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Abstract

Recently, the use of Random Matrix Theory methods in the context
of gravitational systems has gained much attention. This similarly mo-
tivates their application in the study of the dual conformal field theories
to learn more about universal properties of observables in these theo-
ries. An important example is maximally supersymmetric Yang-Mills
theory, where the anomalous dimension spectra have been shown to
manifest the model’s planar integrability, while at the non-planar level
the spectra can be described by Random Matrix Theory, revealing the
quantum chaotic nature of the model. The goal of this project is to
further these analyses, in particular in a specific limit of planar N = 4
Super Yang-Mills theory with large imaginary twisting parameters. A
specific case of this is the so-called Fishnet theory, which is integrable to
all orders of the coupling constant gYM, but becomes chaotic at certain
truncations of the perturbative expansion in gYM. In this project the
anomalous dimension spectrum of Fishnet theory is studied and found
to deviate from the Poissonian statistics usually seen for integrable sys-
tems. Similar but less pronounced deviations are found in the spectrum
of a related SU(3) sector. In the case of Fishnet theory these deviations
are analyzed using the Coordinate Bethe Ansatz.
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Chapter 1

Introduction: Chaos, a
Quantum Phenomenon

Anyone who uses words “quantum” and “chaos” in the same sentence
should be hung by his thumbs on a tree in the park behind the Niels Bohr
Institute.
- Joseph Ford [1]

Chaotic systems have always been of great interest in classical mechan-
ics, both for physicists and others merely fascinated by the visuals of double
pendulums. Especially in the areas of fluid dynamics, climate physics, and
many-body physics in general, it is of the utmost importance to understand
the features of chaotic systems. For those of us studying quantum mechanics
we might ask ourselves how such a concept translates to microscopic scales,
where classical mechanics is no longer of use. Chaos is commonly understood
visually as a divergence of phase-space paths that are initially close together
when evolving in time, a concept which may seem outside the scope of quan-
tum mechanics as the Heisenberg uncertainty principle does not allow for the
concept of such paths to begin with. However, we know that classical me-
chanics is a limit of quantum mechanics, meaning that chaotic behavior must
manifest itself somehow. The question of quantum chaos has been studied ex-
tensively since the conception of quantum mechanics this past century and has
been met with varying degrees of enthusiasm, as illustrated in the Joseph Ford
quote above. Luckily, Ford’s assumption of maleness allows me, a woman, a
loophole which I shall be exploiting during the entirety of this thesis.

Let us start with definitions. Classically chaotic systems are most precisely
defined in Hamiltonian formalism using generalized coordinates qi and their
conjugate momenta pi. A Hamiltonian, H(q1, . . . , qN , p1, . . . , pN) with N inde-
pendent degrees of freedom is said to be chaotic if the amount of independent
conserved quantities Ii, such that {Ii, H} = {Ii, Ij} = 01, is smaller than N
[2]. If not, the system is said to be integrable. Chaotic behavior can be in-

1{·, ·} are the Poisson brackets of classical mechanics.
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Figure 1.1: Level repulsion and crossing for perturbed energy levels.

tuitively understood as a high sensitivity to initial conditions. Phase-space
points initially close together may become exponentially separated under time
evolution of the system, whereas for integrable systems this distance may only
increase like a polynomial in time [3]. Essentially, one needs arbitrarily precise
knowledge of initial conditions to preserve determinism of chaotic systems on
large time scales (hence why weather reports are never more than a few days
ahead).

The ultimate goal of most classical mechanics is to solve for the dynamics of
objects – i.e. their position and momentum as a function of time, as these are
what we can observe through experiments. In quantum mechanics however, we
typically look for eigenvalues of operators, so perhaps a natural place to look
for chaotic behavior would be in the spacings between eigenvalues – mirroring
the distance between phase-space paths in the classical picture. Consider a
two-level quantum system with a perturbation that changes the energies such
that they initially approach each other. As the strength of the perturbation
increases the energies can either cross or repel each other, as shown in fig. 1.1.
In [4, 5] these spectral properties are interpreted as signatures of chaos (level
repulsion) and integrability (level crossing) respectively. This is the origins of
the Bohigas-Gianonni-Schmidt (BGS) conjecture, which more precisely states
a relation between the level spacings of chaotic quantum systems and those of
certain ensembles of random matrices. The BGS conjecture has been studied in
great detail for many Hermitian quantum systems, see [1, 6, 7, 8] for examples
relevant to this thesis.

The spectral properties of a quantum system may reveal or provide evidence
for the integrability of the model (or lack thereof), but in this thesis we will take
an integrable quantum system to be one which eigenvalues can be expressed
exactly as an expression of the physical parameters of the system. For example,
the hydrogen atom is an integrable system since the energy levels can be found
as functions of the parameters of the system En = −mee4/8h2ϵ20n

2 [9, chapter 4].
Similarly the energy eigenvalues of the Heisenberg XXZ spin chain, discussed
in detail in section 3.3, can be found as exact expressions of the length of the
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chain and the amount of propagating magnons. This is what marks difference
between “integrable” and “solvable” as any quantum system can, in principle,
be solved by finding the Hamiltonian as a matrix and diagonalising it. However
sometimes in the literature “solveable” is used to mean “integrable”, and we
will use the term like that throughout this thesis. In summation this thesis will
test the BGS conjecture by looking at some systems we know to be integrable
(or chaotic) and examining whether the spectral properties match this claim.

A context within modern theoretical physics in which integrability is of
great interest is AdS/CFT correspondence – a duality which relates string the-
ories on Anti-de Sitter (AdS) spacetimes to conformal field theories (CFT’s)
on the boundary of said AdS spacetime. In other words AdS/CFT correspon-
dence allows a d-dimensional CFT to be described by a (d + 1)-dimensional
string theory or vice-versa and as such specific examples are often denoted as
AdSd+1/CFTd. Crucially, the duality is strong/weak in terms of the coupling
of the related theories, meaning that if the string theory is weakly coupled the
CFT is strongly coupled and vice-versa. This means that we can solve one
side using perturbation theory, a well established method both in CFT and in
string theory. However the strong side of the duality requires special attention
as it requires evaluation at all orders in the non-vanishing coupling. If one of
the sides can be shown to be integrable, we can solve both sides of the du-
ality and possibly provide insight into the general case of AdS/CFT [10, 11].
Studying AdS/CFT correspondence would allow for developements in theories
of quantum gravity, as well as provide a method of calculating observables in
some strongly coupled condensed matter systems.

Black holes are some of the most fascinating objects in modern theories
of gravity and we have known them to be thermal objects since Hawking’s
work in the 1970’s, see [12] for a review. [13] found that black hole geome-
tries in the AdS side can be generated by a “scrambling” of eigenstates on
the CFT side leading to a chaotic quantum system. [14] and [15] discuss a
relationship between Jackiw-Teitelboim (JT) gravity, a two-dimensional grav-
itational theory, and certain ensembles of random matrices. JT gravity is one
of the gravitational models which has been successfully used in the context
AdS2/CFT1 [16]. This in total motivates connecting the study of integrability
for CFT’s to the BGS conjecture and Random Matrix Theory (RMT). The
specific CFT studied in this work is called “N = 4 Super Yang-Mills Theory”
(N = 4 SYM), as it is one of the most popular toy-models used to study the
general structure of Quantum Field Theories (QFT’s).

Since the 1950’s Yang-Mills theories have been the theoretical backbone
of particle physics, since they describe the interactions of non-abelian gauge-
theories such as the strong and weak nuclear forces [17]. N = 4 Super Yang-
Mills theory was first developed in [18] in an effort to construct supersymmetric
gauge theories in four dimensions. In the 70’s supersymmetry was seen as the
next extension to particle physics after the success of the Standard Model
(SM), however experimental evidence of the particles predicted by supersym-
metric extensions of the SM has yet to be found (see [19] for a review of this
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search at the LHC). Nevertheless N = 4 SYM is still a useful tool in modern
particle physics since its large amount of symmetries simplifies many calcula-
tions that are otherwise difficult in general Yang-Mills theories. N = 4 SYM
is known to be integrable in the planar limit, where we take the gauge group
of the theory to be SU(Nc), Nc → ∞ [20]. Studying this limit is therefor cru-
cial to understanding how integrability manifests itself in QFT’s, whether it
is a special phenomenon or something that can be deduced from the param-
eters of the theory. N = 4 SYM is also of interest as it is believed to be the
strong side of an AdS5/CFT4 duality with a type-IIB string theory on the AdS
side. Integrable QFT’s have otherwise only been found for d = 2 so perhaps
N = 4 SYM can provide insight into whether or not (and how) AdS/CFT
correspondence generalises.

It is possible to deformN = 4 SYM in a way that preserves integrability but
breaks supersymmetry, called γi-twisting. Certain limits of this deformation
also break unitarity, meaning that observables in the theory may be complex
valued. Of interest in this thesis will be the so-called Fishnet theory2[21] and
a three-scalar theory which we will call “The non-eclectic SU(3) sector” for
reasons explained in section 3.2.2[22]. The BGS conjecture has been shown to
hold in certain limits of γi-twisting [7, 8] but only in the Hermitian case. We
expand on this in this thesis by studying non-Hermitian theories.

Now that we know the characters, let’s tell the story of this thesis. In
chapter 2 we will introduce some basic concepts of Random Matrix Theory,
which has played a big role historically in showing the link between quantum
chaos and level repulsion [6] – the basis for the BGS conjecture. Specifically we
introduce the concepts of level spacings and level spacing ratios as measures for
integrability, as well as Gaußian and Ginibre ensembles of random matrices.
In chapter 3 we introduce N = 4 SYM as well as the integrability-preserving
γi-twisting limits hereof. Specifically we look at how the dilatation operator,
which describes the scaling of operators in the theory, can be interpreted as
a Hamiltonian acting on chains of interacting spins, which in some cases can
be solved with a method known as the Bethe Ansatz. We also examine the
Heisenberg XXZ spin chain, as it is relevant to the dilatation operator as well
as being one of the oldest examples of integrable quantum systems. Finally in
chapter 4 we combine our previous work, using results from RMT to analyse
the spectral properties of certain limits of the N = 4 SYM dilatation operator.
Finally in chapter 5 we tie everything we’ve learned and analysed together.

2The only interaction term present in this theory is a 2 → 2 scalar scattering, so all
Feynman diagrams in the theory will have a fishnet-like structure



Chapter 2

Random Matrix Theory and
Chaotic Quantum Systems

Random Matrix theory is the mathematical study of matrices with elements
randomly drawn from probability distributions over fields of numbers. For
physicists the eigenvalues and eigenvectors of matrices are often of greatest
interest, and so too in this thesis. RMT can be used to determine properties of
random matrices such as probability distributions of eigenvalues or eigenvector
elements. In this chapter we introduce some of the basics of RMT as well as
which properties and results are applied in the study of quantum integrability
and chaos. In section 2.1 we introduce the relevant ensembles of random
matrices and extract the properties of eigenvalues of large matrices, using an
result from a 2× 2 ensemble. Then in section 2.2 we relate these properties to
chaotic and integrable systems by introducing the concepts of level spacings
and level spacing ratios, along with the Wigner surmise, which is extended by
the BGS conjecture [4] and Berry-Tabor conjecture [23].

2.1 Random Matrix Theory and Spectral

Integrability

As discussed previously, quantum analogues of integrability and chaos can be
difficult to precisely define – in fact there is no such universally accepted def-
inition yet. Great strides have however been made in looking for signatures
of integrability in some of the most important features of quantum mechani-
cal systems: eigenvalues of operators. This analysis was pioneered by Wigner
[24] and Dyson [25], modeling Hamiltonians as different ensembles of random
matrices in order to study universal properties of systems with different sym-
metries. Originally the goal was to study the spectra of large atoms, but the
methods developed, collectively known as Random Matrix Theory (RMT),
have proven useful in studying other chaotic quantum systems, such as many
body problems in condensed matter physics [26, 27] or indeed quantum field
theories [7, 8], as are of interest for this work. When QFT’s are said to be “in-

9
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tegrable” we often mean that they are fully solvable, meaning that we can get
precise values for observables for all values of the coupling constant – i.e. non-
perturbatively. One way to show that a QFT is integrable would be to solve it
without the use of perturbation theory in a way that is valid for all values of
the coupling, but since this would be exceedingly difficult, and even impossible
many important cases like QCD1, perhaps a slightly simplified starting point
would be to look for integrable behavior in the spectra of operators in the
theory. Relying on the results of RMT we can then aquire evidence about the
integrability of the theory in the first place.

2.1.1 Hermitian Ensembles

A common tactic in RMT is to derive a result for 2× 2 matrices and extrap-
olating these properties to larger systems. To this end we study two types of
systems: Those with and without time reversal symmetry. Suppose we have a
generic Hermitian 2× 2 Hamiltonian

H =

(
e1

∆√
2

∆∗√
2

e2

)
, (2.1)

which can be diagonalized with eigenvalues

E± =
e1 + e2

2
± 1

2

√
(e1 − e2)2 + 2|∆|2 . (2.2)

For Hamiltonians of systems with time reversal symmetry we can find a basis in
which H is fully real, i.e. ∆ = Re(∆), meaning that we have three independent
variables: e1, e2 and ∆. H is likewise symmetric, thanks to being Hermitian. If
we draw each of the independent variables (e1, e2,∆) from a Gaußian distribu-
tion with mean 0 and variance 1 we get a matrix from the Gaußian Orthogonal
Ensemble (GOE). Likewise if we are looking at a system without time reversal
symmetry Re(∆) and Im(∆) can be treated as independent variables and we
get a Hermitian matrix from the Gaußian Unitary Ensemble (GUE) by draw-
ing (e1, e2,Re(∆), Im(∆)) from the same standard Gaußian. Since we wish to
consider level repulsion as a measure for chaos we could ask about the spacing
between the eigenvalues s = E+ − E− =

√
(e1 − e2)2 + 2|∆|2. We can find

the probability distribution for these spacings P (s) by integrating over the
entire parameter space (e1, e2,∆) for the GOE or (e1, e2,Re(∆), Im(∆)) for
the GUE. Since all parameters are real-valued this a three or four dimensional
Euclidean integral depending on the ensemble. Taking the GOE our example
we let X = (e1, e2,∆). For each element Xi we weigh the probability dis-
tribution P (s) with a standard Gaußian2 (2π)−1 exp(−X2

i/2). To ensure that

1In fact, we do not expect QCD to behave in an integrable way at all. [8] provides
evidence that N = 4 SYM becomes chaotic in the non-planar case, i.e. for gauge group
SU(N) with N finite.

2We take a “standard Gaußian” to mean 0 and variance 1.
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P (s) only returns possible spacings between eigenvalues of H we also weigh
by δ(

√
(e1 − e2)2 + 2|∆|2 − s). Finally we obtain [28]

P (s) =
1

(2π)3/2

∫
d3Xδ

(√
(e1 − e2)2 + 2|∆|2 − s

)
exp

(
−|X|2

2

)
, (2.3)

and likewise for the GUE with an extra dimension. For both the GOE and
the GUE the level spacing distribution exhibits level repulsion, i.e. they are
vanishing as s → 0. This is the property we will look for when examining
spectral integrability, as it points to a chaotic nature in the system. This
distribution of eigenvalue spacings holds true even for general N ×N matrices
for N > 2 [2, 28].

2.1.2 Non-Hermitian Ensembles

In this work we analyze some operators whose spectra are complex – i.e. the
operators are non-Hermitian. The RMT ensembles we’ve looked at so far
all have strictly real eigenvalues, meaning that if we wish to analyse complex
spectra using RMT methods, we need ensembles that can replicate the spectral
properties of non-Hermitian chaotic operators. We can extend the GOE to
complex eigenvalues by not requiring it to be symmetric, i.e. a real valued
matrix with random entries drawn from a standard Gaußian distribution, the
Ginibre Orthogonal Ensemble (GinOE). We can extend the GUE in much the
same way, removing the condition for our matrix to be hermitian and simply
drawing the real and imaginary parts of every entry from a standard Gaußian.
This is what we call the Ginibre Unitary Ensemble (GinUE). These ensembles
are named after French mathematician Jean Ginibre who introduced them in
[29]. The field of spectral integrability has historically been most focused on
Hermitian RMT ensembles, and as such the conjecture of universal chaotic
signatures is less studied and less understood for complex spectra. For further
discussions of this see [26, 27].

2.2 Measures of Spectral Integrability

Wigner originally used RMT to study the spectra of large atoms [24], leading to
the Wigner surmise which states that the energy level spacings of heavy nuclei
is described by eq. (2.3). This is extended the BGS conjecture which states
that this behavior is true for all chaotic systems invariant under time-reversal
[4]. Similarly the Berry-Tabor conjecture claims that the level spacings of an
integrable system will follow a Poisson distribution P (s) = exp(−s). We now
introduce the measures of integrability used in this thesis and how they relate
to these conjectures.
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2.2.1 Level Spacings and Unfolding

As previously discussed, examining the distribution of eigenvalue spacings has
lead to most of the key results in spectral integrability. The BGS and Berry-
Tabor conjectures state that chaotic and integrable systems carry universal
signatures replicable with RMT ensembles. To study these universal signatures
we must first eliminate attempt to remove the system dependent fluctuations
in the spectra. This removal process is called unfolding and there are several
ways of doing it. For spectra of Hermitian matrices we define the integrated
density of states

n(E) =
N∑
i=1

Θ(E − Ei) , (2.4)

with Θ(x) being the Heaviside step-function. The idea now is to to divide up
n(E) into two parts

n(E) = navg(E) + nflux(E) , (2.5)

where navg(E) exhibits the universal signatures and nflux(E) describe the sys-
tem dependent fluctuations. For large systems the universal RMT signatures
are expected to dominate and thus we take navg(E) to be some degree p polyno-
mial3 which we fit to n(E). Constructing navg(E) is in general where different
methods of unfolding differ. Polynomial unfolding previously been used in the
context of N = 4 SYM integrability [7, 8] which is why we use it in this the-
sis. Another way of removing system dependent fluctuations is by removing a
fraction of energies at the high and low end of the spectra, as these are more
tightly bounded by system dependent physical effects. The polynomial degree
p and the fraction of states removed at each end of the spectrum are non-
physical parameters which must be tuned when preforming analysis of level
spacings. After unfolding the spectrum we define the unfolded eigenvalues as
εi = navg(Ei). The integrated density of states for a GOE matrix and a random
diagonal matrix can be seen in fig. 2.1, illustrating how n(E) can measure the
difference between integrable and chaotic spectra. An example of unfolding
for a physical system is given in appendix A.3.

2.2.1.1 Real Spectra

Suppose one has a Hamiltonian, H, with a discreet eigenenergy spectrum,
{Ei}, Ei ∈ R∀i. The level spacing, Si is now defined as the difference between
neighboring unfolded energy eigenvalues, εi. As such we define

Si = εi+1 − εi . (2.6)

For every system we analyse to have spacings in comparable orders of magni-
tude we use si = Si/S̄ for any further analysis.

3For all computations in this thesis we take p = 17 unless otherwise specified.
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Figure 2.1: Integrated density of states for a random diagonal matrix with ele-
ments drawn from a standard Gaußian and a GOE matrix. For both matrices
N = 5000.

Integrable systems allow for level crossings and in general have uncorrelated
eigenvalues. The statement of the Berry-Tabor conjecture is then that these
should follow the Poisson distribution,

PPoi(s) = exp(−s) . (2.7)

We can generalise the BGS conjecture for chaotic systems by using theWigner-
Dyson distribution to describe systems both with and without time reversal
symmetry. By preforming the integral in eq. (2.3) we obtain [7, 28]

PWD(s, α) = 2
Γ
(
1 + α

2

)1+α

Γ
(
1+α
2

)2+α sα exp
(
−A(α)s2

)
, A(α) =

Γ
(
1 + α

2

)2
Γ
(
1+α
2

)2 , (2.8)

where setting α = 1 returns the GOE distribution and α = 2 returns the GUE
distribution,

PWD(s, 1) = PGOE(s) =
πs

2
exp
(
−π
4
s2
)
, (2.9)

PWD(s, 2) = PGUE(s) =
32s2

π2
exp

(
− 4

π
s2
)
. (2.10)

The Wigner-Dyson distribution is a result extrapolated from 2 × 2 matrices,
but fig. 2.2 shows that these distributions also describe the level spacing dis-
tributions of larger matrices.

In some systems there may be a transition between an integrable and
chaotic phase, indicated by the level spacings not necessarily being distributed
according to PPoi(s) or PWD(s). For systems with time reversal this transition
can be quantified with the Brody distribution

PB(s, ω) = Γ

(
ω + 2

ω + 1

)1+ω

(1 + ω)sω exp

(
−Γ

(
ω + 2

ω + 1

)1+ω

s1+ω

)
, (2.11)
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Figure 2.2: Level spacing distributions of a random diagonal matrix and a
random symmetric matrix (both real), both N ×N . The elements are drawn
from a Gaußian distribution with mean 0 and width 1.
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Figure 2.3: Brody distribution PB(s) at different values of ω along with PPoi(s)
and PGOE(s).

which is a smooth function on ω ∈ [0, 1] with PB(s, 0) = PPoi(s) and PB(s, 1) =
PGOE. This transitional behavior is shown in fig. 2.3.

2.2.1.2 Complex Spectra

The concept of level spacing distributions for spectra valued in the complex
plane has not been studied as much as real valued spectra and as such there is
no universally accepted method to treat analysis of such systems. Furthermore
the notion of “spacings” is complicated, as there is no natural ordering to the
complex plane. We will in this thesis have to analyse non-Hermitian operators
with complex valued spectra, so here we present a method of analysis proposed
in [26] where spacing is defined from eigenvalue magnitude. Consider the
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spectral density

n(E) =
N∑
i=1

δ(2)(Ei − E) . (2.12)

Employing the same procedure as the integrated density of states for real
spectra, eq. (2.5), we take this to have a universal part and a system-dependent
fluctuating part

n(E) = navg(E) + nflux(E) , (2.13)

navg(E) =
1

2πσ2N

N∑
i=1

exp

(
− 1

2σ2
|E − Ei|2

)
. (2.14)

The Gaußian approximation of navg(E) is taken from [26, appendix A]. σ is a
free parameter taken to be proportional to, but larger than, the mean spacing
of the eigenvalues σ ∝ s̄ = |E − ENN|, where ENN is the closest eigenvalue to
E using a Euclidean metric in C. We are now ready to define a real-valued
level spacing from eigenvalues in the complex plane

si =
√
navg(Ei)|Ei − ENN,i| , (2.15)

ENN,i ≡ min{|Ei − Ej|, Ej ∈ Spec(H) \ {Ei}} . (2.16)

Spec(H) denotes the spectrum of the Hamiltonian H.
Having defined our level spacings, we can expand the BGS and Berry-Tabor

conjectures to encompass these complex spacings. We expect integrable sys-
tems to exhibit uncorrelated behavior, which in the complex plane corresponds
to the two-dimensional Poisson distribution for the spacings,

P
(2D)
Poi (s) =

πs

2
exp

(
−πs

2

4

)
. (2.17)

The level repulsion of chaotic systems are modelled by the Ginibre enesembles
(GinOE and GinUE). In [26] it is shown that this projective method of defining
level spacings gives the same distribution regardless of ensemble considered,
which is found to be

PGinUE(s) ≈ 1.14p(1.14s), p(s) =
∞∑
j=1

2s2j+1e−s2

Γ(j + 1, s2)

∞∏
j=1

Γ(j + 1, s2)

Γ(j + 1)
. (2.18)

We call this distribution “PGinUE(s)” for consistency with [26], but remember
that this distribution also applies for GinOE matrices. The factor 1.14 comes
from normalisation. Remark that both P

(2D)
Poi (s) and PGinUE(s) show level

repulsion, but specifically the GinUE repulsion is cubic, PGinUE(s) ∼ s3, s→ 0

whereas P
(2D)
Poi (s) exhibits linear repulsion [30].
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Figure 2.4: χ2 values for (top) random complex diagonal matrices, varying (top
left) the number of bins and (top right) the scaling parameter σ, compared
to the analytical expression, eq. (2.17). Same analysis is done for (bottom)
a GinUE matrix and compared to eq. (2.18). For both matrices the size is
104 × 104.

In calculating the level spacing distributions of operators numerically, we
have two free parameters: The value of σ and the binning of the spacings
nbins. To properly fix these parameters, we can look at the χ2 values4 of a
random diagonal matrix and a GinUE matrix, compared to the analytical
level spacing distributions. Figure 2.4 shows these χ2 values for randomly
generated 104 × 104 matrices. The fit is better for low nbins, but this also
constitutes a smaller sample size. For Poissonian systems higher values of σ is
generally better, but this is not necessarily true for the GinUE sample. Unless
otherwise specified values of nbins = 50 and σ/s = 4.5 are used in this thesis
when considering complex valued spectra which agrees with results found in
[26].

2.2.2 Level Spacing Ratios

Level spacings have proved themselves to be a very robust spectral measure
of integrability, but the need for unfolding introduces parameters outside the

4χ2 =
∑nbins

i=1
(Pobs(xbin,i)−Pexp(xbin,i))

2

Pexp(xbin,i)
, the average square difference between the ob-

served and expected distributions. The lower the χ2 value, the better the observed distri-
bution fits the analytical.
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physical system itself (for example the σ in eq. (2.14)) to account for the
system dependent local density of states. These parameters need to be fixed
in a process that is more statistics than physics and may seem arbitrary given
that we a priori know the result we want.

Other spectral integrability measures address this issue by being able to
compare eigenvalue statistics without introducing unphysical variables. One
such measure is level spacing ratios, which for the purposes of this thesis will
be used purely to analyze non-Hermitian spectra. As the name implies, level
spacing ratios analyzes the ratio between neighboring level spacings. More
precisely we define

zk =
Ek,NN − Ek

Ek,NNN − Ek

, (2.19)

for some Ek ∈ Spec(H). The nearest neighbor (NN) eigenvalue, Ek,NN, is
defined as the eigenvalue with the smallest Euclidean distance in the complex
plane to Ek (and likewise for Ek,NNN with the second-smallest). By definition
|zk| ≤ 1 and the local density of states is accounted for, removing the need for
unfolding. Generally, zk ∈ C so analysis will take place within the complex
unit circle. This specific measure is introduced and analyzed in [27], but we
shall briefly discuss some of the findings about the spacing ration distribution,
ρ(z), here.

For integrable systems the lack of correlation between eigenvalues results in
a constant value of ρPoi(z) = 1/πΘ(1−|z|). For chaotic systems, level repulsion
plays a role in a few different ways. First we define the partial distributions
ρ(r) and ρ(θ) from polar coordinates z = reiθ,

ρ(r) =

∫
dθrρ(r, θ), ρ(θ) =

∫
drρ(r, θ) , (2.20)

where the extra factor of r in the angular integral comes from the Jacobian
dxdy = rdrdθ. Preforming these integrals we can find the partial distributions
explicitly for the Poissonian case

ρPoi(r) =
r

π
Θ(1− r)

∫ π

−π

dθ = 2r , (2.21)

ρPoi(θ) =
1

π

∫ ∞

0

drΘ(1− r) =
1

π
. (2.22)

The GinUE case is complicated by the fact that ρGinUE(r, θ) is dependent upon
the size of the ensemble matrices N . [26, appendix C] derives ρGinUE(r, θ) for
both N = 3 and asymptotically N → ∞ ensembles,

ρ
(N=3)
GinUE(r, θ) =

81r2(1 + r2 − 2r cos θ)

8π(1 + r2 − r cos θ)5
Θ(1− r) , (2.23)

ρ
(N→∞)
GinUE (r, θ) ≈ 12r2(1 + r2 − 2r cos θ)

π(1 + r2)5
Θ(1− r) . (2.24)
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Figure 2.5: Level spacing ratio distributions of (left) a 104×104 GinUE matrix,
(right) a diagonal matrix with 104 random elements taken from a standard
complex Gaußian.

Figure 2.5 shows the level spacing ratio density for a N = 104 GinUE matrix
and a random diagonal matrix. Figure 2.6 shows the partial level spacing ratio
distributions for these matrices. We observe that even at N = 104 the large
N asymptotics of the ensemble is not captured, meaning that for analysis
of operators of smaller sizes ρ

(N→∞)
GinUE (r, θ) will not represent an appropriate

analytical measure of comparison5 and we will in general look for level repulsion
as the signature of chaotic behavior rater than specifically comparing to this
distribution.

5The largest operator with chaotic behavior studied in this thesis has N = 4862
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Figure 2.6: Partial level spacing ratio distributions for (top) a GinUE matrix

with the partial forms of ρ
(N→∞)
GinUE (r, θ) for comparison and (bottom) a random

diagonal matrix with entries drawn from a standard Gaußian in the complex
plane with the partial forms of ρPoi(r, θ) for comparison. Both matrices are
N = 104.



Chapter 3

Spin Chains and N = 4 Super
Yang-Mills Theory

Spin chains appear in many areas of condensed matter physics and have been
studied extensively since the late 1920’s [31], serving as a model for how mag-
netism appears in matter. In the early 2000’s a link to spin chains was found
in a rather surprising area of theoretical physics: supersymmetric Yang-Mills
theory [32]. More specifically Minahan and Zarembo found the anomalous di-
latation operator of planar N = 4 SYM to have a spin chain interpretation at
first loop order and solved it using methods developed for spin chain systems.
Spin chains have been a prime example of integrable quantum systems since
the 1930’s [33] so their discovery in N = 4 SYM motivates further study into
its integrability, see [34] for a review. In this chapter we will introduce N = 4
SYM theory and explain how to make the connection to spin chain systems. In
section 3.2 we introduce γi-twisting of N = 4 SYM along with Fishnet theory
and the non-eclectic SU(3) sector which are limits of this twisting. We show
that even in these so-called “strong twisting limits” the anomalous dilatation
operator retains a spin chain structure. Then in section 3.3 we discuss the
Heisenberg XXZ spin chain and use it to demonstrate the spectral integra-
bility methods we developed in chapter 2. This will motivate the study of
spectral integrability for strongly twisted N = 4 SYM in chapter 4.

3.1 N = 4 Super Yang-Mills Theory

Yang-Mills theory is the foundation for much of modern particle physics being
the mathematical framework underlying the Standard Model. Constructing
particle content and dynamics directly from symmetry groups has lead to many
of the most groundbreaking discoveries in high-energy physics. It is therefore
no wonder that some theoretical physicists in the 1970’s would devote much
of their attention to extending the symmetries of the Standard Model in order
to discover new physics, whether this be through constructing larger gauge
groups leading to so-called “Grand Unified Theories” [35] or introducing other

20
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non-gauge symmetries such as supersymmetry [36]. It is in the later of these
examples where we find N = 4 SYM, originally developed in 1974 [18] as the
maximally supersymmetric Yang-Mills theory in four space-time dimensions.
Due to its many symmetries it has become the go-to toy model for modern
particle theorists, because despite supersymmetry being so far unobserved in
experiment [19] studyingN = 4 SYM can provide insight into the fundamental
structure of QFT’s. It is conformal, meaning that its β-function is 0 to all or-
ders in perturbation theory. Since QCD is asymptotically free at high energies
and is similar in algebraic structure to N = 4 SYM, we may use observables
of the later (such as scattering amplitudes) to better understand the former at
high energy scales. It is also of interest in the context of AdS/CFT correspon-
dence, linking string theories to conformal field theories.1 Since one side of
this duality is weakly coupled (i.e. able to be studied perturbatively) and the
other strongly coupled, it is hoped that a better understanding could further
our understanding of some strongly coupled QFT’s (for example in condensed
matter systems) by studying weakly coupled string theories. In both these
cases, the conjectured integrability of N = 4 SYM in the planar limit plays
an important role as it allows us to compute observables in a non-perturbative
way.

3.1.1 Supersymmetry and Conformality

A field theory is said to be conformal (such theories are often called CFT’s) if
the action of the theory is invariant under a change of the metric such that

gµν → g′µν = e2σ(x)gµν , (3.1)

where σ(x) is some real space-time dependent function. Remark that for gµν =
ηµν and σ = 0, these are the Poincaré transformations. We can obtain the
generators of this symmetry by applying an infinitesimal transformation xµ →
xµ + ϵµ(x), which (to first order in ϵ) gives us the metric equation

∂µϵν + ∂νϵµ = 2σ(x)ηµν . (3.2)

This thesis restricts itself to flat space-times, so gµν = ηµν . Contracting with
ηµν on both sides we obtain ∂µϵµ = σ(x)d, where d is the space-time dimension
(d = 4 in this thesis). The solutions ϵµ(x) to this equation must be no more
than second order in xµ, which is shown more explicitly in chapter 3.2 of [11]
and in chapter 4.1 of [37]. We write

ϵµ(x) = aµ︸︷︷︸
Translation

+

Lorentz trans.︷ ︸︸ ︷
ωµ
νx

ν + λxµ︸︷︷︸
Scaling (Dilation)

+

Special conformal trans.︷ ︸︸ ︷
2(b · x)xµ + x2bµ . (3.3)

1It is specifically conjectured to be dual to a type IIB string theory in AdS5 × S5 target
space.
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Switching from space-time to fields, we can construct generators of these trans-
formations as

Translation : Pµ = −∂µ, (3.4)

Lorentz trans. : Lµν = −(xµ∂ν − xν∂µ), (3.5)

Special conformal trans. : Kµ = 2xµx
ν∂ν − x2∂µ, (3.6)

Dilation : D = −xµ∂µ . (3.7)

Studying how these generators commute allows us to construct the conformal
algebra,

[Lµν , Lρ,σ] = ηµρLνσ + ηνσLµρ − ηνρLµσ − ηµσLνρ,

[Lµν , Pρ] = ηρµPν − ηνρPµ, [D, Pµ] = Pµ, [D, Kµ] = −Kµ,

[Pµ, Kν ] = 2(ηµνD − Lµν), [Lµν , Kρ] = ηµρKν − ηνρKµ ,

(3.8)

where any commutator not shown is simply 0. If all we wanted was a confor-
mal field theory, we could now start building irreducible representations and
discussing what types of particles could exist for this symmetry group, but
the “Super” in “Super Yang-Mills theory” means that we have another type
of symmetry to discuss.

Where conformality is constructed from an invariance of the metric, super-
symmetric theories have actions invariant under certain exchanges of fields.
Specifically these symmetry transformations mix fields with their supersym-
metric partner, where the helicity of the different fields are related as λField =
λPartner ± 1/2. Thus super symmetry relates bosonic fields to fermionic fields
and vice versa. In principle this is done by introducing supercharges Qa into
the conformal algebra eq. (3.8). There is at first glance no limit to the amount
of supercharges we can introduce, but the index a = 1, . . . ,N tells us which
one we’re dealing with – N being the total amount. It is in fact this N which
is equal to 4 in “N = 4 SYM”. In d = 4 only fields with helicity |λ| ≤ 1
are renormalizable, so starting at minimum helicity one needs at most four
supersymmetry transformations to reach all other possible helicity states. It
is for this reason that N = 4 SYM is often referred to as “maximally super-
symmetric”.

The supercharges Qa are spinors2, and it will prove convenient to write
them as Weyl spinors, Qa = (Qa

α, Q̄
aα̇), α, α̇ ∈ {1, 2}, with the bar indicating

Dirac conjugation. This means that our symmetry algebra now has a fermionic
sector and a bosonic sector, upgrading us from a Lie algebra to a graded Lie
algebra. In addition to our conformal algebra, we now also have the (anti-
)commutation relations

[Qa, L
µν ] = (σµν)βαQ

a
β, [Q̄aα̇, Lµν ] = ϵα̇β̇(σ̄

µν)β̇γ̇Q̄
aγ̇,

{Qa
α, Q̄bα̇} = 2σµ

αα̇Pµδ
a
b ,

{Qa
α, Q

b
β} = ϵαβZ

ab, {Q̄aα̇, Q̄bβ̇} = ϵα̇β̇Z̄ab ,

(3.9)

2In contrast to the Poincaré algebra which consists of vectors and scalars
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where Q̄aα̇ = (Qa
α)

∗. As before, all relations not shown vanish. In the
convetion of [11, section 3.3] we have σµ = (−I, σi) and σ̄µ = (−I,−σi)
and3 (σµν)βα = i/4(σµ

αα̇σ̄
να̇β − σν

αα̇σ̄
µα̇β). Zab and Z̄ab are known as the cen-

tral charges of the algebra, which are antisymmetric in a, b and related by
Zab = (Z̄†)ab. This algebra is invariant under a global rotation of the su-
percharges Qa

α → Ra
bQ

b
α, Q̄aα̇ → Q̄bα̇(R

†)ba, with
4 R ∈ SU(4), which is called

R-symmetry. What we have just constructed is the “super Poincaré algebra”,
Qa being the superpartners to Pµ. To fully flesh out the algebraic structure
of N = 4 SYM we also include the supercharges Sa

α and S̄a
α̇ as superpart-

ners to the special conformal generators Kµ, but at this point the reader
should be tired of commutators, so best leave this section of the algebra to
textbooks [11, appendix B]. In total we end up with the algebra5 psu(2, 2|4),
generating the symmetry group PSU(2, 2|4). Irreducible representations can
be classified with a set of charges: (∆, S1, S2, J1, J2, J3). ∆ is the scaling di-
mension, more on this in section 3.1.3. (S1, S2) are the Lorentz charges for
the SO(3, 1) ∼ SU(2) × SU(2) subgroup of PSU(2, 2|4). Finally the Ji’s
are charges associated with R-symmetry. Since super symmetry generates
transformations between these representations, namely (S1, S2), they carry no
charge of their own.

3.1.2 Field Contents

N = 4 SYM theory is a gauge theory, in line with all other Yang-Mills theo-
ries. For now we will let the gauge group be SU(Nc), meaning that we have
a gauge field Aµ = σµ

αα̇A
αα̇ with Nc colors. From the supercharges it’s pos-

sible to construct raising and lowering operators in helicity to construct the
other fields from super symmetry transformations. From this process we get
eight fermions, four chiral ψa

α and four anti-chiral ψ̄α̇a with a = 1, 2, 3, 4, as
well as three complex scalar fields ϕi and their conjugates ϕ†

i , i = 1, 2, 3, all
transforming in the adjoint representation of SU(Nc). The action is

S =

∫
d4xTr

[
− 1

4
F µνFµν − (Dµϕ

†
i )(Dµϕi) + iψ̄aα̇Dα

α̇ψaα

+
gYM√

2
(iϵijkψα

i [ϕj, ψαk] + 2iψ̄i
α̇[ϕi, ψ̄

4α̇] + h.c.)

+
g2YM√

2
(2[ϕi†, ϕj†][ϕi, ϕj]− [ϕi†, ϕi][ϕ

j†, ϕj])
]
.

(3.10)

Since all fields are matrix valued the trace is over the gauge group index.
We here leave implicit for any field that Φ(x) = Φ(x)mTm with Tm being the
generators of SU(N). Note that this could be defined equivalently with six
real scalars ϕI , a convention we will use when convenient.

3σ̄µν can be found similarly by replacing σµ ↔ σ̄µ and permuting the indices appropri-
ately, summing over the un-dotted rather than the dotted.

4For general N we have R ∈ U(N ), but for N = 4 SYM this is the structure.
5Read as “p s u two two grade four” or “p s u two comma two slash four”.
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3.1.3 Spin Chains and the Dilatation Operator

In the study of CFT’s “the spectral problem” refers to solving the spectrum
of the dilatation operator D, which generates the scalings of conformal trans-
formations. In general we say that an operator O(x) has scaling dimension ∆
when the transformation x→ λx transforms the operator as λ−∆O(λx) where
∆ is an eigenvalue of D. In the case of gauge invariant operators which can
represent observables in the theory, it is useful to first study gauge covariant
operators, i.e. operators transforming like

χ(x) → χ(x) + [ϵ(x), χ(x)] , (3.11)

with ϵ(x) generating the gauge transformation. The gauge covariant fields are
the scalars, fermions and field strength Fµν as well as covariant derivatives
hereof.6 From this definition we can construct local gauge invariant operators
as traces

O(x) = Tr[χ1(x)χ2(x) . . . χL(x)] . (3.12)

Trace operators and products of trace operators form a basis for all local
gauge invariant operators which are the observables of the theory, meaning we
can solve the spectral problem by only considering traces of gauge covariant
operators. For large Nc the scaling dimension of the product of trace operators
becomes the sum of the dimensions of the single trace operators, so in this
limit we need only solve the spectrum of single trace operators. We can find
the scaling dimension of a single such operator by investigating the two-point
correlation function between itself and its conjugate〈

O(x)Ō(y)
〉
∝ 1

|x− y|∆ . (3.13)

The dilatation operator commutes with the generators of SU(4) R-symmetry,
meaning its action is closed under operators with equal R-charges. To this end
we define the scalar fields φn = 1/

√
2(ϕ2n+1+iϕ2n+2), with φ0 = Z, φ1 = W,φ2 =

X. These have charges (1, 0, 0, 1, 0, 0),(1, 0, 0, 0, 1, 0) and (1, 0, 0, 0, 0, 1) respec-
tively. Charges of single trace operators can be found as a sum of their com-
ponent fields, so an operator O(x) ∝ Tr[ZWWZ . . .] with L−M Z’s and M
W ’s will have charge (L, 0, 0, L −M,M, 0) and transform in a closed sector
of equal charges under scaling, which from now on will be referred to as an
(L,M) sector. This specific sector of operators built form traces of Z’s and
W ’s is often referred to as the SU(2) sector, as (Z,W ) transform as an SU(2)
duplet under R-symmetry.

Investigating only operators within such (L,M) sectors, we can restrict the
action of D heavily to a sum of possible exchanges of Z,W . We can draw these

6There are some combinations of derivatives that may be replaced by non-derivative
terms, for example any contraction DµDµϕi can be replaced from the equations of motion
for the scalar fields. More details in [34, section 4]
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Figure 3.1: Examples of diagrams that appear in the computation of eq. (3.13).
Top: A tree level planar diagram. Middle: A tree level diagram with crossing.
Bottom: A planar one loop diagram.

exchanges as diagrams, as in fig. 3.1. When taking the limit Nc → ∞ for the
rank of the gauge group SU(Nc), diagrams with crossing lines are suppressed
as 1/N2

c , meaning that planar diagrams will dominate. This limit is therefore
called the planar limit, as we need only consider diagrams that can be drawn
on a plane (crossing lines need at least a torus). More specifically we also
take gYM → 0 in such a way that g2YMNc stays fixed. This limit was originally
introduced by Gerard ’t Hooft [38], which is why it is also referred to as the
’t Hooft limit. This means that at tree level we can only have interactions
that leave the operator invariant or move all fields a single space in the same
direction, but since traces are cyclic, all operators in the (L,M) sector are
invariant under such interactions. At one-loop order we can add a vertex
factor, allowing for exchanges of neighboring fields without crossings - a so
called Nearest Neighbor (NN) interaction. For every loop order we go up, we
can introduce longer range interactions, so Next-Nearest Neighbor (NNN) at
two-loop, NNNN at three-loop and so on.

Evaluating these types of interactions allows us to calculate the anomalous
correction γ to the scaling dimension ∆ = ∆0 + γ, where the bare dimension
∆0 can be found from counting the component fields. Explicitly the anomalous
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part of D can be found as

δD(one loop)
SU(2) =

λ

16π2

L∑
l=1

(1− 2Pl,l+1) , (3.14)

at first loop order in the SU(2) sector. Pl,l+1 is the exchange operator, ex-
changing the fields on sites l and l + 1. λ = g2YMNc is called the ’t Hooft
coupling. Identifying Z with spin-up (↑) and W with spin-down (↓) we can
imagine these single trace operators as closed chains of spin-1/2 particles on L
sites with M magnons (letting |↑↑↑ . . . ↑⟩ be the ground state). We can the

rewrite the anomalous dimension operator in terms of spin operators S⃗i acting
on cites i and one finds [34]

δD(one loop)
SU(2) =

λ

16π2

L∑
l=1

(
1− 2S⃗l · S⃗l+1

)
, (3.15)

which is the Hamiltonian for the Heisenberg XXX spin chain. Remarkably, this
is one of the oldest examples of integrable quantum systems studied, originally
solved by Hans Bethe [33]. The action of the dilatation operator then becomes
propagating the magnons around the chain. More information on this system
can be found in section 3.3.

We can solve for the eigenvalues of δD(one loop)
SU(2) using the method presented

in [34, section 8]. In sectors whereM = 1, we can find the eigenstates as states
of definite momentum,

|p⟩ = 1√
L

L∑
l=1

eipl |l⟩ , (3.16)

where |l⟩ denotes a state with a magnon on site l. The associated eigenenergies
are

E(p) =
λ

2π2
sin2 p

2
. (3.17)

Jumping to arbitrary M it becomes useful to introduce rapidities ui for each
magnon, where

eipi =
ui + i/2

ui − i/2
. (3.18)

The energy associated with each rapidity becomes

E(u) =
λ

8π2

1

u2 + 1
4

. (3.19)

Exchanging two magnons on the chain can be likened to a scattering, meaning
we can construct an S-matrix to describe them. Exchanging two magnons will
result in a phase factor

Sij =
ui − uj − i

ui − uj + i
. (3.20)
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Since the chain is closed, shifting a single magnon from site l to l + L should
leave the chain invariant, meaning that

eipl = eip(l+L) ⇒ (eip)L = 1 , (3.21)

if M = 1. When M > 1 then (eip)L should equal the phase factors picked up
from scattering the other magnons along the chain. Using this we can impose
a condition on the rapidities,(

uj + i/2

uj − i/2

)L

=
M∏
k ̸=j

uj − uk − i

uj − uk − i
. (3.22)

We may also impose that we are dealing with single trace operators, meaning
that we actually have invariance under a global li → li + 1 for all magnons.
We now make the ansatz that a general M -magnon eigenstate can be written
as

|p1, p2, . . . , pM⟩ =
∑

l1<lk ̸=1

ei
∑M

j=1 pj lj |l1l2 . . . lM⟩

+permutations assuming other orderings of lk’s ,

(3.23)

this requires that the common phase factor exp
(
i
∑M

j=1 pjlj

)
have the property

that

exp

(
i

M∑
j=1

pjlj

)
= exp

(
i

M∑
j=1

pj(lj + 1)

)

⇒ exp

(
i

M∑
j=1

pjlj

)
= exp

(
i

M∑
j=1

pj

)
exp

(
i

M∑
j=1

pjlj

)

⇒ exp

(
i

M∑
j=1

pj

)
= 1 ⇒

M∑
j=1

pj = 0 mod 2π . (3.24)

We can impose this on the rapidities as

exp

(
i

M∑
j=1

pj

)
=

M∏
j=1

uj + i/2

uj − i/2
= 1 . (3.25)

Solving eqs. (3.22) and (3.25) for the rapidities uj, we can get the total anoma-
lous dimension as

γ(one loop) =
M∑
j=1

E(uj) . (3.26)

Having explicitely computed the anomalous dimension, we know the spectral
problem of N = 4 SYM to be integrable at first loop order in the planar
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limit of the SU(2) sector, which was some of the first evidence collected to
support the conjectured integrability of N = 4 SYM at large. This method of
diagonalizing the XXX (and other spin chain Hamiltonians) is known as the
Coordinate Bethe Ansatz (CBA), with eqs. (3.22) and (3.25) being referred

to as the “Bethe equations” for δD(one loop)
SU(2) . There are different Bethe ansatz

methods, but these will not be explored in this work. In this thesis we will
only work with the anomalous part of the dilatation operator, hence every
time the dilatation operator is mentioned we refer to the anomalous part – as
such we will use “anomalous dilatation operator” and “dilatation operator”
interchangeably.

3.2 γi-Twisted N = 4 SYM

Having studied the historical origins of spin chains in N = 4 SYM, we now
turn to investigate how integrability is affected when deforming the action in
different ways. In order to study the properties of theories with smaller de-
grees of supersymmetry, deformations of N = 4 SYM [39, 40] were developed.
Originally to study gravity duals in AdS/CFT, these deformations have also
proved themselves to be of use in the context of integrability, especially in the
spectral problem [7, 8, 41].

Specifically we will look at γi-twisted N = 4 SYM where twisting pa-
rameters qi = e−

i
2
γi are introduced. The Lagrangian for this theory (in the

formalism presented in [42, appendix A]) is given as

L = N Tr

[
−1

4
FµνF

µν − 1

2
Dµϕ†

iDµϕ
i + iψ̄α̇

aD
α
α̇ψ

a
α

]
+ Lint . (3.27)

The interaction part of the Lagrangian, in which the twisting is implemented
reads

Lint =NgYMTr

[
gYM

4
{ϕ†

i , ϕ
i}{ϕ†

j, ϕ
j} − gYMe

−iϵijkγkϕ†
iϕ

†
jϕ

iϕj

− e−
i
2
γ−
j ψ̄jϕ

jψ̄4 + e
i
2
γ−
j ψ̄4ϕ

jψ̄j + iϵijke
i
2
ϵjkmγ+

mψkϕiψj

− e
i
2
γ−
j ψ4ϕ†

jψ
j + e−

i
2
γ−
j ψjϕ†

jψ
4 + iϵijke

i
2
ϵjkmγ+

mψ̄kϕ
†
i ψ̄j

]
. (3.28)

Here we use the shorthand γ±1 = γ2±γ3/2 with γ±2 , γ
±
3 from cyclic permutations of

the indices. Limits of this theory are especially interesting. In the ’t Hooft limit
the gauge fields decouple, massively simplifying the dynamics of the theory.
Combining this with letting the twisting parameters γi → ±i∞ (qi → ∞, 0)
leads to eight different strong twisting limits. We classify these limits by the
sign of the limit for each γi, so (+,+,+) would mean γi → +i∞, ∀i and
(+,+,−) would mean γ1,2 → +i∞ and γ3 → −i∞. In practice we introduce
a parameter ϵ → 0 and let gYM → ϵgYM and qi = ϵ∓1ξ±i . In the (+) twisting
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limits, we take gYMqi = ξ+i = constant and qi/gYM = ξ−i = constant in the (−)
limits.

An important thing to notice is that in the case of large imaginary γi, the
theory is no longer unitary. Non-unitary quantum mechanics might seem like
and unphysical consideration, but it is actually a common study in the context
of open quantum systems and statistical mechanics, see [26, 30] for discussions.
However since our goal is a better understanding of integrability – which is
not a physical observable, but rather a mathematical property – we may think
of it as a toy model.7

The (+,+,+) case has been studied most historically. The case wherein8

ξ1 = ξ2 = ξ3 has historically been called strongly β-twisted (sβt), defining
ξi = β. The case where ξ1 = ξ2 = 0 and ξ3 = ξ is called Fishnet theory (FN)
after the look of the resulting Feynman diagrams.

3.2.1 Fishnet Theory

Taking the (+,+,+) limit and letting ξ1 = ξ2 = 0, ξ3 = ξ we get Fishnet
theory, in which most fields decouple and we are left with a ϕ4 Lagrangian [43,
section 2.2.3]

L =
N

2
Tr
[
−∂µϕ†

1∂µϕ1 + ∂µϕ†
2∂µϕ2 + 2ξ2ϕ†

1ϕ
†
2ϕ1ϕ2

]
. (3.29)

Since the only interaction term we have in this theory is a four-point vertex,
all possible planar Feynman diagrams have a fishnet-like structure, hence the
name, see fig. 3.2 for an example.

Since so many fields decouple or vanish in this theory, parts of the internal
R-symmetry are broken. Specifically we go from SU(4) to U(1)2, correspond-
ing to replacing ϕi → eiθϕi, i.e. a single global U(1) symmetry for each of the
fields. Furthermore the theory is invariant under the discrete internal sym-
metries that are products of the replacements ϕ1,2 → ϕT

2,1, ϕ1 → ϕ†
2, ϕ2 → ϕ1,

which is the group of discrete symmetries of a square, D4. Thus we have a
total internal symmetry of D4 ⋉ U(1)2 for Fishnet theory.9

Like the case of un-twisted N = 4 theory, the Fishnet dilatation opera-
tor has closed sectors of the scalar fields ϕ1, ϕ2 or their conjugates, meaning
that we can once again translate local gauge invariant operators to SU(2) spin
chains in closed (L,M) sectors. This is sometimes referred to as the “broken
SU(2)” sector, referring to the fact that we are studying a sector of the bro-
ken SU(4) R-symmetry. We do however run into issues with Fishnet theory
as it is not fully conformal. In [44] it is shown that Fishnet theory contains

7N = 4 SYM is already an extremely simple toy model.
8Since we are dealing with the (+,+,+) case, the signs on the ξ’s are suppressed.
9The symbol ·⋉ · signifies a semidirect product. The action is that of a direct product,

but it also denotes that the group on the left side is a normal subgroup of the total product
group, and that all unique compositions of elements from D4 and U(1)2 correspond to a
unique element in the total internal symmetry group.



30 CHAPTER 3. SPIN CHAINS AND N = 4 SYM

Figure 3.2: A Feynman diagram in Fishnet theory. All possible diagrams are
built from the same four-point vertex shown here four times, hence why all
diagrams look like fishing nets.

double trace operators with non-vanishing β-functions,10 breaking conformal
symmetry. Conformality can be reinstated by introducing counter terms to
the Lagrangian, which would affect computation of the dilatation operator.
These counter terms only impact gauge invariant operators of length 2, how-
ever the focus of this work is spectral statistics and due to the cyclicity of
trace operators (2,M) sectors are at most one-dimensional and thus cannot be
analysed in this framework. We therefore only consider sectors of L ≥ 3 (and
in practice L ≥ 10).

All possible operators on closed spin chains of fixed length and magnon
number can be expressed as sums of operators of the form

χ(. . . , a, b, c, . . . ) =
L∑
i=1

. . . σ+
i+1σ

−
i+1+aσ

+
i+1σ

−
i+1+bσ

+
i+1σ

−
i+1+c . . . , (3.30)

which swap spins that are chirally ordered with different interaction lengths,
meaning operations of the type |. . . ↓ . . . ↑ . . .⟩ → |. . . ↑ . . . ↓ . . .⟩. This can be
seen from the fact that σ±

i are the usual Pauli raising and lowering operators for
spin-1/2 particles. Note that operators which swap spins in the other direction
(anti-chirally) can also be constructed using operators of the type χ(L+a−1)
since the chains are closed. The anomalous part of the dilatation operator for
Fishnet theory in the planar limit is found to be [42, section 5.1]

δDFishnet = −2(ξ2χ(1) + ξ4(χ(1, 2) + χ(2, 1))) +O(ξ6) , (3.31)

up to second loop order. The factor −2 comes from the subtraction scheme,
where we here follow the convention of [42]. Writing this out and truncating

10“Double trace” referring to the amount of traces, not their length, e.g. operators of the
type Tr[χi . . . χj ] Tr[χl . . . χm]
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at first and second order we get the operators

δD(one loop)
Fishnet = −2ξ2

L∑
i=1

σ+
i σ

−
i+1 , (3.32)

δD(two loop)
Fishnet = −2ξ2

L∑
i=1

(
σ+
i σ

−
i+1 + ξ2

[
σ+
i σ

−
i+2 + σ+

i+2σ
−
i

])
, (3.33)

the spectra of which are studied extensively in section 4.1. The one loop
operator can be diagonalized using CBA, which is done in detail in [43, section
3.2]. Here we present the resulting Bethe equations:

M∏
i=1

αi = 1 , (3.34)

(αi)
L = (−1)M−1 , (3.35)

E = −2
M∑
i=1

1

αi

. (3.36)

The αk = eipk ’s play a role similar to the rapidities uj introduced in eq. (3.18)
used to simplify the Bethe equations for the XXZ spin chain. From here on the
αk’s will be referred to as Bethe roots. Having diagonalized δD(one loop)

Fishnet using
Bethe ansatz methods, we know it to be integrable. It is actually possible to
show that Fishnet theory in general is integrable at all loop orders [20] in the
’t Hooft limit, however when considering truncated orders this is not always
true. In section 4.1 we provide evidence that while δD(one loop)

Fishnet is integrable,

δD(two loop)
Fishnet has chaotic behavior in its spectrum. It is important to note here

that since δD(one loop)
Fishnet is not unitary, we were not guaranteed diagonlisability.

In this work we will only deal with diagonalisable operators, but an insight
into some non-diagonalisable sectors of general strong γi-twisted theories can
be found in [22].

3.2.2 The Non-Eclectic SU(3) Sector

Going beyond just two scalars the anomalous dilatation operator for strongly
twisted planar N = 4 SYM retains its spin chain interpretation, albeit with
chains that have more than two possible spin states on each site. In the full
theory we consider all operators acting on SU(4) ∼= SO(6) spin chains with
some NN interaction terms. Here we consider a subsector with three scalars,
so instead of labelling our sites with ↑ or ↓, we simply use 1, 2, 3 – 1 denoting
vacuum and 2, 3 being the possible excitations – we’ll call this the SU(3) sector.
We can model the twisted dilation operator at one loop order as [22, section
1]

δDSU(3) =
L∑
i=1

P̃
(q1,q2,q3)
i,i+1 , (3.37)
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where the “one loop” superscript is suppressed, as higher loop orders will not
be considered for this sector. Here P̃

(q1,q2,q3)
i,i+1 swaps the state on site i with

the state on site i + 1 and multiplies with a factor q±1
j depending on which

states are swapped and in what order. For example P̃ (q1,q2,q3) |23⟩ = 1/q1 |32⟩
and P̃ (q1,q2,q3) |23⟩ = q1 |32⟩. Full detail on the action of this operator is given
in [22], but the actions relevant to this thesis are shown in eq. (3.39).

Since we only permute spin states, we can analyse this operator in closed
sectors (L,M,K) with L being the length of the chains, M being the total
amount of excitations and K being the number of excitations of a specific
type. Here we choose |11 . . . 11⟩ to be the ground state and K to be the
number of 3’s, i.e. the state |1123⟩ is in the (4, 2, 1) sector. By definition
we have L ≥ M ≥ K. Using qi = e−iγi/2 we can apply the strong twisting
limits to the dilatation operator. In the (−) limits P̃ q1,q2,q3 is dominated by
the terms with a factor qi, in effect annihilating all other permutations – and
vice versa for the (+) limits and terms with a factor q−1

i . In the (+,+,+)
limit the δDSU(3) can be shown to be nilpotent, which means that there exists

some n for which (δD(+,+,+)
SU(3) )n = 0, and non-diagonalisable [41, section 2.3]

with vanishing generalized eigenvalues. These sectors are called eclectic and
are studied extensively in [22], however since our analysis focuses on spectral
statistics, vanishing eigenvalues are not ideal. Note that the (+,+,+) limit is
equal to the (−,−,−) limit up to parity and relabeling, so this limit is also
not ideal. For this reason the work done in this thesis focuses on the (+,+,−)
limit, which is diagonalisable in the SU(3) sector – we’ll refer to this as the
non-eclectic SU(3) sector. Note that by appropriate relabeling this limit is
equivalent to (+,−,+), (−,+,+), (−,−,+), (−,+,−) and (+,−,−). Using
the notation introduced in section 3.2 we get

δD(+,+,−)
SU(3) =

L∑
i=1

P̃
(+,+,−)
i,i+1 , (3.38)

where the action of P̃
(+,+,−)
i,i+1 is

P̃
(+,+,−)
i,i+1 |21⟩ = ξ3 |12⟩ , P̃

(+,+,−)
i,i+1 |32⟩ = ξ1 |23⟩ , (3.39)

P̃
(+,+,−)
i,i+1 |31⟩ = ξ−1

2 |13⟩ ,

annihilating all other spin state orderings. The twisting deformation is known
to be integrability preserving. How this is reflected in the spectral statistics of
this operator is studied in section 4.2.

3.3 The XXZ Spin Chain

Having seen multiple ways in which spin chains arise in the study of planar
N = 4 SYM, it is worthwhile to spend some time studying the XXZ spin chain
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on its own, especially in the context of spectral integrability. The Hamiltonian
for this system is

HXXZ =
L∑
i=1

(
S−
i S

+
i+1 + S+

i S
−
i+1 +∆Sz

i S
z
i+1

)
+ E0I . (3.40)

S±,z
i are the usual spin operators acting on site i in units of ℏ = 1. When

working with this and other spin chain Hamiltonians, we introduce the site-
basis, written as |↑↓ . . . ↑⟩, indicating the direction of spin at each site in the
chain, where the site L+1 is identified with the site 1. This basis is in principle
infinite dimensional, but can be restricted to sectors (L,M) of finite size.

|(L,M)| =
(
L

M

)
, (3.41)

where L indicates the length of the chain, i.e. the number of sites, and M is
the magnon number. E0 is an energy off-set, but since we’re mainly interested
in energy spacings and not the energies themselves, we take E0 = 0 unless
otherwise specified. The name “XXZ” comes from the parameter ∆ which
indicates that the coupling to the z-axis is different from the coupling to the
x and y-axies.

A more general Hamiltonian with different couplings in all directions, H =∑L
i JaS

a
i S

a
i+1, a = x, y, z, is called an XYZ chain. If we set ∆ = 1 we get the

XXX chain model. We now briefly review the symmetries of the XXZ spin
chain.

• Spin rotation: The Hamiltonian commutes with Sz
i , ∀i, meaning that

we can label eigenstates with a quantum number M for the operator
Sz
Total =

∑L
i=1 S

z
i , which measures the total spin along the z-axis. M

corresponds to either the number of up-spins or down-spins in the site
basis, depending on convention, but we will see later that this is equiva-
lent. In the XXX case (∆ = 1) we have full SU(2) symmetry, as HXXX

commutes with Sx,y,z
i ∀i which generate an su(2) algebra. In the more

general XXZ case this breaks down to a U(1) symmetry. Notice that
since M is a quantum number for the site basis, HXXZ does not mix
sites with different numbers of magnons. It also does not mix states of
different length L, meaning that the Hamiltonian is closed under sectors
of equal L and M . Physically this symmetry corresponds to rotating all
spins in the chain by the same angle around the z-axis.

• Translation: In this thesis we exclusively investigate closed spin chains,
meaning that we identify the site L+1 with 1, applying periodic bound-
ary conditions. With this identification HXXZ is left invariant by any
global translation of sites i→ i+ L, which can be achieved by applying
i → i + 1 L times. This means that we can label each magnon with a
definite momentum pj but, as discussed previously with eq. (3.25), the
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Figure 3.3: Level spacing distribution in the (18, 7) sector of HXXZ with ∆ = 1.

total momentum must be P =
∑M

i=1 pi = 0. In the Hamiltonian itself,
this corresponds to reordering the terms of the sum.

• Parity: Also called reflection symmetry, HXXZ is left invariant under re-
versing the order of spins in the site basis, e.g. |↓↓↑↓↑↑↑⟩ → |↑↑↑↓↑↓↓⟩.
Note that this can not generally be achieved by global translations. This
corresponds to replacing the terms S±

i S
∓
i+1 → S∓

i S
±
i+1, which again re-

orders the terms of the Hamiltonian.

• Spin flip: By flipping all spins in a chain, we switch between sectors
(L,M) and (L,L − M). These have the same size, as can be seen
from eq. (3.41). In HXXZ we achieve this by replacing S±

i → S∓
i and

Sz
i → −Sz

i , leaving the Hamiltonian invariant. For a given L only the
(L,L/2) sector is closed under such transformations, but more generally
this means that the energies in the (L,M) and (L,L −M) sectors are
equal, meaning that we only have to investigate one of them.

We now briefly review and reproduce some of the results for the level statistics
of the XXZ spin chain found in [45, chapter 4], which contains a more in-depth
analysis.

3.3.1 Deformations and Integrability Breaking

The XXZ spin chain can be solved using the Bethe Ansatz, making it in-
tegrable. This integrability is reflected in the level statistics which follow a
Poissonian distribution, as seen in fig. 3.3. We can break this integrability by
adding new terms to the Hamiltonian that introduce a chaotic signature in the
level spacings.
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Figure 3.4: Level spacing distributions for the (18, 9) and (18, 10) sectors of
HNNN with different values of ∆1 and ∆2. The distributions are fitted with
PB(s, ω) to quantify the transition between integrable and chaotic phases. For
all calculations we set J2 = 1.

3.3.1.1 NNN Coupling

Non-integrable behavior can appear if the spin chain has not only a NN cou-
pling, but also a Next Nearest Neighbor (NNN) coupling,

HNNN = J1

L∑
i=1

(
S−
i S

+
i+1 + S+

i S
−
i+1 +∆1S

z
i S

z
i+1

)
+ J2

L∑
i=1

(
S−
i S

+
i+2 + S+

i S
−
i+2 +∆2S

z
i S

z
i+2

)
+ E0I .

(3.42)

Here we have four parameters, (J1,∆1, J2,∆2), that we can tune in order to
amplify or suppress different interactions in the chains. At different values of
these parameters the system may be integrable or chaotic, but this is not an
instant transition. We can parameterize this as a phase transition between
an integrable and a chaotic phase using the Brody distribution, eq. (2.11).
Figures 3.4 and 3.5 show level spacing distributions for different values of
these parameters.
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Figure 3.5: Level spacing distribution of the (18, 7) sector of HNNN. The two
distributions correspond to different strengths of the NNN coupling strength
J2. For both distributions we set ∆1 = ∆2 = 1.

3.3.1.2 Random Magnetic Field

Another way to break the integrable structure of the XXZ Hamiltonian is to
introduce a random magnetic field in the z direction on each site,

HRND =
L∑
i=1

(
S−
i S

+
i+1 + S+

i S
−
i+1 +∆1S

z
i S

z
i+1 + hiS

z
i

)
+ E0I . (3.43)

We get the field strengths hi from a Gaußian with zero mean and width h.
Since in general hi−1 ̸= hi ̸= hi+1 symmetry under parity transformations is
broken. The same argument can show that translational symmetry is also
broken, since the magnetic field is in general different on all sites. Lastly
spin flip transformation only preserve the energies in the case where M = L/2,
meaning that only spin rotation symmetry is left. The chaotic level spacing
distribution of an XXZ chain in such a field can be seen in fig. 3.6.

3.4 Desymmetrisation

Desymmetrisation is the process of splitting up the eigenstates of an operator
into different closed sectors with respect to all symmetries of the operator.
This is important, especially when studying level spacings as different closed
sectors can by definition not be correlated and will therefore exhibit integrable
behavior (or even degeneracies) when compared, regardless of the actual struc-
ture of the Hamiltonian. For an illustration of this see fig. 3.7.

For the XXZ Hamiltonian we first desymmetrise with respect spin rotation
by only considering states within the same (L,M) sector. We then desym-
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Figure 3.6: Level spacing distribution in the (13, 6) sector of HRND with h = 1.
The level spacing distribution is fitted with the Brody distribution. Since we
find ω close to 1, the spectrum is best described by GOE statistics which
signifies chaos.

metrise with respect to translations by only considering states that can not be
found as a translation of other states. In practice we choose our basis to be in
canonical order, which is best explained by example. Take the state |↓↑↑↓↓⟩
and identify ↑→ 1 and ↓→ 0, so |01100⟩. Reading this as a binary number
we find the smallest possible number achievable by global translation of the
spins, in this case |00011⟩. All other states that are equal to this ordering up
to translation are discarded. In the (5, 2) sector there are two such orderings

|↓↓↓↑↑⟩ and |↓↓↑↓↑⟩ , (3.44)

meaning this sector is two-dimensional after translation-desymmetrisation,
compared to

(
5
2

)
= 10 dimensional before.

From these canonically ordered states we desymmetrise with respect to
parity by constructing states of definite parity. This can be done for any state
by simply considering

|ψ⟩ → |ψ±⟩ ∝ |ψ⟩ ± P |ψ⟩ (3.45)

P |ψ±⟩ = ± |ψ±⟩ (3.46)

with P being the parity operator and |ψ±⟩ being appropriately normalized.
We can now consider two sectors of either positive or negative parity, but in
general the positive sector will be used as it is always larger than the negative
sector (if |ψ⟩ = P |ψ⟩ this state will only add to the positive sector).

We need only desymmetrise with respect to spin flipping in sectors where
M = L/2, since otherwise this transformation is not closed under the desym-
metrisation we’ve already performed. The desymmetrisation is performed in
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Figure 3.7: Level spacing distribution for the (18, 7) sector of the XXZ spin
chain (left) before and (right) after desymmetrising with respect to parity.

the same way as for the parity operator, but in general we will not consider
this sector.



Chapter 4

Spectral Integrability Methods
for Strongly Twisted N = 4
Super Yang-Mills

Integrability can be difficult to prove. Even when N = 4 SYM lends it-
self to a spin chain interpretation, the process of solving this spin chain with
Bethe ansatz methods can be highly non-trivial, especially at all orders of
the coupling constant. This is where the application of numerical measures
of integrability comes into play, as they can provide evidence for integrability
without the need for rigorous proofs. This needs however not be the case, as
some integrable systems have extra structure in their spectra, causing their
level spacings to deviate from the otherwise expected Poissonian distribution1.
Analysing the spectrum of N = 4 SYM in order to understand the integrable
structure of the theory has in the past few years been a successful endeavor.
In [7, 8] real level spacings are used to study how integrability is affected out-
side the planar limit of N = 4 SYM, finding that for finite N the spectrum is
chaotic, but that integrability is recovered as N → ∞. The same is observed
for the β-twisted theory, albeit only for β ∈ R.

In this chapter Fishnet theory and the non-eclectic SU(3) sector, which
we found in the strong imaginary twisting limits of planar N = 4 SYM, are
studied using level spacings and level spacing ratios. This differs from previ-
ous work integrability in the spectral problem of strongly twisted N = 4 SYM
[7, 8] as the limits considered here are non-unitary, introducing the possibil-
ity of complex eigenvalues. This means our analysis must expand to that of
open quantum systems, which we described in sections 2.2.1.2 and 2.2.2. In
section 4.1 we analyse the spectrum of different (L,M) sectors of δDFishnet at
first and second loop order. We consider the spectra themselves as well as
their level spacing distributions and level spacing ratio distribution. The same
analysis is preformed for δDSU(3) at first loop order in section 4.2. Finally in

1A great example of this is the hydrogen atom. Not accounting for any pertubative
effects like Zeeman splitting or spin-orbit coupling the spectrum is exactly solveable but
does not exhibit Poissonian level spacings.
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section 4.3 we discuss the findings of the previous sections as propose some
reasons for the observed deviations and degeneracies.

4.1 Fishnet Theory

In this section we analyze the spectrum of the dilitation operator for Fishnet
theory, given by eqs. (3.31) and (3.32). First we comment on the spectra
themselves as they appear in the complex plane, where the spectrum of a
given (L,M) sector appears in the shape of an M -pointed star at first loop
order and how this structure is broken at second loop order. We comment
on how the Bethe equations lead to this structure, and what effect this might
have on the measures of integrability deployed.

We then analyze the level spacing rations of the operator, commenting on
how the aforementioned structure appears both in the one loop and two-loop
ratios. We then look at the level spacings for this theory and discover degen-
eracies for all considered chains of even L at one loop order, which disappear
at two loop order. Degeneracies are also in some odd L sectors, but not by
methods used in this section, see section 4.3 for more detail. However even in
chains of odd L, we discover deviations from Poissonian structure in the one
loop spacings. It is discussed whether the degeneracies are accidental or point
to a hidden symmetry of the operators, and evidence pointing towards degen-
eracies arising from combinatorics of the Bethe equations is presented. All
numerical evaluations are done with ξ = 1. It should be noted that whenever
we refer to “two loop” or “second loop” order, we refer to the perturbative
expansion of δDFishnet truncated at ξ4.

4.1.1 Spectra

The spectrum is obtained by explicitly constructing a matrix representation of
the one loop and two loop operators for a given sector (L,M) and diagonalizing
it numerically (technical details in appendix A). The matrix for both the one
loop and two loop operator is always real valued in the chain basis and as such
all eigenvalues are either real or come in complex conjugate pairs. However the
spectra exhibit more structure than just reflection about the real axis. At one
loop order, the spectrum in a given (L,M) sector is shaped like an M -pointed
star. It is worth noting that the “points” of the spectral star align with the M
roots of unity, as is seen in fig. 4.1. At two loop order this structure is broken,
but since δD(two loop)

Fishnet is still real valued in the chain basis, the spectrum is
still symmetric about the real axis. There is also a tendency for the spectra
to “spread out” towards larger positive real values, but this is only observed
numerically.

It is worthwhile noting that the lines at the M roots of unity do not con-
stitute symmetry axes for the one loop spectrum, but rather a tendency for
the eigenvalues to have greater magnitudes at these angles. The star shaped
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spectra of the Fishnet theory dilatation operator is derived analytically in [43,
section 4.1] for M = 3 and M = 4, but only as a sum of all (L, 3) and (L, 4)
sectors explicitly, however since any sector withM = 3 and a specified L would
be a subset of all (L, 3) combined, that sector will also have the same bounds
– same for M = 4. It is likewise commented in in [43] that the spectrum of
any (L,M) sector is bounded by a convex M -gon, matching the star shapes
found in this thesis.2

Furthermore, as the Bethe roots, eq. (3.36), are L’th roots of unity, there
are only certain possible values for the magnitude of their reciprocal sum at
a given angle (the eigenvalues). This is less pronounced in the bulk of the
spectrum. towards the middle, but it causes some straight line structures to
appear for the more extremal energies. How (if at all) this structure affects
level spacings and level spacing ratios is discussed in sections 4.1.2 and 4.1.3.
We can get an idea as to how the level spacings are impacted by comparing
the spectra to the RMT counterparts for integrable and chaotic behavior.
Looking at fig. 4.2, we observe that the (19, 9) sector exhibits structure, both
in extremal states as well as in the central bulk, that is not present for randomly
distributed values. Generally the (19, 9) bulk values tend to “clump” together
forming clusters or lines in the complex plane. At two loop order, fig. 4.3, this
clumping is gone pointing towards the chaotic nature of the model. In general
the two loop shares more similarities with its chaotic RMT counterparts, albeit
with an apparent preference for values on the real axis. δD(two loop)

Fishnet has 132
real eigenvalues in the (19, 9) sector, as opposed to 54 and 0 for GinOE and
GinUE matrices of the same size respectively.

In the spectra analyzed we find degeneracies in most chains of even L for
L ≥ 10. This may point towards a further symmetry of the Hamiltonian,
meaning we would have to further desymmetrise our basis, but no such sym-
metry was found during the process of this thesis. In [46] it is shown that one
can always explicitly construct an anti-unitary operator to act as a symmetry
protector for a two-fold degeneracy, however the proof fails for non-unitary sys-
tems (due to the difference between left and right eigenvectors) meaning that
accidental degeneracies could still be a possibility for the DS theories studied
in this thesis. It is however worth mentioning that whatever degeneracies are
observed at one loop order is gone at truncated two loop order. This discussion
is expanded in section 4.3.1.

2The spectrum of the (L,M) sector is equal to that of the (L,L−M) sector (see section
4.1 of [43] for this) and map to one another through spin-flipping, so the trend will only
persist until then – for example the (20, 11) spectrum has 9 points.
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Figure 4.1: Spectra for δDFishnet at (left) one loop and (right) two loop order
for L = 17,M = 5, 7 and 8. To illustrate the shape of the spectra, lines have
been drawn at θ = 2πk/M, k = 0, . . . ,M − 1.
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Figure 4.2: Top: Eigenvalues for δD(one loop)
Fishnet in the (19, 9) sector (N = 4862).

The plot to the left displays all eigenvalues in C whereas the plot to the right is
zoomed in on the bulk. Middle: Random values with their real and imaginary
parts drawn from a standard Gaußian. The number of values is equal to the
number eigenvalues for the (19,9) sector, the plot to the right is again zoomed
in on the bulk. Bottom: The same as the middle row, but with the complex
conjugates of the random values added to have the same symmetry about the
real axis as the Fishnet dilatation operator. The plot on the left contains the
same number of values as the plots above, while the plot on the right is again
zoomed in on the bulk.
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Figure 4.3: Top: Eigenvalues for δDFishnet in the (19, 9) sector (N = 4862) at
two loop order. The plot to the left displays all the values in the complex plane
whereas the plot to the right is zoomed in on the bulk. Middle and bottom:
Eigenvalues for a N × N GinUE (middle) and GinOE (bottom) matrix. As
GinOE and GinUE are are both normalized such that |E| ≤ 1. The bulk of
these spectra (the plots on the right) are chosen such that roughly the same
amount of points appear as for the bulk of the two loop Fishnet.
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4.1.2 Level Spacings

Since the spectra belong in the complex plane, we’ll analyze them using the
level spacing definition given in section 2.2.1.2. For even L the degeneracies
discussed previously become apparent in the level spacings since si ∝ |Ei −
Ei,NN|. Figure 4.4 shows the level spacings for the (18, 7) and (17, 7) sectors.

In the (18, 7) sector the degeneracies cause a large deviation from P
(2D)
Poi (s).

These degeneracies are no longer present at two loop order, which does have
better agreement with PGinUE(s), albeit with overcounting s ≲ 0.6 and s ≳ 1.5
and undercounting elsewhere. As stated previously the level spacing statistics
employed in this project are not equipped to deal with degeneracies, therefore
the rest of this analysis will focus on odd L sectors.

In real level spacings a common practice is to remove states at the extremes
of the spectrum, as these are bounded by the physical properties of the system
and integrability is found in the bulk spacings. One might then think that the
same procedure could fix the deviations observed above in the complex case.
However, this is not observed when extremal states are removed and the level
spacings computed numerically, as can be seen in fig. 4.5. The clipping of large
magnitude states has a neutral, if not detrimental effect on the deviations of
the level spacing distributions from their RMT counterparts in both the one
loop and two loop case, albeit less so at two loop order. Figures 4.2 and 4.3
show that even in the bulk of the spectrum, there are noticeable differences
between δDFishnet and the RMT ensembles, suggesting that whatever devia-
tions are observed in the level spacing distributions they may persist when
only considering the bulk. Furthermore, the agreement with P

(2D)
Poi (s) actually

becomes better as more states are included in the one loop case, but this may
also be a consequence of worse statistics in the bulk, as less values are included.

One could also consider the unfolding parameter σ in eq. (2.14) as the
cause of these deviations, given that especially the one loop spectrum has this
“clumping” property (top of fig. 4.2), it may be sensitive to the width of the
Gaußian functions used to calculate navg(E). Numerically it is observed that
while the value of σ does effect the level spacing distributions, the change
become minimal for σ’s larger than 4.5, especially in the one loop case where
the χ2 value stabilizes.
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Figure 4.4: Level spacings for the (top) (18, 7) and (bottom) (17, 7) sectors

δD(oneloop)
Fishnet . The dashed line in both plots is the two-dimensional Poisson dis-

tribution which integrable spectra are expected to follow. The dashed and
dotted line is the level spacing distribution for the GinUE, which chaotic spec-
tra are expected to follow. The degeneracies in the (18, 7) sector can be seen
as the large count of spacings at s = 0.
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4.1.3 Level Spacing Ratios

Having explored the level spacing distributions of Fishnet theory, we turn our
attention to level spacing ratios, defined in section 2.2.2. It is worthwhile to
once again note that level spacing ratios, by definition, do not require unfolding
and thus we have no free parameters to tune. Whereas the RMT prediction
for an integrable system would be a perfectly flat distribution, δD(one loop)

Fishnet once
again deviates from this result, this time in a very pronounced way as seen
in fig. 4.7. In the (18, 7) sector we again observe degeneracies, as most of the
spacing ratios are at the origin. This pattern is present in other even L sectors.
In the (19, 9) sector we do not see degeneracies, but the distribution of level
spacing ratios are still far from Poissonian, as there are certain ratios that are
much more probable than others. In both cases the two loop correction breaks
this structure and we find a result more reminiscent of the GinOE distribution
expected from RMT, albeit with much more pronounced level repulsion in the
(19, 9) sector. In this sector we also see an overcounting of ratios at arg(z) ≈ π
which can be attributed to the straight line structures seen in the spectra at
larger values of |E|. Figure 4.8 shows this structure in the one loop (19, 9)
sector. This overcounting disappears when limiting the analysis to the bulk of
the spectra.
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Figure 4.7: Level spacing ratios for the (18, 7) and (19, 9) sectors of δDFishnet

at one loop and two loop order. In the (18, 7) sector N = 1768 and in the
(19, 9) sector N = 4862
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the “points”. Five straight lines of eigenvalues can be seen in the spectrum,
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Considering the partial level spacing ratio distributions, eq. (2.20), we run
into an issue in comparing the distributions to RMT expectations, namely
for δD(two loop)

Fishnet in which we have already observed chaotic behavior. Since

ρ
(N)
GinUE(r, θ) is dependent on the size of the ensemble matrices N and the

asymptotic behavior of ρ
(N→∞)
GinUE (r, θ) is not captured even for N = 104 ma-

trices, see fig. 2.6, we have no analytical distribution to compare to. What
we can do instead is to compare the level spacing ratios of the δD(two loop)

Fishnet to
those of an ensemble of GinOE matrices with N = |(19, 9)| = 4862. For the
integrable case we can still use ρPoi(r, θ). Figure 4.9 shows the (19, 9) level
spacing ratio distributions along with the RMT distributions just described.
Here we actually observe better agreement with RMT expectations in the two
loop case than the one loop case. δD(two loop)

Fishnet actually provides a better fit
to the RMT level spacing ratio distributions than any of the level spacing
distributions considered.
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distribution is calculated from 100 GinOE matrices with N = |(19, 9)| = 4862
to account for the N -dependence of the distribution. All plots show the χ2

between the Fishnet distribution shown and the matching RMT distribution.

4.2 Non-Eclectic SU(3) Sector

We now turn our attention to the non-eclectic SU(3) sector, which we will
analyse in the same way as we did Fishnet theory in section 4.1, albeit only at
first loop order. Once again we find the spectra to beM -pointed stars, despite
there now being two different types of excitations. In general when considering
level spacings and level spacing ratios, we find better agreement with RMT
expectations for integrable systems for δDSU(3) than for δD(one loop)

Fishnet . For all
calculations presented we take ξ1,2,3 = 1.
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4.2.1 Spectra

Many of the properties of the spectrum of δD(one loop)
Fishnet also hold true for the

spectrum of δDSU(3). Recall that for δDSU(3), we consider closed sectors labeled
by (L,M,K), L being the length, M being the magnon number and K being
the number of those magnons that are in the |3⟩ spin state. The spectra are
shapes with M points, regardless of L and K as illustrated in fig. 4.10, simi-
larly to Fishnet theory. Unlike for Fishnet theory, there is yet to be found an
analytical bound to the spectra of δDSU(3). The Bethe equations are presented,
but not solved, in [41, section 5.1] and analytic solutions to some small sectors
are given in [43, section 4.2]. The spectrum is less dense at larger magnitudes,
but the straight lines of eigenvalues that appeared in Fishnet theory is absent
– or at least suppressed to a point where we can no longer see it. There is
however a much more prominent “clumping” of the eigenvalues in the bulk, es-
pecially when compared to a random spectrum as seen in fig. 4.11. All of these
observations are empirical, and only verified for the sectors studied as part
of this work which are (12, 4, 2), (13, 4, 3), (13, 5, 3), (13, 6, 2), (14, 5, 3), (13, 6, 2)
and (14, 7, 4).
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Figure 4.10: Spectrum of δDSU(3) in different (L,M,K) sectors. Lines have
been drawn in the direction of the M roots of unity to illustrate the shape of
each spectrum.
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Figure 4.11: Top: Spectrum of the (14, 7, 4) sector. To the left all values are
shown and to the right the plot is zoomed in on the bulk, showing the clumping
of eigenvalues. Bottom: Random values with their real and imaginary parts
taken from a standard Gaußian distribution. To the left we see the full set of
values and to the right the plot is zoomed in on the bulk.

4.2.2 Level Spacings

Considering the level spacings of δDSU(3), we in general find better agreement

between our observed distributions and P
(2D)
Poi (s) than for Fishnet theory. This

is readily apparent when looking at fig. 4.12, albeit still with some deviations.
In some cases the deviations can be explained by the small size of the sector,
such as for (13, 4, 3), but even for larger sectors we see deviations. However
crucially we do not see cubic level repulsion in any sector, which would indicate
chaotic behavior.
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Figure 4.12: Level spacing distributions for different closed sectors of δDSU(3).

We can quantify this claim by again looking at the χ2 value as a “goodness
of fit” parameter3 when comparing the level spacing distributions of δDSU(3)

to P
(2D)
Poi (s). Where as χ2 > 1 for all values of σ in Fishnet theory, in the

non-eclectic SU(3) theory, we see a universally better fit with the expected
integrable distribution, as can be seen in fig. 4.13. The χ2 values stabilize
when σ ≳ 5.2, but curiously has a minima at σ ≈ 2.2 in the (14, 7, 4) sector.
Since σ defines the width of the Gaußians used to calculate the average density
of points, see eq. (2.14), it may be that this value is correlated with the average
size of the “clumps” in the spectrum. In general we find very good agreement
with RMT expectations across larger sectors.

3Using reduced χ2 is usually standard for comparing different fits with different param-
eters, but since all our distributions have the same binnings we can used standard χ2 values
for analysis.
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4.2.3 Level Spacing Ratios

Considering the level spacing ratios, we find considerable agreement between
different (L,M,K) sectors and RMT expectations for integrable systems. Look-
ing at the full distributions in fig. 4.14 we observe in general that is the size
of the sector grows, we approach the flat distribution expected for integrable
systems. Looking at fig. 4.15 we find that the partial distributions ρ(r) and
ρ(θ) cooperate this picture – especially for the (14, 7, 4) sector.
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Figure 4.14: Level spacing ratios in four closed sectors of δDSU(3). Here N
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4.3 Discussion

The deviations of the spectral statistics of Fishnet theory from the predictions
of RMT raises som questions about the validity of extending the BGS conjec-
ture for analysis of integrability in strongly twisted planar N = 4 SYM. The
study of level spacing distributions have proved useful in the spectral problem
strongly β-twisted theory [7, 8] at first loop order. In the SU(2) sector of un-
twisted planar N = 4 SYM we found the anomalous dilatation operator to be
an XXX spin chain, which has been shown to have integrable spectral charac-
teristics, both in this thesis and in other works, see fig. 3.34 and [2, section 3.1].
We point out in section 4.1.1 that perhaps the prominent internal structure of
the spectra is the cause of the deviations observed in our analysis. Removing
states at the low and high energy ends of spectra is a common part of the
unfolding process for real valued spectra, as extrema of the energies are more
tightly bounded by system dependent properties, however we did not observe
an improvement when only considering bulk states, see fig. 4.5 . If the sys-
tem dependent structure persists at all energy scales, it can cause deviations
from RMT expectations. A good example of this is the hydrogen atom, which
is integrable in the sense that we can solve it by analytical means, but the
system itself exhibits far from Poissonian level spacings, as seen in fig. 4.16.
In systems with very simple dynamics, the internal structure can dominate,
making RMT an unideal tool for analysing integrability. This may explain the
deviations we see in Fishnet theory, as well as why they are suppressed when
considering the non-eclectic SU(3) sector as it has more complicated dynam-
ics. However further work is necessary to understand the ways in which the
spectral structure affect both the level spacings and level spacing ratios.

4Recall that an XXX chain is simply an XXZ chain with ∆ = 1.
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4.3.1 Fishnet Degeneracies From Bethe Root
Combinatorics

In section 4.1.2 we found degeneracies in some (L,M) sectors of Fishnet the-
ory with even L. Typically in quantum mechanics we associate degenerate
eigenvalues with a symmetry, implying that the spectrum is not fully desym-
metrised. In [46] it is shown that any degeneracy of a Hermitian Hamiltonian
is protected by an anti-unitary symmetry operator, but the argument requires
the orthogonality of eigenvectors and does therefore not generalise to systems
with non-Hermitian Hamiltonians, see [47, chapter 8]. It is therefore not clear
whether or not the degeneracies we observe are protected by a larger symmetry
of δD(one loop)

Fishnet or are “accidental”, i.e. not originating from a symmetry. Look-
ing at a sector where M = L/2 we can actually identify a larger symmetry as a
combination of parity and spin reversal, as these both rearrange the ordering of
↑↓ pairs, but since spin reversal in general is not a closed operation on (L,M)
sectors this does not generalise. Whether or not this symmetry accounts for
all degeneracies in (L, L/2) sectors remains to be analysed.

[48, 49] present methods for classifying the degeneracies of a model similar

to δD(one loop)
Fishnet called the “Totally Antisymmetric Exclusion Process” (TASEP).

TASEP is a Hamiltonian similar to the XXZ spin chain, but with different
boundary conditions that make it, in general, non-unitary. The degeneracies
of TASEP are not found to be due to a symmetry of the system, but rather
a property of its Bethe equations. [48] shows that by swapping “packages”
of Bethe roots that contribute the same to the total energy and momentum
degeneracies can occur. Since we know the Bethe equations for δD(one loop)

Fishnet ,
we might try a similar approach in an attempt to classify the degeneracies we
found in section 4.1.2. Looking at the Bethe equations we have

E = −2
M∑
i=1

1

αi

, (4.1)

(αi)
L = (−1)M−1 , (4.2)

M∏
i=1

αi = 1 . (4.3)

αL
i = (−1)M−1 implies that the Bethe roots αi are L’th roots of unity or

negative unity, depending on the parity ofM . If L is even then both αi and−αi

are L’th roots of (negative) unity, since α2l
i = (−αi)

2l, l ∈ N, l = L/2. So if a set
of M Bethe roots adding up to an eigenvalue in eq. (4.1) contains both αi and
(−αi) these cancel out. If one can replace (αi,−αi) with another pair (αk,−αk)
in a way such that eqs. (4.2) and (4.3) are still satisfied, this would constitute
a degeneracy. If this constitutes all degeneracies they would only occur for
sectors of even L. By finding the Bethe roots corresponding to degenerate
eigenvalues numerically we can examine whether this is the process by which
degeneracies occur. Figures 4.17 and 4.18 show that this pattern can account
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Figure 4.17: All possible Bethe root combinations in the (10, 4) sector that
produce the eigenvalue E = 0. Both the left and right plot consist of two
canceling pairs of roots, hence why E vanishes. This is the only degeneracy
found in the (10, 4) sector.
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Figure 4.18: All possible Bethe root combinations in the (12, 5) sector that
produce the eigenvalue E = −2eiπ/3.

for some degeneracies, and numerical analysis shows that all degeneracies in
the (10, 4), (12, 4), (12, 5) and (14, 5) sectors come from swapping out cancelling
pairs of Bethe roots.

Of sectors where M ̸= L/2 the (10, 4) sector is the smallest to have any de-
generacies, which has been verified numerically. This pattern persists through-
out all sectors up to (15, 5), where we only find degeneracies in even L sec-
tors. In the (15, 6) sector we find that E = 0 is a two-fold degeneracy, which
disproves the conjecture of degeneracies only occurring for even L. However
looking at fig. 4.19 we find that the degeneracy is caused by three pairs of roots
that add to a canceling triplet. So in general the idea of exchangeable packages
of Bethe roots constitute all the degeneracies up to the (15, 6) sector. (15, 6)
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Figure 4.19: All possible Bethe root combinations in the (15, 6) sector that
produce the eigenvalue E = 0. This is the only degeneracy in the (15, 6) sector,
which is the only odd L sector found to have degeneracies in this analysis.

is the largest sector analysed in this work, as larger sectors introduce compu-
tational and runtime difficulties, more on this in appendix A. Whether this
result is general and whether it reveals an underlying symmetry of δD(one loop)

Fishnet

is not understood. Going back to the non-degenerate cases it is also not fully
understood how the underlying structure of the spectra emerge from the Bethe
equations and what effect this has on the level spacing distributions and level
spacing ratio distributions.
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Conclusions

The study of spectral statistics has proved a useful tool in the field of quan-
tum chaos and integrability. The Berry-Tabor and BGS conjectures along
with Wigner-Dyson statistics are universally accepted measures of integrabil-
ity and for Hermitian quantum systems with real valued spectra, such as the
XXZ spin chain, which is seen both in this thesis and the literature in gen-
eral [1, 2, 6, 45]. The field of non-Hermitian physics is not by any means
new and appears in the study of open or dissipative quantum systems where
the usual requirement of probability conservation which leads to Hermicity
is dropped, see [50] for a review. Even the concept of level statistics in the
complex plane has been studied since the late 1980’s with [30] discovering the
universality of cubic level repulsion for dissipative quantum systems. However
a universally accepted methodology for the spectral statistics of integrable and
chaotic quantum systems in C is yet to be found. [26] proposes the projective
level spacing distributions described in section 2.2.1.2 but points out that it is
not understood how RMT signatures appear in the spectra of non-Hermitian
chaotic systems. [27] proposes using level spacing ratios, section 2.2.2, as a
measure in non-Hermitian systems but also discusses how this warrants further
analysis as it is unclear which RMT ensembles should be considered due to
the slow appearance of large N asymptotics in GinOE and GinUE matrices,
see fig. 2.6.

We can take strongly twisted planar N = 4 SYM as a microcosm of the
larger story of non-Hermitian spectral statistics. Spectral integrability meth-
ods have previously been used to analyse Hermitian strong twisting limits [7, 8]
and our goal was to extend this analysis to certain non-unitary limits: Fishnet
theory and the non-eclectic SU(3) sector. For Fishnet theory we found degen-
eracies in most (L,M) sectors for even L, which we discussed the origins of by
looking at different combinations of Bethe roots. We believe these symmetries
to be accidental, but further work is needed in order to know if all these de-
generacies can be classified in the way discussed in section 4.3.1. In all cases
studied these degeneracies are only present at first loop order and are broken
at second loop order. Looking at larger odd L sectors we found level spacing
distributions resembling the RMT expectations, P

(2D)
Poi (s) for the integrable

first loop order and PGinUE(s) for the chaotic second loop order. However both
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loop orders analysed deviated in significant ways, which we conjectured was
due to further internal structure in the spectrum. Looking at the level spacing
ratios for Fishnet theory we found a similar story. At first loop order we saw
a pattern very different from the RMT expectation – even for larger (L,M)
sectors – which we again conjectured might be caused by the internal struc-
ture of the spectra. This was somewhat remedied at second loop order, were
we found good agreement with the RMT results. In general we found that
for Fishnet theory level spacings distribution provided a better description of
the one loop dilatation, whereas the truncated two loop dilatation operator
showed better agreement with RMT expectations when using level spacing
ratio distributions.

Moving on to the non-eclectic SU(3) sector we found that δDSU(3) in general
provided better agreement with RMT predictions for both methods used. For
the level spacings specifically the fit was up to an order of magnitude better
than Fishnet theory when comparing the χ2 values. The level spacing ratios
also provided better agreement with RMT predictions, as larger sectors such
as (13, 6, 2) and (14, 7, 4) actually resembled the perfectly flat ρPoi(z). However
both in the level spacings and the level spacing ratios we still found deviations
that may once again point to the internal structure in the spectra. In general,
further investigation into how the spectral structure of Fishnet theory affects
the one loop level spacings and level spacing ratios and why this is suppressed
in the non-eclectic SU(3) sector is needed.

One way to deepen our understanding of spectral statistics as a probe for
integrability in the strong twisting limits studied in this thesis is to vary the
value of the couplings ξi. For Fishnet theory this would introduce a difference
in the strength of the one loop and two loop correction terms, which may
suppress or enhance the chaotic signatures observed in the truncated two loop
dilatation operator, possibly leading to chaotic phase transitions like the ones
described in [26]. The non-eclectic SU(3) sector has three couplings ξ1,2,3, the
relative size of which could play a role in the structure of the spectra, as taking
ξ1,2 → 0 while keeping ξ3 = 1 one would regain Fishnet theory and with it the
prominent spectral structure. Studying how this structure emerges could help
our understanding of how it affects the level spacing and level spacing ratio
distributions, for which in general the non-eclectic SU(3) sector shows better
agreement than Fishnet theory.

Integrability in the one loop spectral problem of planarN = 4 SYM is a well
established result, both in the twisted and untwisted theories [7, 32, 34, 43].
The results presented in this thesis indicate that for non-Hermitian sectors
of strongly twisted theories RMT signatures appear, but are in the case of
Fishnet theory suppressed by other effects which we believe to be internal
spectral structure. The fact that this structure is less present in the non-
eclectic SU(3) sector, which has more complicated dynamics, points to the
fact that in larger sectors, and in the full strongly twisted theory, spectral
statistics and RMT could serve as a good indicator for integrability and chaos
in the non-Hermitian limits as it has in the Hermitian ones.
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Appendix A

Numerical Details

All numerical results in this thesis are achieved using Wolfram Mathematica
and Python. All code used and written for this project is available in a public
GitHub repository [51].1 All computations have been preformed locally on an
ASUS VivoBook 15 X512 running Ubuntu 22.04.01.

Most numerical computations in this thesis consist of the following steps:

1. Construct a matrix, either a representation of a spin chain Hamiltonian
or a matrix from an RMT ensemble.

2. Diagonalise the matrix to find its eigenvalues.

3. Analyse spectral statistics of the eigenvalues (level spacings or level spac-
ing ratios).

If the desired matrix is a representation of a spin chain Hamiltonian, it is
constructed in Mathematica, since the language allows for some abstractions
(like using undeclared functions) that simplify the process of constructing these
matrices. The RMT matrices are generated with Python. Python is in general
a faster language and thus is used for as many computations as possible, such
as diagonalisation, computing level spacings and level spacing distributions.
Documentation for the languages and packages used can be found in [52, 53,
54].

All one dimensional histograms shown in this thesis are normalised such
that

nbins∑
i=1

hi∆bin = 1 , (A.1)

with hi being the value of the histogram on the i’th bin and ∆bin being the
width of each bin. nbins is the total amount of bins. The normalisation is pre-
formed in Python using the matplotlib.pyplot package’s hist(density=True)
function.

1Reader beware: most of it is un-commented and rather messy.
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Likewise for the two dimensional histograms they are normalised such that

nbins,h∑
i=1

nbins,v∑
j=1

hij∆bin,h∆bin,v = 1 , (A.2)

with nbins,h, nbins,v being the amount horisontal and vertical bins respectively.
Since the histogram is now a matrix hij indicates the value of the histogram
in the i’th horisontal and j’th vertical bin. ∆bin,h and ∆bin,v are the horisontal
and vertical binwidths. In practice we always take nbins,h = nbins,v. The
normalisation is again preformed in Python using the matplotlib.pyplot

package and the hist2d(density=True) function.

A.1 Constructing Spin Chain Hamiltonians

To construct a matrix representation of a Hamiltonian we first pick a basis.
For all operators analysed, except δDSU(3), the basis used is known as the “site
basis”, which labels each site with either ↑ or ↓ depending on the spin state at
the site, e.g. states of the form |↑↑↓ . . . ↑↓⟩. δDSU(3) represented in a variant
of the site basis with spin states 1, 2 and 3. Here we present the method used
for the standard site basis.

We start by using Mathematica to construct the basis. We identify ↑→ 1
and ↓→ 0.

cha ins [ L ] :=Tuples [{1 , 0} ,L ] ;

S ta t e s [ L ,M ] := Select [ cha ins [ L ] , Plus @@ # == M &];

This gives us the site basis in the (L,M) sector. We now implement desym-
metrisation by removing states from the site basis that are identical up to a
given symmetry transformation. Desymmetrising with respect to cyclicity and
parity is done in the following way:

canon i ca l [ l s t ] := Sort [RotateLeft [ l s t , #] & /@ Range [ Length@lst ] ] // First ;

Traces [ L , M ] := canon i ca l /@ Sta te s [ L , M] // De l e t eDup l i ca t e s ;

PosPar [ s t a t e ] := Ch [ canon i ca l [ s t a t e ] ] + Ch [ canon i ca l [Reverse [ s t a t e ] ] ] ;

PosParStates [ L , M ] := PosPar /@ Traces [ L , M] // De l e t eDup l i ca t e s ;

Having constructed our basis, we move on to constructing the matrix by finding
the matrix elements. For a Hamiltonian H in a basis {|ei⟩} these are found by

Hij = ⟨ei|H |ej⟩ . (A.3)

So in code we construct a function H : |ψ⟩ → H |ψ⟩ for some |ψ⟩ in the site
basis. For the XXZ Hamiltonian this is done like so

HXXZ[ S ta t e ] :=
Sum[ I f [Part [ State , i ] == 1 && Part [ State , i +1] == 0 ,
Ch [ReplacePart [ReplacePart [ State , i −>0], i +1−>1]] ,0] +
I f [Part [ State , i ] == 0 && Part [ State , i +1] == 1 ,
Ch [ReplacePart [ReplacePart [ State , i −>1], i +1−>0]] ,0] +
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\ [ Cap i ta lDe l ta ] (Part [ State , i ]−1/2) (Part [ State , i +1]−1/2) Ch [ State ] ,
{ i , 1 ,Length [ State ]−1} ] +
I f [Part [ State ,Length [ State ] ] == 1 && Part [ State , 1 ] == 0 ,
Ch [ReplacePart [ReplacePart [ State ,Length [ State ]−>0] ,1−>1]] ,0] +
I f [Part [ State , Length [ State ]]==0 && Part [ State , 1 ] == 1 ,
Ch [ReplacePart [ReplacePart [ State ,Length [ State ]−>1] ,1−>0]] ,0] +
\ [ Cap i ta lDe l ta ] (Part [ State ,Length [ State ]]− 1/2)
(Part [ State ,1 ] −1/2) Ch [ State ] + E0 Ch [ State ]

As an example, we can use the state |↓↓↑↑⟩. We get HXXZ from eq. (3.40) and
in units of ℏ = 1 we find

4∑
i=1

S−
i S

+
i+1 |↓↓↑↑⟩ = |↓↑↓↑⟩ , (A.4)

4∑
i=1

S+
i S

−
i+1 |↓↓↑↑⟩ = |↑↓↑↓⟩ , (A.5)

4∑
i=1

Sz
i S

z
i+1 |↓↓↑↑⟩ =

[(
−1

2

)2

− 1

4
+

(
1

2

)2

− 1

4

]
|↓↓↑↑⟩ = 0 , (A.6)

HXXZ |↓↓↑↑⟩ = E0 |↓↓↑↑⟩+ |↓↑↓↑⟩+ |↑↓↑↓⟩
= E0 |↓↓↑↑⟩+ 2 |↓↑↓↑⟩ . (A.7)

Where the last equality comes from putting all states in canonical order, i.e.
desymmetrising w.r.t. cyclicity. In code this looks like

In [ ] := HXXZ[{0 , 0 , 1 , 1} ] / . Ch [ a ] :> Ch[ canon i ca l [ a ] ]
Out [ ] = E0 Ch[{0 , 0 , 1 , 1} ] + 2 Ch[{0 , 1 , 0 , 1} ]

where the Ch[] function is an undeclared function that makes sure the spin
chain states are not added as vectors. We construct the matrix by finding the
coefficients between the original desymmetrised site basis states and the states
obtained from acting with HXXZ

HXXZMatrixPos [ L , M ] := Module [{ St = PosParStates [ L , M]} ,
Transpose@Map [ Coefficient [# , Last /@ St ] &, ( St / . Ch [ a ] :> HXXZ@a)
/ .Ch [ a ] :> Ch[ canon i ca l [ a ] ] /Coefficient [ St , Last /@ St ] ] ]

For instance in the (5, 2) sector we get

H
(5,2)
XXZ = 2

(
E0

2
+ ∆

8
1

1 1 + E0

2
+ ∆

8

)
. (A.8)

The matrices found in Mathematica are exported and diagonalised in Python.
This was done because I believed Python to be a faster language, epsecially
when considering linear algebra computations. Tables A.1 and A.2 show the
runtimes of constructing and diagonalising some matrices in Mathematica and
Python. Python is generally faster, but never by more than a few seconds,
and in one case Python is even slower. However the small time gains do add
up over the course of the time spent on this thesis (9 months) and Python
has more tools for data visualisation so something is still gained from using
multiple programming languages.
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Time [s]/Sector (16, 7), N = 375 (17, 7), N = 600 (18, 7), N = 912

Matrix construction 39.6 101.5 256.1

Diagonalisation (Mathematica) 0.08± 0.01 0.2± 0.03 0.6± 0.17

Diagonalisation (Python) 0.057± 0.012 0.22± 0.04 0.65± 0.07

Table A.1: Times for constructing and diagonalising different (L,M) sectors of
HNNN in Mathematica and Python. The matrices are constructed symbolically
in Mathematica only, but all eigenvalues are evaluated numerically with ∆ = 1.
The matrix construction is only preformed once, but other times are averages
of 10 runs.

Time [s]/Sector (13, 6, 2), N = 1980 (14, 5, 3), N = 1430

Matrix construction 33.9 37.0

Diagonalisation (Mathematica) 6.0± 2.3 1.7± 0.1

Diagonalisation (Python) 4.5± 0.4 2.2± 0.2

Table A.2: Times for constructing and diagonalising different (L,M,K) sec-
tors of δDSU(3) in Mathematica and Python. Matrices are only constructed
in Mathematica. Matrices and eigenvalues are evaluated numerically with
ξ1,2,3 = 1. The matrix construction is only preformed once, but other times
are averages of 10 runs.

A.2 Generating RMT Matrices

All RMT ensembles are generated in Python using the numpy.random li-
brary and the function standard_normal() which takes a tuple of integers
as input and returns an array of numbers randomly drawn from a standard
Gaußian distribution with the same shape as the input tuple. For example
standard_normal((2,5)) returns a 2 × 5 matrix with random entries. All
RMT ensembles are found using the following functions:

import numpy as np

def RealUncorre lated ( s i z e ) :
return np . random . standard normal ( s i z e )

def GOE( s i z e ) :
A = np . random . standard normal ( ( s i z e , s i z e ) )
return 0 . 5∗ (A + A.T)

def ComplexUncorrelated ( s i z e ) :
return np . random . standard normal ( s i z e ) + 1 . j ∗ np . random . standard normal ( s i z e )

def GinOE( s i z e ) :
return np . random . standard normal ( ( s i z e , s i z e ) )

def GinUE( s i z e ) :
return (np . random . standard normal ( ( s i z e , s i z e ) )

+ 1 . j ∗np . random . standard normal ( ( s i z e , s i z e ) ) ) / np . s q r t (2∗ s i z e )

The Gaußian and Ginibre ensembles are diagonalised with the numpy.linalg
library using the eigvals() function. For the uncorrelated ensembles we
simply generate the eigenvalues directly.
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Figure A.1: Integrated density of states for the (19, 7) sector of HXXZ fitted
with a degree 17 polynomial navg(E).

A.3 Unfolding the XXZ Spin Chain

Here we explain in more detail the process of unfolding (section 2.2.1) for the
spectrum of the (19, 7) sector of the XXZ spin chain, see section 3.3 for the
physical details.

We start by removing the extreme ends of the spectrum as these are more
sensitive to system dependent parameters. The percentage of states removed
is a free parameter of the unfolding process and we choose to remove 5% at
each end in line with [6]. We proceed by finding the integrated density of
states n(E) and fitting a degree 17 polynomial to it. The polynomial degree
p is another free parameter in the unfolding process and we find p = 17 to
work just fine for our purposes. [7] finds their results to be insensitives to
variations in p for p ≥ 11, albeit for a different physical system. We let this
polynomial be navg(E). Both n(E) and navg(E) are shown in fig. A.1. Having
defined navg(E) we can define the unfolded energy levels εi = navg(Ei) and the
level spacings Si = εi+1 − εi, si = Si/S̄. Unfolding is used to remove the system
dependent fluctuations in the analysed spectra. The effect of unfolding on
level spacing distributions can be seen in fig. A.2 which shows the distribution
of level spacings for the unfolded eigenvalues εi and the raw eigenvalues Ei for
the (19, 7) sector of HXXZ.
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Figure A.2: Level spacing distribution for the (19, 7) sector of the XXZ spin
chain, with and without unfolding.

A.4 Solving Fishnet Bethe Equations

Mathematica is used to compute the Bethe roots and energies of the Fishnet
Bethe equations

E = −2
M∑
i=1

1

αi

, (A.9)

(αi)
L = (−1)M−1 , (A.10)

M∏
i=1

αi = 1 . (A.11)

Mathematica is chosen due to supporting symbolic computations without the
use of external packages. The process for solving these equations is

1. Find all complex numbers that solve eq. (A.10).

2. Find all sets of M unique solutions to eq. (A.10) that solve eq. (A.11).

3. Use eq. (A.9) on the sets that solve eq. (A.11) to find the energies.

These steps are fulfilled with the following functions:

FishnetBetheRoots [ L , M ] := Last /@ Last /@ Solve [ xˆL == (−1)ˆ(M − 1) , x , Complexes ] ;

EigenValueRootSets [ L , M ] :=
Select [ De l e t eDup l i ca t e s /@ Select [Tuples [ FishnetBetheRoots [ L , M] , {M} ] ,
Times @@ # == 1 &]//DeleteDupl icatesBy [ Sort ] , Length [#] == M &];

EigenValue [ RootSet ] := Sum[−2/RootSet [ [ i ] ] , { i , Length [ RootSet ] } ] // FullSimplify ;

EigenValues [ L , M ] := FullSimplify /@ EigenValue /@ EigenValueRootSets [ L , M]
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We also define a function that gives us the Bethe roots of a given eigenvalue:

RootOfEigval [ e i g v a l , r o o t s e t s ] := Select [ r o o t s e t s , EigenValue [#] == e i g v a l &]

We then use these functions to find the degenerate eigenvalues and their corre-
sponding Bethe roots. The use of FullSimplify in the EigenValues[L_,M_]
function is crucial since the eigenvalues are not evaluated numerically, so the
expression needs to be simplified as much as possible for Mathematica to recog-
nise the degenerate eigenvalues as equal. The precision with which Mathemat-
ica evaluates values means that eigenvalues that are equal will sometimes be
different to the 5th or 6th decimal place if determined numerically and not
symbolically. The (15, 6) sector of δD(one loop)

Fishnet is the largest analysed in this
thesis and finding all its degenerate eigenvalues and their corresponding Bethe
roots takes ∼ 300s. Attempting to solve larger sectors caused Mathematica to
crash, but this should not happen on a better computer.
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