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"We warn the reader that there is no universal convention for the term ’confidence level’."

The Review of Particle Properties, 1986

Quoted by R. J. Barlow 1989

"Niels Bohr supposedly said that if quantum mechanics did not make you dizzy then you
did not really understand it. I think that the same can be said about statistical inference!"

Robert D. Cousins, 1994
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Preface

In working with this thesis it has become clear to me that some care must be taken

in the colors chosen to present the findings. The common choice of red for Normal

Ordering and blue for Inverted Ordering has guided me to find a color palette that

not only captures the physics but also highlights the beauty of the data involved.

The colors in this thesis are therefore inspired by Pantone’s New York Fashion Week

Spring/Summer 2023 color palette [3].
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Abstract

The ordering of the neutrino mass states is one of the remaining features of the

Standard Model not yet explained. Insight into whether the third mass state is

the heaviest (Normal Ordering) or the lightest (Inverted Ordering) will, among

other things, impact the possibility of determining the charge-parity violating phase

δCP . Matter effects to atmospheric neutrino oscillations below ∼ 15GeV depend

on the Neutrino Mass Ordering (NMO), and such low energy effects are expected

to be measurable by the upcoming extension to the IceCube detector, the IceCube

Upgrade.

This thesis studies the expected sensitivity to the NMO for the IceCube Upgrade

planned to be deployed in the Antarctic summer 2025-26. The non-nested nature of

the ordering requires statistics beyond the standard methods, and different frequentist

approaches are investigated. From data simulated according to the expected Upgrade

geometry and efficiency, median sensitivities in a Gaussian approximation for both

orderings are reported within the expected global fit range of θ23. From pseudo-

experiments, these sensitivities are confirmed at one value of θ23. Only one of the

sensitivity approaches studied properly accounts for a degeneracy between the NMO

and the octant of the atmospheric mixing angle θ23, and the commonly used value of√
2LLH is found to overestimate the sensitivity by to 1σ. It is found that even though,

a frequentist approach cannot yield a determination of the neutrino mass ordering,

the IceCube Upgrade is expected to be able to reject the wrong ordering at 3σ within

three years, when detector uncertainties are not considered. The findings suggest that

future measurements from the IceCube Upgrade will significantly improve the current

global sensitivity of the NMO.
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1Introduction

Particle physics is engaged with the most fundamental building blocks of our universe,

from the Higgs mechanism providing mass to particles, to the electromagnetic interac-

tion enabling us to live in a digital and electrified world. The search for explanations
has always been the cornerstone of science and physics, and as the knowledge we have

built has accumulated we have been able to push the boundaries of our understanding

ever further.

At the frontier of particle physics, we find the problems for which we do not yet

have a satisfactory explanation, a substantial set of which are somehow linked to

the properties of the neutrino. Initially proposed to explain non-conservation of

energy in beta-decays, the neutrino later proved to exhibit a multitude of new and

non-intuitive physics. In the Standard Model, describing particle physics, the presence

of neutral leptons, like the neutrinos, is not prohibited, but such leptons would have
to be massless to be fully described by the theory. The ability for neutrinos to mix

has however proven that they are massive, with masses constrained by cosmological

measurements to be tiny compared to all other known matter [4].

Neutrinos exhibit what is known as flavor oscillations where a neutrino produced as a

certain type (flavor) may interact as a different type at a later time [5]. This is possible

because the neutrino states which are allowed to interact with other particles and

the neutrino states that describe the time evolution of the neutrinos are not identical.

Precise measurements of the structure of these oscillations provide a unique insight

into the properties of the fundamental neutrino states. The differences between the

masses of the neutrino states (ν1, ν2, ν3) are well determined in size, as the splitting
of the evolution states affects the phase of the resulting oscillations. Only the sign

of the smaller mass difference ∆m2
12 has however been measured by the time of this

project [6]. Whether the larger mass squared difference ∆m2
32 is positive or negative

determines the ordering of the mass states which is said to be Normal for ∆m2
32 > 0

and Inverted for ∆m2
32 < 0. This is known as the Neutrino Mass Ordering (NMO) and

is the subject of the analysis presented in this project.

Determination of the NMO will provide crucial information to the efforts of explaining

how neutrinos get their masses and is also linked to the possible charge-parity violation

in the lepton sector, with implications for the explanation of why we live in a matter
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and not anti-matter dominated universe. The NMO signal has been a sub-leading

contribution to the current generation of experiments and no strong preference for

either the Inverted (IO) or Normal (NO) ordering has been found. The next generation

of neutrino experiments will however provide the energy-resolution required for a

measurement of the NMO.

One such next-generation detector is the IceCube Upgrade [7]. Planned for deploy-

ment in the Antarctic summer 2025-26, the Upgrade is an extension of the current

IceCube detector located at the South Pole [8]. Spanning a volume of 1 cubic-kilometer

of ice, the IceCube detector measures atmospheric neutrinos created all around the

globe and provides measurements of neutrinos with energies from O(GeV) to O(PeV),

and path lenghts from the thickness of the atmosphere to the diameter of Earth. With

the Upgrade, the full detector is expected to achieve energy resolution in the GeV-

range required for measurements of the Neutrino Mass Ordering which manifests

itself as modulations to the oscillation patterns experienced either by neutrinos or

anti-neutrinos that have traversed the dense Earth. This project will explore to what

level the IceCube Upgrade will be able to separate the two mass orderings.

The true mass ordering can either be NO or IO, demanding special care in the consid-

erations of the statistics employed for its determination, must be taken. Leaving the

well-known comforts of Wilk’s Theorem [9] brings new and yet unresolved issues, as

the impact of parameters describing the oscillation patterns can heavily impact the

signature of the two orderings in the detector.

Even though the Upgrade Detector will not be deployed for a few more years, studies

into its potential are crucial at this time. Such studies will both set the expectations

for future measurements and guide the efforts in the coming time to areas of impact

on the NMO analysis. In this project, the theoretical background for measuring the

signature of the NMO is described, including the theory of neutrino interactions

and oscillation patterns in matter. The IceCube Upgrade and its ability to measure

atmospheric neutrinos, and the impact of the NMO on such a measurement, will then

be presented including the analysis tools involved in the simulation of events. From

there, the statistics of an NMO analysis is discussed and a method accounting for

the composite and non-nested [10] nature of the hypotheses is described. Applying

these methods to simulated data of the IceCube Upgrade, sensitivities are obtained by

applying a Gaussian approximation and this approximation’s validity is tested at one

point in the parameter space of the analysis. Different statistical interpretations of

the sensitivity are compared and the impact of the atmospheric oscillation angle θ23 is

investigated. The results will be discussed in relation to current sensitivities to the

NMO from IceCube and other experiments.

2 Chapter 1 Introduction



2Particle Physics Theory

Neutrinos are the lightest and most un-intuitive of the elementary particles. They

exhibit strange quantum mechanical behavior and they interact with other constituents

of the Universe only to the very slightest degree. They are therefore naturally of the

greatest interest to particle physicists of today. Simply the fact that neutrinos have

mass slams the door wide open into physics beyond the standard model, which is

otherwise one of the most successful physical theories. Because neutrinos are strange

and interesting in ways, that can cover full careers, this project will only deal with

one small corner of the picture that is neutrino physics, namely the Neutrino Mass

Ordering (NMO).

In order to fully appreciate the subtleties that go into being able to measure the

NMO, this chapter will deal with the basic principles regarding neutrino interactions,

neutrino oscillations and importantly, how the Earth’s density allows us to make

statements about the masses of the neutrinos. Because that is in essence what

the ordering is - measuring the masses of three different particles. These particles

are the mass states of the neutrinos and their ordering can either be Normal or

Inverted, depending on whether the third mass state is the heaviest or the lightest,

respectively.

2.1 The Standard Model

The Standard Model very successfully describes the building blocks of our Universe

with fundamental symmetries and symmetry-breakings, without however providing

quite satisfactory explanations for everything.

The particles this project evolves around, the neutrinos, are the neutral part of the

lepton doublets also containing the charged leptons e, µ, τ . Though electrically neutral,

the neutrinos have weak isospin and weak hypercharge enabling them to interact

with the force-carriers of the weak interaction, the W± and Z bosons, and thereby

also with both charged leptons and quarks [5]. From the observation of neutrino

oscillations it is known that neutrinos have non-zero masses, because oscillations

would otherwise not be possible. The mass of the neutrinos are however not explained

by the Standard Model and neither is it predicted whether neutrinos are their own
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anti-particles and therefore Majorana particles [11]. Even though the Standard Model

does not fully explain the neutrino it does provide the frame from which we can study

the nature of these evasive, light, and oscillating particles.

2.1.1 The Weak Interaction and Chirality

Neutrinos can interact only via the weak force, which is mediated by the massive W±

and Z bosons. Even though the weak interaction is called weak, the dimensionless

coupling constant αw is actually larger than the electromagnetic one, but the large

masses of the bosons, compared to the massless photon, causes weak interaction

decay rates to be suppressed by a factor of q4/m4
w [5].

The weak interaction does not conserve parity and therefore has a different mathe-

matical structure than both Quantum Electro Dynamics (QED) and Quantum Chromo

Dynamics (QCD), which are both parity conserving interactions. The parity violat-

ing nature of the weak interaction was found by observing the angular distribution

of electrons from nuclear β-decay, which showed a suppression of electrons in one

direction over another. The form of the interaction vertex can be found to be of the

type vector minus axial (V-A) and includes the left-handed chiral projection operator

PL = 1
2(1− γ5). All particles in the Standard Model can be described as four-vector

spinors, which can be expressed in the base of chirality - coinciding with helicity in the

ultrarelativistic limit. Helicity is the projection of a particle’s spin onto the direction

of its momentum, but unfortunately such an intuitive expression of chirality is only

valid for ultra-relativistic particles. The V-A structure of the weak interaction allows

only left-handed (LH) and right-handed (RH) chiral states of a particle to take part

in the interaction, and the weak interaction is therefore said to be maximally parity

violating.

This “handedness” of the weak interaction has some interesting effects on the interac-

tions of neutrinos. Since neutrinos are almost massless, they are ultrarelativistic and

helicity and chiral states are identical [6]. Since angular momentum is conserved in

all particle interactions, this greatly limits the number of allowed neutrino interactions.

One such example is the production of neutrinos from cosmic rays consisting mainly

of π± decays. The decay, π+ → l+ + νl, can, because of the relative masses of the

pion and the charged leptons, only produce electrons or muons and not the heavier

tau-leptons. Because the weak-coupling constant is the same for all lepton-flavors,

one would expect the ratio of decays to electrons and muons to be one. This is not

the case as the weak decay will always produce a left-handed chiral, and therefore

also helicity, neutrino. Because the pion is a spin-0 particle, the spin of the charged

lepton must be in the opposite direction to the neutrino’s and therefore the anti-lepton

4 Chapter 2 Particle Physics Theory



should also be in a LH helicity state. Since the weak interaction only allows for LH

chiral particles and RH chiral anti-particles, this means that the charged lepton has

to be a RH chiral state projected onto the LH helicity state. As helicity and chirality

coincide in the ultra-relativistic limit, the amount of LH helicity in a RH chiral state is

larger for less relativistic and more massive particles. This explains why the branching

ratio of the decay rates is measured to be Γ(π+→e+νe)
Γ(π+→µ+νµ)

= 1.2× 10−4 [12, 13].

2.1.2 Neutrino Scattering

Neutrino interactions involving a W± boson is known as Charged Current (CC)

interactions as they can change the “flavor charge” of the involved particles, whereas

interactions involving a Z boson are known as Neutral Current (NC) interactions as

they do not exchange any charge.

For the case of IceCube, the target material is ice, and depending on the energy of

the incoming neutrino, different interactions will dominate the cross-section. For

high energy neutrinos (Eν > 10GeV), the dominant interaction is Deep Inelastic

Scattering (DIS), below 100MeV the cross-section is dominated by nuclear processes,

and in the intermediate region multiple processes contribute [14]. For oscillation

measurements with IceCube, we are interested in energies from 1GeV to 300GeV

and especially for an NMO study with signal in the low end of the energy range, as

we will see in the next section, not only DIS but also other neutrino interaction types

should be considered. In Figure 2.1 the total neutrino charged current cross section is

shown together with contributions from the three largest contributing processes, Deep

Inelastic Scattering (DIS), Resonance (RES) and Quasi-Elastic scattering (QE).

In a deep inelastic scattering process the neutrino has enough energy to break up the

nucleon, resulting in a hadronic cascade. The underlying interaction is neutrino-quark

scattering either by νld → l−u or νlū → l−d̄ or equivalently for anti-neutrinos by

ν̄lu → l+d or ν̄ld̄ → l+ū. From chirality arguments analogous to the case of pion-

decay, neutrinos will have higher cross-sections with matter than anti-neutrinos, as

anti-neutrino-quark scattering will have angular suppression due to the total spin

of the initial particles being non-zero. Similarly for neutrino-anti-quark scattering,

anti-neutrinos will have a larger cross section than neutrinos. Because nucleons not

only consists of valence-quarks (u, d), but also sea-quarks, which can just as easily

be anti-quarks as quarks, the ratio between the cross-sections of neutrino and anti-

neutrinos is not 1/3 as would be expected from angular considerations but is instead

measured to be ∼ 1/2 [5]. We will see later, how this is important for the NMO signal

in IceCube, as the NMO signal is an effect in either the neutrino or anti-neutrino

sector.

2.1 The Standard Model 5



FIGURE 2.1.
Total neutrino per nucleon CC cross sections scaled to neutrino energy as a function of energy
and cross sections for different contributing processes, quasi-elasic (QE), resonance (RES) and
deep inelastic scattering (DIS). Figure from [14].

When a neutrino does not have enough energy to break up the target nucleon, it can

instead excite it to a resonance state. In such a resonance interaction, the resonance

particle can decay into different final-states, though most often to a nucleon and a

single pion. Some of the possible resonances and decay-channels are less well-studied

than others and will be a possible source of systematic uncertainties for any neutrino

oscillation study [14]. For even lower energies, neutrinos interact via quasi-elastic
processes where the target nucleon is converted from a neutron to a proton for

neutrinos and from a proton to a neutron for anti-neutrinos (both charged current

processes). For this type of interaction, both the V-A structure of the weak interaction

and the form factor of the nucleon are important for calculating the cross-section.

In the “dipole approximation” the form factor will depend on the axial mass MA,

the value of which has been measured ranging from 0.65GeV to 1.35GeV with a

tendency for newer experiments to measure higher values [14]. This tension also

gives rise to systematic uncertainties that are important for this project.

2.2 Neutrino Oscillations

The neutrinos that are allowed to interact in the weak force are the eigenstates

of the interaction Hamiltonian and corresponds by lepton number to the charged

leptons e, µ, τ and are νe, νµ, ντ . These neutrinos were thought to be fundamental

and massless and would thus fit into the Standard Model. It was however quickly
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established from neutrino experiments that the standard model does not fully describe

and explain the behavior of these neutral leptons [15].

The perhaps most well-known tension in the neutrino sector came from the solar-
neutrino problem, where the expected flux of neutrinos produced in the beta-decay

fueling the sun did not match the measured rate of neutrinos in the Homestake

mine [16]. As the solar-neutrinos would have to have electron lepton flavor, the

experiment was designed to measure the product of electron-neutrino - chlorine

charged current interactions resulting in merely a third of the predicted rate. It

wasn’t until the Sudbury Neutrino Observatory (SNO) experiment [17] was able

to measure not only the electron-neutrino rate, but also the total neutral current

interaction rate from all neutrino flavors, that the results made sense. The total rate

of neutrinos was compatible with the prediction of the electron-neutrino rate from

solar nuclear reactions, but the neutrinos did not interact as electron type neutrinos

when they reached Earth, and had instead changed flavor as was confirmed by also the

Super-Kamiokande experiment [18]. This remarkable feature of neutrinos is known

as neutrino oscillations and provides multiple ways to probe the basic properties of

neutrinos, not yet fully described by the Standard Model.

With analogies to mixing in the quark sector and the neutral kaon system, mixing

between the three neutrino mass eigenstates explained the oscillatory behavior of the

weak eigenstates [5]. This mixing is described by the unitary PMNS matrix U , named

after the pioneers of its development; Pontecorvo, Maki, Nagakawaa and Sakata [19,

20, 21]

|να⟩ = U∗
αi |νi⟩ , U =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 , (2.1)

where |να⟩ is a neutrino state of flavor α = e, µ, τ and |νi⟩ , i = 1, 2, 3 is the i’th mass

state.

2.2.1 Oscillations in Vacuum

The evolution of a flavor system is given by the collective evolution of the individual

mass eigenstates and can be described by a matrix in flavor basis as [11]

i
d

dt
|να, t⟩ = U∗

αii
d

dt
|νi, t⟩ = U∗

αiEi |νi, t⟩ = U∗
αiEiUβi |νβ, t⟩ , (2.2)

2.2 Neutrino Oscillations 7



where repeated indices are summed over and Ei is the eigenvalue of the free particle

Hamiltonian for the i’th mass state. Taking the eigenvalues in the ultra-relativistic

limit and using h̄ = c = 1, we have

Ei =
√

m2
i + p2 ≃ p+

m2
i

2E
, (2.3)

where mi is the mass of the i′th state, p is the coherent momentum, and E is the

energy of the neutrino to this order not including the mass. As any factors of the

Hamiltonian proportional to the identity matrix only add an overall phase to the

system we can express the vacuum Hamiltonian in the flavor basis by omitting the

momentum term as

H0 =
1

2E
U∗M2U, M2 =

m2
1 0 0

0 m2
2 0

0 0 m2
3

 . (2.4)

The probability of finding the system in a specific flavor state β after a time t is

Pα→β(t) = |⟨νβ, 0|να, t⟩|2 (2.5)

= δαβ − 4
∑
i<j

Re(U∗
αiUβiUαjU

∗
βj) sin

2

(
∆m2

jiL

4E

)
, (2.6)

where ∆mji = m2
j −m2

i and it has been used that for ultra-relativistic particles t = L

in natural units.

The PMNS matrix can be parameterized as a product of rotation matrices in the

i, j-planes Uij , (θij), and a complex phase matrix given by Iδ = diag(1, 1, eiδCP ) as

[22]

U = U23(θ23)IδU13(θ13)I
∗
δU12(θ12). (2.7)

Using the standard notation ci,j ≡ cos θi,j , si,j ≡ sin θi,j the full matrix is

U =

 c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s13s23e
iδCP c12c23 − s12s13s23e

iδCP c13c23

s12s23 − c12s13c23e
iδCP −c12s23 − s12s13c23e

iδCP c13c23

 . (2.8)

The effective Hamiltonian for anti-neutrinos can be found by making the substitution

U∗ → U . If all entries of U are real (δCP = 0) the mixing of neutrinos and anti-

neutrinos will be identical.

The parameterization is made possible by the difference in scale between the two

mass splittings ∆m21 and ∆m31, and the smallness of the mixing angle θ12, the values

8 Chapter 2 Particle Physics Theory



Parameter Best-fit Value NO ±1σ Best-fit Value NO ±1σ

θ12 33.41◦ +0.012
−0.012 33.41◦ +0.012

−0.012

θ23 42.2◦ +1.1
−0.9 49.0◦ +1.0

−1.2

θ13 8.58◦ +0.11
−0.11 8.57◦ +0.11

−0.11

δcp 232◦ +36
−26 276◦ +22

−29

∆m2
21 7.41× 10−5 eV2 +0.21

−0.20 7.41× 10−5 eV2 +0.21
−0.20

∆m31 +2.507× 10−3 eV2 +0.026
−0.027

∆m32 −2.486× 10−3 eV2 +0.025
−0.028

TABLE 2.1.
NuFit [23, 24] best-fit values of oscillation parameters including data from Super-Kamiokande
[25].

of which can be seen in Table 2.1. The scaling effect makes it a valid approximation

in many cases, to only regard 2-flavor systems. IceCube is e.g. with baselines up

to 1 × 104 km and energies in the GeV scale, mainly sensitive to the “atmospheric”

oscillation parameters θ23 and ∆m32, which describes the amplitude and phase of

νµ, ντ oscillations respectively.

2.2.2 Oscillations in Matter

When neutrinos propagate through matter instead of vacuum, a few different mech-

anisms affect the oscillation pattern. One is related to the density of the traversed

medium and the other is furthermore dependent on the specific profile of media

consisting of multiple layers. This section will give an overview of the two effects in

2-flavor systems and discuss their relation to separating the two mass orderings in a

full 3-flavor description.

Matter Potential

When neutrinos propagate through matter the Hamiltonian describing them can be

expressed as the vacuum Hamiltonian plus a potential V , from coherent forward

scattering of neutrinos in the medium [26, 27]. As all neutrino flavors interact

similarly with matter in the neutral current sector, only the electron-neutrino charged

current interaction contributes to the oscillation probability. In the flavor basis, we

have for a medium with electron density Ne:

Hf =
1

2E
U∗M2

diagU + V, V =


√
2GFNe

0

0

 , (2.9)
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where GF is the Fermi constant and the corresponding Hamiltonian for anti-neutrinos

can be found by the substitutions U → U∗ and V → −V .

Constant Density Medium

Oscillations in matter are analogous to vacuum oscillations and can for a 2-flavor

system be expressed using the effective mixing angle θm and the propagation (mass)

states in matter ν1m and ν2m. The flavor states να and νβ can then be described as

να = cos θmν1m + sin θmν2m, νβ = cos θmν2m − sin θmν1m. (2.10)

The mixing angle θm can be found by diagonalizing the 2-flavor version of the flavor

state Hamiltonian (2.9) and is [22]

sin2 2θm =
1

R
sin2 2θ0, R ≡

(
cos 2θ0 −

2V E

∆m2

)2

+ sin2 2θ0, (2.11)

where θ0 is the vacuum mixing angle. We see that for V → 0 we re-find the vacuum

oscillation angle as R → 1. The dependence of sin2 2θm on E and V has a resonant

character - the effective mixing term sin2 2θm can become 1 for vacuum mixing angles

away from maximal mixing when

R = sin2 2θ0 → sin2 2θm = 1, (2.12)

which is satisfied for
2V E

∆m2
= cos 2θ0. (2.13)

Using the expression for Ve in (2.9) we find the resonance density as a function of

neutrino energy, mass splitting, and vacuum mixing to be

NR
e =

1

2
√
2GF

∆m2 cos 2θ0
E

. (2.14)

This resonant character of oscillations in matter is what is known as the MSW effect

after Mikheyev, Smirnov [28] and Wolfenstein [26]. The effect is noticeable for

different sets of neutrino-events in IceCube, dependent on the neutrino energy and

which layers they traverse. Each layer with its specific density will give rise to

oscillation amplifications for neutrinos with the corresponding resonance energy.

Discrete Density Layers

The constant density approximation is not entirely fitting for the neutrinos we are

able to detect in IceCube, as Earth has multiple layers of varying density. Neutrino

10 Chapter 2 Particle Physics Theory



FIGURE 2.2.
Example of transition probability
for neutrinos with fixed energy
traveling through through two dif-
ferent matter profiles. Solid line
shows the case of a dense mid-
dle medium (shaded gray) between
two less but equally dense layers
(shaded white). The dashed red
lines indicate the transition prob-
ability without the dense middle
section. Figure from [34].

oscillations in mediums consisting of a number of constant density layers will exhibit

what is known as parametric resonance, where a phase is added at the borders between

different layers [29, 30, 31, 32, 33]. Because the formalism of the effect is extremely

dense and not necessary for the present analysis, only the general principles of the

resonance will be discussed here.

Parametric resonance effects for Earth-crossing neutrinos are only well approximated

by a two-flavor system for much smaller energies than can be detected in IceCube, even

with the Upgrade, but we will use results from such a case to exemplify the effect [34].

For a 3-layer medium, consisting of layers of two distinct densities with the middle

being denser than the first and third which are the same, neutrino oscillations are

highly impacted by the placement and thickness of the dense middle layer. In Figure

2.2 the oscillation probability for a 2-flavor system is sketched against the density of

the traversed medium. It can be seen that the placement of a higher density middle

layer can either enhance or suppress oscillations depending on the corresponding

neutrino energy and path length. At resonance the oscillation probability in such a

two-flavor “castle-wall” case can be found to be [30]

Pαβ = 1− sin2(4θm − 2θc). (2.15)

Implicitly, in this equation is the expression for the matter mixing angles in the

mantle and core respectively and from (2.11) we know that these are functions of the

mass-squared difference.

2.3 The Neutrino Mass Ordering

The question of the neutrino mass ordering is the question of whether the third mass

eigenstate is heavier or lighter than the two other mass eigenstates. As can be seen

from (2.6) the mass-squared difference appears within a sin2-function in the vacuum

2.3 The Neutrino Mass Ordering 11



FIGURE 2.3.
Survival probability of muon-type neutrinos and anti-neutrinos as a function of zenith angle
and energy under the two different mass orderings. The probabilities are calculated using the
PISA software described in Section 3.4.1.

oscillation probabilities, removing any information about the sign of the difference.

Luckily, matter effects are also a function of the sign of the mass-squared difference

and in ways that makes it possible to discern the sign.

Matter effects are inherently tied to the electron-neutrino and therefore also to

mixing of the first mass-state, which is a subdominant factor in atmospheric neutrino

interactions in IceCube. Describing matter effects in IceCube therefore requires

a 3 flavor system, but instead of writing out the full set of equations governing

oscillations in constant density matter and then also applying that to any sort of

realistic matter profile, we can simply plot the results of such calculations in what

we call an oscillogram which can be seen in Figure 2.3. Recalling that matter effects

enter the Hamiltonian with a different sign for neutrinos and anti-neutrinos, we find

that this directly links with the sign of the mass-squared difference ∆m23. Depending

on the true mass ordering, matter modulations will either affect neutrinos or anti-

neutrinos traveling through Earth and interacting in IceCube. The question of the sign

of the mass-squared difference thus becomes a question of separating the neutrino

and anti-neutrino channel, as we will see in Chapter 3 is not as easy as one could

hope.
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3Detecting Neutrinos With
IceCube

At the South Pole one cubic-kilometer of ice constitutes the IceCube Neutrino Observa-

tory. This detector makes it possible to detect neutrinos from all directions of the sky

with energies from a few GeV to multiple TeV. Besides its use as a neutrino telescope

to identify extraterrestrial neutrino sources [35], the densest part of the detector also

enables us to study the fundamental behavior of these evasive, elementary particles.

In this chapter, I will introduce the IceCube detector and the Upgrade, planned for

deployment in the Antarctic summer 2025-26. I will briefly discuss the neutrino source

used in this project and lastly examine how data is produced and measured in the

IceCube Collaboration. This will include a brief overview of Monte-Carlo methods

and parameterized analysis.

3.1 IceCube and the IceCube Upgrade

The IceCube Neutrino Observatory utilizes the dark and cold glacial ice to measure

ionizing particles produced by atmospheric neutrinos interacting in its volume. When

electrically charged particles travel trough a medium, faster than the speed of light

in that medium they emit Cherenkov Radiation in the form of photons. By placing

optical sensors in the ice, it is possible to measure the occurrence of such Cherenkov

Radiation and map together photons detected in different places to belong to the

same ionizing particle. Such digital optical modules (DOMs) consist of some form of

photomultipler-tube (PMT) and a collection of electronics enabling the collection and

transportation of data from a DOM deep in the ice to the IceCube Lab at the surface.

The full IceCube Detector consists of different subsets of strings placed in the ice

sheet, a top view of which can be seen in Figure 3.1. The primary in-ice array, labeled

simply as IceCube in most publications, is the largest and least dense subset of the

detector with 78 strings distributed with a horizontal spacing of 125m [36]. 60 DOMs

are placed on each string with a vertical spacing of 17m. 8 other strings constitute a

specialized subset of the detector which was deployed alongside the primary array

and optimized for oscillation measurements. These 8 DeepCore strings, each also with

60 DOMs with only 7m to 10m in between, are situated within the grid of the primary

13



FIGURE 3.1.
Top view of the IceCube Detector. Each colored dot represents a string of Digital Optical
Modules (DOMs) spaced according to their sub-detector specification. The Upgrade strings are
more densely instrumented with not only downward-facing DOMs but also multi-directional
mDOMs. The combination of IceCube, DeepCore and Upgrade strings in the middle of the
instrumented volume represents the highest-resolution part of the detector. Figure from [7].

array resulting in horizontal distances of 42m to 72m between strings for the total of

15 (8 DeepCore + 7 normal) strings constituting the DeepCore volume [8].

While the primary array was designed for astrophysical neutrino measurements

in the O(TeV) − O(PeV) energy-range, the DeepCore volume was optimized for

10GeV to 100GeV. Though this enabled the measurement of atmospheric τ -appearance

and µ-disappearance, the question of the Neutrino Mass Ordering is at even lower

energies as can be seen in the oscillograms in Figure 2.3. The coming Upgrade subset

will consist of 7 strings with a total of around 700 optical sensors for physics and

calibration purposes. The optical modules on these strings will be improved from

the 1st generation DOMs in IceCube and DeepCore. As is indicated on the lower

right-hand side of Figure 3.1, the Upgrade strings shown in red will have both so

called “D-eggs” consisting of 2 PMTs facing up and down respectively and the multi

PMT “mDOMs” consisting of 24 smaller PMTs pointing in all directions as opposed to

the original DOMs with a single PMT facing down towards the bedrock. These new

sensors will improve both the angular resolution and photon detection efficiency, and

with the new strings resulting in only 20m horizontal spacing and 3m vertical spacing,

the energy threshold will be pushed towards 1GeV and enable measurements of the

matter effects described in Section 2.2.2.
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3.2 Atmospheric Neutrinos

IceCube is designed to detect neutrinos produced from Cosmic Ray showers in the

atmosphere. These extraterrestrial rays consist mainly of protons that enter and

interact with the atmosphere producing showers of secondary mesons decaying to

other lighter particles [37]. The main neutrino production arises from the decay of

secondary pions.

As discussed in Section 2.1.1, pions decay mainly to muons and muon-neutrinos with

some electrons and electron-neutrinos but no tau and tau-neutrinos. The muons

produced in pion decays may either decay to electrons, electron-neutrinos and muon-

neutrinos, or have enough energy to reach Earth before decaying. The neutrinos

produced by these Cosmic Ray showers have a flavor composition of 2 : 1 : 0 for

νµ : νe : ντ , and the muons that do not decay before reaching Earth will possibly decay

inside the detector as background muon-events.

The rate of atmospheric neutrinos is highly dependent on energy and the neutrino

flux has been found to follow a steep power law

dϕ

dE
∝ Eγ , γ = −3.7, (3.1)

accounting both for the initial Cosmic Ray spectrum and for the energy-dependent

lifetime of secondary mesons [38].

3.3 Neutrino Event-Types

Neutrino interactions have a variety of expressions and particle products depending

on the type of the neutrino, the energy and the resolution with which it can be seen.

Some of the features are possible to discern with the sensors of IceCube, others simply

happen on too small scales for the detector to possibly be sensitive to them. Depending

on the spatial and temporal signature in the detector, an event is classified as one

of three event-types corresponding to the type of particle interacting in the event

and therefore named particle identification (PID). The three types are cascade-like,

track-like, and mixed, and will be explained in greater detail in this section.

For a neutral-current event a neutrino interacts with the ice and continues after the

interaction as a neutrino, invisible to the detector. Only the hadronic cascade of the hit

nucleon or the electromagnetic cascade of the excited electron will result in a signal in

the detector. Hadronic and electromagnetic cascades create the same slightly oblong
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FIGURE 3.2.
Neutrino interaction sigatures in IceCube. Track-like events can be produced by charged
current muon-neutrino interactions. Cascade-like events can be produced by all neutral
current interactions and tau- and electron-neutrino charged current interactions. Modified
from [38].

spherical signature and are therefore not distinguishable from each other, resulting in

neutral current events of all flavors of neutrinos producing the same type of event in

the detector namely cascade-like event-types [38].

Charged-current events differ by the flavor of the initial neutrino as this will determine

the charged lepton produced in the ice. Electron-neutrinos produce electrons trigger-

ing an electromagnetic cascade making it look like any NC event. Muon-neutrinos

produce a hadronic cascade and a charged muon. Because muons are close to min-

imally ionizing in the energies considered here, they are able to travel rather long

distances in the detector setting of DOMs along their trajectories before decaying [39].

This will lead to a different looking event than the cascade-like events described in the

previous paragraph. Most muon-neutrino events are therefore labeled as track-like.

Tau-neutrinos produce the heavy tau-lepton with mass mτ = 1777MeV, which will

only be able to travel few centimeters before decaying [6]. This means that the

tau-lepton itself won’t be visible in the detector, but the product of its decay will be.

Tau-leptons can decay in modes resulting in electromagnetic and hadronic cascades

so close to the initial interaction vertex, that the two merge together resulting in

cascade-like events. It can also - though with a small branching ratio - decay to a

muon and muon-neutrino pair from which a track-like signature may be observed

from the muon. Such decay modes are however typically not visible at atmospheric

neutrino energies.
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The last event-type is mixed. In this PID bin we put the events that are not clearly

either a cascade or a track. This is done to keep the track and cascade bins as clean as

possible while allowing for uncertainties in the reconstruction of events. A schematic

overview of the signatures of different neutrino-type events can be seen in Figure

3.2.

3.3.1 Reconstruction of Events

The individual detections of photons in the ice by different DOMs are collected and

grouped together into events. Some photons will simply be noise e.g. from radioactive

compounds on the DOMs, and an initial trigger-level is therefore set before accepting a

signal. After further noise cleaning, events consisting of multiple DOM-hits at different

times and different intensities undergo event reconstruction. The energy of an event

is found by translating the amount of energy deposited in the detector in the form

of photons to the energy of the incoming neutrino. Because of the sharp power-law

of the atmospheric neutrino flux and the location of the NMO signal in low energies,

events are binned by their reconstructed energy in 12 logarithmic bins from 3GeV to

300GeV.

If enough DOMs are hit in an event, it is possible to reconstruct the direction of the

initial neutrino to some precision, depending on the type of interaction and the energy

deposited in the detector. The direction is translated into a zenith and an azimuth

angle describing the angle with the horizon and the radial direction respectively.

For oscillation measurements we are interested in the energy and baseline (distance

traveled) of the neutrinos. The baseline can be found from the zenith angle alone

and we therefore use the cosine of the zenith angle in our analysis binning. For this

particular analysis mainly up-going neutrinos are considered as down-going events

are both muon-contaminated and do not experience oscillations because of the short

distances traveled. This results in a binning of 10 linear bins in cos θz from −1 to 0.3.

An example of the final analysis binning can be seen Figure 3.3.

3.4 Analysis Tools

In order to make any measurements from the obtained data, it is crucial to have some

expectation to match the data with. For this analysis a software initially created for the

Precision IceCube Next Generation Upgrade (PINGU) [40] extension of IceCube called

PISA (PINGU Simulation and Analysis) has been used [41]. This software utilizes the

fact that the final event rates in the detector can be described by independent stages
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FIGURE 3.3.
Example of final stage event distributions simulated for the IceCube Upgrade. Produced with
nominal values of Table 3.1, θ23 = 42.4◦, and for 3 year livetime. The events are binned by
their reconstructed PID, energy, and coszen.

which multiplied together will provide a full picture without requiring simulation of

all possible combinations of physics and nuisance parameters.

3.4.1 The PISA Software

The final number of events measured in the detector can be split into a product of

different stages - flux, oscillation, detection and reconstruction. Each stage will provide

a weight to a simulated event and can be handled separately from the simulation and

therefore also independently from other stages only requiring parameters specific for

that stage. These stages will be described here.

Flux

For the flux of atmospheric neutrinos we use Honda et. al as nominal values [42].

Such a flux model relies on a number of external parameters which can give rise to

systematic uncertainties if not correct. These uncertainties are handled by calculating

flux gradients using a software called MCEq (Matrix Cascade Equations) [43]. A

list of the flux and other parameters used in the analysis can be found in Table 3.1.

The flux parameters consist of parameters affecting the initial cosmic ray showers

e.g. the spectral index, but also parameters associated with hadron production

in these showers. Such uncertainties are parameterized based on Barr et. al [44]

which separates the hadron production into pion and kaon production respectively,

and parameterize uncertainties in these channels by energy. Pion uncertainties are

calculated for pion and anti-pion combined and the ratio between the two production

channels is included. For kaon production the kaon and anti-kaon uncertainties are

varied completely independently of each other.
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Parameter Nominal Value Prior Unit

Flux
∆γν 0.0 ±0.1
Barr, dπ+ 0.0 ±0.3
Barr, hπ+ 0.0 ±0.15
Barr, iπ+ 0.0 ±0.122
Barr, yK+ 0.0 ±0.3
Barr, zK+ 0.0 ±0.122
Barr, yK− 0.0 ±0.3

Oscillation
θ12 33.82 ◦

θ13 8.65 ◦

θ23 42.2(49.0) [0, 90] ◦

δCP 0.0 ◦

∆m21 7.4× 10−5 eV2

∆m31 (−)2.5× 10−3 [1, 4] eV2

Detection
MA,QE 0.0 ±0.1
MA,res 0.0 ±0.1
DIS 0.0 ±0.1
Nν 1.0 ±0.2

TABLE 3.1.
Systematic parameters relevant for this analysis and their nominal values grouped by type.
Priors are stated for parameters that are included as fit parameters. Symmetric Gaussian
priors are indicated by ±σ. Uniform priors are indicated by a range. For dimensionless
parameters the unit is left blank. For parameters with different nominal values for normal and
inverted ordering, the normal ordering value is stated and the inverted ordering value given
in parenthesis. Only Barr parameters that are handled as free in the analysis are stated, see
Section 5.1 for details on how they are chosen.

Oscillations

As described in Chapter 2, neutrino oscillations highly impact the flavor composition

of the neutrinos detected in IceCube. This stage simply calculates the oscillation

probability for a neutrino based on its true energy, true direction, and flavor using

the Prob3++ package [45] originally written by the Super-Kamiokande collaboration

based on the work of Barger et al. [27]. Besides the physics parameters related to

oscillations, this stage also takes as input a model of the earth density profile. We

use the Preliminary Earth Model (PREM) approximated by 12 constant density layers

[46]. The oscillation probabilities are evaluated in bins of energy and zenith angle

in a resolution much finer than the analysis binning but still less computationally

demanding than evaluating the probability of each single neutrino.
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Detection

The number of neutrinos that not only pass through the detector but also interact

and are detected is estimated using large numbers of Monte-Carlo (MC) simulated

neutrinos. Neutrinos are generated and their interactions propagated with the GENIE

software [47]. These events are then passed through noise-cleaning and selection

criteria optimized to get rid of noise events and background muons while retaining

as many neutrino events as possible. The active livetime of the detector is applied

and it is also at this stage that detector uncertainties should be applied. Because of

the early stage of the Upgrade simulation effort, the necessary MC events generated

under different detector realizations, are not at this time reliable enough to give an

estimation of detector uncertainty effects on the final stage event distributions and

such systematic uncertainties are therefore left out of this analysis.

Reconstruction

The reconstruction stage smears the events from the detection stage to the resolution

of the final level. MC events used in the detection stage are used here to estimate the

resolution functions in the three analysis observables i.e. reconstructed energy Ereco,

reconstructed zenith angle θz,reco, and PID (cascade, mixed, track). For this, different

simple cuts are made while also machine learning algorithms are used to optimize the

noise cleaning and event-reconstruction [48, 49].

3.5 Signature of the Neutrino Mass
Ordering

If the IceCube upgrade is going to be sensitive to the mass ordering, the data we

measure needs to be different depending on the true mass ordering. As discussed in

the previous chapter, the mass ordering determines whether matter effects impact

neutrinos or anti-neutrinos. Unfortunately IceCube can not tell the difference between

neutrinos and anti-neutrinos. Luckily there are other differences between neutrinos

and anti-neutrinos that make the distinction of the mass ordering possible, including

the fact that the cross-sections for neutrinos and anti-neutrinos are different in the

matter (and not anti-matter) dominated ice at the South Pole and that the incoming

flux of neutrinos is larger than the corresponding flux of anti-neutrinos. These

two effects cause the inverted ordering (affecting anti-neutrinos) to result in a less
pronounced signature of matter effects while the normal ordering affecting neutrinos

will result in a more pronounced signature of matter effects. Since matter effects are
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FIGURE 3.4.
Example of the bin-wise distinguishability of the two orderings. Produced with nominal values
of Table 3.1, θ23 = 42.2◦, and for 3 year livetime.

essentially a distortion of the vacuum oscillation band, the measured neutrinos will

either be more or less distorted based on the mass ordering.

To get a sense of the difference we can compare events expected to be measured in

IceCube produced under the assumption of the two different orderings. In Figure 3.4

the pull in each bin for comparing Inverted Ordering to Normal Ordering is shown and

as expected from the oscillograms in Figure 2.3 the signal is in the lower energy range

and for more up-going events. The higher rate of neutrinos from Inverted Ordering

in the band around 16GeV is the result of enhanced matter oscillation in this region

being less pronounced for the Inverted Ordering than for Normal Ordering.
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4Statistics

With data and theory comes statistics. It is the tool we use to quantify how well data

fits theory, and how well we can trust that fit. For this project, we wish to quantify

how well the coming Upgrade detector will be able to separate the two orderings i.e.

whether the data we are collecting is a result of the Normal Ordering being true, or if

it is a result of the Inverted Ordering being true. If the new detector cannot tell the

two cases apart, we say that it is not sensitive to the NMO, but if it is able to separate

them, we want to know how well, it can separate them. In this chapter I will present

different interpretations of what such a sensitivity is and the steps needed to calculate

it.

4.1 Basic Concepts

To be able to discuss the validity and interpretations of the statistics used to describe

the Neutrino Mass Ordering, we need to discuss statistics. Such concepts, when

merely stated and not explained can cause confusion and misinterpretation of results.

Confidence levels for one, is not a well-defined unique concept[1].

4.1.1 Fitting Composite Hypotheses

The first thing we need to address is fitting. Assume we have a data-set D =

{D1, D2, ..., DN} and a hypothesis H which is a function of several parameters

P = {P1, P2, ..., Pk}. This hypothesis is then said to be composite if it can have

different realizations for different values of the parameters P . A simple hypothesis

could be “The next card drawn is a spades” where a composite hypothesis would be

“The next card drawn is either a spades or a hearts depending on what the previously

drawn card was”. For the Neutrino Mass Ordering, the number of events we see in

the detector is not only determined by whether the Normal Ordering hypothesis or

the Inverted Ordering hypothesis is true, it is also a function of several physics and

nuisance parameters such as the mixing angle θ23 and the cross-section of neutrinos.

The two mass orderings are therefore composite hypotheses.
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The purpose of the fitting stage is to find the parameters that make the output of

a hypothesis look most like the observed data-set. We will call a realization of the

hypothesis H for some set of parameters P a template t(H,P ). We quantify the

difference between template and data-set with a metric, which returns more extreme

values for more extreme differences. For a metric that returns larger values for larger

differences, minimizing that metric over all parameters will therefore return the

best-fit (bf) parameters P bf that provides the template which most resembles the

data-set. The choice of metric is not unique and it is not uncommon to see χ2 metrics

used in NMO studies. For this project we will use a likelihood based on the Poisson

distribution,

p(k, λ) =
λke−λ

Γ(k + 1)
, (4.1)

where k! has been replaced by the gamma function Γ(k + 1) to properly work for

non-integer bin-counts. The likelihood for a data-set of N bins is the product of the

Poisson likelihoods of each bin with ki, λi being the observed and expected values in

the i’th bin respectively. The likelihood gives higher values for more likely outcomes,

but for numerical reasons, instead of maximizing the likelihood, we minimize the

negative log-likelihood given by

LLH = − lnL = −
N∑
i=1

ki lnλi − λi − (ki ln ki − ki), (4.2)

where Stirling’s approximation has been used. For a composite hypothesis the value

of such a test-statistic will depend on the true parameters Pt that are in general not

known. The test-statistic for a composite hypothesis must therefore be minimized over

all parameters

LLHmin = min
P

LLH(P ). (4.3)

There are different strategies for the type of minimization employed in such a fit of a

multidimensional parameter space with possible local minima. For this project the

MIGRAD method [50] implemented in the iminuit package [51] has been used. It is a

variable metric method using inexact line search, see e.g. [52] for details.

4.1.2 Nested and Non-Nested Hypotheses

In many cases of physics when we consider hypotheses and whether or not a specific

data-set can be said to match a hypothesis, we are dealing with nested hypotheses. If

I measure the gravitational acceleration g, and want to say whether or not my mea-

surements are in agreement with the standard value of gstd I am in reality comparing

my data to two different hypotheses. Hypothesis (A) states that the value of g is gstd,

while Hypothesis (B) states that g can be any positive number. We can easily get
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TABLE 4.1.
Conversion table for a χ2-distribution with
one degree of freedom.

χ2 Significance Confidence Level

1 1σ 68.3 %
4 2σ 95.45%
9 3σ 99.37%

Hypothesis (B) from fixing a variable, g, in Hypothesis (A) and therefore the two are

said to be nested.

In the case of nested hypotheses Wilk’s Theorem [9] holds and the likelihood ratio

(LHR) equivalent to the difference of the log-likelihoods

LHR = 2(LLHB − LLHA), (4.4)

follows a χ2-distribution with degrees-of-freedom related to the difference in fit

parameters between the hypotheses. We can then decide to reject the hypothesis B

at a confidence level 1− α, if we obtain a value of LHR within the α most extreme

results. For the χ2-distribution of 1 degree of freedom this is a straight forward

conversion between measured test-statistic and resulting significance, shown for

typical confidence levels in Table 4.1.

In the case of the neutrino mass ordering, the two hypotheses are not nested. The

true ordering is either normal or inverted. This means that Wilk’s Theorem does not

hold and we need another method of determining significance. Exactly which other

method should be used is and has been a subject of debate in the neutrino oscillation

community [53, 10, 54, 55] and we will therefore discuss different options in the

following sections.

Common for the methods is the use of a test-statistic based on the likelihood ratio of

Wilk’s theorem, using either χ2 or LLH metrics for the fitting procedures. For the

metric defined in (4.3) and for a given true ordering we define the test-statistic TS

as

TS = min
P∈NO

LLH(P )− min
P∈IO

LLH(P ) = LLHNO − LLHIO, (4.5)

where the negative log-likelihood has been minimized over all fit parameters P

assuming both Normal (P ∈ NO) or Inverted (P ∈ IO) Ordering. For a given data-set

D the test-statistic becomes

TS(D) = LLHNO(D)− LLHIO(D). (4.6)

If the data matches the two hypotheses equally well TS(D) = 0, if it matches Normal

Ordering better TS(D) < 0, and oppositely if it better matches Inverted Ordering

TS(D) > 0. The test-statistic can be converted to a χ2-fitting procedure using
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TS = ∆LLHNO−IO = 1
2∆χ2

NO−IO = 1
2(χ

2
NO − χ2

IO), both will in general not be

χ2-distributed.

4.1.3 Bayesian and Frequentist Statistics

Interpretations of the sensitivity of an experiment to any type of measurement is

affected by the interpretation of probability it is based on [2]. There are two major

schools of interpretations in applied statistics: the frequentist and the Bayesian

[1]. The frequentist approach considers probability as the limit of frequency, where

an outcome is expected with some frequency for many repeated cases. Here the

probability of an outcome is directly linked to the setting e.g the experimental setup

and data-set considered.

A Bayesian understanding of probability can be thought of as a subjective probability.

In this case a probability is not only affected by outcomes of some measurements or

observables but also of the degree of belief one has in the theory. Bayesian statistics

are therefore able to make statements about cases, to which the frequentist approach

would yield nonsensical results. One of the problems with Bayesian Statistics however,

is how to assign a prior knowledge to a theory. Assigning a uniform prior to describe

“no knowledge” is non-trivial as a uniform prior in one parameter space will not look

uniform in another parameter space.

As such there are different roads to follow in the case of defining sensitivity - a measure

of how well we think we will be able to measure something. Bayesian statistics has

been used for the NMO as it is possible to apply the knowledge of one of the orderings
must be true, whereas such a statement holds no real value in the frequentist approach.

Bayesian statistics applied to the neutrino mass ordering can be found in [55] and

[53], a frequentist approach in [10] and a discussion of the two in [56].

For this project a strictly frequentist approach will be used, in line with previous work

done for IceCube PINGU [38, 40, 57].

4.1.4 Confidence

Confidence levels and significance are terms used by many authors for many different

goals. The trouble is that they are not uniquely defined. Confidence in a result

means one thing in a frequentist’s mind and another in a Bayesianist’s [58]. For a

Bayesianist a confidence may be the probability that a hypothesis is true given the

measured data, or for a true value µt to lie in the interval [µ1, µ2] with a probability
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FIGURE 4.1.
A sketch of a confidence
test for a true distri-
bution (peach). The
shaded area of the true
distribution α is deter-
mined by the value of
TSc, here chosen to be
the mean of a different
distribution (light green)
giving a power (shaded
green area) of 0.5.

of α. For a frequentist however, a confidence interval contains the unknown µt in a

fraction α of experiments. A confidence in the neutrino mass ordering in a frequentist

understanding is a confidence with which we reject the wrong hypothesis. In figure

4.1 the case for a Gaussian distributed test-statistic is sketched. For some critical

value of the test-statistic TSc one would choose to reject the hypothesis which the

distribution represents. This will be done at the confidence level 1− α, where α is the

fraction of times such a decision to reject the hypothesis would be a false negative i.e.

an error of type I. At that value of the test-statistic some tests belonging to the wrong

hypothesis may give the same, or a less extreme, test-statistic and therefore give rise

to false positives i.e. errors of type II. The power of the test is one minus the fraction

of these (1 − β) and will be related to the significance by the choice of the critical

value TSc. Ideally one would like to construct a test that both has a high significance

and a large power, but the two pull in different directions and deciding how to choose

an appropriate power for the significance one wishes to state is non-trivial.

A common way to avoid this is to state the median sensitivity which is defined as the

significance at a power of 1 − β = 0.5. Such a test is sketched in Figure 4.1. Even

though a power of 0.5 is quite low, the median sensitivity is used by other experiments

for a basis of comparison and will therefore also be used in this project. In [10] a

second sensitivity definition, the crossing sensitivity, is also laid out. As this is not

easily translated to the case of a composite hypothesis, we have not included it here

even though it is an interesting case as it describes the confidence when exactly one of

the two-hypotheses can be excluded.

For composite hypotheses the choice of setting a critical value TSc is non-trivial as

discussed in [10]. If one wishes to report a confidence 1− α, that confidence should

be true for all possible parameters in the opposite hypothesis. One must therefore

either state the confidence as a function of each parameter or minimize the confidence

for these parameters and report the lowest. In this project and other IceCube NMO
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studies [38, 40, 57, 59] we report the lowest confidence, the procedure for which will

be explained in Section 4.2.

Converting to Number of σ

If we were dealing with a symmetric test-statistic with mean µ, a measured value

of µ ± x would be equally unlikely. We would therefore integrate both tails of the

distribution from ±x to get the appropriate α. Our test-statistic is not symmetric and a

measured value above or below the median of the distribution will not hold the same

meaning. This is because the opposite distribution, which we are comparing to, will be

located at either a lower or higher value of the test-statistic than the true distribution.

For this reason we only integrate from the critical value of the test-statistic and away
from the median of the true distribution being tested.

The value of α or equivalently 1 − α can be converted to a number of standard

deviations using the standard Gaussian distribution even though the test-statistic is not
Gaussian. This is done to translate the obtained significance to a quantity commonly

used in particle physics. The merit of this will be discussed in Chapter 6.

If we use the standard convention of setting a central limit, which follows the χ2-

distribution listed in Table 4.1, we would rather misleadingly convert a value of

α = 0.5, signifying that the medians of the two distributions have the same value, to a

non-zero significance. It would therefore be more appropriate to translate the value

of α to a one-sided Gaussian (upper or lower) limit were a value of α = 0.5 will lead

to a significance of 0. Using the Complimentary Error Function defined as

erfc = 1− erfz = 1− 2√
π

∫ z

0
e−t2dt, (4.7)

where erfz describes the probability for a normally distributed variable with mean

µ = 0 and standard deviation σ = 1√
2

to fall in the range [−z, z], we can define

nσ,one−sided =
√
2 erfc−1(2α). (4.8)

For a central limit which we will call two-sided in this project the same definition can

be used by making the substitution 2α → α.
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4.2 Sensitivity to Neutrino Mass Ordering

At the time of this project the Upgrade detector has not been deployed and the goal of

a sensitivity study is to map out the expected test-statistic distributions for the two

orderings. This is done with several goals in mind: 1) to attain knowledge about the

test-statistic landscape so that when data is taken, the steps to quoting a significance

will be fewer, 2) to attain estimates of the significance that will be quoted once data is

taken, and 3) to guide the choices being taken at this time in the project e.g. event

selections and reconstruction resolutions, that will impact the achievable sensitivity.

This section will described the specific procedure for such an analysis.

4.2.1 The Test-Statistic Distributions

Since we are dealing with composite non-nested hypotheses, we must take care that

our handling of the sensitivity follows the prescriptions for a composite hypothesis.

The critical value linked to a certain confidence level described in the previous section

must give equal or better confidence for all free parameters in the hypothesis. The

critical value of the test-statistic is found by setting the power to 0.5 for the median

sensitivity. This means that we use the median of the “wrong” or opposite distribution

to determine the critical TS-value. As discussed earlier this distribution will depend

on the true parameters given that hypothesis, and we must therefore minimize the

test-statistic over the free parameters. In practice, this is done by making a fiducial-fit
defined as the best-fit of the opposite hypothesis to the true hypothesis being tested.

The template from this fiducial fit will then be the opposite hypothesis looking most

like the true hypothesis we are trying to reject,

TStrue
c = min

P∈opp
TSc. (4.9)

For a study like this project, which predates the data-taking process, we wish to

quantify our believed sensitivity given either the Normal or Inverted Ordering. One of

the orderings is manifested in nature and therefore the test-statistic we will measure

once data is taken is believed to be a member of one of the two distributions TSMO,true,

MO = NO, IO. To quantify the separation between the two hypotheses we wish

to populate these distributions for many possible realizations of the experiment.

This is done by making data-sets from each of the orderings DMO
0 = t(MO,PMO

0 )

representing the truth at some chosen set of parameters belonging to the respective

true ordering PMO
0 . For each true data-set we make fits to both orderings and since

this is MC generated pseudo-data, we know which hypothesis is true and which

is wrong. The fit to the true ordering will give the true parameters the data was

28 Chapter 4 Statistics



made with because no fluctuations have been applied and the data can be completely

matched by the hypothesis.

The fit to the opposite ordering will instead give a new set of parameters, POP
f , labeled

with f for fiducial and OP for the opposite ordering to the true mass ordering MO.

These parameters will not be the same as if we had produced a data-set assuming this

opposite ordering using the same parameters as in producing the true ordering

PNO
0 ̸= PNO

f , P IO
0 ̸= P IO

f . (4.10)

From the fiducial best fit parameters, we generate a fiducial data-set in the opposite

ordering Df
OP = t(OP,POP

f ) and find the test-statistic for this data-set. It is important

to stress that the fiducial data produced in an IO hypothesis from a true NO hypothesis

will not, in general, be the same as would be produced from a true IO hypothesis

using the same true parameters, D0
NO ̸= Df

NO. Following the frequentist method

we wish to populate the distributions TSMO,true and TSMO,opp for many repeated

experiments giving us the probability of obtaining a certain observed test-statistic

TSobs for each of the orderings. To do this we add Poisson fluctuations to the true and

fiducial templates and calculate the test-statistic for that (random) realization of the

experiment labeled with the subscript i,

TSMO,true
i = TS

(
D0

MO,i

)
, TSMO,opp

i = TS(Df
MO,i). (4.11)

Repeating this many, N , times essentially mimics carrying out the experiment that

many times and is therefore referred to as pseudo-experiments or pseudo-trials. The

full distributions become

TSMO,true =
{
TSMO,true

i

}N

i=1
, TSMO,opp =

{
TSMO,opp

i

}N

i=1
). (4.12)

A schematic of this pseudo-trial process can be found in Figure 4.2. Making fiducial

fits to properly account for the composite hypotheses encountered in oscillation

experiments was introduced in IceCube in relation to PINGU [40] especially because

of a degeneracy between the ordering and the octant of the atmospheric mixing angle

θ23. This will be discussed in detail in Section 5.2

It is important to note that other experiments do not make use of the same “double-

fitting” method as IceCube and instead uses only the two distributions TSNO,true and

TSIO,true. This will also be discussed in the following chapters.
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FIGURE 4.2.
A sketch of the analysis scheme
used in this project. For a given
true ordering, MO, a fiducial fit
is made in the opposite order-
ing. Poisson fluctuations are
added to both the true and fidu-
cial templates giving new data-sets
MOi, OPi. These are both fitted
to the two orderings and the re-
sulting test-statistic is saved. The
steps inside the dashed line is re-
peated many times to populate the
two distributions TSMO,true and
TSMO,opp by re-applying Poisson
fluctuations to the true and fidu-
cial templates. The full process
is done for both MO = NO and
MO = IO

4.2.2 The Asimov Approximation

In order to fully populate the test statistic distributions described in the previous

section many pseudo-trials need to be run, requiring 4 fits for each pseudo-trial for

each true ordering resulting in huge computation times. Furthermore are the tails of

the distributions the important feature for our analysis while also being the hardest

part of the distributions to populate. Given that a set of pseudo-trials is just for one
set of true parameters P0, it is very unattractive to repeat pseudo-trial experiments at

many different event-selections, choices of systematic uncertainties and true oscillation

parameters. To get such information we need to make some approximations about

the shapes of the distributions.

Named after the author of the short story Franchise Isaac Asimov [60], the Asimov

Approximation is the approximation that the median of a distribution is representative

of the entire distribution [61]. Therefore we do not fluctuate the true and fiducial

templates, but simply use the un-fluctuated templates and take the value of the test

statistic obtained from these to be the median of the distributions. Labeling this with

0 in the subscript we define

TSMO,true
0 ≡ median

(
TSMO,true

)
= TS

(
D0

MO,0

)
, (4.13)

TSMO,opp
0 ≡ median

(
TSMO,opp

)
= TS

(
Df

MO,0

)
. (4.14)

When we have an un-fluctuated data-set created in some true ordering, we will be able

to find the exact same template assuming that true ordering. This means that our test-

statistic effectively reduces to a fit to the opposite ordering. For true NO the two test-

statistics become TSNO,true
0 = −LLHIO(D

0
NO,0) and TSNO,opp

0 = LLHNO(D
f
NO,0),
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where the fiducial data set is made under the assumption of inverted mass ordering

using the best-fit values from the fiducial fit. For true inverted ordering the signs would

change because we have defined our test-statistic as (4.6), and we will therefore use

the notation of (4.13)-(4.14) for consistency.

Gaussianity

How to model the distributions in the Asimov approximation has been a matter of

debate in the community with discussions on e.g. highly restrained parameter spaces

[53] and the effects of nuisance parameters [55, 10]. In [10] it is shown that for a

single free parameter, the test-statistic T = ∆χ2 will be well-described by a gaussian

with mean µ = T0 and standard deviation σ = 2
√
TS0 if T0 ≫ 1. We do not satisfy

TS0 ≫ 1 and have hypotheses that are functions of multiple parameters, but still

choose to use the Gaussian approximation to follow previous work done in IceCube

[38, 40, 57] and to compare to other experiments also applying this approximation. It

would be preferred to make several pseudo-trial tests for different parameter-sets and

compare the results of those tests with Gaussian approximations, but as time has been

a limiting factor in the amount of feasible computations, this will only be done for a

single realization of true parameters.

Median Sensitivity

Under the Gaussian approximation the test statistic distributions can be described by

a normal distribution N (µ, σ) with mean µ and standard deviation σ,

TSMO,hyp = N
(
2TSMO,hyp

0 , 2

√
2TSMO,hyp

0

)
, (4.15)

where the superscript hyp can either be true or opp and the true mass ordering MO

either Normal or Inverted. This means that we can write up an analytical expression

for α which we would otherwise have to simulate as described in the previous section.

Using (4.15) we find

αMO =
1

2
erfc

(
µMO,true − TSMO

c√
2σMO,true

)
=

1

2
erfc

2TSMO,true
0 − TSMO

c

2

√
4TSMO,true

0

 . (4.16)
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To get the median sensitivity we choose TSc = µMO,opp = 2TSMO,opp
o and get

αMO =
1

2
erfc

2TSMO,true
0 − 2TSMO,opp

2

√
4TSMO,true

0

 , (4.17)

=
1

2
erfc

TSMO,true
0 − TSMO,opp

2

√
TSMO,true

0

 (4.18)

Notice that this differs from eq. (3.4) in [10], where the denominator uses the mean

of the opp and not true distribution. After reaching out to the authors it has been

confirmed that it is a typo and (4.17) is correct.

Taking the Asimov Approximation in a two-sided conversion gives you

σ2−sided =
√
2erfc−1 (α) =

√
2erfc−1

1
2

erfc

TSMO,true
0 − TSMO,opp

2

√
TSMO,true

0

 . (4.19)

For a one-sided limited we get the more simple

σ1−sided =
√
2erfc−1 (2α) =

TSMO,true
0 − TSMO,opp√

2TSMO,true
0

. (4.20)

In the limit where the two distributions for a given true mass ordering are symmetric

around zero and therefore TSMO,true
0 = −TSMO,opp

0 = TSMO
0 we find that the

one-sided conversion gives the standard sensitivity one would expect from a nested

hypothesis test, namely σsimple =
√
2TSMO

0 .

The behavior of these different interpretations of the sensitivity will be discussed in

Chapter 5.
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5Results

From the analysis described in the previous chapters a variety of different tests have

been made to investigate both the nature of an NMO analysis and the specific case

of the IceCube Upgrade’s sensitivity to the Neutrino Mass Ordering. In this chapter,

results on the impact of systematic parameters, the dependency of the sensitivity

to θ23, the validity of the Asimov approximation and projected sensitivities for the

IceCube Upgrade will be presented.

5.1 Systematic Parameters

For any analysis, decisions have to be made about what effects to include and which

to leave out and for this analysis it is no different. Because of the complexity of

the full statistical analysis of the mass ordering, we have chosen to apply a simple

mis-modeling test to the parameters described in Section 3.4.1 to determine which are

important to keep as fit parameters and which can be fixed to their nominal value.

In this test each parameter is one by one pulled up 1σ from its nominal value for the

production of pseudo-data and then fixed at its nominal value while a fit from a given

true ordering to the same ordering is made. The value of 2LLH for this fit compared

to when the parameter is not fixed is then compared to all other parameters giving

a ranking of the maximal mis-modeling each parameter may cause. All parameters

that cause a mis-modeling above 0.1σ are then kept free in the analysis. The result

of this test for both orderings is shown in Figure 5.1, where gray bars are used for

fixed parameters and for free parameters the mis-modelling for each tested ordering

is shown with light-red for NO and light-blue for IO. We see that the non-atmospheric

oscillation parameters (θ12, θ13, ∆m21) cause minimal mis-modeling and can be kept

fixed at their nominal values shown in Table 3.1 for this analysis.

We also fix δCP to 0.0 as it has been found that it causes non-trivial local-minima in

the full analysis while only affecting the obtained sensitivity by less than 0.1σ. The

impact of δCP on the mass ordering is not unexpected as it describes whether or not

neutrinos and anti-neutrinos mix in the same way. As the NMO signal in IceCube is

either in the neutrino or anti-neutrino channel, including a parameter that can change
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FIGURE 5.1.
Systematic impact test for
both normal and inverted
ordering. Each parameter
is pulled 1σ from its nomi-
nal value for producing data
and then fixed at its nom-
inal value in a fit. Light-
red bars indicate the result-
ing mis-modeling from a fit
between true normal order-
ing and a hypothesis also of
normal ordering. Light-blue
bars show the same but for
inverted ordering fitted to in-
verted ordering. Gray bars
indicate parameters that are
kept free in the rest of the
analysis.

how these two contributions add up, but without being able to tell them apart the

δCP and NMO signals intertwines.

5.2 Impact of θ23 on NMO Sensitivities

The number of events recorded in IceCube is not only a function of the mass ordering,

but also several other both physics and nuisance parameters. The rather complicated

method of mapping out the test-statistic distributions described in Chapter 4 is used to

take into account the fact that these parameters may not have the same true values in

the two different orderings. One parameter that causes some funny looking behavior

is the atmospheric mixing angle θ23.

θ23 can be understood as the oscillation amplitude effectively entering the oscillation

probabilities as sin2 2θ23. The angle that would cause maximal mixing is θ23,max = 45◦

but because sin2 is a symmetric function, values just above and just below 45◦ will

lead to similar oscillation amplitudes which makes it difficult for experiments such as

IceCube to determine the octant of θ23.

This also forces us to be aware of how the minimization is done in practice as there

will be local minima in both octants. This is handled by minimizing the log-likelihood

separately for θ23 values in each octant (below and above 45◦), and then choosing the

fit of those two with the lowest log-likelihood as the “true” best-fit. It has also been
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FIGURE 5.2.
The Asimov true test-statistic for different allowed regions of the fitted value of θ23 as a
function of the true value. (Left) True Normal Ordering, (Right) True Inverted Ordering.

well established in the neutrino oscillation community that the octant degeneracy

should be highlighted and not hidden in the formulation sin2 2θ23, and this term is

therefore expressed in a combination of sin2 θ23 and cos2 θ23 and the value of sin2 θ23
fitted - without the factor of two inside.

5.2.1 Degeneracy with NMO

When this analysis tries to determine which ordering is the true ordering, we effectively

test how much we could make the wrong ordering look like the true one by tuning

the parameters our results are impacted by. As discussed in Section 3.5 the effective

signal of the mass ordering is a scaling of the number of oscillated events in specific

areas of the θ23 and energy range of our data. This means that comparing data from

normal ordering to an inverted ordering template, the higher number of events in the

oscillation bands in the low energy, could to some degree be “washed out” by turning

up the oscillation amplitude θ23 in the inverted ordering template. The opposite effect

is the case for fitting a normal ordering template to data from the inverted ordering,

and this is why we have a degeneracy between the true value of θ23 and the true mass

ordering.

5.2.2 Octant Flipping

This degeneracy can be seen in the value of the test-statistics obtained for the two

orderings. In Figure 5.2 the Asimov test-statistic values for true mass ordering are

plotted as a function of the true value of sin2 θ23. For true normal ordering we see

that the point where the best-fit points in the two octants cross is lower than maximal

mixing whereas for true inverted ordering the cross-over is located above maximal

mixing. These crossings causes the lowest possible test-statistic to switch from one
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FIGURE 5.3.
The Asimov opposite test-statistic for true Inverted Ordering for different allowed regions of
θ23 in both the fiducial fit and in the TSIO,opp

0 fit.

octant to the other and introduces sharp bends in the free test-statistic that would

otherwise not be expected.

For both orderings we also see that the test-statistic restricted to the upper octant for

NO and lower octant for IO exhibit sharp bends. This can be shown to be because of

the degeneracy discussed earlier, as both of these restrictions are in the octant not
looking like the opposite ordering and therefore force the fitted value of θ23 to 45◦ as

the true best-fit point is in the octant not allowed. This edge-effect is only seen for

θ23,true values around maximal mixing.

The effect of octant flipping in the true test-statistic is also visible in the opposite
test-statistic. The fiducial template in the opposite ordering is created from the best-fit

value to this ordering, which is exactly the fit that provides the lowest true test-statistic.

This means that the fiducial fit from which TSMO,opp
0 is found is made in either the

lower or the upper octant depending on which gives the lowest value of TSMO,true
0 .

This can be seen in 5.3 where the value of the asimov test-statisctic TSMO,opp
0 is

shown for different cases of allowed θ23 in the fiducial fit and the fit for TSMO,opp
0 .

The striking jump in the upper octant of the case where θ23 is free in both fits is exactly

because of the choice of octant implicitly embedded into the fiducial fit. Even though

the lower octant in both fits would provide the lowest value of TSMO,opp
0 , the fiducial

fit forces the template to be created in the upper octant. The same behavior can be

found for true normal ordering but because the lower octant is preferred for fiducial

fits in both octants, the flipping does not cause a jump as seen in the case for true

IO, but only a sharp kink. The behavior is translated into the sensitivities and the

sensitivity for true inverted ordering therefore also show this jump in the upper octant
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FIGURE 5.4.
Sensitivity to the Neutrino Mass Ordering using different definitions defined in Section 4.2.2.
The linestyles corresponds to the same labels in both panels. Left panel is true Normal
Ordering, right panel is True Inverted Ordering.

while for true normal ordering it only shows up as a kink in the lower octant. Exactly

how the effect shows up in the sensitivity depends on how it is calculated, but is has

been found that the effect is not restricted to Asimov analyses but is also present in

the pseudo-trial method described in Figure 4.2.

5.3 Asimov Definitions

The sensitivity obtained from the test-statistic values is derived for different assump-

tions in Section 4.2.2. Applying these definitions to the asimov test-statistic values we

obtain by letting θ23 vary freely in both fits provides the sensitivities shown in Figure

5.4 for true normal and inverted ordering. The one-sided and two-sided definitions

give similar results but with slightly higher values for the two-sided conversion for all

tested true θ23 values. This is consistent with the underlying differences between a

one-sided and two-sided conversion as for a two-sided conversion the obtained α is

divided between both sides of a normal Gaussian giving a higher confidence than if

the obtained α is in effect put in both tails of the Gaussian.

We also see that the simple approximation of symmetry around TS = 0 causes higher

sensitivities in the upper octant for NO and lower octant for IO. By only using the

value of the true test-statistic this definitions misses out on the octant degeneracy

experienced by the opposite ordering and therefore overestimates the separation

between the two distributions.

A one-sided conversion using the typo described in Section 4.2.2 is also plotted for

completeness. Here we see that properly including the width of the true distribution
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FIGURE 5.5.
Pseudo-trial distributions for the true (solid) and opposite (see-through) test statistics for
both true Normal (red) and true Inverted Ordering (blue). The true templates are created at
sin2(θ23) = 0.45 and the rest of the parameters at the nominal values listed in Table 3.1.

and not the opposite describes the octant degeneracy whereas the typo causes the

sensitivity to seem closer to the simple definition. The rather unnatural looking “spike”

for true inverted ordering is the effect of the octant flipping described in the previous

section, also present for the correct sensitivities. The reason for the spike to be turned

down in the correct sensitivities is that as the value of TSNO,opp
0 jumps, as can be seen

in Figure 5.3, the distance between the distributions grow and the sensitivity therefore

increases.

5.4 The Test-Statistic Distributions for the
Upgrade

The key to determining the sensitivity to the neutrino mass ordering is describing

the test-statistic distributions we expect to measure. As described in Section 4.2 the

distributions one wishes to compare is a matter of choice. Following the arguments for

a composite hypothesis test, a certain true ordering TSMO,true should be compared

not to the different true hypothesis, but to the opposite hypothesis that looks most

like the true hypothesis. The four different test-statistic distributions TSMO,true,

TSMO,opp, MO ∈ NO, IO are shown in Figure 5.5 for a single set of parameters P .

We see that the solid distributions describing the true distributions at this point in

the parameter-space are in fact further away from TS = 0 than the fiducial opposite
distributions TSMO,opp. This difference can also be seen in the Asimov approximation
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FIGURE 5.6.
Absolute values of the
Asimov predictions of the
test-statistic distributions
in Figure 5.5 as a func-
tion of the true value of
θ23.

by plotting the Asimov median values of the four distributions from Figure 5.5 for

multiple points of the true parameter space. A scan over true values of sin2(θ23)

can be seen in Figure 5.6 where the absolute values of the test statistic is plotted

so that lower values correspond to less separation between the orderings. It is

found that at sin2(θ23) = 0.45 where the pseudo-trial in Figure 5.5 is run, also the

Asimov approximation shows that the value of TSNO,opp
0 is in fact closer to zero than

simply using TSIO,true
0 . It is, however, also found that for a short range of values

between sin2(θ23) ≈ 0.55− 0.60 the true opposite distribution is closer to zero. From

running a limited number of pseudo-experiments at sin2 θ23 = 0.57, see Figure 5.7,

these results have been confirmed showing a small difference between the means of

TSNO,wrong
0 − TSIO,true

0 = 0.3.

The correction from using TSMO,opp
0 is not very large for true Normal Ordering in

the lower octant where the solid blue and dashed light-blue lines are close together,

but a big difference can be seen in the upper octant for true Inverted Ordering. Here

the solid red line describing TSNO,true
0 is much larger than the corresponding dashed

light-red line describing the case where a fiducial fit has been made and this is also

confirmed by the pseudo-trial shown in Figure 5.7.

From the pseudo-trials in Figure 5.5 at sin2 θ23 = 0.45 we can calculate a sensitivity

based on how many of our “pseudo-experiments” resulted in a test-statistic more

extreme than the median of the opposite distribution. For the case of true Normal

Ordering we find that this is the case for 1 : 9000 experiments. Converting this value

of α to a sensitivity using (4.8) we find

σNO
pseudo = 3.40+0.03

−0.03, σIO
pseudo = 3.51+0.08

−0.06, (5.1)

using an uncertainty on the number of experiments n in α of 1/n.
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FIGURE 5.7.
Pseudo-trial distributions for the true (solid) and opposite (see-through) test statistics for
both true Normal (red) and true Inverted Ordering (blue). The true templates are created at
sin2(θ23) = 0.57 and the rest of the parameters at the nominal values listed in Table 3.1.

5.5 Asimov Sensitivity Scans

Using the Asimov approximation described in Section 4.2.2 we are able to quantify the

sensitivity for multiple different possible scenarios. We will here present sensitivities

as a function of both the true value of θ23 and the livetime of the detector in number

of years.

5.5.1 Consistency With Pseudo-Trials

In Figure 5.8 the estimated sensitivity after 3 years of livetime is shown for a range of

θ23,true consistent with the expected range from current global best-fits [23]. These

sensitivities are found using the free parameters from Figure 5.1 and the nominal

values of all other parameters as stated in Table 3.1. No detector systematics are

included which would be expected to lower the sensitivity. We see that with the

correct one-sided conversion from significance to sensitivity the impact of the true

value of θ23 is minimal in the expected range.

At the point of sin2 θ23 = 0.45 which was analyzed with rigorous pseudo-trials, the

sensitivity from the Asimov approximation is slightly higher for Normal Ordering but

consistent within the estimated errors of Inverted Ordering. From computational

limitations the pseudo-trials at sin2 θ23 = .57 have not been converted to sensitivities.
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FIGURE 5.8.
Estimated sensitivity to
the Neutrino Mass Or-
dering for 3 years data-
taking of the IceCube Up-
grade. A one-sided con-
version is used to obtain
the sensitivity as stated
in eq. (4.20). Also
shown is the sensitivities
as found by the Pseudo-
experiments of Figure
5.5.

FIGURE 5.9.
Sensitivity to the Neu-
trino Mass Ordering as
a function of livetime
for the IceCube Upgrade.
The sensitivities are cal-
culated using the set-
tings described in Sec-
tion ?? and for a single
value of the atmospheric
mixing angle θ23 = 42.2◦

which is the NuFit best-
fit value assuming nor-
mal ordering. Consistent
results were obtained us-
ing the best-fit values as-
suming inverted order-
ing.

5.5.2 Livetime

The sensitivities in this analysis are estimated from Monte-Carlo data which is handled

as described in Chapter 3. This can be done using different values of the active livetime
of the detector and we can therefore estimate when the expected sensitivities will

cross different milestones. Such an analysis is shown in Figure 5.9 for a single value

of the true atmospheric mixing angle θ23. The value has been chosen to be the NuFit

[24] best-fit value under normal ordering and it has been checked that consistent

results are achieved using the best-fit value under the inverted ordering as expected

from the minimal θ23 dependence found in Figure 5.8. It is found that for this analysis,

IceCube Upgrade will reach 3σ sensitivity to both orderings within 3 years and 5σ in

about 6 years.
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6Discussion

The discussion of the results presented in Chapter 5 is split into three sections - the

problems involved with making a statistical test for the Neutrino Mass Ordering, what

such a statistical test can tell us about the IceCube Upgrade’s ability to separate the

two orderings, and lastly how that relates to current and future NMO sensitivities.

6.1 NMO Statistics in General

6.1.1 The Frequentist’s Bane

The sensitivities presented in this project are limited by their origin in the frequentist

methodology. As has been pointed out by multiple authors [53, 55] the frequentist

approach has the undesirable downside that it cannot answer the question “Which

Mass Ordering is the True Ordering?”. And within this framework can we then even

say anything about the mass ordering? The answer to that question is obviously yes -

if not, frequentist statistics would not be as used as it is today. It does however set

very high standards for us when we share our results with others since such statistical

results can easily be misinterpreted to signify more than it actually does. These

problematic sides of statistics and in particular the choice of being bayesianist or a

frequentist is not new nor confined to the problem of the Neutrino Mass Ordering [1,

2, 62].

The subtle but impactful differences between the framework of bayesian and frequen-

tist statistics may however have exceedingly good circumstances for unfolding in full

bloom in an analysis like the NMO. Normally when a standard frequentist physicist

sets up a statistical test for some hypotheses they are faced with the difficult problem

of setting a critical value of their test-statistic, but they are not faced with having

an alternative hypothesis that must be true to compare their experiment to. This

makes it very difficult for any reasonable person to not conclude that from rejecting

one hypothesis the other must be true. But this can simply not be inferred from a

frequentist test. It would otherwise be very reasonable to state that an experiment’s

sensitivity to Normal Ordering is determined by how well it will be able to reject

Inverted Ordering - if Normal Ordering is in fact true then we should be able to reject
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Inverted Ordering. But since we only construct a test of whether or not we can reject

that Inverted Ordering is true, we cannot from that test gain any knowledge about

whether or not Normal Ordering is true. Therefore, the frequentist “sensitivities” in

this project are labeled by the ordering for which we would expect to reject it with

the stated significance.

From the considerations about a frequentists approach to the neutrino mass ordering

a natural next step would be to turn to bayesian statistics. Though it has been outside

the scope of this project the two frameworks are expected to give complementary

information and it would therefore be interesting to compare the results of each.

Such results should however clearly be separated and not confused with eachother

as one will describe how well the respective measurement is consistent with the two

mass ordering (frequentist) whereas the other will describe how this measurement

will influence our belief in which ordering is the true ordering manifest in nature

(bayesianist).

6.1.2 Discovery, Evidence or Nothing?

Working within the frequentist framework, what should we take away from the

values of our sensitivities? In this and other NMO studies the obtained significance

is converted to a number of standard deviations as if the test-statistic had been

normally distributed. The argument for this is related to the convention of when a

measured signal is assumed to be evidence or discovery of some underlying theory.

This conversion forces a choice of setting either a central-limit or an upper/lower limit

with no direct relation to the measured quantity which could cause more confusion as

such a result may look like one would expect from a non-nested simple hypothesis. It

could also wash away the possibility of physics beyond the standard model (BSM) as

a measured test-statistic lying further away from zero than any of the two orderings

would not be taken as sign of inconsistency with the preferred ordering. We would

argue that when converting to a number of σ it should be made very clear why the

analysis itself is not nested. We would furthermore argue that a one-sided limit should

be stated as to not misleadingly present a non-zero significance for total confusion

between the two orderings as described in Section 4.1.4.

The convention is to state a discovery when background can be rejected with more

than 5σ confidence and evidence when this confidence is above 3σ but below 5σ. If

we were to measure a value of the test-statistic which rejects Normal Ordering with 3σ

confidence but also rejects Inverted Ordering with 2.5σ, what should the take-away be

from such a measurement? As IceCube has not previously been expected to separate

the orderings in such a significant way, the nuances of a possible measurement has only
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recently begun to surface. With increasingly sensitive experiments the complications

of the non-nested nature of the analysis becomes more crucial.

In Blennow et. al [10] it is proposed that a different sensitivity than the median
sensitivity used in this project, could be made to include the sensitivity to both
orderings by choosing the critical value of the test-statistic satisfying that only one of

the orderings can be rejected at that value. This test however does not easily translate

to a composite hypothesis, because as we have seen, using the two true test-statistic

distributions to determine the separation actually overestimates the sensitivity. This

means that setting a critical test-statistic value that rejects only one ordering is a

complicated task and has been outside the scope of this project. Previous work in

IceCube [38, 57, 40, 59] has used a CLs method based on [63] to describe how much

more unlikely an observed value is under the hypothesis least favored compared to

the favored. Such an approach could be relevant for this analysis as well and should

be considered in future work.

6.1.3 The Impact of the True Parameter Space

The composite nature of the hypotheses does not only complicate setting a critical

value of a test-statistic but it also complicates many otherwise straightforward statisti-

cal tests. We have for example seen that the impact of allowing θ23 to have different

true values in the two orderings causes un-intuitive behavior of the resulting sensitivity.

It could therefore be discussed whether the approach of letting a parameter such

as θ23 be free is the correct approach or if one should set up tests for each possible

combination of the octant of θ23 and state those sensitivities as complementary to

each other. The problem with that approach is how to decide between and interpret

the possible ways of restricting θ23. If we knew the true octant, such a choice would

be simple as we could restrict the octant in both the fiducial and other fits as that

octant would be true in both orderings. But as it is now, we do not know the octant

and restricting it to either the lower or the upper octant in the full analysis would not

be sufficient, as the true value could be different in the two orderings. The best choice

therefore seems to state the lowest possible sensitivity accounting for the possible

confusion between ordering and octant until such a time where the octant has been

determined.

6.2 NMO with the IceCube Upgrade
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6.2.1 The Trouble of the Octant of θ23

As described in Section 4.2 and the previous section, this analysis uses a fiducial fit to

account for the fact that the two mass orderings may have different true parameters

associated with them. The impact of this has been found to be quite drastic in

some regions of the expected value of sin2 θ23. As was found from the pseudo-trials

at sin2 θ23 = 0.57 shown in Figure 5.7 the fiducial fit from true Inverted Ordering

to Normal Ordering halves the absolute value of the critical test-statistic used to

calculate the sensitivity. Though the corrections due to a fiducial fit may be small

in the lower octant this result shows that not accounting for the composite nature

of the non-nested hypotheses overestimates the sensitivity in the upper octant and

in the expected range true value of sin2 θ23. The global NuFit 3σ range is around

0.408−0.603 or 0.412−0.613 depending on the assumed mass ordering corresponding

roughly to the x-axis of Figure 5.8.

Due to computational limitations in the number of pseudo-trials conducted, it has only

been possible to carry out a rigorous investigation of the test-statistic distribution at

one set of true parameters at sin2 θ23 = 0.45. Even though the Asimov approximation

at this point seems to deliver reasonable results, more pseudo-trials should be run at

other points in the parameter space.

We have found that for the Gaussian approximation in the expected range of θ23 the

sensitivity is minimally affected by the true value, but this is only because of the

inclusion of the fiducial fit as explained above. This can be contrasted to the other

Asimov sensitivity definitions explained in Section 4.2.2 and shown in Figure 5.4. We

find that assuming the test-statistics are symmetric around the test-statistic TS = 0

(the Simple sensitivity) overestimates the sensitivity by up to 1σ in the upper octant

for true Normal Ordering. This definition of the Asimov sensitivity does not utilize

the fiducial fit as it assumes symmetry and only relies on the median value of the true

test-statistic considered. Symmetry between the two true distributions has only been

found to be valid for true values of sin2 θ23 < 0.4 from the Asimov approximation

of the medians in Figure 5.6. If we consider the opposite distributions we find that

symmetry between TSNO,true
0 and TSNO,opp

0 is valid for sin2 θ23 < 0.45 and symmetry

between TSIO,true
0 and TSIO,opp

0 is valid for 0.55 < sin2 θ23 < 0.6. It would therefore

be wrong to say that the symmetric approximation is valid for IceCube Upgrade based

on this analysis.
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6.2.2 The Early Stages of the Analysis

The parameters that have been chosen to be handled as fit parameters in this analysis

shown in Figure 5.1, are based on simple mismodeling tests within the two mass

orderings and their influence on the final result of the analysis are therefore not known.

As seen with δCP which had a high level of mismodeling within both orderings but a

negligible impact on the final sensitivity, the simple test does not directly translate to

the full analysis. This makes sense as the simple mismodeling test describes how much

impact a parameter will have on finding the initial true parameters of the template. A

parameter’s impact on the NMO signal on the other hand should be described by how

much it can make the two orderings look more or less like each other. The choice of

fit parameters should therefore be reconsidered using a more sophisticated method of

ranking their impact on the sensitivity.

This analysis has no detector uncertainty systematics included, as their implementation

is also complicated by the non-nested nature of the analysis. Because detector

uncertainties, like the efficiency of the DOMs and the refractive index of the ice,

affect the detection of neutrinos in non-trivial ways, their impact has to be simulated

and then applied to the events considered. This has to be done for both orderings

and it will again lead to non-trivial ways in which a given uncertainty may pull one

mass ordering closer or further away from the other. Implementation of detector

systematics are expected to lower the sensitivities as they should make it easier to

make the orderings look like each other, by accounting for some of the discrepancies

that could otherwise only be attributed to the mass ordering.

6.3 Perspectives

6.3.1 The Impact of the Upgrade’s Sensitivity

The sensitivities presented in this project are very promising, even though as discussed

in the previous sections, inclusion of detector systematics are expected to result in

lower sensitivities. Early studies indicate that such corrections will be less than 1σ

and in that case these results suggest that the IceCube Upgrade will be able to reject

the wrong mass ordering with 3σ confidence within four years. These results are

somewhat consistent with the expected sensitivity of the proposed, but not funded,

more ambitious IceCube upgrade PINGU [40]. This is somewhat surprising as PINGU

was proposed to consist of 26 new strings and would be expected to perform better

than the less dense Upgrade. One possible explanation for this can be linked to the
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new optical modules designed for the Upgrade which were not part of the PINGU

simulation and therefore not included in the sensitivities stated. The effect of not

including detector systematics and background muons is also expected make the

results of this analysis higher than analyses including such effects. It should also be

noted that the sensitivities in [40] as well as other previous IceCube NMO studies

[59] have inherited the typo discussed in Section 4.2.2 causing the θ23 dependence to

be similar with the “Typo One-sided” sensitivity shown in Figure 5.4.

For the present analysis an Upgrade bespoke event-selection has been used that

effectively removes both noise and atmospheric muon-background. Current efforts

are furthermore put into the inclusion of inelasticity in the reconstruction of neutrino

events. The inelasticity of an event describes the amount of energy transferred

to the track- and cascade-portion of the interaction respectively. Since neutrinos

and anti-neutrinos have slightly different inelasticity distributions including it in

the reconstruction could possibly enable IceCube to somewhat distinguish between

neutrino and anti-neutrinos and therefore enhance the NMO signal [64].

6.3.2 Combining Experiments

The high level of sensitivity that the IceCube Upgrade will be able to attain on its

own is very promising. Besides adding to the already obtained significance of the

IceCube DeepCore volume, combined significance of multiple experiments are also a

possibility. Synergy effects from combining experiments are expected to significantly

improve joint sensitivity. Combining sensitivities from IceCube and the Jiangmen

Underground Neutrino Observatory (JUNO) have previously been explored [65] with

synergy effects arising from the different ways the mass ordering manifests in the two

experiments. JUNO is a medium-baseline liquid scintillator experiment that measures

MeV electron-antineutrinos from nuclear reactors ∼ 53 km from the detector. At

these energies and baselines the NMO signal is a short wavelength correction to the

electron-antineutrino survival probability and its detection relies on precise energy

spectrum measurements [66]. The synergy effect from combining the two experiments

comes from differences in how the wrong ordering best-fit parameters will pull to

make the hypothesis look most like the true ordering. In effect combining the two

experiments confines some of the allowed parameter space in the wrong ordering

making it harder to attain test-statistic values on similar levels with the true ordering.

Even though previous examinations of combined sensitivities have used the symmetric

assumption of the test-statistics proven to not be appropriate for the IceCube Upgrade,

combining the two experiments are still expected to significantly boost the global

sensitivity to the Neutrino Mass Ordering.
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7Conclusion

This project has compared different methods of quantifying the sensitivity of an

experiment to the Neutrino Mass Ordering and applied them to simulated data of the

IceCube Upgrade.

It has been found that a correction to the Gaussian approximation of the median

sensitivity defined in [10] causes a lower sensitivity to be obtained in the upper octant

for Normal Ordering and in the lower octant for Inverted Ordering as seen in Figure

5.4. This correction properly accounts for the degeneracy between the NMO and the

octant of θ23 discussed in detail in Sections 5.2, 6.2.1. The impact of the true value of

θ23 on the size of the sensitivity has been found to be minimal in the global fit expected

range, but only if a fiducial fit is made between the true ordering being tested and

the opposite ordering. In the upper octant for true Inverted Ordering the test-statistic

distribution obtained for the normal ordering is significantly further away from the

distribution for true inverted ordering if the pseudo-data in the normal ordering is

produced using the same parameters as the true inverted ordering pseudo-data, see

Figure 5.7. It can therefore be concluded that the method of applying a fiducial fit to

the true ordering being tested gives a more well-founded sensitivity result as it uses

the lowest possible value of the critical test-statistic.

Using the fiducial fit introduces shape to the Asimov approximation defined in Section

4.2.2 which would otherwise be expected to be smooth. It has been found that the

shapes arise from the octant degeneracy and can be explained by considering in which

octant the fiducial fit finds the best-fit value. For the simulated data used in this

project the effects of the octant degeneracy on the Asimov sensitivity have been found

to not over- or under-estimate the sensitivity.

From extensive pseudo-trials at sin2 θ23 = 0.45, the Asimov approximation has been

found to provide reasonable results. This point in the parameter space was chosen as

it is the global best-fit point assuming Normal Ordering from NuFit [23], other points

should however be investigated using the same approach before a conclusion on the

validity of the Asimov approximation for the IceCube Upgrade can be made.

Using the a fiducial fit method to estimate the Asimov sensitivity of the IceCube

Upgrade, it has been found that a 3σ sensitivity will be reached within three years
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if no detector uncertainties are applied. Even with the inclusion of such systematic

uncertainties the Upgrade is expected to reach 3σ in a comparable time-frame to

what was proposed with PINGU [40]. From initial analyses on the impact of δCP on

the obtained sensitivity it is suggested that a more sophisticated method of ranking

parameters’ impact should be derived.

From considerations on what a sensitivity means and how underlying assumptions on

what a probability is, it has been found that no satisfying answer to “How well will the

IceCube Upgrade be able to determine the NMO?” can be given within the frequentist

framework. The sensitivities found in this project are therefore indicative of, with

which confidence should we be able to reject the given mass ordering. Rejecting

the Normal Ordering does not mean the Inverted Ordering can be accepted and vice

versa. It is therefore the recommendation that sensitivity analyses, like the one at

hand, performed before an experiment has started collecting data, should be treated

as indicative only of how well data may be used to say something about the Mass

Ordering. Once data has been taken other statistical methods will need to be utilized

to obtain a measure of preference for one ordering over the other.

49



8Bibliography

[1] R. J. Barlow. Statistics: A Guide to the Use of Statistical Methods in the Physical
Sciences. John Wiley & Sons, Dec. 1993.

[2] Robert D. Cousins. “Why Isn’t Every Physicist a Bayesian?” In: American Journal
of Physics 63.5 (May 1995), pp. 398–410.

[3] Pantone. PANTONE® USA | Fashion Color Trend Report: New York Fashion Week
Spring/Summer 2023. https://www.pantone.com/articles/fashion-color-trend-

report/new-york-fashion-week-spring-summer-2023.

[4] Guillermo Franco Abellán, Zackaria Chacko, Abhish Dev, Peizhi Du, Vivian

Poulin, and Yuhsin Tsai. “Improved Cosmological Constraints on the Neutrino

Mass and Lifetime”. In: Journal of High Energy Physics (Online) 2022.FERMILAB-

PUB-21-779-T; arXiv:2112.13862 (Aug. 2022).

[5] Mark Thomson. Modern Particle Physics. Illustrated edition. Cambridge, United

Kingdom ; New York: Cambridge University Press, Oct. 2013.

[6] Particle Data Group, R L Workman, V D Burkert, et al. “Review of Particle

Physics”. In: Progress of Theoretical and Experimental Physics 2022.8 (Aug.

2022), p. 083C01.

[7] Aya Ishihara. The IceCube Upgrade – Design and Science Goals. Aug. 2019. arXiv:

1908.09441 [astro-ph, physics:physics].

[8] The IceCube Collaboration. “The Design and Performance of IceCube Deep-

Core”. In: Astroparticle Physics 35.10 (May 2012), pp. 615–624.

[9] S. S. Wilks. “The Large-Sample Distribution of the Likelihood Ratio for Testing

Composite Hypotheses”. In: The Annals of Mathematical Statistics 9.1 (Mar.

1938), pp. 60–62.

[10] Mattias Blennow, Pilar Coloma, Patrick Huber, and Thomas Schwetz. “Quanti-

fying the Sensitivity of Oscillation Experiments to the Neutrino Mass Ordering”.

50

https://arxiv.org/abs/1908.09441


In: Journal of High Energy Physics 2014.3 (Mar. 2014), p. 28. arXiv: 1311.1822

[hep-ex, physics:hep-ph].

[11] Guido Fantini, Andrea Gallo Rosso, Francesco Vissani, and Vanessa Zema. “The

Formalism of Neutrino Oscillations: An Introduction”. In: arXiv:1802.05781
[hep-ph] (Feb. 2018). arXiv: 1802.05781 [hep-ph].

[12] Richard Slansky, Stuart Raby, Terry Goldman, and Gerry Garvey. “An Introduc-

tion to Neutrino Masses and Mixings”. In: Los Alamos Science 25 (1997). Ed. by

Necia Grant Cooper.

[13] B. R. Martin. “Electroweak Interactions”. In: Nuclear and Particle Physics. John

Wiley & Sons, Ltd, 2006, pp. 181–216.

[14] J. A. Formaggio and G. P. Zeller. “From eV to EeV: Neutrino Cross Sections

across Energy Scales”. In: Reviews of Modern Physics 84.3 (Sept. 2012), pp. 1307–

1341.

[15] Alessandro De Angelis and Mário Pimenta. “The Properties of Neutrinos”. In:

Introduction to Particle and Astroparticle Physics: Multimessenger Astronomy
and Its Particle Physics Foundations. Ed. by Alessandro De Angelis and Mário

Pimenta. Cham: Springer International Publishing, 2018, pp. 543–574.

[16] Raymond Davis. “A Review of the Homestake Solar Neutrino Experiment”. In:

Progress in Particle and Nuclear Physics 32 (Jan. 1994), pp. 13–32.

[17] A. Bellerive, J. R. Klein, A. B. McDonald, A. J. Noble, and A. W. P. Poon. “The

Sudbury Neutrino Observatory”. In: Nuclear Physics B 908 (July 2016), pp. 30–

51. arXiv: 1602.02469 [hep-ex, physics:nucl-ex, physics:physics].

[18] The Super-Kamiokande Collaboration and Y. Ashie. “Evidence for an Oscillatory

Signature in Atmospheric Neutrino Oscillation”. In: Physical Review Letters
93.10 (Sept. 2004), p. 101801. arXiv: hep-ex/0404034.

[19] B. Pontecorvo. “Mesonium and Anti-Mesonium”. In: Sov. Phys. JETP 6 (1957),

p. 429.

[20] Ziro Maki, Masami Nakagawa, and Shoichi Sakata. “Remarks on the Unified

Model of Elementary Particles”. In: Prog. Theor. Phys. 28 (1962), pp. 870–880.

[21] B. Pontecorvo. “Neutrino Experiments and the Problem of Conservation of

Leptonic Charge”. In: Zh. Eksp. Teor. Fiz. 53 (1967), pp. 1717–1725.

51

https://arxiv.org/abs/1311.1822
https://arxiv.org/abs/1311.1822
https://arxiv.org/abs/1802.05781
https://arxiv.org/abs/1602.02469
https://arxiv.org/abs/hep-ex/0404034


[22] Mattias Blennow and Alexei Yu. Smirnov. “Neutrino Propagation in Matter”. In:

Advances in High Energy Physics 2013 (2013), pp. 1–33.

[23] Ivan Esteban, M.C. Gonzalez-Garcia, Michele Maltoni, Thomas Schwetz, and

Albert Zhou. “The Fate of Hints: Updated Global Analysis of Three-Flavor

Neutrino Oscillations”. In: Journal of High Energy Physics 2020.9 (Sept. 2020),

p. 178.

[24] NuFIT | NuFIT 5.2. http://www.nu-fit.org/. 2022.

[25] M Jiang, K Abe, C Bronner, et al. “Atmospheric Neutrino Oscillation Analysis

with Improved Event Reconstruction in Super-Kamiokande IV”. In: Progress of
Theoretical and Experimental Physics 2019.5 (May 2019), 053F01.

[26] L. Wolfenstein. “Neutrino Oscillations in Matter”. In: Physical Review D 17.9

(May 1978), pp. 2369–2374.

[27] Vernon D. Barger, K. Whisnant, S. Pakvasa, and R. J. N. Phillips. “Matter Effects

on Three-Neutrino Oscillations”. In: Phys. Rev. D 22 (1980), p. 2718.

[28] S. P. Mikheyev and A. Yu. Smirnov. “Resonance Amplification of Oscillations in

Matter and Spectroscopy of Solar Neutrinos”. In: Sov. J. Nucl. Phys. 42 (1985),

pp. 913–917.

[29] E. K. Akhmedov. “On Neutrino Oscillations in a Nonhomogeneous Medium”.

In: Sov. J. Nucl. Phys. (Engl. Transl.); (United States) 47:2 (Feb. 1988).

[30] Q. Y. Liu, S. P. Mikheyev, and A. Yu Smirnov. “Parametric Resonance in Oscil-

lations of Atmospheric Neutrinos?” In: Physics Letters B 440.3-4 (Nov. 1998),

pp. 319–326. arXiv: hep-ph/9803415.

[31] E. Kh Akhmedov. “Parametric Resonance of Neutrino Oscillations and Passage

of Solar and Atmospheric Neutrinos through the Earth”. In: Nuclear Physics B
538.1-2 (Jan. 1999), pp. 25–51. arXiv: hep-ph/9805272.

[32] M. Chizhov, M. Maris, and S. T. Petcov. On the Oscillation Length Resonance in
the Transitions of Solar and Atmospheric Neutrinos Crossing the Earth Core. Oct.

1998. arXiv: hep-ph/9810501.

[33] M. V. Chizhov and S. T. Petcov. “Enhancing Mechanisms of Neutrino Transitions

in a Medium of Nonperiodic Constant - Density Layers and in the Earth”. In:

Physical Review D 63.7 (Mar. 2001), p. 073003. arXiv: hep-ph/9903424.

52 Chapter 8 Bibliography

https://arxiv.org/abs/hep-ph/9803415
https://arxiv.org/abs/hep-ph/9805272
https://arxiv.org/abs/hep-ph/9810501
https://arxiv.org/abs/hep-ph/9903424


[34] Margaret A. Millhouse and David C. Latimer. “Neutrino Tomography”. In:

American Journal of Physics 81.9 (Sept. 2013), pp. 646–654.

[35] ICECUBE COLLABORATION. “Evidence for High-Energy Extraterrestrial Neutri-

nos at the IceCube Detector”. In: Science 342.6161 (Nov. 2013), p. 1242856.

[36] IceCube Collaboration, M. G. Aartsen, M. Ackermann, et al. “The IceCube

Neutrino Observatory: Instrumentation and Online Systems”. In: Journal of
Instrumentation 12.03 (Mar. 2017), P03012–P03012.

[37] T. K. Gaisser and M. Honda. “Flux of Atmospheric Neutrinos”. In: Annual Review
of Nuclear and Particle Science 52.1 (2002), pp. 153–199.

[38] Martin Leuermann. “Testing the Neutrino Mass Ordering with IceCube Deep-

Core”. PhD thesis. RWTH Aachen University, Nov. 2018.

[39] Donald E. Groom, Nikolai V. Mokhov, and Sergei I. Striganov. “Muon Stopping

Power and Range Tables 10 MeV–100 TeV”. In: Atomic Data and Nuclear Data
Tables 78.2 (July 2001), pp. 183–356.

[40] The IceCube-PINGU Collaboration. “Letter of Intent: The Precision IceCube

Next Generation Upgrade (PINGU)”. In: arXiv:1401.2046 (Sept. 2017). arXiv:

1401.2046.

[41] IceCube Collaboration, M. G. Aartsen, M. Ackermann, et al. Computational
Techniques for the Analysis of Small Signals in High-Statistics Neutrino Oscilla-
tion Experiments. Dec. 2019. arXiv: 1803.05390 [astro-ph, physics:hep-ex,

physics:physics].

[42] M. Honda, M. Sajjad Athar, T. Kajita, K. Kasahara, and S. Midorikawa. “At-

mospheric Neutrino Flux Calculation Using the NRLMSISE00 Atmospheric

Model”. In: Physical Review D 92.2 (July 2015), p. 023004. arXiv: 1502.03916

[astro-ph].

[43] Anatoli Fedynitch, Ralph Engel, Thomas K. Gaisser, Felix Riehn, and Todor

Stanev. Calculation of Conventional and Prompt Lepton Fluxes at Very High
Energy. Mar. 2015. arXiv: 1503.00544 [astro-ph, physics:hep-ph].

[44] G. D. Barr, S. Robbins, T. K. Gaisser, and T. Stanev. “Uncertainties in Atmo-

spheric Neutrino Fluxes”. In: Physical Review D 74.9 (Nov. 2006), p. 094009.

[45] Roger Wendell and Luke Pickering. Prob3++. http://webhome.phy.duke.edu/~raw22/public/Prob3++/.

2018.

53

https://arxiv.org/abs/1401.2046
https://arxiv.org/abs/1803.05390
https://arxiv.org/abs/1803.05390
https://arxiv.org/abs/1502.03916
https://arxiv.org/abs/1502.03916
https://arxiv.org/abs/1503.00544


[46] Adam M. Dziewonski and Don L. Anderson. “Preliminary Reference Earth

Model”. In: Physics of the Earth and Planetary Interiors 25.4 (June 1981),

pp. 297–356.

[47] C. Andreopoulos, A. Bell, D. Bhattacharya, et al. “The GENIE Neutrino Monte

Carlo Generator”. In: Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 614.1

(Feb. 2010), pp. 87–104. arXiv: 0905.2517 [hep-ph].

[48] Rezvan Abbasi, M. Ackermann, Jim Adams, et al. “Graph Neural Networks for

Low-Energy Event Classification & Reconstruction in IceCube”. In: Journal of
Instrumentation 17 (Nov. 2022), P11003.

[49] Andreas Søgaard, Rasmus F. Ørsøe, Leon Bozianu, Morten Holm, Kaare Endrup

Iversen, Tim Guggenmos, Martin Ha Minh, and Philipp Eller. GraphNeT. Zenodo.

June 2022.

[50] F. James and M. Roos. “Minuit - a System for Function Minimization and

Analysis of the Parameter Errors and Correlations”. In: Computer Physics Com-
munications 10.6 (Dec. 1975), pp. 343–367.

[51] Hans Dembinski, Piti Ongmongkolkul, Christoph Deil, et al. Scikit-Hep/Iminuit.
Zenodo. Apr. 2023.

[52] Ladislav Lukšan and Emilio Spedicato. “Variable Metric Methods for Uncon-

strained Optimization and Nonlinear Least Squares”. In: Journal of Computa-
tional and Applied Mathematics 124.1-2 (Dec. 2000), pp. 61–95.

[53] X. Qian, A. Tan, W. Wang, J. J. Ling, R. D. McKeown, and C. Zhang. “Statistical

Evaluation of Experimental Determinations of Neutrino Mass Hierarchy”. In:

Physical Review D 86.11 (Dec. 2012), p. 113011. arXiv: 1210.3651 [hep-ex,

physics:hep-ph, physics:nucl-ex].

[54] Mattias Blennow. “On the Bayesian Approach to Neutrino Mass Ordering”. In:

Journal of High Energy Physics 2014.1 (Jan. 2014), p. 139. arXiv: 1311.3183

[hep-ex, physics:hep-ph].

[55] Emilio Ciuffoli, Jarah Evslin, and Xinmin Zhang. “Sensitivity to the Neutrino

Mass Hierarchy”. In: Journal of High Energy Physics 2014.1 (Jan. 2014), p. 95.

arXiv: 1305.5150 [hep-ex, physics:hep-ph, stat].

[56] Emilio Ciuffoli. Statistical Methods for the Neutrino Mass Hierarchy. Apr. 2017.

arXiv: 1704.08043 [hep-ph].

54 Chapter 8 Bibliography

https://arxiv.org/abs/0905.2517
https://arxiv.org/abs/1210.3651
https://arxiv.org/abs/1210.3651
https://arxiv.org/abs/1311.3183
https://arxiv.org/abs/1311.3183
https://arxiv.org/abs/1305.5150
https://arxiv.org/abs/1704.08043


[57] Steven Wren. “Neutrino Mass Ordering Studies With IceCube-Deepcore”. PhD

thesis. University of Manchester, 2018.

[58] Gary J. Feldman and Robert D. Cousins. “A Unified Approach to the Classical

Statistical Analysis of Small Signals”. In: Physical Review D 57.7 (Apr. 1998),

pp. 3873–3889. arXiv: physics/9711021.

[59] M. G. Aartsen, M. Ackermann, J. Adams, et al. “Development of an Analysis to

Probe the Neutrino Mass Ordering with Atmospheric Neutrinos Using Three

Years of IceCube DeepCore Data”. In: The European Physical Journal C 80.1

(Jan. 2020), p. 9. arXiv: 1902.07771.

[60] Isaac Asimov. “Franchise”. In: If: Worlds of Science Fiction. Vol. August 1955.

Quinn Publishing, 1955.

[61] Glen Cowan, Kyle Cranmer, Eilam Gross, and Ofer Vitells. “Asymptotic Formulae

for Likelihood-Based Tests of New Physics”. In: The European Physical Journal
C 71.2 (Feb. 2011), p. 1554. arXiv: 1007.1727 [hep-ex, physics:physics].

[62] R. D. Cousins. “Comments on Methods for Setting Confidence Limits”. In:

Workshop on Confidence Limits. Aug. 2000, pp. 49–61.

[63] X. Qian, A. Tan, J. J. Ling, Y. Nakajima, and C. Zhang. “The Gaussian CL$_s$

Method for Searches of New Physics”. In: Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and Asso-
ciated Equipment 827 (Aug. 2016), pp. 63–78. arXiv: 1407.5052 [hep-ex,

physics:physics].

[64] Mathieu Ribordy and Alexei Yu Smirnov. “Improving the Neutrino Mass Hier-

archy Identification with Inelasticity Measurement in PINGU and ORCA”. In:

Physical Review D 87.11 (June 2013), p. 113007. arXiv: 1303.0758 [hep-ex,

physics:hep-ph].

[65] IceCube-Gen2 Collaboration, M. G. Aartsen, M. Ackermann, et al. “Combined

Sensitivity to the Neutrino Mass Ordering with JUNO, the IceCube Upgrade, and

PINGU”. In: Physical Review D 101.3 (Feb. 2020), p. 032006. arXiv: 1911.06745.

[66] David V. Forero, Stephen J. Parke, Christoph A. Ternes, and Renata Zukanovich

Funchal. “JUNO’s Prospects for Determining the Neutrino Mass Ordering”. In:

Physical Review D 104.11 (Dec. 2021), p. 113004.

55

https://arxiv.org/abs/physics/9711021
https://arxiv.org/abs/1902.07771
https://arxiv.org/abs/1007.1727
https://arxiv.org/abs/1407.5052
https://arxiv.org/abs/1407.5052
https://arxiv.org/abs/1303.0758
https://arxiv.org/abs/1303.0758
https://arxiv.org/abs/1911.06745

	Preface
	Acknowledgements
	Author's Contribution
	Abstract
	1 Introduction
	2 Particle Physics Theory
	2.1 The Standard Model
	2.1.1 The Weak Interaction and Chirality
	2.1.2 Neutrino Scattering

	2.2 Neutrino Oscillations
	2.2.1 Oscillations in Vacuum
	2.2.2 Oscillations in Matter

	2.3 The Neutrino Mass Ordering

	3 Detecting Neutrinos With IceCube
	3.1 IceCube and the IceCube Upgrade
	3.2 Atmospheric Neutrinos
	3.3 Neutrino Event-Types
	3.3.1 Reconstruction of Events

	3.4 Analysis Tools
	3.4.1 The PISA Software

	3.5 Signature of the Neutrino Mass Ordering

	4 Statistics
	4.1 Basic Concepts
	4.1.1 Fitting Composite Hypotheses
	4.1.2 Nested and Non-Nested Hypotheses
	4.1.3 Bayesian and Frequentist Statistics
	4.1.4 Confidence

	4.2 Sensitivity to Neutrino Mass Ordering
	4.2.1 The Test-Statistic Distributions
	4.2.2 The Asimov Approximation


	5 Results
	5.1 Systematic Parameters
	5.2 Impact of 23 on NMO Sensitivities
	5.2.1 Degeneracy with NMO
	5.2.2 Octant Flipping

	5.3 Asimov Definitions
	5.4 The Test-Statistic Distributions for the Upgrade
	5.5 Asimov Sensitivity Scans
	5.5.1 Consistency With Pseudo-Trials
	5.5.2 Livetime


	6 Discussion
	6.1 NMO Statistics in General
	6.1.1 The Frequentist's Bane
	6.1.2 Discovery, Evidence or Nothing?
	6.1.3 The Impact of the True Parameter Space

	6.2 NMO with the IceCube Upgrade
	6.2.1 The Trouble of the Octant of 23
	6.2.2 The Early Stages of the Analysis

	6.3 Perspectives
	6.3.1 The Impact of the Upgrade's Sensitivity
	6.3.2 Combining Experiments


	7 Conclusion
	8 Bibliography

