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Abstract

Symmetries are extremely important in modern physics. However, the analy-
sis of their implications, or even identifying the right symmetry group, are rather
complicated in theories with gauge symmetries, such as electromagnetism, gravity,
or Yang-Mills theory. So far, there is no general procedure for answering these
questions. In gravity, the identification of the symmetry group can be done by an
analysis of the asymptotic infinity. This thesis will attempt to investigate if some of
the techniques, used to describe the symmetry group of gravitational theories, can
be applied to the case of electromagnetism, or to Yang-Mills theories.
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1 Introduction and Motivation

1.1 The Importance of Symmetries

Symmetries can be described as translations or transformations of an object or system,
which leaves said thing invariant or “untouched”.
An example is translation symmetry; moving an object in space from one place to an-
other, and the object being left unchanged, implies translation symmetry (or invariance)
for said object. Additionally, this also implies conservation laws in the form of momen-
tum conservation. This type of relation can be derived from Noether’s Theorem, which
was proven by Emmy Noether in 1915 (published in 1918)1: Symmetries imply conser-
vation laws (to state it simply).
Another symmetry can be rotation of an object, e.g. a perfect sphere, which looks the
same, no matter which axis you rotate the sphere about. Rotation symmetry implies
angular momentum conservation. A last example of symmetry could be transformations
in time; this symmetry implies energy conservation of an object or system - if it is un-
changed under the time transformation (let 5 minutes pass, for example, and see if the
object remains the same, and has the same physical properties).
Thus these symmetries are essential to understanding the physics around us, and makes
calculations much more simple, due to the conservation laws.

Looking at the infrared (IR) sector of physics, or physics as seen from far away; within
the geometry of asymptotically flat space-time (constructed by conformal rescalings of
Minkowski space (MS)); Interesting features are found at the infinity boundary. There
has been found a relation from the symmetries - here they are called asymptotic symme-
tries - and their conservation laws, which implies this ‘triangular equivalence relation’,
explained in the following subsection. Asymptotic symmetries (or asymptotically flat
space-time symmetries) can be defined as symmetries or conserved charges of any sys-
tem with an asymptotic region or boundary.

The asymptotic symmetries have, to some extend, been explored for the gravity case,
and recently for quantum electrodynamics (QED) and non-abelian gauge theory. How-
ever, they are still a subject of ongoing research, and their implications are still being
unravelled.
For the gravity case, Bondi, van der Burg, Metzner, and Sachs (BMS) wanted to recover
the Poincaré group of special relativity as the symmetry group of asymptotically flat
spacetimes in general relativity (GR). They instead found the infinite-dimensional BMS
group.
The thesis will follow the derivation of this symmetry group, by two different approaches
- that of Andrew Strominger in [Str], and that of Roger Penrose in [Pen74] - and try
to explore how these approaches can be applied in the case of gauge theories, such as
electromagnetism (EM) and Yang-Mills (YM) theory.

1See article [Wik]

1



1.2 The Infrared Triangle

The triangular equivalence relation, that governs the IR dynamics/sector of all physical
theories with massless particles, is depicted in Figure 1.

Figure 1: Infrared Triangle. The figure is taken from [Str].

The corners represent different notations, but describes the same subject:

• Soft theorems: Properties of Feynman diagrams and scattering amplitudes at zero
or low energy; describing that infinitely many soft (zero or low energy) particles
are produced in any physical process.

• ←→ Ward identity: Consequences for scattering processes of the symmetry.

• Asymptotic symmetries: Conservation laws (due to conserved charges). They take
a simple form, when looking at how they act on the asymptotic region of space-
time.

• ←→ Vacuum transitions: A step function.

• Memory effect: In the theory of gravity, a gravitational wave produces a shift in the
relative position of an inertial detector pair. This shift is caused by the Memory
effect.

• ←→ Fourier transform in time.
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1.3 Relevant Topics

Relevant topics, where this IR triangle application can prove useful:

• Theories: QED, YM theory, gravity, massless particles/scalars/fermions (also
theories without local symmetry).

• Order: Leading IR behaviour of amplitudes (or soft theorems), subleading, sub-
subleading, etc.

• Version: Classical version, quantum version (with anomalies).

• Geometry: 4-Dimensional (4D) MS, D < 4, D > 4, Cosmology.

• Symmetries: N = 0, 1, ..., 8 (Number of symmetries).

1.4 Motivation/Application

One such triangle, should potentially exist for every type of massless particle. One can
use these IR triangles to find or correct anomalies of the theories. Below are reasons for
their conveniences:

• Connecting 3 different subjects/theories: Find 1 corner, you can work out the other
2. There are three different ways of characterising the behaviour of the universe
around us, at very large distances.

• Understanding holographic structure of quantum gravity in 4D asymptotically flat
space-times - by understanding the symmetries. This viewpoint is close to our
reality.

• In flat-space quantum gravity, one can make connections of the asymptotic sym-
metries, with symmetries of conformal field theory acting on a sphere.

• Organisation/improvement of IR/jet/LHC (Large hadron collider) physics, by the
study of soft particles. Generically, no IR finite S-matrix exists in gauge theories.
Through some kind of understanding of the deep IR symmetries, there might be a
way to define the (soft part of the) S-matrix to satisfaction.

• Black hole information paradox: Understanding soft gravitons/photons in evapo-
ration processes in IR, might lead us to an answer. “All roads lead to black holes”
- from [Str] p. 8.

• Explain miracles in N = 4 YM scattering amplitude (cancellations of diagrams).
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1.5 Structure

Section 2 will describe the connection of groups and lay a foundation for the notation
used further on.
Section 3 will present the conformal rescaling of MS and the geometrical interpretation.
Sections 4 and 5 will go through the equivalence of matching conditions, conserved
charges, Ward identities, soft theorems and asymptotic symmetries in QED.
Section 6 will include an alternative definition for the S-matrix, as well as the soft the-
orems for non-abelian gauge theories and their implications.
Section 7 will present Penrose’s approach of finding the BMS group, by a direct analysis
of the asymptotic geometry, and explore its implications.
Section 8 compares the group elements of the Poincaré and BMS group.
Section 9 includes Strominger’s approach of defining the BMS group, the supertransla-
tions and superrotations, and scattering for gravity theory.
Section 10 is discussing the log r/r behavior, when calculating the coefficients of the
large-r expansion of the gauge parameters in QED; the log r/r term is needed in order
to satisfy the wave equation.
Section 11 will go through the attempts of applying the methods of Strominger and
Penrose in gauge theories, the implications and ways around them.
Section 12 includes the a describtion of why a conformal coupling term is needed in the
action of a scalar field, when applying Weyl transformations.
Section 13 sets up the energy-momentum tensor for a conformally coupled (charged)
scalar.
Section 14 discusses different ways of identifying past- and future null infinity, as well
as a way of mapping spatial infinity to r = 0, by inversion.
Section 15 discusses the work, [AR92] by Ashtekar and Romano, where they wanted to
find a manifestly coordinate independent treatment of spatial infinity, which avoids the
awkwardness of the differentiability conditions.

1.6 Sidenote

From here on forward, whole sections or subsections marked with (S) will follow the
work (and use equations) described in [Str], and if marked with (P) will follow the work
(and use equations) described in [Pen74].
[Str], by Andrew Strominger, is connecting the subjects of soft theorems, the memory
effect and asymptotic symmetries in four-dimensional QED, non-abelian gauge theory
and gravity.
[Pen74], by Roger Penrose, is discussing the BMS group, by a direct analysis of the
geometry and symmetries.
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2 Orthogonal and Conformal Groups (P)

2.1 Homomorphisms between Orthogonal and Conformal Groups

In the study of group theory, the following homomorphisms can be defined:
The local isomorphism mapping the group SL(2,C) of complex unimodular (2× 2)

matrices (giving rise to the algebra of spinors) onto the identity connected component
of the Lorentz group O(1, 3) in an essentially (2-1) manner is:

SL(2,C)→ O(1, 3)

‘Essentially’ referring to the ambiguity of elements A,B mapping onto element Q in
O(1, 3); they are connected by a curve in SL(2,C), and by a closed curve through Q in
O(1, 3).

Furthermore the (local isomorphism) mapping, which is in an essentially (1-1) (but
inessentially (2-1)) fashion, is defined as:

O(1, 3)→ C(2)

Where C(2) is the conformal group, described in the following subsection.
In a similar fashion, the higher dimensional analogue is the local isomorphism, also in
an essential (2-1) manner, with SU(2, 2) being the group of unimodular pseudo-unitary
(+ +−−) (4× 4) matrices (giving rise to the algebra of twistors):

SU(2, 2)→ O(2, 4)

And similarly we have the mapping (local isomorphism, essential (2-1) fashion):

O(2, 4)→ C(1, 3)

Connecting the two, will give the local isomorphism below, but this mapping is in an
essentially (4-1) fashion instead:

SU(2, 2)→ C(1, 3)

From this story, a pattern can be seen for the local isomorphisms: O(p+1, q+1)→ C(p, q)

2.2 The Conformal Group C(2)

The orientation-preserving local conformal maps of the plane to itself is represented by:

ζ → ζ̃ = f(ζ), (1)

where f is a holomorphic (complex analytic) function, ζ = x+ iy, and x, y are standard
Cartesian coordinates for the plane. The line-element, or metric, can then be expressed
as:

dσ2 = dx2 + dy2 = dζdζ̄

dσ2 → dσ̃2 = |f ′(ζ)|2dσ2
(2)
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This map of the Euclidean plane to itself constitute an infinite-dimensional group.

For a global map, we require f and its inverse to be singular over the whole plane,
such that f is a linear function:

f(ζ) = αζ + β (3)

The reason it should be linear, is that we want the Weyl factor, |f ′(ζ)|2, to be well-
defined (non-singular) everywhere, including at ∞.
Thus the group of orientation-preserving conformal maps of the plane to itself, is de-
scribed by 4 real parameters. The maps are generated by Euclidean motions (|α| = 1)
and dilations (α real, β = 0).

To describe C(2), one must compactify the plane by the addition of a point at infinity,
ie. a projection of the unit sphere S2 to the plane, where S2 is given by X2 +Y 2 +Z2 = 1
(using standard Cartesian coordinates for Euclidean 3-space), see Figure 2.

Figure 2: Projection from the unit sphere north pole to the plane. The figure is taken
from [Pen74].

Projecting point (X,Y, Z) from (0, 0, 1) on S2 to the plane at z = 0, is a conformal map,
where:

ζ = x+ iy =
X + iY

1− Z
; X + iY =

2ζ

1 + ζζ̄
, Z =

ζζ̄ − 1

1 + ζζ̄
(4)

One way to see this, is to make the coordinate change ζ = eiφ cot
(
θ
2

)
, and see the metric

dσ2 for S2 is given by:

dl2 = dθ2 + sin2 θdφ2 =
4dζdζ̄

(1 + ζζ̄)2
=

4dσ2

(1 + ζζ̄)2
(5)

dσ2 being the metric for the plane z = 0 (see Equation 2). S2 with the north pole re-
moved is conformally identical with the Euclidean plane. Adding the north pole provides
the conformal compactification of the plane.

C(2) is the group of conformal maps of the compactified plane (S2) to itself. The
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connected component of identity in C(2) is the orientation-preserving conformal maps
of S2, given by:

ζ → ζ̃ = f(ζ) =
αζ + β

γζ + δ
, (6)

being regular at ζ = ∞. f thus gives a six-real-parameter group, with the parameters
normalized by αδ − βγ = 1. The unimodular complex (2× 2) matrix, SL(2,C) element(
α β
γ δ

)
represent the transformation.

The orientation-reversing elements of C(2) are the ζ → ζ̄ (complex conjugate) compo-
sitions of Eq. 6. All elements of C(2) are generated by dilations, Euclidean motions, and
the inversion ζ → ζ̃ = ζ̄−1. This inversion interchanges ζ = 0 and ζ = ∞ (the north-
and south pole) of S2.

2.3 The Connection of C(2) with O(1, 3)

To establish a connection of C(2) with O(1, 3), consider the 4D MS with metric ds2 =
dT 2 − dX2 − dY 2 − dZ2, and null-cone N of origin, described by equation T 2 −X2 −
Y 2 − Z2 = 0, with generators of N being null rays through the origin, given by
T : X : Y : Z = const.
Consider a unit sphere S2 to be a space-like 3-plane T = 1 of N . This gives a (1-1)
correspondence between generators of N and points of S2 (given by intersections of gen-
erators of N w. T = 1). S2 is thus a realisation the space of generators of N , but one
could use any other cross-section Ŝ2 of N for this. See Figure 3.

Figure 3: Cross-sections of N . The figure is taken from [Pen74].

The conformal structure of S2 reflects an intrinsic conformal structure on the space of
generators of N .
Furthermore the generators of the null cone N establish a (1-1) conformal map between
any two cross sections of N , so the space of generators has a conformal structure (that
of any of the cross-sections).
Definition: A map, carrying such cross-section into another, with points on the same
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generator of N , corresponding to one another, is a conformal map.

To see that the generator map is conformal, the metric can be re-expressed on the
form:

ds2 = −r2γαβdx
αdxβ + 0.dr2, (7)

with xα and r being new coordinates on N , and coordinate lines xα = const being gen-
erators of N (using spherical polar coordinates ds2 = dT 2 − dr2 − r2(dθ2 + sin2 θdφ2),
where T = r on N). By specifying r to be a function of xα, a cross-section of N will be
given. Any two cross-sections give conformally related metrics, mapped to one another
by generators of N (xα = const).

A Lorentz transformation, L, will send N into itself, and generators of N into other
generators of N , and cross-sections S2 into another with the same intrinsic metric. Since
the map from Ŝ2 to S2 along generators of N is conformal, L induces a transformation
on the space of generators of N , which makes a conformal map of S2 to itself. This es-
tablishes a homomorphism O(1, 3)→ C(2), with the same dimensionality of each group
(6). Thus the inverse image of elements of C(2) is a discrete (each point is isolated) set
of elements of O(1, 3). Hence, the mapping is a local isomorphism, and L is defined by
its effect on N (up to a space-time reflection in the origin). Thus this homomorphism is
inessentially (2-1). For a restriction to the orthocronous O(1, 3), L preserves the time-
direction (both the orientation and direction), and would yield a global isomorphism
between the two groups (1-1).

Instead of considering cross-sections of N by T = 1; the intersection of N with the
null 3-plane T = Z + 1, will give the parabolic section E2 with intrinsic metric dσ2 =
−ds2 = dX2 + dY 2. E2 is intrinsically a Euclidean plane - not a cross-section of N , as
generators T −Z = X = Y = 0 (parallel to the 3-plane) does not give rise to a point on
E2, but corresponds to the point at infinity at E2, as the relation between E2 and S2 is
conformal; See Figure 4.
The 2-plane meets S2, E2, and plane Z = 0 = T − 1. The conformal relation of E2

and S2 is established via. generators of N , or 2-planes through the parallel generator
T − Z = X = Y = 0.

2.4 The Connection of C(1, 3) with O(2, 4)

To illustrate the general case of local isomorphisms O(p + 1, q + 1) → C(p, q), consider
the case O(2, 4) → C(1, 3). Defining C(1, 3) (or C(p, q)) as the group of conformal
self-transformations of appropriate pseudo-Euclidean space (4D MS), compactified by
the addition of extra points at infinity - by going to a null cone of the origin in a 6D
pseudo-Euclidean (+ +−−−−) space, with metric:

ds2 = dT 2 + dV 2 − dW 2 − dX2 − dY 2 − dZ2 (8)

The null cone K of origin has equation T 2 + V 2 −W 2 −X2 − Y 2 −Z2 = 0. By analogy
with the parabolic intersection E2 of N , we have an intersection M4 of K, with null
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Figure 4: The Euclidean plane being embedded as a parabolic section of N . The figure
is taken from [Pen74].

hyperplane V −W = 1 (analogue of T = Z + 1), and the intrinsic metric of M4 is given
by ds2 = dT 2−dX2−dY 2−dZ2 (analogue of −ds2 = dX2 +dY 2), so M4 is intrinsically
identical to MS.
In 6-space; M4 has paraboloid form with coordinates defined by:

V =
1

2
(1− T 2 +X2 + Y 2 + Z2) = W + 1 (9)

All generators of K (set of points with its coordinates being constant and satisfy-
ing equation of K), except for those in the null hyperplane V = W (analogue of
T − Z = X = Y = 0), meets M4 in a unique point.
Thus the set G of unoriented generators of compact topological space K, is the com-
pactification of M4. Members of K, not in V = W , is in (1-1) correspondence with M4,
and those in V = W supply extra points necessary for compactification - they represent
points at infinity. The generators of K thus establish conformal maps of any two (local)
cross-sections of K. G is therefore a conformal manifold, identified as the compactifica-
tion of M4.
Definition: C(1, 3) (or C(p, q)) is a group of self-transformations of G, preserving its
conformal structure.

There is no analogue for the infinite set of local conformal transformations of the
plane, Equation 1, in higher dimensions than 2. However, the global conformal self-
transformations of M4, is the same as for E2, generated by pseudo-Euclidean motions
(constituting the Poincaré group) and dilations; these constituting the 11-parameter or-
thochronous group, called the causal group. To compactify M4, one must adjoin an
entire null-cone, and not just a point.
The inversion of M4 (analogue of ζ → ζ̃ = ζ̄−1), corresponding to the reflection
W → −W in 6-space, expressed as (T,X, Y, Z)→ −{T 2−X2−Y 2−Z2}−1(T,X, Y, Z),
is not well-defined on the null cone T 2 − X2 − Y 2 − Z2 = 0, but maps the null cone
to infinity. This reflection exchanges the null cone at the origin with the null cone at
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infinity; thus the elements at infinity must have the structure of a null cone.

For an analogue of S2, consider intersection of K with hyperplane T = 1. It has a
structure of a de Sitter space (dS3), but requires points at infinity (corresponding to
generator of K in T = 0) to be added, in order to represent the entire compact space
G. The section of K with W = 1, defining the anti-de Sitter space (AdS3), also requires
points at infinity to become compact.

2.5 Model of Compactified Minkowski Space, G

For an adequate model of compactified MS, consider intersection of K with the 5-sphere,
defined by T 2 + V 2 + W 2 + X2 + Y 2 + Z2 = 2. This gives the compact space-time
model H; the topological product of a three-sphere in (W,X, Y, Z)-space (defined by
W 2+X2+Y 2+Z2 = 1) with a 1-sphere (circle) in (T, V )-space (defined by T 2+V 2 = 1).
This is not a model of G, but a twofold covering. Each point of H is represented twice
(as ±) on H; the space-time H is connected so the two-fold nature of the covering is
essential. The topology of G is S1 × S3.

The pseudo-orthogonal group O(2, 4) acts on the 6-space and K (as K is invariant).
Each O(2, 4) transformation induces a conformal map of G to itself, and a homomor-
phism O(2, 4)→ C(1, 3) is obtained.
The group O(2, 4) has 15 parameters; C(1, 3) cannot have more than 15 (the maximum
for local conformal self-transformations of a 4-manifold), ie. the homomorphism is a
local isomorphism. It is (2-1), as O(2, 4) transformations can reverse the direction of
generators K, where G is the space of unoriented generators. The O(2, 4) transformation
is a reflection in the origin, representing the identity on G.

We have an essential (2-1) nature for O(p + 1, q + 1), if p, q are odd (local isomor-
phism).
We have an inessential (2-1) nature for O(p + 1, q + 1), if p, q are even (local isomor-
phism).
For p+ q being odd, we have a local (1-1), hence global, isomorphism.

A smooth map from one space-time to another, is characterised as conformal, as it
takes null cones into null cones, or null geodesics into null geodesics.
All null cones on M4 arise as intersections with tangent 5-planes to K, ie. null 5-planes
through the origin of 6-space.

3 Geometry (P)

3.1 Conformal Rescaling of Minkowski Space

This section will go into detail of the construction of conformal infinity for MS, by a
different approach than in Section 2.5. First rescale the metric of space-time M from the
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physical metric ds, to the new ‘unphysical’ metric dŝ, conformally related by ds = Ωdŝ,
with Ω being a smooth, positive function defined on M . The metric tensor is rescaled
by gab → ĝab = Ω2gab, gab → ĝab = Ω−2gab.

Provided suitable asymptotic structure of M , and appropriate Ω, more points can be
added to the manifold, so the metric ĝab extends smoothly to them. Ω could also be
extended in the same way, however it becomes zero at these points; implying the metric
being infinite (and can thus not be extended). Thus, the new points are infinitely distant
from their neighbours, and physically represent points at infinity.
Above conformal rescaling/Weyl transformation is not the same kind of conformal trans-
formation (conformal mapping) as considered in Section 2; points of the manifold are
not transformed, but the metric is replaced. Conformal rescalings/Weyl transformations
form an infinite dimesional Abelian group (multiplicative group of smooth, positive func-
tions on the manifold), and has no element in common with the 15 parameter conformal
group (C(1, 3)) - conformal rescalings have nothing to do with coordinate changes.

Many physical concepts are invariant under conformal rescalings (not those with gravi-
tational interactions, though).
This conformal technique is useful for radiation properties of zero rest-mass fields. In-
coming and outgoing radiation fields are defined precisely for asymptotically flat, curved
space-times in terms of values of fields at the adjoint points at infinity, ie. on past- and
future null infinity I±, near spatial infinity i0 - at I±± (see Section 3.2).
The conformal technique gives a coordinate-free definition of asymptotic flatness in GR.
The asymptotic symmetry group, BMS, has a clear geometrical interpretation, and so
has its relation to gravitational radiation, using the conformal technique.

3.2 Minkowski Space Penrose Diagram (S)

To talk about infinity, it is useful to consider the geometry depicted by a Penrose di-
agram, see Figure 5, where all of Minkowski space is pulled into a finite region by a
conformal transformation that diverges at the boundaries. The exact technique will be
covered in Section 3.4.
In the figure, the world-line of a massive particle, moving at constant velocity, from past
time-like infinity, i−, to future time-like infinity, i+, is illustrated. I± denotes future- and
past null infinity, and in-between lies spatial infinity, i0 (almost anything, say Maxwell’s
equations, is singular at this point). The boundary components I±± , which are not equal
or Lorentz invariant near i0, are two-spheres and not points (like i±).

3.3 Coordinate Change of the Minkowski Space Metric

Now we accompany the conformal rescaling of MS, with a coordinate change, in order
to assign finite coordinates to the new adjoint points at infinity. The physical metric in
spherical polar coordinates is:

ds2 = dt2 − dr2 − r2(dθ2 + sin2 θdφ2) (10)
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(a) (b)

Figure 5: Penrose diagrams of Minkowski space, where lightrays always travel at 45◦

degrees, and where for (b), every point is an S2, except for r = 0, i± and i0, being
points. The figure is taken from [Str].

Introducing advanced time and retarded time to better describe I∓:

v = t+ r, u = t− r, (11)

so that I± is now parametrized by (u, x̂) and (v, x̂), respectively.
The metric then becomes:

ds2 = dudv − 1

4
(v − u)2(dθ2 + sin2 θdφ2) (12)

For asymptotically simple space-times, the choice of Ω must have properties: Ωλ→ const
as λ→ ±∞, with λ being an affine parameter, and that along any null geodesic: Ω→ 0
at ±∞ (like the reciprocal of λ).
Each u = const hypersurface is a future light cone, generated by null geodesics (straight
lines in MS) with θ, φ = const. Thus v serves as an affine parameter into the future
on each of these null geodesics. The same goes for u, being an affine parameter into
the past on these radial null-geodesics. One must therefore require that Ωv → const as
v → ∞ on u, and Ωu → const as u → ∞ on v (with θ, φ = const). We want Ω to be
kept smooth over the finite parts of the space-time, so we choose:

Ω = (1 + u2)−
1
2 (1 + v2)−

1
2 . (13)
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Rescaling the metric (dŝ = Ωds) gives:

dŝ = Ω2ds2 =
dudv

(1 + u2)(1 + v2)
− (v − u)2

4(1 + u2)(1 + v2)
(dθ2 + sin2 θdφ2) (14)

3.4 Assigning Finite Coordinates to Points at Infinity

To assign finite coordinates to points at infinity, make replacement u = tan p, v = tan q,
thus the metric, Eq. 14, takes the form:

dŝ = dpdq − 1

4
sin2(q − p)(dθ2 + sin2 θdφ2) (15)

The range of coordinates p, q for MS is illustrated in Figure 6, which illustrates the same
Penrose diagram as Figure 5b.

Figure 6: Range of coordinates p, q for MS. The figure is taken from [Pen74].

The metric is regular on I± (future- and past null infinity), and can be extended be-
yond in a non-singular fashion. For 0 ≤ q − p ≤ π, the global structure is the product
of a space-like 3-sphere with an infinite time-like line (that of an Einstein static universe).

This can be shown by choosing coordinates T = 1
2(p + q) and ρ = q − p and obtain

metric

dŝ = dT 2 − 1

4
[dρ2 + sin2 ρ(dθ2 + sin2 θdφ2)], (16)

describing space-time ξ, where the term in the brackets is the metric of a unit 3-sphere.
The portion of ξ, being conformal to the original MS (that portion lying between the
light-cone points of I± (or i±)), wraps around ξ itself, and meets at the point I0 (or
i0). The 2D case is illustrated in Figure 7. (MS being conformally identical to the por-
tion of the Einstein static universe, whoose boundary represent conformal infinity of MS).
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Figure 7: Illustrating MS as a portion of an Einstein static universe. The figure is taken
from [Pen74].

How the redundant regions (MS) of the light-cone points i±, i0 fit together in this Ein-
stein static universe picture, is illustrated in Figure 8 - i0 being spatially the antipode
of i±. The spatial location of i− correspond to that of i+. The null geodesic segments
connecting i± with i0 (boundary of MS region) is denoted I±.

To sum it up:

• i± denotes the future- and past temporal (time-like) infinity - being points on the
compactified MS.

• I± denotes the future- and past null infinity - being two-spheres times R on the
compactified MS.

• i0 denotes spatial infinity - being a point on the compactified MS.

• A time-like straight line requires a past- and a future endpoint on i± respectively.

• A null straight line requires a past- and a future endpoint on I± respectively.

• A space-like straight line is a closed curve through i0, when i0 is adjoined.
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Figure 8: If i−, i0, and i+ are identified as a single point, they fit together as illustrated.
The figure is taken from [Pen74].

Null geodesics remain null geodesics after conformal rescaling, so null straight lines
become null geodesics with respect to the induced metric - unlike for time- or space-like
straight lines.

3.5 Identifying Past- and Future Null Infinity

Thus for Minkowski space: Null geodesics will originate at point a− on I− and pass
through the same point a+ on I+ (see Figure 9).
The future lightcone of a point on I− is a null hyperplane in MS (the limit of a lightcone,
when the vertex recedes into the past along a null straight line). The past lightcone of a
point on I+ is also a null hyperplane - thus null hyperplanes acquires a past vertex, a−,
on I−, and a corresponding future vertex, a+, on I+. On the Einstein static universe,
the future lightcone of a− will be focused at a point spatially antipodal to a−, ie. a+.
Thus I± is identified by the points a±.

The points i±, i0 simply become one (as in Figure 8). This point, I (or i), becomes
a normal interior point of the identified manifold (compactified MS). Since a− is identi-
fied with a+, each null geodesic becomes closed, with topology of a circle S1. Regarding
conformal structure, every point is on equal footing.

3.6 Curved Asymptotically Flat Space-Times

For curved asymptotically flat space-times (not MS), I± must be left as distinct bound-
ary hypersurfaces (conformal infinity), as there is no natural association of point a− on
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Figure 9: For conformal infinity for MS, every null geodesic originating at some a− ∈ I−,
must terminate at a+ ∈ I+. The figure is taken from [Pen74].

I− with a unique point a+ on I+ - null geodesics from a− will not focus clearly at point
of a+, but will cross over one another, before I+ is reached. Any identification of I−
with I+ results in singularities in metric dŝ along I, no matter choice of Ω.

3.7 Conformal Infinity of the Schwarzschild Solution

A simple example of an asymptotically flat, curved space-time, is the Schwarzschild
solution. To examine its conformal infinity, consider its metric:

ds2 = (1− 2m

r
)dt2 − dr2

1− 2m
r

− r2(dθ2 + sin2 θdφ2) (17)

Instead of trying to obtain I± simultaneously (as for MS), we introduce retarded- and
advanced time-coordinates: u = t − r − 2m log(r − 2m), v = t + r + 2m log(r − 2m),
and get the respective metrics:

ds2 = (1− 2m

r
)du2 − 2dudr − r2(dθ2 + sin2 θdφ2)

ds2 = (1− 2m

r
)dv2 − 2dvdr − r2(dθ2 + sin2 θdφ2)

(18)

One can choose Ω = r−1 = w, and get the rescaled, unphysical respective metrics:

dŝ2 = Ω2ds2 = (w2 − 2mw3)du2 − 2dudw − dθ2 − sin2 θdφ2

dŝ2 = Ω2ds2 = (w2 − 2mw3)dv2 + 2dvdw − dθ2 − sin2 θdφ2,
(19)

which are regular and analytic on their respective hypersurfaces w = 0.
The physical space-time (retarded/advanced, ∓) is given for w > 0 and can be ex-
tended to include boundary hypersurfaces I± (given when w = 0), hence the boundary
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I = I− ∪ I+ will be adjoined to the space-time. A further extension across w = 0 to
negative values of w, involves a reversal of the sign of the mass (in the metric). The
derivative at I of the conformal curvature contains information about the mass. Thus by
attempting to identify I±, with same sign of the mass on the two sides, a discontinuity
in the derivative of the curvature across I occurs (metric dŝ fail to be C 3 at I)2.

The points i±, i0 for the general case, must be singular for the conformal geometry,
therefore it is reasonable not to include the points as part of the conformal infinity, as
depicted in Figure 10.

Figure 10: Conformal infinity for asymptotically flat space-time, eg. the Schwarzschild
solution. The figure is taken from [Pen74].

Illustrating two disjoint boundary null hypersurfaces I±, each a cylinder with topology
S2 × R (null, as dŝ at w = 0 is degenerate). These hypersurfaces are generated by null
geodesics (θ, φ = const, w = 0), whoose tangents are normals to the hypersurfaces, and
they are the ”R’s” of the topological product S2×R (the inverse images of points of S2

in the natural projection S2 × R→ S2).

2A function is C n if it is n times differentiable with the continous n’th derivative.
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3.8 Other Asymptotically Flat Space-Times

Other asymptotically flat space-times will also give rise to the same structure. Consider
the metric

ds2 = r−2Adr2 + 2Bidx
idr + r2Cijdx

idxj , (20)

with coordinates r, x1, x2, x3, andA, Bi, Cij being suitably smooth functions of x0, x1, x2, x3,
with x0 = r−1, and the functions also being smooth at x0 = 0. Setting Ω = r−1, we get:

dŝ2 = Ωds2 = A(dx0)2 − 2Bidx
idx0 + Cijdx

idxj , (21)

which will be perfectly regular at x0 = 0 (provided the determinant formed from A, Bi,
Cij doesn’t vanish). Thus a conformal infinity will exist for such metric.
Many metrics in the study of gravitational radiation have the form of Equation 20, also
that of BMS, describing a situation with an isolated source (with asymptotic flatness)
and outgoing gravitational radiation.

3.9 Asymptotically Simple Space-Times

Asymptotically flat space-times is a subclass of weakly asymptotically simple space-
times.
The space-time M is asymptotically simple if; 1) a conformal factor Ω exists so the met-
ric dŝ = Ωds remains smooth on the extension M̄ of manifold M , including boundary I;
2) Ω being smooth through M̄ = M ∪ I, zero on I, and having non-zero gradient at I;
3) every maximal null geodesic in M has both a past- and future end-point on I (more
weakly; should reach a past- and future conformal infinity, as some geodesics might not
escape to conformal infinity, as with a black hole).
Space-time M is weakly asymptotically simple if it possesses conformal infinity of
asymptotically simple space-times, but can also have other infinities as well; thus for
an asymptotically simple M ′, a neighbourhood K ′ of I ′ in M̄ ′, should have a portion
K ′ ∩M ′ being isometric with a subset of M .

The boundary I must be a smooth hypersurface (if null, it has the same topological
structure as for the MS and Schwarzschild cases; see Figure 10). If Einstein’s vacuum
equation (of the metric), without the cosmological term, holds near conformal infinity I
(through K−I, K being the neighbourhood of I in M ′), then I is null everywhere - if the
cosmological term is present, then I is space-like or time-like. These are consequences
of the transformation formula of the Ricci tensor, written as:

Pab = P̂ab + Ω−1∇̂a∇̂bΩ−
1

2
Ω−2ĝabĝ

cd∇̂aΩ∇̂bΩ (22)

with Pab = 1
12Rgab−

1
2Rab being a tensor containing same information as the Ricci tensor

(Rab) for ds, and ∇̂a denotes the covariant derivative for dŝ, and P̂ab being a tensor of dŝ.
Since Einstein’s equations (without cosmological term) hold near I, Rab = 0⇒ Pab = 0;
multiplying Equation 22 by Ω2 and use condition Ω = 0 on I (or taking the trace, using
ĝab), then vector n̂a = ∓∇̂aΩ is null at I±, which is normal to I; I is a hypersurface.
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In order to prove this, we write Einstein’s Equations (In Vacuum):

Rab −
1

2
gabR = 0.

Contract with gab to obtain R = 0, which plugged back implies Rab = 0. Meaning that
for:

Pab =
1

12
Rgab −

1

2
Rab.

when Einstein’s equations in vacuum are satisfied, then Pab = 0. We know the transfor-
mation property Eq. 22. Plug Pab = 0 into the equation to obtain:

0 = P̂ab + Ω−1∇̂a∇̂bΩ−
1

2
Ω−2ĝabĝ

cd(∇̂cΩ)(∇̂dΩ).

Next, multiply by Ω2 and take the limit to I± (where Ω→ 0). We get:

ĝcd(∇̂cΩ)(∇̂dΩ) = 0.

This means that n̂a is null, since ĝabn̂an̂b = 0.

Assuming vacuum (or Einstein-Maxwell equations hold) near I, and no cosmological
constant; take Pab = 0 near I, and consider the trace-free part of Equation 22 - then
multiply by Ω and set Ω = 0 to get ∇̂an̂b = (1

4 ĝ
cd∇̂cn̂d)ĝab at I - these are non-rotating

and shear-free generators of I. Shear-free as ∇̂an̂b is trace-free; small shapes are pre-
served, following the generators along I. Non-rotating as I is a null hypersurface (due to
symmetry of ∇̂an̂b). Take two cross-sections S1, S2 of either I±; then the correspondence
between these, established by the generators, is conformal. The space of generators of
I± has conformal structure.

4 Matching Conditions for QED (S)

4.1 Classical Electromagnetism: Liénard-Wiechert Solution

The theory of electromagnetism can be described by the Maxwell-action (coupled to any
kind of matter):

S = − 1

4e2

∫
d4x
√
−gFµνFµν + SM , (23)

with µ, ν = 0, 1, 2, 3, e is the electron charge, g is the determinant of the metric tensor,
gµν , SM denotes a general matter (hence subscript M) action, and the field strength, F ,
is related to the gauge field, A, by Fµν = ∂µAν − ∂νAµ.
The equations of motion (EOM) are given by:

d ∗ F = e2 ∗ j =⇒ ∇µFµν = e2jν , (24)
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where the Hodge dual, ∗, of a p-form, V , on an n-dimensional manifold, is a differential
form, which is defined as (∗V )µ1,µ2,...,µn−p = 1

p!εµ1,µ2,...,µn−p
ν1,ν2,...,νpVν1,ν2,...,νp , an (n−p)-

form (in Euclidean flat space-time, and ε is the Levi-Civita symbol - to get it in a general
space-time, one needs to multiply the left-hand side (LHS) by

√
g), ∇ is the Nabla

operator, and j, the charge current, is given by jν = − δSM
δAν

.

The electric charge inside a 2-sphere (S2) at infinity, can be defined as:

QE =
1

4e2

∫
S2

∗F =

∫
Σ
∗j ∈ Z, (25)

using integration by parts, and with Σ being any slice with the S2 boundary. The electric
charge is the normal component of the charge current integrated over that slice (the flux
of the electric field Gauss law).
The theory is gauge invariant - under an infinitesimal gauge transformation with ε ∼
ε + 2π, and a finite transformation of the matter field, Φk with charge Qk ∈ Z, by
ε→ ε+ 2π; the following fields transforms as:

δεA = dε, δεΦk = iεQkΦk, Φk → eiQkεΦk (26)

To solve the EOM, consider a source, j, of n particles (non-displaced), with constant
four-velocity, Uµk = γk(1, ~βk), with U2

k = −1, γ2
k = 1

1−β2
k
, and β being the velocity relative

to the speed of light. Then each particle is a point source, with a worldline parametrized
by τ , so xµk(τ) = Uµk τ :

jµ(x) =

n∑
k=1

Qk

∫
dτUkµδ

4(xν − Uνk τ) (27)

The solution for the radial component of the electric field is:

Frt(~x, t) =
e2

4π

n∑
k=1

Qkγk(r − tx̂ · ~βk)
|γ2
k(t− rx̂ · ~βk)2 − t2 + r2|

3
2

(28)

with r2 = ~x · ~x and ~x = rx̂. Hence it is not singled valued at r = ∞, but discontinued,
which is an important point, when considering fields in compactified MS.

4.2 Antipodal Matching Condition

The Liénard-Wiechert solution in retarded coordinates (Eq. 11, t = u+ r) is:

Frt = Fru =
e2

4π

n∑
k=1

Qkγk(r − (u+ r)x̂ · ~βk)
|γ2
k(u+ r − rx̂ · ~βk)2 − (u+ r)2 + r2|

3
2

(29)

In the limit of r going to infinity it becomes:

Frt|I+ =
e2

4πr2

n∑
k=1

Qk

γ2
k(1− x̂ · ~βk)2

(30)
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The electric field at I−, using advanced coordinates (t = v − r), is:

Frt = Frv =
e2

4π

n∑
k=1

Qkγk(r − (v − r)x̂ · ~βk)
|γ2
k(v − r − rx̂ · ~βk)2 − (v − r)2 + r2|

3
2

(31)

In the limit of r going to infinity it becomes:

Frt|I− =
e2

4πr2

n∑
k=1

Qk

γ2
k(1 + x̂ · ~βk)2

(32)

The value of the field depends on how you approach the value at i0; hence the values of
the fields do not match. The discontinuity is dictated by Lorentz invariance (which is
not smooth near spatial infinity).
However one can find the antipodal relation (matching condition):

lim
x→∞

r2Fru(x̂)|I+
−

= lim
x→∞

r2Frv(−x̂)|I−+ (33)

One can map MS onto a cylinder, using conformal rescaling, as was done in Section
3.4 with Figure 7. Looking at a similar figure, Figure 11, notice the cross at i0, spatial
infinity; Eq. 33 states that the fields are continous along the genrators of I, even when
they cross i0, though they can become quite diffucult to describe, due to i0 being a
singularity.

Figure 11: Minkowski space conformally compactified onto the S3 × R Einstein static
universe (a cylinder). The figure is taken from [Str].
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4.3 Asymptotic Expansion

The Minkowski metric in retarded coordinates (in the neighbourhood of I+) is:

ds2 = −du2 − 2dudr + 2r2γzz̄dzdz̄, γzz̄ =
2

(1 + zz̄)2
(34)

γzz̄ being the unit sphere metric.
The standard metric ds2 = −dt2 + (d~x)2 is related to the metric in retarded coordinates
by:

(~x)2 = r2, t = u+ r, x1 + ix2 =
2rz

1 + zz̄
, x3 = r

1− zz̄
1 + zz̄

, (35)

where z runs over the complex plane so that; z = 0 is the north pole, z =∞ is the south
pole, and the equator is at zz̄ = 1.
The metric in advanced coordinates (for I−) is given by:

ds2 = −dv2 + 2dvdr + 2r2γzz̄dzdz̄ (36)

The two metrics, in retarded- and advanced time, are related so that the z in the I−
coordinate, is the antipodal of the z in the I+ coordinate (as described in Section 3.5).

Expanding around I+, given a field, e.g. the z-component of the gauge field, it can
be expressed as a sum:

Az(u, r, z, z̄) =
∞∑
n=0

A
(n)
z (u, z, z̄)

rn
(37)

Applying such expansion, generalises the matching condition to:

F (2)
ru (z, z̄)|I+

−
= F (2)

rv (z, z̄)|I−+ , F (2)
ru (z, z̄)|I+

−
= F (2)

ru (−∞, z, z̄) (38)

4.4 An Infinity of Conserved Charges

The matching condition implies an infinite number of conserved charges, which will be
shown in this section. Consider a function, ε, on MS obeying:

ε(z, z̄)|I+
−

= ε(z, z̄)|I−+ (39)

Defining future- and past charges as:

Q+
ε =

1

e2

∫
I+
−

ε ∗ F, Q−ε =
1

e2

∫
I−+
ε ∗ F, Q+

ε = Q−ε (40)

which gives an infinite number of conservation laws, associated to the EM field.
Using the Gauss law to write the surface integral expression of the charge gives;

Q+
ε =

1

e2

∫
I+

dε ∧ ∗F +

∫
I+

ε ∗ j +

�
��

�
��
�*0

1

e2

∫
I+

+

ε ∗ F (41)
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Q−ε =
1

e2

∫
I−
dε ∧ ∗F +

∫
I−
ε ∗ j +

��
�
��

��*
0

1

e2

∫
I−−
ε ∗ F , (42)

with restrictions, ∂uε = ∂vε = 0, giving:

m∑
k=1

Qink =

n∑
k=1

Qoutk (43)

It states, that the sum of all incoming charges, must be equal to the sum of all outgoing
charges.

The charges in retarded and advanced coordinates are:

Q+
ε =

1

e2

∫
I+
−

ε ∗ F =
1

e2

∫
I+
−

d2zγzz̄εF
(2)
ru

Q−ε =
1

e2

∫
I−+
d2zγzz̄εF

(2)
rv

(44)

Use the constraint equations on the null surfaces; the constraint equation near I+ has
the leading term (expansion in powers of 1

r ):

∂uF
(2)
ru +DzF (0)

uz +Dz̄F
(0)
uz̄ + e2j(2)

u = 0, (45)

where D is the covariant derivative, such that Dz = γzz̄Dz̄. We now integrate by parts
and use above constraint equation, which gives:

Q+
ε = − 1

e2

∫
I+

dud2z(∂zεF
(0)
uz̄ + ∂z̄εF

(0)
uz ) +

∫
I+

dud2zεγzz̄j
(2)
u = Q+

S +Q+
H (46)

consisting of a soft term (first term), including massless charges only, and a hard term
(second term). The soft term involves the term (the zero-mode of the radiative compo-
nent with respect to retarded time):∫ ∞

−∞
duF (0)

uz e
iωu∫ ∞

−∞
duF (0)

uz ≡ Nz as ω → 0

(47)

This term creates and annihilates soft particles (zero-energy).
Considering the curl:

∂z̄Nz − ∂zNz̄ =

∫ ∞
−∞

du[∂z̄F
(0)
uz − ∂zF

(0)
uz̄ ]

= −
∫ ∞
−∞

du∂uF
(0)
zz̄ = −F (0)

zz̄ |
I+

+

I+
−
,

(48)
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by using the Bianchi identity in the second line. Assuming no magnetic monopoles (no
asymptotic states with magnetic charges) - and therefore no long-ranged magnetic fields,
so Fzz̄|I+

±
= 0, one can define:

Nz ≡ e2∂zN, (49)

with N being a real scalar. Imposing gauge condition A
(0)
u = 0, it follows that:

e2∂zN =

∫ ∞
−∞

duF (0)
uz = A(0)

z |I+
+
−A(0)

z |I+
−

(50)

For a finite energy shift, one needs the gauge field and shift to be pure gauge (gauge
transform of zero) in both the beginning and end of I+.

5 From Conserved Charges to Soft Theorems in QED (S)

From finding an infinity of conserved charges, one expects to find the (infinitely many)
associated symmetries as well.

5.1 Canonical Electrodynamics at I

Noether’s theorem establishes a connection between conserved charges and symmetries.
And when going from charges to symmetries; symmetries can be determined by the
Dirac bracket action of the charges (on the phase space). In a canonical Hamiltonian
formalism; having Q (charge) commute with H (Hamiltonian), and defining a phase
space Γ, with coordinates xI = qi, pj , where I is a continuous index in field theory. The
symplectic two-form on this space is:

Ω =
1

2
ΩIJdx

I ∧ dxJ (51)

and its quantum commutators are constructed as [A,B] = iΩIJ∂IA∂JB.

5.1.1 Symplectic Form

The classical phase spase in EM, can be defined as the allowed initial data on a Cauchy
surface. For a Cauchy surface Σ in MS, the symplectic form for free electrodynamics is:

ΩΣ = − 1

e2

∫
Σ
δ(∗F ) ∧ δA (52)

δA is a one-form on the phase space Γ, so the term in the integral is a wedge product
of the infinite dimensional manifold, which describes this phase space. Writing out the
indices, the symplectic form becomes:

ΩΣ =
1

e2

∫
Σ
dΣµδFµν ∧ δAν (53)
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When choosing Σ = I+, it becomes:

ΩI+ =
1

e2

∫
dud2z(δF (0)

uz ∧ δA
(0)
z̄ + δF

(0)
uz̄ ∧ δA(0)

z ) (54)

Defining the constant part of A
(0)
z as:

A(0)
z (u, z, z̄) = Âz(u, z, z̄) + ∂zφ(z, z̄)

∂zφ ≡
1

2

[
A(0)
z |I+

+
+A(0)

z |I+
−

] (55)

The first term is dependent on u, the second term is not. Substituting Eq. 55 into Eq.
54, with N as in Eq. 49, the symplectic form becomes:

ΩI+ =
2

e2

∫
dud2z∂uδÂz ∧ δÂz̄ − 2

∫
d2z∂zδφ ∧ ∂z̄δN (56)

The radiative components of the gauge field are paired in the symplectic form, and the
soft photon mode is paired with the φ field (the sum of the boundary values).

5.1.2 Commutators

Now discussing commutators, one has to invert the symplectic form in the terms sepa-
rately. The first term implies:

[∂uÂz(u, z, z̄), Âw̄(u′, w, w̄)] = − ie
2

2
δ(u− u′)δ2(z − w)

[Âz(u, z, z̄), Âw̄(u′, w, w̄)] = − ie
2

4
Θ(u− u′)δ2(z − w)

Θ(u) =
1

πi

∫
dω

ω
eiωu

(57)

with Φ(u < u′) = −1 and Φ(u > u′) = +1. For the commutator between φ and N (not
dependent on u); the commutators are:

[φ(z, z̄), N(w, w̄)] = − i

4π
log |z − w|2 + f(z, z̄) + g(w, w̄)

[∂zφ(z, z̄), ∂w̄N(w, w̄)] = − i

4π
∂z∂w̄ log |z − w|2 =

i

2
δ2(z − w)

∂z̄
1

z − w
= 2πδ2(z − w)

(58)

5.2 Large Gauge Symmetry

Now the previous commutators can be used to compute the commutator action of Q+
ε ,

which has a matter term and a linear soft photon term (which do not commute with
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A
(0)
z ):

[Q+
ε , A

(0)
z (u, z, z̄)] = i∂zε(z, z̄)

[Q−ε , A
(0)
z (v, z, z̄)] = i∂zε(z, z̄)

[Q+
ε , N(z, z̄)] = 0 [Q+

ε , Âz(u, z, z̄)] = 0 [Q+
ε , φ(z, z̄)] = 0

(59)

Symmetries generated by the conserved charges, Q+
ε , are ‘large’ gauge transformations

(of Az) with parameter ε, which does not die off at infinity. ε goes to an u-independent,
angle-dependent function at I+, and at I−, the gauge parameter approaches the antipo-
dally transformed function, for transformations generated by Q−ε .
We need to check that these charges also generates the gauge transformations on the
matter fields, here the ‘hard’ term comes in:[∫

I+

ε ∗ j,Φk(u, z, z̄)

]
= −Qkε(z, z̄)Φk(u, z, z̄) = iδεΦk(u, z, z̄)

[Q+
ε ,Φk(u, z, z̄)] = iδεΦk(u, z, z̄)

(60)

The sum of the hard and soft term, generates local angle dependent gauge transforma-
tions (on I+).

5.3 Ward Identity

Each symmetry in a quantum theory corresponds to a Ward identity, which is the dynam-
ical consequences from the fact that the conserved charges commutes with the S-matrix,
or equivalently with the Hamiltonian, as S ∼ eiHT for T →∞.

5.3.1 Symmetries of the S-Matrix

The S-matrix (scattering matrix) can be written as 〈f | S |i〉, where f stands for final
state, and i for initial state. If the charge is conserved, it can be written as

〈f | (Q+
ε S − SQ−ε ) |i〉 = 0 (61)

The sum of the incoming charges is equal to the sum of the outgoing charges. Fur-
thermore, the action of a charge, acting on the initial and final state, can be split up
into terms of the action of the soft- and hard charge respectively, such that; 〈f | (Q+

SS −
SQ−S ) |i〉 = −〈f | (Q+

HS − SQ
−
H) |i〉. Thus one can define:

Q−ε |i〉 = −2

∫
dz∂z̄ε∂zN

−(z, z̄) |i〉+

m∑
k=1

Qink ε(z
in
k , z̄

in
k ) |i〉 (62)

for Q−ε on the initial state, and:

〈f |Q+
ε = 2

∫
dz∂z̄∂zε 〈f |N(z, z̄) +

n∑
k=1

Qoutk ε(zoutk , z̄outk ) 〈f | (63)
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for Q+
ε on the final state. Finally the Ward identity can be written as

2

∫
dz∂z̄∂zε 〈f | (N(z, z̄)S − SN−(z, z̄)) |i〉

=

[
m∑
k=1

Qink ε(z
in
k , z̄

in
k )−

n∑
k=1

Qoutk ε(zoutk , z̄outk )

]
〈f | S |i〉

(64)

The term on the RHS (right hand side) in the bracket denotes incoming/outgoing charges
weighted by the value of the gauge-parameter, at the angle they are coming in (going
out) from. This equation states an infinite number of ward identities, one for each ε on
the sphere. They relate any S-matrix element of initial and final states, to the same
S-matrix element with a soft photon inserted.

5.3.2 Mode Expansions

Next it can be shown that the Ward identity (Eq. 64), following from conserved charges,
is the same as the soft theorem in abelian gauge theory. We have until now defined
particles by the points at null infinity, they came in at, and used advanced and retarded
coordinates to derive conservation laws from antipodal matching conditions. We need to
rewrite the Ward identity in terms of a plane-wave basis, as traditionally used in QFT,
using a mode-expansion of Az.

Going back to standard Cartesian coordinates in MS:

ds2 = −dt2 + d~x · d~x (65)

Near I+, the gauge field, Aν , has the on-shell outgoing plane wave mode-expansion,
where q2 = 0:

Aν(x) = e
∑
α=±

∫
d3q

(2π)3

1

2ω

[
ε∗αν (~q)aout

α (~q)eiq·x + εαν (~q)aout
α (~q)†e−iq·x

]
(66)

with normalization condition of the polarization vectors εναε
∗
βν = δαβ and[

aout
α (~q), aout

β

(
~q′
)†]

= δαβ(2π)3 (2ωq) δ
3
(
~q − ~q′

)
(67)

being satisfied. Rewrite this using retarded coordinates, where the metric takes the form
(Eq. 34):

ds2 = −du2 − 2dudr + 2r2γzz̄dzdz̄ (68)

The null vector qµ, labelled by a point, w(z, z̄), on the sphere, and satisfying qµqµ = 0;
can be written as:

qµ =
ω

1 + zz̄
(1 + zz̄, z + z̄,−i(z − z̄), 1− zz̄) =

(
ω, q1, q2, q3

)
(69)
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At w = 0, we find qµ = ω(1, 0, 0, 1), a null vector pointing along the x3-axis. One can
also write the polarization vectors, orthogonal to qµ as:

ε+µ(~q) =
1√
2

(z̄, 1,−i,−z̄), ε−µ(~q) =
1√
2

(z, 1, i,−z), qµε
±µ(~q) = 0, εµαε

∗
βµ = δαβ

(70)

Considering the gauge field, A
(0)
z , in the future null infinity, I+, given by:

A(0)
z (u, z, z̄) = lim

r→∞
Az(u, r, z, z̄)

= − i

8π2

√
2e

1 + zz̄

∫ ∞
0

dω
[
aout

+ (ωx̂)e−iωu − aout
− (ωx̂)†eiωu

]
, x̂ = x̂(z, z̄)

(71)

A
(0)
z is expected to create and annihilate photons at (z, z̄), and furthermore rotating

about this point, it creates one photon helicity (negative), and annihilates the other
(positive), where Az̄ does the opposite. x̂ being a unit vector pointing at (z, z̄) on the
sphere.

The Ward identity involves a term ∂zN , so its mode-expansion is needed. First defining
(to be precise about the zero-momentum limit):

∂zN =
1

2e2
lim
ω→0+

∫ ∞
−∞

du
(
eiωu + e−iωu

)
F (0)
uz (72)

ensuring ∂z∂z̄N to be Hermitian (referring to the exponential terms). Using the above
equation for the gauge field, one finds the expansions:

∂zN = − 1

8πe

√
2

1 + zz̄
lim
ω→0+

[
ωaout

+ (ωx̂) + ωaout
− (ωx̂)†

]
(73)

The similar formula for ∂zN
− is given by:

∂zN
− = − 1

8πe

√
2

1 + zz̄
lim
ω→0+

[
ωain

+(ωx̂) + ωain
−(ωx̂)†

]
(74)

Considering the special case of which we have

ε(w, w̄) =
1

z − w
(75)

and using

∂z̄
1

z − w
= 2πδ2(z − w) (76)

to perform the LHS integral of the Ward identity, Eq. 64, it can be written as:

4π 〈f |
(
∂zNS − S∂zN−

)
|i〉 =

[
m∑
k=1

Qin
k

z − zin
k

−
n∑
k=1

Qout
k

z − zout
k

]
〈f | S |i〉 (77)
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Finally one can re-express the Ward identity as

lim
ω→0

[
ω 〈f |

(
aout

+ (ωx̂)S −Sain
− (ωx̂)†

)
|i〉
]

=
√

2e(1 + zz̄)

[
n∑
k=1

Qout
k

z − zout
k

−
m∑
k=1

Qin
k

z − zin
k

]
〈f | S |i〉

(78)

5.3.3 Soft Theorems

To show the final steps of recovering the standard soft theorem, one could rewrite the
z’s in terms of particle momenta; but the reverse is easier. We begin with the standard
soft photon theorem, attempting to recover the newly found Ward identity, Eq. 78, by
going from momentum space to points on a sphere (from plane waves to z’s). The soft
photon theorem can be written as:

lim
ω→0

[
ω 〈f | aout

+ (~q)S |i〉
]

= e lim
ω→0

[
m∑
k=1

ωQout
k pout

k · ε+

pout
k · q

−
n∑
k=1

ωQin
k pin

k · ε+

pin
k · q

]
〈f | S |i〉

= − lim
ω→0

[
ω 〈f | Sain †

− (~q) |i〉
]

(79)
with |i〉 =

∣∣pin
1 , . . . , p

in
n

〉
, 〈f | =

〈
pout

1 , . . . , pout
m

∣∣. The LHS annihilates a positive helicity
photon, and the RHS creates a negative helicity photon. The middle term dictates initial-
and final states, described by particles with momenta and charges - the Weinberg soft
factor.
qµ = (ω, ~q) is the soft photon momentum, and ω → 0 being the soft limit, where we
have a soft/Weinberg pole - and additionally a collinear pole, since q, p are null vectors.
Hence the pole-structure of the two equations agrees.
Writing the hard particle photons in terms of energy and a point on the sphere, as for
example: (

pin
k

)µ
= Ein

k

(
1,

zin
k + z̄in

k

1 + zin
k z̄

in
k

,
−i
(
zin
k − z̄in

k

)
1 + zin

k z̄
in
k

,
1− zin

k z̄
in
k

1 + zin
k z̄

in
k

)
(80)

Similarly for incoming q, and outgoing p and q. Substituting this into the soft photon
theorem, one reproduces the Ward identity. This result connects the soft photon theorem
to the large gauge symmetry of EM.

5.4 Feynman Diagrammatics

This section will review the standard field theory derivation of the leading photon- and
graviton soft theorems (in the form given by Weinberg).

5.4.1 Soft Photons

Starting with the soft photon theorem (see Eq. 79 in comparison), which states that any
S-matrix element with a soft photon added, is the original matrix element, multiplied
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by the soft qµ → 0 factor (with added corrections of order q0):

〈f | aout
+ (~q)S |i〉 = e

[
m∑
k=1

Qout
k pout

k · ε+

pout
k · q

−
n∑
k=1

Qin
k pin

k · ε+

pin
k · q

]
〈f | S |i〉+O

(
q0
)

(81)

Consider a scattering process with incoming and outgoing particles, then add one out-
going photon with momentum q, see Figure 12.

Figure 12: On the left is a Feynman diagram representing n → m scattering. On the
right, the effect of adding an outgoing soft photon (or graviton) with momentum q and
polarization ε is illustrated. In the upper diagrams the soft particle attaches to an
external propagator, while in the lower one it attaches to an internal propagator. The
figure is taken from [Str].

In the soft limit, the amplitude is a sum of terms, where the photon attaches to external
or internal lines. To compute this process, using the LSZ method; first compute the
time ordered Green’s functions, using Feynman iε prescriptions, and then amputate the
external legs. When attaching an additional photon to an external leg, which is ampu-
tated, only a vertex and propagator for the (external leg’s) particle needs to be added.
This is the only difference to the same diagram, but without the added external soft
photon.

Consider the interaction: The interaction vertex is Lint = −Aµjµ. The charge cur-
rent of a scalar field of charge Q is:

jµ = iQ (φ∂µφ
∗ − φ∗∂µφ) (82)
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For a plane wave, the charge current is: jµ ∼ 2Qpµ, when the normalization for single
particle states is: 〈

p | p′
〉

= 2ωp(2π)3δ3
(
p− p′

)
(83)

The propagator for a (single) scalar particle is:

−i
(p+ q)2 +m2

=
−i

p2 + 2p · q + q2 +m2
=
−i

2p · q
(84)

using the on-shell condition q2 = 0 and p2 = −m2, and its vertex factor ieεµ2Qpµ. So
the total contribution becomes:

ieεµ (2Qpµ)
−i

(p+ q)2 +m2
→ eQε · p

q · p
(85)

Thus for all outgoing and incoming (with minus signs) particles, the contribution is:

m∑
k=1

eQout
k pout

k · ε
pout
k · q

−
n∑
k=1

eQin
k pin

k · ε
pin
k · q

(86)

Internal propagators are never on-shell, so they do not contribute to the pole in the soft
limit. The soft factor shifts by:

m∑
k=1

eQout
k −

n∑
k=1

eQin
k = 0 (87)

when shifting εµ by qµ. The global charge conservation ensures that the soft factor
is gauge invariant. Works in the same way for charged particles, and not only scalars.

5.4.2 Soft Gravitons

To generalise to gravity, the interaction, and equations needed for gravity are:

Lint =
√

8πGhµνTµν ,

εµνq
µ = 0, εµνηµν = 0,

Tµν = ∂µφ∂νφ−
1

2
ηµν∂

ρφ∂ρφ

(88)

Tµν being the stress tensor (for a scalar field), and εµν being the polarization tensor for
gravitons. Same propagator as for photons −i

2p·q . The scalar interaction is Tµν ∼ 2pµpν .
The product of vertex and propagator becomes:

i
√

32πGεµνpµpν
−i

(p+ q)2 +m2
→
√

8πG
εµνpµpν
p · q

(89)

for one external particle. The soft factor is generally:

√
8πG

m∑
k=1

εµνpout
kµ pout

kν

pout
k · q

−
√

8πG

n∑
k=1

εµνpin
kµp

in
kν

pin
k · q

(90)
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Shifting εµν → εµν + Λµ(q)qν , the analogue of gauge invariance in the gravity case, the
soft factor shifts by:

Λµ

[
m∑
k=1

pout
kµ −

n∑
k=1

pin
kµ

]
= 0 (91)

due to global energy-momentum conservation.

5.5 Asymptotic Symmetries

So far it has been shown, that the derived conserved charges generate large gauge trans-
formations (see Section 5.2). This section will describe the asymptotic symmetries.
To find these symmetries, you have set of fields, where you specify how the components
fall off, as you go near null infinity. Then make the boundary conditions as strong as
possible, but without ruling out anything unreasonable. You often find gauge symme-
tries, which respect the boundary conditions, but behaves non-trivially at infinity, which
might lead to acting non-trivially on the Hilbert space (quantum case). For the gravity
case, this analysis lead to discovering the BMS group, which includes supertranslations
(retarded time shifted by an arbitrary function on the sphere). “It is an art and not a
science” - from [Str] p. 34.
An asymptotic symmetry group (ASG) is defined as the allowed gauge/local symmetries,
divided by the trivial ones:

ASG =
allowed gauge symmetries

trivial gauge symmetries
. (92)

The allowed are the ones, that respect the boundary conditions, where the trivial ones
act trivially on (do not change) the physical data.
With the intent of covering the Poincaré group in general relativity, considering asymp-
totically flat space-time, at spatial infinity, Bondi, van der Burg, Metzner and Sachs
showed the ASG to be the BMS (Bondi-Metzner-Sachs) group, containing the Poincaré
group as a subgroup, but with an additional infinity of generators, the supertranslations.
This implies that GR does not reduce to special relativity for weak fields at long dis-
tances.
Another example is Brown and Henneaux, taking a 3D anti-de Sitter space, with weak
enough boundary conditions to allow all the black hole solutions. They found that the
ASG/asymptotic symmetry algebra were two copies of the Virasoro algebra.

In electrodynamics (gauge theory), one must look at the boundary conditions of I−
and I+, and derive the asymptotic behaviour from the field equations. Consider a
sphere at large r. Its surface area grows like r2; thus, for the energy flux at any time to
be finite, we must have Tuu ∼ O( 1

r2 ), where the 1
r2 comes from inverting the metric on

the sphere (with radius r). We also have the relation:

Tuu ∼ FuzFuz̄
γzz̄

r2
+ . . . (93)
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This, and Fur being the long range electric field, suggests:

Fuz ∼ O(1), Fur, Fzr ∼ O
(

1

r2

)
(94)

Thus, the boundary fall-off conditions for the gauge fields must be:

Az ∼ O(1), Ar ∼ O
(

1

r2

)
, Au ∼ O

(
1

r

)
(95)

which allows all initial data. The allowed gauge transformations are therefore:

δAz = ∂zε, δAu = ∂uε, δAr = ∂rε (96)

being consistent with:

ε = ε(z, z̄) +O
(

1

r

)
(97)

This suggests the non-trivial large gauge transformations are generated by functions,
ε, dependent on (z, z̄), and not u. This is the electrodynamic analogue of the BMS
transformations of gravity theory.

5.6 Massive QED

This subsection will generalise the previous results to massive particles. For a massless
field, time-like infinity is not important. A massive particle on the other hand, never
makes it to null infinity (they go from i− and asymptote to i+). How does a gauge
transformation/charge act on a particle, that doesn’t make it to null infinity? We have
found the hard charge action on asymptotic massive states, which then let us transform
into momentum space to reproduce the soft theorem.
We need to extend the asymptotic gauge parameter ε(z, z̄) from null-infinity into the
bulk interior of MS and i±. It is convenient to use Lorentz gauge, ∇µAµ = 0, implying
that the gauge parameter satisfies �ε = 0, as δAµ = ∂µε. The boundary condition is
that the gauge parameter asymptotes to a specific function, ε(z, z̄), on I+. It has the
general solution (that approaches ε(z, z̄)):

ε(x) =

∫
d2q̂G(x, q̂)ε(q̂) (98)

where the point on the asymptotic sphere is parametrized by a unit vector q̂, pointing
towards (z, z̄). The Green’s function, G, satisfying properties of the massless scalar wave
equation, is:

�G(x, q̂) = 0, lim
r→∞

u→ fixed

G(x, q̂) = δ2(x̂− q̂) (99)

with solution:

G(x, q̂) = −
√
γ(q̂)

4π

xµxµ
(q · x)2

(100)
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where qµ = (1, q̂) and
√
−g = r3√γ, with γ being the inverse metric on the unit sphere

S2. The properties are showed by:

�G(x, q̂) = −
√
γ(q̂)

4π
∂ν

[
2xν

(q · x)2
− 2xµxµ

(q · x)3
qν
]

= −
√
γ(q̂)

4π

[
8

(q · x)2
− 4

(q · x)2
− 4

(q · x)2
+

6xµxµ
(q · x)4

q2

]
= 0,

G(x, q̂) =

√
γ(q̂)

4π

u(u+ 2r)

[u+ r(1− q̂ · x̂)]2

(101)

The second property being G given in retarded coordinates, for which it diverges if q̂ = x̂
and vanishes if q̂ 6= x̂, for large r. In the limit of I− (r →∞), keeping v = u+2r = const,
G localises to the point q̂ = −x̂; implying that the large gauge parameter in the I− is
antipodally related to one, in the I+ limit. This antipodal map is required by Lorentz
invariance, since the gauge chosen is invariant.

5.6.1 Hyperbolic Slicing

Now we want to find the limit of the bulk gauge parameter onto i+, by introducing a new
set of coordinates. The retarded and advanced coordinates are good near null infinity,
but not near past- and future timelike infinity, i∓. That’s why one can use hyperbolic
slicing of MS, with slices labelled by the coordinate:

τ2 = −xµxµ = t2 − r2 (102)

which is invariant under boosts about the origin (it doesn’t change τ). It maps about
the origin as showed in Figure 13.
So surfaces of fixed τ , are mapped into themselves. These surfaces are Euclidean AdS3

or H3 (hyperbolic three-space), for τ2 > 0, and for τ2 < 0, the surfaces are 3D dS3. So
to study time-like infinity, one should study these AdS3 slices, and for spatial infinity,
one should study the dS3 slices. We define the parameter:

ρ =
r√

t2 − r2
(103)

as a radial coordinate on the H3 slices, where τ labels the slices. The Minkowski metric
in these new coordinates takes the form:

ds2 = −dτ2 + τ2

[
dρ2

1 + ρ2
+ ρ2dΩ2

2

]
(104)

The metric on the τ = const hypersurfaces are Euclidean AdS3 (H), which has sym-
metry group SL(2,C). These Lorentz transformations thus act on each of these slices,
mapping them into themselves. One can rewrite the Green’s function, in terms of the
new coordinates:

G(τ, ρ, x̂; q̂) =

√
γ(q̂)

4π
[√

1 + ρ2 − ρq̂ · x̂
]2 (105)
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Figure 13: Hyperbolic slicing of Minkowski space. The slices correspond to constant
τ2 = t2 − r2 surfaces. The red lines correspond to H3 slices and have τ2 > 0, whereas
the blue lines correspond to the dS3 slices with τ2 < 0. The figure is taken from [Str].

which is known in context of AdS3, and is called the (3D) bulk-to-boundary propaga-
tor (for a massless scalar), relating quantities on boundaries, to those in the bulk. τ
has dropped out of the equation (∂τG = 0), implying that the gauge parameter is τ -
independent (∂τε = 0). Hyperbolic slicing is thus really useful, as we see the holographic
structure of AdS3 in MS.
Considering a particle with constant momentum and which follows a trajectory, ~r =
1
E ~pt+ ~r0 for a fixed ~r0, as illustrated in Figure 14.

Figure 14: Hypersurfaces of constant ρ are shown in green. The grey line is the worldline
of a massive particle moving at constant velocity. The worldline of a particle asymptotes
to a surface of constant ρ as τ →∞. The figure is taken from [Str].
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We are interested in the phase associated to a such particle. Before we took our charges
and surface integrals, and extended them as bulk-integrals near time-like infinity, but
didn’t consider the endpoints (nothing’s up there). To have a closer look at the endpoints
of time-like infinity, we take a slice at constant τ , and take a limit by letting τ → ∞.
For a massive particle we have m2 = E2− ~p2 and ~x = ~pt

E , and (τ , ρ and x̂) are given by:

ρ = r√
t2−r2

=
| 1E ~pt+~r0|√

t2−( 1
E
~pt+~r0)

2
,

τ =
√
t2 − r2 =

√
t2 −

(
1
E ~pt+ ~r0

)2
,

x̂ = ~r
r = ~pt+E~r0

|~pt+E~r0| ,

ρ2 = r2

t2−r2 =
|~p|2t2

E2

t2− |
~

p|2t2
E2

= ~p2

E2− ~p2
= ~p2

m2

(106)

At late times, t→∞, we have

ρ→ |~p|
m
, τ → m

E
t, x̂→ p̂ (107)

with p̂ = ~p
p . In Figure 14, is shown the hypersurfaces of constant ρ, and it illustrates

that any particle moving with constant velocity, asymptotes to one of these lines. The
gauge transformation (parameter), ε, is constant along these lines, so in this gauge, it
is known what kind of phase such particle should have; eiQε(ρ,q̂). The hard part of the
large gauge charge is thus:

Q+H
ε |~p〉 = Qε

(
|~p|
m
, p̂

)
|~p〉

= Qε(z(p1), z̄(p1)) |~p〉
(108)

The action of the large gauge charge on a massive particle is thus proportional to the
Lorenz gauge value of the gauge parameter, at the point (of H3), where the massive
particle asymptotes to.

Looking back on Section 2, the following will be useful to reflect upon:
The H3 (Euclidean AdS3) hypersurfaces, and the 3-dimensional de Sitter space dS3,

from hyperbolic slicing of MS (when discussing massive QED), has isometry group
SL(2,C) - a group of Lorentz transformations mapping the slices into themselves.

The 4D SL(2,C) Lorentz invariance acts as the global 2D conformal group on the
celestial sphere CS2 (useful when rewriting the 4D Minkowski S-matrix into a 2D cor-
relator on CS2).

Other than that, SL(2,C) is the global conformal group of the two-sphere S2 (rep-
resenting points on the past- and future null infinity boundary, I±).

5.6.2 Soft Theorem

One can use this result to derive the Ward identity, which turns out to agree with the
Weinberg soft theorem. The derivation is similar to the massless case, but the action of
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the charges on the initial and final states (Eq. 62 and 63), now has an extra term from
massive states, such that:

〈f |Q+
ε = −2

∫
d2w∂w̄ε 〈f | ∂wN

+
∑

k∈ massless

Qkε (zk, z̄k) 〈f |+
∑

k∈ massive

Qkε

(
|~pk|
mk

, p̂k

)
〈f |

(109)
and the Ward identity becomes:

−2

∫
d2w∂w̄ε∂w 〈f |

[
N(w, w̄)S − SN−(w, w̄)

]
|i〉

= −

[ ∑
k∈ massless

Qkε (zk, z̄k) +
∑

k∈ massive

Qkε

(
|~pk|
mk

, p̂k

)]
〈f | S |i〉

(110)

Using the same procedure as for Eq. 77 (set ε(w, w̄) = 1
z−w ), one will find:

√
2

1 + zz̄
lim
ω→0+

[ω 〈f | a+(ωx̂(z, z̄))S |i〉]

= e

[ ∑
k∈ massless

Qk
z − zk

+
∑

k∈ massive

Qkε

(
|~pk|
mk

, p̂k

)]
〈f | S |i〉

(111)

Finally using G

(
|−→pk|
m , p̂k;w, w̄

)
= 1

2π∂w̄

[ √
2

1+ww̄
pk·ε+
pk·q̂

]
, one finds:

ε

(
|−→pk|
m

, p̂k

)
=

∫
d2wG

(
|−→pk|
m

, p̂k;w, w̄

)
1

z − w
=

√
2

1 + zz̄

pk · ε+(z, z̄)

pk · q̂(z, z̄)
(112)

which can then be plugged back into the Ward identity (Eq. 111) to obtain the soft
photon theorem for massive charged particles in the form of Eq. 81.

5.7 Magnetic Charges

A pole occurring, when a soft photon is attached to an external leg in a scattering
process, leads to corrections (using LSZ). One can use electromagnetic duality transfor-
mations to find these corrections for the magnetic charges.
There are conservation laws for magnetic charges, just as for the electric charges. Some-
thing like Q̃+

ε =
∫
I+
−
εF = Q̃−ε can be showed for the magnetic charges (by antipodal

continuity of the magnetic field). This implies a new set of symmetries. It turns out
to be the exact same set, as the infinite set of electric conservation laws; but in the
usual electric theory, these symmetries cannot be understood as a nontrivial subgroup
of the usual electric gauge symmetry - and vice versa if we write in a magnetic form.
Asymptotic symmetries act simply, and are most naturally characterised in terms of

37



their action on the Hilbert space, described in the asymptotic region at null infinity.
Not all asymptotic symmetries arise as a nontrivial subgroup of some manifest gauge
symmetry.

One needs a theory that exists non-perturbatively; and QED, reigning over photons
and electrons, does not exist non-perturbatively due to the Landau pole. We need a
bigger theory, which often contain magnetic monopoles. We hope to see, that the soft
photon theorem is corrected, when magnetic monopoles are present in the asymptotic
states.
Consider a scattering process, where we create a monopole with magnetic charge g, so
there is going to be some coupling to the photon (see Figure 15), as moving monopoles
radiate their electromagnetic objects. One can use the LSZ method to truncate external
lines, to get a propagator 1

p·q times a vertex factor as corrections to the soft theorem.

Figure 15: Feynman diagram with photon coupling to an external leg of a scattering
process with a magnetic monopole.

Consider the perturbative electric soft factor:

Sα0 =
∑
k

eQkpk · εα

q · pk
(113)

Consider a theory with magnetic monopoles; we have point particles with charges:

Mk =
1

2π

∫
S2
k

F (114)

This is an integral over the two-sphere surrounding the charge. The pole in the soft
factor is unchanged, so we only need to determine the vertex factor. Thus we transform
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to dual variables (field strength, coupling constant, and electric and magnetic charges):

F̃ = −2π

e2
∗ F, ẽ =

2π

e
, Q̃k =

1

ẽ2

∫
S2
k

∗F̃ = Mk, M̃k =
1

2π

∫
S2
k

F̃ = −Qk (115)

where the duality interchanges the electric and magnetic charges as (Q̃k, M̃k) = (Mk,−Qk).
New electric charges are equal to old magnetic charges, and new magnetic charges are
equal to minus the old electric charges. The magnetic charges couple to the dual electric
field, the same way the electric charges couple to the original electric field. The dual
gauge potential couples to magnetic charges as:

F̃ = dÃ = −2π

e2
∗ dA (116)

as the usual gauge potential does to electric charges F = dA, A = eεαe
iq·x. The

polarization is related as:

Aµ(q) = eεαµ(q), Ãµ(q) = ẽε̃αµ(q) (117)

or Ã = ẽε̃αe
iq·x. Thus the correction by the magnetic charges, to the soft formula must

be:

Sα0 =
∑
k

pk · (Qkeεα +Mkẽε̃
α)

q · pk
(118)

(for final states). It can be checked that the formula is invariant under electric-magnetic
duality. Writing out the duality transformations in retarded coordinates near future null
infinity, the expansions become:

F̃
(0)
zz̄ =

2πi

e2
γzz̄F

(2)
ru , F̃ (2)

ru =
2πi

e2
γzz̄F

(0)
zz̄ , F̃ (0)

uz =
2πi

e2
F (0)
uz (119)

implying:

Ã(0)
z =

2πi

e2
A(0)
z (120)

corresponding to the radiative mode of the EM field with one polarization - transversely
polarized, near null infinity. This implies that the duality transformation is just a mul-
tiplication by i - a phase shift by π

2 , which is equivalent to exchanging the two fields (a
90 degree phase shift).
The soft factor for positive helicity is thus written as:

Sα0 =
∑
k

(
eQk + 2πi

e Mk

)
pk · ε+

q · pk
(121)

For opposite helicity, a combination of eQk + 2πi
e Mk appears instead.

The outgoing magnetic charge (on I+) is defined by:

Q̃+
ε =

1

2π

∫
I+
−

εF =
i

2π

∫
I+
−

d2zεF
(0)
zz̄ (122)
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Using the Lorentz invariant matching condition:

F
(0)
zz̄

∣∣∣
I+
−

= − F (0)
zz̄

∣∣∣
I−+

(123)

which implies:

Q̃+
ε = Q̃−ε = − i

2π

∫
I−+
d2zεF

(0)
zz̄ (124)

states that outgoing charges (on I+) are equal to incoming charges on I−.
Thus there is a second infinity of conserved charges, when adding magnetic charges.

What is the associated symmetry to these conserved charges? In the electric case, we
constructed Dirac brackets and computed the action of the charge on the fields (assumed

that F
(0)
zz̄ vanished at I+

± , which cannot be done when magnetic charged particles are
present). Computing the Poisson/Dirac brackets with magnetic charges present, with
the same boundary conditions is not canonically shown.
Duality covariance gives an obvious guess for what symmetries these charges should gen-
erate; transformations under which Ã shifts by ∂zε. One can figure out the commutator
of the magnetic charges with the electric potentials Az, using Eq. 120. These magnetic
gauge transformations on the dual gauge fields should thus be:

δ̃εÃ
(0)
z = ∂zε,

δ̃εA
(0)
z = − ie

2

2π
∂zε

(125)

the gauge potential is transforming as the electric gauge field, but with an imaginary
gauge parameter ε̃ = − ie2

2π ε, and the original real U(1) symmetry has been enhanced
to a complex U(1) symmetry. This complexification of the gauge group, enables one to
find the electric- and magnetic gauge symmetry on the asymptotic fields, simultaniously
and locally. The Ward identity of this complexified large gauge symmetry is precisely
the full nonperturbative electric and magnetic soft photon theorem.
The large electric transformations/symmetries can be thought of as a non-trivial sub-
group of the gauge group symmetry, but the magnetic symmetries can not. There might
be a lot of asymptotic symmetries (acting nicely on asymptotic infinity), which could be
understood as subgroups of some bulk gauge symmetry - however, it is not true for all.

6 Celestial Correlator and Non-abelian Gauge Theory (S)

6.1 The S-matrix as a Celestial Correlator

So far, the convention used for describing scattering, has been the conventional descrip-
tion of an S-matrix mapping an incoming- (initial) to an outgoing (final) Hilbert space.
The Hilbert spaces are described as asymptotic, non-interacting energy-momentum eigen-
states. However an alternate description can be used, namely that the scattering is a
type of correlation function on the sphere, as illustrated in Figure 16 - which can be
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Figure 16: The 4D Minkowski S-matrix, written as a 2D correlator on the celestial
sphere. The dashed line on CS2 separates regions associated with incoming- and outgo-
ing particles. The figure is taken from [Str].

more convenient, both computationally and conceptually.
To be put more explicit; the 4D Minkowski S-matrix for any given theory, can be written
as a 2D correlator on the celestial sphere CS2, parametrized by the asymptotic angle
(z, z̄) on I.
Incoming and outgoing massless particles are respresented by operators at the loca-
tion, where they enter I− and exit I+, with the operators being labelled by quantum
numbers, such as energy. The angles on past- and future null infinity are antipodally
identified, such that free massless particles enters and exits at the same point on the
celestial sphere. The 4D SL(2,C) Lorentz invariance acts as the global 2D conformal
group on CS2.

Continuing the massless case, the incoming (in) and outgoing (out) massless particles
are labelled by operators:

Ok(z, z̄) (126)

where the parameter

z =
x1 + ix2

r + x3
(127)

denotes a point on the sphere at I±, where a paticle of type k enters or exits the
spacetime. Massive particles however, as discussed in Section 5.6, enter and exit time-
like infinity i±, at a definite point on the hyperboloid H3 (in Eq. 107), corresponding
to operators that are smeared on CS2, with weighting given by Eq. 105. Alternatively,
the boost-eigenstate wave functions for massive particles, can be associated to a point
on CS2, by using the bulk-to-boundary propagator on H3.
One can thus express the n-particle scattering amplitudes in the form of a celestial
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correlator on CS2 as:

〈f | S |i〉 → 〈O1 (z1, z̄1) · · · On (zn, z̄n)〉 . (128)

The S-matrix is simply rewritten in a different notation. We have switched to a conven-
tion, in which the sum of the four-momentum is zero, rather than the difference between
the in- and out four momentum. As we are interested in Lorentz invariant theories, we
write down how the 4D Lorentz symmetry, SL(2,C), acts on the celestial sphere:

z → az + b

cz + d
, ad− bc = 1 (129)

SL(2,C) is the global conformal group of the two-sphere. In QFT, scattering amplitudes
must transform covariantly under the Lorentz group. Hence, these correlation functions
must transform covariantly under the global conformal group SL(2,C), and must look
a lot like the correlation functions in a 2D conformal field theory (CFT) on the sphere.
This becomes more clear, when the external particle wave functions, instead of being
traditional plane waves, are taken to be SL(2,C) primaries, labelled by their conformal
dimensions and location on CS2.

For quantum gravity, with issues involving IR finite quantum anomalies, the global
conformal group gets enhanced to the full local conformal group z → w(z), appearing
in 2D CFT. This could place constraints on the structure of scattering amplitudes. One
may also attempt to find a 2D CFT whose correlators on CS2 reproduce the S-matrix
of a four-dimensional quantum theory of gravity, which would provide a microscopic
realization of the holographic principle in 4D flat space quantum gravity (or flat space
holography).
If the QFT can be coupled to gravity, it suggests the celestial correlators are those of
a 2D CFT. As an example, the tree-level celestial correlators involving soft gluons are
those of a non-abelian two-dimensional Kac-Moody algebra.

6.2 Non-abelian Gauge Theory

Turning to the soft gluon (an exchange particle/gauge boson for the strong force between
quarks) theorem, which applies to theories with a non-abelian gauge group G. This the-
ory has (quantum) corrections at the loop level, that are related to the running of the
gauge coupling in the IR, affecting the coupling constants in front of the hard part of
the charges. But even in N = 4 Yang-Mills theory, where the coupling does not run,
there are one-loop exact corrections to the soft gluon theorem.

Soft theorems are important for controlling IR divergences, and getting IR finite inclusive
cross sections. The missing uncorrected quantum soft theorem in the non-abelian case,
is related to the fact that there is no known unitary S-matrix for quantum non-abelian
gauge theories.
One can define finite inclusive cross sections with an IR cutoff, which is acceptable for
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most experimental applications, as they have an IR cutoff due to limits on detector
sensitivity. It is a problem, e.g. for the (theoretical) studies of N = 4 YM scattering
amplitudes (which do not exist). Understanding the IR symmetries might enable a con-
struction of a finite unitary S-matrix or a suitable replacement.

In this section we will stick to tree level for the non-abelian case, by using the for-
malism of celestial correlators. In this formalism, the scattering of a soft gluon becomes
the insertion of a current into a correlation function on CS2.
It will be shown that this current obeys the Ward identities of a G-current algebra, giv-
ing an alternative representation of the asymptotic symmetry group. Furthermore, the
infinity of non-abelian conserved charges will be constructed.

6.2.1 G-Kac-Moody Algebra

Using said formalism, the asymptotic particles are represented by the operators Ok (the
k’th representation of the non-abelian gauge group G) on the celestial sphere, and the
scattering amplitudes expressed by celestial correlators can be written as:

〈f | S |i〉 = 〈O1 (E1, z1, z̄1) · · · On (En, zn, z̄n)〉 . (130)

with En being the energy of the n’th particle. The generators of the gauge group, T a,
in the adjoint representation, of G satisfy:[

T ak , T
b
k

]
= ifabcT ck (131)

where the fabc are the real, completely antisymmetric structure constants, normalized
as:

facdf bcd = δab = tr
[
T aT b

]
(132)

where the trace is over the suppressed color index.
The field strength, constructed from the gauge field Aµ = AaµT a, is written as:

Fµν = ∂µAν − ∂νAµ − i [Aµ,Aν ] = FaµνT a (133)

and obeys EOM:
∇νFνµ − i [Aν ,Fνµ] = g2

YM j
M
µ (134)

with gYM being the gauge (or Yang-Mills) coupling, and jM the matter color current.
The non-abelian gauge transformations act on the gauge- and matter fields as:

δεAµ = ∂µε− i [Aµ, ε] , δεφk = iεaT ak φk, δεj
M
µ = −i

[
jMµ , ε

]
(135)

Near future null infinity, the gauge field has the large-r expansion, just as in the abelian
case:

Az(u, r, z, z̄) = Az(u, z, z̄) +O
(

1
r

)
Ar(u, r, z, z̄) = 1

r2Ar(u, z, z̄) +O
(

1
r3

)
Au(u, r, z, z̄) = 1

rAu(u, z, z̄) +O
(

1
r2

) (136)
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where the field strength has the expansion:

Fur =
1

r2
Fur +O

(
1

r3

)
, Fuz = Fuz +O

(
1

r

)
, Fzz̄ = Fzz̄ +O

(
1

r

)
, (137)

with the leading components given by:

Fur = ∂uAr +Au, Fuz = ∂uAz, Fzz̄ = ∂zAz̄ − ∂z̄Az − i [Az, Az̄] (138)

The gauge field expansions (asymptotics) allow large gauge transformations to be in-
finitesimally generated by:

δεAz(u, z, z̄) = Dzε(z, z̄) (139)

The scattering problem becomes well defined if we impose the antipodal boundary con-
dition:

Az|I+
−

= Az|I−+ (140)

along with Fru|I+
−

= Frv|I−+ . This is preserved by large gauge transformations, provided:

ε(z, z̄)|I+
−

= ε(z, z̄)|I−+ (141)

Hence, given any one solution of the scattering problem, infinitely more may be generated
by acting on both the initial and final data with such a transformation. As in the abelian
case, the infinity of conservation laws is an immediate consequence of the need for a
matching condition.
In this notation, the tree-level non-abelian soft theorem can be written as:

〈O1 (p1) · · · On (pn)Oa(q, ε)〉U=1 = gYM

n∑
k=1

pk · ε
pk · q

〈O1 (p1) · · ·T akOk (pk) · · · On (pn)〉U=1+O
(
q0
)

(142)
where the U = 1 is for assuming a flat color connection on the sphere, with color
connection Az = U−1∂zU with U ∈ G on the S2.
We have n incoming (and outgoing) particles, and a gluon on the (n+1) spot, represented
by the soft gluon operators Oa(q, ε) (with momentum q, color index a, and polarization
ε). On the RHS, the k’th particle is acted on by the gauge group generator.
A pair of quarks near I+, which were initially in a color singlet, will generically not be
a singlet at late times, as the color frame changes. This is the “color memory” effect.
The soft gluon operator at I± is defined as:

Nz =

∫ ∞
−∞

duFuz = Az|I+
+
− Az|I+

−

N−z =

∫ ∞
−∞

dvF−vz = A−z
∣∣
I−+
− A−z

∣∣
I−−

(143)

We define soft gluon current as:

Jz = − 4π

g2
YM

(
Nz −N−z

)
(144)
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One can now take these new operators, which involved integrals over time, and rewrite
them in terms of creation and annihilation operators to create this current. Then trading
the momenta pk for zk, and q for z, the soft theorem can be rewritten as:

〈JazO1 (z1, z̄1) · · · On (zn, z̄n)〉U=1 =

n∑
k=1

1

z − zk
〈O1 (z1, z̄1) · · ·T akOk (zk, z̄k) · · · On (zn, z̄n)〉U=1

(145)
This is in 2D CFT the formula for a Kac-Moody current into a correlation function, or
the Ward identity of a holomorphic Kac-Moody symmetry.
Now we multiply both sides of the formula by ε, and integrate over some arbitrary
contour, C in the sphere. Let’s consider the weighted integral of the current around said
contour on CS2:

JC [ε] =

∮
C

dz

2πi
tr [εJz] (146)

with ε(z) being a holomorphic function in the interior of the contour. Inserting these
operators (which generates gauge transformations ε inside the contour), one obtains:

〈JC [ε]O1 · · · On〉U=1 =
∑
k∈C
〈O1 · · · εa (zk)T

a
kOk · · · On〉U=1 (147)

with εk = εaT ak . This Ward identity relates U = 1 amplitudes to the more general case.
Consider an infinitesimal change in the flat connection:

δU(z, z̄) = iε(z, z̄) + . . . (148)

choosing ε = 0 outside of the contour. The change in the correlator is thus simply given
by a large gauge transformation of the operators themselves:

δε 〈O1 · · · On〉U=1 ≡ 〈O1 · · · On〉U=1+iε − 〈O1 · · · On〉U=1

= i
∑
k∈C
〈O1 · · · εa (zk)T

a
kOk · · · On〉U=1

= i 〈JC [ε]O1 · · · On〉U=1

(149)

and this relation can be characterized by:

JC [ε] =

∫
RC

d2zγzz̄ε
a δ

δUa
(150)

Thus, an insertion of JC will generate locally holomorphic large gauge transformations
on the boundary, which are characterized by a general flat connection Az = U−1∂zU .

6.2.2 Conserved Charges

We could have also formulated this problem as an infinity of charged conservation laws.
Defining the charge:

Q+
ε =

1

g2
YM

∫
I+
−

tr[ε ∗ F ] (151)

45



integrating it by parts, and writing it as an integral over I+, the final expression will
contain a soft and hard term Q+

ε = Q−ε = Q+S
ε +Q+H

ε , and the soft term will be related
to the current by:

JC [ε] = Q−Sε −Q+S
ε (152)

This operator generates transformations on anything inside the contour.

7 The B.M.S. Group (P)

In this section I will focus on the attempt of finding the BMS group, by the approach of
Penrose. In Section 9, I will explain, how Strominger went about his method, and then
compare the two approaches in Section 11.

The generators of I± has a conformal structure, which is essential for the definition
of the BMS group. The definition of asymptotic flatness states, that a conformal in-
finity I exists with the described structure as in Section 3.9. This is ensured by weak
asymptotic simplicity and the Einstein-Maxwell equations (with no cosmological term)
holding near I.

7.1 Group of Symmetries of Conformal Infinity

In special relativity (SR), the Poincaré group is the group of symmetries of MS, preserv-
ing its metric structure. In general relativity (GR) no such group arises, as the group of
symmetries of a general space-time (the ‘general coordinate group’, being the group of
diffemorphisms of the space-time, only preserves smoothness). Restricting to an asymp-
totically flat space-time, the new concept of an asymptotic symmetry group arises. The
asymptotic symmetry group, the BMS group (by Bondi, Metzner, and Sachs), was de-
fined as the group of transformations between asymptotically flat coordinate systems of
a certain type.

Consider MS; transformations belonging to the Poincaré group are metric preserving,
hence conformal. They thus induce transformations of I to itself, which also are con-
formal, as I remains invariant. Thus the Poincaré group is the group of conformal
symmetries, of Minkowski conformal infinity.

Let’s take the group of conformal symmetries of conformal infinity I of an asymptoti-
cally flat space-time, as an example.
What structure of I is to be preserved by transformations of this group? Its inner confor-
mal metric is too weak a structure, as I is a null hypersurface. Distances along generators
of I are zero, and their ratios cannot be assigned. The group of self-transformations of
I, preserving the weak inner conformal metric, have some significance as an asymptotic
symmetry group. It is larger than the BMS group, and is referred to as the Newman-Unti
group. To aquire the BMS group, one needs to strengthen the structure of I.
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7.2 The Inner Conformal Metric of I

First we want to examine the nature of the inner conformal metric of I, and the self-
transformations preserving it.
Asymptotically flat space-times, M , described as a disjoint union of two smooth hyper-
surfaces I±; with I− consisting of past endpoints of null geodesics in M , and I+ of
future endpoints. The topology of I± is S2 × R, where the R’s are the null geodesic
generators of I± - they are shear-free, ie. they establish a conformal mapping between
any two S2 cross-sections of either I− or I+.
Theorem: Any conformal 2-surface with the topology of a sphere S2, is conformal to
the unit 2-sphere in Euclidean 3-space.
One can thus assume Ω to be chosen, such that the cross-section S of I+ has the (un-
physical/rescaled) metric dŝ2 of a unit 2-sphere. Given one Ω, one can make the choice
Ω′ = θΩ, which also vanishes at I; with a non-zero gradient. With θ being an arbitrary
smooth, positive function on I - one can rescale the metric on I as pleased. One can
also use this to scale dŝ along every generator of I+, such the divergence of the gener-
ators vanishes. Hence, a continuous succession of cross-section of I+ can have metrics
agreeing with S, mapped along the generators. One can thus assign the metric of I+ to
be:

dl2 = −dŝ2 = dθ2 + sin2 θdφ2 + 0.du2, (153)

with θ, φ being spherical polar coordinates for S and are constant along generators of
I+. u is the parameter defined along each generator of I+, for where surfaces u = const
are cross-sections of I+. Every cross-section, given by u = f(θ, φ) of I+, has the metric
of a unit 2-sphere. The same story goes for I−, but with v instead of u.

7.3 Group of Self-Transformations, Preserving its Inner Conformal
Metric

Now consider the group of self-transformations of I+, preserving its inner metric. Any
smooth transformation of I+ to itself, sending each generator into itself (while preserving
the orientation on each generator) is allowed. These are given by:

θ → θ, φ→ φ, u→ F (u, θ, φ), (154)

F being smooth, with ∂F
∂u > 0. The metric (Equation 153) is unchanged. One can also

allow conformal transformations of the (θ, φ)-sphere to itself (C(2)).
Introducing variable shift ζ = eiφ cot

(
θ
2

)
, the metric becomes (see Equation 5):

dl2 =
4dζdζ̄

(1 + ζζ̄)2
+ 0.du2 (155)

The conformal maps of the sphere are given by (see Equation 6);

ζ → ζ̃ = f(ζ) =
αζ + β

γζ + δ
, (156)
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Thus the general (Newman-Unti) transformations take the form:

ζ → αζ + β

γζ + δ
, u→ F (u, θ, φ), (157)

with ∂F
∂u > 0. This is called the Newman-Unti group.

There is a lot of freedom in the function F , that we want to reduce. One can as-
sign more geometrical structure to I+. The preservation of this additional structure
reduces the freedom in F to a function of only θ, φ; and one will then obtain the BMS
group.

7.4 Geometrical Interpretation of a Point of I

Assume M is MS; each point p of I+ is associated with a null-hyperplane π in M . Every
generator of π is a null geodesic, attaining the same future end-point p on I+. π can
be physically interpreted as the constant phase hypersurface in a plane-wave, parallel
to null hyperplanes/phase hypersurfaces belonging to the same plane-wave. They will
terminate at other endpoints on I+, but the totality for these points will constitute the
generators γ of I+ through p (of given plane wave/null direction in MS). Parallel null
geodesics will terminate on I+ at points of one generator of I+.
Different null geodesics through p (apart from γ) are the generators of π. For fixed π,
the space of generators has the structure of an Euclidean plane E2, as any cross section
of π has the intrinsic metric of an Euclidean plane; the projection along generators of π
maps these planes isometrically.

In the neighbourhood of p, the null geodesic generates the past light cone of p. One
can see the Euclidean structure, if we take a parabolic section of the past null-cone of p,
by null 3-plane near p, parallel to γ - see Figure 17 .
This is essentially the same situation as in Figure 4. (E2 planes are conformally related
to the unit sphere S2, established through generators ν). The −dŝ2 metric is that of a
Euclidean plane, conformal to E2.
One can refer to the E2 structure of the generator space of π, to tangent space to I+

at p. Any generators ν of π (null geodesics through p) is associated with a 2-plane
element at p, spanned by directions γ, ν at p. γ is normal to I+ at p, so the orthogonal
complement is also a 2-plane element, N , tangent to I+ (with no direction in γ); and is
characterised by it being tangent to I+ and orthogonal to ν.
Thus the tangent 2-planes to I+ can be used to represent null geodesics in M (no matter
if M is flat, curved or asymptotically flat).

Consider a 3-plane element at p, containing the direction γ; intersections with the null
cone at p gives a 1D system of null geodesics in π - with M being MS, this corresponds
to a straight line in E2. The orthogonal complement is a line-element at p, tangent to
I+ (with no direction γ).
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Figure 17: The Euclidean plane being embedded as a parabolic section of a null cone.
The null hyperplane, π, becomes the past light cone of p. The generator, ν, is represented
by an orthogonal 2-plane, N , tangent to I+ at p. The figure is taken from [Pen74].

Thus line-elements at p represent straight lines in E2. Directions tangent to I+ at p
represent oriented straight lines in E2.

7.5 Geometrical Interpretation for an Asymptotically Flat M

For an asymptotically flat M , the past light cone of a point p on I+ (the locus of a null
geodesic in M , terminating at p) is a null hypersurface. π in M , being an asymptotic
plane in the future, is a constant phase hypersurface of an outgoing asymptotic plane
wave, where different constant phase hypersurfaces for one wave, will be the past light
cones with vertices on one generator of I+. However cross-sections of π are not Eu-
clidean planes now, and different cross-sections are not isometric with one another. But
taking the limit of these cross-sections, as they recede/go to the future, one can recover
an exact Euclidean plane E2 to represent the space of generators of π (see Figure 17).
Parabolic sections of cones of p are considered to be in the tangent space at p - thus one
can get an exact E2 structure, by taking the cone as close to I+ as possible/pleased. In
tangent space, the parabolic section is given by equation x̂an̂a = −1, with x̂a being
the position vector of a point on the section (obeying x̂ax̂bĝab = 0, so it lies on the null
cone), and the null vector n̂a (See last part of Section 3.9) is given by n̂a = −∇̄aΩ at p.

Now consider a point p′ on π lying in the remote future along π, and just to the past of
p on the light cone of p. Label p′ as the position vector dx̂a, relative to p. The conformal
factor at p′ is thus; dΩ = dx̂a∇̂aΩ, as Ω = 0 at p.
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To go from physical to unphysical distances at p′, one must divide with above factor,
which is equivalent to expanding by the factor x̂a : dx̂a, x̂a being in the same null direc-
tion from p as p′.
To measure the distance between points on π, lying in the remote future (near to p),
one can refer to the parabolic section E2. It is only relevant on which generator of π the
point lies, not its distance to said generator.
Thus the E2 section describes the geometry of the cross-section of π, in the limit of the
cross-section receeding to the remote future.

Null geodesics in M is represented by 2-plane elements, tangent to I+, as for MS.
A line-element tangent to I+ at p (not in direction of γ) represents a 1D system of
generators of π, corresponding to a straight line in E2 - asymptotically they generate a
null 2-plane in π. A tangent direction to I+ at p, correspond to an oriented straight line
in E2.

7.6 The Strong Conformal Geometry

Now consider the relevant structure of I+. The conformal geometry of I+ gives rise
to the definition of an angle between two line-elements, tangent to I+ at p. These
line-elements are represented by straight lines in E2; thus the angle corresponds to the
Euclidean angle between the two intersecting straight lines in E2. When the 2-plane,
spanned by the line-elements, contains the direction of γ (and is therefore not lying in
this direction), the angle is zero. The separation of this null angle (with units of dis-
tance/time) describes the distance in E2 between the parallel straight lines. See Figure
18.
The inner conformal metric of I+ assigns a measure of angle between two (non-null)
tangent directions to I+. When the angle is zero, one needs the strong conformal ge-
ometry of I+ to define the null angle between the directions, which are represented by
straight lines in E2. Thus finite angles are obtained as angles between the lines, and
null angles as the distance between them, when the angle is zero.

Thus a physically meaningful ‘strong conformal geometry’ has been added to I+. The
concept of angle between (non-null) tangent directions at a point of I+, comes from the
content of the inner conformal metric of I+. The strong conformal geometry assigns a
measure of separation, the null angle, if the angle is zero.

Another way of specifying strong conformal geometry of I+ is to replace Ω by Ω′ = θΩ
(θ being smooth and positive on M ′), then the normal vector n̂a = ĝab∇̂bΩ becomes:

n̂′a = ĝ′ab∇̂′bΩ′ = θ−2ĝab∇̂b(θΩ) = θ−1n̂a (158)

on I+, as Ω = 0.
Now set dl2 = −dŝ2, such that: n̂adl = n̂′adl′. The quantity n̂adl or n̂an̂bdŝ2 defines the
invariant structure on I+. Vectors n̂a are tangent to the generators of I+; and define
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Figure 18: Angles between two tangent directions to I+. The plane in the top right
corner contains the direction of γ, and the angle is therefore zero. The figure is taken
from [Pen74].

for the special parameter u, along the generators:

∂

∂u
= n̂a∇̂a ⇒ n̂a∇̂au = 1 (159)

Thus the inverse invariance of n̂adl gives the invariance of the ratio; du
dl , the null angle.

See Figure 19.

Figure 19: The null angle. The figure is taken from [Pen74].

One can make choice of metric dl for the cross-sections of I+. This singles out a specific
scaling for u. Choosing dl to be that of a unit sphere, the entire metric takes the form
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(see Equation 153):
dl2 = −dŝ2 = dθ2 + sin2 θdφ2 + 0.du2, (160)

The scalings for u, defined by the null angle, du
dl , are thus fixed. The arbitrariness of u

lies in fixing the origin of the u-coordinate on each generator of I+.

7.7 Transformations of the BMS Group

The transformation of I+ to itself, preserving n̂adl, ie. angles and null angles, must
comply that any expansion or contraction of spatial distances dl, must be accompanied
by an equal expansion/contraction of the u-parameter scaling. Allowed transformations
must have the form of Equation 157, as they preserve the inner conformal metric; but
F must now have a form, allowing invariance of the ratio du

dl .
The sphere of the cross-section of I+ undergoes a conformal mapping dl → Kdl, with
K being a positive function of either θ, φ or ζ, ζ̄. This implies du→ Kdu.
As K is independent of u, u transforms as u → K(u + a(ζ, ζ̄)); a being a real function
defined on the ζ-sphere. Using Eq. 155 and Eq. 157 (conformal transformations of the
sphere), we get:

K =
1 + ζζ̄

(|αζ + β|2 + |γζ + δ|2)
, (161)

the complex parameters α, β, γ, δ still upholding αδ − γβ = 1. The general form of the
transformation becomes:

ζ → αζ + β

γζ + δ
, u→ (1 + ζζ̄)(u+ a(ζ, ζ̄))

(|αζ + β|2 + |γζ + δ|2)
(162)

with a being suitably smooth on the sphere. These transformations define the BMS
group; the group of self-transformations of I+ which preserves the strong conformal ge-
ometry.

Transformations of the form:

ζ → ζ, u→ u+ a(ζ, ζ̄) (163)

are the supertranslations, sending each generator of I+ into itself, shunted along itself
by an amount a(ζ, ζ̄). Among these are the ‘normal’ translations, where a is composed
only of spherical harmonics of order 0 and 1;

a(ζ, ζ̄) =
A+Bζ + B̄ζ + Cζζ̄

1 + ζζ̄
, (164)

with A, C being real, and B complex.
Supertranslations form an infinite parameter (largest proper normal) subgroup of the
BMS group, and the translations form a four-parameter (normal) subgroup (the only of
this kind for the BMS group).
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The factor group of the BMS group by the group of supertranslations (the orthochronous
Lorentz group), is the conformal group on the sphere S2 (which is the space of generators
of I+). The translation group is obtained canonically as a subgroup of BMS, where the
Lorentz group only is canonically obtained as a factor group (by the infinite-parameter
abelian group of supertranslations). They can not be canonically fitted together to ob-
tain the Poincaré group from the BMS group.
For the Poincaré group, the Lorentz group is a factor group, but by the four-parameter
abelian group of translations. Thus both the (orthochronous) Poincaré and BMS group
is a semi-direct product of the orthochronous Lorentz group with the translation (su-
pertranslation) group. But this does not allow the Poincaré group to be a subgroup of
the BMS group in a canonical way.
This discussion will be continued in Section 8.

7.8 Twistor Theory

To further investigate the BMS group and its implications, Penrose had also studied
Twistor theory, which I will only shortly comment upon, to reflect on its relation to
conformal groups and conditions of the BMS group.

This formalism is built upon twistors, rather than space-time points or geometry to
express physical properties.
Basic twistors form a complex 4D vector space (for flat-space twistors) on which SU(2, 2)
matrices act, which corresponds to conformal transformations on (compactified) MS, ac-
cording to the local isomorphism SU(2, 2) → C(1, 3). Such twistor may be physically
interpreted in classical theory as a zero rest-mass particle with intrinsic spin. Space-time
points are interpreted as subspaces of twistor-space.
In relation to the shear-free condition on congruences of null geodesics; The twistor-space
complex structure is related via. a contour integration to the zero rest-mass free-field
equations. This leads to a twistor formalism involving complex contour integration, for
canculations of quantum scattering amplitudes and massless quantum electrodynamics,
which appears to be free of divergences.
The holomorphic nature of functions on twistor space is closely related to the shear-free
condition.

8 BMS and Poincaré Group of Minkowski Space

This section will go through, how the Poincare group arises as subgroup of BMS group
for MS.

To identify the Poincaré and BMS group, we will make use of following notations, of the
five groups involved:

• BMS (BMS group)
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• ST (group of supertranslations)

• T (group of translations)

• L (Lorentz group)

• P (Poincaré group)

When considering two groups how can one compare them? How do you express the fact
that one of them is “inside” another?
Let’s look at these examples in the case of the Poincare group. The Poincare group con-
tains the group of translations and the group of rotations. Mathematically, this means
that there are homomorphisms: L→ P and T → P . In other words, one can find a copy
of Lorentz transformations and of translations inside the Poincare group.

Next, a natural question is, can we go “the other way”? In other words, given an
element of P , can we project it back to L or to T? This is where rotations and transla-
tions differ, because we can sort of do this for rotations but not for translations.

A translation of the coordinate x, by an amount a, is given by: x→ x+ a
A Lorentz transformation is given by: x→ Λx

If we take Λ−1aΛ (an inverse rotation, a translation, and a rotation), we get:

x→ Λx→ Λx+ a→ Λ−1(Λx+ a) = x+ Λ−1a

This is a translation.

If we instead take the quantity a−1Λa (an inverse translation, a rotation, and a transla-
tion), we get:

x→ x+ a→ Λ(x+ a)→ Λ(x+ a)− a

This does not amount to a rotation.

Translations and rotations work quite differently, and is the reason why you can find T
as a normal subgroup of P , but you can’t do the same for L.

A subgroup, which has the property that T is inside P , is called a normal subgroup. For
such groups we can define a quotient between two groups (which is also a group). In our
example we have a sequence of group homomorphisms:

T → P → P/T

So T is embedded in P , and when taking the quotient by it we obtain a factor subgroup
P/T . This factor subgroup is just the Lorentz group.
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However, you can not do the analogous construction with the Lorentz group, L, instead
of the group of translations:

L→ P → P/L (does not exist!)

since L is not a normal group in P .

8.1 Group- and Symmetry Diagram

Now back to the five groups we started with. We have that

T → P → L(= P/T )

ST → BMS → L = (BMS/ST )

T → P means that T is embedded in (or sits in) P . One can get the factor subgroup
L = P/T , as we can identify a group of T as a normal subgroup of the Poincaré group.
We have the same story for T → ST ; T is a normal subgroup, and therefore you can
take the quotient ST/T .

Similarly, there is a map P → BMS, where you can take the quotient BMS/P , and
moreover ST/T should be isomorphic to BMS/P .
However, while we have an arrow P → BMS, there is no arrow in the opposite direction,
which is what would be required, to identify the Poincare subgroup of the BMS group
(one cannot project it back).

Several of these relations between the BMS and Poincaré group can be seen in Figure 20.

Figure 20: Diagram of relations between group elements of the BMS- and Poincaré
group.

The way these groups fit together has some physical implications as well. Penrose dis-
ussed this as well, which is that there is a difficulty in defining the angular momentum.
One cannot uniquely define the Lorentz transformations of the BMS group.
The problem of identifying a particular subgroup of the BMS group as the (restricted)
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Poincare group, lies in deciding which elements of the BMS group are to be regarded as
“supertranslation-free” rotations (or Lorentz rotations).
The translations may be distinguished from the remaining supertranslations in a BMS-
invariant way. However, Lorentz rotations cannot be so distinguished from the general
BMS rotations.

9 The BMS Group and Scattering for Gravity (S)

This section will go through Strominger’s approach of finding the BMS group.

9.1 Asymptotically Flat Spacetimes

Flat MS in retarded coordinates near future null infinity is described by the metric:

ds2 = −du2 − 2dudr + 2r2γzz̄dzdz̄ (165)

Working in Bondi coordinates (u, r, z, z̄) with ΘA = (z, z̄), the metric takes the (asymp-
totic) form:

ds2 = −Udu2 − 2e2βdudr + gAB

(
dΘA +

1

2
UAdu

)(
dΘB +

1

2
UBdu

)
∂r det

(gAB
r2

)
= 0

(166)

being the Bondi gauge. Asymptotically flat means that, at generic points in the middle
of null infinity, the metric should go like:

ds2 = −du2 − 2dudr + 2r2γzz̄dzdz̄

+
2mB

r
du2 + rCzzdz

2 + rCz̄z̄ z̄
2 +DzCzzdudz +Dz̄Cz̄z̄dudz̄,

+
1

r

(
4

3
(Nz + u∂zmB)− 1

4
∂z (CzzC

zz)

)
dudz + c.c. + . . . ,

(167)

(the first three terms being the flat Minkowski metric - and the fourth term containing the
Bondi mass aspect, mB - the rest of the terms are subleading terms), with Uz = DzCzz
(Czz being a Weyl tensor component, see Section 18.1 in the Appendix for the derivation
of this constraint) and Nzz = ∂uCzz (Bondi News tensor/time derivative of gravitational
waves - the gravitational analouge of the field strength Fuz = ∂uAz), which corresponds
to the large-r falloffs (in Bondi gauge of the metric components):

guu = −1 +O
(

1
r

)
, gur = −1 +O

(
1
r2

)
, guz = O(1),

gzz = O(r), gzz̄ = r2γzz̄ +O(1), grr = grz = 0
(168)

which comes from the boundary constraints.
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9.2 Supertranslations

Asymptotic symmetries are generated by diffemorphisms, that preserve the Bondi gauge
and the boundary falloffs. BMS were looking for symmetries, acting in the asymptotic
region, where space time is close to flat. They therefore expectied to find the isometries
of flat space time, the Poincaré group, such that general relativity would reduce to
special relativity in some IR limit (at large distances and weak fields). But what they
got was an infinite-dimensional group, containing the finite-dimensional Poincaré group
as a sub-group, called the BMS group. In this group the four global translations are
evaluated to a function’s worth of “supertranslations”.

9.2.1 BMS Analysis

Going through this analysis of BMS, we first make a simplifying assumption, such that
six Lorentz generators are eliminated. We restrict to diffemorphisms that have large-r
falloffs:

ξu, ξr ∼ O(1), ξz, ξz̄ ∼ O
(

1

r

)
(169)

The Lie derivative of the metric components at large-r are thus:

Lζgur = −∂uζu +O
(

1

r

)
Lζgzr = r2γzz̄∂rζ

z̄ − ∂zζu +O
(

1

r

)
Lζgzz̄ = rγzz̄

[
2ζr + rDzζ

z + rDz̄ζ
z̄
]

+O(1),

Lζguu = −2∂uζ
u − 2∂uζ

r +O
(

1

r

)
(170)

(for a derivation and a discussion of the Lie derivatives, see Section 18.2 in the Appendix ),
where Lζgab = ζc∂cgab + ∂aζ

cgcb + ∂bζ
cgca. Requiring that Bondi gauge conditions (the

metric in Eq. 166) and that its falloffs be preserved at large-r, gives the solution:

ζ = f∂u −
1

r

(
Dzf∂z +Dz̄f∂z̄

)
+DzDzf∂r + . . . (171)

where f is any function of (z, z̄), and the last term (which may not be universal) comes
from the condition gur = −1 +O( 1

r2 ). The transformations generated by this ζ-function
are the supertranslations, illustrated in Figure 21, and are generalizations of the four
translations in MS.
Under a supertranslation, the retarded time u, is shifted independently at every angle on
I. For f being constant, generates u-translations. If f is taken to be the l = 1 harmonic
on the sphere, we retrieve 3 spatial translations.

The action of supertranslations on data (Nzz,mB, Czz) (of I+), is determined by taking
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Figure 21: Under a supertranslation, the retarded time u is shifted independently at
every angle on I. The figure is taken from [Str].

the Lie derivative of the appropriate component of the metric, in the large-r expansion,
which gives:

LfNzz = f∂uNzz

LfmB = f∂umB +
1

4

[
N zzD2

zf + 2DzN
zzDzf + c.c.

]
,

LfCzz = f∂uCzz − 2D2
zf

(172)

This equation implies, if we supertranslate flat MS described by mB = Nzz = Czz = 0,
then the supertranslated spacetime will also have these properties, except for a nonzero
Czz; but with a vanishing Riemann tensor, which requires:

Czz = −2D2
zC (173)

for a function C(z, z̄).
Assuming the geometry is governed by the Einstein equations:

Rµν −
1

2
gµνR = 8πGTMµν (174)

also assuming that TMµν is a matter stress tensor corresponding to massless modes. One
can then plug in Eq. 167, and expand in large-r. One will then find that the leading uu
component of the Einstein equations is:

∂umB =
1

4

[
D2
zN

zz +D2
z̄N

z̄z̄
]
− Tuu (175)

with

Tuu =
1

4
NzzN

zz + 4πG lim
r→∞

[
r2TMuu

]
(176)
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The supertranslations transform one geometry into a new, physically inequivalent ge-
ometry, though they are diffeomorphisms. Consider a scenario where an outgoing pulse
of gravitational (or electromagnetic) waves crosses the south pole of I+, with another
pulse crossing the north pole of I+, both at retarded time u = 100. If we supertrans-
late this solution with a function f(z, z̄), with the property f(south pole) = 100 and
f(north pole) = 0; The scenario now has an outgoing pulse at the north pole at u = 100
and one at the south pole at u = 200. Hence, the supertranslation changes the outgoing
data.
Initial data, or Cauchy data, is specified by the parameters:{

Nzz(u, z, z̄), C(z, z̄)|I+
−
, mB(z, z̄)|I+

−

}
. (177)

There is a similar story at I−, with metric:

ds2 = −dv2 + 2dvdr + 2r2γzz̄dzdz̄ +
2mB

r
dv2 + rCzzdz

2 + rCz̄z̄dz̄
2 + . . . (178)

with v = t+ r, and where z is antipodally related to the one on future null infinity, such
that z → −1

z .
Supertranslations act on past null infinity as:

LfNzz = f∂vNzz, LfCzz = f∂vCzz + 2D2
zf (179)

The constraint equation thus takes the form:

∂vmB =
1

4

(
D2
zN

zz +D2
z̄N

z̄z̄
)

+ Tvv, Tvv =
1

4
NzzN

zz + 4πG lim
r→∞

[
r2TMvv

]
(180)

and the analogue of the Cauchy data is:{
Nzz(v, z, z̄), C(z, z̄)|I−+ , mB(z, z̄)|I−+

}
(181)

9.2.2 The Scattering Problem

The scattering problem in classical general relativity is to find the map from Cauchy
data on I− to that on I+.
It has been proposed that the data on I+ at most up to a supertranslation, the BMS+

frame, should be determined by the Lorentz- and CPT- (conjugation, parity, and time)
invariant matching conditions:

C(z, z̄)|I+
−

= C(z, z̄)|I−+ , mB(z, z̄)|I+
−

= mB(z, z̄)|I−+ (182)

(using Eq. 173), and the diagonal subgroup, which preserves these conditions are defined
as:

f(z, z̄)|I+
−

= f(z, z̄)|I−+ (183)

which fixes the BMS+ frame in terms of the BMS− frame. This matching condition is
equivalent to Weinberg’s soft graviton theorem.
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9.2.3 Conserved Charges

Infinitely many matching conditions, one for every point on the celestial sphere, implies
an infinite number of conserved charges. These supertranslation charges are:

Q+
f =

1

4πG

∫
I+
−

d2zγzz̄fmB

Q−f =
1

4πG

∫
I−+
d2zγzz̄fmB

(184)

From the matching condition, we get the conservation law:

Q+
f = Q−f (185)

As conserved charges commutes with the S-matrix:

Q+
f S − SQ

−
f = 0 (186)

one can write out an expansion of the charges, by integrating by parts, using the con-
straint equation, and assuming the Bondi mass decays to zero in the far future, and
get:

Q+
f =

1

4πG

∫
I+

dud2zγzz̄f

[
Tuu −

1

4

(
D2
zN

zz +D2
z̄N

z̄z̄
)]

Q−f =
1

4πG

∫
I−
dvd2zγzz̄f

[
Tvv +

1

4

(
D2
zN

zz +D2
z̄N

z̄z̄
)] (187)

The conservation law then states:∫
I+

duγzz̄

[
Tuu −

1

4

(
D2
zN

zz +D2
z̄N

z̄z̄
)]

=

∫
I−
dvγzz̄

[
Tvv +

1

4

(
D2
zN

zz +D2
z̄N

z̄z̄
)]
(188)

Again we have a hard and a soft (zero mode) contribution, also the energy is conserved
at every angle. Sandwiching Eq. 186 between initial- and final states, the resulting
Ward identity is shown to be equivalent (by usual method) to Weinberg’s soft graviton
theorem:

〈f | a±S |i〉 =
√

8πG
∑
k

ε±µνpkµpkν
q · pk

〈f | S |i〉 , (189)

where a± annihilates a helicity ± graviton.

9.3 Superrotations

In Eq. 167, we before pointed out the Bondi mass, however in the last term we have
a parameter Nz, the angular momentum aspect, which bears the same relation to the
total angular momentum, which the Bondi mass aspect bears to the total mass. We will
see that the matching condition for Nz leads to conserved superrotation charges.
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9.3.1 Conserved Charges

For the Bondi mass aspect, we had the constraint equation Guu = 8πGTMuu , however Nz

is subject to the constraint equation Guz = 8πGTMuz . The leading uz component of the
Einstein equations is thus:

∂uNz =
1

4
∂z
(
D2
zC

zz −D2
z̄C

z̄z̄
)
− u∂u∂zmB − Tuz (190)

with the momentum density (in the z-direction of the gravitational field) being defined
as:

Tuz ≡ 8πG lim
r→∞

[
r2TMuz

]
− 1

4
∂z (CzzN

zz)− 1

2
CzzDzN

zz (191)

We can fix Nz by the matching condition:

Nz(z, z̄)|I+
−

= Nz(z, z̄)|I−+ (192)

which implies a second infinity of conserved charges, constructed by an arbitrary vector
field Y z on the sphere. Conservation of the superrotation charges is defined as:

Q+
Y =

1

8πG

∫
I+
−

d2z (Yz̄Nz + YzNz̄) =
1

8πG

∫
I−+
d2z (Yz̄Nz + YzNz̄) = Q−Y (193)

9.3.2 Symmetries

In the derivation of supertranslations, an important restriction was imposed; components
of the vector field, ζ, required to be bounded in an orthonormal frame, as the latter
approaches future null infinity. This is a too strong assumption, as it rules out boosts
and rotations. We will see that supertranslations generalizes to superrotations.
Lorentz Killing vectors are of the form:

ζY =
(

1 +
u

2r

)
Y z∂z −

u

2r
Dz̄DzY

z∂z̄ −
1

2
(u+ r)DzY

z∂r +
u

2
DzY

z∂u + c.c. (194)

where (Y z, Y z̄) is a 2D vector field on the celestial sphere. The first three terms are that
of MS. At null infinity, it simplifies to:

ζY |I+ = Y z∂z +
u

2
DzY

z∂u + c.c. (195)

If we take:
Y z = 1, z, z2, i, iz, iz2 (196)

then the 6 real vector fields ζY generate the Lorentz transformations (rotations and
boosts). For a general Y z, the Lie derivatives with respect to ζY of the metric components
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are found to be:

LY gur = O
(

1

r2

)
LY gzr = O

(
1

r

)
LY gzz̄ = O(r)

LY guu = O
(

1

r

)
LY gz̄z̄ = 2r2γzz̄∂z̄Y

z +O(r)

(197)

The last equation implies that Y z̄ is a holomorphic function on the sphere, locally solved
by Y z = zn, but only the restricted ones leads to the globally defined conformal Killing
vector fields of the sphere. Choosing Y z = 1

z−w , then we get:

∂z̄Y
z = 2πδ2(z − w) 6= 0 (198)

and the falloff condition is violated at z = w, implying that the Lie bracket algebra of
Y z = zn for any n, is the centerless Virasoro algebra, 2D CFT. We learned that 4D
quantum gravity transforms under the exact same infinte-dimensional group as for 2D
CFT, which is quite useful.

9.3.3 Canonical Formalism

The superrotation charges should generate superrotation symmetries in a canonical for-
malism, however only at linerized order, as singularities prevent the exponentiation of
the infinitesimal transformations. First we investigate, how the boundary data affects
the geometry change under superrotations. The Lie derivative with respect to Y of the
Czz component of the metric is given by:

δY Czz =
u

2
D · Y Nzz + Y ·DCzz −

1

2
D · Y Czz + 2DzY

zCzz − uD3
zY

z (199)

Taking the u-derivative, one will get:

δYNzz =
u

2
D · Y ∂uNzz + Y ·DNzz + 2DzY

zNzz −D3
zY

z (200)

If we sit at u = 0, the last two terms are exactly the infinitesimal transformation law of
a stress tenser in 2D CFT (the linerization of the Schwarzian derivative).
Consider the conserved superrotation charge:

Q+
Y =

1

8πG

∫
I+
−

d2z [Yz̄Nz + YzNz̄] (201)
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and integrating by parts using constraints (Eq. 190), we get:

Q+
Y = Q+

H +Q+
S

Q+
S = − 1

16πG

∫
I+

dud2z
[
D3
zY

zuN z
z̄ +D3

z̄Y
z̄uN z̄

z

]
Q+
H =

1

8πG

∫
I+

dud2z (Yz̄Tuz + YzTuz̄ + u∂zYz̄Tuu + u∂z̄YzTuu)

(202)

where the soft charges are linear in the metric fluctuation, Czz, while the hard charge is
quadratic. The commutators are:[
Nz̄z̄(u, z, z̄), Cww

(
u′, w, w̄

)]
= 16πGiγzz̄δ

2(z − w)δ
(
u− u′

)[
Q+
S , Czz

]
= −iuD3

zY
z[

Q+
H , Czz

]
=
iu

2
D · Y Nzz + iY ·DCzz −

i

2
D · Y Czz + 2iDzY

zCzz.

(203)
From this, one can conclude that: [

Q+
Y , . . .

]
= iδY (204)

Hence, the conserved charge generates the symmetry as expected.

9.3.4 Subleading Soft Theorem

There must be a second soft theorem in gravity, a new subleading soft theorem, equiv-
alent to the superrotation charge conservation equation Eq. 193. Superrotation charge
conservation sates the quantum S-matrix:

〈f |
(
Q+
Y S − SQ

−
Y

)
|i〉 = 0 (205)

By using the usual method and: Y z = 1

z−(q1+ iq2

q0
+q3)

, one can re-express the equation in

momentum space as:

limω→0 (1 + ω∂ω) 〈pn+1, pn+2, . . . |a−(q)S| p1, p2, . . .〉 =√
8πGS(1)− 〈pn+1, pn+2, . . . |S|p1, p2, . . .〉

(206)

where a−(q) is the annihilation operator for a negative helicity graviton of four-momentum
q = ω(1, q̂); and the subleading soft factor is:

S(1)− = −i
∑
k

pkµε
−µνqλJkλν
pk · q

, Jkµν ≡ Lkµν + Skµν (207)

with Lkµν and Skµν being the orbit angular momentum and the helicity of the internal
spin of the k’th particle. This being valid at tree level (using diagrammatics), confirms
the existence of an infinite number of conserved superrotation charges. The replacement
fTuu → Y zTuz is akin to pν → qµJµν .
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To check this is true, recall that the Weinberg soft graviton theorem involves the leading
soft factor: ∑

k

εµνpkµpkν
pk · q

(208)

which should vanish for pure gauge gravitons, ie. when:

εµν = Λµqν (209)

With this choice, the soft factor becomes:

Λµ
∑
k

pkµpk · q
pk · q

= Λµ
∑
k

pkµ = 0 (210)

following from energy-momentum conservation. Consistency thus demands a similar
property for the subleading soft factor, S(1)(εΛ). Inserting the following for symmetry:

εµνΛ = qµΛν + qνΛµ (211)

one finds that:

iS(1) (εΛ) = qµΛν
∑
k

Jkµν +
∑
k

pk · ΛqµqνJkµν
pk · q

= 0 (212)

where the second term vanishes, due to J being antisymmetric and qµqν being symmetric.
The first term vanishes by angular momentum conservation. Angular momentum is to
superrotations (sub-leading soft theorem) as energy-momentum is to supertranslations
(leading soft theorem).

9.4 The Memory Effect

Lastly I will shortly describe the mechanics of the third corner of the IR triangle; the
memory effect.

The gravitational memory effect is the persistent changes in the relative position of
pairs of points in space, due to the passing of a gravitational wave.
In 2016 the first gravitational wave was detected by the LIGO detectors; two perpendic-
ular detector arms, where a beam of light would be split into two beams, and reflect at
each end of the arms. The beams of light would then meet again at the beam splitter,
and cancel by destructive interference if the arms were of equal length. The residual
deformation of the detector pair (the lengths of two detector arms not being equal),
resulted in a signal being detected, ie. from a gravitational wave.

This corner of the infrared triangle had been predicted before this detection of the
gravitational wave. This is due to its equivalence with the soft theorem and asymptotic
symmetries of the theory, as described in Section 1.2.
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10 Discussion of the log r/r Behaviour

10.1 Subleading Soft Photons and Large Gauge Transformations

This section will follow the work described in [MC].

From Section 5, we saw that the classic Weinberg’s soft photon theorem can be un-
derstood as a Ward identity associated to an infinite dimensional symmetry group of
QED - by considering large gauge transformations at null infinity.
This section will show that there exists a class of large U(1) gauge transformations, from
which the associated (electric and magnetic) charges can be computed - and their Ward
identities are equivalent to Low’s theorem.
In the same way, the sub-subleading theorem in gravity in terms of Ward identities, can
be shown to be associated to large diffeomorphisms.

10.1.1 Introduction

Low has shown that the factorization of scattering amplitudes applies also to the next
order in the photon energy; Low’s Theorem is:

lim
ω→0

(1 + ω∂ω)Mn+1 (k1, . . . , kn;ωq̂) = S(1)Mn (k1, . . . , kn) (213)

S(1) being a sum of differential operators acting on the external momenta, ki. Lysov,
Pasterski and Strominger showed that the theorem is equivalent to Ward identities of
infinitely many charges, that are parametrized by vector fields on the sphere; the charges
being interpreted as local generalizations of electric and magnetic dipole moments. This
section shows that these charges are associated to certain large U(1) gauge transforma-
tions.

Consider massless scalar QED, and work in harmonic gauge (∇µAµ = 0). Global sym-
metries can thus arise from residual, large gauge transformations which are parametrized
by solutions of the wave equation:

�λ = 0 (214)

In retarded (u, r, x̂) coordinates, this equation can be solved in an r → ∞ expansion
once the asymptotic behavior of λ is specified. For a given large gauge parameter λ, one
can associate charges of electric and magnetic type according to:

Qλ =

∫
Σ
d3V ∂a (λEa) , Q̃λ =

∫
Σ
d3V ∂a (λBa) (215)

Ea and Ba being the electric and magnetic fields with respect to the hypersurface,
Σ. Simple Fourier space reasoning suggests one should look at large gauge parameters
whose O(r0) component is linear in u. For this to be compatible with Eq. 214, the
gauge parameter must have an O(r) piece. It is shown that such solutions exist (at least
asymptotically) and the corresponding charges at null infinity will be found. These are
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divergent, but by projecting out a soft photon contribution, the charges are rendered
finite. These charges are the same as the ones Low found; ie. there is an equivalence of
the (electric and magnetic) Ward identities with Low’s subleading soft photon theorem.

10.1.2 O(1) Large Gauge Transformation and Associated Charges

For charges associated with large gauge transformations with asymptotic behaviour, we
have:

λ(u, r, x̂) = ε(x̂) +O
(
r−ε
)

(216)

which can be satisfied to O(r−1), determining the asymptotic form of the subleading
term (ln r/r) (See Section 10.1.3). However only the leading term contributes to the
charge (ε(ẑ)).

The (known) electric-/magnetic-type charges for the gauge parameter (Eq. 216) have
Ward identities corresponding to Weinberg’s soft photon theorem.

10.1.3 Large Gauge Parameters

Calculating the coefficients of the large-r expansion of gauge parameters; we start with
the ansatz:

λ = r2
(2)

λ +r
(1)

λ +
(0)

λ +
log r

r

(log r/r)

λ +O
(
r−1
)

(217)

The two last terms correspond to small gauge parameters, where they have been taken
as O(r−ε) throughout this section - such a fall-off is enough to guarantee a vanishing
contribution to the charges. For a solution to the wave equation however, �λ = 0, this
form above is needed. O(r−1) parameters behave like regular scalar fields, satisfying the
wave equation, and are associated to small gauge parameters with their own ‘free data’.

However, the log r/r term is needed in order to satisfy the wave equation. Applying
the wave operator to the ansatz, we get:

�λ = r

[
−6∂u

(2)

λ

]
+

[
(∆ + 6)

(2)

λ −4∂u
(1)

λ

]
+ r−1

[
(∆ + 2)

(1)

λ −2∂u
(0)

λ

]
+

r−2

[
∆

(0)

λ −2∂u
(log r/r)

λ

]
+O

(
r−3 log r

) (218)
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It is convenient to write the wave operator as �λ = r−1(∂2
r − 2∂r∂u + r−2∆)(rλ). The

general solution, setting this to zero is:

(2)

λ (u, x̂) = ν(x̂)

(1)

λ (u, x̂) =
1

4

∫ u

0
du′
(

(∆ + 6)
(2)

λ

)
+ µ(x̂)

(0)

λ (u, x̂) =
1

2

∫ u

0
du′((∆ + 2)

(1)

λ ) + ε(x̂)

(log r/r)

λ (u, x̂) =
1

2

∫ u

0
du′(∆

(0)

λ ) + η(x̂)

(219)

The O(1) large gauge parameter correspond to setting integration ‘constants’ (a function
on the sphere) ν = µ = 0, and the O(r) parameter corresponds to ν = ε = 0. The log r/r

is crucial, else one would have gotten ∆
(0)

λ= 0 which would have eliminated the O(1)
large gauge transformation.

10.2 A Note on the Subleading Soft Graviton

This section will follow the work described in [EH].

In harmonic gauge, the soft part of the charge, generating infinitesimal superrotations,
can be expressed in terms of the metric components, evaluated at the boundaries of null
infinity, that are subleading in a large radius expansion. The spin memory observable
can be recast in terms of these boundary values.

10.2.1 Introduction

It is mentioned, how a current, corresponding to Low’s subleading soft theorem in EM,
can be expressed in terms of boundary values of the gauge potential at null infinity.
The purpose here, is then to examine the analogous method/computations for gravity
in harmonic gauge - showing that the subleading soft graviton mode, appearing in the
superrotation charge, can also be rewritten in terms of a difference between boundary
values of the metric.

10.2.2 Setup

Considering linearized gravity in 4D, one can set up the Einstein’s equations in harmonic
gauge, impose boundary conditions on the metric perturbations, and identify residual
symmetries that the boundary conditions allow.
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10.2.3 Boundary Conditions

Choosing falloffs of the matter stress tensor, Tµν , to be consistent with a massless scalar
field gives:

Guu ∼ O
(
r−2
)
, Gur ∼ O

(
r−4
)
, Grr ∼ O

(
r−4
)

GuA ∼ O
(
r−2
)
, GrA ∼ O

(
r−3
)
, GAB ∼ O

(
r−1
) (220)

while the asymptotics of Tµν is consistent with a metric with boundary behavior:

huu ∼ O
(
r−1 log r

)
, hur ∼ O

(
r−1 log r

)
, hrr ∼ O

(
r−1 log r

)
huA ∼ O(log r), hrA ∼ O(log r), hAB ∼ O(r log r)

(221)

From the previous sections, and in [MC], it is stated that logarithmic r-dependence is
needed for a consistent solution of the linearized Einstein equations with matter in 4D,
in harmonic gauge. The term in the metric expansion with coefficient 1

rn is denoted by

superscript (n), and log r
rn by a tilde with superscript (n).

The residual diffemorphisms for harmonic gauge are parametrized by the free data:{
ξu(1)(u, z, z̄), ξr(1)(u, z, z̄), ξA(2)(u, z, z̄)

}
(222)

These functions can be used to perform residual gauge fixing to arrive at the stronger
fall-offs:

huu =
∑∞

n=2
h

(n)
uu
rn +

∑∞
n=1

h̃
(n)
uu log r
rn , hur =

∑∞
n=2

h
(n)
ur
rn +

∑∞
n=2

h̃
(n)
ur log r
rn ,

hrr =
∑∞

n=3
h

(n)
rr
rn +

∑∞
n=3

h̃
(n)
rr log r
rn , huA =

∑∞
n=1

h
(n)
uA
rn +

∑∞
n=1

h̃
(n)
uA log r
rn ,

hrA =
∑∞

n=1
h

(n)
rA
rn +

∑∞
n=2

h̃
(n)
rA log r
rn , hAB =

∑∞
n=−1

h
(n)
AB
rn +

∑∞
n=0

h̃
(n)
AB log r
rn .

(223)

10.3 Asymptotic Charges and Coherent States in QCD

This log r/r behavior is also used in [RG], to split the asymptotic charge for non-abelian
large gauge transformations, into a piece linear in the gauge field (soft part), and a
piece non-linear in the gauge fields (hard part). Here they have imposed conditions on
the falloffs of the non-abelian gauge fields at large-r in accordance with the findings of
[MC] and [EH], discussed in this section. From the gauge fields, they get the leading
order component for the field strengths, which lead to the equations of motion implying
constraint equations on I+ at O(1) in the large-r expansion; which can be used to rewrite
the charge as described. This linearized piece is then used to find the linearized large
gauge transformations in quantum chromodynamics (QCD), amongst other things.

11 Method

The main aspect of the thesis, is the two different approaches for these asymptotic sym-
metries, that we see for Strominger and Penrose. We want this equivalence to be made
more clear.
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We want to use this direct analysis of Penrose, to generalise the concept of asymp-
totic symmetry groups to QED and YM theory, as described for the gravity theory case.

There is a difficulty in defining the boundary conditions, ie. comparing the two null
boundaries (as well as analysing points i± and i0). Strominger solves this by the use
of matching conditions of the fields. Penrose avoids these problem areas all-together,
arguing that they can be rightfully left out for his purposes. We will attempt to discuss
solutions to these problems as well.

11.1 Approaches of Analysing the BMS Group

It is clear that Penrose and Strominger use two very different methods for their analysis
of the BMS group. They can be shortly described by:

Strominger starts with a discussion of asymptotic symmetries in QED, see Sections 4
and 5. First he derives conserved charges, following from antipodal matching conditions
of the fields. He then show that they, via a canonical formalism, generate asymptotic
symmetries; ie. he shows that the soft theorems give rise to Ward identities, corre-
sponding to divergent large gauge transformations (asymptotic symmetries) acting on
the celestial sphere at null infinity.

For non-abelian gauge theory (Section 6), he used the formalism of the S-matrix as
a celestial correlator, where the scattering of a soft gluon becomes the insertion of a
current into a correlation function on CS2. This current obeys the Ward identities of
a G-current Kac-Moody algebra, giving an alternative representation of the asymptotic
symmetry group. The conserved charges are derived from the matching condition, shown
to generate the symmetry and to imply the tree-level non-abelian soft theorem.

For his analysis (in gravity) of the BMS group he defines a large-r geometric constraint
of the metric (see Section 9). He uses an analysis of asymptotic data (leading metric
components) to obtain the matching condition for the Bondi mass mB, which led to con-
served supertranslation charges of past- and future null infinity. The supertranslations
are generalizations of the four translations in Minkowski space.
He also derives conserved charges from a matching condition for subleading metric com-
ponents, the angular momentum aspect Nz. These are the superrotation charges. An-
gular momentum is to superrotations (sub-leading soft theorem) as energy-momentum
is to supertranslations (leading soft theorem).

Penrose on the other hand, focused only on gravity, and used a direct analysis of the
geometry and the asymptotic symmetries (see Section 7). He assigned structure to I;
its weak inner conformal metric. The group of self-transformations of I, preserving this
weak inner conformal metric is the Newman-Unti group. Since I is a null hypersurface,
its structure is too weak, and a strong conformal geometry was needed in order to re-
strict the Newman-Unti group, to the BMS group, and reduce the freedom in F .
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The concept of angle between (non-null) tangent directions at a point of I+, comes from
the content of the inner conformal metric of I+. When this angle is zero, the strong
conformal geometry of I+ is needed to define this null angle between the directions.
This way he found quantities nadl, which have to be preserved under transformations
of I+ to itself, leading to the restrictions of the functions F , and hence the definition
of BMS transformations; the group of self-transformations of I+, which preserves its
strong conformal geometry.
He then begins a discussion of how the supertranslations form an infinite parameter
(normal) subgroup (and the translations form a four-parameter normal subgroup) of the
BMS group. The more elaborate discussion of this and its implication was covered in
Section 8.

11.2 Gravity and Gauge Theory

To apply methods of gravity theory to gauge theory, it is convenient to first set up the
similarities and differences of the two theories. This is just a short and unfinished dis-
cussion of this subject.

In gauge theory, the gauge group consists of global gauge transformations, and can
be described by a Kac-Moody (Lie) algebra, as we saw in Section 6.
In gravity, the analogue of these large gauge transformations, in compactified MS, has
been the BMS group.

One can wonder, could the Kac-Moody algebra be the gauge theoretic analogue of the
BMS group? Could this be a way to apply the methods of Penrose, to find the asymp-
totic symmetries of gauge theories by a direct analysis of the algebra?

The method of finding the asymptotic symmetries in these theories could be described
by (by using a direct analysis):
Gravity: Start with metric, compute Weyl tensor, impose decay when r → ∞, which
leads to constraints on metric components.
Gauge theory: Start with gauge field A = Ardr+Audu+Azdz+Az̄dz̄, compute field
strength F = 1

2Frudr ∧ du + 1
2Frzdr ∧ dz..., set Au = 0 (lightcone gauge) and compute

Kac-Moody algebra.

11.3 Funny Gauge Transformations

The purpose of this section is to give a short, not fully explored, mathematical interpre-
tation of how some gauge transformations have weird properties, and can change fields
at infinity.

For the vector potential A, a gauge transformation means δA = ∂λ, or δAi = ∂iλ.
The magnetic field is given by Bij = ∂[iAj], such that:

δBij = ∂[iδAj] = ∂[i∂j]λ→ 0 (224)
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However, this is not always the case, for some λ you can create sources (change fields at
infinity) by integrating charges;

λ = arctan
y

x

for example, as the derivative with either x or y will not cause the quantity to vanish;

∂xλ =
−y

x2 + y2
, ∂xλ =

x

x2 + y2

.
In 2 dimensions, the gauge transformations are described by Az = ∂zλ and Az̄ = ∂z̄λ,
where:

∂z =
1

2
(∂x − i∂y)

and we therefore get:

Az = ∂z =
1

2

−y − ix
x2 + y2

=
−i
2

1

z
=
−i
2z

In this case the magnetic field is given by:

Bzz̄ = ∂zAz̄ − ∂z̄Az

If we plug in the values for Az and Az̄, we will see that this doesn’t become zero, as:

∂z̄
1

z
∼ δ2(z)

11.4 Application to Electromagnetism and Yang-Mills Theories

In order to explore the asymptotic symmetries of Electromagnetism and Yang-Mills
theories, a good place to start is to set up the equations, describing how particles in
such theories interact. Below is a list of things to set up and figure out:

• EOM

• Energy-momentum tensor

• Use Weyl transformations to obtain a non-singular metric on I±

• Define an analog of n̂ = ∇̂Ω. Is it null?

• How does n̂ transform under a change of Weyl factor (Ω→ ΘΩ)?

• Are there other analogs of n̂? Meaning quantities which transform covariantly
under change of Weyl factor? If yes, then we can potentially construct extra
invariant expressions (which should be preserved by asymptotic transformations).

• Asymptotics of gauge fields in r of log r. Can we recover them from this above
analysis?
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• Yang-Mills vs QED.

• If we solve all these try with fermions or two-form fields instead of scalars. In 4D
a two-form field can be (locally) dualized to a scalar.

• Supersymmetry, supergravity...

To begin with, we will set up the energy-momentum tensor for a photon, a charged
massless (conformally coupled) scalar, and gravity, all combined. The idea is to put
these fields together, and work out how they act near null infinity, and whether any
corrections are needed.

12 Conformal Coupling of the Scalar

If we apply a Weyl transformation to the metric g → Ω2g, the omegas cancel for the
electromagnetic action. We want to check with scalar fields instead:

Let us start out with a discussion of the invariance of a scalar field theory under Weyl
transformations.
Leaving the scalar field invariant under a Weyl transformations, results in the action of
the scalar field not being invariant, as the weight from the metric does not cancel.
We can choose that scalar fields transform with weight ±1 under Weyl transformations,
such that:

φ→ φ′ = ±Ωφ

This helps cancel the weight, but give us derivatives of Ω in the action.
Adding a term to the action, called the conformal coupling:

Rφ∗φ,

where R is the Ricci scalar; and choosing the correct numerical constant for this term
(1

6 in 4D), makes the action invariant under Weyl transformations.

The action of the scalar field is:

Sscalar =

∫
d4x
√
−ggµν(∂µφ)(∂νφ

∗)

Weyl transformations of the metric are given by:

gµν → ĝµν = Ω2gµν

The determinant of the metric transforms as:

det g → det ĝ = det
(
Ω2g

)
= Ω8 det g,

and the metric with upper indices transforms as:

gµν → ĝµν = Ω−2gµν .
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Thus we have, for the term in the action:

√
−ggµν = Ω−2

√
−ĝĝµν .

Lastly, the scalar field transforms as:

φ→ φ̂ = Ω−1φ

The scalar action can now be written as (using φ = Ωφ̂):

Sscalar =

∫
d4x
√
−ĝĝµνΩ−2∂µ(Ωφ̂)∂ν(Ωφ̂∗)

=

∫
d4x
√
−ĝĝµν

(
(∂µφ̂)(∂ν φ̂

∗) + Ω−2(∂µΩ)(∂νΩ)|φ̂|2 + Ω−1(∂µΩ)(∂ν φ̂
∗)φ̂+ Ω−1(∂µφ̂)(∂νΩ)φ̂∗

)
=

∫
d4x
√
−ĝĝµν

(
(∂µφ̂)(∂ν φ̂

∗) + Ω−2(∂µΩ)(∂νΩ)|φ̂|2 + Ω−1((∂µΩ)(∂ν φ̂
∗)φ̂+ (∂µφ̂)(∂νΩ)φ̂∗)

)
,

(225)
where we get this derivative of Ω. So now we will add a coupling to the scalar curvature:

Sconformal−scalar =

∫
d4x
√
−g(gµν(∂µφ)(∂νφ

∗) + C ·R|φ|2), (226)

where C is a numerical constant. We have that the Ricci scalar transforms as:

R→ R̂ = Ω−2(R+ 6�λ− 6(∂λ)2),

with λ = −1
2 log Ω and � = 1√

−g∂ν(
√
−ggµν∂µ), so that:

R = Ω2R̂+ 6(∂λ)2 − 6�λ

R = Ω2R̂+ 6(∂(−1

2
log Ω))2 − 6�(−1

2
log Ω)

Now we will show that the constant is C = 1
6 , so that the action becomes invariant under

Weyl rescalings. We have as before:

S =

∫
d4x
√
−ĝ(ĝµν

(
(∂µφ̂)(∂ν φ̂

∗) + Ω−2(∂µΩ)(∂νΩ)|φ̂|2 + Ω−1((∂µΩ)(∂ν φ̂
∗)φ̂+ (∂µφ̂)(∂νΩ)φ̂∗)

)
+ C · Ω−4R|φ|2)

=

∫
d4x
√
−ĝ
(
ĝµν(∂µφ̂)(∂ν φ̂

∗) + Ω−2((∂λ)2 + �λ)|φ̂|2 + C · Ω−4(Ω2R̂|φ|2 + 6(∂λ)2|φ|2 − 6�λ|φ|2)
)

=

∫
d4x
√
−ĝ
(
ĝµν(∂µφ̂)(∂ν φ̂

∗) + Ω−2((∂λ)2 + �λ)|φ̂|2 + C · Ω−4(Ω4R̂|φ̂|2 − 6Ω2((∂λ)2 + �λ)|φ̂|2)
)

=

∫
d4x
√
−ĝ
(
ĝµν(∂µφ̂)(∂ν φ̂

∗) + Ω−2((∂λ)2 + �λ)|φ̂|2 + C · (R̂|φ̂|2 − 6Ω−2((∂λ)2 + �λ)|φ̂|2)
)

(227)
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If we set C = 1
6 , the λ terms will cancel, and we will have the same action left, as before

the Weyl transformation:

Ŝ =

∫
d4x
√
−ĝ
(
ĝµν(∂µφ̂)(∂ν φ̂

∗) +
1

6
R̂|φ̂|2

)
(228)

To show the steps in-between the first and second equality in Equation 227, by the use
of integration by parts, see below:

ĝµν(∂µφ̂)(∂ν φ̂
∗) + Ω−2((∂λ)2 + �λ)|φ̂|2

= ĝµν
(

(∂µφ̂)(∂ν φ̂
∗) + Ω−2(∂µΩ)(∂νΩ)|φ̂|2 + Ω−1((∂µΩ)(∂ν φ̂

∗)φ̂+ (∂µφ̂)(∂νΩ)φ̂∗)
)

= ĝµν(∂µφ̂)(∂ν φ̂
∗) + ĝµν(∂µ log Ω)(∂ν log Ω)|φ̂|2 + ĝµνΩ−1((∂µΩ)(∂ν φ̂

∗)φ̂+ (∂µφ̂)(∂νΩ)φ̂∗)

= ĝµν(∂µφ̂)(∂ν φ̂
∗) + 4ĝµν(∂µλ)(∂νλ)|φ̂|2 + ĝµνΩ−1((∂µΩ)(∂ν φ̂

∗)φ̂+ (∂µφ̂)(∂νΩ)φ̂∗)

= ĝµν(∂µφ̂)(∂ν φ̂
∗) + 4(∂λ)2|φ̂|2 − 2ĝµν(∂µλ)((∂ν φ̂

∗)φ̂+ (∂µφ̂)φ̂∗)

= ĝµν(∂µφ̂)(∂ν φ̂
∗) + 4(∂λ)2|φ̂|2 − 2ĝµν(∂µλ)∂ν(φ̂∗φ̂)

= ĝµν(∂µφ̂)(∂ν φ̂
∗) + 4(∂λ)2|φ̂|2 + 2(�̂λ)|φ̂|2

= ĝµν(∂µφ̂)(∂ν φ̂
∗) + Ω−2(∂λ)2|φ̂|2 + Ω−2(�λ)|φ̂|2

= ĝµν(∂µφ̂)(∂ν φ̂
∗) + Ω−2((∂λ)2 + �λ)|φ̂|2

(229)
using 1

Ω∂Ω = ∂ log Ω in the third line.

For further investigation, we can try to use Penrose’s idea of Weyl rescaling at infin-
ity and see what happens:
One can use the choice of

Ω =
1

r
,

as was done to obtain Equation 21. So now, for example, we have that the scalar field
transforms as:

φ→ φ̂ =
1

r
φ

under a Weyl transformation.
However, I will not go into more detail with this.

13 Energy-Momentum Tensor

For theories coupled to gravity, we can obtain the energy-momentum (E-M) tensor by
taking a variation of the action, with respect to the metric. In this approach, the E-M
tensor is automatically symmetric. The action we will be working with is:

S = Sgravity + Smatter + Sinteraction,
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The canonical approach of defining the E-M tensor, involves using:

pq̇ − L = q̇
∂L

∂q̇
− L.

If you try this for EM, we will get a non-symmetric E-M tensor. In this case, q → Aµ(x),
q̇ → ∂0Aµ(x), L→ −1

4FµνF
µν , p→ ∂L

∂q̇ = −F 0µ. Therefore we get:

Tµ
ν = ∂µφ

δL

δφν
− δνµL.

which is not even gauge invariant. There is a procedure to fix it (Belinfante; a modifica-
tion of Tµν , so that it is constructed from the canonical E-M tensor and the spin current,
to become symmetric and still conserved).
If we instead define the tensor, by coupling to gravity, we obtain:

Tµ
ν =

1

2
(FµρF

νρ − 1

4
δνµFσρF

σρ)

This is gauge-invariant and symmetric. It is also traceless (due to conformal symmetry).

13.1 Boundary Discussion (Free Scalar Field)

The action of a free scalar field is:

S =

∫
M
d4x|∂φ|2 (230)

Varying the action one will get:

∂S =

∫
M
d4x (∂µδφ∂

µφ∗ + ∂µφ∂
µδφ∗)

=

∫
M
d4x (∂µ(δφ∂µφ∗)− δφ(�φ∗) + ∂µ(∂µφδφ

∗)− (�φ)δφ∗)

=

∫
M
d4x (−δφ(�φ∗)− (�φ)δφ∗) +

∫
∂M

d3Σν (δφ(∂νφ
∗) + (∂νφ)δφ∗)

(231)

using integration be parts in the first step. In the second step we have now split it into
two integrals (Using Stokes/Greens Theorem); one a bulk integral, the other a boundary
integral, consisting of the two total derivative terms.

Setting δS = 0, this must imply for the bulk contribution that �φ = 0 (or �φ∗ = 0), and
for the boundary contribution that δφ(∂nφ

∗) = 0, with ∂nφ
∗ being the normal direction

on the boundary, depicted in Figure 22.

Boundary Conditions: There are two natural boundary conditions following the
above:
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Figure 22: Normal direction to the boundary surface

1. Dirichlet boundary condition: δφ = 0 (φ is fixed to some φ0(x) for x ∈ ∂M)

2. Neumann boundary condition: ∂nφ = 0

For a conformally coupled scalar (see Section 12, and following in next section), the
variation of the action can also be split up into two integrals, a bulk and a boundary
integral (the boundary integral is the same as for a free scalar):

S =

∫
M
d4x
√
−g(|∂φ|2 − 1

6
R|φ|2)

δS =

∫
M
d4x(...) +

∫
∂M

(...)

(232)

What about for the gravity action, does the boundary integral exist? Take the variation:

δgS =

∫
M
d4x
√
−gδgµνTµν +

∫
∂M

(...) (233)

We start with calculating the difficult part:

δgR = δgµνRµν + gµνδRµν (234)

with δRµν = δRρµρν and

Rσµνρ = ∂µΓσνρ − ∂νΓσµρ + [Γ,Γ]σµνρ (235)

where taking the variation/derivative of the two first terms, followed by integration by
parts, leads to contributions to the boundary integral. Worthy of note is also that δΓρµν
is a tensor, however Γρµν itself is not.

13.2 Energy-Momentum Tensor for a Conformally Coupled Scalar

We want to find the E-M tensor for a conformally coupled scalar, by variation with
respect to the metric.
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We first write up the E-M tensor with this conformal coupling term, which is a result of
the discussion in Section 12:

Tµν = (∂µφ
∗)(∂νφ) + (∂νφ

∗)(∂µφ) +
1

6
R|φ|2 (236)

Now varying the action for a conformally coupled scalar, with respect to the metric:

δgSconf.coupl.φ[g, φ] =

∫
d4x
√
gδgµνTµν (237)

Varying the metric is the same as letting gµν → gµν + δgµν . Since Tµν now has a term
with the Ricci scalar (in contrary to the E-M tensor of a scalar, without the conformal
coupling term), the variation of this is (using R = gµνRµν):

δR = δgµνRµν + gµνδRµν (238)

and the variation of the Ricci tensor (using Rµν = gρσRρµσν) is:

δRµν = δgρσRρµσν + gρσδRρµσν (239)

The variation of the Riemann curvature tensor is: (Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ −
ΓρνλΓλµσ):

δRρσµν = ∂µδΓ
ρ
νσ − ∂νδΓρµσ + δΓρµλΓλνσ + ΓρµλδΓ

λ
νσ − δΓ

ρ
νλΓλµσ − ΓρνλδΓ

λ
µσ (240)

One thing to notice is that Γ is not a tensor, however δΓ is.
Finally we have that the Christoffel symbol is:

Γρµν =
1

2
gρσ(∂µgνσ + ∂νgµσ − ∂σgµν) (241)

and its variation is:

δΓρµν =
1

2
δgρσ(∂µgνσ + ∂νgµσ − ∂σgµν) +

1

2
gρσ(∂µδgνσ + ∂νδgµσ − ∂σδgµν) (242)

This will be continued in Section 13.2.2.

13.2.1 Properties of an Energy-Momentum Tensor

We have that the variation of the action, of a conformally coupled scalar, with respect
to the metric is (Eq. 237):

δgSccs =

∫
d4x
√
gδgµνTµν (243)

The properties of an E-M tensor of a conformal scalar field are, that it is:

• Symmetric (couples to gµν , which is symmetric)
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• Conserved

• Traceless (a consequence of conformal symmetry)

So now we write up all possible terms for the E-M tensor, such that these conditions
hold, for a conformally coupled scalar:

Tµν = (∂µφ
∗)(∂νφ) + (∂νφ

∗)(∂µφ) + cηµν(∂ρφ∗)(∂ρφ) +d(φ∗(∂µ∂νφ) + (∂µ∂νφ
∗)φ) (244)

Clearly this quantity is symmetric, and to check conservation we need to prove:

0 = ∂µTµν = ηµσ∂σTµν

= ηµσ(∂σ∂µφ
∗)(∂νφ) + ηµσ(∂µφ

∗)(∂σ∂νφ) + ηµσ(∂σ∂νφ
∗)(∂µφ) + ηµσ(∂νφ

∗)(∂σ∂µφ)

+ cηµσηµν(∂σ∂
ρφ∗)(∂ρφ) + cηµσηµν(∂ρφ∗)(∂σ∂ρφ)

+ dηµσ(∂σφ
∗(∂µ∂νφ) + (∂σ∂µ∂νφ

∗)φ) + dηµσ(φ∗(∂σ∂µ∂νφ) + (∂µ∂νφ
∗)∂σφ)

= (�φ∗)(∂νφ) + (∂νφ
∗)(�φ) + d(φ∗(∂ν�φ) + (∂ν�φ

∗)φ)

+ (1 + c+ d)ηµσ(∂µφ
∗)(∂σ∂νφ) + (1 + c+ d)ηµσ(∂σ∂νφ

∗)(∂µφ)
(245)

The equations of motion, when the metric is flat, g = η, are �φ = 0 and �φ∗ = 0. Thus
in order for the above to become zero, we must have:

1 + c+ d = 0 (246)

Now we check for tracelessness:

0 = ηµνTµν = 2 (∂µφ∗) (∂µφ) + 4c (∂µφ∗) (∂µφ) + d ((�φ∗)φ+ φ∗(�φ)) (247)

For this to be zero, we must have:

2 + 4c = 0 (248)

With the two restrictions on the constants, we find that:

c = −1

2
, d = −1

2
(249)

Thus the E-M tensor has the final form of:

Tµν = (∂µφ
∗) (∂νφ) + (∂νφ

∗) (∂µφ)

− 1

2
ηµν (∂ρφ∗) (∂ρφ)

− 1

2
(φ∗ (∂µ∂νφ) + (∂µ∂νφ

∗)φ)

(250)

This will be our reference.
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13.2.2 The E-M Tensor of a Conformally Coupled (Charged) Scalar

The action of a conformally coupled scalar is (writing out Eq. 237):

Sccs =

∫
d4x
√
g

(
(∂µφ

∗) (∂νφ) gµν +
1

6
R|φ|2

)
(251)

If φ is charged, the partial derivative becomes the covariant derivative ∂µ → Dµ =
∂µ + iAµ, and the energy-momentum tensor is not symmetric. This can be dealt with
by letting ∂µ∂ν → D(µDν).

Taking the variation gives:

δgSccs =

∫
d4x

[(
−1

2

√
ggµνδg

µν

)
Lccs +

√
g

(
δgµν (∂µφ

∗) (∂νφ) +
1

6
|φ|2 (δgµνRµν +∇ρAρ)

)]
=

∫
d4xδgµν

√
g

(
−1

2
gµνLccs + (∂µφ

∗) (∂νφ) +
1

6
|φ|2Rµν

)
+ tot derivative

(252)
The total derivative is (using (∇ρAρ) = 1√

g∂ρ(
√
gAρ)):

Total derivative =
1

6

∫
d4x
√
g|φ|2(∇ρAρ)

=
1

6

∫
d4x|φ|2∂ρ (

√
gAρ)

=
1

6

∫
boundary

d~S ·
(
|φ|2√g ~A

)
− 1

6

∫
d4x

(
∂ρ|φ|2

)√
gAρ

(253)

where
Aρ = gσνδΓρνσ − gσρδΓµµσ (254)

The variation of the Christoffel symbol, for a flat metric (we want the metric to be flat,
such that we can impose the EOM �φ = 0 and �φ∗ = 0, as in the previous section),
compared to Eq. 242, is:

(δΓρµν)|g=η = 1
2η

ρσ (∂µδgσν + ∂νδgσµ − ∂σδgµν) (255)

We then use this in the equation for the gauge field:

Aρ|g=η = ησνδΓρνσ|g=η − ησρδΓµµσ
∣∣
g=η

= ησν
1

2
ηρτ (∂νδgστ + ∂σδgντ − ∂τδgνσ)− ησρ 1

2
ηµτ (∂µδgστ + ∂σδgµτ − ∂τδgµσ)

=
1

2
(∂σ(δgρσ) + ∂ν(δgρν)− ∂ρ(δgσσ)− ∂τ (δgρτ )− ∂ρ(δgττ ) + ∂µ(δgρµ))

= ∂σ(δgρσ)− ∂ρ(δgττ )
(256)
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The contribution (of the total derivative) from integration by parts is (see Eq. 253):

− 1

6

∫
d4x
√
g
(
∂ρ|φ|2

)
Aρ (257)

We then evaluate for g = η, and obtain:

= −1
6

∫
d4x

(
∂ρ|φ|2

)
(∂σ (δgρσ)− ∂ρ(δgττ ))

= 1
6

∫
d4x

(
∂σ∂ρ|φ|2δgσρ −�|φ|2ησρδgσρ

)
= 1

6

∫
d4xδgσρ

(
∂σ∂ρ|φ|2 − ησρ�|φ|2

) (258)

The contribution to Tµν , is then equal to:

1

6
(∂µ∂ν |φ|2 − ηµν�|φ|2)

=
1

6
((∂µ∂νφ

∗)φ+ (∂µφ
∗) (∂νφ) + (∂νφ

∗) (∂µφ) + φ∗ (∂µ∂νφ)

− ηµν (�φ∗)φ− ηµνφ∗(�φ) −ηµν2 (∂ρφ∗) (∂ρφ))

(259)

The other contributions to Tµν are (see Eq. 252):

− 1

2
ηµνLccs +

1

2
((∂µφ

∗) (∂νφ) + (µ↔ ν))

= −1

2
ηµν ((∂ρφ∗) (∂ρφ)) +

1

2
(∂µφ

∗) (∂νφ) +
1

2
(∂νφ

∗) (∂µφ)

(260)

Now subtracting (the minus sign comes from the coefficient 1
6) Eq. 259 from Eq. 260,

we obtain:

Tµν =
1

3
(∂µφ

∗) (∂νφ) +
1

3
(∂νφ

∗) (∂µφ)− 1

6
ηµν (∂ρφ∗) (∂ρφ)

− 1

6
(∂µ∂νφ

∗)φ− 1

6
φ∗ (∂µ∂νφ) +

1

6
ηµν (�φ∗)φ+

1

6
ηµνφ

∗(�φ)

(261)

which is both symmetric and traceless:

0 = ηµνTµν =
2

3
|∂φ|2 − 4

6
|∂φ|2 − 1

6
(�φ∗)φ− 1

6
φ∗(�φ) +

4

6
(�φ∗)φ+

4

6
φ∗(�φ)

(262)
Where the first two terms cancel, and the other terms become zero by the EOM (vanish
on-shell). And checking conservation:

∂µTµν =
1

6

(
2 (�φ∗) (∂νφ) + 2 (∂µφ

∗) (∂µ∂νφ) + 2 (∂µ∂νφ
∗) (∂µφ) + 2 (∂νφ

∗) (�φ)

− (∂ν∂ρφ
∗) (∂ρφ)− (∂ρφ

∗) (∂ν∂ρφ)

− (∂ν�φ
∗)φ− (∂µ∂νφ

∗) (∂µφ)− (∂µφ
∗) (∂µ∂νφ)− φ∗ (∂ν�φ)

+ (∂ν�φ
∗)φ+ (�φ∗) (∂νφ) + (∂νφ

∗) (�φ) + φ∗ (∂ν�φ)

)
= 0

(263)

We see that all terms cancel eachtother.
Thus we have found a symmetric, conserved and tranceless E-M tensor for a charged
conformally coupled scalar, Eq. 261, compared to the version of a non-charged scalar
(Eq. 250).
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14 Using Weyl Transformations to obtain a Non-Singular
Metric on I±

Focusing on U(1) gauge theory (QED) on MS; a Weyl transformation of the metric is:

gµν → ĝµν = Ω2gµν (264)

where we will use the choice Ω = 1
r , as described in Section 12. We study the theory on

the compactified MS, which has points at infinity added to it (the boundaries I±, and
points i0 and i±). Before the space were open, not including the boundaries, however
now the space is open, boundaries included.
For this compact space, we have the coordinates for Ω:

Ω+(r, u, θ, φ)→ used to add I+

Ω−(r, v, θ, φ)→ used to add I−
(265)

This leads us to the question of how the two boundaries are connected, which calls for
a matching condition of i0 (antipodal), such that we can relate the BMS+ group (near
future null infinity) to the BMS− group (at past null infinity).

14.1 Identifying I+ and I−

A short discussion of this topic appeared in [Pen74], and in Section 3.7, where the
Schwarzschild ‘unphysical’ metric had been written in the form, using retarded- and
advanced time coordinates, with the choice of conformal factor Ω = 1

r = w (Eq. 19);
and where an extension from one boundary to the other, ie. including negative values of
w, would involve a reversal of the sign of the mass. The identification of the two bound-
aries, with the same sign of the mass, would imply a discontinuity in the derivative of
the curvature across I.
Thus Penrose chose to only work with the two disjoint boundary hypersurfaces I+ and
I−.

Consider the metric:

ds2 = dr2 − dt2 + r2dΩ2 = r2

(
dr2

r2
− dt2

r2
+ dΩ2

)
(266)

where dΩ2 is the metric on a unit sphere. Converting to retarded and advanced coordi-
nates, u = t− r and v = r + t, give r = 1

2(v − u) and t = 1
2(v + u), such that:

dr2 − dt2 = (d(r − t))(d(r + t)) = −dudv (267)

ds2 =
1

4
(v − u)2

(
−dudv

(v − u)2/4
+ dΩ2

)
(268)

where this Ω only depends on angles.
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We have a freedom in the choice of Ω (a different Ω, than in the discussion above!),
as Ω′ → θΩ, where θ is smooth and positive (const. at ∞), and a function of angles.
A matching condition at i0, imposes a constraint between θ|I+ and θ|I− . An should be
something like:

θ|I+(~n) = θ|I−(−~n) (269)

The sign difference makes this an antipodal matching condition.

14.2 Conformal Invariance (Inversion)

Picture the Einstein static universe (Figure 11); an idea is to map infinity to zero; by
inversion in flat space.

If we take a vector xµ, and then apply an inversion, one will get I(xy) = xµ

x2 .
A Lorentz transformation, a translation, and an inversion gives a conformal transforma-
tion:

xµ
inv−−→ xµ

x2

translation−−−−−−→ xµ

x2
+ aµ

inv−−→
xµ

x2 + aµ

(x
µ

x2 + aµ)2

=
xµ

x2 + aµ

1
x2 + 2xa

x2 + a2
=

xµ + aµx2

1 + 2ax+ a2x2

(270)

where the last equality is a special conformal transformation.

Consider the inversion (∞ → 0), of metric ds2 = ηµνdx
µdxν , with x′µ = xµ

x2 and

dx′µ = dxµ

x2 − 2xµxνdxν

(x2)2 , such that:

ds′2 = ηµν(dx′µ)(dx′ν) = Ω(x)ds2 (271)

We can compute the Ω:

ds′2 = ηµν

(
dxµ

x2
− 2xµx · dx

(x2)2

)(
dxν

x2
− 2xνx · dx

(x2)2

)
= ηµν

(
dxµdxν

x4
− 2dxµxνx · dx

x6
− 2dxνxµx · dx

x6
+

4xµx · dxxνx · dx
x8

)
= x−4ds2 − 2x−6ηµν (dxµxνx · dx+ dxνxµx · dx) + 4x−8ηµν(xµx · dxxνx · dx)

= x−4ds2 − 4x−6(x · dx)2 + 4x−8x2(x · dx)2

= x−4ds2

(272)
which implies that Ω(x) = x−4. This is just a conformal transformation; the inversion
maps infinity to zero.

15 Treating Spatial Infinity as a Boundary of Space Time

In [AR92] by Ashtekar and Romano, they wanted to find a manifestly coordinate inde-
pendent treatment of spatial infinity, which avoids the awkwardness of the differentia-
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bility conditions at i0. This is due to spatial infinity arising as a single point, where the
vertex of the light cone is representing future and past null infinity, I±. Spatial infinity
is naturally tied to null infinity, and it is possible to establish theorems relating the two
regimes. However, all points at spatial infinity are squeezed down to a single point, and
one has to use awkward differentiability conditions at this point.

15.1 Asymptotic Structure of Minkowski Space

(t, x, y, z) denotes a Cartesian chart for MS (M̂, η̂ab), where M̂ is a tensor field that refers
to the physical spacetime, MS, and η̂ab is the physical spacetime metric. Introducing
standard hyperbolic coordinates (ρ, χ, θ, φ) as:

t = ρ sinhχ

x = ρ coshχ sin θ cosφ

y = ρ coshχ sin θ sinφ

z = ρ coshχ cos θ

(273)

The metric takes the form:

η̂ab = −∇at∇bt+∇ax∇bx+∇ay∇by +∇az∇bz
= ∇aρ∇bρ+ ρ2

[
−∇aχ∇bχ+ cosh2 χ

(
∇aθ∇bθ + sin2 θ∇aφ∇bφ

)]
= ∇aρ∇bρ+ ρ2hab

(274)

with spacetime signature (− + ++), and where hab is the unit time-like hyperboloid
metric. Here spatial infinity is described by the limit ρ→∞.

This is the equivalent to a flat metric (Euclidean metric tensor) in polar coordi-
nates:

ds2 = dx2 + dy2 = dρ2 + ρ2dθ2 (275)

where ds2 = η̂ab and dθ2 = hab. The extend of the coordinates can be pictured by
Figure 23.

Figure 23: Polar coordinates, ρ being the measure of distance from the origin, and θ the
angle.
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Thus ρ = const implies a circle.

Now we define coordinate Ω := 1
ρ , and extend M̂ to include points, where Ω vanishes.

The metric can be rewritten in terms of the new coordinate:

η̂ab = Ω−4∇aΩ∇bΩ + Ω−2hab (276)

and is singular at Ω = 0.
The equivalent here, using Ω = 1

ρ =⇒ ρ = 1
Ω and dρ = −dΩ

Ω2 . Thus dρ2 =

Ω−4dΩ2. If we plug this in, the Euclidean metric becomes:

ds2 = Ω−4dΩ2 + Ω−2dθ2 (277)

Applying a Weyl transformation to the metric, one obtains:

dŝ2 = Ω4ds2 = dΩ2 + Ω2dθ2 Ω→0−−−→ dΩ2 = Ω4dρ2 (278)

The induced 3-metric, q̂ab, defined on the Ω = const(6= 0), 3-surfaces, is:

q̂ab = η̂ab − l−1∇aΩ∇bΩ (279)

with l := η̂ab∇aΩ∇bΩ
(
= Ω4

)
, and therefore it follows that q̂ab = Ω−2hab.

To show this, one can simply plug in η̂ab and l:

q̂ab = Ω−4∇aΩ∇bΩ + Ω−2hab − Ω−4∇aΩ∇bΩ
q̂ab = Ω−2hab

(280)

Furthermore, one can find:

q̂ab = η̂ab − l−1∇aΩ∇bΩ
=⇒ (η̂ab − q̂ab)l = ∇aΩ∇bΩ

=⇒ l =
∇aΩ∇bΩ
η̂ab − q̂ab

l =
∇aΩ∇bΩ

Ω−4∇aΩ∇bΩ
= Ω4

(281)

Although Ω2η̂ab does not admit a smooth extension to the 3-surface corresponding to
Ω = 0, the rescaled 3-metric:

qab := hab = Ω2q̂ab = Ω2
(
η̂ab − l−1∇aΩ∇bΩ

)
(282)

is well-defined on the boundary.

84



The analogue here, for the induced metric on ρ = const (or Ω = const), from Eq.
277, is:

ds2|induced = ρ2dθ2 = Ω−2dθ2

Ω2ds2|induced = dθ2 ( =⇒ Ω2q̂ab = hab)
(283)

To get information from the Ω = const surfaces, consider the contravariant normal:

η̂ab∇bΩ = Ω4

(
∂

∂Ω

)a
(284)

∂
∂Ωa is well defined when Ω = 0, and thus:

na := Ω−4η̂ab∇bΩ (285)

admits a smooth extension to the Ω = 0 boundary.
To picture this, we write up the quantity:

q̂abη̂
bc∇cΩ = ∇aΩ− l−1 (∇aΩ) · l = 0 (286)

since q̂ab = η̂ab − l−1(∇aΩ)(∇bΩ). Thus q̂ab must be a projection orthogonal to
(∇aΩ), and na = ∇aΩ is a normal to this 3-surface, as pictured in Figure 24.

Figure 24: Illustration of the normal to the 3-surface of the induced metric. Note that
l = ηab(∇aΩ)(∇bΩ) = ηabnanb = 1.

In order to represent spatial infinity by a 3-surface, one must rescale the 3-metric and
the normals to the Ω = const surfaces by different powers of Ω.
For curved space-times to be asymptotically flat at spatial infinity, they should resemble
MS sufficiently to admit fields qab and na (Eq. 282 and Eq. 285) to have smooth limits
to the boundary.
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15.2 Hyperbolic Slicing II

In comparison to this, Strominger had used (see Section 5.6.1), to describe massive QED,
the dS3 slices to resolve the structure of spatial infinity, which Ashtekar and Romano
had further described in their paper.

These dS3 slices (τ2 = const surfaces) are labeled by:

τ2 = t2 − r2

for τ2 < 0, and are illustrated in Figure 13.
The method was to take a slice of constant τ , and then let τ → ∞, to extend the slice
to the boundary, in order to examine points near spatial infinity, see Figure 25.

Figure 25: Examining points near spatial infinity by taking a slice of constant τ , and
extend it to infinity.

16 Summary and Discussion

Overall it has been made clear just how important symmetries are, and how looking
at the null infinity boundary of a compactified MS, opens up these different paths to
analysing the asymptotic symmetries, due to the triangular equivalence relation of the
IR sector of physics.

The approach of this thesis was to use the direct analysis of the geometry and asymptotic
symmetries in gravity, as used by Penrose, and generalise it to gauge theories, in order
to make the correspondence, between his’ and Strominger’s analysis, more clear.

The main points to take from this thesis is (the first part will be a repeat of
the discussion in Section 11.1):
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Strominger starts with a discussion of asymptotic symmetries in QED, see Sections 4
and 5. First he derives conserved charges, following from antipodal matching conditions
of the fields. He then show that they, via a canonical formalism, generate asymptotic
symmetries; ie. he shows that the soft theorems give rise to Ward identities, corre-
sponding to divergent large gauge transformations (asymptotic symmetries) acting on
the celestial sphere at null infinity.

For non-abelian gauge theory (Section 6), he used the formalism of the S-matrix as
a celestial correlator, where the scattering of a soft gluon becomes the insertion of a
current into a correlation function on CS2. This current obeys the Ward identities of
a G-current Kac-Moody algebra, giving an alternative representation of the asymptotic
symmetry group. The conserved charges are derived from the matching condition, shown
to generate the symmetry and to imply the tree-level non-abelian soft theorem.

For his analysis (in gravity) of the BMS group he defines a large-r geometric constraint
of the metric (see Section 9). He uses an analysis of asymptotic data (leading metric
components) to obtain the matching condition for the Bondi mass mB, which led to con-
served supertranslation charges of past- and future null infinity. The supertranslations
are generalizations of the four translations in Minkowski space.
He also derives conserved charges from a matching condition for subleading metric com-
ponents, the angular momentum aspect Nz. These are the superrotation charges. An-
gular momentum is to superrotations (sub-leading soft theorem) as energy-momentum
is to supertranslations (leading soft theorem).

Penrose on the other hand, focused only on gravity, and used a direct analysis of the
geometry and the asymptotic symmetries (see Section 7). He assigned structure to I;
its weak inner conformal metric. The group of self-transformations of I, preserving this
weak inner conformal metric is the Newman-Unti group. Since I is a null hypersurface,
its structure is too weak, and a strong conformal geometry was needed in order to re-
strict the Newman-Unti group, to the BMS group, and reduce the freedom in F .
The concept of angle between (non-null) tangent directions at a point of I+, comes from
the content of the inner conformal metric of I+. When this angle is zero, the strong
conformal geometry of I+ is needed to define this null angle between the directions.
This way he found quantities nadl, which have to be preserved under transformations
of I+ to itself, leading to the restrictions of the functions F , and hence the definition
of BMS transformations; the group of self-transformations of I+, which preserves its
strong conformal geometry.
He then begins a discussion of how the supertranslations form an infinite parameter
(normal) subgroup (and the translations form a four-parameter normal subgroup) of the
BMS group. The more elaborate discussion of this and its implication was covered in
Section 8.
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For the analysis of the components of the BMS and Poincaré group (see Section 8),
we had that the Poincaré group cannot be found as a subgroup of the BMS group
in a canonical way, which is related to the physical implications of how Lorentz rota-
tions cannot be distinguished from the general BMS rotations (in a BMS-invariant way).

For massless particles it was important to distinguish the past- and future null infin-
ity boundaries, in order to establish matching conditions of fields. A problem area was
also when we got closer to spatial infinity, i0, a singularity, which Penrose left as an
exercise for the reader.
For massive particles however, the difficulty lied in the particles now ending at time-like
infinity, i+.
For spatial infinity, we shortly discussed how it could be related to r = 0 by inversion,
in Section 14. This lead up to the discussed in Section 15, with an attempt to find a
manifestly coordinate independent treatment of spatial infinity, which avoids the awk-
wardness of the differentiability conditions, by representing i0 by a 3-surface. This was
closely related to Section 5.6, where we discussed a way to analyse both of these points
(i0, i+), by hyperbolic slicing of MS. By looking at slices of constant τ , which correspond
to AdS3 (at i+) for τ2 > 0, and dS3 (at i0) for τ2 < 0, and then letting τ →∞, one can
analyse these endpoints.

The take on the asymptotic symmetries of magnetic charges in QED (Section 5.7), is
that a second infinity of conserved charges is generated, when adding magnetic charges.
These can be associated to symmetries, interpreted as electric gauge transformations but
with an imaginary gauge parameter. The large electric transformations can be thought
of as a non-trivial subgroup of the (electric) gauge group symmetry, but the magnetic
ones can not. Not all asymptotic symmetries arise as a nontrivial subgroup of some
manifest gauge symmetry.

What we would have wanted to figure out is:

A lot of ideas was in play, in order to make the connection of the approach of Pen-
rose and Strominger more clear, though they all have very loose ends:

We started out writing the E-M tensor for a (conformally coupled) scalar (see Sec-
tion 13). The purpose of this, was to unite this with the energy-momentum tensor for
gravity and for a photon. By putting all these fields together, we wanted to see how
they act near null infinity and what correction are needed, for example when apply-
ing a Weyl transformation. Applying a Weyl transformation to the action of a scalar
(see Section 12), resulted in the action not being invariant, and was the reason why we
had to add the conformal coupling term. We did not get any further than setting up
the E-M tensor for the conformally coupled scalar, and this story therefore is not finished.

Furthermore the challenges with the boundary conditions, when setting up an E-M
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tensor, has also been briefly discussed in Section 13.1. We saw that the variation of the
action can be split into two integrals, one of which is a boundary integral, and must
therefore follow certain boundary conditions. However, this is also a very unfinished
story.

Discussing the log r/r behaviour, as described in Section 10, when calculating the co-
efficients of the large-r expansion of the gauge parameters in QED; the log r/r term is
needed in order to satisfy the wave equation. A thing to consider, is whether this story
could be recovered in our analysis, had we gotten further. This was just one of many
things to analyse; the rest of them is listed in Section 11.4, where we only got started
on the third step (in Section 14), and can therefore not really conclude anything from
it.

Another small thought, was whether one could use the formalism of the S-matrix as
a celestial correlator and the Kac-Moody algebra, for a direct analysis of asymptotic
symmetries in gauge theories, as shortly mentioned in Section 11.2. This is also very
incomplete.
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18 Appendix

18.1 Covariant Derivative and Restrictions on U

We define the vector U with components Uz(z, z̄) and Uz̄(z, z̄), where (z, z̄) are coordi-
nates on the two-sphere with metric gzz̄ = 2γzz̄dzdz̄, where γ = (0, γzz̄, γzz̄, 0).

The covariant derivative of U is given by

DµU = ∂µU
ν + ΓνµρU

ρ (287)

with the Christoffel symbol defined as:

Γρµν =
1

2
gρσ(∂µgνσ + ∂νgµσ − ∂σgµν) (288)

For a round metric, the non-vanishing components are gzz̄, so we have the non-vanishing
component:

Γzzz =
1

2
gzσ(2∂zgzσ − ∂σgzz) = gzz̄∂zgzz̄ = ∂z log(gzz̄) (289)

Using gzz̄ = (gzz̄)
−1 in the last step. Another possible component:

Γzzz̄ =
1

2
gzz̄(∂zgz̄z̄ + ∂z̄gzz̄ − ∂z̄gzz̄) = 0 (290)

The same goes for Γz̄zz̄. The final non-vanishing component is:

Γz̄zz =
1

2
gz̄z(∂zgzz) = 0 (291)

Taking the covariant derivative with respect to vectors Uz and Uz̄:

(DzU)z = ∂zU
z + ΓzzzU

z + Γzzz̄U
z̄ = ∂zU

z + ΓzzzU
z

(DzU)z̄ = ∂zU
z̄ + Γz̄zzU

z + Γz̄zz̄U
z̄ = ∂zU

z̄ (292)

Taking the metric to be on the form (Eq. 167)

ds2 = −du2−dudr+2r2γzz̄dzdz̄+
2mB

r
du2 +rCzzdz

2 +Uzdudz+rCz̄z̄dz̄
2 +Uz̄dudz̄+ ...

(293)
The Weyl tensor is given by:

Cµνρσ = Rµνρσ +
1

2
(gνρRσµ + gµσRρν − gνσRρµ− gµρRσν) +

1

6
R(gµρgσν − gµσgρν) (294)

where the Riemann tensor is:

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ (295)

One can now compute the components (here done with Sagemath):
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18.1.1 The Weyl Tensor Components

The components of the Weyl tensor with two r indices.

Cruru = (
Uz̄∂u∂zγzz̄

8 γ2
zz̄

+
Uz∂u∂z̄γzz̄

8 γ2
zz̄

− Uz̄∂uγzz̄∂zγzz̄
8 γ3

zz̄

− Uz∂uγzz̄∂z̄γzz̄
8 γ3

zz̄

+
∂z∂z̄γzz̄

3 γ2
zz̄

− ∂zγzz̄∂z̄γzz̄
3 γ3

zz̄

+
1

3
)r−2

+O
(
r−3
)

(296)

Crurz = (
∂z̄Czz
4 γzz̄

+
Uz∂z∂z̄γzz̄

12 γ2
zz̄

− Uz∂zγzz̄∂z̄γzz̄
12 γ3

zz̄

− 1

6
Uz)r

−2 +O
(
r−3
)

(297)

Crzrz =(
Czz∂z∂z̄γzz̄

6 γ2
zz̄

− Czz∂zγzz̄∂z̄γzz̄
6 γ3

zz̄

+
1

6
Czz)r

−1 + (−CzzmB +
C2
zz∂uCz̄z̄
12 γ2

zz̄

+
Cz̄z̄Czz∂uCzz

12 γ2
zz̄

+
Czz∂z̄Uz

12 γzz̄
+
Czz∂zUz̄

12 γzz̄
− Cz̄z̄C

2
zz∂uγzz̄

6 γ3
zz̄

− Czz∂
2
zCz̄z̄

12 γ2
zz̄

− Czz∂
2
z̄Czz

12 γ2
zz̄

+
Czz∂zCz̄z̄∂zγzz̄

12 γ3
zz̄

+
Czz∂z̄Czz∂z̄γzz̄

12 γ3
zz̄

)r−2 +O
(
r−3
)

(298)

Crzrz̄ =(
∂z∂z̄γzz̄

6 γzz̄
− ∂zγzz̄∂z̄γzz̄

6 γ2
zz̄

+
1

6
γzz̄) + (−γzz̄mB +

5Czz∂uCz̄z̄
24 γzz̄

− Cz̄z̄∂uCzz
24 γzz̄

− Cz̄z̄Czz∂uγzz̄
6 γ2

zz̄

− ∂2
zCz̄z̄

12 γzz̄
− ∂2

z̄Czz
12 γzz̄

+
∂zCz̄z̄∂zγzz̄

12 γ2
zz̄

+
∂z̄Czz∂z̄γzz̄

12 γ2
zz̄

− 1

6
∂z̄Uz

+
1

3
∂zUz̄)r

−1 + (
1

6
UzUz̄ +

Cz̄z̄Czz
6 γzz̄

− Uz∂zCz̄z̄
4 γzz̄

− Cz̄z̄∂zUz
24 γzz̄

− Czz∂z̄Uz̄
24 γzz̄

+
Cz̄z̄Uz∂zγzz̄

24 γ2
zz̄

+
CzzUz̄∂z̄γzz̄

24 γ2
zz̄

− ∂z̄Cz̄z̄∂zCzz
24 γ2

zz̄

+
∂zCz̄z̄∂z̄Czz

24 γ2
zz̄

+
Czz∂z̄Cz̄z̄∂zγzz̄

12 γ3
zz̄

+
Cz̄z̄Czz∂z∂z̄γzz̄

6 γ3
zz̄

+
Cz̄z̄∂zCzz∂z̄γzz̄

12 γ3
zz̄

− Cz̄z̄Czz∂zγzz̄∂z̄γzz̄
3 γ4

zz̄

)r−2 +O
(
r−3
)

(299)

The component Crurz can also be written as:

Crurz = Rrurz +
1

2
(gurRrz − guzRrr) = − 1

4r2
(Uz −DzCzz) +O(r−3) (300)

And since

Crzrz = Rrzrz −
1

2
gzzRrr = O(r−3), (301)

we must have the constraint condition, in order to have an asymptotically flat spacetime:

Uz = DzCzz (302)
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18.2 Lie Derivative and Calculation of Super Translations

The Lie derivative, Lζ , is a derivative along a vector, ζ = ζµ∂µ, being a vector field.
They act on scalar fields like:

Lζφ = ζµ∂µφ (303)

On one forms, Ω = Ωνdx
ν , like:

LζΩ = (LζΩν)dxν + Ωνd(Lζxν), (304)

where Lζx→ ζµ∂µx
ν = ζν

Killing vectors are vectors, ζ, such that Lζg = 0, where g is the metric. The Lie
derivative acts like the Leibnitz formula ((fg)′ = f ′g + fg′). Lζ commutes with the
differential d (Lζdρ = d(Lζρ)).

18.2.1 Calculation of Supertranslations

We now focus on the Lie derivative, Lζ , with vector

ζ = ζu∂u + ζr∂r + ζz∂z + ζ z̄∂z̄ (305)

We will start using the two first components to get guu and gur. The metric will only
involve the first three terms:

ds2 = −du2 − dudr + 2r2γzz̄dzdz̄ + ... (306)

Again we focus on the two first terms for the components of interest. Applying the Lie
derivative to ds2 to get the metric components at large-r:

Lζds2 = (Lζu∂u + Lζr∂r)(−du2 − dudr)
= −dζudu− dudζu − 2dζudr − 2dudζr

= −2dζudu− 2dζudr − 2dudζr
(307)

Now expanding by using dζb = ∂aζ
bdxa, which is dζu = (∂uζ

u)du+(∂rζ
u)dr+(∂zζ

u)dz+
(∂z̄ζ

u)dz̄. The three terms respectively give

− 2[(∂uζ
u)du+ (∂rζ

u)dr]du

− 2[(∂uζ
u)du+ (∂rζ

u)dr]dr − 2(∂zζ
u)dzdr

− 2[(∂uζ
r)du+ (∂rζ

r)dr]du

(308)

The second term also gives a contribution to the gzr metric component. Thus we have

Lζds2 = −2
[
(∂uζ

u)du2 + (∂uζ
r)du2 + (∂uζ

u)dudr + (∂zζ
u)dzdr + (∂rζ

u)dr2 + (∂rζ
u)drdu+ (∂rζ

r)drdu
]

(309)
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Thus from looking at the first three terms, and the properties of the metric:

gµν =

(
guu gur
gru grr

)
(310)

g =
(
du dr

)(guu gur
gru grr

)(
du
dr

)
= guududu+ 2gurdudr + grrdrdr + ...

(311)

one can write the Lie derivative with respect to the metric components as:

Lζguu = −2∂uζ
u − 2∂uζ

r +O
(

1

r

)
Lζgur = −∂uζu +O

(
1

r

) (312)

Now to get the metric components gzr and gzz, we will do the rest of the computa-
tion (and remember we need to add contribution −2(∂zζ

u)dzdr):

Lζds2 = (Lζr∂r + Lζz∂z + Lζ z̄∂z̄)(2r
2γzz̄dzdz̄) (313)

Which gives us three terms:

+ 2(Lζr∂rr2)γzz̄dzdz̄

+ 2r2(Lζz∂zγzz̄ + Lζ z̄∂z̄γzz̄)dzdz̄
+ 2r2γzz̄((Lζz∂zdz)dz̄ + dz(Lζ z̄∂z̄dz̄))

(314)

Furthermore we have:
Lζr∂rr2 = ζr2r (315)

which is contributing to gzz̄.
Lζz∂zdz = (∂zζ

z)dz (316)

which is also contributing to gzz̄.

Lζ z̄∂z̄dz̄ = [(∂rζ
z̄)dr + (∂z̄ζ

z̄)dz̄] (317)

where the first term is contributing to gzr, and the second to gzz̄. Thus we have:

Lζgzr = r2γzz̄∂rζ
z̄ − ∂zζu +O

(
1

r

)
(318)

For the final component, we need to take into account:

Lζγzz̄ = ζµ∂µγzz̄ + (∂zζ
z)γµz̄ + (∂z̄ζ

z̄)γzµ (319)

where you can only plug in z or z̄. This, together with the definition of the covariant
derivative, finally lead to the last component:

Lζgzz̄ = rγzz̄[2ζ
r + rDzζ

z + rDz̄ζ
z̄] +O(1) (320)

These Lie derivative of the metric components, together with the Bondi gauge conditions
and large-r falloffs, lead to the expression for the generator of supertranslations, ζ (Eq.
171).
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List of Abbreviations

ASG:

BMS:

CFT:

(N)D:

EM:

E-M

EOM:

GR:

IR:

LHS/RHS:

MS:

QCD:

QED:

SR:

YM:

Asymptotic symmetry group

Bondi, Metzner and Sachs

Conformal field theory

N-dimensional

Electromagnetism

Energy-momentum

Equations of motion

Genral relativity

Infrared

Left-hand side/right-hand side

Minkowski space

Quantum chromodynamics

Quantum electrodynamics

Special relativity

Yang-Mills
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