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Abstract
This thesis investigates the influence batch noise has on the clustering and identification
of different cell types as well as quantifying different gene/gene correlation patterns
within scRNA-seq.

The influence of the batch noise is investigated through a series of simulations in
which the cell type in our synthetic scRNA-seq data is represented using a colouring
scheme inspired by the RGB colour code.

From our simulation we illustrated that a relatively small batch noise would
make the clustering algorithm cluster based on batch rather than cell type. This
is the case even when cells of the same cell type, but different batch is closer
than cells of different cell type but same batch. Our investigation shows well
defined regions of good clustering (based on cell type) and bad clustering (based on
batch). Furthermore, we demonstrated that data correction methods can improve
the clustering of our synthetic data by moving it from regions of bad clustering into
regions of good clustering. The same applies when examining real scRNA-seq data.

We found from the fact that clustering based on batch occurs even when cells of
the same cell type but different batch is closer than cells of different cell type but
same batch illustrates that there are other aspects than the magnitude of the batch
noise that causes inaccuracies in clustering.

Inspired by the method for identifying cellular populations we sat forth identifying
the different gene/gene correlation patterns in scRNA-seq data. By vectorising
the 2D histogram of the classical gene/gene scatter plot we could group similar
gene/gene correlation patterns using a clustering algorithm. Using a custom distance
measurement we managed to identify five different gene/gene correlation patterns.
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Chapter 1

Introduction

Since the first published example of single cell RNA sequencing (scRNA-seq) in 2009
[19] the interest and success of this method have only increased over the years. The
invention of scRNA-seq has allowed us to measure the expression level of nearly all
genes in a single cell over hundreds of thousands individual cells. Our knowledge of
some of the most vital questions in biology and medicine have been greatly advanced
in large because of this method. Researchers have used scRNA-seq to discover,
amongst other, many new and rare cellular populations (cell types), inferred new
regulatory networks in gene expressions, as well as mapped the development path
from a single cell to an organism with multiple organs and billions of different cells
[15, 3]. The latter of which was awarded Science Magazines Breakthrough of the
Year in 2018 [17]. Single cell RNA sequencing has allowed researchers to address
biological questions that for many years had been out of reach.

The success of scRNA-seq has in recent years led to a substantial increase
in more complex and large-scale experiments [1]. As an example this could be
the construction of a comprehensive atlas of all human cell types and sub-types
including their activity states, dynamic transitions, physical locations, and lineage
relationships through development [22]. Such an extensive endeavour requires the
joining of data from many different experiments with different compositions of cell
types, taken from many different individuals and under different circumstances.
Although, the new single-cell data offers tremendous opportunities they also pose a
comprehensive challenge to the computational biology community [23].

One of the major problems facing the computational part of the analysis of single
cell data is the relatively strong technical noise which can arise from many different
parts of the scRNA-seq data pipeline [3, 20]. This technical noise is in nearly all
cases very difficult to distinguish from real biological variations. A part of this
noise, which in recent years has gained a lot of attention, comes from cells being
handled in distinct groups. This is commonly referred to as batch noise or batch
effect. These batch effects can arise in many different situations, from the small-scale
effects occurring when cells are sequenced in different lanes or harvested at different
time points to larger scale effects when cells are grown in different laboratories or
stemming from different species. If these batch effects are not properly corrected for
variance in gene expression caused by technical noise can be attributed as an effect
caused by biological mechanisms which can then lead to serious misinterpretation
of the data.

A famous example of this is was the comparison of the gene expression between
human and mouse tissue by Lin et al., 2014 [13]. From their analysis of the cells
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Chapter 1

they came to the conclusion that cells would appear more similar based on species
rather than cell type - i.e. human brain cells were found to be closer to human heart
cells than they were to brain cells from a mouse. Given the fact that we for decades
have studied the effectiveness of medical treatments on mice under the assumption
that human and mice cells are comparable at some level, such a revelation would
be revolutionary. This was, however, shown by Gilad & Mizrahi-Man, 2015 [4]
to be caused by batch noise not accounted for during data analysis. When they
reexamined the data, now correcting for batch noise, they found that cells would
group together with cells of the same cell type not dependent on species.

This leads us to the the main question of this thesis; can a relatively small batch
noise lead to problems in clustering of cell types and the subsequent analysis of new
cell types? - i.e. how will a small batch noise affect the similarity between cells of
different types and batches, and will this cause the most commonly used clustering
algorithms to cluster cells based on batch instead of cell type - even if the distance
between cells of the same cell type is smaller than cells from the same batch?

Our aim is to explore these questions through a series of simulations. In these
simulations we will try to investigate the influence of batch noise represented in a
simple and intuitive way.

In the second part of this thesis we consider another but related problem. A popular
use of scRNA-seq data is the inferring of gene/gene regulatory networks. This relies
heavily of the Pearson correlation coefficient but there may be nonlinear or non-
monotonic correlation patterns in scRNA-seq data. In this regard we want to see
what correlation patterns exists in real scRNA-seq data.

Inspired by the success of identifying different cell types using unsupervised
clustering methods on scRNA-seq data we decided to apply these techniques in the
investigation of gene/gene correlation - i.e. can we use clustering methods used in
the scRNA-seq workflow to identify different types of gene/gene correlation? And
can this information help us identify genes that plays an important role in temporal
decision making?

Chapter Overview

Chapter 2 contains a brief overview of the current best practice for the single cell
RNA sequencing workflow from the isolation of individual cells to the different types
of down stream analysis.

Chapter 3 describes the different predefined methods used in the subsequent chapters.
This includes methods for batch correction, dimension reduction, clustering, and
similarity scores between two partitions.

Chapter 4 introduces a method for generating synthetic data (RGB cells) and
other methods used to examine the main question put forth by this thesis - i.e. the
effect of a small batch noise on clustering and identification of cell types. Moreover,
this chapter also contains the resulting analysis on the effect of batch noise on the
clustering and identification of cell types when examined using the before mentioned
methods. This examination is performed on both simulated and real data.
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Chapter 5 contains the approach followed and the subsequent analysis of the second
question raised by this thesis - i.e. what types of correlations exists in scRNA-seq
data.
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Chapter 2

Background

In this chapter we will provide a quick overview of the technical and bioinformatical
best practice workflow of scRNA-seq analyses. A more in-depth look into the
methods used as a part this thesis is presented in Chapter 3.

The scRNA-seq workflow can broadly be split into three parts (1) the isolation
of single cells & RNA counting, (2) The preprocessing & cleaning of the data, and
(3) the downstream analysis of the data [15, 9, 6].

2.1 Single Cell Isolation & RNA Counting
The very first step is as the name suggest the isolation of the individual cells in a
sample. This can be done using many different methods and is largely dependent
on the type of experiment preformed [9, 15]. These methods range from extracting
single cells from a suspension using pipettes to highly automated methods that very
effectively can isolate single cells inside tiny droplets [9]. The next step is to extract
and count the RNA present in each cell. This is done by preparing an RNA-seq
library. Again, this can be done with a variety of different techniques but they
mostly follow a set of common steps. Firstly the cell needs lysis in order to access
the RNA. This RNA is then reverse transcribed into cDNA (complementary DNA),
which is amplified and sequenced. The goal of sequencing is to get the order of the
nucleotide from the pieces of cDNA obtained during amplification. The result of
which is called a read. These reads are then subjected to a quality control (QC)
where the bad reads are removed, after which the remaining reads are aligned to
the desired genome. Alignment to a genome is when the order of nucleotides given
by the read is matched to a specific location inside the genome. From this, the
number of reads aligned to each gene in the genome can then be counted. This
information is stored in the count matrix (N(cellular ID)×M(genes)), where each
count represents the successful capture, reverse transcription, and sequencing of an
mRNA molecule in the given cell [15, 9, 6].
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Figure 2.1 | Illustration of single cell isolation and mRNA counting: This figure illustrates
the steps from the isolation of cells to the counting of aligned reads. (a) The cells are first isolated,
here illustrated by the microfluidic method where each cell is isolated in tiny droplets. (b) The cell
then lyses thereby freeing the cellular RNA. (c) The RNA is then captured and reversed transcribed
to cDNA. (d) The cDNA is amplified and sequenced into reads which (e) is then aligned to a genome.
(f) The number of reads aligned to gene is counted and stored in the count matrix. Reads that do
not align to a gene in the genome, like the purple read in (e), are not counted in the count matrix.

2.2 Preprocessing & Data Cleaning

Preprocessing is the next step in the scRNA-seq pipeline. This is an extremely vital
step and has a big impact on the quality of the downstream analysis.

The step begins by performing a second round of QC. This time it is a QC of the
cellular ID in the in the count matrix and is most commonly implemented based on
three aspects: (1) the number of counts per cell (count depth), (2) the number of
genes per cell, and (3) the fraction of counts from mitochondrial genes [15]. These
parameters can be used to identify dying cells, cells with a broken membrane, or
situations in which the isolation of a cell has failed and more than one cell was
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Chapter 2 2.2 - Preprocessing & Data Cleaning

isolated together. For example, the mRNA in the cytoplasm will leak out of a
cell with a broken membrane. This will result in a low count depth, few observed
genes, and a high fraction of mitochondrial genes. It is important to consider these
aspects jointly when performing this QC since each parameter in isolation can have
a perfectly valid biological explanation. This is the case when a very large cell
will have a larger number of counts than a small cell would have. It is therefore
recommended to be as allowing as possible when performing QC in order to not
filter out any viable cells.

2.2.1 Normalisation

The next step in preprocessing is the normalisation of the count matrix. As stated
previously, each count in the count matrix represents the successful capture, reverse
transcription, and sequencing of an mRNA molecule in the given cell. The number of
counts per gene (count depth) is the measure of how expressed the gene is. However,
the count depth for otherwise two identical cells can vary due to sampling effects
inherent to the methods used to capture and count the mRNA molecules. In the
downstream analysis cells will be compared based on the count data. Therefore, it
is vital that the relative gene expression between cells is correct. This is the problem
that the normalisation step is meant to resolve.

A very popular normalisation method is the counts per million (CPM) protocol
which is calculated by

CPMi,j = 106 ci,j∑
j ci,j

, (2.1)

where CPMi,j is the normalised count and ci,j the un-normalised count for the
i′th cell and the j′th gene, respectively. The factor of 106 is called the scale factor
and is what contributes the M in CPM . The key assumption behind the CPM -
method is that all cells in the data set initially have the same number of mRNA
molecules and the variance in count depth is only due to sampling effects. It is a
very simple and easy to interpret method for normalisation and will in many cases
perform adequately [9, 6]. When choosing a normalisation method it is important
to consider the experiment from which the data is coming. Some scRNA-seq data
sets consist of a relative heterogeneous cell population with differing cell size and
mRNA molecule counts. The CPM -method is in these situations not sufficient and
more complex normalisation methods are needed [15].

After normalisation is is often recommended to do a log(x+ 1)-transform of the
data. To a large extend, this is performed because the gene expressions can crudely
be said to follow a log-normal distribution. The log(x+1)-transform will in this case
make the gene expressions follow a normally distributed, which is an assumption for
many of the downstream analysis methods [15].

2.2.2 Data Integration & Batch Correction

Normalisation can filter out the technical effect happening due to the variations that
occurs during sampling. However, this is not the only effect one can wish to remove.
For some experiments it can be desirable to even remove some biological effects in
order to amplify the signal of the biological phenomena of interest. Although, in
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most cases it is desirable to have the additional technical effects that have not been
mitigated by the normalisation removed. [9, 6, 15].

These additional technical effects are commonly referred to as batch effects.
There can be many different reasons for the batch effects, ranging from cells harvested
at different times to cells grown in different laboratories.

The data can experience the batch effect on many different levels both between
groups of cells in the same experiment, between experiments performed in the
same lab, or between data sets from different laboratories. Here, it is common
to distinguish between the first and the last two examples. This is due to the fact
that the batch effect arising in these scenarios requires different levels of corrections.
When the data is gathered from a single experiment the removal of batch effect is
commonly known as batch correction. On the other hand, when the data comprised
of data from different experiments the problem of correcting for batch effect is called
data integration [15].

A more detailed explanation of the best performing methods for batch correction
and data integration can be found in section 3.1.

2.2.3 Feature Selection, Dimension Reduction & Visualisation

Single cell RNA sequencing data sets can contain expression values for up to 25,000
genes a large part of which will hold no information about the underling biological
variance. These are genes where the expression varies very little between the different
cells in the data set - i.e. genes that are expressed equally across all of the cells. In
order to ease the computational tasks in downstream analysis and reduce the noise
generated from these low variance genes it is useful to reduce the dimensionality of
the data set. This can be done using a wide range of methods and is performed in a
series of steps. The first step is commonly known as feature selection. This is where
the aforementioned low variance genes are filtered out leaving only the high variance
genes (HVG). A very popular method for selecting HVGs is binning genes based on
their mean expression and then selecting the one with the highest variance-to-mean
ratio in each bin [15].

After the selection of the HVGs one can choose to further reduce the dimensions.
This is now done with dedicated dimension reduction algorithms (section 3.2). These
algorithms embed the data from the expression matrix into a lower dimensional
space, which is designed to capture the underlying structure of the data in as few
dimensions as possible [15].

Dimension reduction is largely performed for two reasons, namely visualisation
and summarisation. The goal of visualisation is to capture the information in the
data set in two or three dimensions. These reduced dimensions can be used to
construct a visual representation of the data using a two or three dimensional scatter
plot, respectively. The goal of summarisation on the other hand is to reduce the data
to its essential components by finding the inherent dimensionality of the data. This
will greatly ease the computational task in the downstream analysis. The reason
being that the manifold of the biological effects can be sufficiently described using
fewer dimensions than the number of genes. The number of output components
from these methods are therefore not prescribed. However, the variance in the data
described by each component becomes smaller and smaller for higher components
thereby making higher components less and less important [15].
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Chapter 2 2.3 - Downstream Cell- & Gene-Level Analyses

There are dedicated methods for both dimensional reduction in visualisation and
summarisation. While the leading components generated by summarisation method
can be used to visualise the data, a dedicated method for visualisation will provide a
better representation of the inherent variability in the data set. On the other hand,
the two or three dimensional output of the visualisation method should never be used
for summarisation. One should be cautious when using the reduced dimensions for
downstream analysis because vital biological information can be lost [9, 15].

A more in-dept explanation of the dimension reduction method used for visualisation
in this thesis can be found in section 3.2.

We have here given a brief overview of the preprocessing of the data generated by
the successful capturing, reversed transcription and sequencing of cellular mRNA.
In summary the preprocessing can be divided into five stages: (1) QC of the cells in
the data set, (2) normalisation of data, (3) correction of technical and undesirable
biological effects, (4) feature selection of high variance genes, and (5) dimension
reduction for visualisation and summarisation.

2.3 Downstream Cell- & Gene-Level Analyses

After the raw count data has been preprocessed different types of downstream
analyses can be performed in order to extract information about the underlying
biological system. These methods are usually split into two groups: gene- and cell-
level approaches. The first of which works with inferring regulatory networks by
detecting genes with correlated expressing profiles. Analyses made on a cellular
level will focus on either clustering cells with similar gene expressions into groups
of the same cell type or measure small changes in gene expressions between cells in
order to infer trajectories in cellular development.

We have in this thesis primarily worked with the clustering and community detection
algorithm used in the identification of cell types. We will therefore primarily focus
on this part of the downstream analysis.

2.3.1 Cell Type Identification

There exists many different methods for clustering cells with similar gene expressions
together into smaller groups. These methods can generally be divided into the two
before mentioned groups : clustering and community detection algorithms.

Clustering algorithms are classical unsupervised machine learning problems where
cells are assigned to clusters by minimising the intra-cluster distance. Community
detection algorithms are based on graph-partitioning, where cells are represented as
notes and each cell has an etch connecting it to its K nearest neighbours. A common
aspect to both clustering and community detection algorithms is that they rely on
a parameter - which is chosen by the user - that determines the number of clusters.
It is therefore important to know at what level of granularity one wishes to examine
the data before implementing the algorithm of choice.

The graph based methods have in general been shown to perform better than
the clustering algorithms based only on distance. A more detailed explanation of
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2.3 - Downstream Cell- & Gene-Level Analyses Chapter 2

the Leiden community detection algorithm used throughout this thesis can be found
in section 3.3.1.

The next step in the identification of cell types is the labelling of each cluster with a
meaningful biological annotation. This is done by matching the gene’s signature for
each cluster to so called marker genes. This annotation of biological identity is vital
for determining the quality of the partition generated by the algorithm of choice.
The adjusted Rand index (ARI) is a measurement of the quality of such partition
and is explained further in section 3.3.2.
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Figure 2.2 | Illustration of the different downstream analyses for scRNA-seq data:
This figure illustrates the most common downstream analyses for scRNA-seq data. (a) illustrates
how through dimension reduction and clustering algorithms we can identify different cell types and
discover new rare subpopulations. (b) shows another popular cell-level analysis. The reconstruction
of cell development. Again, through dimension reduction and clustering algorithms we can identify
different development trajectories and from this we can establish a development path. (c) shows
the gene-level analysis where co-regulating genes are identified to infer regulatory networks.
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Chapter 3

Methods

During the years of research into the application of single cell sequencing a number
of methods have been proposed for the different aspects of the scRNA-seq pipeline
as described in Chapter 2. In this chapter we will give a brief explanation of the
different methods used for batch correction, clustering, visualisation/dimensional
reduction, and partition comparison.

3.1 Methods for Batch Correction & Data Integration

The list of methods used for batch correction and data integration is quite long.
An extensive benchmark analysis of a vast number of these methods was performed
by Luecken et al., 2020 [14], where each method was scored based on the level of
batch correction and biological conservation - i.e. how much biological variance
was conserved. Based on this list we chose three different methods; ComBat[10],
Harmony[11], and Scanorama[7]. All of these methods scored high on both batch
correction and biological conservation but are different in both the approach and
when each is suitable to use [14]. ComBat and Harmony are both linear methods
and they performed best when applied to less complicated batch correction problems.
Scanorama on the other hand is a nonlinear graph method that performs the best
when tackling more complicated data integration problems but can sometimes over
correct in less complicated scenarios [14].

3.1.1 ComBat

The ComBat method was originally developed for bulk gene expression experiments
but is still commonly used for scRNA-seq data as well [14]. ComBat belongs to a
family of batch adjustment methods called location and scale (L/S) adjustments.
The idea behind these adjustment methods is that the batch effect can be modelled
out by standardising the means and variances across batches. This is done by
assuming a model that will represent the gene expression. The ComBat method
uses a model for the observed gene expression Yijg for gene g from sample j in batch
i expressed by,

Yijg = αg +Xβg + γig + δigεijg, (3.1)

where αg is the overall gene expression,X is a design matrix that contains information
about sample conditions, βg is the gene specific vector of regression coefficients
corresponding to X. γig and δig represents the additive and multiplicative batch
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effects for batch i and gene g, respectively. The εijg factor represents the measurement
error and is assumed to be normally distributed with an expected value of zero [10].

ComBat uses the empirical Bayes method for determining the estimators from
the linear regression in eq. (3.1) [10]. This is a method where the prior distribution
is determined from the data contrary to the standard Bayesian method where the
prior is fixed beforehand. After the estimators are obtained the observed data Yijg
can be adjusted for batch effects to the corrected gene expression

Y ∗ijg = Yijg − α̂g −Xβ̂g − γ̂ig
δig

+ α̂g +Xβ̂g, (3.2)

where x̂ denotes the estimation of the x’th parameter [10].

3.1.2 Harmony

Harmony is a method developed by [11] that tackles the batch effect by projecting
cells into an embedded space where cells will group based on cell type. This method
starts by embedding the cells in a lower dimensional space before the cells are
grouped into clusters containing data from multiple data set (Figure 3.1a). To
perform this clustering [11] coined a soft versionK-means clustering algorithm where
each cell could potentially be assigned to multiple clusters. The idea behind this
was to capture the smooth transition between cell stages. Moreover, the clustering
algorithm also penalised clusters with a low diversity of cells from different experiments.

After clustering Harmony will calculate a centroid (the centre point of a cluster)
for each cluster as well as a data specific centroid - i.e. a centroid for each cluster
where only cells from the same data set are uses (Figure 3.1b). The distance between
these centroids are then used to compute a cluster and a data specific correction
factor (Figure 3.1c). Finally, each cell is assigned an average of these correction
factors proportional to its level of soft assignment to each of the corresponding
clusters. This will potentially provide a unique correction factor for each cell. The
cells are then corrected (Figure 3.1d) and the four steps are repeated until the cell
cluster assignments are stable [11].

3.1.3 Scanorama

Scanorama is a method developed by [7] for integrating scRNA-seq data from
multiple experiments. The main idea behind the Scanorama method is analogous
to the algorithms used in panorama stitching where overlapping features of a set
of images can be stitched together into a single image (Figure 3.2a). Scanorama
can in the same manner stitch multiple scRNA data sets together by identifying
overlapping regions. This is achieved by a generalisation of the mutual nearest
neighbours (MNN) approach introduced by [5]. Whereas the original MNN method
would find similar elements between only two batches the Scanorama method can
perform this on multiple data sets at the same time. However, to integrate more than
two data sets in the original MNN method one had to select a reference data frame
where each other data set are successively integrated into the reference data set one
by one (Figure 3.2e). This made these methods vulnerable to over-correction and
dependent on the order in which data sets are integrated. The Scanorama method
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Figure 3.1 | Overview of the Harmony algorithm: Data sets is in this figure represented using
colours and different cell types using shapes. (a) The Harmony algorithm uses soft clustering to
assign the different cells to potentially multiple clusters. A penalty term ensures that the diversity
of data sets within each cluster is maximised. (b) The Harmony algorithm then calculates global
centroids for each cluster, as well as centroids specific to each data set for each cluster. (c) Harmony
will now calculate a correction factor for each combination of clusters and data sets based on the
centroids. (d) Finally, Harmony corrects each cell with a cell specific factor gained from a linear
combination of the correction factors from step (d) weighted by its soft cluster assignments from
step (a). Steps (a) through (d) is repeated until convergence. - Image taken from [11].

can to an extent alleviate these problems by considering matches between all pairs
of data sets [7].

Mutual Nearest Neighbours (MNN)

The mutual nearest neighbour method for batch correction is an approach developed
by [5]. This method identifies cells based on similar gene expression profiles between
data sets from different experiments. This is achieved by firstly performing a nearest
neighbour search with the cosine distance (eq. (3.3)) as a metric of similarity between
two batches [5],

cosine.distance(~x, ~y) = 1− ~x · ~y
‖~x‖ ‖~y‖

= 1−
∑
i xiyi√∑

i x
2
i

√∑
i y

2
i

. (3.3)

Let us consider two scRNA-seq experiments where each consists of a data set
containing a single batch - batch 1 and batch 2. For each cell in batch 1 the
aforementioned nearest neighbour search is performed in order to find the k cells in
batch 2 with the smallest cosine distance to the cells in batch 1. This constitutes the
k nearest neighbours in batch 2. The same thing is performed for all cells in batch
2. In this manner we have a list of the k nearest neighbours for all cells in both
batch 1 and batch 2. A pair of cells from each batch will be considered to be mutual
nearest neighbours if they are contained in each others set of nearest neighbours
(Figure 3.2b - 3.2f). These pairs of cells are interpreted as cells belonging to the
same cell type and the difference between them can be used to correct the batch
effect between the two batches [5].

One way Scanorama differs fromMNN is instead of performing the nearest neighbour
search in high-dimensional space it first performs a dimension reduction routine
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Figure 3.2 | Illustration of the
"panoramic" data integration of
Scanorama & the match detection
of mutual nearest neighbours: (a)
illustrates how the Scanorama method uses
mutual nearest neighbours (MNN) to match
overlapping regions in multiple data sets
at once, which are stitched together in an
panoramic faction to a single data set -
image taken from [7]. (b) - (f) is a schematic
illustration of the batch correction by MNN.
(b) shows batch 1 and batch 2 illustrated
in a 3-dimensional space and with a batch
effect that constitutes an almost orthogonal
difference between them. (c) shows the
cell pairs identified as MNN (grey box).
(d) illustrates the batch correction vectors
calculated between the MNN pairs. (e)
shows how batch 2 is integrated into batch
1, which is chosen as the reference batch,
by subtraction of correction vectors. (f)
shows how the procedure is repeated for
integration of new batches by regarding
the previous integrated data set as the new
reference - image taken from [5].

where the gene expression profile of each cell is embedded in a lower dimensional
space. This greatly decreases the computational burden such a search would otherwise
have entailed. Moreover, the Scanorama method can by considering all data sets
at the same time integrate these data sets without merging batches that has no
overlapping regions [7].

3.2 Methods for Dimensions Reduction & Visualisation

As mentioned in Chapter 2 scRNA-sec data sets may consist of up to tens of
thousands different genes. Such high dimensionality can prove to be difficult for
some downstream analysis methods to handle and makes visualisation unfeasible.
For these purposes different types of dimension reduction methods exists and differ
based on whether the purpose is downstream analysis or visualisation [15]. The
methods used for downstream analysis tries to capture as much of the biological
variance in as few components as possible. Scanorama and Harmony are examples
of downstream analysis methods that rely on these types of dimension reductions
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[7, 11]. The first couple of components generated by such dimension reduction
algorithms can be used for visualisation but there exists methods which embed data
in a lower dimensional space for the explicit purpose of visualisation. We did not
perform dimensional reduction for our main analysis. It was only used as a part of
the Scanorama and Harmony methods. We will therefore only focus on the t-SNE
visualisation methods which was heavily used in this thesis.
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Figure 3.3 | Illustration of the reduction from two to one dimensions using t-SNE: (a)
shows (left) the true 2D representation of the data. Bottom left shows the use of the Gaussian
distribution in the determination of the similarity score. To the right is an illustration of the
similarity matrix. (b) shows the initial random projection of the data into 1D. Below which the
use of the t-distribution in the determination of similarity scores. (right) Similarity matrix for the
low-dimensional case. (c) illustrates how the t-SNE algorithm updates the projection of the lower
dimensional space until the similarity scores are the same for both high- and low-dimensional data.

3.2.1 t-Distributed Stochastic Neighbour Embedding

t-Distributed Stochastic Neighbour Embedding (t-SNE) is a method used to map
a high-dimensional data set down to two or three dimensions [21]. This is done by
firstly turning the Euclidean distance between two points in the high-dimensional
data set (xi and xj) into a conditional probability pj|i that represents the similarity
between the two points. This similarity score pj|i is the probability that the point xi
will choose xj as a neighbour given that neighbours are picked proportional to the
probability density function (PDF) of a Gaussian distribution centred at xi (Figure
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3.3a). This similarity score pj|i is given by

pi|j =
exp

[
−‖xi−xj‖2

2σ2
i

]
∑
k 6=i exp

[
−‖xk−xj‖2

2σ2
i

] , (3.4)

where σi is the variance of the Gaussian distribution which is determined from the
perplexity. This parameter is determined by the user and is a soft measure for the
number of neighbours [21].

The similarity score determined this way is not symmetric - i.e. pj|i is often not
equal to pi|j . To make it symmetric we can implement a parameter pij = pji that is
the average of pj|i and pi|j .

The high-dimensional data is now randomly projected into the desired low-
dimensional space. The similarity score for the projected points in the low-dimensional
data set is then calculated. The main idea is the same, the Euclidean distance
between two points (yi and yj) is again converted into a conditional probability
qji. The only difference is that the probability is now proportional to the PDF of
a student t-distribution with one degree of freedom (Figure 3.3c) - hence the "t" in
t-SNE [21]. This similarity score qji is given by

qij =

(
1 + ‖yi − yj‖2

)−1

∑
k 6=l

(
1 + ‖yk − yl‖2

)−1 . (3.5)

The idea is now to incrementally change the mapping of points so that mismatch
between pji and qji is minimised (Figure 3.3b). This is done by a gradient descent
where each component is given by,

∂C

∂yi
= 4

∑
j

(pji − qji)(yi − yj)(1 + ‖yi − yj‖2)−1. (3.6)

These steps are repeated until the projection in the low-dimensional space is stable
and the mismatch between pji and qji is minimised [21].

3.3 Methods for Cell Identification

The first step in identifying different cell populations is the grouping of cells based on
the similarity of gene expression profiles. There are two approaches to generate these
groupings. The first is the classical clustering algorithms known from unsupervised
machine learning problems. This can for example be the K-means algorithm used
in the Harmony method. The second approach uses community detection methods.
These are graph based methods where the scRNA-seq data is represented on a graph
where each cell is a note and the edges represent the similarity between the cells.
Cells are then grouped based on the links between the cells in so-called communities
- hence the name community detection algorithms. A community in a network is
defined by a set of highly interconnected nodes which means there is a large amount
of links inside the communities compared to links between them.

Page 18 Andreas Berglund



Chapter 3 3.3 - Methods for Cell Identification

The graph based methods are in general faster than the clustering algorithm.
Because of the sometimes very large data sets analysed in scRNA-seq it is therefore
recommended to use the community detection methods [15]. The Leiden algorithm
is such a method.

3.3.1 The Leiden Clustering Algorithm

The Leiden algorithm is an improvement to the Louvain community detection method
[18]. The Louvain method is composed of two phases; (1) moving nodes between
communities and (2) aggregating a new network based on the communities [2]. The
Leiden algorithm is very similar but it includes a step where the partitions of the
communities are refined before aggrated into a new network [18]. Both methods
iterates over these steps until the desired resolution is achieved.

The first step in both the Louvain and Leiden algorithm is the moving of nodes
between communities. In order to evaluate this step we need a measure for the
density of a community. This is commonly measured by the so-called modularity,

Q = 1
2m

∑
i,j

[
Aij −

kikj
2m

]
δ(ci, cj), Q ∈ [−1, 1], (3.7)

where Aij is the weight between the nodes i and j, ki =
∑
j Aij is the sum of the

weights of all the edges attached to node i, ci is the community of node i, and
m = 1

2
∑
ij Aij . The modularity score, Q, is weighted by a resolution parameter

which determines how many communities the algorithm will partition the network
into. A higher resolution will lead to more communities whereas a lower resolution
will lead to fewer communities [2, 18].

Given a weighted network of N nodes we can now start by assigning a different
community to each node in the network - i.e. in the first pass there will be as many
communities as there are nodes in the network (Figure 3.4a). Then for each node
i we consider its neighbours j and evaluate the change in modularity that would
arise from removing i from its own community and placing it in the community of j.
The i’th node will then be placed in the community where the change in modularity
gives the highest possible value. If all the possible changes are negative the i’th node
stays in its own community [2]. The change in modularity ∆Q coming from moving
a node i into community C is computed by the following equation,

∆Q =
[

Σin + ki,in
2m −

(Σtot + ki
2m

)2]
−
[

Σin

2m −
(Σtot

2m

)2
−
(
ki
2m

)2]
, (3.8)

where Σin is the sum of weights insight the community C, Σtot is the sum of weights
of links that comes into nodes in C, and ki,in is the sum of weights of all the links
between the i’th node and the nodes in C. This process is repeated for all nodes
until no further improvements can be made (Figure 3.4b). This means that the same
node can be assigned multiple times [2].

The next step is where the Leiden algorithm differ by introducing a refined
partition Prefined of the network (Figure 3.4c). In order to construct this refined
partition we start just as in phase one by assigning each cell its own community.
Just as before we go through each cell evaluating the change in modularity by
moving it through different communities. The difference between the moving phase

Andreas Berglund Page 19



3.3 - Methods for Cell Identification Chapter 3

(a) aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

(b) aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

(c) aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

(d) aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

(e) aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

(f) aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaPass 1

Move nodes Refine

Move nodes Refine

Aggregate

Pass 2

(a) (b) (c)

(d) (e) (f)

Figure 3.4 | Illustration of the steps in the Leiden clustering algorithm: (a) shows the
initial assignment of cells into individual communities. (b) shows the final partition P after all the
cells have been moved to the community that provided the highest modularity score. (c) illustrates
the partitioning of the cells into the refined partition Prefined (colour of the nodes) compared to
the original partition P (coloured regions). (d) shows the new aggregated network where the new
nodes are based on Prefined and the initial community assignment is based on P. (e) and (f)
illustrates the moving of nodes and the generation of a refined partition for the new aggregated
network, respectably. These steps are repeated until no more improvements can be made. - Image
taken from [18].

is that the note is not assigned greedily to the community that yielded the largest
increase in modularity but may be merged with any community where the change
in modularity is positive. Communities in the original partition P may therefore be
split into multiple subcommunities in Prefined [18].

In the third step a new network is aggregated where each new node corresponds
to a community in Prefined but the initial partition of the new network is based on
P. This new network can then be reapplied at the first step by starting a new pass
of the algorithm (Figure 3.4e and 3.4f). These steps are repeated until no further
improvements can be made [2, 18].

3.3.2 Measure of Agreement Between Two Partitions

In order to determine the goodness of clustering we need to define a measure of
agreement that can compare the resulting clustering against some external criteria.
In our case each cell has one true cell type and our clustering algorithms will also
only assign each cell to one cluster. We can therefore use the measure of agreement
between two partitions as a goodness of clustering measure [24]. The adjusted Rand
index (ARI) is such a measurement.
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Rand Index & Adjusted Rand Index

Suppose that we have n cells that are divided into m different cell types which has
been clustered into k clusters by a clustering algorithm. We can then define two
partitions; U = {u1, · · · , um} and C = {c1. · · · , ck} where Ui determines the number
of cells of the ith cell type and ci the number of cells in the ith cluster. We can then
define four parameters:

a: Is the number of cells that belongs to the same cell type in U and
the same cluster in C.
b: Is the number of cells that belongs to the same cell type in U but in
a different cluster in C.
c: Is the number of cells that belongs to a different cell type in U but
the same cluster in C.
d: Is the number of cells that belongs to a different cell type in U and
a different cluster in C.

Here a and d can be interpreted as agreement and c and b as disagreement. From
these parameters we can define the Rand index as

Rand index = a+ d

a+ b+ c+ d
. (3.9)

This is a simple measure of the agreement between two partitions. The Rand index
lies between 0 and 1 where 1 corresponds to perfect agreement and 0 to no agreement
[24].

A problem with the Rand index is that it does not correct for randomness in the
clustering. The adjusted Rand index ARI is a modified version of the Rand index
that does just that [14]. The general form of the ARI is

index− expected index
maximum index− expected index

. (3.10)

Just as in the case for the Rand index an ARI of 1 will correspond to perfect
agreement between the two partitions. An ARI of 0 on the other hand corresponds
to an index equal to the expected index - i.e. random clustering. This was the lower
boundary for the Rand index which will therefore make the adjusted Rand index a
more sensitive measure of agreement [14, 24]. It was shown by Hubert & Arabie,
1985 ([8]) that the expected index can be written as,

E

∑
i,j

(
nij
2

) =
[∑

i

(
ni.
2

)∑
i

(
n.j
2

)]
/

(
n

2

)
, (3.11)

where nij is the number of cells of type i in cluster j, ni. the number of cells of type
i, nj. the number of cells in cluster j, and n the total number of cells1. This makes
the adjusted Rand index,∑

i,j

(ni,j

2
)
−
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2
) . (3.12)

In our simulation we used scikit-learn’s implementation of the ARI function.
1An explanation of the notation used can be found in Table 7.2 in Appendix
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Chapter 4

Simulating Batch Effects
using Synthetic RGB-Cells

The aim of this master thesis is to examine the influence a small batch noise can
have on the subsequent clustering and identification of different cell types. Our
concern is that when we combine multiple sample collections the otherwise relative
small difference between batches (compared to the difference between cell types)
will cause the clustering algorithms to cluster the cells based on the batch rather
than cell type. We hypothesise that when comparing the euclidean distance between
cells of different cell types undesirable clustering will occur even when cells of the
same cell types are closer to each other than cells of the same batch. Here we define
undesirable clustering as when the clustering algorithm groups cells together based
on batch rather than cell type.

To explore these phenomena we have decided to investigate them through a
theoretical simulation. By choosing a simulation we can focus our investigation on
only a few aspects at the time. This will make it easier to get a simple and intuitive
understanding of what influence each of the desirable aspects will have on a given
downstream analysis. This would not be possible by analysing real data only because
the influence of each aspect would be very difficult to isolate. For this purpose we
have coined the concept of an RGB-cell that can be used to simulate a simplified
version of scRNA-seq data sets. The goal of this simulation is thereby to construct
a simple method that can provide an intuition for the influence of the batch noise.

4.1 Synthetic RGB-Cells for Simulation
The inspiration for the RGB-cells was drawn from the RGB colour model. In the
same manner as red, green, and blue light is added together to create a specific colour
in the colour model we can combine the different expressions of "red", "green", and
"blue" genes together to create an RGB-cell of a given colour/cell type. In this
manner we can create as many different cell types as there are colours in the RGB
colour model.

The goal of these RGB-cells is to be able to generate batches composed of
populations of cells with different colours. These colours will then represent the
different cell types inside these batches.

Andreas Berglund Page 23



4.1 - Synthetic RGB-Cells for Simulation Chapter 4

4.1.1 Constructing an RGB-Cell

In our simulation a cell is represented as a vector ~c that contains the gene expression
of N genes,

~c = {g1, g2, g3, · · · , gN}, (4.1)

where gi is the gene expression of the ith gene. These N genes are then divided into
three subgroups representing the three colours red, green, blue,

~c = {
Red genes︷ ︸︸ ︷

R1, R2, · · · , RNR
,

Green genes︷ ︸︸ ︷
G1, G2, · · · , GNG

,

Blue genes︷ ︸︸ ︷
B1, B2, · · · , BNB

}. (4.2)

The combined expression of these genes will then determine the colour/cell type of
the cell.

Genes within the same colour group will have a high positive correlation whereas
the correlation between cells of different subgroups will depend on the final colour
of the cell. These different correlations are illustrated in the top of Figure 4.1a.
To generate a cell of a specific cell type we define a set of vectors that represents
the base colours; red, green, and blue,

~er = {
Red genes︷ ︸︸ ︷

1, 1, · · · , 1,
Green genes︷ ︸︸ ︷

0, 0, · · · , 0,
Blue genes︷ ︸︸ ︷

0, 0, · · · , 0} (4.3)

~eg = {
Red genes︷ ︸︸ ︷

0, 0, · · · , 0,
Green genes︷ ︸︸ ︷

1, 1, · · · , 1,
Blue genes︷ ︸︸ ︷

0, 0, · · · , 0} (4.4)

~eb = {
Red genes︷ ︸︸ ︷

0, 0, · · · , 0,
Green genes︷ ︸︸ ︷

0, 0, · · · , 0,
Blue genes︷ ︸︸ ︷

1, 1, · · · , 1}. (4.5)

These vectors span the entire colour space and from this every cell type can be
generated by a weighted sum of the base vectors,

~c = wr~er + wg~eg + wb~eb, (4.6)

where wR, wG, and wB is the weight of the corresponding base vector. As an
example, we can in this fashion generate a red cell, ~cr:

~cr = 255~er + 0~eg + 0~eb
= {255, 255, · · · , 255︸ ︷︷ ︸

Red genes

, 0, 0, · · · , 0︸ ︷︷ ︸
Green genes

, 0, 0, · · · , 0︸ ︷︷ ︸
Blue genes

}.

since the RGB colour code for red is {R = 255, G = 0, B = 0}.

4.1.2 Adding Cell/Cell Variation to RGB-Cells

Intrinsic Variation

The next step in our simulation is to construct a population of multiple cells of
the same cell type. In order to do so we need to introduce some variation in the
gene expressions for the different cells. Noise will of course exist in cells of the
same cell type. This is largely due to the stochastic nature of transcription. This
variation is added in two separate steps. The first step introduces variance into the
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three different gene colour groups red, green, and blue. This is done by introducing
randomness to the aforementioned weights.

In our simulation we have only used three different cell types - red, green, and
blue - and the weights for each of these types were generated as follows,

~WR = {wr ∼ U(0, 1), wg ∼ U(0, nI), wb ∼ U(0, nI)}, weights for red cells
~WG = {wr ∼ U(0, nI), wg ∼ U(0, 1), wb ∼ U(0, nI)}, weights for green cells
~WB = {wr ∼ U(0, nI), wg ∼ U(0, nI), wb ∼ U(0, 1)}, weights for blue cells,

where x ∼ U(a, b) is a number drawn from a uniform distribution between a and
b and nI is the simulations intrinsic noise parameter. This parameter will thereby
determine how "polluted" each cell type is - i.e. a high nI will make the population
of cells express colours not associated with its cell type. The addition of this noise
is illustrated by the difference between Figure 4.1a and 4.1b. This illustrates how
before adding any noise (4.1a) we start with three groups of identical cells. After the
introduction on noise weights (4.1b) we can see that we now get variation between
the cells in the different colour groups. From the Rj − Ri plot in the top of Figure
4.1b we can however see that there is no variance between the genes in each colour
group for a given cell - i.e. all the red genes in an individual cell has the same
expression. The variation only exists between cells. This is also true for the green
and blue genes.

The goal of the second step in the addition of intrinsic variation is to add variation
to every single gene without considering the colour group it belongs to. Thereby,
resolving the aforementioned problem of identical gene expression within a cell. The
variation in every single gene expression is added by multiplying a number drawn
from a normal distribution with µ = 1 and σ = 0.5 (N (1, 0.5)) to every single gene
expression (Figure 4.1c). This part of the intrinsic variance is kept constant and is
thus not used as a parameter in the simulation.

The distribution of gene expression is commonly log-normal distributed [15].
This is one of the reasons why it is recommended to do the log(x+1)-transformation
after normalisation in order to make the distribution normal. However, for the sake
of simplicity we decided to work in a normal scheme from the beginning - illustrated
by the use of the normal distribution in the step above. The main reason was that
this gave us a better intuition for how to add batch noise as will later be explained.
We did however also test if our result would be comparable when working in the
log-normal scheme (Section 7.3 in Appendix).
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(a) a a a a No Noise a a a a a
(b) Uniform noise in the weights
of the base colour vectors

(c) Both uniform noise in the
weights and Gaussian noise on
individual genes

Figure 4.1 | Illustration of the addition of intrinsic noise: (a) - (c) illustrates how the
two intrinsic noise steps generates variance in the gene expressions. (a) shows the batch when no
noise have been added, (b) when only the uniform noise in the weights of the base colour vectors
is added, and (c) when both the uniform noise in the weights and the Gaussian noise in each
individual gene have been added. Each cell in the batch is represented as a dot in the 3D scatter
plot at the bottom of (a), (b), and (c). Each cell has here been reduced to a three dimensional
object where the coordinates are the average expression of all the red (R̄), green (Ḡ), and blue (B̄)
genes, respectively. All the scatter plots contain the same number of points even this is not obvious
to see in (a). The top figure in (a), (b), and (c) shows the correlation between - from left to right
- a red and a red gene, a red and a green gene, and a red and a blue gene. The function y = x is
indicated with the grey line in the red vs. red plot.

Batch Noise

Batch 1

Batch 2

x1

y1 z1

Batch
Effect

x2

y2 z2

Figure 4.2 | Illustration of the influence
of the batch noise: This figure uses a
3-dimensional illustration to show how the
batch noise will shift the entire batch in a
given direction and with a specific magnitude
which in our simulation is determined by the
batch noise vector ~nB .

We are as previously stated interested in
examining the influence of a batch noise
on the clustering and identification of cell
types. This batch noise can be implemented
in many different ways but it depends
on the underlying distribution. The log-
normal distribution is highly associated with
multiplicative noise [12]. We decided as
stated before to work in a normal distributed
system. A multiplicative noise in a log-
normal distributed system will take the form
of an additive noise in a normal distributed
system [12]. This was the main reason why
we chose to work in the normal scheme from
the beginning because we found the idea of
an additive batch noise more intuitive.

The batch noise is now generated by
adding the same batch noise vector ~nB to
every single cell within the batch. Thereby shifting each cell in the direction of this
batch noise vector (Figure 4.2). Every entry in ~nB is a number drawn from the
uniform distribution U(−nB/2, nB/2), where the width nB is the parameter that
determines the level of the batch noise in the simulated data. Here it is important
to notice that there is a difference between the batch noise vector ~nB and the batch
noise magnitude nB.
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Figure 4.3 | Example of two
batches generated using the
RGB-cell method: This plot
shows the t-SNE of a data set
containing two batches with 150
red, green and blue cells in each.
Both batches were generated with
intrinsic noise, nI = 0.15 and
batch noise, nB = 0.075. The
colours indicate the different cell
types and the marker style indicates
the different batches.

After the addition of batch noise the gene expressions is then normalised using
the counts per million, CPM method (eq. (2.1)). In this way we have combined
three different cell types into a batch.

We now have a framework for creating batches containing populations of cells of
different cell types where each cell has been subjected to the same batch noise. The
plot in Figure 4.3 shows the t-SNE of a data set comprised of two batches each
containing 150 red, green, and blue cells. Both batches were generated using the
same intrinsic noise, nI and level of batch noise, nB but with a different batch noise
vector thereby shifting each batch in different directions. Here we can see how the
t-SNE has grouped the different cell in such fashion that cells of the same cell type
do not co-localise but were instead grouped closer to cells from its own batch.

4.1.3 Intrinsic & Extrinsic Distance to Quantify Differences
Between Cell Types Within and Between Batches.

We are as stated previously interested in seeing what a relatively small batch noise
will do to the pairwise distance between cells and how this will influence the clustering
and identification of cells. Before addressing a method for measuring this influence
we will introduce four different classes of cells in order to make referencing easier;

Class A: Cells of the same cell type and same batch
Class B: Cells of the same cell type but different batch
Class C: Cells of different cell type but same batch
Class D: Cells of different cell type and different batch

We can with these classes of cells in mind now define three different measurements
that we can use to examine the influence of the batch noise.

Average cluster width (wc) is a measurement of how much variance exists between
the cells of the same cell type and batch (illustrated by magenta arrows in Figure
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Entrinsic Distance [dE]
Intrinsic Distance [dI]
Cluster Width [wc] 
Batch #2
Batch #1
Cell Type #3
Cell Type #2
Cell Type #1

Figure 4.4 | Illustration of cluster width wc , intrinsic distance dI , and extrinsic distance
dE : This figure illustrates how the parameters cluster width wc, intrinsic distance dI , and extrinsic
distance dE are measured. The purple arrows shows how the pairwise distance is measured between
cells of the same cell type and batch (Class A) for a single cell. The average of this measurement
for all cells in both batches will give the cluster width wc. The blue arrows indicates the pairwise
distance between cells of the same cell type but different batch (Class B). The average of this
measurement for all cells is the extrinsic distance dI . Lastly the yellow arrows shows the pairwise
distance between cells of different cell type but of the same batch (Class C). The average of which
taken over all cells is the intrinsic distance dI .

4.4). This is measured by averaging the pairwise distance between all cells of the
same type and within the same batch (Class A) and is calculated by,

wc = 1
NB

NB∑
k

1
NC,k

NC∑
m

1
Mk,m

∑
j 6=i

∥∥∥~cimiki
− ~cjmjkj

∥∥∥
 , when mi = mj ∧ ki = kj .

(4.7)
The parameter NB is the number of batches, NC,k is the number of different cell
types in the kth batch, and Mk,m is the number of cells in the mth cluster and kth
batch. The ~cimiki

term is the gene expression vector of the ith cell of the mith cell
type from the kith batch.

In this way we end up with a single number that describes the average width of
every single population of cells that exists in the data set.

Intrinsic distance (dI) is a measurement that indicates the difference between cells
of different cell types but in the same batch (illustrated by yellow arrows in Figure
4.4). This is measured as the average pairwise distance between all cells of different
cell types within the same batch (class B).

The intrinsic distance dI is calculated in the same manner as eq. (4.7) but under
the condition that mi 6= mj ∧ ki = kj .

Extrinsic distance (dE) is a measurement of how much difference the batch noise
introduces to cells of the same type (illustrated by cyan arrows in Figure 4.4). This
is measured by averaging the pairwise distances between all cells that share cell type
but are from different batches (class C).

The extrinsic distance dE is calculated in the same manner as eq. (4.7) but under
the condition that mi = mj ∧ ki 6= kj .
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There exists as mentioned in Chapter 2 many different methods for normalisation.
Even different variations of the CPM method can be used. The scaling factor can
in these cases vary from the usual 106 by different factors of ten. The choice of
normalisation will influence both cluster width wc, intrinsic distance dI , and extrinsic
distance dE . We can by introducing the relative intrinsic and extrinsic distances,
ID and ED,

ID = dI
wc

and ED = dE
wc
, (4.8)

make the measurements consistent across normalisation methods as long as it uses
global scaling. This will moreover also reduce the number of measurements needed
to analyse the influence of the batch noise from three to two.

An illustration of how the relative pairwise distances are influenced by the
intrinsic noise and the batch noise is shown in Figure 4.5. From this figure we
can see how an increase in the level of the batch noise (Figure 4.5a and 4.5b) pushes
cells of the same cell type away from each other. In the beginning when the level of
batch noise nB is low cells of the same cell types but the different batches (class B)
are still closer than cells of different cell types (class C). When the batch noise is
sufficiently large the two batches are pushed so far away from each other that cells
of class C are now closer than cells of class B. On the other hand, when the intrinsic
noise nI is increased (Figure 4.5c and 4.5d) we see how the pairwise distance between
cells of different cell types begin to decrease and becomes harder to distinguish. In
the end they will completely overlap.

We can now by combining different values of nI and nB construct batches with
varying ID and ED (Figure 4.5e and 4.5f). This works very well for exploring the
influence a batch noise will have on clustering and identification of cell types and
how different data integration and batch correction methods can help to alleviate
the problems caused by the batch noise.
An overview of the terminology used can be found in Table 7.1 in Appendix.
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(a) aaaaaaaaaaaaaaaaaaaaaaaaaa

(b) aaaaaaaaaaaaaaaaaaaaaaaaaa
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Same batch, 
same cell type
Different batch, 
same cell type

Same batch, 
different cell type
Different batch, 
different cell type Batch 2Batch 1

Intrinsic Noise

Batch & Intrinsic Noise

Batch Noise

Figure 4.5 | Effect of intrinsic noise and batch noise on relative intrinsic and extrinsic
distances: The subfigures (a) and (c) show how the relative pairwise distance changes as nI and
nB varies. In (a) nI is kept at zero whereas nB is varied as indicated in the top left of each of the
histograms. In (c) nB is kept at zero and nI is varied. Subfigure (e) is an example of when both
nI and nB is above zero. Subfigures (b), (d), and (f) shows the t-SNE of the data set at different
values of nB and nI as indicated in the top left corner of each.
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Figure 4.6 | Maximum
ARI as a function of
ED and ID for data
with no correction: This
figure shows the maximum
ARI at different values of
ED and ID. The grey
line indicates the ID =
ED cutoff. Above this
line when ID > ED, cells
of the same cell type but
different batch (class B)
will be closer than cells of
different cell type but same
batch (class C ). Below the
line the opposite is the
case.

4.2 Clustering & Identifying Cells based on Cell Type

Cell Type Batch 1 Batch 2 Sum
Red 100 100 200
Green 300 300 600
Blue 900 900 1800
Sum 1200 1200 2400
Red Genes Green Genes Blue Genes Sum
100 100 100 300

Table 4.1 | Composition of the batches in a standard
data set.: This table shows the number of red, green, and
blue cells together with the number of corresponding genes
for the standard data set used in this thesis. Both batches
are created using the same intrinsic noise nI and level of
batch noise nB but different batch noise vectors ~nB .

Now that we have a method for
constructing batches containing
populations of cells of different
types with variation in the gene
expression we can begin to
tackle the main question put
forth by this thesis - i.e. how
will a relatively small batch
noise influence the clustering
and identification of cells.

Firstly, we need to decide on
a framework for how to evaluate
the partition generated by a
cluster algorithm at different
levels of batch noise. We are in this part of the thesis interested in the identification
of cell types. We will therefore evaluate the influence the batch noise has by how
good the clustering algorithm is at grouping cells of the same cell type together in
the same cluster. To measure this we use the adjusted Rand index ARI discussed
in Section 3.3.2 which can take a value between zero and one where an ARI of 0
represent a completely random partition and 1 a partition that overlaps perfectly
with the predefined cell types.

This was done by constructing a standard data set (Table 4.1) containing two
batches of red, green, and blue cells. These batches was constructed for 20 different
nB ∈ [0, 0.12] and nI ∈ [0, 1]. For each combination of nB and nI the Leiden
clustering algorithm was used to cluster the cells. The resolution was chosen such
that we obtained the maximum ARI. A contour plot of the best ARI at different
combination of ID and ED is shown in Figure 4.6.
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Figure 4.7 | Relative pairwise distance & best possible clustering - part 1: This figure
shows (left) the relative pairwise distance and (right) the t-SNE for the best possible clustering
determined by the maximun ARI using the Leiden algorithm for the one region where clustering
works well (a) and the two regions where the clustering algorithm fails to cluster based on cell type
(b) and (c). This is also indicated in the contour plot in the top right corner of the pairwise distance
plot. The transparency in the t-SNE plot indicates the two different batches. The check mark or
cross mark next to the ARI-value in the t-SNE plot is also an indicator of good or bad clustering,
respectively.
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Figure 4.8 | Relative pairwise distance & best possible clustering - part 2: This figure
shows (left) the relative pairwise distance and (right) the t-SNE for the best possible clustering
determined by the maximun ARI using the Leiden algorithm for the one region where clustering
works well (d) and the two regions where the clustering algorithm fails to cluster based on cell type
(e) and (f). This is also indicated in the contour plot in the top right corner of the pairwise distance
plot. The transparency in the t-SNE plot indicates the two different batches. The check mark or
cross mark next to the ARI-value in the t-SNE plot is also an indicator of good or bad clustering,
respectively.
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We can see from Figure 4.6 that a relatively low level of batch noise can have a huge
influence on the clustering algorithm’s ability to cluster cells together based on cell
types. The grey line in Figure 4.6 indicates where ID = ED. This shows that the
clustering algorithm will have problems clustering based on cell type even when cells
of the same cell type but different batch (class B) is closer than cells of a different
cell type but same batch (class C) - i.e. when ID > ED. There seems to be a
rather sudden change in ARI around an ED ≈ 1.1 where clustering becomes very
difficult if the batch noise pushes the distance beyond this point. There are of course
exceptions to this rule. When the ID goes below ∼ 1.4 we also see a decrease in the
ARI. This is not surprising since at these low levels of ID it is hard to distinguish
different classes of cells from each other.

These phenomena are explored in more detail by looking at the distribution of
pairwise distances and a t-SNE visualisation (Figure 4.7 and 4.8) for the combination
of ID and ED marked a-f in Figure 4.6.

We can see from the distribution of pairwise distances that even the slightest
increase in distance between cells of the same cell type but different batches will
cause the clustering algorithm to cluster based on batch as well as cell type. This is
especially evident in Figure 4.7b. The distribution of the pairwise distances shows
very clearly that cells of the same cell type are a lot closer than cells of different cell
types but same batch (Figure 4.7b (left)). However, the clustering algorithm have
still decided to split cells of the same cell type into different clusters, as show in the
t-SNE plot (Figure 4.7b (right)). It is only when the distribution of the pairwise
distance between cells from class A and class B are more or less on top of each other
- i.e. when ED ∼ 1 - that we see clusters based only on cell types (Figure 4.7a and
4.8d).

From this we demonstrate that a relatively low level of batch noise can make
it very hard for the clustering algorithm to generate clusters based on cell types -
i.e. such that across batches all cells of the same type will cluster together. We
hypothesised that the correlation of the batch noise between cell types could be a
factor in the emergence of batch effects. An examination of this hypothesis can be
found in Section 7.4 in Appendix.

4.3 Clustering & Identification
with Data Integration & Batch Correction

As previously discussed, a great effort has been put into different methods for data
integration and batch correction in order to combat the problems that arise from
the batch noise [15, 14]. With the RGB-method we have created a framework for
analysing distances between classes of cells. This will allow us to explore the effect
of the different data integration and batch correction methods. We are interested in
seeing if the application of these methods will change the values of ED and maybe
also ID in order to move a data set from one of the regions in Figure 4.6 where
clustering failed to one where clustering succeeded.

We have chosen the methods; Scanorama, Harmony and ComBat, where ComBat
is a batch correction method typically used when the batches has been generated
under more similar conditions. Scanorama on the other hand is a more complicated
data integration method which can be used on more complex data sets [14]. These
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methods have been shown to be some of the most efficient and accurate methods for
combating the troublesome batch effect [14].

In order to illustrate the effect we generated a batch in the same manner as described
in Table 4.1 situated at a value of ID and ED far out into the region where the
clustering algorithm could no longer perform good clustering. Hereafter, the batch
noise was corrected using the scanpy libraries implementation of the aforementioned
methods. The result of this correction is shown in Figure 4.9.

We can see in the ARI contour plots that the original data is placed far out at
a very large ED (Figure 4.9a (left)). It is both evident from the ARI value and
the t-SNE plot of best clustering that the clustering does not work here (Figure
4.9a (right)). After correction some interesting phenomena can be observed. The
first thing being that for this amount of batch noise and intrinsic noise it is only
ComBat and Scanorama that moves the data into the region where the clustering
algorithm can perform good clustering (Figure 4.9b and 4.9c). Here, it is interesting
that the ComBat method only decreases ED - i.e. it only targets the component of
bad clustering that is related to batch noise. The Scanorama method, on the other
hand, will both decrease the ED as well as increasing the ID so not only will it move
cells of the same cell type closer to each other it will also move cells of different cell
types further away making the clustering even easier. This artefact can be due to
the fact that ComBat is a "simple" batch correction algorithm whereas Scanorama
is a more complicated data integration method. For this level of ED and ID the
Harmony method was the only one that did not manage to move the data into the
region of good clustering (Figure 4.9d). Here, it is interesting to see that in the same
way - and to the same degree - as in the Scanorama method it increased the ID.
However, it did not manage to correct for the batch noise. The ED decreased but
not enough for it to be moved into the region of good clustering.

In the in pairwise distance plot for the Scanorama and Harmony method we
observe another interesting phenomena (Figure 4.9c (left) and 4.9d (left)). Although
it is faint, the distribution of pairwise distances for cells of the same batch and the
same cell type (class A) and cells of the same cell type but different batch (class B)
now have a second peak around 0.25. This indicates that the correction methods
have split the cells into two groups; one small group which has been moved further
away from cells of a different type but same batch (class C ) and another much
larger group which distance compared to class C has not change significantly. To
investigate this phenomena we decided to examine how each of the data integration
and batch correction methods worked on a cell type level. To do this we measured
the relative pairwise distance and calculated the ED and ID for each cell type
separately in contrast to before where the values of ID and ED were combined and
averaged within cells of the same class (A, B, C ) (Figure 4.10).
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Figure 4.9 | Relative pairwise distance & best possible clustering for corrected data:
This figure shows (left) the relative pairwise distance and (right) the t-SNE for the best possible
clustering determined by the maximum ARI using the Leiden algorithm. The title of each plot
indicates what if any correction method was used. The contour plot shows the shift in ID and
ED after the data correction - grey: uncorrected, green: corrected. This indicates if the correction
method have shifted the data into a region of good clustering (red) or bad clustering (blue/blue-
grey). The transparency in the t-SNE plot indicates the two different batches. The check mark or
cross mark next to the ARI-value in the t-SNE plot is also an indicator of good or bad clustering,
respectively.
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Figure 4.10 | Relative pairwise distance for each cell type & best possible clustering for
corrected data: This figure shows (left) the relative pairwise distance for each cell type: red, green,
and blue in the data set and (right) the t-SNE for the best possible clustering determined by the
maximum ARI using the Leiden algorithm. The title of each plot indicates what if any correction
method was used. The transparency in the t-SNE plot indicates the two different batches. The
check mark or cross mark next to the ARI-value in the t-SNE plot is also an indicator of good or
bad clustering, respectively.
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From this we again see how the ComBat method keeps the internal structure
constant but moves the other batch closer (Figure 4.10b). However, something very
interesting occurs in the case of the Scanorama and Harmony methods (Figure 4.10c
and 4.10d). For the red and green cells both methods perform quite well and we
see the same phenomena as before where cells of the same cell type is moved closer
together and cells of different cell types are pushed further apart. The interesting
thing, however, occurs for the blue cells. Here we see that both of the methods do
not, to the same extent, correct the data as for the two previous cell types. It is
also for this cell type that the Harmony fails in its correction. This we can see from
the Harmony’s t-SNE plot where we see the red and green cells have come together
into nice clusters whereas the blue cells remain separated into two different clusters
(Figure 4.10d (right)). The difference in cluster sizes, with blue being the largest,
explains why the second peak was much smaller - i.e. the larger number of cells will
also result in an proportional larger number of pairwise distances.

The key aspect to take away from this analysis is that the good data integration
and batch correction methods will most importantly decrease the distance between
cells of the same cell types in different batches and in some cases even making cells
of different cell types more distinguishable by moving them away from each other.

4.4 Extrinsic & Intrinsic Distances in Real Data
It would be interesting to see if the phenomena of bad clustering despite ID > ED
observed in our simulation is present in data from real scRNA-seq experiments. For
this purpose we used data on blood cell types (hematopoiesis) from [5]. The data
was obtained from the MarionLab’s github page [16]. To make the analysis more
simple we only used the cell types granulocyte–monocyte progenitor (GMP), common
myeloid progenitor (CMP), and megakaryocyte–erythrocyte progenitor (MEP) since
these where the only ones present in both batches, Paul and Nestorowa. There are
3543 cells of the before mentioned cell types in the data with 3543 genes each. A
more thorough review of how the cells are distributed is shown in Table 4.2.

Cell Type \Batch Nestorowa Paul Sums
CMP 328 481 801
GMP 123 1154 1277
MEP 362 1095 1457
Sums 813 2730 3543

Table 4.2 | Composition of the haematopoietic data set: This table shows how the cells are
distributed according to cell type and batch in the data of blood cell types from [5] used in our
analysis.

Inspired from our results obtained in Figure 4.10 we decided to look at the ED
and ID for each individual cell type (Figure 4.11).

The first thing that jumps to mind when looking at the results is the big
difference between ID and ED for the different cell types (Figure 4.11). We can
see that the CMP cells - both before and after the correction - are very hard to
distinguish from both cells of different cell types as well as cells from different
batches. This phenomena is very likely explained by the expected development
path of haematopoietic cell types (Figure 4.12). Here we can see the CMP is an
intermediate step in the formation of GMP and MEP cells [5].
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Figure 4.11 | Relative pairwise distance & best possible clustering for corrected and
uncorrected blood type data: This figure shows (left) the relative pairwise distance for each of
the three cell types; GMP, CMP, and MEP from [5]’s blood type data set used in our analysis. The
t-SNE to the right shows the clustering with the heights ARI obtained by the Leiden algorithm.
The title of each plot indicates what correction method if any was used. The ED and ID for
each of the cell types are shown in the top right corner of the relative pairwise distance plot. The
transparency in the t-SNE plot indicates the two different batches.
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Figure 4.12 | Development path of
haematopoietic cell types: This image
illustrates the expected development path of
haematopoietic cell types. Image taken from [5]

The tendency of the clustering algorithm
to cluster cells based on batch rather
than cell types even when ID is larger
ED as observed in our simulation is
also present in the real uncorrected data
(Figure 4.11a). We can see from the t-
SNE plot of the clustered uncorrected
data (Figure 4.11a (right)) that each
cluster more or less only contains cells
from one batch - i.e. each cluster is
∼100% homogeneous regarding batch.

However, when it comes to the corrections we see very different results than in our
simulation. This time it is very clearly Scanorama and Harmony which performed
the best correction (Figure 4.11c and 4.11d). Both methods managed to increase
the difference between ID and ED for all cell types and improve the ARI score by
a significant amount. The improvement is also evident from their respective t-SNE
plots (Figure 4.11c (right) and 4.11d (right)). Here we see the GMP and MEP
cells grouped at different ends with the intermediate cell type CMP sandwiched in
between.

When comparing the relative pairwise distance plot for the uncorrected data
(Figure 4.11a (left)) with that for ComBat (Figure 4.11b (left)) we see that ComBat
have not managed to correct the distances in any significant way. On the contrary
it removed the small difference between ID and ED that existed for the CMP cells
before correction. However, when looking at the clustering in the t-SNE we see that
the small level of correction ComBat managed to perform on the GMP and MEP
cells did improve the clustering of these cells quite a bit (Figure 4.11b (right)). This
is also evident in the improvement of the ARI.

4.5 Discussion & Recap

The key aspect to take away from this analysis of the influence of batch noise on
clustering and identification of cells is that it is not only the magnitude of the
batch noise that makes the clustering algorithms cluster based on batch instead of
cell type. From Figure 4.6 we could see that this would occur even when ID >
ED. There was almost a hard border at ED ≈ 1.1 between good clustering
(red area) and bad clustering (blue/blue-grey area). This indicates that there are
other parameters besides the magnitude of batch noise which influences clustering
of cells. We hypothesised as stated earlier that one of these parameters could be
the correlated nature of the batch noise - i.e. that all cells in a batch is affected by
the same batch noise. We briefly explored this hypothesis by trying to decorrelate
the batch noise by rotating the batch (Section 7.4 in Appendix). The results gained
from rotating the batches showed no difference compared to the results from before
the rotation. We believe that this could have been caused due to many of the axes
of rotation in the 300-dimensional gene space would introduce a negligible change in
the correlation, even for relatively large angles. This is of course only a hypothesis
and would need further exploration.
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After this examination of batch noise we explored how different batch correction
and data integration methods would affect the data sets’ position in our ID/ED-
landscape and how this would influence the clustering. For this purpose we used
ComBat, Harmony, and Scanorama. From this we saw that all the batch correction
methods improved the data sets’ position in the ID/ED-landscape but only ComBat
and Scanorama managed to move the data set into the region of good clustering.
The ComBat method was the most consistent between these two in its correction
of the data set. Applying an equal amount of correction for all cell types whereas
Scanorama applied a different level of correction to the group of blue cells compared
to the red and green cells. However, ARI-value is comparable between the two
methods and the difference could very easily be due to fluctuations in the simulations.
The Harmony method as stated before did not manage to move the data set into
a region of good clustering because the method did not manage to correct the blue
cells. It is interesting to see how both Scanorama and Harmony had some issues
with the cell type that contained the most cells (blue cells).

Lastly we used our concepts of ED and ID to examine real scRNA-seq data on
blood cell types from [5]. We were interested in seeing if we would observe the same
phenomena of bad clustering despite ID > ED. Before applying any correction
we did indeed see bad clustering (clustering based largely on batch rather than cell
type) even though ID > ED for most of the cell types. However, as one can expect
the picture becomes a bit more complicated when looking at real data. We can
see that the distance between different cell types is quite a bit smaller than in our
simulated data. This is probably in a large extend due to the fact that the data
examined the development path of hematopoietic cell types and we would therefore
expect the cells to be relatively similar.

When we apply the three batch correction algorithms we again see an improvement
in the relationship between ID and ED and a better clustering based on cell
types. This time it was the Scanorama and Harmony methods which managed
to perform the best correction whereas ComBat did not sufficiently manage to
correct for the batch effect. The fact that the optimal batch correction method
differ between the simulated and the real data could very well be an illustration of
the difference between simple batch effect correction performed by ComBat and the
more complicated data integration problems tackled by Scanorama and Harmony.
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Chapter 5

Clustering Gene/Gene Correlations
in scRNA-seq data

Data Information
Number of cells: 1,625
Number of genes: 9,732
Number of batches: 8
Number of cell types: 4

Table 5.1 | Information
about the data used in the
investigation of gene/gene
correlations: This table contains
general information on the data
set from Brickman’s lab when
filtered to only include gut-cells.

Inspired by the success of identifying different cell
types we will in this chapter apply the same
clustering algorithms to identify different gene/gene
correlations in scRNA-seq data. For this purpose
we will use the scRNA-seq data from Brickman’s
lab1. This data set contains 4, 671 different cells
and expression for 9, 732 genes. This data set
is comprised of cells from 8 different batches and
contains 16 different cell types. In order to ease the
computational burden we limited the data to only
the four gut-cells in the data set - DE-gut, Foregut,
Hindgut, and Midgut. This reduced the number of
cells to 1625.
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Figure 5.1 | The
unique gene/gene
correlation ranked
by their Pearson
correlation coefficient:
This figure shows all
(blue line) the unique
gene/gene pairs filtered
in the data set together
with the total 20, 000
gene/gene pairs chosen
for further investigation
(orange crosses).

If we used all of the 9,732 genes we would end up with ∼ 50 million unique
gene/gene correlations. Again, this would make the computational task extremely
burdensome. We therefore limited our investigation to the 10, 000 highest positive
and the 10, 000 highest negative correlated gene/gene pairs (Figure 5.1) determined
by the Pearson correlation. By doing so we have also managed to exclude the most
uncorrelated (ρ ∼ 0) gene/gene pairs.

1Publication in review
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5.1 Creating a Matrix of Vectorised 2D Histograms
of Gene/Gene Correlation Patterns

In order to use the clustering mechanism used in scRNA-seq we need to find a
way to store the information of the correlation between all the unique gene/gene
pairs in a matrix. This was done by vectorising a 2D histogram of the pairwise
gene correlation. Before constructing this matrix we need to go through five steps.
Firstly, we filter out the cells where neither of the genes in the gene/gene pair are
expressed. Next, we use the min−max normalisation,

x‘ = x−min(x)
max(x)−min(x) ,

to rescale the gene expression for each gene. This will scale the range of each
gene expression such that it will lie in [0, 1]. This will have no influence on the
Pearson correlation coefficient but it will make the comparison of gene/gene pairs
easier. This allows us to create the classical gene/gene scatter plot (Figure 5.2a)
which is then binned into 625 bins with 25 bins on each axis (Figure 5.2b). Before
vectorising the 2D histogram we need to add a spatial influence - i.e. the frequency
in each bin is altered based on its neighbours. The reason for this is best illustrated
with a simplified example. If given a vector ~v = {1, 0, 0, 0, 1} where each entrance
represents a bin in a histogram, the distance between this vector and the vector ~v1 =
{1, 0, 0, 1, 0} will be the same as to ~v2 = {1, 1, 0, 0, 0}. We are not interested in a cell
placed in a neighbouring bin having just as big an influence on the distance between
gene/gene pairs as a cell placed in a bin on the opposite site of the histogram. This
problem can be solved by applying a Gaussian filter with σ = 1 on the 2D histogram
(Figure 5.2c). The convoluted 2D histogram can then be vectorised (Figure 5.2d).
These steps are performed for all the desired gene/gene pairs and stored in a matrix
(Figure 5.2e).

5.2 Custom Distance Measurement for Comparing
Gene/Gene Pairs

Before clustering the different gene/gene pairs together we need to determine which
metric to use when measuring the distance between gene/gene pairs. In the case of
our regular scRNA-seq data where each row corresponds to a different cell we used
the euclidean distance between cells as a measure of similarity. This is however not
suitable as a stand-alone measure for the distance between the vectorised gene/gene
pairs. As mentioned earlier we only included the unique gene/gene pairs in our data
set. This means that we only vectorised the histogram for genej vs. genei and
excluded genei vs. genej since this would give the exact same Pearson correlation
coefficient. However, when measuring the euclidean distance between the gene pairs
the orientation of the scatter plot can have a big influence. It is therefore important
to measure the distance to both orientations in order to get the full picture.

To do this we first need to de-vectorise the data back into the matrix form of
the 2D histogram,

Am = vec−1
(25,25)(~gm), (5.1)
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(a) a

(b) a

(c) a

(d) a

(e) a

(a) (b) (c)

(d) Vectorised 2D bins

G
ene/G

ene pairs

Vectorised 2D bins

(e) Matrix of Vectorised Histograms

Figure 5.2 | The steps in vectorising the gene/gene correlation patterns: The vectorisation
of gene/gene correlation patterns starts with the classical gene/gene scatter plot (a). This scatter
plot is then turned into a 2D histogram (b) which is convoluted using a Gaussian filter with σ = 1
(c). The convoluted 2D histogram is then vectorised (d) and stored in a matrix where the rows
represent the different gene/gene pairs and the columns are the bins from the 2D histogram (e).

where ~gm is the mth gene/gene pair, Am is the de-vectorised matrix, and vec−1
(a,b)(~v)

is the inverse vectorisation function. This will rescale a vector ~v ∈ Rab to a matrix
A ∈ Ra,b. The matrix form is then transposed and re-vectorised,

~g
′
m = vec(Am

T ), (5.2)

where ~g ′m is the vectorised form of the 2D histogram with the opposite orientation
compared to ~gm.

We can now measure the distance between the mth and the kth gene/gene pair
for both orientations of m,

d
(1)
k,m = ||~gk − ~gm|| (5.3) and d

(2)
k,m = ||~gk − ~g

′
m||. (5.4)

We then set the smallest as the "true" distance between the mth and the kth
gene/gene pair,

dk,m = min
(
d

(1)
k,m, d

(2)
k,m

)
. (5.5)

This is also illustrated in pseudocode in Algorithm 5.1.
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Algorithm 5.1 Custom distance function for comparing gene/gene pairs.
def custom_distance ( v1 , v2 ) :

’ ’ ’
P ar a me te r s :

v1 and v2 : Two N−d i m e n s i o n a l v e c t o r s .
’ ’ ’
d1 = norm( v1 − v2 ) # calculating euclidean distance
A = v2 . reshape ( [ s q r t (N) , s q r t (N) ] ) # reshaping the vector back to 2D
A_T = A.T # transposing the matrix
v2_prime = A_T. reshape (N) # vectorising the transposed matrix
d2 = norm( v1 − v2_prime ) # calculating euclidean distance of new vector

return min( d1 , d2 ) # returns the smallest distance

5.3 Clustering Gene/Gene Pairs based on Vectorised
2D Histograms

Now that we have a metric for measuring the distances between the gene/gene
pairs we can once again use the Leiden clustering algorithm on our vectorised
gene/gene data. By using a resolution of 0.05 the Leiden clustering algorithm
returned five different clusters 2 (Figure 5.3f). The average frequencies in each bin
was calculated for each of the five different clusters still accounting for the orientation
of the gene/gene pair. The five average gene/gene pairs are then de-vectorised and
log(x + ε)-transformed, where ε is an extremely small number3. This was done in
order to make the variance appear more visible (Figure 5.3a - 5.3e).

Out of these five subpopulations of gene/gene correlation patterns we find cluster
#1 especially interesting. This cluster exhibited a mix between positive and anti-
correlated behaviour (Figure 5.3a) which is a trait we hypothesise could be an
indicator of gene regulation important in cellular decision making. Clusters #2,
#3, and #5 (Figure 5.3b, 5.3c, and 5.3e) appears to be very similar. We can also
see from the t-SNE plot (Figure 5.3f) of the clusters that these three clusters are
mostly made up of negative correlations. These clusters could very well have been
merged if a lower resolution had been chosen. Cluster #4 exhibits classical positive
correlated behaviour which is also evident from the t-SNE plot.

2Five random gene/gene pairs for each of the five clusters is plotted in Figure 7.3 in Appendix.
3We used the finfo(float).tiny value of ∼ 2 · 10−308 from the numpy library
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(a) a

(b) a

(c) a

(d) a

(e) a

(f) a

Figure 5.3 | Average gene/gene configuration & t-SNE visualisation for the five Leiden
clusters: (a) - e shows the average frequency F̄ of the de-vectorised 2D histogram of the gene/gene
pairs from their respective cluster. This average has been log

(
F̄ + ε

)
-transformed where ε is a very

small number in order to better illustrate the differences in average frequency. (f) shows the t-SNE
plot coloured according to the five different clusters with the markers indicating positive (circles)
and negative (crosses) Pearson correlation coefficients.
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Chapter 6

Discussion & Conclusion

This thesis has mainly focused on the examination of the influence of a batch noise
on the euclidean distance between cells and the subsequent influence on clustering
and identification of different cell types. This was primarily performed through a
theoretical simulation. We therefore coined the idea of an RGB-cell with inspiration
from the RGB colour code where the colour of a cell represents its type. The idea
behind this simulation was to make a simple and intuitive way for us to examine the
influence of different magnitudes of batch noise. In order to make a simple scheme
for analysing the influence of a batch noise we defined the relative intrinsic distance
ID and the relative extrinsic distance ED as the average distance between cells of
different cell types inside a batch and the average distance of the same cell types
between batches, respectively. The batch noise influence on the distance between
cells is in this way reduced to two parameters making the comparison between
different magnitudes of batch noise easier.

We initially showed how an increase of the magnitude of the batch noise caused
the batches to drift apart - i.e. the euclidean distance between cells of the same cell
type between batches increases with the magnitude of the batch noise (Figure 4.5a).
After this we examined the influence of the batch noise on clustering identification
of different cell types. This showed that the clustering algorithm had a hard time
clustering cells based on cell types even for relatively small levels of batch noise.
This was evident from the fact that even when cells of the same cell type but of
different batches is closer than cells of a different type but same batch - i.e. when
ID > ED. We could see there existed almost a hard border around ED ∼ 1.1
which separates regions of good clustering (based on cell type) from regions of bad
clustering (based on batch).

Furthermore, we applied our scheme of analysis using ID, ED, and ARI to
examine the effect of three popular batch correction methods; ComBat, Harmony,
and Scanorama on our RGB-simulation. From this examination we could show
how both Scanorama and ComBat managed to shift the data set’s position in
the ID/ED-landscape from the region of bad clustering into the region of good
clustering. This was not the case for theHarmony method but on further examination
we could see that this was due to bad correction of the largest cell type group (blue
cells). This was also though to a lesser extend observed in the Scanorama method
as well.

Lastly we used our analysis scheme on real data for blood cell types from [5]. We
could see the same phenomena with cells clustering based on batch even though ID
is larger than ED. The picture was however a little bit more complicated because
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we used data examining the development path of blood cells thereby making the
different cell types a lot more similar than the red green and blue cells from our
simulation. However, when we apply the three batch correction algorithms we again
see an improvement in the relationship between ID and ED and a better clustering
based on cell types. This time it was the Scanorama and Harmony methods which
managed to perform the best correction whereas ComBat did not sufficiently manage
to correct for the batch effect. The fact that the optimal batch correction method
differ between the simulated and the real data could very well be an illustration of
the difference between simple batch effect correction performed by ComBat and the
more complicated data integration problem tackled by Scanorama and Harmony.

From this analysis we concluded that other factors than the magnitude of the
batch noise must play a role in the emergence of batch effects. We hypothesised
that the correlation of the batch noise between different cell types in a batch was
one of these factors. We tried to decorrelate the batch noise by rotating the batch
plane around a random vector. However, we encountered a couple of problems
in our approach of de-correlation. Firstly, it was hard to find a rotation vector
that produced a measurable difference without having to rotate the batch-plane
an exorbitantly large angle. Lastly, the biggest problem was the lack of a single
measurement that could quantify the "correlated-ness" of the batch noise between
cell types. This would have made the search for a suitable vector of rotation much
easier and is a vital parameter for more detailed analysis of the influence of the
correlated nature of the batch noise on clustering of cell types.

In addition to analysing the batch effects we also examined the different types of
correlation patterns present in real scRNA-seq data from Brickman’s lab. This
analysis returned five different subpopulations of correlation patterns. Here it is
especially cluster #1 and #4 which stands out. Cluster #4 exhibited a clearly
positive correlated behaviour between the genes whereas the genes in cluster #1
exhibited a mix between positive and anti-correlated behaviour. We would have
liked to examine the temporal aspect of the gene/gene correlation for the gene pairs
in cluster #1 because we hypnotised that this type of correlation pattern might be
an indicator for genes important in cellular decision making. However, this was not
possible do to time constraints.

6.1 Outlook
From the result of our RGB-simulation presented in this thesis we have been inspired
to apply our method of analysis to other interesting factors regarding batch noise
and batch correction. One thing we find very intriguing was how Scanorama and
Harmony performed different levels of correction for different groups of cell types. It
would therefore be interesting to examine both the absolute size of cell populations
as well as the size factor between them and what influence this can have on clustering
and batch correction. Moreover, the examination could also be performed with more
similar cell types - e.g. different shades of red. Lastly, we have also considered adding
genes that do not correspond to a certain colour and are therefore not usable for the
distinguishing of cell types. It could be of interest to see how these features could
influence the clustering and batch correction of the data.
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Chapter 7

Appendix

7.1 Explanation & Abbreviation of Parameters in the
RGB-simulation

Parameter Name Abbreviation Explanation
Average cluster width wc The average pairwise distance between all cells of

the same batch and cell type calculated using eq.
(4.7) under the conditions mi = mj ∧ ki = kj .

Batch - A collection of cells of different cell types that
experience the same batch noise.

Batch noise magnitude nB This parameter determines the width of the
uniform distribution U(−nB/2, nB/2) from
which each element in the batch noise vector ~nB

is drawn.
Batch noise vector ~nB This parameter is the vector that are added to

all the cells in the batch no matter the cell type.
Cluster - A collection of cells that have been clustered

tougher by a clustering algorithm.
Extrinsic distance dE The average pairwise distance between all cells

of the same cell type but different batches
calculated using eq. (4.7) under the conditions
mi = mj ∧ ki 6= kj .

Intrinsic distance dI The average pairwise distance between all cells
of different cell types but of the same batch
calculated using eq. (4.7) under the conditions
mi 6= mj ∧ ki = kj .

Intrinsic noise nI This parameter determines the scale of the
uniform distribution U(0, nI) from which the
colour weights (ωr, ωg, ωb) is drawn.

Population - A collection of cells that exhibits the same cell
type.

Relative intrinsic distance ID
dI

w̄c

Relative extrinsic distance ED
dE

w̄c

Table 7.1 | Glossary list for parameters used in the RGB-cells simulation: This table
contains the name, abbreviation and a short explanation of the different terms and parameters used
in the RGB-cells simulation.
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7.2 Notation used for the Adjusted Rand Index

Class \Cluster c1 c2 · · · ck Sums
u1 n1,1 n1,2 · · · n1,k n1.
u2 n2,1 n2,2 · · · n1,1 n2.
...

...
... . . . n1,1

...
um nm,1 nm,2 n1,1 nm,k n.m
Sums n.1 n.2 · · · n.k n

Table 7.2 | Notation for the contingency table for comparing two partitions: This table
contains an explanation of the notation used in eq. (3.11) and (3.12).

7.3 Multiplicative Batch Noise

We wanted to see if we could produce similar results as described in section 4.2
using a log-normal scheme and a multiplicative noise. In order to do this we changed
the second step in adding intrinsic noise form a normal distribution N (1, 0.5) to a
log-normal distribution Lognormal(1, 0.5). Moreover, the distribution from which
the entries in the batch noise vector ~nB was drawn was change to the uniform
distribution U(1 − nB/2, 1 + nB/2). Lastly, after the counts per million (CMP)
normalisation the data was this time log(x + 1)-transformed. Besides this the
approach was the same as in section 4.2.

(a) aMultiplicative noise in a log-normal scheme a (b) aaaaAdditive noise in a normal scheme aaaa

Figure 7.1 | Maximum ARI as a function of ED and ID for multiplicative & additive
batch noise: (a) shows the maximum ARI at different values for of ED and ID for data generated
using multiplicative noise. The grey line indicates the ID = ED cutoff. Above this line when
ID > ED, cells of the same cell type but different batch (class B) will be closer than cells of
different cell type but same batch (class C ). (b) is the same plot as (a) but for data generated using
additive noise. This is the same data presented in Section 4.2.

This analysis showed similar results for both additive and multiplicative batch
noise (Figure 7.1). In both cases we observed bad clustering even when ID was larger
than ED. The hard border between regions of good clustering and bad clustering
we discussed in the case of additive noise is also present for multiplicative noise
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(Figure 7.1a). However, the region of good clustering for multiplicative noise is a
bit narrower.

7.4 Rotation of the Batch Plane for Decorrelation
of Batch Noise

In Section 4.2 we demonstrated that it is not only the magnitude of the batch noise
that gives rise to the batch effect we see in the clustering of the cells. We hypothesise
that the correlation of the batch noise can be one of the other parameters which
causes this batch effect. We reason that when the batch noise is correlated between
cells of different cell types the clustering algorithm will cluster cells together based
on this correlation even for small magnitudes. The idea is that it will do this because
the number of cells which have experienced the same batch noise is a lot larger an
will therefore over shadow the effect of the otherwise more similar cells of the same
type in the other batch. In order to explore this we therefor need a way to decorrelate
the batch noise such that each cell type in a batch will be affected differently by the
batch noise.

We hypothesise that one way to decorrelate our data without changing the
internal structure of the the batch is by rotating the entire hyperplane in which the
batch lies. By rotating the batch instead of varying the the batch noise vector we do
not add any additional intrinsic noise to the system. A rotation will not only keep
the structure inside the different cell populations but also the internal configuration
of the different cell types. By changing the batch noise felt by each cell population
while keeping the internal structure constant we have a way of isolating the effect
the correlation will have on the clustering and identification of the cell types. This
is done by defining a random axis that goes through the centre of the batch. The
entire batch is then rotated around this axis at some predefined angle.

Now we have a method for trying to decorrelate the batch noise we can see if this have
any effect on the clustering and identification of the cells. We construct the batches
in the same manner as in section 4.2 with the same number of cells and genes. This
time, however, after the batches have been shifted by the batch noise we rotated the
batch around a random axis of rotation at a constant angle of π/12 rad. Once again,
these batches was constructed for the same 20 different values of nB and nI . For
each combination of nB and nI the Leiden clustering algorithm was used to cluster
the cells. In Figure 7.2 a contour plot of the maximum ARI at different combination
of ID and ED is shown.

The results shown in Figure 7.2a does not appear to vary significantly from the
results in 4.6. This becomes evident from the contour plot of the the difference in
the ARI between rotated and non-rotate data (ARIrotated −ARInon−rotated) shown
in Figure 7.2b. Here we see that the results obtained from data with non-rotated
batch noise and data with rotated batch noise varies very little and the variation
can easily be explained from random fluctuations in the simulation.

This indicates that either it was not the correlation of the batch noise that causes
cells of class A to cluster together with cells of class C instead of class B despite the
shorter distance to the latter class as we hypothesised or that our method rotating
the batch plane did not decorrelate the batch noise in any measurable seance. It
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(a) aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa (b) aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Figure 7.2 | Maximum ARI as a function of ED and ID for rotated batches: (a) shows
the maximum ARI at different values for of ED and ID for data rotated π/12 rad around a random
axis through the centre of the batch. The grey line indicates the ID = ED cutoff. Above this line
when ID > ED, cells of the same cell type but different batch (class B) will be closer than cells of
different cell type but same batch (class C ). (b) shows the difference in the ARI between rotated
and non-rotate data (ARIrotated −ARInon−rotated). The non-rotated data is the data presented in
Section 4.2.

could very well be the case that it is hard to find axis in 300-dimensional space
where a rotation of π/12 rad provides a measurable level of decorrelation. We will
need a measurement that could determine at what level the batch noise is correlated
between cell types in order to answer these questions. This would have made the
search for a suitable axis of rotation much easier and is a vital parameter for more
detailed analysis of the influence of the correlated nature of the batch noise on
clustering of cell types.
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Chapter 7 7.5 - Five Random Gene/Gene Correlations

7.5 Five Random Gene/Gene Correlations for the Five
Determined Clusters
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Figure 7.3 | Five random gene/gene pairs for each cluster: This figure illustrates five
random gene/gene pairs from each of the five clusters generated by the Leiden algorithm. The
orientation of the gene/gene pair have been been determined by the smallest distance (using eq.
(5.5)).
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