, we have all the components to construct our recursive al-
gorithm for multi-resolution blood vessel segmentation. We use the
recursive algorithm to perform multi-resolution matching to obtain
the largest connected component in the full-resolution tomogram. In
Fig. 8.3, we visualise a slice of the resulting segmented blood ves-
sel network image at each resolution. We see that as the resolution
increases, the segmentation at the very edges of the image becomes
poor.

This could be due to the blocks at higher resolutions having the
same number of voxels as blocks at lower resolutions, leading the
higher resolution blocks to cover less physical space. Thus, a 8x
block may have multiple coarser defined blood vessels, which will
be connected to the larger blood vessel network if any one of those
blood vessel voxels are connected to a blood vessel voxels in its cor-
responding 16x down-scaled block. However, a full resolution block
may contain only a single capillary, which may be connected through
vessels that are not in the block, but are not disconnected from the
blood vessel network because it in itself is not connected to a blood
vessel voxels in its corresponding 2x down-scaled block. Introducing
an overlap between blocks could remedy this effect.

In Figs. 8.4, 8.5 and 8.6, respectively, we visualise the 16x down-
scaled and 4x down-scaled segmented blood images in vedo. We see
that many more capillaries have been connected to the blood vessel
network through the recursive multi-resolution matching algorithm.

The full-resolution matched blood vessel network image of size
(3279 × 3480 × 3480) is too large to visualise, as the maximum vol-
ume representable by vedo is (2048× 2048× 2048). Instead, we visu-
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Figure 8.3: Visualisation of a slice
of the resulting segmented blood
vessel network image at each res-
olution. Note that the slices are the
equivalent of each other in differ-
ent resolutions, as l = 72 for the
16x down-scaled tomogram is the
same slice as l = 1160 for the full
resolution tomogram.

alise a (1500 × 1600 × 200) section of the full resolution segmented
blood image in vedo.

Figure 8.4: Visualisation of 16x
down-scaled segmented blood im-
age in vedo.
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Figure 8.5: 3D Visualisation of 4x
down-scaled segmented blood im-
age in vedo.

Figure 8.6: A (1500 × 1600 × 200)
section of the full resolution seg-
mented blood image visualised in
3D in vedo. The full full-resolution
matched blood vessel network im-
age of size (3279 × 3480 × 3480)
is too large to visualise, as the
maximum volume representable by
vedo is (2048 × 2048 × 2048).



9 Osteocyte Segmentation

Last but not least, the small but mighty osteocytes. The osteocytes are
also difficult to distinguish from all other soft tissue by their voxel
values alone, but they have a characteristic shape and volume that
sets them apart.

As shown in Fig. 9.1, the osteocytes are ellipsoidal cells, typically
7µm deep, 7µm wide and 15µm long, connected to other cells in
the bone mineral through dendrites, appendages that facilitate com-
munication between cells, and canaliculi, small cellular passageways
responsible for distributing nutrition.

Figure 9.1: Diagram of an osteocyte
[47].

In Appendix K, we discuss the segmentation of the osteocytes by
their characteristic shape, through shape-based morphological oper-
ations such as the Hit-or-Miss and TopHat operations. We ultimately
find that these methods are flawed, as the osteocytes are oriented in
all directions within the bone, and the structural elements of mor-
phological operations cannot account for orientation.

The osteocytes are characterised not only by a certain shape but
also by a certain volume, so we may attempt to segment the osteo-
cytes through their volume alone. As mentioned, an osteocyte typi-
cally measures about (7 · 7 · 15) µm3 = 735µm3 in volume, but they
can vary in diameter between 5 and 20 µm [3]. We can perform a
connected component analysis on the remaining material in the to-
mogram and filter out any connected components with a volume
larger or smaller than the expected volume of an osteocyte. We ex-
pect the largest osteocyte to be 20 µm in diameter, with a width
and depth of 10 µm to realise its ellipsoidal shape, for a volume
of (10 · 10 · 20)µm3 = 2000µm3, and the smallest osteocyte to be
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(2.5 · 2.5 · 5)µm3 = 31.25 µm3. We filter out any connected compo-
nents with volumes that fall outside this range.

This volumetric approach to osteocyte segmentation was first con-
ceptualised and naively implemented for a small, 2D sample in [39].
However, the fully automatic implementation for the full resolution
3D tomogram is entirely distinct and unique to this thesis.

9.1 Implementation and Results

In Fig. 9.2, we show the segmentation progress so far. We show a
slice l = 1740 of the full resolution tomogram, segmented implant,
bone mineral, blood vessel network, and the remaining material in
the tomogram, where the implant and bone mineral have been re-
sized from 16x down-scaled to full resolution. We will now attempt
to segment the osteocytes from the remaining material in the tomo-
gram.

Figure 9.2: A slice l = 1740 of the
full resolution tomogram (top left),
segmented implant mask (top cen-
tre), bone mineral mask (top right),
blood vessel network mask (bottom
left), and the remaining material in
the tomogram (bottom right).

For the osteocyte segmentation, we require the full-resolution to-
mograms as well. However, the osteocytes are not under the condi-
tion of being connected to a greater connected component network,
so there is no need for multi-resolution analysis in this case. We can
simply load one full-resolution block at a time, process this, save the
results to a .hdf5 file, and override it with the next block.

For each of the 4096 full-resolution tomogram blocks, which now
only contain osteocytes and unresolvable material, we perform a
connected component analysis to obtain all connected objects in the
block. The voxels that belong to each individual object is now iden-
tified by a label specific to that object. For each unique label ob-
tained, we sum the number of voxels occupied by this label. This
represents the object volume per voxel volume. The voxel volume is
((1.875 · s)× (1.875 · s)× (1.875 · s))µm = 6.592s3µm3, where s is the
down-scaling factor. The voxel volume for the full-resolution tomo-
gram is thus The voxel volume is given (1.875× 1.875× 1.875)µm3 =
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6.592µm3. We multiply the osteocyte voxel count by the voxel vol-
ume to obtain the osteocyte volume for each osteocyte. We then filter
out any connected components with a volume outside the expected
volume range of osteocytes to obtain the segmented osteocytes.

Although the segmentation of the osteocytes require the full reso-
lution data, in can be difficult to evaluate the solution in this resolu-
tion. To provide confidence in our solution, we will build a solution
that works for any resolution, which can then use on lower resolu-
tion data to confirm that the solution works, and then the algorithm
can be run on the full-resolution data.

In Fig. 9.3, we show the results of using the osteocyte segmenta-
tion method on a (50 × 50 × 50) block within the old bone volume
of the 8x down-scaled data. At this resolution, the voxel volume is
((1.875 · 8) × (1.875 · 8) × (1.875 · 8))µm = 3375µm3, and thus we
should expect to see no osteocytes at this resolution, as even the
largest osteocytes will have been lost to aliasing. Performing a con-
nected component analysis on this result, we can count the number
of unique labels in the connected component image to obtain the
number of osteocytes in the segmented osteocyte image. We do in-
deed find that no osteocytes have been segmented at this resolution.

Figure 9.3: A slice of a (50 × 50 ×
50) block of the 8x down-scaled
tomogram (top left), soft tissue
mask (top centre), blood mask (top
right), mask of the rest of the mate-
rial in the tomogram (bottom left)
and the mask of identified osteo-
cytes in the block (bottom right).
No osteocytes are identified for this
block at this resolution.

In Fig. 9.4, we show the results of using the osteocyte segmen-
tation method on the equivalent (100 × 100 × 100) block of the 4x
down-scaled data. At this resolution, the voxel volume is ((1.875 ·
4)× (1.875 · 4)× (1.875 · 4))µm ≈ 422µm3, and we can expect to see
some osteocytes at this resolution, even through the smaller osteo-
cytes will have been lost to aliasing. The connected component label
tallying reveals that we in fact find 4612 osteocytes for this block at
this resolution.

Running the osteocyte finding algorithm on the equivalent (200×
200 × 200) block of the 2x down-scaled data returns 23, 445 osteo-
cytes, as shown in Fig. 9.5. The voxel volume at this resolution is
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Figure 9.4: A slice of a (100 ×
100 × 100) block of the 4x down-
scaled tomogram (top left), soft tis-
sue mask (top centre), blood mask
(top right), mask of the rest of the
material in the tomogram (bottom
left) and the mask of identified os-
teocytes in the block (bottom right).
4612 osteocytes are identified for
this block at this resolution.

(1.875 · 2)× (1.875 · 2)× (1.875 · 2) ≈ 52.73µm3, and many of the os-
teocytes should be identifiable at this resolution. Finally, we run the
osteocyte finding algorithm on the equivalent (400× 400× 400) block
of the full-resolution data, as shown in Fig. 9.6. With a voxel vol-
ume of (1.875× 1.875× 1.875)µm3 ≈ 6µm3, all the osteocytes should
be identifiable at this resolution. We find 104, 295 osteocytes for this
block at the full resolution.

Figure 9.5: A slice of a (200 ×
200 × 200) block of the 2x down-
scaled tomogram (top left), soft tis-
sue mask (top centre), blood mask
(top right), mask of the rest of the
material in the tomogram (bottom
left) and the mask of identified os-
teocytes in the block (bottom right).
23, 445 osteocytes are identified for
this block at this resolution.

We now run the osteocyte finding algorithm block-wise on the
entirety of the full-resolution data. In Fig. 9.7, we show a slice l =

1740 of the full resolution segmented osteocyte image overlaid on
a slice l = 1740 of the full resolution tomogram. As the osteocytes
are very small and thus quite difficult to see, we have reduced the
opacity of the tomogram to α = 0.1. The full-resolution data is too
large to visualise in vedo, so we visualise a (1500× 1600× 200) section
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Figure 9.6: A slice of a (400× 400×
400) block of the full-resolution
tomogram (top left), soft tissue
mask (top centre), blood mask (top
right), mask of the rest of the mate-
rial in the tomogram (bottom left)
and the mask of identified osteo-
cytes in the block (bottom right).
104, 295 osteocytes are identified
for this block at this resolution.

of the full resolution segmented osteocyte image in Fig. 9.8.

Figure 9.7: A slice l = 1740 of the
full resolution segmented osteocyte
mask (left) and of the full reso-
lution segmented osteocyte mask
overlaid on a slice l = 1740 of the
full resolution tomogram (right).
The osteocytes are shown in red.
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Figure 9.8: 3D visualisation of a
(1500 × 1600 × 200) section of the
full resolution segmented osteocyte
image.



10 Improved Bone Health Assessment

We have reached the final step in our objective to answer the problem
statement of whether is it possible to fully automate the segmenta-
tion of materials, the quantification of healthy bone, and the evalu-
ation of bone regeneration health in bone samples imaged through
high resolution SRµ−CT.

We have developed a method for automatic segmentation of the
implant, bone mineral, air/resin, blood, and osteocytes. We have also
obtained a measurement for the amount of regenerated bone by con-
ducting a bone mineral density test from the segmentation of the
bone mineral alone, but we are not quite satisfied.

As mentioned, the goal is to evaluate the health of the regener-
ated bone from the bone regeneration experiments, which cannot be
accomplished through the bone mineral density test, as the quantifi-
cation of the amount of regenerated bone is not equivalent with the
quantification of the health of the regenerated bone.

Instead, we propose a method that is approaching the bone min-
eral density test in simplicity and speed, especially when we have al-
ready segmented the materials of interest, but can take the geometric
distribution of the blood vessels and osteocytes into consideration.
This method involves quantifying the distance from bone mineral to
nearest blood vessel, and the distance from bone mineral to nearest
osteocyte to ensure the bone has adequate blood flow and nutrient
transport and a sensible osteocyte network embedded throughout.

For this, we must be able to describe the position of each bone
voxel by its distance to the nearest blood voxel and nearest osteocyte
voxel. For this purpose, we remove the segmented material of inter-
est from the tomogram, leaving zero-valued voxels in the tomogram
in its place, and use a distance transform to obtain a mapping where
each voxel value represents the distance to the nearest voxel of inter-
est. We can then apply a mask of the bone mineral to the distance
transform to obtain the distance from each bone voxel to the nearest
voxel of interest, blood or osteocyte.

A version of this bone health evaluation metric was first proposed
and naively implemented for a small, 2D sample in [39]. However,
the fully automatic implementation for the full resolution 3D tomo-
gram is entirely distinct and unique to this thesis.
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10.1 Distance Transform

A distance transform labels each voxel with the distance to the near-
est zero-valued voxel. In Fig. 10.1, we show a simple binary image
and the output of subjecting the image to a distance transform. The
measure we use to define distance is Euclidean distance, where the
distance between two points is given by the length of the shortest
straight line that can be drawn between them, given, in three dimen-
sions, for a point a with coordinates (ax, ay, az) and a point b with
coordinates (bx, by, by), by

Euclidean(a, b) =
√
(bx − ax)2 + (by − ay)2 + (bz − az)2. (10.1)

In the example in Fig. 10.1, for the sake of simplicity, the pixel
length is 1 and unit-less. When working with the tomograms, the
distance transform algorithm will retain the convention of a voxel
length as 1, but we will multiply the result with the true voxel width,
1.875µm, to obtain the true distance transform values.

Figure 10.1: Binary image (left) and
distance transform of binary image
(right).

10.2 Implementation and Results

We are working with the full resolution data, i.e. data of a size where
we are unable to hold all the data in RAM at once, and unable to
visualise the full results in 3D. We will therefore once again process
the full-resolution data in blocks, and visualise only a part of the
final solution in 3D.

To provide confidence in our solution, we will again build a so-
lution that works for any resolution, which can then use on lower
resolution data to confirm that the solution works, and subsequently
run on the full-resolution data.

We remove the osteocytes from the tomogram by multiplying an
inverted mask of the osteocytes with the tomogram, leaving zero-
valued voxels in place of the osteocytes. We can then obtain the dis-
tance from any voxel in the tomogram to the nearest osteocytes by
taking a distance transform of this. We multiply the distance trans-
form with the binary bone mineral mask to obtain the osteocyte dis-
tance transform within the bone mineral. We perform the same anal-
ysis using an inverted mask of the blood vessels to obtain the blood
vessel distance transform within the bone mineral.

To quantify the bone health, we wish to obtain a binary mask of
only the healthy bone. For this, we threshold the distance transform
within the bone mineral to obtain only the parts of the bone mineral
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that have a distance shorter to the maximum healthy distance to an
osteocyte and a distance shorter than the maximum healthy distance
to a blood vessel. [48] gives the normal distance between osteocyte
centres as 40µm. [49] gives the the farthest an osteocyte would be
from an Haversian canal1 as 172µm. We can reasonably take this1 The microscopic tubes through which

blood vessels travel through bone. number as the farthest a bone voxel would be from a Haversian canal,
and thus a blood vessel, as well.

We use these numbers as the thresholds to obtain only the dis-
tance transform within the bone volume with values below these
thresholds for the osteocyte distance transform and blood vessel dis-
tance transform, respectively. For the osteocyte distance transform,
we require that the maximum distance to an osteocyte or a blood
vessel is 40µm. We include the blood vessels in this criteria with the
rationale that bone voxels near large blood vessels are healthy bone,
but could be far from the nearest osteocyte due to the large blood
volume. For the blood vessel distance transform, we require that the
maximum distance to a blood vessel is 172µm. For bone to be clas-
sified as healthy, is must fulfil both criteria given above. Binarising
the result gives us the a mask of the healthy bone mineral. We can
now take the sum of projection profile of of the healthy bone mineral
mask and divide this with the sum projection profile of of the total
bone mineral mask to obtain a percentage measure of the quantity of
healthy bone mineral.

We examine the old and regenerated bone separately by using
the screw thread threshold to separate the two. Separating the to-
mograms into the regenerated and old bone regions, respectively,
the full resolution tomogram is of shapes (2064 × 3480 × 3480) and
(1215 × 3480 × 3480) for the regenerated and old bone regions, re-
spectively. This means the separated 16x down-scaled tomogram is
of shape (129 × 217 × 217) and (75 × 217 × 217) for the regenerated
and old bone regions, respectively, rather than the original (204 ×
217 × 217) for the whole bone sample. If we use the old method of
separation into blocks by splitting the data along each axis by 28/s,
where s is the down-scaling factor, on the regenerated and old bone,
respectively, will now yield twice the number of blocks for each reso-
lution. However, we do not need to split the data into quite so small
blocks. Thus, instead of splitting the data along each axis by 28/s,
we will continue to split the m and l axis by 28/s, but the n axis for
the regenerated bone region will be split by 2

3 28/s and for the old
bone by 1

3 28/s, where we in both cases round up to nearest integer,
to achieve blocks of size approximately (204 × 217 × 217) for both
the regenerated and old bone regions for each resolution.

At 4x down-scaled resolution, the smallest osteocytes and blood
vessels will be have been lost in this resolution due to aliasing, so
this will not provide an accurate quantification of the bone health,
but it will provide confidence that the solution works in that with
fewer blocks, we can examine the solution progress at each step. We
will thus test our solution on lower resolution data before running
the code on the full resolution data. At 4x down-scaled resolution,
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the new method of block splitting described above yields 48 blocks
of size (172 × 217 × 217) for the regenerated bone, and 32 blocks of
size (151 × 217 × 217) for the old bone, for a total of 80 rather than
the 128 that would be produced by the old method of separation
into blocks. We run the code for the 4x down-scaled data, as the
voxel length at this resolution is (1.875 · 4)µm = 7.5µm, for a voxel
volume of (7.5 · 7.5 · 7.5)µm ≈ 422µm3, meaning some osteocytes will
be discernible at this resolution.

In Fig. 10.2, we show a (200 × 200 × 200) block of the 4x down-
scaled tomogram from the old bone volume, and its correspond-
ing bone mineral mask, blood vessel mask, and osteocyte mask. In
Fig. 10.3, we show the results of using the bone health quantification
on the block. For this block, at the 4x down-scaled resolution, only
53.46% of the bone is classified as healthy. This low percentage is
due to the resolution at 4x down-scaled being too poor for proper
segmentation of the osteocytes.

Figure 10.2: A (200 × 200 × 200)
block of the 4x down-scaled to-
mogram (left), bone mineral mask
(centre left), blood vessel mask
(centre right) and osteocyte mask
(right). Very few osteocytes are seg-
mented at this resolution, as most
are lost to aliasing.

Figure 10.3: (200× 200× 200) block
of the 4x down-scaled tomogram
with the osteocytes removed (top
left), with the blood vessels re-
moved (top centre), distance trans-
form of tomogram block with os-
teocytes removed, where brighter
voxels are closer to osteocytes (top
right), distance transform of tomo-
gram block with blood vessels re-
moved (bottom left) and results of
running the bone health quantifica-
tion method on the block (bottom
right). 53.46% of the bone is is clas-
sified as healthy for this block at
this resolution.

Running the code on all 80 4x down-scaled data blocks, we obtain
a measure of 41.15% healthy bone for the old bone and 52.77% for
the regenerated bone. We see that the regenerated bone is seemingly
classified as more healthy than the old bone, where we expect all the
old bone to be healthy, but at this resolution we are not able to make
any accurate conclusions on the health of the bone. As the resolution
increases, more osteocytes and capillaries will be identifiable, and the
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distance to nearest osteocyte and blood vessel will decrease, leading
to an increase in the percentage of bone classified as healthy bone.

We run the code for the 2x down-scaled data, first by testing
the code on the (400 × 400 × 400) block of the 2x down-scaled data
equivalent to the (200 × 200 × 200) block of the 4x down-scaled data
in Fig. 10.2. In Fig. 10.4, We show the tomogram, bone mineral mask,
blood vessel mask, and osteocyte mask for this block. In Fig. 10.3,
we show the results of using the bone health quantification on the
block. For this block, 96.27% of the bone mineral is classified as
healthy at this resolution. We see that the proportion of bone clas-
sified as healthy has seemingly increased. This makes good sense, as
many more osteocytes and capillaries are identifiable at this resolu-
tion level, and thus the bone to osteocyte and bone to blood vessel
distances becomes smaller.

Figure 10.4: A (400 × 400 × 400)
block of the 2x down-scaled to-
mogram (left), bone mineral mask
(centre left), blood vessel mask
(centre right) and osteocyte mask
(right).

Figure 10.5: (400× 400× 400) block
of the 2x down-scaled tomogram
with the osteocytes removed (top
left), with the blood vessels re-
moved (top centre), distance trans-
form of tomogram block with os-
teocytes removed (top right), dis-
tance transform of tomogram block
with blood vessels removed (bot-
tom left) and results of running the
bone health quantification method
on the block (bottom right). 96.27%
of the bone is is classified as
healthy for this block at this reso-
lution.

Running the code on the entirety of the 2x down-scaled data as
well, we obtain a measure of 96.18% healthy bone for the old bone
and 97.41% for the regenerated bone. As we saw for the blocks we
tested the algorithm on, the proportion of bone classified as healthy
has seemingly increased, as more osteocytes and capillaries are iden-
tifiable at the higher resolution level, decreasing the bone to osteocyte
and bone to blood vessel distances. The voxel length at the 2x down-
scaled resolution has a voxel volume of (7.5 · 7.5 · 7.5)µm ≈ 52.73µm3.
With the typical osteocyte measuring (7 · 7 · 15) µm3 = 735µm3 in
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volume, most osteocytes will be discernible at this resolution.
Finally, we run the code for the full-resolution data. First, we test

the code on a (800 × 800 × 800) block of the full-resolution data,
the tomogram, bone mineral mask, blood vessel mask, and osteo-
cyte mask of which we have shown in Fig.10.6. At this resolution,
with a voxel length of 1.875µm and voxel volume of 6.59µm, even
the smallest capillaries, with diameters of ∼ 3µm, and smallest os-
teocytes, with volumes of ∼ 31 µm3, will be discernible. Running
the bone mineral health quantification algorithm on this block of the
full-resolution data returns a healthy bone percentage of 99.06%.
This relatively high percentage of healthy bone is consistent with
our expectations, as the block is from the old bone volume and we
expect the old bone to be healthy bone.

Figure 10.6: A (800 × 800 × 800)
block of the 4x down-scaled to-
mogram (left), bone mineral mask
(centre left), blood vessel mask
(centre right) and osteocyte mask
(right).

Figure 10.7: (800× 800× 800) block
of the full resolution tomogram
with the osteocytes removed (top
left), with the blood vessels re-
moved (top centre), distance trans-
form of tomogram block with os-
teocytes removed (top right), dis-
tance transform of tomogram block
with blood vessels removed (bot-
tom left) and results of running the
bone health quantification method
on the block (bottom right). 99.06%
of the bone is is classified as
healthy for this block at full reso-
lution.

We run the code on the entirety of the full resolution data, obtain-
ing a measure of 99.69% healthy bone for the old bone and 99.85%
for the regenerated bone. We see that the regenerated bone is consis-
tently quantified to have a higher percentage of healthy bone than the
old bone. This could be due to the suggested bone health evaluation
metric favouring porous bone. In Chapter 7, we suggested that the
regenerated bone was more porous than the old bone, as the regen-
erated bone displayed a 12.6% lower bone mineral density. The bone
health evaluation metric proposed in this chapter uses the distance to
soft tissue voxels to characterise bone health. As more porous bone
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contains more soft tissue, it stands to reason that the regenerated
bone is quantified as more healthy by this metric. For future work, a
bone health evaluation metric that considers the distribution of bone
mineral in tandem with the distribution of soft tissue is sought.

Finally, the evaluation should be run on all of the 35 tomograms
produced in [5] and [6] to substantiate this quantitative model of
healthy bone, as we expect the model to quantify all the old bone as
healthy.



11 Discussion and Future Work

Image processing at the segmentation and labelling level is a trial
and error industry. Throughout the thesis we have made choices for
methods to solve the sub-problems of the image segmentation prob-
lem. However, alternative solution methods could have yielded sim-
ilar or better results, and improvements can certainly be made to
all results obtained in this thesis. Below, we discuss some possible
alternative solution methods and improvements.

For segmentation of the implant, in lieu of the bounding box, we
could have used connected component analysis to ensure that high-
value voxels further out in the tomogram were not misclassified as
implant. The implant is by far the largest connected component in
the resulting image from simple threshold-based segmentation, so
the implant could have been extracted as the largest connected com-
ponent similarly to the 16x down-scaled blood voxels.

For segmentation of the bone mineral, the segmentation is affected
by uneven lighting due to the X-ray intensity diminishing with pen-
etration depth. Thus, the voxel intensity values in the center of the
tomogram will be higher. Another form of uneven lighting arises
from light bleeding from the bright implant. A way to address this
unevenness is to make Gaussian mixture model distributions region
by region as a function of distance from the implant. We can remove
the implant from the tomogram and perform a distance transform
to obtain a map of distances d from every voxel in the tomogram to
the implant. We can then take equidistant regions d = 1, 2...n and
create distributions for each region. Both these improvements would
require automating the choice of k for the K-means algorithm, as the
number of materials present in a given region is not constant.

During pre-processing for the blood vessel segmentation, we used
simple thresholding for separation between the bone mineral and
soft tissue in the bone volume, as we found that the resin and air sur-
rounding the bone volume imparted too much noise for the GMM
analysis to provide reliable segmentation of the soft tissue. We could
have separated the two by multiplying the bone volume mask with
the inverse of the segmented bone mineral mask, but we chose sepa-
ration through thresholding in preparation for future improvements.
In future work, the current method for segmenting the bone min-
eral in Chapter 6 should be used only for obtaining the bone volume
mask, and the Gaussian Mixture Model analysis should be repeated
for the bone volume alone, eliminating the noise from the surround-
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ing resin and air. This will provide a better segmentation of the bone
mineral, and a better separation between bone mineral and soft tis-
sue.

In Chapter 8, we also discussed the segmentation of blood ves-
sels at the very edges of the image becoming poor as the resolution
increases, which could be remedied through the introduction of an
overlap between blocks.

Further, for segmentation of the blood vessels, we used multi-
resolution analysis to go from low resolution to high resolution.
However, we can further obtain a better segmentation for each reso-
lution level by using multi-resolution analysis to go from high resolu-
tion to low resolution. In lower resolutions, many artefacts arise due
to aliasing, such as objects blurring together or becoming thicker. We
can remove these artifacts by requiring that a voxel in a lower reso-
lution image is only a blood vessel if and only if one of its equivalent
8 higher resolution voxels has been classified as a blood voxel.

For segmentation of the osteocytes, we could look to ensuring the
ellipsoidal shape of the osteocytes. We could construct a covariance
matrix for each potential osteocyte, as we did in Chapter 4, the three
largest eigenvalues of which are proportional to the height, width
and depth of the potential osteocyte. We could then impose the con-
dition that for a potential osteocyte to be an osteocyte, the largest
eigenvalue must be roughly twice as large as the width and depth,
which must be similar in size. However, this is a time-consuming
computation, and alternative solutions should be considered.

We saw that the old bone was consistently quantified as less healthy
than the regenerated bone. In Chapter 10, we speculated that this
could be due to the suggested bone health evaluation metric favour-
ing porous bone. For future work, a bone health evaluation metric
that considers the distribution of bone mineral in tandem with the
distribution of soft tissue is therefore sought.

The bulk of the run time of the segmentation algorithm is spent on
the segmentation of the blood vessels, osteocytes, and the final bone
health assessment, where the full resolution data is in play. The full
segmentation algorithm takes ∼ 16 hours to run for one tomogram,
where the final bone health assessment accounts for ∼ 10 of the
hours. This is not an insignificant run time, and a more effective
implementation is sought in the future.

For further future work, improvements are to be made to the seg-
mentation via the methods detailed in the discussion above.

The fully automatic segmentation and evaluation method should
be run on all of the 35 tomograms produced in [5] and [6] to evaluate
the quality of regenerated bone for each of the 5 regeneration meth-
ods. Running the method on all tomograms will also substantiate the
quantitative model of healthy bone brought forward in this thesis, as
we expect an accurate model to quantify all the old bone as healthy.

Finally, while synchrotron radiation answered the high resolu-
tion and image quality requirement for imaging of fine structures
in bone, it is not a scalable solution, as synchrotron radiation is ex-
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pensive to produce and synchrotron radiation sources are few. The
large cost associated with imaging samples through synchrotron ra-
diation and the scarcity of synchrotron radiation facilities ultimately
greatly limit the amount of research that can be carried out. To cir-
cumvent the need for synchrotron radiation resolution, a future su-
pervised machine learning model can be trained on the high res-
olution tomograms. When the fully automatic labelling initiated in
this thesis is satisfactory, the high resolution labels can be used as
ground truth, and low resolution test images can be simulated from
the high-resolution images using down-sampling and simulated dis-
tortion. With the latter, we are able to simulate specific types of noise,
e.g. using Salt-and-Pepper noise to simulate detector sensor compo-
nent failures or modelling X-ray effects in cheaper equipment, such
as beam hardening. The trained model can then be used to classify
voxels into their material classes for lower quality tomograms, which
could conceivably be produced with hospital X-ray setups, enabling
more research, which in turn enables better treatment for patients.



12 Conclusion

In this thesis, we fully automated the segmentation of a (3279 ×
3480 × 3480) high resolution SRµ−CT tomogram into its constituent
materials, (I) implant, (II) bone mineral, (III) blood vessels, (IV) os-
teocytes and (V) air/resin. We also created an automatic quantitative
model of healthy bone, and an automatic evaluation of regenerated
bone health.

The fully automatic segmentation and evaluation methods were
tested on one 3D tomogram of size (3279 × 3480 × 3480), but the
resulting code was developed to run on any of the 35 tomograms
produced in [5] and [6].

The segmentation of the implant was done using a combination of
voxel-based thresholding, morphological closing, the construction of
a bounding box, principal component analysis, and Procrustes anal-
ysis. First, the implant was crudely segmented through voxel-based
thresholding. To ensure that voxels not belonging to the implant had
not been misclassified due to uneven illumination, a bounding box
was drawn to identify a region of interest to which the segmenta-
tion was restricted. The bounding box was drawn using the three
largest eigenvalues and their associated eigenvectors, found through
a principal component analysis. Morphological closing was used for
pre-processing of the implant to ensure the correct distribution of
voxels for the construction of the covariance matrix from which the
eigenvalues and eigenvectors were found.

The implant was then separated into its components, a head, mi-
cro threads and macro threads. For this, the projection profile of the
implant was obtained in order to analyse the screw threads as waves.
To minimise noise, the gradient of the projection profile was used in
further analysis. A peak finding algorithm was constructed to iden-
tify the peaks and troughs of the gradient of the projection profile,
from which the wavelengths and amplitudes of the projection profile
were found. The micro threads were then identified by their simi-
larly small amplitudes, and the macro threads by their similarly large
wavelengths. This similarity was defined on the basis of the central
limit theorem. The orientation of the implant was subsequently ob-
tained from the knowledge that the macro threads were to be under
the micro threads.

The bone mineral was segmented using a Gaussian mixture model
to model the density of voxel intensities in the tomogram as probabil-
ity density distributions. A K-means clustering algorithm was used
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to provide a minimisation algorithm with starting guesses for the
Gaussian component distribution parameters. The bone mineral was
segmented as voxels with higher than a 95% probability of being a
bone voxel.

An intermediate bone health assessment was conducted at this
juncture, as a bone mineral density test requires only the bone min-
eral. For this, the bone mineral volume was evaluated against the
total bone volume. The total bone volume was obtained by perform-
ing morphological closing on a binarised bone mineral mask. We
evaluated the old bone and the regenerated bone separately, with
their separation given by the threshold between the micro and the
macro threads found during the separation of the implant into its
constituents. The sum of the projection profile of the bone mineral
mask gave the volume of bone mineral and the sum of the projection
profile of the total bone mask gave the total volume of bone. The ratio
between the two gave the bone mineral percentage. For the old bone,
we found that the bone volume consisted of 70.3% bone mineral. For
the regenerated bone, we found that the bone volume consisted of
57.7% bone mineral. The bone mineral content was then obtained in
units of g/cm3. The bone mineral density of the old bone was found
to be 1.2997g/cm3, and the bone mineral density of the regenerated
bone was found to be 1.0666g/cm3. The resulting t-scores were 1.5
and −0.6, respectively, which were within the bounds of −1 to 2.5,
and the old and regenerated bone were both classified as healthy.

The blood vessels were segmented using largest connected com-
ponent analysis and multi-resolution analysis through a recursive
algorithm. The full resolution data was too large to be processed at
once, and the separation of the data into blocks risked the sever-
ance of capillaries, leading the largest connected component analysis
to misclassify these. Therefore, a recursive multi-resolution analysis
was constructed, in which the largest connected component was ex-
tracted from lower resolution data, which could be processed all at
once. The higher resolution data was then separated into blocks, a
connected component analysis performed for each block, and each
voxel compared to its lower resolution equivalent. If the lower reso-
lution equivalent was a blood voxel, the higher resolution voxel and
all the voxels with the same label in the higher resolution connected
component analysis were labelled as blood as well.

The osteocytes were identified by their characteristic volume. A
connected component analysis was performed on the remaining soft
tissue in the tomogram, and the volume of each connected compo-
nent was calculated. If the volume of a connected component was
within the accepted range of osteocyte volumes, it was segmented as
an osteocyte.

Finally, an improved bone health assessment was given. The dis-
tance from any voxel in the bone mineral volume to an osteocyte was
found by removing the osteocytes from the tomogram and perform-
ing a distance transform. The distance transform was multiplied by
the bone mineral mask, as only the distance to an osteocyte within
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the bone mineral was of interest. The distance from any voxel in the
bone mineral volume to a blood vessel was found through the same
method. The threshold for longest accepted distance to an osteocyte
for healthy bone was set at 40µm, and the threshold for longest ac-
cepted distance to a blood vessel for healthy bone was set at 172µm.
Any bone mineral voxels within the accepted thresholds was seg-
mented as healthy bone. The sum of the projection profile of the
healthy bone mask gave the volume of healthy bone mineral and the
sum of the projection profile of the total bone mineral mask gave the
total volume of bone mineral. The ratio between the two gave the
bone health percentage. Once again, we evaluate the old bone and
the regenerated bone separately. For the old bone, 99.69% of the bone
volume was classified as healthy. For the regenerated bone, 99.85%
of the bone volume was classified as healthy.

Future work includes improvements to the segmentation made
through methods proposed in the discussion, as well as improve-
ments to the efficiency of the algorithm, and the training of a machine
learning model for use on lower quality tomograms producible by
hospital X-ray setups, enabling more research, which in turn enables
better treatment for patients.
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5.7 Amplitudes found through definition of two troughs and one
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6.1 An illustration of K-means clustering in 1D. Centroids are initi-
ated, data points are assigned to clusters, centroids are updated,
data points are re-assigned to clusters, centroids are updated,
until the algorithm converges. 49
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6.6 Probability distributions. The x-axis represents voxel intensity
values, and the y-axis represents the probability of belonging to
a given material class. For any voxel intensity, the probability
of the voxels with the intensity value belonging to a material
class is given by the value of the probability distribution of the
material class. 52

6.7 Tomogram colored using probability distributions, where each
voxel is coloured according to the material it is most likely to
comprise. 53

6.8 Segmented bone mineral mask overlaid on tomogram slice. 53

6.9 Improving on the bone mineral segmentation by limiting the
bone mineral segmentation to outside the implant. The segmented
implant mask for slice n = 60 (left), the original segmented bone
mineral mask (centre), and the improved segmented bone min-
eral mask (right). 53

6.10 Improving on the bone mineral segmentation by limiting the
bone mineral segmentation to after the first implant voxel. The
segmented implant mask for slice m = 108 (left), the once im-
proved segmented bone mineral mask (centre), and the twice
improved segmented bone mineral mask (right). 54

6.11 Improving on the bone mineral segmentation by limiting the
bone mineral segmentation to under the threshold between the
implant head and the smaller screw thread. The twice improved
segmented bone mineral mask for slice l = 108 and the thresh-
old (left), and the thrice improved segmented bone mineral mask
(right). 54

6.12 Closed thrice improved bone mask (left), largest connected com-
ponent of closed thrice improved bone mask (centre), and final
improved bone mask (right). 55

6.13 The final segmented bone mineral mask for slices n = 108, m =

108 and l = 108, respectively. 55

7.1 Visualising a slice l = 108 of bone mineral mask (left) and total
bone volume mask, obtained through morphological closing of
the bone mineral mask (right). 57

7.2 Projection profile of bone mineral mask and projection profile of
bone volume mask. 57

7.3 Projection profiles of bone mineral masks of old and regenerated
bone (left), and projection profiles of total bone masks of old and
regenerated bone (right). 58

7.4 Slice by slice bone mineral density quantification for regenerated
bone (left) and old bone (right). 59

7.5 Illustration of the shortcomings of the bone mineral density test. 60

8.1 A 2D example where resizing the image by a factor of 2 results
in the voxel intensity of 1 voxel to be received by (2 × 2) = 4
voxels in the resized image. 63

8.2 Image with four discernible shapes (left), and connected compo-
nent labels of image (right). 64
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8.3 Visualisation of a slice of the resulting segmented blood vessel
network image at each resolution. Note that the slices are the
equivalent of each other in different resolutions, as l = 72 for
the 16x down-scaled tomogram is the same slice as l = 1160 for
the full resolution tomogram. 68

8.4 Visualisation of 16x down-scaled segmented blood image in vedo. 68

8.5 3D Visualisation of 4x down-scaled segmented blood image in
vedo. 69

8.6 A (1500 × 1600 × 200) section of the full resolution segmented
blood image visualised in 3D in vedo. The full full-resolution
matched blood vessel network image of size (3279 × 3480 ×
3480) is too large to visualise, as the maximum volume repre-
sentable by vedo is (2048 × 2048 × 2048). 69

9.1 Diagram of an osteocyte [47]. 70

9.2 A slice l = 1740 of the full resolution tomogram (top left),
segmented implant mask (top centre), bone mineral mask (top
right), blood vessel network mask (bottom left), and the remain-
ing material in the tomogram (bottom right). 71

9.3 A slice of a (50 × 50 × 50) block of the 8x down-scaled tomo-
gram (top left), soft tissue mask (top centre), blood mask (top
right), mask of the rest of the material in the tomogram (bottom
left) and the mask of identified osteocytes in the block (bottom
right). No osteocytes are identified for this block at this resolu-
tion. 72

9.4 A slice of a (100 × 100 × 100) block of the 4x down-scaled to-
mogram (top left), soft tissue mask (top centre), blood mask (top
right), mask of the rest of the material in the tomogram (bottom
left) and the mask of identified osteocytes in the block (bottom
right). 4612 osteocytes are identified for this block at this reso-
lution. 73

9.5 A slice of a (200 × 200 × 200) block of the 2x down-scaled to-
mogram (top left), soft tissue mask (top centre), blood mask (top
right), mask of the rest of the material in the tomogram (bottom
left) and the mask of identified osteocytes in the block (bottom
right). 23, 445 osteocytes are identified for this block at this res-
olution. 73

9.6 A slice of a (400 × 400 × 400) block of the full-resolution tomo-
gram (top left), soft tissue mask (top centre), blood mask (top
right), mask of the rest of the material in the tomogram (bottom
left) and the mask of identified osteocytes in the block (bottom
right). 104, 295 osteocytes are identified for this block at this
resolution. 74

9.7 A slice l = 1740 of the full resolution segmented osteocyte mask
(left) and of the full resolution segmented osteocyte mask over-
laid on a slice l = 1740 of the full resolution tomogram (right).
The osteocytes are shown in red. 74

9.8 3D visualisation of a (1500 × 1600 × 200) section of the full res-
olution segmented osteocyte image. 75
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10.1 Binary image (left) and distance transform of binary image (right). 77

10.2 A (200 × 200 × 200) block of the 4x down-scaled tomogram
(left), bone mineral mask (centre left), blood vessel mask (cen-
tre right) and osteocyte mask (right). Very few osteocytes are
segmented at this resolution, as most are lost to aliasing. 79

10.3 (200 × 200 × 200) block of the 4x down-scaled tomogram with
the osteocytes removed (top left), with the blood vessels re-
moved (top centre), distance transform of tomogram block with
osteocytes removed, where brighter voxels are closer to osteo-
cytes (top right), distance transform of tomogram block with
blood vessels removed (bottom left) and results of running the
bone health quantification method on the block (bottom right).
53.46% of the bone is is classified as healthy for this block at
this resolution. 79

10.4 A (400 × 400 × 400) block of the 2x down-scaled tomogram
(left), bone mineral mask (centre left), blood vessel mask (centre
right) and osteocyte mask (right). 80

10.5 (400 × 400 × 400) block of the 2x down-scaled tomogram with
the osteocytes removed (top left), with the blood vessels re-
moved (top centre), distance transform of tomogram block with
osteocytes removed (top right), distance transform of tomogram
block with blood vessels removed (bottom left) and results of
running the bone health quantification method on the block
(bottom right). 96.27% of the bone is is classified as healthy for
this block at this resolution. 80

10.6 A (800 × 800 × 800) block of the 4x down-scaled tomogram
(left), bone mineral mask (centre left), blood vessel mask (centre
right) and osteocyte mask (right). 81

10.7 (800 × 800 × 800) block of the full resolution tomogram with
the osteocytes removed (top left), with the blood vessels re-
moved (top centre), distance transform of tomogram block with
osteocytes removed (top right), distance transform of tomogram
block with blood vessels removed (bottom left) and results of
running the bone health quantification method on the block
(bottom right). 99.06% of the bone is is classified as healthy for
this block at full resolution. 81

1 A hierarchy of image processing tasks. Rectangular blocks repre-
sent processes and curved-rectangular blocks represent data or
outputs. The blocks in grey represent steps that have been com-
pleted before the onset of this thesis. This thesis will traverse the
steps from "3D Image" to "Image Comprehension".

2 A square grid representing a 2D image with four pixels.
3 The first three iterations of an iterative reconstruction method

[51].

4 Visualisation of slices n = 108, m = 108 and l = 108, respec-
tively, of the segmented implant surface.
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5 Projection of 3D implant surface on 2D plane through conver-
sion to cylindrical coordinates with constant radius.

6 Flow chart of implant segmentation solution. Rectangular blocks
represent processes and curved-rectangular blocks represent data
or output.

7 Image of a centered square with added placed Salt and Pepper
noise (left), histogram (center), and thresholded binary image
(right). The pepper noise inside the square is misclassified as
background and the salt noise outside the square as part of the
square.

8 Image of an unevenly illuminated page with words [28] (left),
image histogram (center) and thresholded binary image. The
darker illuminated portion of the page is misclassified as words.

9 Image of two toy cars, one light and one dark [28] (left), image
histogram (center), and thresholded binary image (right). The
algorithm misclassifies the lighter car as the background.

10 Example of semantic segmentation (left) and instance segmenta-
tion (right). Semantic segmentation concerns itself only with the
identification of which object group to which an object belongs,
not the identification of individual objects. Instance segmenta-
tion assigns a separate label to each individual object within an
object group.

11 Image with text (left), and the horizontal projection profile of the
image (right).

12 A function f (x) = x2 − 2x and its derivative function f ′(x) =

2x − 2. The derivative function f ′(x) = 0 at the minimum of
f (x).

13 Full resolution toy example image (left), 2x down-scaled toy ex-
ample image (centre left), 4x down-scaled toy example image
(centre right), and 8x down-scaled toy example image (right).

14 8x down-scaled toy example image (left), and largest connected
component in 8x down-scaled toy example image (right).

15 The 8x down-scaled image block, 8x largest connected compo-
nent blood block, the 4x down-scaled image block, and the re-
sulting matched 4x down-scaled blood block for each of the four
blocks.

16 8x down-scaled image (left), 4x down-scaled image (centre left),
8x down-scaled largest connected component blood image (cen-
tre right), and 4x down-scaled matched blood image (right).

17 4x down-scaled image (left), 2x down-scaled image (centre left),
4x down-scaled largest connected component blood image (cen-
tre right), and 2x down-scaled matched blood image (right).

18 2x down-scaled image (left), full resolution image (centre left),
2x down-scaled largest connected component blood image (cen-
tre right), and full resolution matched blood image (right).
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19 Fibonacci sequence tree for n = 5.

20 Hit-or-miss using the first letter as structural element.
21 An illustration of a proposed structural element that is able to

idenfity osteocytes regardless of the orientation of these, but is
vunerable to misclassification of objects too large to be osteo-
cytes as osteocytes.



Appendix A: A Hierarchy of Image
Processing Tasks

3D Object

3D Image Formation

3D Image

Feature Extraction

Feature Image(s)

Region Identification

Region Image Morphology

Voxel- or Object-related Classification Material Classes

Image Preprocessing

Image Comprehension

Figure 1: A hierarchy of image pro-
cessing tasks. Rectangular blocks
represent processes and curved-
rectangular blocks represent data
or outputs. The blocks in grey rep-
resent steps that have been com-
pleted before the onset of this the-
sis. This thesis will traverse the
steps from "3D Image" to "Image
Comprehension".

In Fig. 1, we show a typical path from image formation to image
comprehension, where the image processing steps have been ordered
in a suggested hierarchy to provide overview. In practice, the order
of image processing steps can be switched and steps may be omitted.
Below, we will provide first an overview of the general image pro-
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cessing steps, and subsequently the solution methods used in this
thesis for segmentation of each of the materials in the tomograms.
Finally, we outline the method proposed for obtaining an automatic
quantitative model of healthy bone and for an automatic evaluation
of the regenerated bone against this model.

As shown in Fig. 1, the road from image formation to image com-
prehension goes through many steps. The first few steps involve the
formation of the 3D image [50]. A 3D image of a 3D object is obtained
through a 3D image formation module, such as a CT scanner.

From then, the image processing begins. The 3D image is pre-
processed, which refers to a group of image processing manipula-
tions applied to the raw image for the purpose of improving or en-
suring the performance of subsequent image processing steps. Ex-
amples of image pre-processing include the reduction of noise or the
number of data samples.

The next step is feature extraction. In feature extraction, the in-
formation in the original data is transformed into into numerical
features that are more easily processed than the original data. An
example is using the histogram of an image rather than the image
for further processing.

The feature image may then subject to region identification, a pro-
cess to restrict the region of interest, e.g. through a bounding box.
However, the region image may be the entire image if the objects of
interest are existent throughout the image.

The region image is then manipulated through morphology, a
class of image processing methods that concern themselves with the
form, shape, structure, size, location and orientation of objects.

Finally, the morphologically processed region image is subject to
voxel- or object-related classification, which is concerned with the
intensity, colour, contrast, gradient, texture or depth of objects, and
returns the labels for each voxel.

The image is now separated into material or object classes. Image
comprehension goes beyond the recognition of the contents of an im-
age and involves making conclusions based on the segmented image,
e.g., whether, when given the distributions of materials throughout
the bone volume, the bone is healthy.

At the onset of this thesis, the 3D images have been obtained by
[5] and [6]. The goal of this thesis is to traverse the rest of the road
from 3D image to reach the image comprehension step.

To reach the image comprehension step for this thesis, we fully
automate the segmentation of voxels into one of five material classes
present in the tomograms, (1) titanium implant, (2) bone mineral, (3)
blood, (4) osteocyte, and (5) air, using a flight of image processing
methods, as will be outlined below. Image comprehension is then
possible in the form of automatic quantification of healthy bone and
evaluation of the health of the regenerated bone.



Appendix B: Iterative Image Recon-
struction Methods

We can think of the image reconstruction problem as being multiple
equations required to solve for multiple unknowns.

Figure 2: A square grid represent-
ing a 2D image with four pixels.

Say we have an object that fills four pixels, as shown in Fig. 2, and
we pass a single beam of intensity I0 the width of one pixel through
the top row of pixels, for which we obtain the read of the amount of
radiation incident on the detector, I1.

The discretised form of Lambert-Beer’s law for inhomogeneous
materials is given by

I(d) = I0e−d ∑N
n=1 µn . (1)

We can now write an equation with two unknowns,

I1 = I0e(−d(x1,1+x1,2 )) (2)

where x1,1 and x1,2 are the linear attenuation values, and d is the
thickness of the pixels. If we take the natural log of both sides,

ln( I1) = ln( I0 exp(−d(x1,1 + x1,2)))

= ln( I0) + ln(exp(−d(x1,1 + x1,2)))
(3)

we can rewrite this as

ln( I1) − ln( I0) = ln(exp(−d(x1,1 , x1,2)))

ln(
I1

I0
) = −d(x1,1 + x1,2)

−
ln( I1

I0
)

d
= x1,1 + x1,2

(4)

The value of all the variables on the left-hand-side are known, as
they are the intensity of the incident beam, I0, the value read by the



automating medical image analysis of srµ-ct and evaluation of regenerated bone

health

detector, I1, and the thickness of the pixels, d, which is given by the
resolution. Thus, to simplify the expression, we group these terms in

a constant, C1 = −
ln( I1

I0
)

d . The final expression is then,

C1 = x1,1 + x1,2 . (5)

We pass another beam with the same intensity through the bottom
row of pixels and obtain another reading of beam attenuation, I2,
and, thus, another equation,

I2 = I0 exp(−d(x2,1 + x2,2)) (6)

which we rewrite in an identical manner as above to obtain

C2 = x2,1 + x2,2 . (7)

Rotating the incident beam 90 degrees, we can obtain a measure-
ment of the intensity of a beam passing through x1,1 and x2,1, as well
as one for x1,2 and x2,2, yielding the relations

C3 = x1,1 + x2,1 (8)

and
C4 = x1,2 + x2,2 . (9)

We now have four linear equations with four unknowns, which we
can solve analytically quite simply.

The trouble is that the example above represented an image of size
(2 × 2), which yielded four unknowns to solve for. In real-world ap-
plications, this is rarely the case. The tomograms produced for this
thesis are of size (3279 × 3480 × 3480), yielding over a trillion un-
knowns for a single tomogram. Further, due to noise, arising from
anything between movement of the imaged object to beam harden-
ing, the generated equations are not consistent, adding to the diffi-
culty of resolving the linear attenuation values.

To bypass the need to solve these systems of unknowns exactly,
which is not always possible due to noise, iterative reconstruction
can be used.

The initial step of iterative reconstruction is making a guess for
the true appearance of the imaged object at a given slice, often using
a method such as back-projection to conjure the guess.

In Fig. 3, we show an example illustrating the first three iterations
of an iterative reconstruction method. On the top left, the values mea-
sured by the detector from four different angles are shown. On the
top right, an initial guess for the values of the attenuation constants
are made using back-projection, where the value measured over each
row and column is distributed evenly across that row or column.

The iterative reconstruction method then forward projects the guess,
i.e. it computes the projection values for the guessed attenuation con-
stants. It then compares these values with the measured values by
obtaining the error as the difference between the measured value
and the guessed value.
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Figure 3: The first three itera-
tions of an iterative reconstruction
method [51].

In iteration 2, the algorithm performs a back-projection of this dif-
ference, i.e. distributes this evenly across the row or column, and for-
ward projects the guess again. It obtains the difference between the
guessed projection values and the measured values, and in iteration
3, it performs a back-projection of this difference, forward projects
the guess, and obtains the difference between the guessed projection
values and the measured values once again. The algorithm will con-
tinue to do this until the ratio is sufficiently small, where "sufficiently
small" is user-defined.



Appendix C: 2D Visualisation of a
3D Surface

For 2D visualisation of a 3D surface, we can project the 3D surface
onto a 2D plane. This is accomplished by performing a transforma-
tion from Cartesian coordinates (x, y, z) to cylindrical coordinates
(r, θ, z). To achieve a 2D projection, we discard the radial component,
r, as we are unconcerned with the radius when we are visualising a
surface. Each point on the projection may thus be made up of sev-
eral points on the surface that have identical (θ, z) coordinates but
varying r.

The conversion from Cartesian coordinates (x, y, z) to cylindrical
coordinates with a constant radius, (θ, z) is given by

θ = tan−1
( y

x

)
(10)

and
z = z, (11)

where z simply remains the Cartesian coordinate system z.
In Fig. 4, we visualise the implant surface via three 2D slices

through the 3D volume, as above. In Fig. 5, we show an example
of projecting the surface of the implant onto a 2D plane.

Figure 4: Visualisation of slices n =

108, m = 108 and l = 108, respec-
tively, of the segmented implant
surface.
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Figure 5: Projection of 3D implant
surface on 2D plane through con-
version to cylindrical coordinates
with constant radius.



Appendix D: Implant Segmentation
Solution Flow Chart

In Fig.6, we include a flow chart of the implant segmentation solu-
tion.

Figure 6: Flow chart of implant
segmentation solution. Rectangu-
lar blocks represent processes and
curved-rectangular blocks repre-
sent data or output.
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(3D Digital Image)

Image Preprocessing
Obtain histogram

(Feature Extraction)

Histogram
(Feature Image)

Thresholding
(Voxel-related Classification)

Roughly Segmented Implant

Morphological closing
(Morphology)

Closed Roughly Segmented Implant

Pre-processed tomogram
(3D Digital Image)

Bounding Box
(Region Identification)

Region Image

Thresholding
(Voxel-related Classification)

Segmented Implant



Appendix E: Illustrating Limitations
of Threshold-based Segmentation

Reasons global thresholding becomes problematic include noise, un-
even illumination, objects with similar pixel intensity values with the
background or several objects with overlapping pixel intensity val-
ues, as we will illustrate below.

In Fig. 7, we have used an artificially constructed image of a cen-
tered square and added placed Salt and pepper noise 1 to illustrate 1 Salt and pepper noise is an artificial

noise that simulates sensor element fail-
ures in a camera. The effect of the noise
is that random pixels are set either to
the largest or the smallest value in the
pixel range.

the effect of noise on global thresholding. This leads the algorithm
to classify the pepper noise inside the square as background and the
salt noise outside the square as part of the square.

Figure 7: Image of a centered
square with added placed Salt and
Pepper noise (left), histogram (cen-
ter), and thresholded binary im-
age (right). The pepper noise inside
the square is misclassified as back-
ground and the salt noise outside
the square as part of the square.In Fig. 8, we have used an image of an unevenly illuminated page

with words to illustrate the effect of uneven illumination on global
thresholding. The human bran is able to automatically correct for the
illumination, but the global thresholding classifies the darker illumi-
nated portion of the page as words.

Figure 8: Image of an unevenly il-
luminated page with words [28]
(left), image histogram (center)
and thresholded binary image. The
darker illuminated portion of the
page is misclassified as words.

In Fig. 9, we have used an image of two toy cars, one light and one
dark, to illustrate the effects of multiple objects of interest with vary-
ing intensity values of global thresholding. Say we wish to segment
both cars from the background. This is impossible to do with global
thresholding, as one car is dark, one bright, and the background falls
in the middle of the histogram. The algorithm in this case classifies
the lighter car as the background.
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Figure 9: Image of two toy cars, one
light and one dark [28] (left), im-
age histogram (center), and thresh-
olded binary image (right). The al-
gorithm misclassifies the lighter car
as the background.



Appendix F: The Bounding Box and
Instance Segmentation

The Bounding Box is a tool in image segmentation that is most fre-
quently deployed for instance segmentation as opposed to semantic
segmentation. In semantic segmentation, we are interested in which
object class each voxel in the image belongs to, but we are uncon-
cerned with whether those voxels belong to the same spatial object.
Each object class is given one representation, regardless of whether
they belong to the same object. In instance segmentation, however,
we want to distinguish between object classes, but also between ob-
jects in object classes such that each object is given a separate repre-
sentation. In Fig. 10, we have included an example of these.

Figure 10: Example of semantic
segmentation (left) and instance
segmentation (right). Semantic seg-
mentation concerns itself only with
the identification of which object
group to which an object belongs,
not the identification of individ-
ual objects. Instance segmentation
assigns a separate label to each
individual object within an object
group.

The Bounding Box is used for the purpose of providing separate
representation for instance segmentation by bounding the voxels that
belong to a specific spatial object. We use this same principle to
restrict the region of interest for implant segmentation to the area
bounded by the box.



Appendix G: Illustrating the Projec-
tion Profile

In the example in Fig. 11, we show the horizontal projection profile
of an image, I(n, m), with text. The two-dimensional image has a
horizontal and a vertical axis, aligned with the n and m axes, respec-
tively. To obtain the horizontal projection profile for the image, we
take the sum of pixels for each increment of the vertical axis,

pro j(m) = ∑
n

I(n, m) (12)

Figure 11: Image with text (left),
and the horizontal projection pro-
file of the image (right).

The projection profile is commonly used for text processing, as we
have done in the example, as the horizontal projection profile is use-
ful for separation of blocks of text into sentences, as the projection
profile goes to zero in the gaps between sentences. The vertical pro-
jection profile is able to provide the same analysis for separation of
individual words for a single sentence.



Appendix H: Minimisation

Analytically, the minimisation takes the first derivative of the objec-
tive function, sets it equal to zero, and solves for the variables, as the
gradient of a minimal point on a function must be zero, as shown
in Fig. 12. However, in our case, we do not know the function that
describes the histogram, H( I), the approximation of which is the en-
tire objective of the Gaussian Mixture Model, and we are unable to
differentiate an objective function of which we possess only part of.

Figure 12: A function f (x) =

x2 − 2x and its derivative func-
tion f ′(x) = 2x − 2. The derivative
function f ′(x) = 0 at the minimum
of f (x).

The information we do possess is the output value of H(I) for
any given point within the constraints. Thus, while we cannot gain a
full picture of the objective function, we can easily evaluate it at an
arbitrary point. Say we make a guess for the variables, α, µ and σ,
and obtain the resulting Gaussian Mixture Model. We can substitute
this into the objective function and obtain the value of this for the
guess parameters. We can then carry on choosing new variables for α,
µ and σ until we find the values that minimise the objective function.
This is the numerical minimization problem.

Naturally, it is inefficient to blindly choose new parameters for
each iteration. The objective function will then randomly increase or
decrease and the minimum is unlikely to be found and, if somehow
identified, it would be impossible to confirm it as the minimal pos-
sible value for the objective function. Instead, various methods may
be deployed to determine the best successive guesses, the simplest of
which is the gradient descent.

The gradient descent takes starting guesses for the parameters,
calculates the value of objective function for these parameters, cal-
culates the negative gradient of the objective function at this point,
which gives the direction in which the function becomes smaller. For
the next iteration, the algorithm takes a step in this direction, com-
putes the value and negative gradient of the objective function at the
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new point, and takes another step in the direction of the negative
gradient. It continues to do so until it arrives at a point where the
value of the objective function is small enough, defined by a stop-
ping criteria chosen by the user. The size of the steps taken by the
algorithm at each iteration is defined by the user, and should be suf-
ficiently small as to not bypass the minimum point, but sufficiently
large as to limit the convergence time.

The gradient descent is simple to understand and implement, but
ineffective. For the minimisation problem presented in this chap-
ter, we choose the BFGS method, a quasi-Newtonian optimisation
method. Rather than merely the first order derivatives computed for
the gradient descent, Newtonian optimisation methods compute the
inverse Hessian, an inverted matrix of second order derivatives, as
well, as the information contained within can significantly decrease
convergence time by guiding the step size at each iteration. Further,
for quasi-Newtonian optimisation methods, the inverse Hessian ap-
proximated rather than computed exactly, as this can be computa-
tionally costly. The result is a effective, fast converging optimisation
method.



Appendix I: Toy Example for Multi-
resolution Blood Vessel Segmentation

In Fig. 13, we have constructed a 2D toy example to test and illus-
trate the multi-resolution analysis method. At full resolution, the toy
example image has a bright cross in the middle to symbolise a large
blood vessel, a dim grid of lines to symbolise the smaller capillar-
ies, two bright lines to symbolise large blood vessel connected to
the blood vessel network via the smaller capillaries, and two small,
bright crosses to symbolise osteocytes. We down-scale this image by
2x, 4x, and 8x. We thus have an image pyramid of four levels, each
with 2 × 2 = 4 times as many pixels as the image on the level above.
In the 8x down-scaled image, the capillaries have disappeared due
to aliasing, leaving the two lines of large blood vessels unconnected
to the rest of the blood vessel network. Thus, in a largest connected
component analysis, these are misclassified as not being blood ves-
sels, as shown in Fig. 14. Further, blurring due to aliasing causes the
objects to appear much thicker.

Figure 13: Full resolution toy ex-
ample image (left), 2x down-scaled
toy example image (centre left),
4x down-scaled toy example image
(centre right), and 8x down-scaled
toy example image (right).

We now split the 4x down-scaled image in four blocks so that
each of the 4x down-scaled image blocks are of the same size as
the full 8x down-scaled image. We likewise split the 8x down-scaled
largest connected component blood image in four blocks for multi-
scale comparison with the 4x down-scaled image blocks. In Fig. 15,
we show the 8x down-scaled image block, 8x largest connected com-
ponent blood block, the 4x down-scaled image block, and the result-
ing matched 4x down-scaled blood block for each of the four blocks.

The resulting 4x down-scaled matched blood image is shown in
Fig. 16. We see that thickening of the main blood vessel due to alias-
ing is reduced, but the smaller capillaries and the two larger blood
vessels it connects have not yet been identified. In Fig. 17, we show
the result of performing the same matching of the 2x down-scaled
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Figure 14: 8x down-scaled toy ex-
ample image (left), and largest con-
nected component in 8x down-
scaled toy example image (right).

image blocks against the matched 4x down-scaled blood. The 2x
down-scaled image has four times as many pixels than the 4x down-
scaled image, and thus has 16 times fewer pixels than the 8x down-
scaled image, resulting in 16 2x down-scaled image blocks for match-
ing to the 4x down-scaled image. In the 2x down-scaled image the
capillaries are visible, enabling this iteration of multi-scale resolution
matching to identify these as blood, and thus also connect the two
brighter blood vessels to the blood vessel network which were previ-
ously disconnected. There is still some blurring due to aliasing, but
this is removed in the matching of 64 full-resolution image blocks
to the 2x down-scaled matched blood image, as shown in Fig. 18.
We see that the multi-resolution analysis method is able to identify
the largest connected component in a high-resolution image through
multi-resolution analysis.
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Figure 15: The 8x down-scaled im-
age block, 8x largest connected
component blood block, the 4x
down-scaled image block, and the
resulting matched 4x down-scaled
blood block for each of the four
blocks.
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Figure 16: 8x down-scaled image
(left), 4x down-scaled image (cen-
tre left), 8x down-scaled largest
connected component blood image
(centre right), and 4x down-scaled
matched blood image (right).

Figure 17: 4x down-scaled image
(left), 2x down-scaled image (cen-
tre left), 4x down-scaled largest
connected component blood image
(centre right), and 2x down-scaled
matched blood image (right).

Figure 18: 2x down-scaled image
(left), full resolution image (cen-
tre left), 2x down-scaled largest
connected component blood image
(centre right), and full resolution
matched blood image (right).



Appendix J: Recursive Algorithms and
The Fibonacci Sequence

The best known example of recursion is the Fibonacci sequence, in
which a given number in the sequence is defined as the sum of the
previous two numbers in the sequence, fn = fn−1 + fn−2, typically
starting with a base case of f0 = 0 and f1 = 1, subject to function
or custom. In Fig.19, we show the Fibonacci sequence tree, starting
at n = 5. The recursive algorithm for the Fibonacci sequence, the
pseudo code for which is included in Algorithm 1, involves a func-
tion, Fib(n), which takes an integer value, n, and returns n if the
input is ≤ 1, and if else it calls itself as Fib(n − 1)+ Fib(n − 2)
until the base case, f0 or f1, is reached.

Fib(4)

Fib(3)

Fib(2)

Fib(1) Fib(0)

Fib(1)

Fib(2)

Fib(1) Fib(0)

Figure 19: Fibonacci sequence tree
for n = 5.

Algorithm 1: Fibonacci Sequence, Fib(n)

Input Integer n
Output The Fibonacci Sequence from the nth number
if n ≤ 1 then

return n
end
else

return Fib(n − 1)+ Fib(n − 2)
end



Appendix K: Osteocyte Segmentation
Through Morphology

We already touched upon the image processing treasure trove that is
morphological operations, but many other morphological operations
exist for an array of applications, as morphology simply concerns
itself with the shape of objects. This is a promising place to start the
hunt for the osteocytes, as they have a characteristic shape.

One promising morphological operation for the segmentation of
the osteocytes is the Hit-or-Miss operation, which extracts objects
from an image that are identical to the structural element by sliding
over the image and identifying areas of the image where the struc-
tural element is fitted exactly to the foreground. We may be able to
utilise the Hit-or-Miss operation using a structural element in the
shape of an osteocyte for the segmentation of these.

In Fig. 20, we test this method using an image with six rows of
letters, where we wish to extract all Xs from the image using the first
X in the top left corner as our structural element.

Figure 20: Hit-or-miss using the
first letter as structural element.

We see that the method is able to identify some letters, it is far
from an impressive result, as digits are not identified unless they fall
exactly within the structural element, leaving objects that are smaller
or oriented differently than the structuring element automatically
out of contention.

While modifications can be made to the structural element to
mediate some of the shortcomings of the method, the Hit-or-Miss
method remains severely limited by its rigid definition, in that it
can only identify objects that are exact matches for the structuring
element, whereas the osteocytes can vary in shape and orientation,
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which the Hit-or-Miss operation cannot account for.
Another attractive morphological operation for the purpose of

segmenting osteocytes is the BottomHat operation, which subtracts
the original image from the closing of the image. It is used for ex-
tracting objects that are smaller then the structural element, as well
as darker than their surroundings, as these are the "holes" that will
be filled during the dilation phase of the opening and not be re-
stored during the subsequent erosion. We may thus be able to use
the BottomHat operation for extracting the osteocytes using a struc-
tural element that is larger than the osteocytes, as the osteocytes are
darker than their bone tissue surroundings.

The shortcomings of this operation are similar to those of the Hit-
or-Miss operation, namely that the structural element cannot account
for orientation. The ellipsoidal shape of the osteocytes makes the Bot-
tomHat operation vunerable, as we cannot create an oriented struc-
tural element. As illustrated in Fig.21, the structural element for the
BottomHat operation must be larger than the osteocytes, regardless
of the orientation of these, but not so large as to identify objects as os-
teocytes that are far too large in volume to conceivably be osteocytes,
a balance that is near impossible to achieve.

Figure 21: An illustration of a pro-
posed structural element that is
able to idenfity osteocytes regard-
less of the orientation of these, but
is vunerable to misclassification of
objects too large to be osteocytes as
osteocytes.
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