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Abstract

Pulses used for implementation of qubit gates are often subject to distortions arising

from electrical components on the control line. These distortions negatively affect

the gate performance and must be corrected in order to perform the wanted opera-

tions and have control of the qubit. This thesis focuses on distortions of flux pulses

used for implementing two-qubit gates in flux-tunable transmons. The project con-

sists of two parts: characterization and correction of signal distortions in four bias

tees in a room-temperature setup, and a simulated experiment using the distorted

waveforms. This simulation is based on the cryoscope method introduced in Rol et

al.[1] where the flux pulse distortions are studied by reconstructing the pulse shape

from its effect on the qubit. While correction of the bias tee distortions using the

underlying physical parameters is not fully achieved, another approach is attempted,

effectively correcting the pulse distortions without physically realistic parameters.

The cryoscope simulation shows that reconstruction of pulses is possible, even for a

simpler approach than originally proposed.
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1 Introduction

Quantum computing utilizes the features of quantum systems in order to speed up

classical algorithms. Classical computers have shortcomings when it comes to simulating

quantum systems, since they run out of storage to represent quantum mechanical systems

[2]. Furthermore, certain algorithms have not yet been possible to run on a classical

computer due to the scaling of the complexity of them. Due to quantum parallelism

and quantum interterference[3], quantum computers are capable of solving much more

complex problems than a classical computer, and since they are themselves quantum

systems, quantum simulations are made possible.

Figure 1: The Bloch sphere, a visualization tool for two level systems. Any qubit state
can be represented on the sphere, like here for example the state |ψ〉 = cos(π/8) |0〉 +
ei3π/2 sin(π/8) |1〉.

In order to physically implement quantum computing, one has to build a system that

can be used as quantum bits, or qubits. These qubits can be realized physically in

several different ways, but it is generally a challenging task because of the sensitivity to

interactions with the environment, which shortens the lifetime of the qubit. However,

regardless of how a quantum computer is realized, there are five requirements that must

be fulfilled, known as the Divincenzio criteria [7][4]:

• The quantum system must be well-characterized, and scalable such that quantum

computing can be realized for several qubits.

• One must be able to initialize the qubit in a reliable state such as the ground state.

• The qubit coherence times must be long enough to physically implement gates

• A set of quantum gates that implement any operation on the qubit is needed. This

is referred to as a universal set of gates.

1



• Lastly, one must be able to measure the state of the qubit in order to extract the

result of a given operation.

A way to describe and visualize qubit states is to represent them as vectors on the Bloch

sphere, which is a tool for representing two-level system states on a unit sphere. Any

state of the qubit can be visualized on the Bloch sphere as a vector originating in the

center of the sphere. The |0〉 and |1〉 states are represented at north and south pole of

the sphere, respectively, and the axis defined by these two states is referred to as the

z -axis, also called the longitudinal axis. The transverse axes x and y span the equal

superposition states |±〉 = 1√
2
(|0〉± |1〉) and |±i〉 = 1√

2
(|0〉± i |1〉). In polar coordinates,

a pure qubit state cos(θ) |0〉+eiφ sin(θ) |1〉 can be represented as a Bloch vector of length

1 and, polar angle θ (0 ≤ θ ≤ π) and azimuthal angle φ (0 ≤ φ ≤ 2π). For a qubit

with transition frequency ω01 > 0 and Hamiltonian H = ~ω01σz, the unitary evolution

describes the qubit as precessing around the z -axis. In a frame rotating with frequency

ω01, the Bloch vector is stationary on the Bloch sphere.

1.1 Superconducting qubits

There are several types of ways to realize qubits, for example via trapped ions, photons

and spin qubits. These are ”natural qubits”, that is, parameters such as the transition

energies are set by nature and cannot be modified. Another way to realize qubits is

via engineered qubits, where the parameters describing the qubit can be engineered and

optimized, giving more control of the system [5]. Superconducting qubits constitute an

example of these engineered qubits and are made up of electrical circuits consisting of

superconductors and other electrical elements. Several types of superconducting qubits

exist, divided into groups of charge qubits, flux qubits and phase qubits. The focus

in this thesis is on the transmon which is a special case of a charge qubit, but is also

referred to as a charge/flux hybrid qubit.[?]

1.1.1 Superconductivity

Superconductivity is a phenomenon that occurs in certain materials where, if the mate-

rial is cooled far below a critical temperature Tc, the resistance of the material decreases

and becomes zero, and thus it behaves as a perfect conductor. This means that su-

perconducting materials can be used in electronic circuits with no energy dissipation,

and the low operating temperatures are ideal for making qubits out of them, since long

qubit coherence times require minimal thermal noise. Above the critical temperature,

the superconductor acts as a normal conductor with resistance, but as it is cooled be-

low the critical temperature, it starts to be partially superconducting, and the effect
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gets more pronounced at even lower temperatures. What happens when T < Tc is that

the electrons in the superconductor form into the so-called superconducting condensate.

At T > Tc, the electrons behave normally as fermions, and therefore they must fulfil

the Pauli principle, namely that they must occupy different states. Below the critical

temperature, electrons with opposite spins start forming pairs known as Cooper pairs,

resulting in boson-like ”particles” with spin 0. The pairs are formed by two electrons

with opposite spin exchanging phonons (quanta of vibrational energy) that exist in the

lattice structure that make up the material. In normal conductors, phonons, along with

imperfect lattice structure, are what causes resistance. If one of the electrons of a Cooper

pair scatters from an irregularity in the lattice structure, the phonon that is emitted is

immediately absorbed by the other electron in the pair, resulting in conservation of the

total momentum of the system. The wave function of each of the Coopers pair in the

condensate is of the form:

Φ(r1, r2) =
∑
j

ajφ(r1,Pj , ↑)φ(r2,−Pj , ↓), (1)

where φ(r,Pj , ↑) is the wave function of one of the single electrons in the Cooper pair

(here with spin up), and as seen from these single electron wavefunctions, the electrons

have opposite momentum and spin, as required to form a Cooper pair. |Φ(r1r2)|2 is then

the probability density of finding the electrons at positions r1 and r2. The symmetry

of scattering events ensures that energy is conserved, and thereby that the pairs shift

from different terms in the total wave function, meaning that the pairs cannot be excited

unless the absorbed energy is enough to break up the Cooper pair, resulting in normal

conductivity of individual electrons. This energy required to go from superconductivity

to regular conductivity processes is referred to as ∆ and is called the superconducting

gap, referring to the fact that there is an energy gap in which there are no states

available. This energy gap is an advantage for combatting thermal noise, since the

gap is large enough that thermal noise cannot break up the Cooper pairs and result in

energy dissipation from resistive current.

The Cooper pair wavefunction in equation 1 describes a Cooper pair ”at rest”, that is,

no current is running through the superconductor, since the total momentum is zero.

If current is flowing through a superconductor such that each Cooper pair now has

total momentum P, the single Cooper pair wavefunction is modified such that the single

electron wavefunctions in each term now have additional momentum P/2 [5]:

Φ(r1, r2) =
∑
j

ajφ(r1,Pj + P/2, ↑)φ(r2,−Pj + P/2, ↓) (2)
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Since generally, the single-electron wavefunction has the form of a plane wave φ ∝ eiP·r/~,

and since the additional momentum term P/2 is the same for all terms, the momentum

can be expressed as a factor outside the summation in equation 1 such that:

Φ(r1, r2) =
∑
j

ajφ(r1,Pj , ↑)φ(r2,−Pj , ↓)eiP·r1/2~eiP·r2/2~ = Φ(r1, r2)eiP·r/~, (3)

where r = r1+r2
2 describes the position of the Cooper pair’s center of mass. Expressing

the condensate wavefunction like this indicates that the momentum gives rise to a phase

of the wavefunction, and since all the Cooper pairs have the same wavefunction, this

can be extended to a full wavefunction describing all Cooper pairs in the condensate as

ΨP = ΨeiP·r/~, where Ψ is the complete condensate wavefunction when no current is

passing through the superconductor.

For current through a superconducting circuit, the acquired phase along the path of the

circuit, connecting two points X and Y, is then given by

∆φXY =
1

~

∫ Y

x
P(r) · dr =

m

enp

∫ Y

X
J(r) · dr, (4)

where the last expression is the phase gradient expressed in terms of the current density

J =
npe
m P, with np the Cooper pair density, and e and m the electron charge and electron

mass, respectively. If, in addition to this, an external magnetic field is present, an electric

field is induced, and the momentum gains a term describing the contribution from the

field, such that P = mv + qA = 2mv + 2eA, where A is the vector potential, defined

by ∇×A = B. The phase gradient in the presence of a magnetic field is then described

by:

∆φXY =
m

enp

∫ Y

X
J(r) · dr +

2e
∫ Y

X
A(r) · dr (5)

If the path of the superconducting circuit is a closed loop C, the fact that the phase

of the condensate wavefunction must always be single-valued leads to the requirement

that the phase must be an integer multiple of 2π, that is, ∆φC = k2π. This means that

the phase is quantized, and the following will show that the flux and phase are related,

leading to the quantization of the flux through the loop. Using Stokes theorem for the

integral in the second term of equation 5 (now closed loop integral instead of open path

integrals) reveals that it describes the magnetic flux through the loop:∮
C

A · dr =

∫ ∫
S
∇× A · dS =

∫ ∫
S

B · dS = ΦS ,
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where S indicates the surface enclosed by C. The so-called fluxoid Φ′ can now be defined

as

Φ′ ≡ 1

2π

(
m

2npe2

∮
C

J · dr + ΦS

)
= kΦ0,

where Φ0 = h
2e is the superconducting flux quantum, which is related to condensate

phase by Φ′ = Φ0∆φC
2π = φ0∆C , where φ0 = Φ0

2π is called the reduced flux quantum. This

shows that the total flux threading a superconducting loop must be quantized in multiple

integers of the flux quantum, which is an effect that can be used for the so-called SQUID

(see section 1.1.3). [5]

An central element in superconducting qubits it the Josephson junction. The Josephson

junction consists of two superconducting islands separated by a thin insulating layer,

resulting in a potential barrier between the two islands. Given the right conditions, the

wave functions of the electrons on either side of the insulating layer crosses the potential

barrier and overlaps with the wave function on the other side, resulting in a coupling

between the number of electrons on each side of the junction. Because of this, the

electrons can tunnel back and forth between the two superconducting islands. The use

of the Josephson junction to build qubits is discussed in section 1.1.2.

1.1.2 The transmon qubit

The transmon is a superconducting qubit that can be viewed as a special case of a charge

qubit called the Cooper pair box. The Cooper pair box is comprised of circuit with a

small superconducting island connected to a large reservoir of Cooper pairs, constituting

a Josephson junction. The island should be small enough to only be capacitively coupled

to the reservoir and to not interact with anything else in the environment. To be able

to perform operations on the system, the Josephson junction is connected to a capacitor

that is connected to a voltage source, see Figure 2(a). By varying the voltage source will

change the number of charges on the capacitor plates, which then controls the number

of charges on the island. In the number basis, the Cooper pair box is described by the

Hamiltonian [5]:

H = 4EC(n− ng)2 |n〉 〈n| − EJ
2

∑
(|n〉 〈n+ 1|+ |n+ 1〉 〈n|)

The last term describes the tunneling process of Cooper pairs in a Josephson junction.

|n〉 is the eigenstate of the number operator n which describes the number of Cooper

pairs on one of the islands (thereby determining the number of pairs on the other island

as well), and EJ is the Josephson energy and describes the coupling between the islands

and thereby how much energy is needed to tunnel between them. Since a Josephson

junction consists of two layers of two conducting electrodes, which constitute a capacitor,
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it can effectively be described as a capacitor of capacitance CJ in parallel with the pure

tunneling element. Therefore, to describe an actual Josephson junction, a capacitive

term (2e)2

2CJ

∑
n n

2 |n〉 〈n| must be added to the Hamiltonian, describing energy associated

with 1 Cooper pair’s charge across the capacitor plates. The role of the gate capacitor

is then to create a charge offset, and the full capacitive term of the Cooper pair box

is then EC(n − ng)
2 |n〉 〈n|, where ng =

Qg
e , and with Qg the charge across the gate

capacitor plates.The charging energy associated with these capacitive elements is then

EC = (e)2

2(Cg+CJ ) , with Cg the capacitance of the gate capacitor.

The Cooper pair box is usually operated in the regime EC � EJ . Here, the tunnel

coupling Hamiltonian can be seen as a perturbation to the EJ = 0 case. For no tunneling,

EJ = 0, the Hamiltonian is diagonal, and the eigenstates are |0〉, |1〉 with eigenenergies as

a function of ng plotted in Figure 3(a). Here, the separation from the two lowest energy

levels to higher energy level is large, validating the two-level approximation needed

for a qubit. In the small tunnel coupling regime, EJ � EC , the eigenenergies are

approximately the same as for EJ = 0. However, as EJ0 and gets larger compared

to EC , the degeneracy between the ng = n ± 1
2 etc. is lifted, and so-called avoided

crossings occur, see . This happens because, as EJ becomes larger compared to EC ,

the larger the effect of the off-diagonal elements in the Hamiltonian. That is, in the

two-level approximation, for EJ � EC , the Hamiltonian approaches a matrix with only

off-diagonal entries, with eigenstates |+〉 and |−〉.
While the Cooper pair box qubit’s sensitivity to charge is what gives control over the

qubit, it is also a disadvantage. Since the qubit must be sensitive enough that a single

electron has a great effect on the energy of the system, this means that the Cooper pair

box is also very sensitive to charge noise, which may cause dephasing of the qubit. As

a solution to this, one can instead operate the qubit in the so-called transmon regime,

EC � EJ , where the eigenstates of the system become superpositions of many charge

number states, and therefore the sensitivity to a single electron is not as large. This

means that the spectrum flattens out, as seen in figure 3. Now, the qubit cannot be

controlled via a charge gate/voltage bias, but can instead be controlled by microwave

pulses and flux pulses, the latter described in section 1.3. In order to obtain EC � EJ ,

a large capacitor is placed in parallel with the Josephson junction to lower the charging

energy (since the charging energy is inversely proportional to capacitance). This circuit

can be seen in Figure 2(b).

The transmon Hamiltonian can be written in terms of the phase operator, which is

related to the number basis by eiφ =
∑
|n− 1〉 〈n| and e−iφ =

∑
|n〉 〈n− 1|:

H = 4ECn
2 − EJ cosφ,
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(a) Circuit diagram of a Cooper pair
box. The Josephson junction, is con-
nected to a gate capacitor of capac-
itance Cg, and gate operations are
performed by tuning the gate volt-
age Vg.

(b) Circuit diagram of the
transmon qubit. Josephson
junction is shunted by a large
capacitor of capacitance CS ,
ensuring that the qubit is in
the transmon regime EJ �
EC

Figure 2

where now, the charging energy is EC = e2

2(CJ+CS
, with CJ and CS the junction ca-

pacitance and shunt capacitance, respectively, and φ = 2πΦ
Φ0

. Taylor expanding the

tunneling term −EJ cosφ to second order yields −EJ +
E2
J (2π)2

2Φ2
0

Φ2. Ignoring the offset

−EJ and comparing this to the Hamiltonian for an inductor, Hinductor = Φ2

2L , one sees

that the Josephson junction to lowest order corresponds to an inductor with inductance

LJ =
Φ2

0

E2
J4π2 . Including higher order of the Taylor expansion shows that the Josephson

junction acts like a non-linear inductor. This leads to the equivalent description of a

transmon as an LC-circuit with a Josephson junction instead of an inductor.

In an LC oscillator, since both the capacitor and inductor are linear elements, the

potential energy of the LC circuit as a function of the superconducting phase is a

parabola (see Figure 4(a)) with energy levels of the system equidistantly spaced with

~ω0 = ~
√

8ELEC = ~
√

1/LC . This even spacing in energy levels is not useable for

building a qubit, since one needs an isolated subset of states, such that the system is

not unintentionally excited to higher energy levels when performing operations on it.

However, by replacing the linear inductor with the non-linear Josephson junction, the

energy spacings become differen for each transition, and thus the two lowest energy

levels are isolated from higher levels, creating a subspace of levels which can be used

as a qubit. The eigenenergies of the transmon Hamiltonian are approximately given

by Em ' −EJ +
√

8ECEJ(m + 1
2) − EC

12 (6m2 + 6m + 3) [6]. The isolation of the two

lowest level of the transmon from the next level is quantified by the anharmonicity

α = ω1→2
q −ω0→1

q = −EC . For large enough anharmonicity, the system can be described
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(a) Energies of a Cooper pair box (CPB) qubit as
a function gate charge. For EJ = 0, the qubit en-
ergies are degenerate at ng = 1/2. As EJ becomes
non-zero, this degeneracy is lifted, and a so-called
avoided crossing occurs instead.

.
(b) Energies of a CPB qubit as a function of
gate charge ng for different EJ/EC . As the ratio
EJ/EC increases, the qubit’s sensitivity to charge
decreases. Figure from [7]

Figure 3

as a two-level system, resulting in the Hamiltonian:

H =
f01

2
σz (6)

with transition frequency f01 = (
√

8ECEJ − EC)/h. The larger the magnitude of the

anharmonicity, the more the two ground levels comprising the qubit are isolated from

higher energy levels, which decreases the risk of leakage into non-computational states.

However, EJ simultaneously needs to fulfill the requirement of a transmon that EC �
EJ , and so there is a trade-off between charge noise (in)sensitivity and anharmonicity.

Typical values for α are 100-300 MHz , while EJ/EC ≥ 50 [3].

1.1.3 Flux-tunable transmons

The transmon described in section 1.1.2 has a fixed transition frequency f01 = (
√

8ECEJ−
EC)/h. For certain qubit operations, discussed in section 1.3, it is necessary to be able

to control the qubit frequency, for example to turn on an interaction between two qubits

by bringing them into resonance which each other, and turn off this interaction as well.

For this purpose, one must be able to tune the qubit frequency of one of the qubits.

A way to do this is by replacing the single Josephson junction with a so-called dc-

SQUID (superconducting quantum interference device) loop. This consists of a loop
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Figure 4: Left: The potential of a quantum LC oscillator. The energy levels are equidis-
tant, with spacing ∆E = ~ωr, which means that this system cannot be used as a qubit.
Right: The potential of a transmon. Due to the anharmonicity ~ω12 − ~ Figure from
Krantz et al.[3]

with two Josephson junctions connected in parallel. Due to flux quantization, the total

flux through the SQUID must be an integer of flux quanta, leading to the following

constraint (in terms of phase) [3]:

φ1 − φ2 + 2φe = 2πk,

where φi is the phase gain associated with the junctions i = 1, 2, φe = πφext
Φ0

is the phase

caused by the externally applied magnetic flux through the loop, and k is an integer.

The pure tunnelling part of the Hamiltonian describing the Josephson junctions, HJ ,

now consists of two terms, one for each junction[7][6]:

HJ = EJ1 cos(φ1) + EJ2 cos(φ2)

For φ = φ1 − φ2 = 2πΦext
Φ0

and θ = φ1+φ2

2 , the Hamiltonian can be expressed as:

HJ = EJ1 cos

(
θ +

φ

2

)
+ EJ2 cos

(
θ − φ

2

)
= EJ1

[
cos(θ) cos

(
φ

2

)
+ sin(θ) sin

(
φ

2

)]
+ EJ2

[
cos(θ) cos

(
φ

2

)
− sin(θ) sin

(
θ

2

)]
= (EJ1 + EJ2) cos(θ) cos

(
π

Φext

Φ0

)
+ (EJ1 − EJ2) sin(θ) sin

(
π

Φext

Φ0

)
Here, the trigonometric identity cos(A±B) = cosA cosB ± sinA sinB was used in the

second line. If the junctions are identical, such that EJ1 = EJ2, the second term vanishes,

and HJ is equal to the pure tunneling Hamiltonian of a single transmon, now with the
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effective junction energy:

EeffJ = (EJ1 + EJ2) cos

(
πΦext

Φ0

)
≡ EJ cos

(
πΦext

Φ0

)
This leads to a transition frequency given by:

f01 ≈
1

h

(√
(8ECEJ |cos(πΦext/Φ0)| − EC

)
(7)

This means that the transition frequency of the qubit can now be tuned by varying

the flux threading the SQUID loop, see Figure 5(a). While this dependence on Φext is

a tool for implementing wanted frequency tuning, it simultaneously introduces a sen-

sitivity to flux noise. To first order, the sensitivity to flux noise is described by df01

dΦext

which is non-zero everywhere except at φext = kΦ0, for k an integer. This means that

when Φext = Φ0, f01 is first-order insensitive to flux noise, and this is referred to as the

sweet spot. One should therefore operate at this flux value when idling, i.e. when not

performing flux gates. The magnetic flux threading the loop is controlled by using a

flux bias line, where a voltage signal generated by an AWG is is converted to a current

I via a resistance R, and this current is passed through a wire near the SQUID loop.

The mutual inductance M between the wire and the SQUID loop, the magnetic flux

threading the loop via Φext = MI, see Figure 5(b).

1.2 Coupling of qubits

Figure 6: Schematic showing direct coupling of two flux-tunable transmons via a coupling
capacitor with capacitance Cg.

In order to implement quantum algorithms and create entanglement, coupling between

qubits is needed. There are various ways to physically implement this coupling, for

example via mutual inductance between qubit circuits, or via capacitive coupling. An
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(a) Energy spectrum of a single flux-tunable trans-
mon, where φext = πΦext

Φ0
describes the external

flux threading the loop. The energy scales used are
EC/h = 0.25 GHz and EJ/h = 19.5 GHz

(b) Simple circuit diagram of a flux-tunable
transmon and flux bias line. A voltage sig-
nal can be generated by an arbitrary waveform
generator (AWG), which gives rise to a current
in the flux bias line. The mutual inductance
M between the flux control line and SQUID
loop causes a magnetic flux Φext to thread the
SQUID loop.

Figure 5

illustration of direct capacitive coupling between to flux-tunable transmons is shown in

Figure 6. The qubits are each connected to the coupling capacitor between them, and

the coupling is then described by the interaction term Hint of the system Hamiltonian

Htot = Hq1 +Hq1 +Hint and is given by[[3]]:

Hint = CgV1V2,

where Cg is the capacitance of the coupling capacitor, and V1 and V2 are the voltage

operators of the voltage nodes of each qubit. In the limit Cg ≤ C11, C2, assuming a two-

level approximation and using the rotating wave approximation, the full Hamiltonian is

then of the form:

H =
∑
i=1,2

1

2
ωiσz + gσy,1⊗, σy,2 (8)

where g is the coupling rate which depends on the type of coupling used. For direct

capacitive coupling, it is given by:

g =
1

2

√
ωq1ωq2

Cg√
Cg + C1

√
Cg + C2

,
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Rewriting 8 as Hint = −g([σ+−σ−]⊗ [σ+−σ−]), using the rotating wave approximation

again), and setting ωq1 = ωq2, i.e. tuning the qubits into resonance, the Hamiltonian

reads:

Hint = g(σ+ ⊗ σ− + σ− ⊗ σ+) =
g

2
(σx ⊗ σx + σy ⊗ σy) (9)

This expression shows how the coupling can give rise to excitations being swapped be-

tween the qubits, and this is utilized in the iSWAP gate described in section 1.3.

1.3 Two-qubit gates and flux pulse distortions

As mentioned in the Divincenzio criteria, a universal set of gates is required for quantum

computing, and this means that one needs two-qubit gates to be able to implement

quantum algorithms. Two types of two-qubit gates will be discussed here, namely the

CPHASE (or CZ) gate and the iSWAP gate. For a system of two coupled qubits q1 and

q2, the possible states are |00〉, |01〉, |10〉 and |11〉, where |nm〉 = |n〉q1 ⊗ |m〉q2. In the

basis |0〉 = (1 0)T , |1〉 = (0 1)T , these corresponds to the four state vectors:

|00〉 =


1

0

0

0

 , |01〉 =


0

1

0

0

 , |10〉 =


0

0

1

0

 , |11〉 =


0

0

0

1


The iSWAP gate is two-qubit gate that swaps excitations between the |01〉 and |10〉
states and applies a phase shift of π/2 (e−iπ/2 = −i) to the state, thereby resulting in

the name iSWAP [3]:

iSWAP =


1 0 0 0

0 0 −i 0

0 −i 0 0

0 0 0 1

 (10)

The iSWAP gate can be directly derived from the interaction term describing capacitive

qubit coupling (equation 8):

Hint = g(σ+ ⊗ σ− + σ− ⊗ σ+) =
g

2
(σx ⊗ σx + σy ⊗ σy)
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This Hamiltonian gives rise to the unitary operator:

U(t) = e−iHt = e−i(
g
2

(σx⊗σx+σy⊗σy)t)

=


1 0 0 0

0 cos(gt) −i sin(gt) 0

0 −i sin(gt) cos(gt) 0

0 0 0 1


If the two qubits are flux-tunable transmons, the coupling can be turned on by tuning

the transmons into resonance for a time t′. For t′ = π
2g , this effectively implements the

iSWAP gate, since the cosine elements become zero, and −i sin(gt′) = −i, such that

U( π2g ) = iSWAP. To do this in practice, one must apply a (preferably) square flux pulse

to one of the qubits - as an example, consider the flux pulse applied to qubit one. This

can be done as discussed in section 1.1.3 via the setup in Figure 5(b). The amplitude of

the flux pulse must then be arranged such that the qubit makes an excursion to ΦiSWAP,

where the avoided crossing between |10〉 and |01〉 is, see Figure 7(a). This means that

if the system starts out in the |10〉 state, and a flux pulse of duration τ is applied, the

excitation swaps back and forth between qubit 1 and qubit 2 with a frequency 1
2t′ = g

π ,

see Figure 7(b). In addition to the −i phase shift, the single qubit states obtain a phase

θz =

∫ τ

0
(ωq − ω(t))

during the flux pulse operation. This is a result of the qubit precession around the z -axis

of the Bloch sphere which changes as the frequency is tuned. These single-qubit phases

afterwards can be cancelled out by single-qubit rotations around the z-axis, such that

the full operation is equal to an iSWAP gate.

The unitary operator describing the CPHASE gate is:

CPHASE =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 = |0〉 〈0| ⊗ 1 + |1〉 〈1| ⊗ Z, (11)

where Z is the Pauli Z matrix. This is a conditional gate, meaning that the operation

on qubit 2 (the target qubit) depends on the state of qubit 1 (the control qubit). For the

CPHASE gate, this means that a Z-gate is applied to qubit 2 if qubit 1 is in state |1〉,
yielding a phase shift of π (e−iπ=-1) if the coupled system is in state |11〉, and otherwise,

the identity operator is applied, such that no changes are applied to the system.
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Figure 7: (a) The energy levels of a sys-
tem of two coupled flux-tunable transmons
as a function of the magnetic flux on qubit
1. The trajectory in (Φ, f)-space is indi-
cated by the black an grey arrows: if the
intial state is |01〉, the flux pulse brings the
qubit to ΦiSWAP and either back along |10〉
or |01〉, depending on the duration of the
pulse. (b): The population of |01〉 as a
function time and magnetic flux on qubit 1.
(c). The probabilities of the qubit populat-
ing state |01〉 and |10〉, respectively, plotted
versus time at Φext = ΦiSWAP. Figure from
Krantz et al.[3]

Figure 8: (a) The energy levels of a system
of two coupled flux-tunable transmons as
a function of the magnetic flux on qubit
1, now including the non-computational
states |20〉 and |02〉. (b) A zoomed-in view
of the avoided crossing between |11〉 and
|20〉, along with ω10 + ω01 plotted as a
dashed line. The CPHASE gate brings |11〉
to the avoided crossing and back again, re-
sulting in a phase gain of |11〉. By can-
celling out the single qubit phases θnm, the
qubit state effectively gains a phase deter-
mined by the difference between ω11 and
ω10 + ω01 i.e. ζ. Figure from Krantz et al.
[3]

The CPHASE gate builds on the same concept as the iSWAP gate, of an excursion to an

avoided crossing, only here the avoided crossing is between |11〉 and |20〉. This avoided

crossing is seen in Figure8, and since the |20〉 state is outside the computational space,

one needs to expand the Hamiltonian to find the energy levels involved. For two excita-

tions present in the system, the Hamiltonian (in the basis |00〉 , |01〉 , |10〉 , |11〉 , |02〉 , |20〉)
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is:

H2exc =



E00 0 0 0 0 0

0 E01 g 0 0 0

0 g E10 0 0 0

0 0 0 E11

√
2g
√

2g

0 0 0
√

2g E02 0

0 0 0
√

2g 0 E20


, (12)

from where the coupling g between |11〉 and |20〉 and |02〉 is directly seen (scaled by
√

2

because there are two excitations). The energies are the sum of the individual transmon

qubit energies, i.e. Enm = En + Em. From the eigenenergies of H2exc, the transition

frequency from |00〉 to each state, i.e., ωnm/2π = 1
h(εnm − ε00), is found and plotted

in Figure 8, where εnm is the eigenenergy of state |nm〉. By preparing the system in

state |11〉 and applying a flux pulse to qubit 1, bringing the external flux to the avoided

crossing between |11〉 and |20〉 at Φext = ΦCPHASE and then waiting for some time τ at

the avoided crossing, the states obtain phases described by the matrix representation of

the operation[?][3]

U =


1 0 0 0

0 e−iθ01 0 0

0 0 e−iθ10 0

0 0 0 e−θ11

 ,

where the phase gained by state |nm〉 is θnm(`(τ) =
∫ τ

0 ω[`(t)], where is the trajectory in

(Φ, ω)-space, and ωnm is the energy/frequency of |nm〉 as a function of the trajectory. In

order to not populate the |02〉 and thereby leave the computational space of the qubits,

the excursion must happen slowly compared to 1/g. Defining the parameter ζ:

ζ = E11 − (E01 + E10),

one can design a trajectory `π such that the integral of ζ:∫ τ

0
ζ(t)dt = θ11 − (θ01 + θ10) = π

resulting in the operator:

U =


1 0 0 0

0 eiθ01(`π) 0 0

0 0 eiθ10(`π) 0

0 0 0 ei[π+(θ01(`π)+θ10(`π))]


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By performing single qubit rotations on the qubits around the z -axis afterwards, the

phases θ01 and θ10 can be cancelled out, such that only the |11〉 state gathers a phase of

π, and the operation constitutes an CPHASE gate. Aanother approach than adiabatic

excursion is to suddenly bring the qubit to ΦCPHASE and wait for t = π√
2g

. With this

method, the |11〉 ↔ |20〉 coupling results in the making a full oscillation, populating the

|20〉 and then returning to |11〉.

1.4 Qubit relaxation

A challenge in quantum computing is the loss of coherence, setting an upper limit for the

duration of quantum gates and the depth of quantum circuits. Decoherence results in a

loss of information, and is due to coupling of the qubit to the surrounding environment.

Qubit decoherence can be divided into two main categories: decay of the qubit from its

excited state |1〉 to the ground state |0〉, referred to as energy relaxation or amplitude

damping, and dephasing, where information about the phase of the qubit is lost [5].

Energy relaxation happens on a timescale T1 or at a rate Γ1 = 1
T and is caused by the

qubit interacting with resonant modes of the environment, leading to energy dissipation.

The rate of phase decay has two contributions and is given by Γ2 = 1
T2

= Γ1
2 + Γφ,

from which it can be seen that T2 is limited by T1. Γφ describes the pure dephasing,

which is the dephasing rate if there were no limitation by T1. Dephasing is caused by

dispersive interactions with the environment, which do not result in energy dissipation,

but are manifested in small, random kicks in phase and thereby fluctuations in the qubit

frequency. The reason that T2 decay is limited by T1 is that energy relaxation eventually

leads to the Bloch vector pointing directly up (to the |0〉 state), which is also a process

where phase information is lost, thereby resulting in contributions from both types of

decoherence.[3]

The evolution of an open quantum system, i.e., a system coupled to the environment,

can be described by the Lindblad master equation. To incorporate energy relaxation

and dephasing into this description of the system dynamcis, the Lindblad, operators

(also referred to as collapse operators) are used. These operators are 1√
T1
a and 1√

2T2
σz,

and describe energy relaxation and dephasing, respectively, where a is the annihilation

operator, and σz is the Pauli z matrix.[22]

1.5 Qubit readout

In order to perform measurements and algorithms, one must be able to determine the

state of the qubit. Readout of the qubit state is performed by coupling the qubit to a

superconducting resonator, and the Hamiltonian describing this qubit-resonator system
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Figure 9: The magnitude of the reflection parameter |S11| after probing a resonator
dispersively coupled to a qubit with a signal of frequency ωRF . The red curve is for the
qubit in state |1〉, and the blue is for the qubit in state |0〉. The dispersive shift of the
resonator frequency due to qubit state can then be seen by the location of dips in |S11|.
Figure borrowed from Krantz et al.[3]

is the Jaynes-Cummings Hammiltonian which is given by [7]

H = ωr(a
†a+

1

2
) +

ωq
2
σz + g(σ+a+ σ−a

†), (13)

where the first term describes the resonator Hamiltonian with ωr the resonator frequency,

and a, a† creation and annihilation operators. The second term describes the qubit, a

two-level system with transition frequency ωq, and the third term describes the qubit-

resonator coupling, where g is the coupling rate, and σ+ and σ− represents excitation

and de-excitation of the qubit, respectively. The limit where the detuning ∆ between

the resonator frequency and the qubit frequency is large compared to g, i.e. ∆ =

|ωq − ωr| � g is called the dispersive regime. Here, energy exchange between the qubit

and resonator is suppressed, in comparison to resonant coupling, where excitations are

swapped back and forth between the two systems. Although the qubit and resonator

now do not directly exchange energy, they do affect each other by shifting each other’s

frequencies. This is seen by rewriting the system Hamiltonian from equation 13 using

second-order perturbation theory in terms of g/∆ and approximating a low-photon limit,

which results in[3]:

Hdisp = (ωr + χσz)

(
a†a+

1

2

)
+
ω̃q
2
σz, (14)

where χ = g2

∆ is referred to as the dispersive shift. From this expression, it can be seen

how the resonator frequency is effectively shifted from ωr to χσz, demonstrating how the

resonator frequency now depends on the state of the qubit: if the qubit is in state |1〉,
the resonator frequency is shifted down by χ, and if it’s in state |0〉, it is shifted up by χ.
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The qubit frequency is also shifted by an amount g2

∆ such that ω̃q : ωq + g2/∆, which is

due to vacuum fluctuations in the resonator. However, this shift is not state-dependent

and therefore not a part of the mechanism behind dispersive readout.

Since the shift in resonator frequency can now be mapped to a qubit state, readout can

be performed by probing the readout resonator with a signal of frequency ωRF , and

analyzing either the transmission through or reflection off the resonator, from where the

shift can be found, and the qubit state inferred, see Figure 9 where the reflection |S11|
is inspected as a function of probe frequency.

1.6 Cryoscope

As should be clear from section 1.3, being able to apply flux pulses in order to tune the

qubit frequency is essential for performing iSWAP and CPHASE gate in flux-tunable

transmons. As mentioned in section 1.1.3, the flux pulse is implemented by generating

the pulse with an AWG and passing it down the control line. However, various electrical

components on the control line give rise to distortions of the signal, and these distortions

can severely affect the performance of operations applied to the qubit. For example, for

a flux pulse constituting a CPHASE-gate, short-timescale distortions can cause leakage

into the |20〉 state, while long-timescale distortions can affect the repeatability of pulses,

when distortions of one pulse affects the following pulse. In this project, such pulse

distortions are investigated, characterized and predistorted a simple setup consisting

of an AWG, a bias tee and oscilloscope. In this room temperature setup, the pulse

distortions can be directly observed on the oscilloscope, and can be predistorted from

there. However, in a setup with an actual qubit inside a cryostat, these distortions are not

so easily observed, since the distortions are temperature dependent and must therefore

be characterized in the cold. In order to characterize and correct for these distortions, the

qubit itself is used via the method Cryoscope (short for cryogenic oscilloscope) introduced

by Rol et al. [1] The cryoscope method consists of a Ramsey-like experiment where a flux

pulse of variable duration τ + δτ is embedded between two π
2 -pulses separated by Tsep,

see Figure 10. The goal is to obtain an estimate ΦR,τ (t) of the magnetic flux ΦQ,τ (t),

thereby reconstructing the waveform of the flux pulse.

For this project, as well as in Rol et al.[1], the type of qubit under consideration is a

flux-tunable transmon, but the method is applicable for any qubit that has a dependence

on the control variable that is quadratic or of higher power and a sweet spot with at least

first-order insensitivity to the control variable. At the beginning of the experiment, the

qubit is prepared in state |0〉, and the qubit frequency is biased by a DC current at the
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Figure 10: Pulse scheme for the cryoscope experiment. A Yπ/2 pulse is applied to the
qubit in |0〉, and a flux pulse of duration τ + ∆tau is then applied. The experiment is
then ended with two variations: either an Xπ/2

or another Yπ/2 is applied, such that 〈σy〉 and 〈σx〉 can be measured.

sweet spot Φext = 0, cancelling unwanted flux offsets. The experiment then begins with

a π/2-pulse around the Y-axis on the Bloch sphere, such that the qubit is now in state

|+〉 = 1√
2
(|0〉+ |1〉). Afterwards, a flux pulse of duration τ + ∆tau is applied, with ∆tau

variable, detuning the qubit frequency to some flux value depending on the amplitude of

the pulse.During the application of this pulse, the qubit will gain a relative phase, such

that its state evolves into 1√
2
(|0〉+ eiφτ |1〉), with φτ given by:

φτ/2π =

∫ τ

0
∆fQ(ΦQ,τ (t))dt+

∫ Tsep

τ
∆fQ(ΦQ,τ (t))dt, (15)

where the phase is explicitly divided into two contributions: one from the pulse beginning

and up to the truncation point, and another resulting from a turn-off transient of the

pulse. At a fixed time, Tsep, a second π/2-pulse will be applied, either around the X-

or Y-axis of the Bloch sphere, and the state of the qubit is then measured. From this,

the 〈X〉 and 〈Y 〉 Bloch components, and from there φτ , can be determined. For a short

interval, τ + ∆tau, the average detuning can be estimated by:

∆fR ≡
φτ+∆tau − φτ

2πτ
=

1

∆tau

∫ τ+∆tau

τ
∆fQ(ΦQ,τ+∆tau(t))dt+ ε

Here, ε is the inaccuracy of the estimate given by:

ε =
1

∆tay

(∫ Tsep

τ+∆tau
∆fQ(ΦQ,τ+∆tau(t))dt−

∫ Tsep

τ
∆fQ(ΦQ,τ (t)

)
which is the difference in phase contributions from the two turn-off transients. From

the estimated frequency detunings, the pulse shape can be reconstructed in terms of

frequency, or in terms of flux by inverting the expression for the transition frequency

of a flux-tunable transmon (Equation 7). In this thesis, a simulation of the cryoscope

method is performed, however with an alternative method of pulse reconstruction, see
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section 3.

2 Predistortion of bias tee pulse at Room temperature

2.1 The sampling theorem

An important concept of signal generation and sampling is the so-called Nyquist (or

Shannon) sampling theorem. This theorem states that in order to properly sample a

signal, a minimum sampling rate of twice the maximum frequency component in the

signal is needed. By proper sampling is meant that the digital signal can be accurately

reconstructed, that is, converted back to analog, from the samples.

This means that when converting a continuous (analog) signal to a digital one, minimally

two samples per cycle must be obtained. If this requirement is not fulfilled, so-called

aliasing will occur, and information is lost. The name aliasing refers to when the sam-

pling rate of a signal is too low, such that the recorded frequency will line up with a

slower frequency, see Figure 11. The maximum frequency that can be accurately sam-

pled is referred to as the Nyquist frequency, that is fNyquist = Sr/2, where Sr is the

sampling rate. Correspondingly, the Nyquist rate SNyquist is defined as two times the

largest frequency component of the signal. When the largest frequency component of a

signal is above the Nyquist frequency, the recorded frequency will be mapped to a fre-

quency between 0 and the Nyquist frequency. This can be demonstrated by generating

a signal (here, a sine wave modulated with a Gaussian) and sweeping the frequency of

it from below to above the Nyquist frequency and inspecting the Fourier transform of

the signals. This was done with an AWG with sampling rate 1.2 GHz, corresponding to

a Nyquist frequency of 600 MHz. The result of this can be seen in Figure 12(a), where

the Fourier transform is plotted for each of the attempted signal frequencies. When

the pulse generator frequency passes 600 MHz, the recorded frequency decreases instead

of following the pulse generator frequency. The general pattern of the aliasing can be

seen in Figure 12. As seen here, whenever the frequency of the signal is above fNyquist,

it is mapped to a digital frequency between 0 and the Nyquist frequency. This means

that high frequencies cannot be accurately measured, but also that information about

low frequencies will be lost, since the high frequency components that are incorrectly

mapped will add to any low frequency components already in the signal. As shown in

Figure 11, undersampling can also lead to phase shifts of the signal. These phase shifts

are discrete and can only be 0 or 180◦, and the pattern of this is shown in the lower part

of Figure 12(b).

The sampling theorem can be intuitively explained by considering a an analog, and

thereby continuous, signal as seen in Figure 13a with a spectrum as shown in Figure
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Figure 11: Left: For a sampling rate below the Nyquist rate, the sampled signal can
suffer from aliasing, where the frequency is mapped to a lower frequency than that of
the signal. In addition to the mismapping of frequency, the sampled signal has gained a
phase shift of 180◦. Right: The sampling rate is now above the Nyquist frequency, and
the signal is appropriately sampled such that no aliasing occurs.

(a) The Fourier transform of signal of increasing fre-
quency. As the Nyquist frequency of 600 MHz is
passed, the frequency is mismapped to lower fre-
quencies.

(b) The general pattern of aliasing. If the fre-
quency of a continuous signal is larger than half
the sampling rate, the frequency is mapped to a
frequency between 0 and the Nyquist rate. Dis-
crete phase shifts of the sampled signal can occur
as well. Figure from [10]

Figure 12

13b. Sampling of this signal can be represented by multiplying the signal with a comb

function, or impulse train, which is a function that consists of a sum of Dirac delta

functions: comb(t)=
∑

n δ(t−n)[12], where n corresponds to the equally spaced times at
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which the signal is sampled. In Fourier space, the comb function is still a comb function,

and thus, the Fourier transform of the signal is repeated and mirrored with a periodicity

determined by the sample rate. This sampling representation and the corresponding

Fourier transform for a sampling rate at 3 times the highest frequency component can

be seen in Figure 13(c) and (d). Figure 13(e) demonstrates the same example for a lower

sampling rate, namely 1.5 times the highest frequency component in the signal, and the

resulting Fourier transform of the sampled signal is shown in Figure 13(f). Here, it can

be seen how the signal spectra now overlap, interfering with the single spectrum and

thus resulting in a loss of information.

As mentioned, proper sampling is defined by being able to exactly reconstruct the original

signal from the sampled signal. When generating a continuous signal with an AWG,

digital-to-analog conversion is performed, and so, one ”starts from the sampled signal”,

i.e. the AWG generates an analog signal from a digital (discrete) one. The sampling

theorem then comes into play when the sampling rate of the AWG limits the possible

frequency range of the generated signal

2.2 AWG calibration

Before simulating the cryoscope method to reconstruct pulses, a characterization of time

scales in various bias tees and according predistortion is performed in a simple room tem-

perature setup. However, when examining signal distortion, distortions caused by the

AWG itself must be taken into consideration as well. Therefore, before characterizing

distortions in the bias tees, the distortions due to the AWG must be investigated through

a control setup. In this setup, a pulse with a small Gaussian rise and a plateau, resem-

bling a square pulse, is generated by the AWG and passed directly to an oscilloscope

through two coaxial cables connected by an adapter, see Figure 14. These two cables

are of the same length and type as the two cables which are later used to connect the

AWG to the bias tee and the bias tee to the oscilloscope.

The AWG performance is inspected by doing a sweep of values of the Gaussian width

of the control signal and observing how well the AWG generates the signal. The AWG

used for this is Textronix AWG5014C with a sample rate of 1.2 GS/s, and according to

the sampling theorem, the highest frequency component present in the signal must be

half of the sampling rate, i.e., 600 MHz. If this is not fulfilled, the AWG should not be

able to accurately generate the signal. To see this limitation in practice, a fine sweep of

50 experiments was done with the width of the Gaussian varied from 100 ps to 5 ns, and

with a plateau of 10 ns. In order to reduce the effects of noise, the oscilloscope data in

each experiment is averaged 1000 times. For every experiment, a Fourier transform of

the signal was done, both for the ideal trace generated in the pulse generator and for the

22



Figure 13: Sampling above and below the Nyquist rate visualized in the time domain
and frequency domain. Figure from [10]

.

actual signal trace generated by the AWG and passed through the cables in the control

setup. The spectrum of the ideal pulse in the first and last experiment is shown in Fig-

ure 15. As the width increases, the shape of the pulse goes from being approximately a

square pulse, corresponding to a sinc function in Fourier space, to a more Gaussian-like

shape. The Fourier transform of a Gaussian is still a Gaussian, which explains why

the right plot of 15 shows a more Gaussian-like spectrum with fewer off-center peaks.

However, the pulse does of course also include a plateau, so the Fourier transform will

never be completely equal to that of a regular Gaussian function. The result is that the
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Figure 14: Schematic of the room temperature setup. The signal generated by the AWG
is passed either directly to the oscilloscope, or through the bias tee.

larger the width, the narrower the frequency range. Figure 16(a) is a 3D plot showing

Figure 15: Spectrum of ideal trace in first (left) and last (right) experiment, i.e. for
widths 100 ps and 5 ns, respectively.

the spectrum of the ideal pulse in each experiment. Here, it can be seen how the range

of frequencies gradually decreases as the width increases. Note that this plot has been

normalized in order to improve visibility of the peaks at non-zero frequencies. Following

the same procedure for the control pulses yields the results in Figure 17. The shapes

of the Fourier transforms are generally the same as in Figure 15, but the range of fre-

quencies is suppressed. As can be seen, the right plot looks very similar to the right

plot of Figure 15, which is in good agreement with the fact that the largest frequency

component is smaller than the Nyquist frequency. However, the left plot of Figure 17,

shows suppression of the peaks at larger frequencies, compared to the left plot of Figure

15. The suppression of the peaks is already present a little below and dominates above

the Nyquist frequency at 600 Mhz which is marked with dashed red lines. This decreased

range of frequencies can also be seen in Figure 16(b) and suggests that the distortion of

the pulse due to the sampling rate of the AWG should disappear at some width where the
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(a) (b)

Figure 16: (a) Normalized Fourier transform of ideal pulse as function of width. For every
experiment, the frequency range needed to generate the pulse decreases (b) Normalized
Fourier transform of control pulse as function of width. The red lines mark 600 MHz,
which is the Nyquist frequency, and above this absolute value, the magnitude of the
peaks declines drastically, demonstrating the sampling theorem.

Figure 17: Spectrum of control pulse in first (left) and last (right) experiment, i.e. at
width 100 ps and 5 ns, respectively. The dashed red lines mark the Nyquist Frequency,
at ± 600 Mhz

generated pulse does not have any frequency components outside the ± 600 MHz range.

This width could be estimated from Figure 16(b), but in order to have a measure of the

discrepancy between the control pulse and the ideal pulse, various ways of quantifying

the distortions are explored. Before that is done, however, the pulses must be aligned

properly in order to compare them. The first and last sets of data in the width sweep is

seen in the left and right plot of Figure 18, respectively. In the left plot, the first thing
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to note is the ripples present as the pulse rises to its full amplitude and again when it

decreases back down to zero. These features are not present in the right plot, but there

is still some distortion of the pulse shape, primarily in the form of a noticeable rise time.

This type of distortion may be due to the AWG, and possibly the cables and adapter

between them. The right plot of Figure 18 shows a time delay between the pulses. This

Figure 18: Traces of control pulse and ideal pulse for a Gaussian width of 100 ps (left)
and 5 ns (right).

delay arises due to the fact that in the oscilloscope, the start of the pulse is defined by

the trigger level, but for the pulse generator, the start of the pulse is defined by the fist

non-zero value of the signal. Therefore, as the width of the Gaussian rise increases, the

pulses are shifted in time relative to each other, and so, a correction for this delay is

needed before subtracting them. As a measure of how well the pulses are aligned, the

integral of the absolute difference between the pulses is evaluated as the ideal signal in

each plot is shifted to the right point by point. At the optimal alignment, the integrated

absolute difference will reach a minimum, and the control signal is then by shifted by

the corresponding number of points.

Now, the integrated absolute difference between the control signals and time-corrected

ideal signals, i.e. the area between the pulses, is then evaluated for each experiment,

and this measure is plotted as a function of width (see upper left plot in Figure 19).

Three other methods of quantifying the match of the control pulse to the ideal pulse are

plotted as well, namely the dot product between the two data arrays, normalized to the

norm of the arrays, as well as the maximum and mean absolute difference between the

signals, respectively. All four methods generally show the same trend, namely that the

graphs seem to fall off (or grow, in case of the dot product) more slowly above a width of

approximately 3 ns. This width is then defined as the optimal width for the square-like

pulses, yielding a pulse with all frequency components inside the range allowed by the
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AWG. As can be seen from Figure 19, the various methods all continue to yield even

better results for widths larger than 3 ns, but since a square pulse is what is really

desired, the optimal width should be as small as possible. This prioritization of a short

rise time is due to the short qubit lifetime, establishing the need for as fast operations

as possible. The integrated absolute difference between a pulse and the ideal pulse is

chosen as the standard measure of discrepancy between pulses. This measure will be

referred to as integrated absolute difference, deviation or cost function.

Figure 19: Various methods of quantifying discrepancy between ideal trace and control
pulse trace as a function of width. Top left: integrated absolute difference between
traces. Top Right: Dot product between the trace data arrays, normalized to the norms
of the arrays. For identical pulses, and thereby identical data arrays, the normalized
dot product should be equal to one. Bottom left: Maximum absolute difference between
traces. Bottom right: The mean of the absolute difference between traces. All methods
show approximately the same trend: at and above a width of approximately 3 ns, the
curve seems to exhibit less fluctuations and to decrease/rise slower than for smaller
widths.
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2.2.1 Bias tee circuits and characteristic time scales

A bias tee is a three-port device that in its simplest form consists of a capacitor and

an inductor, combined as in Figure 20(a). Port 1 is used for the input AC (or ra-

dio frequency) signal, and the DC offset is input in port 3, such that the two signals

are combined in port 2. The capacitor blocks direct current, and the inductor blocks

alternating current, such that there is no leak between port 1 and 3.

(a) Schematic of the simplest version of a bias
tee. Figure from [16].

(b) An RC circuit, constituting a
high-pass filter. For a square wave
input, the amplitude of the pulse de-
cays on a timescale depending on fre-
quency. Figure from [19]

Figure 20

Real wideband bias-tees, however, are made of complex RLC networks, and calculating

the characteristic timescales in a bias tee is not a straight-forward task, and it cannot be

done from the capacitance and inductance values alone [13]. The primary reason for the

complexity of the circuits is the need to circumvent parasitics such as parasitic resonance

and capacitance which, for high frequencies, have a large effect on the performance of

the bias tee. For example, an inductor can be effectively be described by an equivalent

circuit that includes capacitance between the windings as well as resistance in the wires.

Similarly, the capacitor has parasitic inductance and reactance which can also be de-

scribed by an equivalent circuit. This parastic capacitance in an inductor and parasitic

inductance in a capacitor have increasingly larger effects as the frequency of the signal

through the element is increased. Above the resonance frequency ω = 1
LC (where L is

inductance, and C is capacitance), the inductor starts behaving more like a capacitor

than an inductor, and the capacitor starts behaving like an inductor [14]. As a result

of these parasitics, and the complex designs needed to avoid their effects, the number of

timescales and values of these can therefore not be calculated analytically, but need to

be extracted directly from fitting the bias tee data.
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However, if the simple circuit representation of a bias tee in Figure 20(a) is assumed to

effectively describe the more complicated bias tee circuits, then only using the RF port

and RF+DC port. the bias tee should then constitute a first-order RC high pass filter as

seen in Figure 20(b) [21]. The characteristic timescale for such a circuit is τ = RC[17],

and the step response is given by V (t) = VS + (V0 − VS)e−t/τ [20], where R is the resis-

tance and C is the capacitance of the circuit elements. VS is the amplitude of the step

input, and V0 is the voltage between the capacitor plates when the step input is turned

on. The voltage output of a first-order high pass filter is given by[19]

Vout =
R√

R2 +X2
C

Vin =
R

Z
Vin,

where R is the resistance of the resistor, and XC is the reactance of the capacitor. Since

for an input signal of frequency f, the reactance of a capacitor with capacitance C is

given by Z = 1
2πfC , and the resistance R is independent of frequency, the impedance

Z =
√
R2 +X2

C is inversely proportional to f. This means that low frequencies are

suppressed, and that high frequencies are passed, resulting in a high pass filter. Passing

a square pulse through a high pass filter results in the output voltage waveforms seen in

Figure 20(b), with the amplitude of the pulse decaying at a timescale set by RC.

In conclusion, the characteristic timescales of the bias tees cannot be predicted exactly.

This is first of all due to the lack of knowledge about the exact circuit designs and the fact

that the timescales cannot be calculated directly from the capacitance and inductance.

Furthermore, even if the this was the case, the capacitance and inductance values of the

bias tees are not published. Both the characteristic timescales and number thereof are

therefore unknown. This challenge should however also be the case when considering a

more complex setup with a flux bias line with more elements, such as amplifiers, filters

etc. Being able to predict all the characteristic timescales of the distortions on such a

system is most likely not realistic, and therefore, the following fitting procedure and the

challenges associated with is should be representative of more general systems.

2.3 Time domain characterization of bias tees

The pulse distortions caused by bias tees can now be characterized. Four different bias

tees are analyzed: Mini Circuits ZFBT-6GW+, Mini Circuits ZFBT-4R2GW-FT and

Anritsu SC17771, and a QDev e-shop fabricated bias tee, which will be referred to as

QDev bias tee. The characterization process of is described in detail for one of them,

namely the Mini Circuits ZFBT-6GW+.

The Mini Circuits ZFBT-6GW+ bias tee output for an input pulse with a width of 3 ns,
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a plateau of 500 ns and an amplitude of 500 mV, is shown in Figure 21(a). The pulse

data is averaged 1000 times, and the trace of the input is plotted as well for comparison.

The distortions of the pulse are expressed in a rise time that is slow compared to the

ideal pulse, and a decay of the pulse amplitude. This amplitude decay resembles the

voltage output waveforms shown in Figure 20(b) for a square pulse input to a high pass

filter.

The pulses in Figure 21 are aligned at an artificial trigger level set as low as possible.

This trigger level is based on the mean value of the noise in the systm before the pulse

begins. This way of aligning the pulses is to include delays of the output signal, and

the trigger level of the averaged data can be set lower than the actual trigger level of

the oscilloscope in a single measurement. The deviation of the distorted pulse from the

ideal pulse is seen in Figure 21(b). The shaded area represents the contribution to the

cost function.

(a) Traces of the ideal pulse and the distorted pulse
data from the Mini Circuits ZFBT-6GW+

(b) The trace of the distorted pulse subtracted
from the trace of the ideal pulse. The shaded area
shows the area between the pulses and is used as
a measure of the deviation of the distorted pulse
from the ideal pulse.

Figure 21

The distorted signal sout(t) can be described by a convolution of the input signal Vin(t)

with a function H(t): sout(t) = H(t) ∗ sin(t) [1]. In Fourier space, this corresponds to

the multiplication:

sout(ω) = H(ω)sin(ω),

where H(ω) is given by [9]:

H(ω) = 1 +
∑
n=1

iAnωτn
iωτn + 1

(16)
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In the time domain, this should lead to a pulse shape sout(t) described by:

sout(t) = A0

(
1 +

∑
n=1

An · exp(−t/τn)

)
(17)

Here, A0 is some amplitude offset, τn are the characteristic timescales describing the

distortions, and An are the coefficients describing the magnitude of these distortions. In

order to find the An and τn that describe the distortions, the expression for sout(t) can

be fitted to the part of the bias tee pulse where the distortions are most pronounced.

The ideal waveform sin(t) should then be obtained by deconvolution of sout(t) with H(t):

sin(t) = H(t)−1(t) ∗ sout(t),

or equivalently, in Fourier space:

sin(ω) =
sout(ω)

H(ω)

This can be done in by using the Predistortion function in the Pulse Generator in the

Keysight Software Labber, by inputting the coefficients and timescales that describe the

distortions. The predistorted signal will then correct for the over- and undershoots of the

signal through the bias tee and, ideally, obtain the desired waveform. To get an intuition

for the predistortion, the ideal signal is shown in Figure 22 (black). By deconvoluting

this with H(t), one gets the predistorted waveform that can now be used as input to

correct pulse distortions described by the input parameters. Positive amplitudes correct

for overshoots, so the input pulse is corrected to have a slower rise and thereby cancel

out the overshoots, see the orange trace in Figure 22. Positive amplitudes are used for

undershoots, and therefore brings the start of the input pulse to a larger amplitude.

2.3.1 Fitting and predistortion of bias tee pulse

Ideally, the timescales and amplitudes used for the predistortion can be established

by fitting H(t) to the bias tee signal. Since the timescales, and number thereof, are

unknown, the initial guesses of the fit are best determined by visual inspection of the

pulse, and the goodness of fit is then described by the reduced chi-square of the fit,

which is defined by [15]:

χ2 =
∑
n

(f(x)− y)2

σ2
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Figure 22: An example of a predistorted waveform that can be used as input to a
system to correct for distortions caused by it. As seen here, negative amplitudes correct
for undershoots, and positive amplitudes correct for overshoots.

χ2
reduced =

χ2

NDOF
,

where NDOF is the number of degrees of freedom which is defined as the number of

points used for fitting minus the number of fit parameters. f(x) and y are the values

predicted by the fit function and the data points, respectively. σ is the uncertainty on

the points, and this number is assumed to be the same for each point. The value of σ is

established by the standard deviation of a measurement of 600 points of noise in the bias

tee signal and, since the signal used for fitting is averaged 1000 times, dividing this value

by
√

1000. For a good fit, the reduced χ2-value should be equal to approximately 1.

The fitting procedure is challenging, since there are many degrees of freedom involved.

The first aspect to consider is selecting the region of the pulse to be fitted. For the bias

tees used, the pulse fit region are chosen to span from where the pulse first reaches half

of the pulse amplitude and 30 ns from this point, which is usually where the pulse has

flattened out and reached its full amplitude. One exception to this is the QDev bias tee,

where the amplitude decay happens on such a short timescale that the pulse amplitude

is never at a steady value. Through simulated distortions of a perfect square pulse and

of a pulse with a Gaussian rise of 3 ns, respectively, it was found that the parameters

regarding the fitting region depends on the timescales themselves, and that a very good

fit can be obtained (according to the reduced χ2-value) without having found the correct

timescales and amplitudes. However, since the pulse distortions are most prominent at

approximately half the pulse amplitude, and this is where the fit regions are chosen to

start.

An attempt at performing these fits is seen in Figure 23. The initial fit value for A0

is set to 0.5 V, since the waveform rises up to approximately this amplitude, and the

expression 1 +
∑

nAne
−t/τn should therefore be scaled by this value. The rest of the
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fit parameters are varied and tested, checking χ2
red for each attempt and basing values

on the previous fit (that is, the first two sets of initial fit values for the fit with three

timescales is based on the fit result of the fit with two timescales, and so on). As can

be seen in Figure 23, the reduced χ2-value becomes smaller for each added timescale,

as expected, since it should be possible to fit any waveform as long as there are enough

fit parameters, but at some point this becomes overfitting. Note that, as the number

of timescales (and amplitudes) becomes larger than 2, some of the fitted amplitudes

become positive, indicating overshoots in the distorted waveform, which, from visual

inspection of the pulse, does not seem to be accurate. Furthermore, the timescale of

τ = 0.190 ns in the fit with three timescale is very short and might not be physically

realistic. In the fit with four timescales, there are two pairs of parameters where the

timescales are almost equal (τ1=0.392 ns and τ3=0.361 ns), and the amplitudes are close

to each other in value but with opposite signs (A1 = −3.00 and A3 = 2.74). These

pairs of fit values that almost cancel each other out occur in fits for the other bias tees

as well (see Appendix), and while they do not seem to have physical justification, they

can be used to fit ”bumps” in the waveform. While this is an effective way to get a

better fit to the small ringing/irregularities in the pulse, it is not likely that these are

actual physical parameters. These fit results are interpreted as a sign that the waveform

is overfitted when the number of timescales becomes larger than two. However, since

this fitting procedure is, as mentioned, dependent on the size of and location of fitting

region and very sensitive to the initial fit parameters, an additional step is performed in

order to increase the quality of the predistortion. A simulated predistortion is performed

by deconvoluting the entire distorted output of the bias tee (not just a smaller region)

with H(t), and for the right parameters (i.e. the underlying distortion parameters), this

should result in the ideal waveform. Here, the same cost function as before is evaluated

to check how well the predistorted waveform matches the ideal waveform, that is, the

integrated absolute difference between ideal and distorted pulse. Now, defining a func-

tion that takes in a number of amplitudes A and timescales τ , convolutes the distorted

signal with H(t) using these parameters, and returns the cost function value can be

optimized to find the values of the A′s and τ ′s that minimize the cost function, using

the input values as initial guesses. This is a more direct and faster way to find optimal

predistortion parameters. This minimization method can then be used in combination

with the fit results in order to improve the characterization method.

Like when fitting H(t) directly to the distorted regions, this method depends highly on

the initial parameters, but using the fit results as input should then be good starting

points for the minimization process. The advantage of this additional step is that there

are less degrees of freedom involved, since no specific regions of the data must be picked

out for fitting.

33



Figure 23: Fits with one to four timescales to the rise of the distorted output pulse from
the Mini Circuits ZFBT-GW6+ bias tee.

As seen from the previous discussion, the amplitudes and timescales describing the dis-

tortions of the rise in the pulse can, although challenging, be found by fitting the wave-

form directly with the function sout(t) = A0(1 +
∑

nAne
−t/τn). While for short pulses,

this slow rise of the bias tee output signal is the main distortion, for longer pulses, a

longer timescale is more prominent and has a larger contribution to the distortion of the

pulse. This is the likely the amplitude decay discussed in section 2.2.1. The beginning of

this amplitude decay can be seen in Figure 21, and increasing the plateau of the pulse,

the full decay down to 0 V can be seen in Figure 24. This type of distortion is easily

fitted with the function f(t) = Ae−t/τ , as can be seen in Figure 21 However, because

of the absence of the term +1 in f(t), this type of distortion cannot be corrected by use

of H(ω). An attempt was made at predistorting the function by using and alternative

H ′(ω) =
∑

n=1
iAnωτn
iωτn+1 , that is, without the offset of 1. However, when deconvoluting

the signal with this function, H(ω = 0) = 0, which leads to division by zero. Setting
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Figure 24: Fit of the form f(t) = Ae−t/tau to capture the decay of the pulse amplitude
of the Mini Circuits ZFBT-6GW+ bias tee.

H ′(ω = 0) equal to a value close to zero yielded the wanted shape of predistortion, but

with a wrong scaling. Further attempts must be made in order to properly make up for

this type of distortion, but due to limited time, this function was not properly imple-

mented. However, it is effectively possible to correct this type of decay with time-scales

that are not physical, but can be used to achieve approximately the correct shape for

predistortion. This is done by combining two timescales, one long compared to the pulse

plateau and with a negative amplitude, and another timescale which is smaller than

the first, but still long compared to the pulse plateau and with a positive amplitude.

Appropriate parameter values are found by using the minimization process described

above. This approach is then used for predistorting the 500 ns bias tee output pulses

from bias tees Mini Circuits ZFBT-6GW+, Mini Circuits ZFBT-4R2GW-FT and An-

ritsu SC17771. However, this way of predistorting the long timescales becomes less

accurate for very long plateaus where the exponential nature of the decay becomes more

prominent. It is easier to correct the decay when only the relatively flat part of it is

present, like in the case of the 500 ns pulses used. Since the amplitude decay of the

QDev bias tee happens on a very short timescale (∼ 110 ns), the amplitude drops all

the way down to zero during the 500 ns, and so the full exponential decay is present in

the waveform. Additionally, predistorting this entire decay would require a waveform

with amplitudes outside the range allowed by the AWG. Therefore, the pulse used for

the QDev bias has a plateau of only 100 ns in order to be able to predistort it.

To sum up the approach for each bias tee: the long timescales and corresponding

timescales are found by using the minimization process to find two sets of parameters

that effectively predistort the waveform. Then, the fit results of the short timescale fits

are investigated by testing out the sets of parameters by simulated predistortion with
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them. Again, simulated predistortion refers to deconvoluting the bias tee signal with

H(t). Investigating how much the simulated predistortion improves with each added

timescale and combining this with considerations about the χ2
red-value of each fit and

the probability that the fitted parameters are physically accurate, one of the fit results

is chosen as the starting point. Then, the chosen fit result and optimized parameters for

the long-timescale distortion are combined, and possibly another minimization is per-

formed with all these parameters passed as inputs at the same time. In some cases, the

fit parameter results are slightly varied by hand before passing them to the minimizer,

in order to find any nearby minima of the cost function. For the Mini Circuits ZFBT-

6GW+ bias tee, for example, the two timescales fit result is used, since the simulated

predistortion yields similar results for the 4 different sets of fit parameter results, and all

amplitudes in this fit result are negative, which is likely the most accurate description.

For the remaining bias tees, the number of timescales used can be seen in Table 1, along

with the cost function values for each predistortion result. The cost function values are

normalized by diving by the amount of points in the waveform, since the datasets for the

QDev bias tee and the other bias tees are not of equal length. The actual long timescales

and amplitudes describing the amplitude decays of the pulses are shown in Table 2.

The final parameters are now used to generate the predistorted signal via the AWG, and

the bias tee outputs are seen in Figures 25, 26, 27 and 28. The right plots of these figures

show the difference between ideal trace and predistorted bias tee trace, respectively. For

perfect predistortion, there is no difference in between the ideal trace and the bias tee

trace, and so, the better the predistortion, the more the deviation versus time looks like

a straight horizontal line at zero voltage.

Figure 25: Mini Circuits ZFBT-6GW+ bias tee. Left: Original distorted pulse along
with predistorted and ideal pulse. Right: the difference between the ideal pulse and the
distorted and corrected pulse as a function of time.

As can be seen from these figures, perfect predistortion is not obtained, mainly due
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Figure 26: Mini Circuits ZFBT-4R2GW-FT bias tee. Left: Original distorted pulse
along with predistorted and ideal pulse. Right: the difference between the ideal pulse
and the distorted and corrected pulse as a function of time.

Figure 27: Anritsu bias tee. Left: Original distorted pulse along with predistorted and
ideal pulse. Right: the difference between the ideal pulse and the distorted and corrected
pulse as a function of time.

to some ringing and noise in the signal that cannot be removed by predistortion. Ad-

ditionally, it is possible that the timescales and coefficients found do not describe the

distortions perfectly, since the minimizer for the simulated predistortion is very sensitive

to the input initial guesses. However, these were the best results obtained by varying

the initial guesses and investigating the resulting integrated absolute difference between

ideal and bias tee pulse. As seen from Table 1 and Figure 28, the QDev bias tee yielded

the most distorted signal, and also the worst result after predistortion. This is, as men-

tioned, due to the much shorter timescale of the amplitude decay, making the waveform

harder to correct with amplitudes and time-scales that are not based on actual physical

parameters

For the QDev bias tee, the Mini Circuits ZFBT-4R2GW-FT and the Anritsu bias tee,
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Figure 28: QDev bias tee. Left: Original distorted pulse along with predistorted and
ideal pulse. Right: the difference between the ideal pulse and the distorted and corrected
pulse as a function of time.

the fits to the rise of the pulses as well as the amplitude decay fits can be seen in the

Appendix.

Bias tee Deviation before [×10−3 V·ns] Deviation after[×10−3 V·ns] Coefficients [V] Timescales [ns]

Mini Circuits 9.570 0.452 -0.52012 0.899563
ZFBT-6GW+ -0.0289279 8.10373

-0.448667 3146.55
0.444304 2101.89

Mini Circuits 17.569 0.904 -0.532695 0.905352
ZFBT-4R2GW-FT -0.0113658 5.49531

-0.459165 3156.02
0.445789 1734.58

Anritsu 16.174 0.591 -0.482383 0.825
SC7771 -0.419285 2914.94

0.401536 1787.83
-0.565678 7.69601
0.578098 7.23486

QDev 178.717 3.311 -0.515519 0.700
bias tee -1.1422 1315.37

0.872921 119.922
-0.0136605 -30.7826
-0.0276486 4.86977

Table 1: For each of the four bias tees, the integrated absolute difference (Deviation)
per point between the ideal pulse and distorted pulse as well as the corrected pulse is
listed. Additionally, the coefficients and timescales used for the predistortion are listed.

3 Cryoscope Simulation

As mentioned, the purpose of the cryoscope method is to reconstruct a pulse from its

effect on the qubit, and thereby being able to characterize the distortions that the pulse

has been subjected to from elements inside the cryostat. To try out this method, a
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Bias tee Coefficients [mV] Timescales [µs]

Mini Circuits 0.491 19.045
ZFBT-6GW+

Mini Circuits 0.485 19.726
ZFBT-4R2GW-FT]

Anritsu 0.474 20.456
SC7771

QDev 0.342 0.110773
bias tee

Table 2: The fit parameters for each of the four bias tees when fitting f(t) = Aet/τ to a
pulse where the full amplitude decay is visible.

simulation is done in order to inspect involved parameters, and to generally prepare

for performing the actual experiment to see which considerations are important. The

simulation is done using the Lindblad master equation solver (mesolve), in the software

QuTiP (Quantum Toolbox in Python) [18]. This is done by using the two-level ap-

proximation of the Hamiltonian of the flux-tunable transmon (Equation 6) in a frame

rotating at the sweet spot qubit frequency, f01(Φext = 0). As derived, this Hamiltonian

depends on the external magnetic flux through the circuit loop, resulting in a time-

dependent Hamiltonian for a time dependent Φext. Using the ideal and distorted pulses,

respectively, from the simple room temperature bias tee setup (for bias tee Mini Circuits

ZFBT-6GW+), the dynamics of a single flux-tunable transmon subjected to a flux pulse

can be simulated this way. Additionally, T1 and T2 decay can be implemented in the

simulation by including the collapse operators
√

1
2T2

σz (dephasing) and
√

1
T1
â (deco-

herence) in the mesolve function. In this simulation, the timescales for decoherence are

set to T1 = 10µs and T2 = 1µs. Since V = IR = Φext
M R, i.e. V ∝ Φext, voltage to

flux conversion is simpy perfomed by directly scaling the pulse amplitude to yield the

wanted flux pulse amplitude. As an example, a flux pulse of amplitude Φext = 0.25Φ0 is

studied, resulting in a detuning of ∆f = 1 GHz for parameters EC/h = 0.25 GHz and

EJ/h = 19.5 GHz. The excursion to this detuning is visualized in Figure 29(a), and the

pulses in units frequency used to implement this detuning are shown in Figure 29(b).

Including simulations of the first and last π/2-pulses, plotting the trace of 〈σx〉 through-

out the experiment yields the plot in Figure 31(a). As can be seen, the expectation value

of σx, or the X component on the Bloch sphere, starts at 0 at time t = 0, because the

qubit is prepared in |0〉 at the top of the Bloch sphere. Applying the π/2 pulse causes

the qubit to go to the |+〉 state which is on the equator of the Bloch sphere, yielding

〈σx〉 = 1. Since the Hamiltonian is in a rotating frame, 〈σx〉 now oscillates at a frequency
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(a) The energy of a flux-tunable transmon as a
function of external flux. The excursion to φext =
π
4

detunes the qubit 1 GHz from the sweet spot.

(b) A trace of the input pulses (ideal and distorted)
in terms of frequency (detuning).

Figure 29

∆f = fq(0) − fq(Φext). The time resolution of this trace acquired from the simulation

is limited by the sampling rate of the AWG. In the simulation, one has knowledge of

the qubit state at each point in time, and so the data necessary for the reconstruction

process can be obtained by inspecting one long flux pulse. If actually executing the

experiment, each of the data points in the 〈σx〉 trace would correspond to the result of

one full experiment.

Fourier transforming the pulses yields the spectra, which can be seen in figure 32. Here,

it is clear that the ideal pulse has one well-defined peak at the detuning frequency, be-

cause the pulse stays at this amplitude for the majority of the pulse, and is only widened

by the smaller frequencies that the pulse amplitude has to traverse on the way to its full

amplitude during the Gaussian rise. The spectrum of the distorted pulse demonstrates

how the much slower rise of the pulse along with the amplitude decay leads to the signal

only being at the full amplitude for a very small part of the pulse. This means that the

spectrum is broadened very much compared to the spectrum of the ideal pulse. Now,

the goal is to reconstruct the waveforms from the trace of 〈σx〉. This is done with an

alternative approach compared to the one used by Rol et al. Instead of measuring both

〈σx〉 and 〈σy〉 for each point in time, determining the corresponding phases at the be-

ginning and end of a small time window ∆tau, and from there estimating the average

detuning in this time window, a simpler approach is taken. Here, only the 〈σx〉 trace is

used, meaning that only 〈σx〉 data is needed for each point in time. The frequency of

the oscillations are then analysed directly to reconstruct the waveform.

This is done by dividing the oscillating region of the trace into small time windows

of duration ∆t and fitting the data in each of these windows with a function f(t) =

A cos(2πft− φ). Here, A is the amplitude of the oscillations in the given time window, f
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Figure 30: Trace of 〈σx〉 for T2=100 ns. Here, it can be seen how the short T2 limits the
length of the timescales to be resolved when investigating pulse distortions.

is the frequency, and φ is some phase offset. From each time window, the fitted frequency

is then extracted, and this can now be used to map the frequency of the oscillations to

the amplitude of the flux pulse, thereby reconstructing the shape of the signal. The

distortions of the pulse can then be observed, fitted and ultimately corrected.

It is worth noting the importance of a large T2 for this method. In Figure 30, the 〈σx〉
trace is shown for a short T2 of 100 ns. Due to dephasing of the qubit, the oscillations

die out while the flux pulse is applied, and thus, no frequencies can be extracted for

pulse reconstruction. This poses a limitation for the duration of the pulse, and thereby

a limitation of the distortion timescales that can be resolved. Therefore, a long T2 (com-

pared to pulse plateau length) is essential for the success of the cryoscope method.

In the process of fitting f(t) to the data in the time windows, several degrees of freedom

in this procedure must be taken into account. First of all, the fits are generally very

sensitive to initial fit parameters, and so these must be set to appropriate values in order

to consistently get fits of good quality. For each window, the initial amplitude guess is

set to the largest absolute value in the window, i.e., Ainitial = 〈σx〉max, and the frequency

guess is finitial = 1
2T̄

, where T̄ is the average time between maxima and minima in the

time window. The initial phase guess is φi = 2πfinitialtmax, where tmax is the time in

the time window at which the maximum 〈σx〉 occurs. For these initial parameters to

best represent the data, each time window should be large enough to contain enough full

oscillations to accurately fit the frequency. However, since during the rise and fall of the

pulse, the frequency changes very fast (approximately 4.5 ns from 0 to full amplitude),

in order to attribute a single frequency to one time window, the time window size should

be small such that not too many different frequency values are present in one window.
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Figure 31: (a): 〈σx〉 plotted as a function of time throughout the simulated experiment.
Since the simulation is performed rotating frame (rotating at the sweet spot frequency),
〈σx〉 oscillates with the detuning from the sweet spot frequency. The amplitude of 〈σx〉
decays eponentially on a time scale T2. The detuning here is ∆f =1 GHz. (b): A zoom-
in of the 〈σx〉 trace, showing the oscillations more clearly. Here, a small time window of
size ∆t is isolated and analyzed in (c), where a function of form f(t) = A cos(2πft− φ)
is fitted to the data. The function is plotted for the initial fit parameters (grey) and for
the actual fit (green). In this example, ∆t = 1 ns

Furthermore, the larger flux pulse amplitude, and thereby detuning frequency, the faster

oscillations in the rotating frame. This in principle means that the time windows can be

smaller, such that shorter timescales can be resolved - however, since the temporal reso-

lution is fixed and limited by the AWG, this limits the number of points per oscillation,

which can cause aliasing and thereby reduce the quality of the fits. These considerations

about time window size versus pulse amplitude can be investigated by plotting the cost

function (the area between reconstructed and actual waveform) as a function of time

window size for various pulse amplitude. This procedure should help find an optimal
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Figure 32: Spectrum of the oscillating region of the 〈σx〉 trance seen in Figure 31(a), for
the distorted as well as the ideal pulse

combination of parameters and is done later in this section.

As a starting point, the fitting of each time window is unbounded. However, outliers

in the reconstructed pulse can occur, typically in the form of fitted frequencies that

are higher than the actual frequencies. This is circumvented by adding the constraint

that each frequency must be within a certain value range from the previously fitted

point. This value range is decided from the maximum difference in frequency between

consecutive points in the ideal pulse and is set to 0.08∆f , where ∆f is the wanted fre-

quency detuning. This constraint is implemented in the fitting process of 〈σx〉 for both

the distorted and ideal pulse such that the fits are unbounded unless the requirement

about consecutive points is not fulfilled, in which case a new, bounded fit is performed.

In this case, the initial frequency finitial is now the frequency of the previously fitted

point. This conditional way of implementing the bounds is to improve computational

speed. It should be noted that the value 0.08fmax established from the ideal pulse is

only a ”good” constraint when the distorted pulse rises more slowly than the ideal pulse,

since in that case, the distance in terms of frequency between consecutive points must

be smaller in the distorted pulse than in the ideal pulse. This conditional bounding of

the fits can however cause the fit values to get trapped in a certain frequency range,

yielding a poor reconstruction. This is only a problem for larger time window at larger

frequency detunings, however. As a solution to this, an additional requirement for the

reduced χ2-value of the previous fit is set for time window sizes above 1.2 ns. This means

that consecutive points must only be within 0.8∆f of each other if the previous fit was

actually good.

The fall of the pulse is not included in the reconstruction, since equivalently to the rise

of the pulse, the fast changes in frequency give rise to fitting challenges, and this part of

the pulse is not necessary for the fitting and minimization procedure when characterizing

the predistortion parameters. Since the pulse parameters for predistortion can be found
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Figure 33: Original ideal and distorted pulse in units of frequency, along with the recon-
structed pulses obtained via the cryoscope method for detuning ∆f= 1 GHz from the
sweet spot and a time window size of 1 ns.

without this region present, it is therefore left out such that that poor reconstruction

here does not contribute to the overall cost function value.

The reconstructed pulse for an excursion to φe = 0.25π using 1 ns time windows is seen

in figure 33. Each point is plotted versus t′, which is defined as the middle time point in

the time window, i.e. ∆t/2. In order to compare the reconstructed pulses with the actual

pulses, the latter must be shifted forward in time by ∆t/2. In general, the the whole

reconstructed pulse follows the actual pulse shape well, especially in the long middle

region, where changes in frequency are slow in the case of the distorted pulse. Qualita-

tively, it can be seen in the zoom-in how the pulse rise is not completely smooth, due to

fitting problems related to the fast changes in frequency, as discussed above. Quantita-

tively, the quality of the reconstruction is assessed by consulting a similar cost function

to the one used for assessing predistorted pulses. This cost function is the integrated

absolute difference between reconstructed and actual pulse, normalized by dividing by

number of points and pulse amplitude in terms of frequency.

In order to find out whether there is an optimal size for the time windows for reconstruct-

ing a pulse of a certain/given amplitude, the integrated absolute difference (deviation)

between reconstructed and actual point is found for a sweep over time window size from

0.4 ns to 2 ns for pulse amplitudes in terms of frequency from 0.5 GHz to 2.5 GHz, see

Figure 34. The blue curves show the deviation per point for the entire reconstructed

pulse. However, since the kinks in the reconstruction are most prominent in the rise of
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the pulse, the deviation is also inspected just for the first 5 ns of the pulse, i.e. the rise

of the pulse. As can be seen by the vertical scales of each measure/graph, the deviation

per point is higher for the pulse rise only compared to the deviation per point for the

entire pulse, confirming that the pulse rise is the most ”problematic” region of the pulse,

i.e., hardest to fit/reconstruct accurately. Neither of these graphs show a clear pattern

of a an optimal window size, but there are minima to be inspected. Since the minima

of the pulse deviations occur at different time window sizes for the rise and the entire

pulse, respectively, one can asses the reconstruction quality by inspecting the shape at

each optimal window size and inspect if the timescales that were previously found can be

found again by fitting. The plots discussed are not very smooth, almost shows oscillatory

behaviour. This is most likely a reflection of the jumps that occur in especially the rise of

the reconstructed pulse, giving rise to very non-smooth/non-continuous waveforms. The

reason for these kinks in the waveforms is not completely certain, but could maybe be

attributed to the way that a point in time is mapped to a certain frequency. While the

fitted frequency of each time window has been associated with the middle point of each

time window, this might not be the optimal mapping, and furthermore, the ”optimal

mapping” might change along the waveform. For ∆f = 1 Ghz, the optimal window sizes

for reconstructing the distorted pulse are 0.4 ns and 1.1 ns for the full pulse and the pulse

rise, respectively, see Figure 34. The reconstructed pulses can be seen in Figure 35. For

the optimal window size decided by the full pulse (Figure 35(a)), a sudden jump occurs

at approximately half the full amplitude of the reconstructed pulse, and more similar,

but smaller, jumps occur at larger t’. The optimal window size decided by only the pulse

rise shows deviations as well, but these are smaller and smoother. Now, the region of

each of the two pulses from half the pulse amplitude and 30 ns forward is picked out, and

is fitted for two timescales (since two timescales were deemed the best fit for the Minin

Circuits ZFBT-6GW+ bias tee, see section 2.3.1). The error of each data point is now

defined as the standard deviation obtained from the covariance matrix of the frequency

fitting process, and corresponding error bars are shown in 36. The inital fit parameters

passed to each of the fits are the fit results from the previous fitting. The result in Figure

36 shows that approximately similar timescales as for the fit to the actual pulse are found

(A0 should not be compared, since the pulses are in different units and therefore have

numerically different amplitudes). The amplitude of the ∼ 0.8 ns timescale is somewhat

larger for the fit in Figure 36(b) compared to the original fit (-0.795 versus -0.520), and

the reduced χ2-value indicates a significantly worse fit, compared to the original fit as

well as that in Figure 36(a). This confirms that for ∆f = 1 Ghz, the optimal window

size for fitting the pulse rise is 1.1 ns.

Running the minimization of the long timescales of the 0.4 ns time window pulse yields

parameters A3 = −0.4509, τ3 = 4329.63 ns and A4 = 0.4555, τ4 = 1806.35 ns. For
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Figure 34: Deviation of the reconstructed waveform as a function of ∆t for five different
detunings (0.5 GHz - 2.5 GHz.)
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1.1 ns time window, A3 = −0.4506, τ3 = 4332.37 ns, A4 = 0.4553, τ4 = 1804.02 ns.

These parameters are very similar, which might suggests that the pulse region where

the amplitude decay happens is not as sensitive to the choice of window size. When

deciding the window size for a given detuning, the deviation of the reconstructed pulse

rise from the actual pulse should be given the most thought. Referring to the deviations

of the pulse rise in the right panel of Figure 34, it is not straightforward to generalize

the optimal time window size, but as a rough estimate, the optimal time window size

could be said to be ∆t = 1
∆f .

(a) Ideal and distorted waveform reconstructed via
cryoscope with ∆f=1 GHz and ∆t=1.1 ns.

(b) Ideal and distorted waveform reconstructed via
cryoscope with ∆f=1 GHz and ∆t=1.1 ns.

Figure 35

Figure 36: Fitting the rise of reconstructed waveform for a cryoscope simulation per-
formed at detuning ∆f = 1 GHz for window sizes of 1.1 ns (left) and 0.4 ns (right).

47



3.1 Verification of cryoscope

As a way of verifying the correction of a distorted pulse, a sweep of flux pulse amplitudes

can be applied to the two-qubit system in state |10〉 to produce a Chevron pattern as

seen in Figure 7(b). When the flux pulse amplitude is Φext = ΦiSWAP, this constitutes

an iSWAP gate (for appropriate pulse duration). To visualize this, a simulation of this

experiment is performed. This simulation assumes a system of two coupled flux-tunable

transmons and, as described in section 1.2 the Hamiltonian for this system is:

H = (E0 |0〉 〈0|+ E1 |1〉 〈1|)⊗ 1 + 1⊗ (E0 |0〉 〈0|+ E1 |1〉 〈1|) +
g

2
(σx ⊗ σx + σy ⊗ σy)

=


E00 0 0 0

0 E01 g 0

0 g E10 0

0 0 0 E11


This is a subspace of the Hamiltonian in equation 12, containing only the actual qubit

states in the computational space. Preparing the system in |10〉 (can be done by applying

a Yπ/2 pulse to |00〉 like in the cryoscope experiment), and the flux pulse is applied by

simulating the system evolution due to the H when varying flux on qubit 1. If no

distortions are present, running this for an array of flux values yields a chevron pattern

as seen in Figure 7(b), as soon as the pulse has reached its full amplitude. Now, running

this simulation with distorted and predistorted flux pulses (scaled signal outputs from

the Mini Circuits ZFBT-6GW+ bias tee) yields the patterns in Figure 37(a) and (b),

respectively. Here, the distortion of the chevron pattern due to especially the long

timescales can be clearly observed in Figure 37(a), and the predistorted waveform yields

a corrected pattern, confirming the effect of the predistortion.

48



(a) Population of |01〉 as as a function of time
and magnetic flux of qubit 1. The distortions of
the waveform used to simulate the flux pulse are
clearly seen. The white curve indicates the flux
pulse shape for Φ = ΦiSWAP.

(b) The chevron experiment performed with the
corrected waveforms.

Figure 37

4 Conclusion and outlook

Several aspects of pulse distortions have now been investigated. In section 2, the pre-

distortion of the output waveforms of four different bias tees yielded deviations down

to 4.52 · 10−4 V·ns per point. It was found that trying to determine the characteristic

parameters of the distortions even in a simple setup is a challenging task. Fitting the

theoretical step function sout(t) = A0(1 +
∑

nAne
−t/τn) directly to the distorted pulses

did return some likely parameters that could be used for pulse correction. However,

the pulse corrections could still be improved, and this is likely due to the problem of

selecting a region of the pulse to be fitted, along with good initial fit parameters. These

many degrees of freedom result in a very time-consuming process. The implementation

of the minimization of the deviation of pulses is a potential way of making the charac-

terization process more efficient. It can both be used as an extra step to increase the

quality of the correction performed with the parameters extracted from the fit to the

pulse rise, but also as a way of predistorting a pulse even without physically realistic pa-

rameters. The minimization process can then be used to find parameters that effectively

predistort pulses, even though they are not rooted in actual physical timescales. The

downside of this is that the minimization process would have to be redone for every dif-

ferent plateau or width. If the underlying distortion parameters were found, one should

be able to predistort all pulse shapes with the same parameters and obtain the (approx-

imately) ideal waveform. Furthermore, as discussed, the amplitude decays observed in

the distorted pulses are difficult to correct when using the method of effectively predis-
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tort with parameters that are not physically likely. An obvious next step for improving

the pulse correction is then to implement a way to deconvolute distortions of the form

f(t) = Ae−t/τ .

In section 3, the effects of these pulse distortions on a qubit were investigated by sim-

ulating the cryoscope experiment and analyzing the frequency of the qubit precession

around the z -axis of the Bloch sphere in a rotating frame. The reconstruction of the

pulses was executed in a slightly different way from the method used by Rol et al.[1],

and this approach used relies on many parameters such as initial fit values and optimal

time window size given a certain detuning from the sweet spot. It was found that recon-

structing the rise of the pulses was the most challenging part, while the flatter regions

of the pulses were reconstructed well in comparison. Even though this was a simpler, or

at least less careful approach than the full procedure described in Rol et al., reconstruc-

tions of the pulses were still made, such that fitting to the rise of the reconstructed pulse

yielded approximately the same parameters as for the actual pulse. This suggests that

the cryoscope is a robust method of reconstructing pulses, at least when simulating the

procedure. The next natural step would be to test the method on an actual qubit and

possibly do a comparison of this simpler approach to the more sophisticated one of Rol

et al in order to further explore advantages and disadvantages of the two methods.
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Appendix

(a) Ideal and distorted ouput pulse from the Mini Cir-
cuits ZFBT-4R2GW-FT bias tee. The short-timescale
fit region is indicated as well.

(b) Fit of the form f(t) = Ae−t/tau to capture
the decay of the pulse amplitude of the Mini
Circuits ZFBT-4R2GW-FT bias tee

Figure 38

Figure 39: Fits with one to four timescales to the rise of the distorted output pulse from
the Mini Circuits ZFBT-4R2GW-FT bias tee.
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(a) Ideal and distorted ouput pulse from the Anritsu bias
tee.

(b) Fit of the form f(t) = Ae−t/tau to capture
the decay of the pulse amplitude of the Anritsu
bias tee

Figure 40: Anritsu

Figure 41: Fits with one to four timescales to the rise of the distorted output pulse from
the Anritsu bias tee.
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(a) Ideal and distorted ouput pulse from the QDev bias
tee.

(b) Fit of the form f(t) = Ae−t/tau to capture
the decay of the pulse amplitude of the QDev
bias tee

Figure 42

Figure 43: Fits with one to four timescales to the rise of the distorted output pulse from
the QDev bias tee.
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