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Abstract
This thesis presents the design of an application specific hardware for machine learn-
ing which can be used in various physics applications, such as high energy physics
and quantum optics. Even though we are better at optimizing and have more com-
putational power was previously possible, there is also a continuous need to make
simulations even faster, more reliable, and cheaper to run. We are specifically investi-
gating a FeedForward Neural Network that is used to interpret market data feeds and
hence enable minimal round-trip times for executing electronic stock trades. This is
because there are similar trades such as hard time restriction, which is also the case
for computational physics.
In this thesis the network is optimized to achieve the lowest possible latency. For
this purpose, we use Synchronous Message Exchange Synchronous Message Exchange
(SME) which is suitable for describing hardware and enables the flexibility to support
a wide range of applied trading protocols. This demonstrates how to construct the
components of a FeedForward machine learning script down to a processor as SME
processes, and how to connect them by using SME busses. The complete system has
been implemented in C# and evaluated on an Field Programmable Gate Array (FPGA).
The results are promising compared to the Python implementation of the model. We
present a proof of concept of an initial solution and its performance provides results
that make us believe that a full Neural Network implementation would be feasible and
competitive. The final result is a successful implementation of a FeedForward Neural
Network model on a FPGA, which runs 21 times faster then the same algorithm on a
CPU.
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Notation
In this project we highlight processes from the SME program with this font.



Acronyms

ASIC Application-specific integrated circuit. 4

BRAM Block ram. 47, 48

CLB configurable logic blocks. 4

CPU Central processing unit. 3

CSV Comma-Separated Values. 12

Fintech Financial technology. 2

FNN Feedforward Neural Network. 1, 17, 18, 21, 36

FPGA Field Programmable Gate Array. iii, 2, 4, 8, 12

GD Gradient Descent. 24

GPU Graphic Processing Unit. 3

HFT High frequency trading. 1–3

PReLU Parametic Rectified Linear Units. 19

ReLU Rectified Linear Units. 19, 20

SME Synchronous Message Exchange. iii, 8

VHDL VHSIC Hardware Description Language. 12, 46

v



Contents

Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acronyms v

1 Introduction 1
1.1 High Frequency Trading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 The different hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Central Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.2 Graphic Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.3 Application-Specific Integrated Circuit . . . . . . . . . . . . . . . 4
1.3.4 Field Programmable Gate Array . . . . . . . . . . . . . . . . . . . 4
1.3.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Synchronous Message Exchange 7
2.1 Concurrent systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Communicating Sequential Processes . . . . . . . . . . . . . . . . 8
2.2 Synchronous Message Exchange . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 The hidden clock and global synchronization . . . . . . . . . . . 10
2.2.2 Broadcasting and busses . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Shared nothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Hardware Description Language . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 SME setup and structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Process structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.3 Verification data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 FeedForward Neural Networks 17
3.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Activation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 The XOR problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 FeedForward Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1 Universal Approximation Theorem . . . . . . . . . . . . . . . . . . 23

3.3 Training of a Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Our FNN model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 Pytorch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vi



CONTENTS vii

3.4.2 Torch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.3 Torch.nn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Implementation 27
4.1 The architecture of SME_ML . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Matrix multiplication in SME . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 FNN in C# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Write to SME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 Generate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Matmul and Matmulindex . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4.1 ToRam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.2 Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.3 Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 The FNN model in SME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.6 Quantization of Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 38
4.7 ONNX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.8 SME and floating points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.9 Simulation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.9.1 LoadStage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.9.2 simulation.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Results 45
5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Conclusions & Further Work 51
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2.1 Specific ML package to FPGA . . . . . . . . . . . . . . . . . . . . . 52
6.2.2 Performance Improvements . . . . . . . . . . . . . . . . . . . . . . 52
6.2.3 ONNX and quantization . . . . . . . . . . . . . . . . . . . . . . . . 53

A Appendix 55
A.1 SME example of a sigmoid function . . . . . . . . . . . . . . . . . . . . . . 56

A.1.1 Program.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
A.1.2 Sigsimulator.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
A.1.3 Sigmoid function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Bibliography 61





Chapter 1

Introduction

This thesis will investigate machine learning methods and examine
or propose techniques for implementing them effectively in hard-
ware. To validate and drive the design decisions, we will use a sample
of applications from High Frequency Trading High frequency trading
(HFT), which has strict latency requirements. To avoid complexities
in an already complicated implementation problem, we use a simple
real-world feed-forward network for stock-price prediction obtained
from an industry collaboration with a company wishing to remain
anonymous and thus will not be mentioned.
FPGAs are used in various physics applications, such as high energy
physics and quantum optics, because of their versatility, programma-
bility, high bandwidth communication interfaces and signal process-
ing capabilities.
Due to the complexity of programming these, their use has been lim-
ited to somewhat simple applications. However, many experiments
could benefit from having a machine learning model on the FPGA.
This is currently done in the top-tier facilities, such as CERN. In this
thesis we explore the implementation of machine learning models on
FPGAs using SME to accelerate inference.
In this Chapter we introduce the motivation behind optimising HFT
alongside descriptions of commonly used processor architectures.
Because the FPGA chips are not instruction based hardware and have
to be built up on hardware level, there is a need for a tool to trans-
late the algorithms down to the hardware. In this case Synchronous
Message Exchange (SME) which will be introduced in Chapter 2.
We want to implement a Feedforward Neural Network (FNN) used
in high frequency trading to see if we can optimize the speed and
efficiency of this model. The FNN model will be introduced in Chap-
ter ??. The implementation of the FNN from Python to SME and
then down to the FPGA will be described in 4. Lastly, in Chapter 5
the testing of the implementation and results will be discussed.

1
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1.1 High Frequency Trading
High Frequency Trading HFT is an automated trading platform that large investment
banks, hedge funds, and institutional investors use to automate trading. It consists of
algorithms that runs through powerful computers to transact a large number of or-
ders at extremely high speeds. Over the last couple of millenniums, new technologies
have constantly been developed and with the evolution of computers, financial mar-
kets also evolved. Manual labour is increasingly being automated through the use of
algorithmic trading strategies [Gianluca 2017]. One example of algorithm strategic
trading is liquidity-providing strategies, where high frequency traders try to earn the
bid-ask spread which represents the difference of what buyers are willing to pay and
sellers are willing to accept for trading stock. "High volatility and large bid-ask spreads
can be turned into profits for the high frequency trader while in return he provides
liquidity to the market and lowers the bid-ask spread for other participants, adopting
the role of a market maker" [Leber, Geib, and Litz 2011].
These types of problems are studied in deep learning programming. Moreover, these
algorithms can work at multiple time scales, but the most interesting one is High-
Frequency, which are trades that execute in milliseconds or less. At this time-scale,
machines are needed because of their speed and can process more information with
greater time efficiency.

1.2 Motivation
The stock market is moving towards HFT and micro optimization which has received
a lot of attention during the past couple of years [Agarwal 2012], turning it into an
increasingly important component of financial markets.
The demand for storing big data and running algorithms faster has reached its limit
with the commonly used hardware, mainly the CPU and GPU. Companies interested
in optimizing their trading have grown an interest for the FPGA. These have very
specific technical characteristics that enable them to execute certain types of trading
algorithms much faster than traditional software solutions.
HFT algorithms compete with each other on two dimensions: Firstly, they receive
large amounts of stock market pricing data every microsecond. Secondly, they must
therefore be able to act extremely fast on the received data, as the profitability of the
signals they are observing results in latency.
The first point is crucial. High-frequency trading is all about speed and minimizing
latency. This is due to the fact that the faster you can run trading strategies and algo-
rithms for analyzing minute price changes and executing trade orders, the higher the
probability to gain most profit. Secondly, keeping a large amount of data in memory
will slow down the hardware. Therefore, it is important that algorithms use only a
minimal amount of data and parameters, which can be stored in fast accessible mem-
ory.
Artificial neural networks have become a necessary tool in almost any area handling
data and help predict future ranges from financial technology Financial technology
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(Fintech) to physics because of its abilities to predict different outcomes from com-
plex relationships between data. Nevertheless due to large incoming data and the
need for faster inference, the interest in looking into other alternatives on implement-
ing algorithms has grown. The FPGA has shown great improvement in both power
consumption and performance on some specific tasks when compared to the GPU
and could therefore be a potential candidate as an alternative to the other hardware
[Véstias and Neto 2014]. However, the FPGA is not ideal for replacing all processors
because of their customization cost. Nonetheless, due to its parallelism it could help
optimize the latency of memory sharing, which would mean a lot in the HFT field.
The latency of memory sharing is vital as the algorithms developed by trading firms
are competing on the scale of nanoseconds. To investigate these trade-offs, this the-
sis will investigate how the implementation of a Feed forward network on an FPGA
could potentially enhance the performance and whether it is worth replacing parts of
the traditional hardware solutions with an FPGA.

1.3 The different hardware
Due to the increasing popularity of using ML in fin-tech, there has been a race to use
the fastest hardware to achieve rapid predictions and trading [Cong et al. 2018]. Thus,
there is a growing demand for hardware platforms able to compute such intensive ma-
chine learning algorithms. As deep learning has driven most of the advanced machine
learning applications, it is regarded as the main comparison point. Nowadays, there
are several types of processors, although when discussing heavy calculations, the main
ones are the Central Processing Units (CPU), Graphics Processing Unit (GPU), Appli-
cation Specific Integrated Circuit(ASIC) and Field Programmable Gate Array (FPGA).
To provide an understanding of the main applications and differences underlying each
processor, the following section will present a brief overview of the different hardware
and how they compare.

1.3.1 Central Processing Unit

Central processing unit (CPU), is chip that executes a program based on a specified set
of instructions in a sequential manner. These are optimal for single process systems,
where the code needs to be executed in a sequential or linear manner. The inter-
nal hardware structure is defined by the CPU vendor and cannot be modified [Asano,
Maruyama, and Yamaguchi 2009]. As a result, CPUs are general purpose and can thus
perform any function based on the software program that is uploaded onto them.

1.3.2 Graphic Processing Unit

Graphic Processing Unit (GPU), is a chip that performs fast mathematical calculations,
primarily for the purpose of graphics. In the 1980s, they were only used to offload
graphics from the CPU [Jones et al. 2010]. As we progressed, graphics became more
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advanced, which triggered a concurrent evolution of advanced GPUs. An image is
composed of thousands of pixels which are processed by hundreds to thousands of
identical cores that are specifically designed to execute the same program in a parallel
manner. Because of their extremely efficient parallel functioning, GPUs are now used
in a variety of different fields and applications such as vector and matrix mathemathics
for which they render jobs faster than the CPU [Jones et al. 2010]. The benefit is that
they are instruction based hardware that can be bought as a finished product. This
means that you can write instructions for them in different high level languages, which
makes is much easier for software engineers to work with.

1.3.3 Application-Specific Integrated Circuit

Application-Specific Integrated Circuit Application-specific integrated circuit (ASIC),
are single purpose chips, meaning that they can only execute commands for which
they have been specifically designed. Hence, they cannot perform another function
or execute different applications once programming is complete [Brogioli 2012]. The
logic function of ASIC uses hardware description languages such as Verilog or VHDL.
However CPU, GPU and FPGAs are all types of ASIC, their applications being general
purpose central unit, graphics oriented or field programmable, respectively.

Since these chips are built for a singular purpose they do not have to run through
unnecessary circuits to run a function, allowing the power consumption of ASICs to
be very minutely controlled and optimized. As a result, they are often more power
efficient compared to other alternatives.

1.3.4 Field Programmable Gate Array

FPGA, is a chip optimized for being re-configurable hardware, as in the user ’pro-
grams’ the hardware circuit. A basic FPGA, consists of small chunks of configurable
logic blocks configurable logic blocks (CLB) which can be configured to perform dif-
ferent functions. It consist of various components such as transistor pairs, look-up
tables (LUTs), flip flops (registers), and multiplexers. The blocks are connected to
each other with electronic wiring that can be turned on and off [Brogioli 2012]. The
logic blocks can be thought as separate modules which can operate in parallel. These
can be controlled and it is possible to hook these together by programming the inter-
connects in order to build something meaningful. An FPGA can be reconfigured by
programming the logic blocks and manipulating the internal state. This can also be
done even after deployment, which makes them ideal for systems and devices that
need frequent updates such as prototypes, networking products and other electronic
systems [Véstias and Neto 2014]. Writing instructions to the FPGA can mainly be done
in low level languages such as VHDL or Verilog.
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1.3.5 Comparison

The FPGA has a different architecture from the GPU and CPU, although in some cases
it is possible to apply either one for similar tasks. FPGAs tend to have more flexible ar-
chitectures as compared to GPUs and CPUs. The main difference is that the CPU/GPU
are instruction based hardware, which means that one can access the hardware using
higher level language, where the FPGA needs to be accessed from lower level lan-
guages such as VHDL or Verilog. This difference can make FPGA more responsive and
allows more dedicated special-purpose implementation desired by the developer, de-
scribed in [Lockwood et al. 2012]. CPUs/GPUs, comparatively, are easier to use for
software engineers than FPGAs as the development process for the latter tends to be
much more knowledge extensive and complicated than for the former, which explains
why modern GPUs are being applied across a multitude of fields [Jones et al. 2010].
One of the prime features and advantages of FPGAs is that the entire internal hardware
can be reprogrammed and reconfigured as the user is permitted to determine the logic
of each block in the system. Hence, they are much more flexible in their programming
and can be customized according to the needs of the programmer.
FPGA are in comparison to ASIC reconfigurable whereas the latter is a permanent
circuit. The FPGA has a simpler design flow due to the chips flexibility, whereas the
ASICs entail more complex design flows, given their reliance on a permanent architec-
ture. In fact, the ASIC design requires dedicated and more expensive tools. The FPGA
is a low power consuming chip compared to the CPU/GPU. It is more power intensive
in comparison to ASIC, which is a known established solution for battery operated
products. In the following Chapter, the software to deploy code on the FPGA will be
introduced.





Chapter 2

Synchronous Message
Exchange

Synchronous Message Exchange (SME) [Johnsen, Thegler,
Skovhede, et al. 2021b] is a programming model used to develop
highly concurrent systems. In order to translate the FeedForward
neural network to the FPGA we will use this tool to make it possible.
The ideal goal is to program on a high abstraction level using e.g
Python or C# without knowing and working too much with low
level programming language such as Verilog or VHDL.
The purpose of this Chapter is to provide an introduction to SME
and give the reader a better understanding of the logic and the de-
sign ideas applied in this thesis. Notably, the purpose is not to go into
deep theoretical and technical detail, but rather provide the neces-
sary background knowledge to understand the proceeding discus-
sions. The structure of SME is also introduced, for a more detailed
description of the SME structure see Chapter 4. A brief guide is at-
tached in appendix A.1 with an emphasis on a Sigmoid function that
is used in the project.

7
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process A process BChannel

Figure 2.1: Communicating sequential processes from A to B

2.1 Concurrent systems
As introduced in Chapter 1 the special characteristic of the FPGA is the fact that it can
handle concurrent computing. Concurrent computing is a form of computing provid-
ing a way to make effective use of parallel and distributed systems that perform many
simultaneous tasks using a multiprocessor [Lönnberg and Berglund 2007]. The ben-
efit of a multiprocessor is the ability to conduct several tasks simultaneously which
enhances the speed and efficiency. The efficiency is determined by the speed com-
pared to the resources used in designing and implementing the multiprocessor, which
for this thesis will be the FPGA. However, working with concurrent systems also means
concurrent problems, such as sharing memory sharing is one of them. It can create a
non-deterministic problem of reading and writing the same memory, which often re-
sults in unexpected behavior. An example could be the act of printing out an aligned
set of numbers to your console using more than one thread, which is an independent
set of the values in a process. If the code is executed multiple times, the order of num-
bers would vary between the runs. This is due to the time dependence in the threads.
Consequently, time is an essential factor when working with concurrent systems.

2.1.1 Communicating Sequential Processes

Various attempts have been made to solve this problem. Communicating Sequential
Processes (CSP) [Lamport and Schneider 1984]was one, first proposed In 1978, Com-
municating Sequential Processes [Hoare 1978] to solve exactly these issues and with
it, CSP was created. CSP was introduced as a model to describe patterns in concur-
rent systems and communication between sequential processes running in parallel. In
current time, CSP is a formal method for modelling concurrent systems described by a
process of algebra. CSP is built on two simple ideas, ’processes’ and ’channels’. A pro-
cess is an ordered sequence of operations. These processes do not share any memory,
therefore one process cannot access a specific value in another process, which would
solve the memory problem. The other is channels, where the processes communicate
with each other by passing information. A simple example thereof is depicted in Fig-
ure A.1, which illustrates process A passing a value onto a channel, which process B
takes as an input. Once the value is passed through the channels, process A will lose
access to it. This creates a messaging framework that enforces strict synchrony be-
tween communicating processes. However, the asynchronous nature of CSP became
a problem for hardware models. This laid the foundation for the establishment of
Synchronous Message Exchange SME.

SME was first introduced in 2014 and after several iterations has evolved to a program-
ming model, a simulation library, and VHDL code generators [Vinter and Skovhede
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Figure 2.2: Enforcing global synchrony on a simple CSP model, where the channel
C transfer information from the process A to process B, resulting in an increasing
complexity. Figure from [Vinter and Skovhede 2015]

2015]. The original idea was conceived following an attempt to create a hardware im-
plementation of a vector processor, modeled in PyCSP [Lamport and Schneider 1984],
a CSP library for Python. The work was initially presented in the paper BPU Simula-
tor[Rehr, Skovhede, and Vinter 2013], which introduced a high abstraction level simu-
lation. The subject was explored more in detail in the master’s thesis project [Skaarup
and Frisch 2014] where two students implemented a vector processor using PyCSP.
The results of this master’s thesis made it clear that PyCSP could be used to model
hardware: Nevertheless, this lead to the discovery of different challenges and CSP
was therefore not sufficient. Each process would have to read the clock signal in, to
comply with the clock. In order to avoid race conditions, the system had to be imple-
mented with a two-way clock. This meant that the need to enforce global synchrony to
the circuit resulted in an outburst. Even simple circuits became overwhelmingly large
as shown in Figure 2.2. It is clear how trying to use PyCSP for modelling synchronous
hardware would result in extremely large and complex networks, which is not an ideal
way to write hardware models. This was because of the number of channels, for con-
trolling the progress and for simulating the clock, became enormous. The conclusion
was that PyCSP alone was not a viable tool for describing timed hardware, since it is
forcing a globally synchronous environment onto the CSP model. A potential solution
could be to isolate the processes and connect via channels, which has shown to be the
right approach for building larger hardware models [Vinter and Skovhede 2015].

2.2 Synchronous Message Exchange
Most of this theory is based on [Vinter and Skovhede 2015], [Johnsen, Thegler, Vin-
ter, et al. 2020]. The motivation behind SME rose from the need to provide a simple
framework for programming an FPGA. It is an environment for developing and testing
hardware designs for FPGAs in C#. With SME it is possible to create hardware struc-
tures that can be translated to VHDL. However, FPGAs can be a better choice when it
comes to energy sensitive applications, since FPGAs can, in some cases, achieve the
same performance as a GPU but with lower energy consumption [Johnsen, Thegler,
Vinter, et al. 2020]. Previously, the developer needed to design an integrated circuit
on the gate level for the FPGA. This could be difficult due to design framework in the
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low level languages, which is not a common knowledge amongst software developers.
Some high-level methods for programming an FPGA have been developed, however,
these are often tedious to work with. Thus, designing and implementing hardware
models is beneficial with SME.

The goal with SME is to give software developers a tool which provides the opportu-
nity to program hardware, but with an added abstraction layer which separates the
developer from the hardware details, such that, the development resembles the struc-
tures and semantics that is known from software development.
The idea is to develop individual processes, test them through simulations and then
connect them together to form larger hardware models. By leveraging the features of
a modern C# Integrated Development Environment, such as Visual Studio, it becomes
much faster to develop, experiment and test FPGA designs, especially for a software
developer. This is due to the fact that SME adds a software abstraction layer that con-
ceals the complexity that would normally require high level FPGA expertise. SME was
built on the requirements of a Hidden clock , Global synchronization, Broadcasting
channels (Busses), Shared nothing and Implicit latches .

2.2.1 The hidden clock and global synchronization

When writing in hardware, many factors have to be considered, such as timing. Since
processes could read and write signals at any time there is no way of knowing if the
following processes would use old or new data. Therefore, some kind of predictability
for the hardware is required, for which reason global synchronization is needed. The
hidden clock is made to establish coordination between processes by synchronizing
them all. A SME model consists of clock cycles and one hidden clock that is then
propagated out to all the processes having a clock cycle and activates them. A clock
cycle is the period between each signal, which is divided by all processes. An SME
clock cycle consists of three phases: reading, computing and writing. The visual ex-
planation could be shown as a step function going from high to low, see Figure 2.3,
The process is activated on the rising clock when the process is executed where it
reads from the bus and then it computes and writes to the bus, all in one clock cy-
cle. Just before the rising edge of the clock, all signals are propagated on all busses
which means that all communication happens simultaneously. Un-clocked processes
will first be activated when the input has been written to by other processes.
The SME model supports both synchronous and asynchronous processes, whereby a
synchronous process is run during every clock cycle, while an asynchronous process
is only run when receiving all of the signals on its input buses.

2.2.2 Broadcasting and busses

In CSP, processes communicate with each other using channels that make use of the
rendezvous protocol, meaning that data gets transmitted through the channel once
the destination says it is ready to receive and vice versa. On the contrary, SME uses
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Figure 2.3: Illustration of a clock cycle

broadcasting channels called busses, that any process can read from. This means that
a process can broadcast its output to multiple processes through a single bus. Using
CSP, multiple channels would have to be used to emulate a single bus in SME. The
busses define and manage the data that is exchanged between processes. These can
be visualised as a pipe or a channel. When data is written to a bus it will be available
in the following clock cycle if it is a clocked process and available right away for
un-clocked processes. Furthermore, a bus is able to contain multiple data types and
values that can be accessed by a process.

Figure 2.4: SME process for one clock cycle.

2.2.3 Shared nothing

The fastest way to handle data through hardware is by handling memory separately.
A shared-nothing architecture (SN) is a distributed-computing architecture in which
you have a number of separate nodes that do not share memory or storage. Operating
under numerous self-sufficient nodes rather than having a single source of particular
resources offers several advantages: easier scaling, non-disruptive upgrades, elimi-
nation of a single point of failure, and self-healing capabilities. SN eliminates single
points of failure, allowing the overall system to continue operating despite failures
in individual nodes and allowing individual nodes to upgrade without a system-wide
shutdown [Stonebraker 1986].
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2.3 Hardware Description Language
Generally, implementing code down to FPGA is programmed using Very High Speed
Integrated Circuit HDL VHSIC Hardware Description Language (VHDL). This is harder
to use since it is intended primarily to be a parallel programming language. This can
be a very difficult task [Johnsen, Thegler, Vinter, et al. 2020], especially for a software
engineer wanting to implement on a FPGA. The vendors are not implementing recent
updates to VHDL and so it is not evolving with time or the programmer.

The SME framework is implemented in the .NET framework, which is the version of
SME that will be used throughout this thesis. With the C# SME library, it is possible
to write all control logic in C#. All data that is written to a bus, can be logged for
each clock cycle and saved as a test bench, which is a piece of software used for
testing hardware models. It provides input data to the hardware model and verifies
its output which is saved as a Comma-Separated Values (CSV). Hence, it can then be
used for compiling the program into VHDL, which can be put onto FPGA circuits. This
eliminates the need to write a separate VHDL test bench which improves developer
productivity immensely. This is needed since some of the implementation still is done
manually software for implementing on hardware, which in this case will be Vivado.
A further explanation on the implementation can be found in Chapter 5.

2.4 SME setup and structure
To show the basic structure of how SME works, we will go over the fundamental
structure. For further explanation on the how the structure was set up for the whole
project, see Chapter 4. When analyzing the general structure of SME programs, there
are three structures, which consists of the following:

1. Connection: How the circuit is connected, i.e which busses connect to which
processes.

2. Processes: The process structure for each function and how they behave.

3. Verification data: All data from the Python FNN that could be useful for the
verification of the hardware model.

2.4.1 Connection

The fundamental structure behind the SME network is the communication between
the processes through busses. Understanding different communication structures in
SME will provide the insight necessary for designing the translated structures of the
Python model. A network in an SME program is a crucial part that connects all pro-
cesses together with communication. Defining the network from process instances
also has the advantage that one process can be instantiated with different parame-
ters several times within the same network, providing the possibility of reusing the
processes for different purposes.
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1 public interface ValueTransfer : IBus {
2 double value { get; set; }
3 }
4

Listing 1: Simple bus that transfers one value

Busses

As previously explained, an SME bus defines a collection of channels which are used
for all communication between the processes. Each channel has a type describing
the communicated data and can be initialized with an initial value. The IBus interface
marks an interface as a bus of a read or write in SME, which is shown as an example in
Listing 1 where we define a bus to transfer a value. An SME bus does have an identifier
which is used for referencing the bus. All channels within a bus are connected to the
process at the same time, and it is up to the developer to call the correct channel
within the bus for either a read or a write.

2.4.2 Process structure

The processes in an SME program describes the basic behaviour of a model. An SME
process is defined by the SimpleProcess class and consists of an identifier, process pa-
rameters, bus, and variable declarations. The body of the process, the process state-
ments, consists of sequential statements such as communications and calculations that
are to be evaluated once for each clock cycle.
A process is initiated in the network of an SME program. A process can be instantiated
with a set of parameters. These parameters can be a mix of input and output busses
and constants.
When defining a process, we can give either an Input Bus or a Output Bus. The
name of the input bus can be given as a process parameter, which the process can use
to read from the actual bus channel, as can be seen in App. A.1 Listing 15. In this
example, the processes reads the data from m_input in the bus and writes the data to
the m_output.

2.4.3 Verification data

It will always be necessary to generate input for pure SME networks, which can be
done in multiple ways. One way of initialising the data in the SME network is by give
the process with a constant given as a parameter, or by hard-coding internal values
into the process. Another way is to have a separate process that generates data for the
network. The first attempt of writing a process to generate data shown in example
App. A.1 Listing 14. Here the process clock is a data generator process. It does not
read data from any input bus, thus, it can only generate data to write to the network.
The example shows the Sigsimulator which generates values from [1, 10] and writes
it out onto the output bus. A further explanation of the structure of a process will be
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1 input = File.ReadAllLines(CSVfile)
2 .Where(x => !string.IsNullOrWhiteSpace(x))
3 .Select(x => double.Parse(x.Trim(), CultureInfo.InvariantCulture))
4 .ToArray();
5 }
6

7 public override async System.Threading.Tasks.Task Run()
8 {
9 while (true)

10 {
11 await ClockAsync();
12 output.Enabled = index.Ready;
13 if (index.Ready)
14 {
15 output.Address = index.Addr;
16 output.Data = input[index.Addr];
17 }
18 }
19 }

Listing 2: C# code to import an input CSV file, using SME processes to save the data
output as a flat array

introduced further in Chapter 4. Another way to generate data is to make a process
that imports the data and reads them in through a bus. This was made as a simple
SME process structure, where the function, reads the data from a CSV file and saves
it as a flat array. This is shown in Listing 8.
An SME process that does not read any input is just a data generation process, but in
this case we use the input bus index to make sure that each value that gets read from
the CSV file gets and index. The output-bus transfers the array of data and makes sure
it gets written out. In line 24 the async process only runs when the index is ready. The
address will get saved of each value and write them out in an array.
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2.5 Related work
As mentioned in Chapter 1, FPGAs contain many interesting properties which makes
them more flexible to use, faster and more energy efficient than GPU/CPUs for cer-
tain tasks. Algorithms are getting more complex and energy consuming. The use of
FPGAs is not widespread, due to the low level language used to program the chip
[Fang et al. 2020]. This has started a smaller movement in building alternative im-
plementation frames such as SME. An interesting framework constructed from the
same idea is hls4ml, which was made as a joint project between Xilinx and CERN
for accelerating the inference of processing data [hls4ml Contributors 2021]. A
growing team of physicists and engineers from CERN wanted to have a flexible way
to optimize custom event filters in the Compact Muon Solenoid (CMS) detector they
are working with at CERN. The very high data rates in the CMS detector required
event processing in real-time, but trigger filter algorithm development hindered the
team’s ability to make progress [Fahim et al. 2021]. HLS4ML is built on the idea of
being a user-friendly software, based on High-Level Synthesis (HLS), designed to de-
ploy network architectures on FPGAs. This is done in C as a sequential programming
model designed for CPUs, rather than FPGAs. As such, it is not uncomplicated to
gain performance, as it relies on automatic derivation of parallelism. Among others
to describe hardware using higher level language are Chisel-lang [University of Cali-
fornia 2012], which is similar to SME, but described as a library in Scala. This means
that the programmer needs to be able to keep two states of the program in mind,
one that is running in Scala, evaluating the some specific condition statements, and
another running the generated code, not being able to see the condition statements
[Johnsen, Thegler, Vinter, et al. 2020]. OpenCL is a popular framework that intent to
get more GPU programmers on board.[Burns et al. 2019] However the focus here is
not to accelerate with FPGAs and as introduced in cahpter 1, the different hardware
has different benefits. and QuokkaEvaluation [Muryshkin Evgeny 2018] is still an
ongoing project focusing on specific FPGA implementations and has similar elements
from SME, but is still in the initial phase.





Chapter 3

FeedForward Neural Networks

Neural Networks are a set of models, inspired by the human brain,
that can be used to recognize patterns by finding regularities and
similarities in data using machine learning data [Yun, Huyen, and
Lu 2018]. The word Neural originates in the McCulloch-Pitts neuron
[Mcculloch and Pitts 1943], a simplified model of the human neuron
as a kind of computing element that could be described in terms
of propositional logic. Just like the brain, Neural Networks are
constructed from small neurons or perceptrons that are connected
to each other with weights. These are made to process and pass
on incoming data. The patterns they recognize are numerical,
contained in vectors, into which all real-world data, be it images,
sound, text or time series, must be translated first [Goodfellow,
Bengio, and Courville 2016].

In this Chapter we introduce the basic principles behind a Neural
Network. This will be followed up by the architecture of a FeedFor-
ward Neural Network FNN where the computation proceeds itera-
tively from one layer of units to the next. This will come to handy
for the implementation.
This section’s general introduction to the architecture of FeedFor-
ward Neural Networks is mainly based on the books [Jurafsky and
Martin 2009] and [Goodfellow, Bengio, and Courville 2016].
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Figure 3.1: Single neuron model where the neurons x i takes the n weighted inputs
plus a bias. This is an example for a linear case given to the activation function which
then outputs an y

3.1 Artificial Neural Networks
Machine learning is a form of applied statistics with the focus on using computers
to estimate statistically complicated functions. By having a data set, the goal is to
find a function that fits a data-set best. One class of modelling is Neural Networks
which have been shown to work well. One way to use Neural Network is applying
FeedForward Neural Network FNN which will be explained later.
But first consider the mathematical model shown in Figure 3.1. This is the simplest
example and the building block of a Neural Network is a single computational unit
or a perceptron. A unit takes a set of real valued numbers as input, performs some
computation on them, and produces an output.
More specifically, a Neural unit is taking its inputs x i and their weighted sum wi which
determines the contribution of a given input to the output, with one additional term
in the sum called a bias term b. The weighted sum z can be represented as:

z =
n
∑

i

wi x i + b (3.1)

The sum over all the inputs multiplied by their weights can conveniently be repre-
sented by a dot product.

z = w · x + b (3.2)

3.1.1 Activation functions

Instead of using a linear function z as the output, Neural units apply a non-linear
function f to z. This is called an activation function. The feed forward Neural Networks
(FNN) lets information flow through the function being evaluated from x, through
the activation function σ, and finally to the output, y . Figure 3.1 shows a schematic
neuron where the unit goes into the activation function and gives the output y. The
value y is given by:

y = σ(z) = σ(w · x + b) (3.3)
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Figure 3.2: Sigmoid Function. Frequently used as an activation function in FNN The
sigmoid function takes a real value and maps it to the range [0,1]

the bias b is a measure of how easy it is to activate the neuron. Generally, there are
a great variety of functions. For the purpose of this paper, we will only discuss the
three non-linear functions applied here - the Sigmoid, Rectified Linear Units (ReLU),
Parametic Rectified Linear Units (PReLU) and Softplus.

Sigmoid: The sigmoid function, which is shown in Figure 3.2, is defined as

σsi g(z) =
1

1+ e−z
, (3.4)

takes the real valued number and maps it to a value into the range [0,1] which is
useful because the outliers get squashed toward 0 or 1.
substituting Eq.3.3 into Eq.3.4 gives the output

y = σsi g(w · x + b) =
1

1+ ex p(−(w · x + b))
, (3.5)

ReLU: Rectified Linear Unit is the most commonly used activation function in deep
learning models. The function returns 0 if it receives any negative input, but for any
positive value x it returns that value back. So it can be written as

y = σPReLU =

¨

x for x > 0,

0.01x otherwise
(3.6)

PReLU: Parametric PReLU (PReLU) makes it a parameter for the Neural Network to
figure out itself: y = αx when x < 0, where α is a parameter and x is the input. If
x ≥ 0 then y = x .

y = σPReLU =

¨

x for x > 0,

αx otherwise
(3.7)

PReLU is another popular activation function because it resolves an issue called "the
dead neuron problem" which is common with the ReLU function. This problem oc-
curs when inputs approach zero or are negative, which will make the gradient of the
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Figure 3.3: Truth tables of elementary logical functions of two inputs for AND, OR
and XOR. The XOR gives the output 1 if the inputs are different from each other and
0 if they are the same

ReLU function zero [QingJie and WenBin 2017]. This implies that with poor initial-
ization, where the majority of neurons have negative output, these neurons will have
no incentive to adjust their weights and hence, the Network will have limited ability
to "learn". PRelu addresses this issue, given that it doesn’t have zero-slope parts.

SoftPlus: Finally, the softplus function is a smooth approximation to the PReLU acti-
vation function, and is sometimes used in the Neural Networks in place of PReLU. It is
actually closely related to the sigmoid function.In particular, when x → ˘∞, the two
functions become identical.

σso f t = log (1+ exp x) , (3.8)

However, these activation functions have different properties, making them useful for
different Network architectures. For example the ReLU function has beneficial proper-
ties. Networks trained with the rectifier function almost completely avoid the problem
of vanishing gradients, as the gradients remain proportional to the node activations
[Goodfellow, Bengio, and Courville 2016]. Contrary for the sigmoid function, con-
taining very high values of z result in values of y that are saturated, i.e., extremely
close to 1, which causes problems for learning [Jurafsky and Martin 2009]. Rectifiers
don’t have this problem, since the output of values close to 1 also approaches 1 in a
nice gentle linear way.

3.1.2 The XOR problem

When sending data to a unit, it goes through the activation function which reduces
the sum of the input values to a 1 or 0 value,or at least a value very close to. If we
consider the task of computing elementary logical functions of two inputs, like AND,
OR and XOR we get the truth tables, as shown in Figure 3.3
On the surface this appears to be a simple problem, however, as shown by Minsky
and Papert in 1969 [Minsky and Papert 1969]this becomes an issue for a Neural Net-
work, that is only based on a single perceptron. The difference is that a perceptron is
purely linear and a unit is non-linear. If we look at a two dimensional problem for the
different truth-tables in Figure 3.4 we see the the possible logical inputs (00, 01, 10,
and 11) and the line drawn by one possible set of parameters for an AND and an OR
classifier. If we look at the AND example we see, that when x1 = 1 and x2 = 1 then
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y = 1 and in all other cases it is 0, so if you wanted to separate all the ones from the
zeros by drawing a single line, you would just draw the line as shown in the graph.

Figure 3.4: Truth-tables of elementary logical functions of two inputs for AND, OR
and XOR [Jurafsky and Martin 2009]

This class can be separated with a single line. They are known as linearly separable
patterns, meaning that classes of patterns with a n-dimensional vector can be sepa-
rated with a single decision surface.
That is how the perceptron works, it draws a boundary to separate the binary values.
When the perceptron is trained, it will have the weights value adjusted to form the
line shown. Since the output of perceptron is a linear function, the two classes must
be linearly separable in order for the perceptron Network to function correctly.
Let’s see what happens with XOR problem that gives y = 1 if x1 6= x2 and y = 0 other-
wise. Notice that there is simply no way to draw a line that separates the positive cases
of XOR (01 and 10) from the negative cases (00 and 11). Hence, we conclude that
XOR is not a linearly separable function. Instead, we will have to draw multiple lines
and thus require multiple perceptrons. In n-dimension if you can draw a hyperplane
to separate the binary values, then you can use perceptrons to solve that problem.

3.2 FeedForward Neural Network
Having provided the necessary background knowledge behind units/perceptrons and
how they work, next we will need to elaborate on the functioning of the FeedForward
Neural Network or FNN. A FeedForward Network consists of multiple layers in which
the units are only connected in one way. FeedForward Networks are often applied to
classification tasks, such as the recognition of a certain shape in an image. There are
three kind of layers, the input, hidden and output layer. However the characteristic
and core of a FNN is the hidden layer, which consist of units described in 3.3. The
output of each layer are passed to units in the hidden layer which sums over all the
input units until the final layer gives the last output. Figure 3.5 shows an FNN where
the input layer represents the data that is fed into the Network, followed by one or
more hidden layers, and an output layer.
We can think of a fully-connected Network as a function F : Rn → Rm that maps
the input (x1, .., xn) to the output (y1, .., ym) We are now considering a structure of
numerous neuron ordered in different layers. Therefore, F can be split into a chain
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of simpler functions f (i), where f (i) correspond to activation/output of the neurons in
the i’th layer.

F(x) = f (out)(.. f (i)(.. f (1)(x)..)..), (3.9)

Where the first layer after the input layer is represented by f (1) and final layer as f (out).
The input layer is usually not counted when enumerating layers, but we will call it the
0’th layer.
In a Neural Network we only know the input and the output from the final layer. The
activation f (i) of the layers in between is not shown which is why they are called
hidden layers. This is one of the reasons why machine learning is seen as a ’magic
black box’. A Network consisting of more than one hidden layer is called deep Neural
Network We define the model depth as the number of hidden layers in the Network,
thus, not counting the input and output layer. It is common for hidden layers to
be much larger than the input and output layer in deep Neural Networks, because
having larger dimensions give the best prediction [Goodfellow, Bengio, and Courville
2016]. The number of weights for deep Networks becomes therefore approximately
proportional to the square of the count of nodes per layer in these large hidden layers.
Instead, we can think of layers as we described the neurons. Now just with a bias b
as a vector and the weight as a matrix W , consisting of the combination of the weight
vector wi and bias bi for each unit i. From a visual point of view as illustrated in
Figure 3.5, we can represent each element of matrix W as Wji where it connects the
ith input x i unit to the jth hidden unit h j. By representing it with a single weight
matrix W , the output of the hidden layer h is thus:

h= σ(W x + b) (3.10)

where σ is applied to a vector elementwise, so σ[z1, z2, z3] = [σz1,σz2,σz3].
The dimensionalities of these vectors and matrices are enumerated as n0, n1andn2 for
respectively the input, hidden and output layer. Here x ∈ Rn0 , h ∈ Rn1 and b ∈ Rn1 ,
since each hidden layer can take a different bias. The weight matrix therefor has
dimensionality W ∈ Rn1 xn0 .
The matrix multiplication from equation 3.10 is thus:

h= σ

� n0
∑

i=1

Wji ∗ x i + b j

�

= f (i) = σ(W (i) ∗ f (i−1) + b(i))

(3.11)

where f (i−1) is the output from the (i − 1)th layer. Like the hidden layer, the output
layer also has a weight matrix U and sometimes a bias, but we will look at a simple
example without the bias for the simplicity sake. The weight matrix for the output
layer is multiplied by its input vector from the layer before which is the hidden layer
h to produce the intermediate output z.
The output of the hidden layer h is thus:

z = Uh (3.12)
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Figure 3.5: A simple FeedForward Network, with one input layer (not counted as
layer), hidden layer and one output layer [Jurafsky and Martin 2009].

Since z is a vector of real-valued numbers and needs a classification of probabilities, we
can use normalization function such as the softmax to get a probability distribution.
The output of the hidden layer h is thus:

y = softmax(z) (3.13)

In this way the layers in FNNs are able to model not only arbitrary functions but also
separate data-sets that are not linearly separable. This linearity is only broken by
the activation function which are contained in the hidden layers, which act as a non-
linear transform that distorts the input. It is done in such a way that its classes become
linearly separable by the output layer as explained in the 3.1.2.

3.2.1 Universal Approximation Theorem

One of the most striking properties about neural networks is that they can compute
any function at all and can be approximated by any Borel measurable function [Hornik
1991]. A simpler explanation is that the Universal Approximation Theorem states that
a Neural Network with one hidden layer can approximate any continuous function for
inputs within a finite-dimensional space to another with any desired non-zero amount
of error, provided that the Network is given enough hidden units. However it does
not state how large this Network needs to be to solve the given problem, so this is still
done by trial and error methods.

3.3 Training of a Neural Network
A FeedFoward neural networks are mostly used for supervised learning where the
data to be learned is not sequential nor time-dependent. This implies that we know
the correct output y for each observation x . What the system produces, is an esti-
mate of ŷ (the true y). The goal of the machine learning approach is to find a weight
and bias configuration for each layer that captures the essence of the presented data
set, that make the estimate of y for each training observation as close as possible to
ŷ . Hereby, the Network is very much dependent on the training data-set. It should
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Figure 3.6: All data used for training a ML model, split up in a training, validation,
and test set

ideally include the all kind of combinations of possible inputs. This can be difficult to
do in practice and the available data-sets are therefore typically split randomly into
three categories: training, validation, and test set.

The training set is the actual data set that we use to train the model (weights and
biases in the case of a Neural Network). The model sees and learns from this data.
To do that we will need a loss function that models the distance between the system
output and the expected output. The commonly used technique to train the model is
by some variation of Gradient Descent Gradient Descent (GD). GD algorithms try to
minimize a certain loss or cost function with respect to a given weight configuration.
Since we will not train in this thesis, we will not give a further explanation. The val-
idation set is used to provide an unbiased evaluation if a model fits on the training
data-set. This tells how to change the weights and biases overall behaviour of the Net-
work, also known as tuning hyper parameters. The evaluation becomes more biased
as skill on the validation data-set is incorporated into the structure of the model. To
reduce the risk of over fitting, the optimization should be stopped as soon as the error
on the validation set is not decreasing any more. Generally, over-fitting occurs when
a model learns the training data set too well, performing smoothly on the training
data set but can not seem to work on a different sample [Kriesel 2007] This is one of
other methods applied in machine learning in order to achieve a generalization over
previously unseen data points. Because the information of the validation set is leaking
into the Network via the early stopping criterion, a third data set is needed to evaluate
the actual performance and generalization of the Network. This third set is called the
test set. The test set is a benchmark used to evaluate the model and only used once
a model is completely trained. However, the focus in this project is to accelerate an
already trained model and does therefore not have to be trained any further.
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3.4 Our FNN model
Now that we have the background, we can start looking at the provided model which
is written in Python using the Pytorch library.

3.4.1 Pytorch

PyTorch is an open source machine learning library based on the Torch library used
for applications such as computer vision and NLP [Ketkar 2017]. It is an open source
library that is maintained mostly by Facebook’s AI research group. Unlike other pop-
ular frameworks like TensorFlow, which use static computation graphs, PyTorch uses
dynamic computation, which allows greater flexibility in building complex architec-
tures. It uses core Python concepts like classes, structures and conditional loops, which
is easier to understand intuitively. This makes it a lot simpler than other frameworks,
such as TensorFlow that incorporates their own programming style. We will quickly
go through some features of the PyTorch used in the given script, to understand how
the model is built.

3.4.2 Torch

PyTorch defines a class called Torch.Tensor which contains data structures for multi-
dimensional tensors and mathematical operations. It stores and operates on homoge-
neous multidimensional rectangular arrays of numbers. "PyTorch Tensors are similar
to NumPy Arrays, but can also be operated on a CUDA-capable Nvidia GPU. Addition-
ally, it provides many utilities for efficient serializing of Tensors and arbitrary types,
and other useful utilities"[Paszke et al. 2019].

3.4.3 Torch.nn

The Torch.nn PyTorch auto grad makes it easy to define computational graphs and
take gradients, but raw auto grad can be a bit too low-level for defining complex
Neural Networks. This is where the nn module comes in handy. This model uses
nn.module and nn.parameter. The nn.module performs operations on tensors. Mod-
ules are implemented as sub classes of the torch.nn.module class. All modules are
callable and can be composed together to create complex functions. the nn.parameter
is a tensor that sub-classes the Variable class. The difference between a variable and a
parameter comes in when associated with a module. When a parameter is associated
with a module as a model attribute, it gets added to the parameter list automatically
and can be accessed using the ’parameters’ iterator.

The provided FNN model takes in an input x and a target y . The weights and data are
generated randomly. To understand all the calculations going through I started with a
very small data-set to make sure I understood each process going through the model.
This FeedForward Neural Network model consists of two layers shown in Listing 3.
This model is a part of a bigger pipeline where the models are trained to recognize
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1 def _forward_first_layer(self, x):
2 batchsize = x.shape[0]
3 h = x.mm(self.W0.reshape(self.num_networks * self.hidden_size,

self.input_size).t())
4 h = h.reshape(batchsize, self.num_networks, self.hidden_size)
5 hz = self.prelu_z_slopes[None, :, None] * h * (h < 0) + h * (h >= 0) #

parametric relu
6 hr = self.prelu_r_slopes[None, :, None] * h * (h < 0) + h * (h >= 0) #

parametric relu
7 return hz, hr
8

9 def _forward_second_layers(self, hz, hr):
10 #dual second layer linear transformations
11 z = (hz * self.Wz[None]).sum(axis=-1)
12 r = (hr * self.Wr[None]).sum(axis=-1)
13 return z, r
14

15 def _combine_z_and_r(self, z, r):
16 z = 2.0 * torch.sigmoid(self.z_scale[None] * z) - 1.0
17 r = F.softplus(r)
18 return r * z
19

20 def _ensemble_predictions(self, y):
21 y = y.clamp(-self.max_predict, self.max_predict) # clip prediction of each

network
22 y = y.mean(axis=-1) # average over networks
23 return y

Listing 3: The different layers and functions used in the FNN Network

features that indicate an upcoming increase or decrease in the market pricing and
bid accordingly. Deep Learning methods, while known in general to be extremely
successful in terms of accuracy, also carry a curse of heavy computations with them.
We will therefor in the next section implement it with SME and test if we can keep the
accuracy and accelerate the inference.



Chapter 4

Implementation

This Chapter describes the implementation and gives an overview
over the translation of the FNN model to SME. The purpose is to
show the structure and thoughts throughout the process of the devel-
opment of the final SME model. We will highlight the most important
technical considerations that were made during the implementation
and how the structure was set given the theoretical background from
the previous Chapters. This will be illustrated through explanations
and code snippets.
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4.1 The architecture of SME_ML
Having the theoretical background behind FNN and SME, we will in this section intro-
duce the implementation of the FNN model in SME and describe some of the essential
parts. The code that was developed in this work ML_SME_FPGA can be found on
Github [Moussa 2020]. The result is generalized such that each function can be used
for different purposes on an FPGA. The ultimate goal is to find methods for transpiling,
that can be generalised to different FNN problems. The python code provided from
the HFT company who wants to remain anonymous, was made in python with the
Pytorch library, which I thereafter translated to C#, using almost no built-in libraries.
This was due to the fact that we wanted to understand the data structure of all op-
erations, such that it would be easier to implement with SME. The main intention of
each language is different and therefore the transpiling of a process in the given Python
code to a SME process might not be completely trivial. However, the automatic par-
allelization of the network is still useful for users wanting to run the model on a FPGA.

Before getting into the concrete implementation detailing the model, let us restate
the purpose of the FNN model and how we want to go from a Python model to a full
implementation on a FPGA: Based on an input sequence x and a set of trained weights
wi, a model is made to predict a y in Pytorch, which we will recreate in SME. We will
do this by being aware of timing and restricted clock cycles such that the calculations
runs correctly and independent of each-other. The final model works in the following
way:

1. Takes in the input sequence x and the weights wi.

2. Runs the FNN model

3. Compares the SME- with the Pytorch -output

The whole architecture is divided into several sections, but to execute this you need
to load your data in the Deflib/data file and run the FNN folder. The FNN calls in all
the other modules, which can be found in ML_SME_FPGA. In the following sections
we will describe some specific implementation details that are worth noting.

4.2 Matrix multiplication in SME
Each module is designed as an individual simulation setup so that it can be tested
separately from the rest of the system. A further explanation about how to test the
modules can be found in Chapter 5. To give an idea of how each function is structured
in the core of the FNN, we will look at a concrete example; the Matmul function. To
understand the development of the process, we will go through the steps of going
from the python to SME model. This consists of the following main steps:

• Translation from python to C#
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1 h = x.mm(self.W0.reshape(self.num_networks * self.hidden_size,
self.input_size).t())

Listing 4: Matrix multiplication in python using the Pytorch library among other
operations

• Write in the SME framework

• Re-structure functions to run independently

4.2.1 FNN in C#

For this example we will only focus on this specific line from the given FNN model
shown again in listing 4. This function calculates the matrix multiplication in the
first layer of the model. As we can see in listing 4, before the matrix multiplication,
there is a need for a reshaping and transpose of the function, but we will only focus
on the matrix multiplication for now. I had to write the function out in C#. This is
generally not necessary to do first, but beneficial, since it is needed for the testing.
Another reason and something to be aware about is that this is done because in SME
in specific situations, calling C# libraries will not translate directly to VHDL, which is
the goal. This happens when using the SimpleProcess. This process is driven by the
global hidden clock with the OnTrigger function that is triggered once in each clock
cycle [Johnsen, Thegler, Skovhede, et al. 2021a]. The Matmul function is shown in
Listing 5. The translation of all lines to the necessary functions such as reshape, trans-
pose, sigmoid ect. was done and tested with several examples to make sure it worked
for different cases. I manually tested all functions to start with. This was my way to
incorporate learning C# programming.

The next step was recreating the FNN model in C# so it looked as close to the python
script. A snippet of the model from C# is shown Listing 6. Specific data was generated
and tested a reasonable amount of times on both models to make sure that they both
gave the same output.

4.3 Write to SME
The Sigmoid function was made to get introduced to the SME framework, which is
shown in A.1. There are many ways to build a function in SME and this was definitely
also the case for the Matmul process. Several block diagram were made. The final
block diagram is shown in Figure 4.1 containing the processes and busses that was
necessary for the function to take in data, calculate correctly in the right order and give
an output. Because the matrix multiplication is a combination of multiplication and
addition, where the operations are dependent on each other, we need other functions
to hold on data and forward them. This is where the different processes come in.
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1 public static double[,] matmul(double[,] X, double[,] Y)
2 {
3 int x_row = X.GetLength(0); // find dimensions
4 int x_col = X.GetLength(1);
5 int y_row = Y.GetLength(0);
6 int y_col = Y.GetLength(1);
7 double[,] result = new double[x_row, y_col];
8

9 for (int i = 0; i < x_row; i++) // loops over row and col
10 {
11 for (int j = 0; j < y_col ; j++)
12 {
13 for (int k = 0; k < x_col; k++)
14 {
15 result[i,j] += X[i,k] * Y[k,j];
16 }
17 }
18 }
19

20 return result;
21 }

Listing 5: Matrix multiplication written out in C#

1 public static double[,] matmul_mat(double[,] x, double[,,] W0)
2 {
3 var hh = Functions.matmul(x,
4 Functions.transpose(
5 Functions.reshape(W0,
6 (int)Parameters.num_networks * (int)Parameters.hidden_size,
7 (int)Parameters.input_size
8 )
9 )

10 );
11

12 return hh;
13 }

Listing 6: The C# version of listing 5
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Figure 4.1: Block diagram of the Matmul module. The colored boxes represent the
non-clocked processes, since they just are empty ’boxes’ with the only purpose of
changing the bus type going through them.

In the following sections we will explain the different processes from the pipeline,
used in the implementation.

4.3.1 Generate

The generate function takes the data in their given sizes and and outputs as a flat array,
since the Ram only takes flat data. The real shapes will be defined when addressing
the data i.e. in MatmulIndex. This process has an input-bus which holds the base
address and the output bus reads the data.

Implementation

To implement the unit we create a SME process. In SME, a process cannot make
matrices from lists, as lists are dynamically allocated. However, we can make them as
arrays as these can be statically allocated. It needs to be clocked, meaning the unit
will activate on a rising clock edge, as it will be part of a closed loop circuit, when
we later connect the units. If no unit is clocked in a closed loop, there is no way of
knowing, where to begin sending signals and if translated to hardware, one would
end up getting a short circuit, which would destroy the chip. Because the process
is clocked, when it reads the next address input, it will actually contain the address
calculated in the previous clock cycle, as the bus has not been updated yet. This would
then be the correct address in the current clock cycle. This is because the bus has not
been updated yet. This would then be the correct address in the current clock cycle.
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1 protected override void OnTick()
2 {
3 output.Enabled = index.Ready;
4

5 if (index.Ready)
6 {
7 output.Address = index.Addr;
8 }
9 }

10 }

Listing 7: The generate process

4.4 Matmul and Matmulindex
Matmul

The Matmul is implemented as a pipeline, where each sub computation is performed
in a single clock cycle. The Matmul process takes in the Block RAM that holds the
matrices, A and B used for the computation C+ = A ∗ B. When C is calculated it
gets sent through the Forward process and will continue into the Matmul. When the
calculation is ready it will add C to the next A and B in the matrix. These ports are
named Array_A, Array_B, Array_C respectively which are all input busses, meaning
the data are stored in these array.

Implementation

This process takes four busses and outputs the calculated value. Three of the input
busses are the matrices Array_A, Array_B, Array_C. It also consists of one input-bus
input_pipe which is a base holding the base address. To give an idea of how a process
looks like we will show the whole SimpleProcess once including how we define the
busses and the structure of the process. The real relevant part here is from line 28,
where we define an OnTick. This is the part that runs over one clock cycle. If the next
input is ready we will calculate the matrix multiplication. With this, we can check if
takes data in. From now on I will only show the OnTick functions, since they are more
relevant. Additionally, since all data needs to be handled as flat lists for the matrices,
we have to define another process that keeps track of the real matrix shapes. This
function is called MatmulIndex.

MatmulIndex

MatmulIndex keeps track of the indices in the matrices. It can be thought of as a
register, which holds the address of the current instruction. This is very important to
have to keep track of where we are in the matrix. It is also here the dimensions of
the matrices are being taking into account. The input busses contains of controlA and
controlB. The two control busses both contain a bool value which checks whether the
dimensions of the input data is correct. The output busses takes the addresses from
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1 protected override void OnTick()
2 {
3 if (running == true)
4 {
5 outputA.Ready = true;
6 outputB.Ready = true;
7 outputC.Ready = true;
8 started = true;
9

10

11 // Console.WriteLine($"i{i} j{j} k{k}");
12 outputA.Addr = i * widthA + k;
13 outputB.Addr = k * widthB + j;
14 outputC.Addr = i * widthA + j;
15

16 k++;
17

18 if (k >= widthA)
19 {
20 k = 0;
21 j++;
22 }
23

24 if (j >= widthB)
25 {
26 j = 0;
27 i ++;
28 }
29

30 if (i >= heightA)
31 {
32 running = false;
33 }
34 }

Listing 8: The Matmulindex

all the matrices, A, B and C. The last controlout bus specifies the sizes and validity of
the respective matrices.

Implementation

All the control busses are made from the IndexControl bus which consists of the
following fields: a boolean indicating whether the data is valid, a string holding the
base address, an int indicating the access stride, ints specifying the size of the matrix.
The main restriction with the Matmul function is the multiplication being depend on
the accumulation, which is performed within a single clock cycle. To make sure we
hold the right data at the correct time we add a process to the pipeline called Forward.
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ToRam
Address

Data
Read Data

Figure 4.2: The ToRam Unit.

4.4.1 ToRam

The ToRam Unit is like Generate, but for the write port to the memory. This is where
the final calculations are stored. The FPGA can either read or write to the Memory
Unit in a single cycle. The Unit has two inputs: v_input (the data) and index (the
address). It has a single output: output, where it writes the data. The ToRam Unit
and its connections can be seen in Figure 4.2.

Implementation

The ToRam process takes the Address and Data and should all contain a int value.
The memory part should be an array, and should read and write On each clock tick,
the process should check if the Index flag is set, in which case it should read the value
on the Address bus, and output the value stored in memory at the read address.

4.4.2 Pipe

Since parts of the Matmul function are dependent on its previous calculation, there
will be issues with holding the same positions in the indexing when running over each
clock cycle. It is possible to write an indexing process in a way so it reads and write at
the same time, nevertheless, this will take longer time when running the code. This
is not very efficient, as the clock rate of the processor is determined by the longest
path in the processor. A path in a design is the components that a signal goes through,
until it reaches a ’ready’ state. A ready state in a FPGA tells that the signals are safely
stored in the registers. A longer path implies a lower clock rate. So to increase the
clock rate, there is a need to decrease the longest path in the processor. For this we
introduce Pipes.
Pipes are registers in the processor, where all the values computed so far are temporar-
ily stored. It takes all of its inputs, and holds them until the next clock tick, where it
will forward the values it is holding. This ensures that the data does not have to travel
as far, until it has reached a ready state.

Implementation

Implementing the Pipe Unit should be done with an SME process. To implement the
pipe function, we write the same function for as for the genereate function. On each
clock tick, the process should check if the Ready flag is set, in which case it should
read the value on the Address bus, and output the value stored in memory at the read
address.
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1 protected override void OnTick()
2 {
3 if (new_input.Ready && new_input.Addr == old_input.Addr)
4 {
5 v_output.Data = v_inputNew.value;
6 }
7 else if (old_input.Ready)
8 {
9 v_output.Data = v_inputOld.Data;

10 }
11 else
12 {
13 v_output.Data = 0;
14 }
15 }

Listing 9: Forward process

4.4.3 Forwarding

Since the Matmul calculation output depends on the previous output we need to store
the different outputs and therefor need a process that can compare the different ad-
dresses and results and forward the final output. What the the Forwarding Unit does is
looking at the address new_input and checks if the calculated value corresponds with
the previous calculated address old_input. If they correspond, it will forward the
calculated value from the Matmulindex function to the Matmul stage. The structure
of the simplified processor with the forwarding unit can be seen in Listing 9.

Implementation

Implementing the Forwarding Unit should be done with an SME process. As it interacts
with the Matmul stage, it should be put in the Matmul stage. The unit consists of five
busses. The first four busses are input busses which we take in. They consist of two
busses, which are the pipes that holds the old_input and new_input addresses. The
next two busses are the calculated values of the old and new output and the last bus
is an output-bus that forwards the value.

4.5 The FNN model in SME
For the rest of the needed functions in the network, the main challenges has been
making sure that the right data and indices were correct. However they were build
on the same principles, where the main difference in all of them was the structure
of the processes sending the indices around depending on size and dimension. The
processes around the main functions in the FNN models, which are used more than
once are saved in the module Deflib. This also where the data, simulation and C#
version of the FNN models is saved. The rest of the relevant processes needed each
have their own module.
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When I first tested all the functions, they all depended on each other, leaving the de-
bugging process very long and hard. Therefor there was a need to pipeline them all
in such a way such that they could be modified and tested independently. All modules
in the FNN simulation have been designed to be pipelined. This was an important
design consideration because each module consists of many individual calculations.
If the system had to wait for each calculation to finish, it would increase the runtime
considerably. Each individual module setup consists of one or more SimpleProcesses
and at least one SimulationProcess which generates input data for the network.
SimulationProcess will be elaborated in Chapter 5. The pipelined structure results
in that in each clock cycle, all sections of the modules, are in use. The pipelined sys-
tem also means that we cannot calculate something in one clock cycle and expect it to
still be there a couple of clock cycles down the line. This means that if a result from a
calculation needs to be used later on, we either have to save it into RAM or we need
to send it through the pipeline until it is needed. With data that is always needed at a
specific point in time, it makes sense to send it through the pipeline. Understanding
how a module can be build and connected lead us to the rest of the modules and their
purpose in the FNN_SME model. The raw connection between them is illustrated in
fig. 4.3. A lot of work were put into each module making sure that forwarded the right
data and sizes and making sure that the calculations where executed at the correct
time. The fully connected FNN model can be seen in Figure 4.4. The instructions
on the addresses need to be given explicitly, such that everything gets send around
in the right order. This means that we no matter how much we try to generalize the
modules, the addresses needs to be changed if this is desired with the model.

Each module consists of a process, program and simulation file. In the process file
there are two different processes. The first is indexing of the input. An important
notice when working with SME is that the dimensions are fixed to an extend. The
biggest problem is that the RAM cannot change after the hardware has been generated.
Processes such as index calculation, are done dynamically, and could easily be changed
during run-time, since they receive all of the dimensions on the control buses. If one
were to truly fix all of the sizes, additional optimizations could be introduced, since
we don’t have to have the entire precision given by a 32-bit number, when you only
need to count to 16.

Transpose

The transpose module is the only function not containing a direct process function
since the function in itself changes the address of indices by transposing them. To give
a general idea of how the index process looks for most of the modules, an example
of the TransposeIndex process is shown in Listing 10. The most relevant part in
the indices getting addressed from line 1-18. The rest are statements forwarding the
information if the indexing holds.
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1 protected override void OnTick()
2 {
3 if (running == true)
4 {
5 started = true;
6 j++;
7 if (j >= height)
8 {
9 j = 0;

10 i++;
11 }
12 outputA.Addr = i * height + j;
13 outputB.Addr = j * width + i;
14 if (i >= width - 1 && j >= height - 1)
15 {
16 running = false;
17 }
18 }
19 else
20 {
21 if (controlA.Ready == true)
22 {
23 started = true;
24 running = true;
25 width = controlA.Width;
26 height = controlA.Height;
27 i = j = 0;
28 outputA.Ready = true;
29 outputB.Ready = true;
30 }
31 else
32 {
33 if (started == true)
34 {
35 controlout.Ready = true;
36 controlout.Height = controlA.Height;
37 controlout.Width = controlA.Width;
38 controlout.OffsetA = controlA.OffsetA;
39 controlout.OffsetB = controlA.OffsetB;
40 started = false;
41 }
42 else
43 {
44 controlout.Ready = false;
45 }
46 outputA.Ready = false;
47 outputB.Ready = false;
48 }
49 }
50 }

Listing 10: Transpose index, addressing a
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Figure 4.3: Block diagram of all modules used and their order in the FNN model in
SME

4.6 Quantization of Neural Networks
We are interested in comparing the results from the Pytorch model with the SME
model making sure that the functions are written correctly. However, the given data
from the company is using floating points for their data while the SME framework
supports floats when simulating, but does not yet have floating points implemented
for deploying on a FPGA. One solution to compare the Pytorch and SME model, would
be to quantazise the data in Python. Pytorch has made it possible to quantazise data
while training the model. Quantization is a technique which stores tensors at lower
bit widths than floating point precision. A quantized model performs some or all of
the operations on tensors with integers rather than floating point values. This allows
for a more compact model representation and the use of high performance vector-
ized operations on many hardware platforms [quantization_pytorch]. Quantization
is primarily a technique to speed up inference and only the forward pass is supported
for quantized operators. So to evaluate the data we would need to train the models
for quantization. Our focus is not really about training the model in the most efficient
way, but rather using it as a tool to be able to get integers out. The Pytorch library ar-
guments that it supports integer 8bit (INT8) quantization compared to typical floating
point 32bit models allowing for a 4x reduction in the model size and a 4x reduction in
memory bandwidth requirements [quantization_pytorch]. Depending on the whole
pipeline structure there are different approaches to quantazise the model: post train-
ing dynamic quantization, post training static quantization, and quantization aware
training. Since this is just a small part of a bigger structure, the simplest version would
be enough to see if it works.

I chose to play with the python model to start with, since this library seemed very
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Figure 4.4: Block diagram of the whole module This diagram is not including all the
busses used, but shows the connection of all the processes used
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straightforward and easy, but I must have missed something while working with it.
The instructions stated that applying the quantization on the model and then train
them would be what was needed to get a set weighted integers. However after several
tries the model wouldn’t seem to save it any differently. I used time on changing the
way of training the model and used all the different quantization approaches without
any luck. Since this took too long to figure out and time was getting short, I decided
to try to look into another way of getting the SME model to work with floating points.

4.7 ONNX
An interesting thought that came up during this implementation was the question
about saving Pytorch models and upload them directly in C#, without translating
manually and thereby save a lot of time. With the PyTorch framework, it is possible
to train a model, save it and download it as an ONNX file to run locally with Win-
dows machine learning in C#. This would save time for future work going from one
framework to another and from there rewrite the C# code into SME. In that way we
could also test other models containing the same operations we have implemented
in SME and compare how fast they execute compared to each other. This is where
ONNX comes in handy. ONNX is an open format built to represent machine learning
models. ONNX defines a common set of the building blocks of machine learning and
deep learning models. It generates a common file format to enable machine learning
developers to use models with a variety of frameworks, tools, run-times, and compil-
ers. We managed to save and download the model but could not open a translated
Pytorch version in C#. Several attempts on using ONNX to convert different deep
learning models was made, but without success.
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Figure 4.5: Block diagram of the restructured Matmul module. The Matmul process
is splitted up to Matmul_Add and Matmul_Mul

4.8 SME and floating points

Since the time was running out I decided to save this idea of optimizing the perfor-
mance and just focus on getting this piece of code working. unlike with CPUs/GPUs,
FPGAs are more limited in the available calculation methods i.e. the SimpleProcess
[Johnsen, Thegler, Skovhede, et al. 2021a]. We can not just import a math library to
do advanced functions. Certain calculations have a drastic better performance than
others, such as division, and choosing wrong will reduce the performance of the sys-
tem [Johnsen, Thegler, Skovhede, et al. 2021a]. Since we are targeting Xilinx boards
we are restricted to the Intellectual Property (IP) blocks that they provide for floating
point numbers. To be able to do calculations consisting of more than one operation in
the SimpleProcess for the different modules used in the FNN model, we had to do
some restructuring to fit it into the possible IP blocks provided by Xilinx. This mean
we will have to split the processes up into doing only one calculation.

As an example we will look at the Matmul function again. The original version of this
process which calculates the Matmul consists of different operations such as accumu-
lation and multiplications happening at the same time in the same process. However
if this should work for floating points we will need to split it up to such that the FPGA
more easily can connect all operations going on. This is therefor done by splitting the
Matmul Process in two processes; Matmul_Add and Matmul_Mul. On each clock cycle,
one value is read from the A and B matrix, which are streamed to the Multiplier. The
Accumulator keeps adding its input, until the address for matrix C changes, where it
will write the value to C. To make sure that all data gets sent at the right clock-cycle
there needed to be added some flags which is set every time a result needs to be saved.
We also would need more pipes to hold the data until it is ready to send to the next
process. The new structure of the matrix multiplication is shown as a block diagram
in fig 4.5.



42 CHAPTER 4. IMPLEMENTATION

4.9 Simulation process
Now, having the structure of the SME feed forward neural network model, we need to
test whether or not it gives the same results as the Pytorch model. For each process
there is a simulation part to test the functions and follow the results. Notably, the final
structure is the result of an iterative process, where the structure of testing changed
multiple times during the progress of building it. The first simulation to test the func-
tions was built in a way that would encompass all the other processes, because nothing
was pipe-lined and would therefore cause frequent errors. However, we managed to
pipeline the structure, such that each module is designed as an individual simulation
setup so that it can be tested separately from the whole system. When the modules
are connected to the entire FNN network system, one SimulationProcess generates
data and verifies the result. Besides generating input data, the SimulationProcess

uses selfmade C# libraries, to calculate the results of the simulation as verification for
the SME results.

Each module is a folder containing a process.cs, program.cs and simulation.cs file.
The simulations file generates the expected output and the test verification happens
in program file. For instance, when calculating the Sigmoid function, the Testing
Simulator will create input data generated from the calculation before, which is from
the zz then. While the Sigmoid is calculated, the Testing Simulator will calculate the
actual sigmoid function using standard C#. This way, when Sigmoid get computed,
it is simple to check whether or not these results are as expected. The output will be
a bool of true or false depending on if the results match. Often during development,
we ran into errors where the calculations were correct, but the timing was wrong,
which meant that the signals arrived unaligned causing the results to be out of sync.
By having a standard C# calculation based on the current input data, it was easy to
see how the timing of the communication of data was misaligned.
The Simulation is constructed using the following steps: A process, that takes in the
data, converts the size and dimensions, since the Ram only takes flattened data and
a process that simulates each function and compares it to the actual answer from the
model. With this in place, we can test each function and connect all of them together.
Ultimately building the final FNN and test it concurrently.

4.9.1 LoadStage

The LoadStage is a function that loads the data in, flattens it and indexes it to the
correct size and dimensions. It controls whether the index holds their correct size.
The LoadStage is shown in Listing 11 and consists of three other other processes:

• DataLoad

• TestIndexSim

• Index
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1 public LoadStage(int size, string CSVfile, int row, int col)
2 {
3 var load_control = Scope.CreateBus<IndexControl>();
4 var load_index = Scope.CreateBus<IndexValue>();
5 control = Scope.CreateBus<IndexControl>();
6

7 output = new SimpleDualPortMemory<double>(size);
8

9 var generate_load = new Dataload(size, CSVfile, load_index,
output.WriteControl);

10 var load_sim = new TestIndexSim(load_control, row, col);
11 var load_ind = new Index(load_control, load_index, control);
12

13 expected = generate_load.input;
14 }

Listing 11: LoadData process that loads the input and address the data with their
correct sizes

The DataLoad reads the CSV file, the complete size of the data and the value of the
index. The output is a flat array which is ready to connect to a given address. Since
all the data comes in a flat array, we need to create a process which has the right
dimensions of the data to ensure that the sizes hold up. This is where TestIndexSim
comes in. In TestIndexSim we overload with up to three dimensions including an
index-control. The index control makes sure to output an error if the sizes does not
hold up. When we actually run the simulations the sizes get transferred to the other
processes with their given sizes, which can then handle the data for their true sizes.
The index keeps track of where in the program we are located. It can be thought of
as a single register, which holds the address of the current instruction. Further, the
index process holds the instruction address. The input bus contains the address of the
next instruction and the output bus with the current address.

4.9.2 simulation.cs

When the data is loaded in with their right sizes and dimensions, the next step would
be to run them through the simulation processes. Taking the structure of the Matmul

Function as the starting point, there needs to be a simulation function to test out the
results. Before performing matrix multiplication the model reshapes and transposes
the data. The simulation process takes in the model which is rewritten in C# and cal-
culates the predicted outcome. In the program.cs file there are two parts: first part
takes in all the SME processes written for that specific module and pipelines them to
get the whole SME Matmul function, this part is called the MatmulStage. The other
half of the program.cs takes in the data, the FNN network from both the C# version
and the SME and compares them inside the OutputSim process. the OutputSim is
the process that compares the calculated output from SME with the expected output
calculated using C# functions. To give a simpler visualisation of the program file, a



44 CHAPTER 4. IMPLEMENTATION

1 //expected output of Matmul
2 var matmul_expected =

Deflib.Functions.Flatten(Deflib.Generate_data.matmul_mat(Deflib.dataMatrix.x,
Deflib.dataMatrix.W0));

3 // generate data
4 var matmul_x_ready = new Deflib.TestIndexSim(control_x,

(int)Deflib.Parameters.Batchsize,(int)Deflib.Parameters.input_size);
5 var prelu_W0_ready = new Deflib.TestIndexSim(control_W0,

(int)Deflib.Parameters.input_size, (int)Deflib.Parameters.num_networks*
(int)Deflib.Parameters.hidden_size);

6 // SME output of Matmul
7 var matmul = new MatmulStage(control_x, control_W0, array_x, array_W0);
8

9 // simulate and compare outputs
10 var outsimtra = new OutputSim(matmul.control_out, matmul.ram_out_1,

matmul_expected);

Listing 12: Small snippet of code of the program.cs file calculating the matrix mul-
tiplication output for the expected and actual output

snippet of code is seen in Listing 12. Here, it calculates the expected Matmul output,
generates the SME data, calculates the SME Matmul output and compares those two
at the end with OutputSim.cs which prints a True if the results matches.



Chapter 5

Results

In this chapter, the results of the thesis will be presented, touching
upon two key areas. The proposed methodology from the previous
chapters will be adopted and tested on the data of the focal com-
pany. Conducting this experiment will provide further insight into
the speed and performance of the FPGA and how it performs in a
real life setting.
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Id Data input size hid size # networks max predict Batch size

1 Test size 4 7 5 1 1
2 Actual sizes 256 96 16 1 1

Table 5.1: Parameters with different sizes used to test the FNN model in SME

Name Clock rate [MHz] Logic Registers Block RAM DSP

clamp 191.4975 197 419 0 0
hzhr 74.6436 711 1089 1.5 10

load_data 596.3000 993 2367 9.5 56
matmul 51.2242 596 1292 9.5 9
mean 17.7135 1162 1372 0 3

mulmin 51.6022 417 1037 0 4
rz 90.6536 273 526 0 4

sigmoid 17.7135 1933 1267 0 3
softplus 31.1536 1188 1037 0 3
sumlast 45.7603 846 2317 1 6

transpose 884.9557 249 403 16 2
z_r 77.9301 545 1041 3 10
zz 90.6536 273 526 0 4

FeedForward 17.7135 9121 8468 20.5 110

Table 5.2: Small parameter set. Timing and utilization post Synthesis as reported by
Vivado targeting a ZedBoard.

5.1 Results
To test the processes quickly, a small data set of the different weights were randomly
generated and used throughout the construction of the SME model. Since we are not
interested in the FNN predictions, but rather if the FNN model SME aligns with the
results, using these random values will be sufficient. The first parameter set is one
among other small test data to check if all values matched and to test that all stages
work by keeping track of the results, since the implementation started without the
automated setup of matching the predicted output with the calculated. parameter set
2 are the actual parameter sizes for the network used by the high frequency trading
firm. If all executions provides a True, this means that the expected output matches
the SME output. The SME model was tested with two different parameter and input
sets and we made sure to get a match of the C# and SME results throughout the sim-
ulation. This is a deterministic problem, since this can be tested for several parameter
sizes. However by changing the dimensions would cause a change of the index ad-
dresses, since we are working with a flat array.

Having the simulation work and matching, the next step would be to generate VHDL.
In program.cs at the end of the code, we can generate VHDL code. As mentioned
in chapter 2, SME can be transpiled into VHDL and as such provides a high level ap-
proach for hardware design. This will be processed in Vivado [Vivado Design Suite
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name Clock rate (MHz) Logic Registers LutRAM Block RAM DSP

clamp 184.6722 215 418 48 0 0
hzhr 74.0686 657 1117 48 6 10

load_data 47.6077 4198 2458 2360 384 56
matmul 51.2243 3673 1991 2288 384 11
mean 17.7135 1162 1372 24 0 3

mulmin 51.6022 433 1036 48 0 4
rz 86.9490 259 525 72 0 4

sigmoid 17.7135 1949 1266 48 0 3
softplus 31.1536 1204 1036 48 0 3
sumlast 45.7603 852 2329 48 4 6

transpose 61.0500 785 1427 0 768 6
z_r 74.0686 505 1081 0 12 10
zz 86.9490 259 525 72 0 4

FeedForward 17.71 17515 10695 7223 768 117

Table 5.3: Large parameter set. Timing and utilization post synthesis as reported by
Vivado targeting a ZedBoard.

n.d.]. Vivado is a tool for synthesizing and implementing hardware designs for Xilinx
FPGAs. Vivado supports the VHDL language. This simulation done in VHDL is the
closest to the actual hardware, as it visualize all of the different wires, timing and
components used in the FPGA.

In this thesis the target board was a ZedBoard [ZedBoard 2021]. A ZedBoard is a
development board, which contains a Xilinx Zynq system on chip. A Zynq chip consists
of a processing system and a programmable logic Farhad Fallahlalehzari 2021.
Once the project have been created in Vivado, the behavioral simulation should be run.
Since there was not enough time to work with the FPGA itself, the implementation
was done in collaboration with Carl-Johannes Johnsen and we will therefore not go
into further details about the FPGA, but rather analyse the provided results. These
numbers are post synthesis, which means that they are estimates. I.e., given a "perfect"
FPGA, we would be able to reach those clock rates and those resource utilizations.
After running place and route, we assume that the clock-rate will be lower, which
makes it slower. However, utilization should become better, as Vivado can do further
optimizations post place and post route. The reason for not doing place and route is
due to the BRAM utilization. If any resource is >100% it cannot be done.

The most relevant metrics in the given report are: Logic, LUTRAM, Registers, Block
RAM and DSPs, which can be found in 5.4. Block RAM Block ram (BRAM) are mem-
ory blocks, which contain more memory than the registers The timing and utilization
numbers gathered from the different parameters can be seen in Table 5.2 and . We
were able to achieve a clock cycle rate with the lowest bound on 17.714 MHz. The
utilization of FPGA resources i.e, the number of Logic used in the implementation for
the whole model was 9121 and 17515, respectively for parameter set 1 and 2. This
gives a percentage of 17.14% and 32.92% of the available logic on the ZedBoard. The
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Resource Utilization 1 Utilization 2 Available Utilize 1 Utilize 2

Logic 9121 17515 53200 17.14% 32.92%
LUTRAM 327 7223 17400 1.88% 61.47%
Registers 8468 10695 106400 7.96% 6.79%

BRAM 20.50 768 140 14.64% 548.57%
DSP 110 117 220 50.00% 53.18%

Table 5.4:
Table representing the resource utilization for the whole FNN model on a small

FPGA

ratio between how much board uses are around and the ratio between the two pa-
rameter sets seems pretty different in size. If the time was there, it would have been
interesting to investigate how each of the parameters in Table 5.1 affects the resources
used.

The number of clock cycles determines how long it takes to run the entire data set
through. The clock-rate is measured in Mhz, which is how many clock cycles it can
run per second. To have a better understanding of the performance of each process
on the FPGA, one can look into the different components seen in Table 5.2 and 5.1.
This shows how much of the different resources are available on the very small board.
From Table 5.4, there are room for data-set 1. For data-set 2 most of the resources
use less space than available but not in BRAM when it comes to the data set 2. .
In Table 5.2 and both LUTRAM and the BRAM is mostly used for the Transpose and
FeedForward processes. Since the Transpose takes in all the data as a input and
outputs all the data transposed, this takes a lot of space in the memory. It is half the
size for the Load_data and Matmul, because all the data only goes in one way. This is
due to when connecting all modules together, the input from one stage is the output
from the previous.
In general it takes longer to execute with the larger input data x , which makes the
network itself larger. Since you can divide by the size of x in the end, to get clock cycles
per prediction, and hence time per prediction, then it should not have a big effect on
the resulting network. In addition, a larger input x should not have an effect if it is
set up correctly. The problem right now is that it runs the whole x through, which
means that it must be able to accommodate the whole x and the whole transposed
x , which takes up quite a lot of memory. If we ran the batch sizes right, it would
be possible to only have room for a single batch. To fix the need for space in BRAM
one can either exchange the board with a larger version to be able to run all the data
through, or make smaller batches of the data so it stores less inside the board itself
while executing.
One could bulletproof test the model, by testing this on several dimensions or similar
models, which also was one of the goal with, but due to time restrictions did not
become a reality.
One can also compute an estimate of the execution time. This can be done by counting
the number of clock cycles used by SME during the simulation and multiplying them
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tP y thon tSM E ∆t
Test size 0.86 s 0.034µs 25294.12

Actual size 1.41 s 66.86 ms 21.09

Table 5.5: Running time for the whole FNN model executed with Python on a CPU
and Vivado on a ZedBoard. tP y thon was measured using the time module in python,
tSM E denotes the time from the simulation in Vivado and∆t denotes the scaling factor

with the time needed for a single clock cycle. At 17.71MHz one clock cycle takes
56.45ns to run. This is the lowest bound for the clock rates and means this takes the
longest. In both tables for the processes, the mean, sigmoid and FeedForward func-
tion takes the longest. This is probably because of the use of division. One of the
hardest operations in the FPGA is using division and this could probably be optimized
if the process was pipe-lined even more such that the steps in calculating the mean
was split in more processes running simultaneously. Using the reciprocal instead of
division could be an option to spread the utilization of the different on the ZedBoard.
One could also be splitting the data into batches again such that the mean evaluates
less data at a time. Another way that would increase the running time would be using
quantization on the input predictions.

For parameter set 1, with an input data set of 4000 prediction takes 597 clock cycles. If
we use these numbers, we can compute an estimate of the execution time. We do this
by counting the number of clock cycles used by SME during the simulation and mul-
tiplying them with the time needed for a single clock cycle. Thus, 597 times 56.45ns,
gives a running time on 0.034µs in total for the parameter set 1. For parameter set 2,
to run the whole FNN, having 256,000 predictions takes 1,184,385 clock cycles in to-
tal, which will take 1184385 times 56.45ns giving a running time on 66.86ms in total.
If we divide the running times with the predictions we get how long it takes to run
a single prediction which is 261.1847ns/pred. We can find the final running times
for the SME and Python implementation of the whole FNN, where the comparison is
shown in Table 5.5. The Python code was executed on an Apple Macbook Pro carrying
an M1 chip. For more information about the machine see Table 5.6. We see that for
all cases, the SME implementation performs better than the Python implementation.
The reason the scale is so immense for the test size is due to python having a "heavy"
startup time. I.e. it’s quite fast if discarding the warm-up time. However this should
be taken lightly. The Python implementation is running directly from the computer
and is not set to utilize the full processor, which can be done. We managed to design
and implemented the FNN model in SME and successfully generated a VHDL code
which was then successfully run through Vivado. From the results, we see that we
have accelerated the FNN model in general and with an optimization on almost 21
times faster this seems like a great update for the high frequency trading company.
However the inference could be optimized quite a lot. There could have been used
more time on rewriting the different processes such that there were more focus on the
clock-cycles, by using more pipe-lining on the parts that uses to much memory.
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CPU 8-core CPU 3.2 GHz
ARM ARMv8.4-A

Xillix Vivado 2020.2
Python version 2.7.16
Pytorch version 1.8.0

FPGA board Zedboard
FPGA Chip Xillix Zynq Z020

Table 5.6:
Specifications of the Apple Macbook Pro carrying an M1 chip, running the FNN

model. This is along with the version numbers of the programs used.



Chapter 6

Conclusions & Further Work

This chapter rounds up this thesis and gives some suggestions to-
wards eventual future work. It briefly discusses how the developed
model could be used in other aspects of machine learning and how
we could improve SME to work with other high productivity lan-
guages as well as how the network could be improved with respect
to computational performance.
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6.1 Conclusion
Throughout this project the theory behind the FNN model implementation has been
covered, starting from understanding the basic properties of the FPGAs. Hereafter the
syntax of Synchronous Message Exchange (SME) was introduced, where the theory
covering the implementation was explained. An introduction to Feed-forward neural
networks and the provided script was described. Finally the given knowledge was
then used to design the architecture of the FNN model in SME. The new design was
then implemented in SME and we managed to successfully run the FNN test program.
The generated VHDL was then successfully run in Vivado and it can be concluded
from chapter 5 that the simulated speed for the provided parameters took 66.86ms
compared to the python code which took 1.41s with a speedup on almost 21 times
more.
With this proof of concept we have shown that with SME and no beforehand knowl-
edge in hardware and programming it is possible to implement code down to FPGAs.
This also shows that FPGAs are good alternatives in the field of machine learning, at
least for inference. A wider application of the concepts on a bigger pipeline of artificial
intelligence to make the full potential of faster inference would be an interesting next
step.

6.2 Future Work
6.2.1 Specific ML package to FPGA

This idea was also chosen by the SparNord foundation and I received a scholarship
to go to University of California, Berkeley and work on this as a start-up idea. There
has been a lot of positive feedback and requests on expanding the deep learning li-
brary. The idea of a simpler work tool for implementing machine learning on FPGAs
is catching companies interest everywhere, the demand on faster models is increasing
and the growth of PyTorch users are expanding. It could therefore be interesting to
extend the SME- Pytorch library which could optimize the algorithms and maybe get
more FPGA customers and users. This is also where ONNX could be a great bridge for
exactly this. A lot of time on translating a Neural Network model from one language
to another would be needed with ONNX. This would speed up the process of devel-
oping more machine learning libraries in SME. Furthermore, one wouldn’t be limited
just to use Pytorch, but would have the flexibility of every framework that can target
ONNX, which also targets TensorFlow. This would be able to target both of the two
big Neural Networks vendors.

6.2.2 Performance Improvements

To increase the speed of the processor there could have been used more time on rewrit-
ing the different processes such that there were more focus on the clock-cycles. This
would allow the electrons to run over less distance and therefor fasten the speed up
for each clock-cycle. This would also allow the processor to work on multiple instruc-
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tions in a single clock cycle and by that increase the speed of the FPGA by adding more
parallelism by pipeline the processes even more. To test the performance of the pro-
cessor a larger workload, it would be interesting to use a larger amount of parameters
of data to get closer to a real ML problem.

6.2.3 ONNX and quantization

Another interesting approach to avoid translating different frameworks and languages
to C# would be looking at incorporating ONNX to save time on translating models,
so the focus can go to optimizing the pipe-lining of the model in SME and acceler-
ating the run time. Since SME does not have floating points incorporated yet, some
manual translation needs to be done in VHDL, by putting each process in an IP block,
quantization in general would be helpful. Both because it would save time to use int
in SME but also because Pytorch speeds up the performance and could hence give an
even faster run-time on the FPGA.
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SigSimulator Sigmoid
ValueTransfer

Figure A.1: The rectangles represent individual processes, which lies in a file of its
own. The solid arrow represents a bus which we call ValueTransfer in this example.

A.1 SME example of a sigmoid function
To show how SME works, a guide explaining every step is given, so a person with
almost no coding experience is able to try it out. we are going to implement a simple
function that is already made in C#. It takes a value in as an input and spits a result
out. We will implement the sigmoid function which is described in Sec. 3.2. Before
you can run this example, make sure you have installed:

• .Net Core SDK with at least version 2.0

• VS Code (or another editor) and the C# extensions

as they work well on all operating systems:
For this quick example we are going to start a project in a folder we create called SIG-
MOID, which is where all shown files are going to be placed. To do this we are going
to open up a terminal window and navigate to the desired folder destination which
could be the Desktop as an example and invoke the command

$ cd Desktop

$ dotnet new console -n SIGMOID

next we go into the folder by

$ cd SIGMOID

and add the necessary SME libraries

$ dotnet add package SME -- version =0.4.0 - beta

$ dotnet add package SME . GraphViz -- version =0.4.0 - beta

$ dotnet add package SME . Tracer -- version =0.4.0 - beta

$ dotnet add package SME . VHDL -- version =0.4.0 - beta

There should now exist 3 items inside the SIGMOID folder: Program.cs, SIGMOID.csproj
and a folder called obj. If all went well we should now be able to begin with our
project.

Since all functions has to be build through busses and processes, it can easily end up
with complicated systems. The best way to get an overview is to make a drawing
over your system. Even though this system is simple we will still make a drawing to
understand how it works.

As the picture shows we will need to add two more files. One for the simulation
process generating values and one process defining the sigmoid function. We will call
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them respectively SigmoidSimulation.cs, Busses.cs and Sigmoid.cs. The Program.cs
file will be our main file where we connect all the processes together.

A.1.1 Program.cs

Opening up the Program.cs file, we are going to add a couple of lines, as shown in
Lst. 13. First, the namespace in all files should be same. Program.cs contains the
Main() method of the project and is the entry point of any C# program. To use the
SME library we import it with the ”using SME” command as shown in the second line.
Within the Main() method, the first function we meet is the using function, this is just
to ensure the resources are properly cleaned up after the simulation. Hereafter we see
the simulation object, which as the name implies, is responsible for the simulation of
the logic unit.

We define simulation data as a bus, since it will pass the value from the simulation
generating data to where-ever we choose. The same counts for the sigmoidresult,
because we need to pass the results as an output. Then we need a simulator, which
we will define shortly as a process, where we insert the simulation-data. Lastly we
have the sigmoid function which takes the input data and gives data to the sigmoidresult
which then outputs the results. We can configure the simulation with the sim object,
which uses fluent syntax. It should be noted that Run() should always be the last
method called.

A.1.2 Sigsimulator.cs

The simulation file is shown in Lst. 14. Since the bus.cs file only contains two lines,
we will put it in the same file as sigsimulator.cs The first definition inside the sim-
ulation process creates the bus Valuetransfer, which will as the word imply, transfer
the values we simulate in the Sigsimulator. Notice that we define that ValueTransfer
in the Sigsimulator to be an output as m_output such that we can take the simulated
data and transfer it over to the sigmoid function, see figure 14. Then we define the
sigsimulator to take in the ValueTransfer as an output value. On line 19 - 22 we
declare our output bus. The way it is written is just pure SME syntax.
We want a new clock cycle to occur, so we use the line await ClockAsync(). In a
simulation process any .NET library is allowed and is not going to get transpiled to
a VHDL file. Therefore we can print the output of the AND gate to console to see
whether or not it works correctly.

A.1.3 Sigmoid function

Lastly we are going to define the sigmoid function itself. We open the file Sigmoid.cs.
We see how the process is defined in 15. Since the Sigmoid process is only going to
execute once per cycle, we are going to inherit from the SimpleProcess class. In line
8-11 define a m_input Bus that takes an input in and a m_output Bus that calculates
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1 using System;
2 using SME;
3

4 namespace SIGMOID
5 {
6 class MainClass
7 {
8 public static void Main(string[] args)
9 {

10 using (var sim = new Simulation())
11 {
12

13 var simulationdata = Scope.CreateBus<ValueTransfer>();
14 var sigmoidresulst = Scope.CreateBus<ValueTransfer>();
15

16 var simulator = new SigSimulator(simulationdata);
17 var sigmoid = new Sigmoid(simulationdata,sigmoidresulst);
18

19

20 sim
21 .Run();
22 }
23

24 }
25 }
26 }

Listing 13: The Program.cs file, which contains the Main() method for the project

the result. We declare the busses and then at line 21 we define the actual Sigmoid
function and print it out to see the results.
Now we go back to terminal and run the code.

$ dotnet run

this will output a VHDL folder with VHDL files, with one named ’makefile’. We can
use a VHDL simulator to test it out. I use the GHDL simulator to do this. If you have
downloadet GHDL down on your computer, you can navigate to the place where the
VHDL folder is and run the following command in your terminal:

$ make



A.1. SME EXAMPLE OF A SIGMOID FUNCTION 59

1 using System;
2 using SME;
3

4 namespace SIGMOID
5 {
6

7 /* Defining the bus*/
8 public interface ValueTransfer : IBus{
9 double value {get; set;}

10 }
11

12 /*defining sigsimulator*/
13 public class SigSimulator : SimulationProcess{
14

15 [OutputBus]
16 private ValueTransfer m_output;
17

18

19 public SigSimulator ( ValueTransfer output)
20 {
21 m_output = output ?? throw new ArgumentNullException(nameof(output));
22 }
23

24 public async override System.Threading.Tasks.Task Run()
25 {
26 await ClockAsync();
27 for (int i = 0; i < 10; i++)
28 {
29 m_output.value = i;
30

31 await ClockAsync();
32 }
33 }
34 }
35 }

Listing 14: The SigmoidSimulator.cs file, which generates values from 1 to 10
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1 using System;
2 using SME;
3

4 namespace SIGMOID
5 {
6

7 public class Sigmoid: SimpleProcess {
8 [InputBus]
9 private ValueTransfer m_input;

10 [OutputBus]
11 private ValueTransfer m_output;
12

13 public Sigmoid(ValueTransfer input, ValueTransfer output)
14 {
15 m_input = input ?? throw new ArgumentNullException(nameof(input));
16 m_output = output ?? throw new ArgumentNullException(nameof(output));
17 }
18

19 protected override void OnTick()
20 {
21 var tmp = 1 /(1 + Math.Exp(m_input.value));
22 Console.WriteLine(tmp);
23 m_output.value = tmp;
24 }
25 }
26 }

Listing 15: The Sigmoid.cs file, which contains the sigmoid function and the bus that
will pipe the data



Bibliography

[1] Anuj Agarwal. “High frequency trading: Evolution and the future”. In: Capgem-
ini, London, UK (2012), p. 20.

[2] Shuichi Asano, Tsutomu Maruyama, and Yoshiki Yamaguchi. “Performance com-
parison of FPGA, GPU and CPU in image processing”. In: 2009 International
Conference on Field Programmable Logic and Applications. 2009, pp. 126–131.
DOI: 10.1109/FPL.2009.5272532.

[3] Mike Brogioli. “Chapter 6 - The DSP Hardware/Software Continuum”. In: DSP
for Embedded and Real-Time Systems. Ed. by Robert Oshana. Oxford: Newnes,
2012, pp. 103–111. ISBN: 978-0-12-386535-9. DOI: https://doi.org/10.
1016/B978-0-12-386535-9.00006-8. URL: https://www.sciencedirect.
com/science/article/pii/B9780123865359000068.

[4] Rod Burns et al. “Accelerated neural networks on OpenCL devices using SYCL-
DNN”. In: Proceedings of the International Workshop on OpenCL. 2019, pp. 1–
4.

[5] Jason Cong et al. “Understanding Performance Differences of FPGAs and GPUs”.
In: Apr. 2018, pp. 93–96. DOI: 10.1109/FCCM.2018.00023.

[6] Farah Fahim et al. hls4ml: An Open-Source Codesign Workflow to Empower Sci-
entific Low-Power Machine Learning Devices. 2021. arXiv: 2103.05579 [cs.LG].

[7] Jian Fang et al. “In-memory database acceleration on FPGAs: a survey”. In: The
VLDB Journal 29.1 (2020), pp. 33–59.

[8] Farhad Fallahlalehzari. Introduction to Zynq Architecture. https://www.
aldec.com/en/company/blog/144--introduction-to-zynq-architecture.
2021.

[9] Virgilio Gianluca. “Is High-Frequency Trading a Threat to Financial Stability?”
In: (2017).

[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[11] hls4ml Contributors. hls4ml. https://fastmachinelearning.org/hls4ml/.
2021.

[12] C. A. R. Hoare. “Communicating sequential processes”. In: Communications of
the ACM 21.8 (Aug. 1978), pp. 666–677. ISSN: 00010782. DOI: 10.1145/

359576 . 359585. URL: http : / / portal . acm . org / citation . cfm ? doid =

359576.359585.

61

https://doi.org/10.1109/FPL.2009.5272532
https://doi.org/https://doi.org/10.1016/B978-0-12-386535-9.00006-8
https://doi.org/https://doi.org/10.1016/B978-0-12-386535-9.00006-8
https://www.sciencedirect.com/science/article/pii/B9780123865359000068
https://www.sciencedirect.com/science/article/pii/B9780123865359000068
https://doi.org/10.1109/FCCM.2018.00023
https://arxiv.org/abs/2103.05579
https://www.aldec.com/en/company/blog/144--introduction-to-zynq-architecture
https://www.aldec.com/en/company/blog/144--introduction-to-zynq-architecture
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://fastmachinelearning.org/hls4ml/
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/359576.359585
http://portal.acm.org/citation.cfm?doid=359576.359585
http://portal.acm.org/citation.cfm?doid=359576.359585


62 BIBLIOGRAPHY

[13] Kurt Hornik. “Approximation capabilities of multilayer feedforward networks”.
In: Neural networks 4.2 (1991), pp. 251–257.

[14] Carl-Johannes Johnsen, Alberte Thegler, Kenneth Skovhede, et al. “Accelerating
Molecular Dynamics with the Lennard-Jones potential for FPGAs”. In: (2021).

[15] Carl-Johannes Johnsen, Alberte Thegler, Kenneth Skovhede, et al. “SME: A
High Productivity FPGA Tool for Software Programmers”. In: arXiv preprint
arXiv:2104.09768 (2021).

[16] Carl-Johannes Johnsen, Alberte Thegler, Brian Vinter, et al. “SME: A High Pro-
ductivity FPGA Tool for Software Programmers”. In: IEEE TRANSACTIONS ON
COMPUTERS, SPECIAL ISSUE ON COMPILER OPTIMIZATIONS FOR FPGA-BASED
SYSTEMS (2020).

[17] David H. Jones et al. “GPU Versus FPGA for High Productivity Computing”. In:
2010 International Conference on Field Programmable Logic and Applications.
2010, pp. 119–124. DOI: 10.1109/FPL.2010.32.

[18] Dan Jurafsky and James H. Martin. Speech and language processing : an in-
troduction to natural language processing, computational linguistics, and speech
recognition. Upper Saddle River, N.J.: Pearson Prentice Hall, 2009. ISBN: 9780131873216
0131873210.

[19] Nikhil Ketkar. Introduction to PyTorch. Oct. 2017, pp. 195–208. ISBN: 978-1-
4842-2765-7. DOI: 10.1007/978-1-4842-2766-4_12.

[20] David Kriesel. A Brief Introduction to Neural Networks. 2007. URL: available%
20at%20http://www.dkriesel.com.

[21] Leslie Lamport and Fred B. Schneider. “The "Hoare Logic” of CSP, and All That”.
In: ACM Transactions on Programming Languages and Systems 6.2 (1984), pp. 281–
296. ISSN: 01640925. DOI: 10.1145/2993.357247. URL: http://portal.acm.
org/citation.cfm?doid=2993.357247.

[22] Christian Leber, Benjamin Geib, and Heiner Litz. “High frequency trading ac-
celeration using FPGAs”. In: 2011 21st International Conference on Field Pro-
grammable Logic and Applications. IEEE. 2011, pp. 317–322.

[23] John Lockwood et al. “A low-latency library in FPGA hardware for High-Frequency
Trading (HFT)”. In: Aug. 2012, pp. 9–16. DOI: 10.1109/HOTI.2012.15.

[24] Jan Lönnberg and Anders Berglund. “Students’ understandings of concurrent
programming”. In: Proceedings of the Seventh Baltic Sea Conference on Comput-
ing Education Research-Volume 88. 2007, pp. 77–86.

[25] Warren Mcculloch and Walter Pitts. “A Logical Calculus of Ideas Immanent in
Nervous Activity”. In: Bulletin of Mathematical Biophysics (1943), pp. 127–147.

[26] Marvin Minsky and Seymour Papert. Perceptrons: An Introduction to Computa-
tional Geometry. Cambridge, MA, USA: MIT Press, 1969.

[27] Amira Moussa. Github code to ML_SME_FPGA. 2020. URL: https://github.
com/amir0135/ML_SME_FPGA.

https://doi.org/10.1109/FPL.2010.32
https://doi.org/10.1007/978-1-4842-2766-4_12
available%20at%20http://www.dkriesel.com
available%20at%20http://www.dkriesel.com
https://doi.org/10.1145/2993.357247
http://portal.acm.org/citation.cfm?doid=2993.357247
http://portal.acm.org/citation.cfm?doid=2993.357247
https://doi.org/10.1109/HOTI.2012.15
https://github.com/amir0135/ML_SME_FPGA
https://github.com/amir0135/ML_SME_FPGA


BIBLIOGRAPHY 63

[28] Muryshkin Evgeny. QuokkaEvaluation. https://github.com/EvgenyMuryshkin/
QuokkaEvaluation. 2018.

[29] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: Advances in Neural Information Processing Systems 32. Ed.
by H. Wallach et al. Curran Associates, Inc., 2019, pp. 8024–8035. URL: http:
//papers.neurips.cc/paper/9015- pytorch- an- imperative- style-

high-performance-deep-learning-library.pdf.

[30] Wei QingJie and Wang WenBin. “Research on image retrieval using deep con-
volutional neural network combining L1 regularization and PRelu activation
function”. In: IOP Conference Series: Earth and Environmental Science 69 (June
2017), p. 012156. DOI: 10.1088/1755- 1315/69/1/012156. URL: https:
//doi.org/10.1088/1755-1315/69/1/012156.

[31] Martin Rehr, Kenneth Skovhede, and Brian Vinter. “BPU Simulator”. In: Com-
municating Process Architectures 2013. Ed. by Peter H. Welch et al. Nov. 2013,
pp. 233–248. ISBN: 978-0-9565409-7-3.

[32] Esben Skaarup and Andreas Frisch. “Generation of FPGA hardware specifica-
tions from PyCSP networks”. PhD thesis. Master’s thesis, University of Copen-
hagen, Niels Bohr Institute, 2014.

[33] Michael Stonebraker. “The case for shared nothing”. In: IEEE Database Eng.
Bull. 9.1 (1986), pp. 4–9.

[34] Berkeley University of California. chisel. https://www.chisel-lang.org/.
2012.

[35] Mário Véstias and Horacio Neto. “Trends of CPU, GPU and FPGA for high-
performance computing”. In: Sept. 2014, pp. 1–6. DOI: 10.1109/FPL.2014.
6927483.

[36] Brian Vinter and Kenneth Skovhede. “Bus Centric Synchronous Message Ex-
change for Hardware Designs”. In: Communicating Process Architectures 2015.
Ed. by Kevin Chalmers et al. IOS Press, Amsterdam, The Netherlands, Aug.
2015, pp. 257–268. ISBN: 978-XXX.

[37] Vivado Design Suite. https://www.xilinx.com/products/design-tools/
vivado.html. [Online; accessed 25-July-2017].

[38] Kyongsik Yun, Alexander Huyen, and Thomas Lu. “Deep neural networks for
pattern recognition”. In: arXiv preprint arXiv:1809.09645 (2018).

[39] ZedBoard. https://www.xilinx.com/products/boards- and- kits/1-
elhabt.html. 2021.

https://github.com/EvgenyMuryshkin/QuokkaEvaluation
https://github.com/EvgenyMuryshkin/QuokkaEvaluation
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1088/1755-1315/69/1/012156
https://doi.org/10.1088/1755-1315/69/1/012156
https://doi.org/10.1088/1755-1315/69/1/012156
https://www.chisel-lang.org/
https://doi.org/10.1109/FPL.2014.6927483
https://doi.org/10.1109/FPL.2014.6927483
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/boards-and-kits/1-elhabt.html
https://www.xilinx.com/products/boards-and-kits/1-elhabt.html

	Notation
	Acronyms
	Introduction
	High Frequency Trading
	Motivation
	The different hardware
	Central Processing Unit
	Graphic Processing Unit
	Application-Specific Integrated Circuit
	Field Programmable Gate Array
	Comparison


	Synchronous Message Exchange
	Concurrent systems
	Communicating Sequential Processes

	Synchronous Message Exchange
	The hidden clock and global synchronization
	Broadcasting and busses
	Shared nothing

	Hardware Description Language
	SME setup and structure
	Connection
	Process structure
	Verification data

	Related work

	FeedForward Neural Networks
	Artificial Neural Networks
	Activation functions
	The XOR problem

	FeedForward Neural Network
	Universal Approximation Theorem

	Training of a Neural Network
	Our FNN model
	Pytorch
	Torch
	Torch.nn


	Implementation
	The architecture of SME_ML
	Matrix multiplication in SME
	FNN in C#

	Write to SME
	Generate

	Matmul and Matmulindex
	ToRam
	Pipe
	Forwarding

	The FNN model in SME
	Quantization of Neural Networks
	ONNX
	SME and floating points
	Simulation process
	LoadStage
	simulation.cs


	Results
	Results

	Conclusions & Further Work
	Conclusion
	Future Work
	Specific ML package to FPGA
	Performance Improvements
	ONNX and quantization 


	Appendix
	SME example of a sigmoid function
	Program.cs
	Sigsimulator.cs
	Sigmoid function


	black Bibliography

