
MASTERS THESIS, 45 CREDIT HOURS

Structural properties and expression

pattern of evolved Boolean networks

Author:

Alisa AGAFONOVA

Supervisor:

Dr. Kim SNEPPEN

Biocomplexity and Biophysics Group

Niels Bohr Institute

March 30, 2021

https://www.nbi.ku.dk/english/research/biocomplexity/
https://www.nbi.ku.dk/english/

iii

Abstract

We conducted a numerical study of evolution in structure and expression pattern of

Boolean networks, using the idea that the expression pattern is step-wise preserved

during the evolutionary process as proposed by Bornholdt and Sneppen in 1998

[Bornholdt and Sneppen, 1998], with the addition of logical signal tracing along all

three-node long paths. The evolved networks exhibited stable structural properties

and degree distributions wider than the expected Poisson distribution for random

networks. The evolved networks with higher average link density had large frozen-

ON components, not observed in randomized networks.

v

Acknowledgements
I would like to thank my master’s thesis supervisor, Kim Sneppen for his kindness,

Olympian patience and for all the science. It was a lot of fun! Numerous other peo-

ple helped me to complete my masters thesis. I would like express my gratefulness

for their help, and especially thank Bente Markussen and Namiko Mitarai.

vii

Contents

Acknowledgements v

1 Introduction 1

1.1 Boolean logic and biological networks 1

1.2 Signal paths . 2

2 Methods 3

2.1 Evolution model . 3

2.2 Mutation cycle . 4

2.3 Network randomization with preservation of degree distribution . . . 5

2.4 Regulation . 6

2.4.1 Nested Canalizing Boolean functions 6

2.4.2 Regulation types . 7

2.5 Network matrix and regulation matrix 7

2.6 Visualization of evolved Canalizing Boolean Networks 8

3 Results 11

3.1 Network Structure . 11

3.1.1 Link density time series . 11

3.1.2 Stationary link density time scale 13

3.1.3 Distribution of average link density 14

3.2 Parameter investigation . 15

3.2.1 System size . 15

3.2.2 Mutation acceptance probabilities 16

3.2.3 Link to node mutation acceptance ratio 19

3.2.4 Approximate average link density model 21

viii

3.3 Degree Distribution . 23

3.3.1 Average degree distribution . 23

3.3.2 Dispersion of average degree distribution 29

3.4 Expression pattern of the evolved networks 32

3.5 Summary . 39

A Simulation Code 41

Bibliography 55

ix

List of Figures

1.1 Genetic Regulatory Network of Phage λ, reproduced from Trusina A,

2005 . 2

2.1 Algorithm: network randomization with preservation of degree dis-

tribution . 5

2.2 Nested Canalizing Boolean functions . 6

2.3 Diagram of evolved Canalizing Boolean network 9

3.1 CBN: Long time evolution of link density 12

3.2 Autocorrelation function ρLL(τ) of the stationary link density phase

of a CBN . 14

3.3 Distribution of average link density P(L) approximated with the Pois-

son distribution . 15

3.4 Link density 〈L〉t and system size N . 16

3.5 Mutation rates γ estimated for one CBN time series 17

3.6 Mutation acceptance probabilities, aggregated 18

3.7 Mutation acceptance probabilities for link mutations γ±, and node

duplication η shown as function of networks average link density . . . 19

3.8 Link-to-node mutation acceptance ratio v as function of link addition

attempt frequency . 20

3.9 Average Link density Lt as function of link-to-node mutation accep-

tance ratio . 22

3.10 In-, out- and total-degree average, network size-adjusted counts for

CBN time series . 24

3.11 Degree distribution P(k) of CBNs with link-to-node mutation accep-

tance ratios v = {5.6, 3.4} exhibit exponential tails 25

x

3.12 Degree distribution P(k) of networks with v = 0.9 is approximately

exponential with short power tail. 26

3.13 Genome-wide distribution of transcriptional regulators. Reproduced

from [Lee et al., 2002 . 27

3.14 Fano Factor and coefficient of variation of CBN degree distributions

as functions of link-to-node mutation acceptance ratio v, link density L 30

3.15 Responses in protein expression of the gene regulatory network of

Saccharomyces cerevisiae . 33

3.16 Average frozen component of CBN evolved with v ≈ 4, and positive

net link mutation acceptance probability, vs. frozen components of

two types of random network . 34

3.17 Frozen ON, OFF and total frozen component of Canalizing Boolean

network evolved with v ≈ 4, and positive net link mutation accep-

tance probability, vs. two types of random network 35

3.18 Frozen ON, frozen OFF, and total frozen component of CBN evolved

with v ≈ 4 and negative net mutation acceptance probability 36

3.19 Average frozen accepted mutant-to-random ratio 3D surface plot . . . 37

3.20 Average frozen accepted mutant-to-random ratio vs. link density . . . 38

1

Chapter 1

Introduction

1.1 Boolean logic and biological networks

Biological regulation are largely logical, with transcription factors that either activate

or repress each others expression. An example is given below, showing the transcrip-

tion regulatory network of phage lambda reproduced from [Trusina A, 2005] with

positive and negative regulations highlighted in green and red arrows, respectively.

The effective regulation is defined not only by the logic of the individual input, i.e.

whether the input is a repressor or an activator, but also by the way this logic is or-

ganized. For example, then A and B is different than A or B, as regulatory input to a

third transcription factor C.

Following Kauffman we restrict ourselves to nested canalizing Boolean combina-

tions meaning that we for example do not allow the exclusive or. Canalizing regu-

lation is one where there at least one of the inputs overrides all other inputs when

it takes a specific value, for example +1. A nested canalizing input utilizes this fea-

ture repeatedly in a hierarchical ordering. In this project we will evolve Boolean

networks with nested canalization, as models of transcription factor networks.

We focus on transcription factors only, and therefore restrict the model networks

to nodes that can have regulatory input only. In doing so we disregard the vast

majority of proteins in the cell which do not participate in regulation, and have role

in structure-related or metabolic function. In the phage network below, the cyan

nodes are the transcription factor network of the phage, and the yellow are the signal

input node from the bacteria (that sometimes work by degradation).

2 Chapter 1. Introduction

FIGURE 1.1: Genetic Regulatory Network of Phage λ. The proteins
are colored according to their function and expression mode, with
cyan nodes representing transcription factors. The positive regulation
is shown with green arrows, and negative regulation (i.e. repression)

is marked with red arrow. Reproduced from [Trusina A, 2005]

1.2 Signal paths

Suppose the transcription factor CII of the λ bacteriophage Genetic Regulatory Net-

work on Figure 1.1 sent an ’activation signal’ to CI, and CI, in return, acted as re-

pressor on all five remaining transcription factors. In a larger network, with more

branching and path variation, how far does regulatory ’signal’ from a transcription

factors spread? In this model the effect off each new stimuli is traced along all three-

node paths, as longer paths would be too time-consuming in nature, and too per-

turbed by alternative signaling to be relevant.

3

Chapter 2

Methods

2.1 Evolution model

This project is a numerical study of evolution in structure and expression patterns of

Boolean networks, using the idea that the expression pattern is step-wise preserved

during the evolutionary process as proposed by Bornholdt and Sneppen in 1998.

[Bornholdt and Sneppen, 1998], with the addition of logical signal tracing along all

three-node long paths.

We used directed Boolean networks as model for the regulatory interactions between

transcription factors in the Gene Regulatory Network. In a fully connected network,

one can follow the edges (regulatory connections) from one node to any other node.

Of course the biological interactions between transcription factors are not always di-

rectly connected and often are not indirectly connected. In this model, the effect of

each new stimuli (a transcription factor expression state change, or a new outside

condition, such as temperature shift) is traced over all three-node long paths. The

effect of longer tracing was found negligible in simulation, i.e. the result would not

be different if we for example considered 5 steps path. In real cells one would imag-

ine that longer paths may be too time consuming, and too perturbed by alternative

signaling to be relevant.

To reflect the destructive potential of each new mutation, regulatory connections the

node receives are prioritized based on their evolutionary age. Thus nodes receiving

edges from more than one node are assigned nested Boolean functions ranking the

4 Chapter 2. Methods

inputs in the order they were first introduced, with the oldest mutation first, and the

current/newest mutation last.

In each mutation cycle, the expression pattern is determined by performing simul-

taneous update along all three-node-long interaction paths for both the original net-

work and for the mutant. In the event that mutant expression pattern over the entire

cycle equals that of the original network, the mutation is deemed non-destructive,

and is accepted.

Link-rewiring mutations as well as node duplication and node loss are implemented.

As the model is restricted to transcription factors only, nodes that do not have any

regulatory connections are removed at the end of each mutation cycle.

2.2 Mutation cycle

The mutation cycle generally follows the rules outlined in [Bornholdt and Sneppen,

1998] adjusted in this project to trace the regulatory signal along all three-node long

paths. One mutation cycle is described as follows:

1. Create a daughter network by adding or removing an interaction between two

nodes, or by either doubling or losing an already existing node. Interaction

(link) mutations can be attempted with average frequency flink. When a link

mutation is selected, it has the probability pll of being a link removal, and

1− pll to be link addition.

2. If an interaction (link) is to be added, it is randomly chosen, with equal proba-

bilities p = 1/3, to be an OR activation, an AND activation, or a repression.

3. Select a random Boolean input state for all nodes in the network.

4. Propagate the regulatory interactions between the nodes along all three-node-

long interaction paths using simultaneous update.

5. If of both systems exhibit identical dynamics (Boolean node states), the expres-

sion pattern is preserved, and mother network is replaced with the daughter

network. If the dynamics differ, we keep the mother network.

2.3. Network randomization with preservation of degree distribution 5

Nodes that have no regulatory interactions (in- or out-links) at the completion of a

mutation cycle are removed from the network.

2.3 Network randomization with preservation of degree dis-

tribution

To randomize the evolved networks while keeping their degree distribution pre-

served we used the local rewiring algorithm, which was proposed in [Maslov, Snep-

pen, and Zaliznyak, 2004]. One step of this algorithm is shown in Figure 2.1. Di-

FIGURE 2.1: One step of the algorithm used to randomize directed
networks with degree preservation. Two pairs of nodes, each con-
nected to each other with a directed link, A → B and C → D are
found, and the links rearranged, to obtain connected pairs: A → D
and C → B. This operation is allowed only if neither link A → D
nor link C → B were present in the network before the switch. This

algorithm conserves the in- and out-degree of each node.

rected links are swapped, pair-by-pair, until the network is randomized, while the

number of links in- and out- of each node remains unchanged.

For a network with L links, after one step L− 2 links remain undisturbed. After n

swaps, the probability that a link chosen at random is unchanged is:

punchanged = (1− 2
L
)n ≈ e−2n/L (2.1)

We iterated the algorithm n ∼ 1.5L times to generate, networks that were, on aver-

age 95% randomized but had their original degree distribution preserved.

6 Chapter 2. Methods

2.4 Regulation

2.4.1 Nested Canalizing Boolean functions

The Genetic regulatory network of λ bacteriophage is compact and well studied.

On Figure 1.1 (reproduced from [Trusina A, 2005]) directed regulatory interactions

between the proteins in this GRN are marked with green arrows for positive (ac-

tivation) and red arrows for negative regulation. Still, knowing of the logic of the

interactions alone is not sufficient to determine the effective regulation if, for exam-

ple CI receives activation input from CII and also repression from Cro.

In canalizing regulation, at least one of the inputs over-rides all others when it takes

a specific value (known as its canalizing value), and thus determines the resulting

regulatory action. Nested canalization is used to introduce hierarchical ordering of

more than one canalizing logical input.

FIGURE 2.2: Nested Canalizing Boolean functions are implemented
to calculate the total regulation of each node. Activation is shown
with green arrows, and the red arrow represents transcription factor
repression. Two types or activation are shown: one represented with
the Boolean OR, switches the receiving node value ON with no pre-
conditions, the second follows the Boolean AND rules. The regula-
tory interaction hierarchy is determined by the relative evolutionary

age of the inputs.

In Figure 2.2 node A, receives the following regulatory inputs in order of their rela-

tive evolutionary age, from oldest to newest: OR activation from node B, repression

2.5. Network matrix and regulation matrix 7

from node C and AND activation from D. The expression state of node A is deter-

mined as follows:

Anew = (Aold + B)× (1− C)× D (2.2)

Constructed in this way, nested Canalizing Boolean functions are used to determine

the expression state of each node while preserving the hierarchy of regulatory inter-

actions. Simultaneous update is used as interactions are traced over all three-node

long paths.

2.4.2 Regulation types

The types of regulation in the model are: AND-activation, OR-activation and repres-

sion. Regulatory input from a repressor is mathematically described as multiplica-

tion by (1− R), where R is the expression state of the repressor. Self activation of

both types as well as self repression are allowed in the model.

2.5 Network matrix and regulation matrix

We use two matrices to describe the Canalizing Boolean Networks with nested AND

and OR activation and repression.

The network matrix specifies the hierarchical architecture of regulatory connections

between the nodes. If node A receives links from nodes B, C and D, the network

matrix elements in row A and columns B, C and D are assigned non-zero values wij,

corresponding to the logical order of the respective regulatory inputs. For example,

if the network matrix describes input into node A with: {wab, wac, wad} = {1, 2, 3},

then the A’s expression value is determined as: A = B + C + D, but if the network

matrix values for node A regulatory input are: {wab, wac, wad} = {3, 2, 1} then: A =

D + C + B.

The j-th row of the network matrix describes the order of regulatory input into node

j, and the i-th column lists the regulatory output of node i.

The regulation-matrix specifies the regulation type of each link in the network. The

element qij of this matrix is assigned the value +1, if the link from the j-th node into

the i-th node is AND-activation. If the j-th node acts as a repressor on the i-th node,

8 Chapter 2. Methods

the corresponding matrix value qij = −1, and for links that represent OR-activation

qij = 0.

When a node has to be deleted due to a node loss mutation, or because it has lost

all links, the corresponding row and column are deleted from the network matrix

and from the regulation matrix. When a node duplication mutation takes place, a

row and column are added to both matrices, and the duplicated node’s regulatory

hierarchy wduplicate,j, wi,duplicate and regulation types qduplicate,j, qi,duplicate are copied

into their corresponding newly added row and column.

2.6 Visualization of evolved Canalizing Boolean Networks

Figure 2.3 shows a diagram of evolved Canalizing Boolean network. The regulatory

interactions between the nodes are indicated with arrows, red is used for repression

and green arrows represent activation. The network expression pattern is also dis-

played: nodes marked in orange are in the on-state, and those marked in grey are

off. The node size is proportional to the total number of regulatory interactions it

sends and receives.

2.6. Visualization of evolved Canalizing Boolean Networks 9

FIGURE 2.3: Diagram of evolved Canalizing Boolean network. Red
arrows mark repression, and green arrows indicate activation. Nodes
marked in orange are in the ON-state, and nodes marked in grey have

expression state OFF

11

Chapter 3

Results

3.1 Network Structure

3.1.1 Link density time series

Figure 3.1 shows the time series of a Canalizing Boolean network (CBN), evolved

via link-rewiring and node duplication as well as node loss mutations for which the

only evolutionary selection criterion was step-wise continuity of network expression

pattern, as proposed by Bornholdt and Sneppen in 1998. [Bornholdt and Sneppen,

1998] with the addition of evolutionary age-based regulatory connections prioritiza-

tion.

Nested Canalizing Boolean functions were implemented to model the regulatory

interactions that take place between transcription factors in Genetic Regulatory Net-

works (GRN). Activation regulations of two types were used, with AND and OR

Boolean rules. Repression was mathematically represented with ×(1− R), where

R was the value of the repressor. Simultaneous update performed along all three-

node-long interaction paths was used to determine the network states during each

mutation cycle. Link density was measured directly from the network matrix after

each mutation cycle:

L =
L
N

(3.1)

where N is the number of nodes in the network, and L is the number of links between

them.

12 Chapter 3. Results

FIGURE 3.1: Long time evolution of link density of Canalizing
Boolean network. (a) shows average link density L = L/N as func-
tion of time measured in the number of mutations. On (b), num-
ber of nodes N is plotted as a function of time. Initial network ma-
trix was chosen randomly. Link mutations were attempted with fre-
quency flink = 0.69. Each link mutation was, with conditional prob-
ability of link loss pll = 0.4 a link removal, and with probability

p = 1− pll = 0.6 a link addition.
In the initial growth stage (0 ≤ Time ≤ 9× 104 mutations), network
size increased stochastically from N ∼ 5 to N = 170, and average
link density L exhibited chaotic behavior. Then network growth was
constrained 〈N〉 ∼ 170, and link density L was observed to enter a
steady state with 〈L〉 ≈ 3.5. N and L were measured directly from

the network matrix.

We began with a randomly generated Canalizing Boolean network composed of

N ∼ 5 nodes. The network first underwent a rapid growth stage: link-rewiring

mutations were attempted with average frequency flinks = 0.69, and the rest of the

time was split equally between node duplication and node loss attempts. In Figure

3.1 this stage is shown in the first 90.000 mutation cycles. Here we observe chaotic

behavior in average link density L, and stochastic growth in the system size N.

After initial network growth, a weak constraint on the number of nodes in the sys-

tem was introduced, with threshold at N = 170. In this regime, link mutations

3.1. Network Structure 13

attempts continued to occur with frequency flink, but every node mutation now had

a network-size dependent probability plose ∼ N/2N to be a node loss, thus guid-

ing the size of the network towards N . Our motivation for limiting system size

fluctuations is that the number of transcription factors in real genetic regulatory

networks that we set out to model is function of complex cellular processes, and

a dramatic size reduction or increase the GNR size would no doubt have disruptive

consequences on the scale exceeding the scope of this project.

Nodes with all links removed at the end of a mutation cycle were deleted from the

network in both stages of the CBN evolution, as they were deemed to no longer

"participate" in modelled regulation interactions.

In Figure 3.1, the weak size constraint was introduced when the network first reached

target size N = 170, at approximately 90.000th mutation cycle. Network average

link density in observed to then enter a "steady stage", centered at 〈L〉t ≈ 3.5,

where occasional dips in link density are followed by quick recovery. This ’sta-

tionary phase’ is characteristic of small stochastic mutations ’local’ in scope to the

regulatory network – the interval of interest for this project.

3.1.2 Stationary link density time scale

For a stationary process, the autocorrelation function ρLL(τ) depends only on the

interval length τ and can be calculated as follows:

ρLL(τ) =

n−τ

∑
t=1

(Lt − 〈L〉) · (Lt+τ − 〈L〉)
n
∑

t=1
(Lt − 〈L〉))

(3.2)

Autocorrelation function ρKK(τ) of steady-state link density L in the evolution time

series in Figure 3.1 was computed for intervals τ ∈ [1, 200.000], and observed to

decay exponentially with τ, approximately as e−τ/Tcorr , allowing us to estimate link

density correlation time Tcorr ∼ 5000 mutations. Thus, the stationary phase link

density "memory" is inferred to be of order ∼ Tcorr ∼ 5000 mutations, and a time

scale T ∼ 105 is estimated sufficient to characterize this part of the link density time

series. (Figure 3.2).

14 Chapter 3. Results

FIGURE 3.2: Autocorrelation function ρLL(τ) of the stationary pro-
cess link density from 3.1 for lags: 1 ≤ τ ≤ 200.000 mutations. The
insert shows ρLL(τ) in blue, and approximate fit ∼ e−τ/5000, giving
an estimated stationary process link density time scale ∼ 105 muta-

tions.

3.1.3 Distribution of average link density

Average link density L = L
N , was measured directly from the network matrix after

each mutation cycle. The distribution of P(L) of link density during the stationary

stage of the evolutionary process, i.e. the probability that the average link density of

the network would equal L, was estimated by first time-binning L-values over the

course of the "steady-state" time series. The normalized binned counts were found

to be naturally approximated by a Poisson distribution

P(L) ≈ e−〈L〉
〈L〉L
L!

(3.3)

centered in the time average of the link density 〈L〉 (Figure 3.3).

The approximately Poisson form of P(Lt) is naturally expected for a long-time se-

ries where independent small increment changes in the number of nodes N or/and

number of links, L are accepted at random time intervals.

In this section, a long-time CBN evolution via link rewiring and node duplication/loss

mutations was described as a two-stage process: initial growth of the system takes

3.2. Parameter investigation 15

FIGURE 3.3: Distribution of average link density P(L) for several evo-
lutionary time series, in which link mutations were attempted with
frequency flinks ∈ [0.4, 0.77] is observed to fit the Poisson distribution

approximately.

place in the first stage, characterized by chaotic link density, L and stochastic net-

work size increase. Imposing a weak constraint on the system size fluctuations

brings the network into the stationary link density stage, characterized by approxi-

mately Poisson distribution of network link density P(Lt). The autocorrelaton func-

tion of stationary state link density, ρLL(τ) was found to be naturally approximated

by an exponential e−τ/Tcorr , rendering an estimate for time scale of the stationary link

density phase as ∼ 2 · Tcorr.

3.2 Parameter investigation

3.2.1 System size

Quartets of Canalizing Boolean Networks with weak size constraints imposed at

N = {60, 150, 180, 250} and all other parameters kept the same in each quartet, were

evolved, and their steady state link density, 〈L〉t as well as standard deviation σL

were measured. Values 〈L〉t ± σL were plotted with one of the series parameters,

link mutation attempt frequency flink along the x-axis in Figure 3.4. We observe

16 Chapter 3. Results

FIGURE 3.4: Time average link density 〈L〉t measured directly from
the network matrices, for CBNs with average size ranging from
〈N〉 = 60 to 〈N〉 = 250 is shown as function of flink – the frequency
with which link mutations were attempted during networks evolu-
tion. Error bars are given by standard deviation of link density, σL.
No dependence of link density L on size N of the network was ob-

served.

no steady state link density dependence on the network size, as the corresponding

average link density values with size constraints at all N = {60, 150, 180, 250} are

well within standard deviations of each other.

3.2.2 Mutation acceptance probabilities

Parameters used to characterize Canalizing Boolean network in the numerical sim-

ulation stage of this project were: flink – the average frequency with which link mu-

tations were attempted during the evolutionary process, and pll – the conditional

probability that a given link mutation would attempt to remove (and not add) a

link. flink and pll were useful during the simulation stage, but they provide no infor-

mation on the network dynamics or structure – for example, one cannot deduce if

any mutations got accepted at all during a CBN evolution described only by the sim-

ulation parameters flinks and pll . Therefore we explore a set of dynamic parameters:

acceptance probability for each mutation type.

It was shown in 3.1.3 that the overall mutation acceptance, where all four types of

3.2. Parameter investigation 17

FIGURE 3.5: The types and outcomes of 250.000 mutation cycles of
one Canalizing Boolean network were recorded and time-binned. (a)
Link mutation outcome data approximately fit Poisson distributions,
and corresponding probabilities were estimated from the distribu-
tions mean. (b) Node mutation outcome data approximately fit Pois-
son distributions centered at the corresponding estimated mutation
probabilities. During this CBN evolution link mutations were at-
tempted with frequency flinks = 0.79, and each had conditional prob-

ability of a link loss pll = 0.45.

mutation are included (link removal or addition, or node duplication or loss) is ap-

proximately a Poisson process. We expect the same to be true for all mutation types

individually.

Acceptance probability for each type of mutation was estimated by first recording

the type of each attempted mutation, as well as the result of the corresponding cycle

(mutant network accepted or rejected). This data was obtained by time binning the

activity and count of how many accepted events occurred for each bin, which natu-

rally followed a Poisson distribution. The average of each distribution then allows

us to estimate the corresponding average acceptance probability.

Figure 3.5 shows binned events counts normalized for one mutation cycle, for all

types of mutations and their outcomes for one CBN evolution. The acceptance prob-

abilities of link addition γ+ and link removal γ−, as well as node duplication η+

and node loss η− were estimated, each from the mean of the corresponding Poisson

distribution. Node loss acceptance probability was observed to approximately equal

that of node duplication η− ≈ η+.

18 Chapter 3. Results

FIGURE 3.6: Mutation acceptance probabilities. Mutation acceptance
probabilities estimated for networks evolved with conditional prob-
ability of link loss pll = 0.5 are shown on (a), with pll = 0.4 are
shown (b) and for those evolved with conditional probability of link
loss pll = 0.35 on (c). Frequency of link mutation attempts during
the CBN evolution flinks is shown along the x-axis on all three panels.
Net link addition acceptance probability γ+ − γ− is negative on (a),

equals zero on (b) and is positive on (c).

Figure 3.6 shows the mutation acceptance probabilities estimated for 95 CBNs as

function of link mutation attempts frequency, flink ∈ [0.2, 0.96]. For all parameters,

node loss acceptance probability was observed to approximately equal node dupli-

cation acceptance probability, η+ ≈ η−, and both will occasionally be referred to as

η. Networks exhibited positive net link addition acceptance probability γ+−γ− > 0

if they evolved with low conditional link loss probability, pll = 0.35, as shown on (a),

had zero net link addition acceptance γ+ − γ− = 0, when any attempted link mu-

tation had probability pll = 0.4 of being a link removal in (b) and had negative net

link addition acceptance, when half of link rewiring attempts during its evolution

were link addition, in panel (c):

pll γ+ − γ−

0.35 positive

0.4 zero

0.5 negative

We show later that structures (in 3.2.4) and expression pattern (in 3.4) of Canalizing

3.2. Parameter investigation 19

Boolean networks evolved with positive or zero net link addition differ from those

of networks for which the net probability of link addition acceptance was negative

during the evolutionary process.

3.2.3 Link to node mutation acceptance ratio

FIGURE 3.7: Acceptance probabilities for link rewiring γ± and for
node duplication η mutations estimated from evolution time series
of 25 CBNs. Each γ+, γ−, η triplet is shown with the average link
density L of the corresponding network along the x-axis. We ob-
serve node duplication acceptance probability η is highest for net-
works with largest average link density L. Networks evolved with
higher probability of link rewiring acceptance γ±, have lower aver-

age link density L.

Mutation acceptance probabilities γ± and η estimated in 3.2.2, are plotted on Figure

3.7 with the corresponding link density L along the x-axis. Observe that networks

evolved with high probability to accept node duplications and low probability of

link rewiring acceptance reach highest link densities L. Networks that had lower

L were evolved accepting link mutations more often and had lower probability of

acceptance for node duplication.

This can be understood as follows: when a link addition is accepted, the number

of links is incremented by one: L → L + 1, and the link density of the network

is increased by: ∆L = 1/N. When a node is duplicated, the number of nodes in

20 Chapter 3. Results

the network is incremented by one: N → N + 1, and the number of links: L →

L + ∆l where ∆l is the number of links into plus the number of links out of the

duplicated node, increasing the link density by: ∆L ≈ ∆l/N where and ∆l ≥ 1.

Furthermore, at first approximation, each node duplication attempt is expected to

add, on average, L links to the network: 〈∆l〉 ∼ L, as the node to be duplicated

is selected at random. However, we are not able determine at this point if more

connected nodes are accepted at the same, higher or lower rate than less connected

ones.

To investigate how the relationship between link rewiring and node duplication ac-

ceptance probabilities affects the evolved network structure, we introduce link-to-

node mutation acceptance ratio v, which quantifies how many link mutations are

accepted, on average, for each accepted node duplication:

v =
γ+ + γ−

η
(3.4)

FIGURE 3.8: Link-to-node mutation acceptance ratio v = γ++γ−
η was

estimated from evolution time series of 45 CBNs and plotted along
the y-axis, with frequency of link rewiring attempts flink of corre-
sponding networks on the x-axis. Large values of v correspond evolu-
tionary dynamics driven by link mutations, whereas small v indicate
node duplication/loss was dominant during the network evolution.

3.2. Parameter investigation 21

In Figure 3.8 link-to-node mutation acceptance ratio v was estimated for 45 different

Canalizing Boolean network evolution time series and plotted against the average

frequency of link mutation attempts flink for corresponding networks. We observe

that for large link-to-node mutation acceptance ratio v, small perturbations δ flink

lead to large changes ∆v. For small v ≤ 2, the opposite is true: small changes to

frequency of link mutation attempts δ flink have negligible effect on v. In other words

link-to-node mutation acceptance ratio v was small for networks whose evolution

was dominated by node mutations, whereas for networks formed primarily via link

mutations v ≥ 5 was true.

3.2.4 Approximate average link density model

Figure 3.9 shows average link density as function of link-to-node mutation accep-

tance ratio Lt(v) introduced above in 3.2.3. 45 Canalizing Boolean networks were

evolved with link mutation frequency flink ∈ [0.2, 0.96] and with one of three dif-

ferent conditional probabilities of link loss, pll = {0.35, 0.4, 0, 5}. Link density L =

L/N, where L is the number of links, and N is the number of nodes in the network,

was measured directly from the network matrices during the evolution. Standard

deviation σL was calculated for each Lt series. Mutation acceptance probabilities

for links (γ±), and for nodes (η) were estimated from each networks evolution-

ary time series as described in 3.2.2, and link-to-node mutation acceptance ratio

v = (γ+ + γ−)/η was obtained for each Canalizing Boolean network evolution.

Now the evolution time series of each network can be characterized in terms of how

many link rewiring mutations are accepted, on average, for each accepted node du-

plication.

For all networks, for very small v, where 30% or more of accepted mutations were

node duplication, steady state link density started high and appeared to approxi-

mately follow L ∼ 1/v. In networks evolved with non-negative net link addition

acceptance probability, γ+ ≥ γ−, contributions by link mutations overtook those of

by node duplication as v increased, and the decline in link density was reversed by

L ∼ v dependency at Lmin ∼ γ+/γ−. This behavior is described by the approximate

22 Chapter 3. Results

FIGURE 3.9: Average link density Lt as a function of link-to-node
mutation acceptance ratio v = γ++γ−

η . Standard deviation σL was
calculated directly from the evolutionary time series for each Lt, and

marked with either yellow, red or green shading.
In the vertical region shaded in grey, node mutations are dominant,
in the intermediate region, 2 ≤ v ≤ 5, link mutations contribute as

well. For v ≥ 5, link mutations dominate.
Points in yellow represent Lt of networks evolved with pll = 0.35,
points in green had pll = 0.4, and those in red evolved with pll = 0.5.
Only red data points correspond to CBNs with estimated negative net

link addition probability γ+ − γ− < 0.
The curves in yellow and in green are obtained with the Lt(v, ρ) ap-
proximate model in equation 3.5, the red curve is from equation 3.6.
The horizontal region shaded in gray shows the approximate critical

connectivity zone for the CBNs

model:

L(v, ρ) ≈ v ·
[

1− 1
ρ

]
+

1
v
+ 4ρ where ρ =

γ+

γ−
(3.5)

For networks generated with γ+− γ− < 0, link density did not experience recovery,

and continued to decline as v grew:

L(v, ρ) ≈ 1
v
·
[

1
1− ρ2

]
+ ρ + 1 where ρ =

γ+

γ−
(3.6)

On figure 3.9 the curve in yellow, with pll = 0.35, corresponds to networks evolved

with positive net link addition acceptance probability γ+ − γ− > 0, the green curve,

3.3. Degree Distribution 23

with pll = 0.4, represents systems evolved with γ+− γ− = 0. These curves were ob-

tained with model in equation 3.5. In the region v > 4 the term linear in v dominates

in equation 3.5, reducing it to:

L ≈ v · const (3.7)

The solid curve in red, for pll = 0.5, follows the model for networks with negative

net link addition acceptance probability in 3.6.

We examined structural characteristics and external parameters of evolutionary time-

lines of 45 Canalizing Boolean network evolutions (average link density Lt, number

of nodes N, frequency of link mutations, flink, conditional probability of attempt-

ing a link removal, pll). Dynamic parameters were estimated to describe internal

processes in these networks.

First, we estimated mutation acceptance probabilities for link rewiring γ±, and for

node duplication/loss η± by finding the mean of approximately Poisson distribu-

tions of counts of mutation events and their outcomes. Then we observed that

average link density L was highest for networks with largest node mutations ac-

ceptance probability, and introduced link-to-node mutation acceptance ratio v =

(γ+ + γ−)/η, to quantify how many link rewirings were accepted, on average, for

each accepted node duplication during the network’s evolution. Finally, a approx-

imate toy model for describing the networks average link density in terms of dy-

namic parameters, L(v, γ+
γ−

) was suggested.

3.3 Degree Distribution

3.3.1 Average degree distribution

This section is focused on the topological features of evolved Canalized Boolean net-

works. First, we estimated the average degree distribution during long-time evolu-

tion of a network for which both number of nodes N and number of links L vary. The

in-, out- and total-degree for each node was calculated directly from the network ma-

trix after each mutation cycle. Degree counts were aggregated for each network size

N, and count of network size recurrence was kept. Time series degree count totals

24 Chapter 3. Results

for each N were divided by corresponding network size recurrence count. To enable

comparison of these data for different network sizes, degree counts were divided by

the corresponding number of nodes N. The resulting distributions can be seen in

FIGURE 3.10: The in-degree (a), out-degree (b) and total degree =
in-degree + out-degree (c) counts for CBN with link-to-node muta-
tion acceptance ratio v = 4.3 is shown for four of the 20 most re-
curring network sizes N. Degree counts were aggregated for each
network size N over the evolutionary time series, then divided by the
recurrence count of N, and normalized by the corresponding N. No
significant difference is observed between In-degree and Out-degree
counts. No significant difference is seen between degree distributions
at mode(Nt) = 178 and one at the 20th most frequent network size,

N = 186.

figure 3.10 for networks which had, during their evolution a link-to-node mutation

acceptance ratio v = 4.3 and network size constrained to fluctuate around N = 180

nodes. No significant discrepancies between the in-degree and the out-degree are

seen, characterizing the evolved Canalizing Boolean networks structure as, on aver-

age, in-out degree symmetric or nearly symmetric. Degree frequencies at mode(Nt)

= 179 were observed to not deviate significantly from corresponding frequencies at

the fifth, 10-th and 15-th and 20-th most attained network sizes, therefore we con-

tinue to use only the counts at mode(Nt) to estimate average degree distribution of

CBN long-time evolution.

All three degree distributions (in-degree, out-degree, and total = in-degree + out-

degree) on figure 3.10 exhibit fat tails.

Let’s discuss the degree distributions expected for random boolean networks. Erdos-

Reynei (ER) model [Erdös and Rény, 1960] is the simplest description of a random

3.3. Degree Distribution 25

network with N nodes constructed by connecting each node pair with probability p.

The (ER) network has average connectivity:

K = p(N − 1) (3.8)

and, for large N, an approximately Poisson degree distribution:

P(k) ≈ e−〈k〉
〈k〉k
k!

(3.9)

We expect to see Poisson degree distribution in randomly constructed Boolean net-

works. However, we observe degree distribution with fat tails, and therefore wider

than Poisson for the Canalizing Boolean networks evolved here with step-wise preser-

vation of the expression pattern and logical signal tracing along all three-node long

paths.

FIGURE 3.11: Degree distribution (in-degree + out-degree) P(k) of
networks evolved with v = 5.6 in (a), and with v = 3.4 in (b), and
probability pll = 0.35 in yellow, pll = 0.4 in green, and pll = 0.5 – in
red. Resulting distributions P(k) are approximated with an exponen-

tial, for k ≥ 8.

To investigate the evolved networks degree distribution further, we considered six

evolved Canalizing Boolean networks: three were evolved with approximately 5.6

link rewirings accepted for each node duplication acceptance (v = 5.6), and their

estimated degree distributions are shown on (a) in Figure 3.11. The three networks

26 Chapter 3. Results

whose average degree distributions are plotted on (b) were evolved with v = 3.4.

On both panels, the curve in red evolved with negative net link addition acceptance

probability, in green with γ+ = γ−, and in yellow with positive γ+ − γ−. Only to-

tal degree distribution is shown as in-out-degree symmetry or near symmetry was

observed for degree distribution of these Figure 3.10. All six curves exhibited expo-

nential tails for k ≥ 8:

P(k) ∼ τ · e−τk with : 0.16 ≤ τ ≤ 0.53 (3.10)

FIGURE 3.12: Degree distribution (in-degree + out-degree) P(k) for
networks evolved with link-to-node mutation acceptance ratio v =
0.9 and pll = 0.35 in yellow, pll = 0.4 in green, and pll = 0.5 – in
red. Resulting distributions P(k) are approximated with exponential
curves with means at corresponding 2L, and exhibit short power tail

k ∼ k−α, α ≈ 3 for degrees k > 35.

The exponential tails had the mean approximately equal to double the correspond-

ing networks link density:

〈τ · e−τ·k〉 = 1
τ
≈ 2 · L(v) (3.11)

3.3. Degree Distribution 27

This is expected, as the degree of a node is determined by counting the number of

links coming in and out of it. One link connects two nodes and the average degree:

∑N
0 (kdegree)

N
=

2L
N

= 2 · L (3.12)

Furthermore, on figure 3.12 we show that networks which accept on average one link

rewiring mutation for each accepted node duplication (v ∼ 1) had approximately

exponential average degree distribution, P(k) ∼ τ · e−τK with the mean τ ∼ 1/2L,

where L is the corresponding average link density, and with short power tails P(k ≥

35) ∼ k−α, with α ∼ 3.

Exponential degree distribution was observed in real genetic networks.

FIGURE 3.13:]
Genome-wide distribution of transcriptional regulators (reproduced from [Lee et
al., 2002]). (A) Plot of the number of regulators bound per promoter region. The

distribution for the actual location data (red circles) is shown alongside the
distribution expected from the same set of P values randomly assigned among

regulators and intergenic regions (white circles). At a P value threshold of 0.001,
significantly more intergenic regions bind four or more regulators than expected by
chance. (B) Distribution of the number of promoter regions bound per regulator..

Figure 3.13 was reproduced from [Lee et al., 2002] and shows genome-wide de-

gree distributions of transcription regulation in Saccharomyces cerevisiae. On (A) the

28 Chapter 3. Results

number of regulators bound per promoter region is shown to be exponentially dis-

tributed with a possible power tail. In our model "regulators bound per promoter

region" translates as in-degree, and we find exponential distribution (or exponential-

tailed, depending on the value of v) for both in-degree and out-degree.

(B) Shows the distribution of number of regions bound per regulator, which in our

evolution model is represented by out-degree. The distribution of existing regula-

tory interactions in Saccharomyces cerevisiae in panel (B) resembles a Poisson distribu-

tion, not an exponential or exponential-tailed as found for out-degree in our model

output.

A study of signaling in signaling in Escherichia coli protein reaction network [Ax-

elsen, Krishna, and Sneppen, 2007] found the in-degree distribution of 1938 reaction

nodes (including metabolic, complex-forming, and 812 transcription regulation) to

be exponential while the out-degree for same genetic network followed a power-

distribution .

That our results do not fully replicate the findings of the genome-wide location anal-

ysis in of Saccharomyces cerevisiae [Lee et al., 2002] and of the 1938-node weak giant

component of Escherichia coli genetic network [Axelsen, Krishna, and Sneppen, 2007]

is not unexpected, as our model is focused on regulatory interactions between tran-

scription factors only, a scope much narrower than genome-wide.

The evolved Canalizing Boolean networks did not exhibit degree distribution ex-

pected for random Boolean networks (Poisson), and instead were observed to have

a wider degree distribution with exponential tails. Furthermore, networks accepting

on average one link rewiring mutation for each node duplication had exponential

degree distributions with power tails for k > 35 with exponent α ∼ 3.

Real Genetic Regulatory networks with exponentially distributed in-degree reaction-

nodes had been observed [Lee et al., 2002], [Axelsen, Krishna, and Sneppen, 2007].

Same studies also found the corresponding out-degree to be power-distributed, but

the wider observed out-degree could be due to the wider scope of the studies, which

3.3. Degree Distribution 29

included metabolic, complex-forming and transcription regulation, whereas the Canal-

izing Boolean networks in our project are models for transcription factor-only regu-

lation networks.

3.3.2 Dispersion of average degree distribution

We have discussed the average long-time degree distribution of evolved CBNs, and

found it to be wider than expected for random Boolean networks. Now it would

be of interest to consider a finer structure of this distribution. Fano factor (FF) and

coefficient of variation (CV) are used to quantify dispersion in a distribution with

variance σ2 and mean µ:

FF =
σ2

µ
(3.13)

CV =
σ

µ
(3.14)

From the definition, for exponential distribution, p(k) = µ · e−µ·k, for which σ = µ−1:

CVexponential = 1 and FFexponential =
1
µ

(3.15)

Similarly, for Poisson distribution, with σ2
k = µ:

CVPoisson =
1
√

µ
and FFPoisson = 1 (3.16)

Fano factor and coefficient of variation were computed directly from the degree

counts (used previously to estimate the degree distribution) for approximately 50

evolved CBNs, and plotted as function of link-to-node mutation acceptance ratio

v = (σ+ + σ−)/η on (a) and (c) respectively in Figure 3.14. FF and CV are plotted as

function of average link density L on (b) and (d) respectively.

Fano factor is observed to asymptotically approach FFPoisson = 1 for networks with

v → ∞. For smaller v, Fano factor of the evolved Canalizing Boolean networks

degree distribution grew rapidly. In networks evolved accepting on average one

link mutation for each node duplication (v ∼ 1), Fano factor of degree distribution

30 Chapter 3. Results

FIGURE 3.14: Fano Factor (FF) and coefficient of variation (CV) com-
puted directly from degree counts, and plotted on (a) and (c), as func-
tion of link-to-node mutation acceptance ratio v, which describes the
average number of link mutations accepted for each node duplica-
tion. (b) and (d) show FF and CV respectively as function of average
link density L. FF and CV for Erlang distribution with scale param-
eter µ = 1/2L and shape parameter = v is plotted in on c and c. On
(b) and (c), the region where node mutation acceptance dominates is

shaded in gray.

reaches FFexponential ∼ 2 · L, for where L is average link density of corresponding

time series.

For large v the coefficient of variation reaches just below CV = 0.5. As link-to-node

mutation acceptance ratio lowers CV becomes larger reaching CVexponential = 1 for

degree distributions of CBNs evolved with link mutation and duplication having

equal average acceptance probabilities (with v ≈ 1).

Degree distributions of networks evolved with link-to-node mutation acceptance

ratio v ∼ 1 have Fano factor and coefficient of variation approaching those of expo-

nential distribution with mean µ = 1/2L. However, FF asymptotically approaches

3.3. Degree Distribution 31

the Fano Factor of a Poisson distribution for v→ ∞ and CV ∼ 0.5 at large v

The behavior described above is in part replicated by the Fano factor and coefficient

of variation of the Erlang distribution [“Traffic and Queueing Theory” 2008]. The

Erlang-k distribution is composed of k exponential distributions that are identical

and independent of each other, and is given by:

f (t) = µ
(µt)k−1

(k− 1)!
e−µt (3.17)

k is called the shape parameter, and µ is the scale parameter. Erlang mean is equal

to k/µ, and Erlang variance is k/µ2. The Fano factor and coefficient of variation for

Erlang distribution with shape parameter equal to the link-to-node mutation accep-

tance ratio v, and scale parameter µ = 1/2L, where L is the average link density of

the corresponding network is plotted in panels (b) and (c), respectively, and approx-

imately overlaps the FF and CV calculated for degree distributions of CBNs with

v ≤ 3.

For smaller v, we suggest that the node degree distribution for the evolved CBNs

could be described as the Erlang-k distribution, with the shape parameter equal to

the number of link rewiring mutations per node duplication accepted v. The larger

the kshape = v, the more frequent "customizing" link-rewiring adjustments are ap-

plied to the duplicated nodes, the narrower and less "bursty" the node degree dis-

tribution becomes. As v increases, degree distribution of the CBN transitions from

essentially exponential, as for v ∼ 1 in figure 3.12 to exponential-tailed, as in fig-

ure 3.11 for v > 3. When link rewiring begin to dominate the evolution process

the dispersion of node degree distribution for different net link addition acceptance

probability γ+ − γ− diverges, as seen in (a) and (c) on figure 3.14.

The dispersion of estimated degree distributions for 50 evolved Cananlizing Boolean

networks was studied by evaluating the Fano factor and coefficient of variation of

the degree distributions. The FF and CV calculated for degree distribution of net-

works that accepted between one and three link rewiring for each node duplication

32 Chapter 3. Results

were found to be similar to FF and CV of Erlang-k distribution with the shape pa-

rameter defined by how many link rewiring mutations are accepted per node du-

plication (kshape = v), and the scale parameter inversely proportional to networks

average link density. When link rewiring dominated the evolution, the dispersion

of node degree distribution for different net link addition acceptance probabilities

γ+ − γ− diverged.

The topological characteristics of the evolved Canalizing Boolean networks (degree

distribution and dispersion of the degree distribution) did not match with the ex-

pectation for random Boolean networks (Poisson distribution, and FFPoisson = 1,

CVPoisson = µ−1/2 ≈
√

2K), but described a distribution that is exponential for net-

works evolved with small link-to-node mutation ratio, and exponential-tailed for

networks that accept three or more links rewiring mutations for each accepted node

duplication.

3.4 Expression pattern of the evolved networks

We discussed the structural properties of Canalizing Boolean networks evolved with

preserving continuity of network expression pattern. Let us now shift focus to the

expression pattern.

Figure 3.15 shows expression of transcription factors of the gene regulatory network

of Saccharomyces cerevisiae in response to various stimuli, and was reproduced from

the study of S. cerevisiae regulatory network topology done using the Gene Ontology

Consortium annotations [Axelsen, Bernhardsson, and Sneppen, 2008]. We observe:

1. for all of the stimuli pictured, there was a large component that remained un-

expressed (black component in the center and top left)

2. multiple loci of the network were expressed for the majority of the stimuli.

Whether network hubs with persisting expression pattern as those on 3.15 are essen-

tial for stable gene regulation, or are natural consequence of evolutionary complexity

is an interesting question.

3.4. Expression pattern of the evolved networks 33

Let’s examine the "expression pattern" of Canalizing Boolean networks evolved in

this project. The part of a Boolean network composed of all the nodes that do not

switch in response to a change in the external (or internal) conditions is known as

Frozen component [Kauffman, 1990]. In the framework of our model, the external

conditions are represented by the random values assigned to all nodes at the start

of each mutation cycle – the input state. Changes to internal conditions occur each

time the network structure is replaced by a newly accepted mutant.

FIGURE 3.15: Responses in protein expression of the gene regulatory
network of Saccharomyces cerevisiae to various stimuli. The response
appears to be locaized, with some regions activated in response to al-
most all stimuli, and some locations remain un-expressed throughout
(the black hubs in the center and on the left). The figure is reproduced

from [Axelsen, Bernhardsson, and Sneppen, 2008]

We measured the frozen component directly from the network matrix by counting

all nodes that remain in the same state during a mutation cycle repeated for thirty

34 Chapter 3. Results

randomly generated input states. Testing with thirty random input states was deter-

mined sufficient to verify the stability of node expression state, and increasing this

number did not substantially reduce frozen component size fluctuations. Frozen

node count was normalized by the corresponding network size after each mutation

cycle.

FIGURE 3.16: Frozen component of CBN evolved for 40.000 steps
with link-to-node mutation acceptance ratio v ≈ 4 and positive net
link acceptance, compared to frozen component of random networks.
Frozen component was measured for all newly accepted mutations of
CBN, and for 2 random networks: a random network with the same
N, L and degree distribution P(k) as the accepted CBN mutation, and
a random network with same L and N, but with links distributed
randomly among the nodes. The measured frozen components were
binned with respect to network link density L = L/N, and the aver-
age in each bin plotted as function of L corresponding to the center of
the bin: in blue - frozen component of the accepted network mutants,
in green – frozen component of corresponding random networks with
the same L, N, and P(k) as the CBN mutant, and in yellow: of random

network with same L and N only.

Frozen component was measured for for 40.000 evolution steps for all newly ac-

cepted mutations of a Canalizing Boolean network. For each accepted CBN mutant,

two random networks were generated: one with the same number of links L and

number of nodes N as the accepted mutant, but with the links distributed randomly

among the nodes, and one random network with the same L, N, and same degree

distribution as the evolved CBN. The latter was obtained from the evolved CBN

3.4. Expression pattern of the evolved networks 35

via a local rewiring algorithm proposed by [Maslov, Sneppen, and Zaliznyak, 2004].

Frozen components were measured for both random networks as well.

Figure 3.16 shows the average frozen component as function of average link density

L for a Canalized Boolean network evolved with link-to-node mutation acceptance

ratio v ≈ 4 and positive net link mutation acceptance γ+ − γ− > 0 (in blue). The

frozen component of a random Boolean network with the same degree distribution

as the evolved CBN is shown in yellow. In green is the frozen component for a

random Boolean network, with random degree distribution.

We observe that the average evolved CBN frozen component is larger than the aver-

age frozen component for corresponding random networks. Between 55% and 80%

of all nodes of the evolved CBN in 3.16 are observed to be continuously activated

or continuously off while a mutation cycle is repeated for thirty random states. Fur-

thermore, the frozen component the evolved CBN is higher when link density L is

higher, but the frozen components of random networks appears to stagnate at∼ 20%

for 10 ≤ L ≤ 30.

FIGURE 3.17: Frozen components form figure 3.16, before averaging.
(a) shows only the the portion of nodes that stayed ON when tested
with 30 random input states. (b) shows the share of nodes that stayed
OFF, and (c) shows the total frozen component. Frozen components
of accepted CBN mutants are in blue. Frozen components of ran-
dom networks with the same N, L and degree distribution P(k) as
the evolved CBNs are shown in yellow. In green frozen component

of random networks with random degree distribution.
Frozen-ON component of this evolved network is considerably larger
than the frozen-ON component of the random networks. Frozen com-
ponent of the evolved network grows with link density L, and frozen

components of both types of random network do not.

Figure 3.17 shows the original, un-averaged frozen component values of CBN whose

36 Chapter 3. Results

average frozen component is plotted on figure 3.16. We see that the frozen-ON com-

ponent of random networks is comprised of less than 10% of its nodes, for most

values of link density L, but for evolved networks, the frozen-ON component con-

tains in excess of 40% of all nodes. This parallels the observed activation of large

regions of S. cerevisiae in response to nearly all stimuli [Axelsen, Bernhardsson, and

Sneppen, 2008], as can be seen Figure 3.15 (reproduced from [Axelsen, Bernhards-

son, and Sneppen, 2008]).

Now, let’s consider the frozen component of Canalizing Boolean network evolved

with the same link-to-node mutation acceptance ratio as the network from Figures

3.16 and 3.17 above, but with negative net link acceptance probability.

FIGURE 3.18: Frozen ON (a), frozen OFF (b) and total frozen com-
ponent (c) of CBN evolved with v ≈ 4 and negative net mutation
acceptance probability γ+ − γ− < 0. Frozen components of accepted
CBN mutants are in blue, and for the random networks: in yellow
– for those with the same N, L and degree distribution P(k) as the
corresponding CBNs, in green – for those with only the same L and
N. This evolved CBN frozen component≈ the randomized networks

frozen component

On Figure 3.18 we observe that when γ+−γ− < 0, the frozen component of evolved

Canalizing Boolean networks with v ≈ 4 (same link-to-node mutation acceptance

ratio as for the network in Figure 3.17) nearly equals the frozen components of the

random networks. Note also the relatively low link density 1.5 ≤ L ≤ 4 this network

has.

Let’s further explore how the parameters of Canalizing Boolean network evolution

affect its frozen component. Total frozen component was measured for accepted

mutants of 24 Canalizing Boolean network evolutions and divided by the frozen

3.4. Expression pattern of the evolved networks 37

component of their corresponding randomized networks. The resulting value, that

describes how the frozen component of the evolved network compares to that of the

frozen component of random corresponding networks, on average, during the en-

tire evolution period, was plotted along the z-axis on Figure 3.19, with link-to-node

mutation acceptance ratio along the y-axis, and conditional probability of link loss,

pll along the x-axis. pll = 0.5 corresponds to negative net link addition acceptance,

pll = 0.4 means γ+ = γ−, and link mutations on average add links for pll = 0.3.

FIGURE 3.19: Total frozen component was measured for accepted
mutants of 24 Canalizing Boolean network evolutions, divided by
the frozen component of their corresponding randomized networks,
and plotted along the z-axis, with CBN link-to-node mutation accep-
tance ratio v along the y-axis and probability of link loss pll along
x-axis. pll = 0.5 corresponds to negative net link addition accep-
tance, pll = 0.4 means γ+ = γ−, and link mutations on average add
links for pll = 0.3. Frozen components for evolved networks with
higher link density L are larger than frozen components for random

networks.

We observe that the average frozen component of evolved CBN is considerably

larger than frozen components of corresponding randomized networks for smaller

v and for non-negative average link acceptance probability. Recalling that average

link density L also tends to be higher for smaller v and for γ+ − γ− ≥ 0, we plot

the same average frozen component ratio (CBN mutant frozen component divided

38 Chapter 3. Results

by frozen component of random network) along the y-axis, with CBN average link

density L = L/N along the x-axis on Figure 3.20. We observe that as average link

density of evolved Canalizing Boolean networks grows, so does their average frozen

component, as compared to the frozen components of the corresponding random

networks.

Recall that we have observed earlier, on Figure 3.16 that while the frozen component

of evolved CBN was higher when link density was higher, the frozen components of

random networks remained approximately 20% for 10 ≤ L ≤ 30. Similarly, on 3.18

the frozen components of random networks remain close to constant (containing

approximately 40% of all nodes).

FIGURE 3.20: Total frozen component was measured for accepted
mutants of 24 Canalizing Boolean network evolutions, and divided
by the frozen component of their corresponding randomized net-
works. The resulting value describes how average frozen component
of the evolved network compares to the average frozen component
of the corresponding random networks, and was plotted along the
y-axis, with CBN average link density L along the x-axis. As link
density grows so does the average frozen component of the evolved
CBN, as compared to the frozen components of the corresponding

random networks.

Canalizing Boolean networks evolved in this project were observed to develop large

frozen components, with as many as 80% of all nodes not switching during 30 muta-

tion cycles with different random initial conditions. The more connected the evolved

3.5. Summary 39

CBN, the larger was its frozen component. For random networks, no increase of

frozen component with growing link density was seen. In terms regulatory func-

tion, when the frozen component is large, only a small portion of the network nodes

participate in signalling, by switching their expression state in response to exter-

nal/internal stimuli. [Bornholdt and Sneppen, 1998] observed that Boolean net-

works evolved with the idea that the expression pattern is step-wise preserved ex-

hibit a much more simple expression pattern than random networks with the same

link density.

Let us now discuss the frozen component of the randomized networks in more de-

tail. Recall, that two random networks with the same number of links L and number

of nodes N as the accepted CBN mutant were generated for each frozen compo-

nent calculation, one with the degree distribution P(k) equal to that of the accepted

mutant, the other – with links distributed randomly among the nodes. In Figures

3.17 and 3.18 the number of nodes that did not switch their state during 30 muta-

tion cycles with random input conditions remained nearly identical for both types

of randomized networks.

We observe that the networks evolved with an evolution model that step-wise pre-

serves the expression pattern and traces regulatory signal along all three-node long

paths are more prone to developing large frozen components then random Boolean

networks with the same number of links, number of nodes, and same degree distri-

bution as the evolved ones.

3.5 Summary

We studied structural properties and expression pattern of Boolean networks evolved

using the idea that the expression pattern is step-wise preserved during the evo-

lutionary process as proposed by Bornholdt and Sneppen in 1998 [Bornholdt and

Sneppen, 1998], with addition of logical signal tracing along all three-node long

paths.

The evolved networks were observed to have predictable structure with exponential-

like degree distribution, meanings the degree distribution is wider than the expected

40 Chapter 3. Results

Poisson distribution for random networks. Studies of real transcription factor in-

degree distribution show exponential characteristics. The out-degree observed in

real genetic regulatory network are wider than exponential, but we believe this is

associated with non-transcription factor interactions.

The evolved networks with higher average link density had large frozen-ON com-

ponents, also similar to observations of real transcription networks of Saccharomyces

cerevisiae.

Randomized networks with the same number of nodes, same number of links, and

the preserved degree distribution of the evolved networks, had the same frozen com-

ponents as the fully randomized networks. Both of types of random networks have

considerably smaller frozen components than the corresponding evolved networks.

Thus our stepwise evolution favors large frozen components, in particular when

connectivity is high.

41

Appendix A

Simulation Code

(Python 3.8.2 was used with numpy)

import numpy as np

r = np . random

def add_link (mtx , ands , f _ i n t o , f_from) :

m = np . copy (mtx)

a = np . copy (ands)

m[f _ i n t o , f_from] = np . amax (m[f _ i n t o , :]) + 1

ra = r . randint (3)

i f ra > 1 :

a [f _ i n t o , f_from] = −1

e l i f ra == 1 :

a [f _ i n t o , f_from] = 1

return m, a

def remove_link (mtx , ands , l _ i n t o , l_from) :

m = np . copy (mtx)

a = np . copy (ands)

m[l _ i n t o , m[l _ i n t o , :] > m[l _ i n t o , l_from]] −= 1 # r e d u c e by 1 t h e rank o f l i n k s added a f t e r t h e one b e i n g removed now

m[l _ i n t o , l_from] = 0

a [l _ i n t o , l_from] = 0

42 Appendix A. Simulation Code

return m, a

def lose_node (mtx , inx) :

m = np . copy (mtx) # copy h e r e i s needed , a s t h i s i s done i n s i d e s e a r c h .

l inks_from_inx = np . nonzero (m[: , inx]) [0] # nodes t h a t r e c e i v e l i n k s from inx

i f np . s i z e (l inks_from_inx) > 0 :

for n in l inks_from_inx : # a d j u s t l i n k r a n k s f o r nodes t h a t r e c e i v e d l i n k s from inx , by r e d u c i n g by 1 a l l l i n k r a n k s h i g h e r than c o r r e s p o n d i n g rank from inx

m[n , m[n , :] > m[n , inx]] −=1

for a x i s in range (2) :

m = np . d e l e t e (m, inx , a x i s)

return m

def expand_mtx (mx, inx) :

N = np . shape (mx) [0]

m = np . zeros ((N+1 , N+ 1))

m[N, 0 :N] = np . copy (mx[inx , :])

m[0 :N, 0 :N] = np . copy (mx)

return m

removed : s e l f l i n k o f o r i g i n a l l e a d t o l i n k s from d u p l i c a t e t o o r i g i n a l

def dupl_node (mtx , inx) :

N = np . shape (mtx) [0]

m = expand_mtx (mtx , inx) # add node t o t h e network mat r i x

maxs = np . amax (m, a x i s = 1) + 1

l inks_from_inx = np . nonzero (m[: , inx]) [0] # nodes t h a t r e c e i v e l i n k s from inx

m[links_from_inx , N] = maxs [l inks_from_inx] # a s s i g n l i n k ’ o r d e r rank ’ v a l u e s t o l i n k s from new node = l a r g e s t e x i t i n g rank f o r g i v e n node + 1

i f m[inx , N] != 0 : # Link from d u p l i c a t e t o o r i g i n a l has t o be z e r o

m[N, N] = m[inx , N] # l i n k d u p l i c a t e t o i t s e l f

m[inx , N] = 0 # u n l i n k o r i g i n l from d u p l i c a t e

return m

Appendix A. Simulation Code 43

def l i n k _ t y p e _ l i n k (mtx , p _ l o s e _ l i n k) :

i f r . random () < p _ l o s e _ l i n k :

l ink_ in , l ink_out = np . nonzero (mtx)

i f np . s i z e (l i n k _ i n) > 0 :

n = r . randint (len (l i n k _ i n))

return 1 , l i n k _ i n [n] , l ink_out [n]

return 0 , 0 , 0

f r e e _ i n , f r e e _ o u t = np . where (mtx==0)

i f np . s i z e (f r e e _ i n) > 0 :

n = r . randint (len (f r e e _ i n))

return 2 , f r e e _ i n [n] , f r e e _ o u t [n]

return 0 , 0 , 0

def update (mtx , ands , s t a t e _ o l d) :

s t a t e = np . copy (s t a t e _ o l d) # c o r r e c t e d form some c r a z y s h i t

i f np . any (mtx == 1) :

ranks = np . arange (1 , np . amax (mtx) +1) # c o r r e c t e d from np . a ra ng e (1 , np . amax (mtx))

for rank in ranks : # l o o p through a l l l i n k r a n k s , s t a r t i n g with o l d e s t (1)

l i n k s = np . where (mtx == rank) # ’ c o o r d i n a t e s ’ o f l i n k s with g i v e n rank

for into , frm in zip (l i n k s [0] , l i n k s [1]) :

i f ands [into , frm] == −1:

s t a t e [i n t o] = 0

e l i f ands [into , frm] == 1 :

s t a t e [i n t o] *= s t a t e _ o l d [frm] # i f rank == 1 : i n i t i a l s t a t e == 1

e lse :

s t a t e [i n t o] += s t a t e _ o l d [frm] # i f rank == 1 i n i t i a l s t a t e == e i t h e r 0 or 1

s t a t e [s t a t e > 0] = 1

return s t a t e

44 Appendix A. Simulation Code

def in i t_mut (m, a , n_steps) :

m_st = r . randint (2 , s i z e = np . shape (a) [0])

d_st = np . copy (m_st)

l ink_ in , l ink_out = np . where (m==0)

n = r . randint (len (l i n k _ i n))

d_m, d_a = add_link (m, a , l i n k _ i n [n] , l ink_out [n])

for i in range (n_steps) :

d_st_new = update (d_m, d_a , d_st)

m_st_new = update (m, a , m_st)

i f np . any (m_st_new − d_st_new) :

return m, a

d_st = d_st_new

m_st = m_st_new

return d_m, d_a

def in i t_ntwrk (k , N, nst) :

m = np . zeros ((N, N)) # network m at r i x

a = np . zeros ((N, N)) #and m at r i x

conn = 0

while conn < k :

m, a = ini t_mut (m, a , ns t)

conn = np . count_nonzero (m)/ f l o a t (N)

return m, a

def unlinked (m) :

nodes = np . arange (np . shape (m) [0])

return np . i n t e r s e c t 1 d (nodes [np . a l l (m == 0 , a x i s = 1)] , nodes [np . a l l (m == 0 , a x i s = 0)])

Appendix A. Simulation Code 45

def f i l l _ s t a t e s (mtx , ands , inpt , n) :

s t a t e s = np . zeros ((n , len (inpt)))

s t a t e s [0 , :] = update (mtx , ands , inpt)

for i in range (1 , n) :

s t a t e s [i , :] = update (mtx , ands , s t a t e s [i −1 , :])

return s t a t e s

def f rozens (mx, ax , n) :

n_inpts = 40

N = np . shape (mx) [0]

s t a t e s = np . zeros ((n_inpts *n , N))

for i in range (n_inpts) :

inpt = r . randint (2 , s i z e = N)

s t a t e s [i *n : ((1+ i) * n) , :] = f i l l _ s t a t e s (mx, ax , inpt , n)

f = np . sum(s t a t e s , a x i s = 0)

return np . count_nonzero (f == n* n_inpts) , np . count_nonzero (f == 0)

def l ink_mut_frz (mtx , ands , p_ lose_ l ink , n_steps) :

type_l ink , sink , source = l i n k _ t y p e _ l i n k (mtx , p _ l o s e _ l i n k)

i f type_ l ink == 0 :

return mtx , ands , [−1 , −1]

i f type_ l ink == 1 :

d_mtx , d_ands = remove_link (mtx , ands , sink , source)

e l i f type_ l ink == 2 :

d_mtx , d_ands = add_link (mtx , ands , sink , source)

N = np . shape (ands) [0]

m_state = r . randint (2 , s i z e = N)

d _ s t a t e = np . copy (m_state)

for i in range (n_steps) :

m_state_n = update (mtx , ands , m_state)

46 Appendix A. Simulation Code

d_state_n = update (d_mtx , d_ands , d _ s t a t e)

i f np . any (m_state_n − d_state_n) :

return mtx , ands , [−1 , −1]

m_state = m_state_n

d _ s t a t e = d_state_n

un_linked = unlinked (d_mtx)

i f np . s i z e (un_linked) > 0 :

for a in range (2) :

d_mtx = np . d e l e t e (d_mtx , un_linked , a x i s = a)

d_ands = np . d e l e t e (d_ands , un_linked , a x i s = a)

return d_mtx , d_ands , [−3 , −3]

return d_mtx , d_ands , f rozens (d_mtx , d_ands , n_steps)

def lose_mut_frz (mtx , ands , n_steps , N_min) :

N = np . shape (ands) [0]

i f N < N_min :

return mtx , ands , [−1 , −1]

node = r . randint (N)

d_mtx = lose_node (mtx , node)

d_ands = np . copy (ands)

for a x i s in range (2) :

d_ands = np . d e l e t e (d_ands , node , a x i s)

m_state = r . randint (2 , s i z e = N)

d _ s t a t e = np . copy (m_state)

d _ s t a t e = np . d e l e t e (d_state , node)

for i in range (n_steps) :

m_state_n = update (mtx , ands , m_state)

d_state_n = update (d_mtx , d_ands , d _ s t a t e)

i f np . any (np . d e l e t e (m_state_n , node) − d_state_n) :

return mtx , ands , [−1 , −1]

Appendix A. Simulation Code 47

m_state = m_state_n

d _ s t a t e = d_state_n

un_linked = unlinked (d_mtx)

i f np . s i z e (un_linked) > 0 :

for a in range (2) :

d_mtx = np . d e l e t e (d_mtx , un_linked , a x i s = a)

d_ands = np . d e l e t e (d_ands , un_linked , a x i s = a)

return d_mtx , d_ands , [−3 , −3]

return d_mtx , d_ands , f rozens (d_mtx , d_ands , n_steps)

def dupl_mut_frz (mtx , ands , n_steps) :

N = np . shape (ands) [0]

i _ s t a t e = r . randint (2 , s i z e = (N+1))

node = r . randint (N)

d_mtx = dupl_node (mtx , node)

d_ands = expand_mtx (ands , node)

d_ands [0 :N, N] = np . copy (d_ands [0 :N, node])

i f d_ands [node , N] != 0 : # i f a l i n k from d o u p l i c a t e t o o r i g i n a l found

d_ands [N, N] = d_ands [node , N] # s e l f − l i n k t h e d u p l i c a t e

d_ands [node , N] = 0 # d e l e l t e l i n k from d u p l i c a t e t o o r i g i n a l

d _ s t a t e = r . randint (2 , s i z e = (N+ 1))

m_state = np . copy (d _ s t a t e [0 :N])

for i in range (n_steps) :

m_state_n = update (mtx , ands , m_state)

d_state_n = update (d_mtx , d_ands , d _ s t a t e)

i f np . any (d_state_n [0 :N] − m_state_n) :

return mtx , ands , [−3 , −3]

m_state = m_state_n

d _ s t a t e = d_state_n

return d_mtx , d_ands , f rozens (d_mtx , d_ands , n_steps)

48 Appendix A. Simulation Code

def l ink_mutat ion (mtx , ands , p_ lose_ l ink , n_steps) :

type_l ink , sink , source = l i n k _ t y p e _ l i n k (mtx , p _ l o s e _ l i n k)

i f type_ l ink == 0 :

return mtx , ands

i f type_ l ink == 1 :

d_mtx , d_ands = remove_link (mtx , ands , sink , source)

e l i f type_ l ink == 2 :

d_mtx , d_ands = add_link (mtx , ands , sink , source)

N = np . shape (ands) [0]

m_state = r . randint (2 , s i z e = N)

d _ s t a t e = np . copy (m_state)

for i in range (n_steps) :

m_state_n = update (mtx , ands , m_state)

d_state_n = update (d_mtx , d_ands , d _ s t a t e)

i f np . any (m_state_n − d_state_n) :

return mtx , ands

m_state = m_state_n

d _ s t a t e = d_state_n

un_linked = unlinked (d_mtx)

i f np . s i z e (un_linked) > 0 :

for a in range (2) :

d_mtx = np . d e l e t e (d_mtx , un_linked , a x i s = a)

d_ands = np . d e l e t e (d_ands , un_linked , a x i s = a)

return d_mtx , d_ands

return d_mtx , d_ands

def lose_mutat ion (mtx , ands , n_steps , N_min) :

N = np . shape (ands) [0]

i f N < N_min :

return mtx , ands

Appendix A. Simulation Code 49

node = r . randint (N)

d_mtx = lose_node (mtx , node)

d_ands = np . copy (ands)

for a x i s in range (2) :

d_ands = np . d e l e t e (d_ands , node , a x i s)

m_state = r . randint (2 , s i z e = N)

d _ s t a t e = np . copy (m_state)

d _ s t a t e = np . d e l e t e (d_state , node)

for i in range (n_steps) :

m_state_n = update (mtx , ands , m_state)

d_state_n = update (d_mtx , d_ands , d _ s t a t e)

i f np . any (np . d e l e t e (m_state_n , node) − d_state_n) :

return mtx , ands

m_state = m_state_n

d _ s t a t e = d_state_n

un_linked = unlinked (d_mtx)

i f np . s i z e (un_linked) > 0 :

for a in range (2) :

d_mtx = np . d e l e t e (d_mtx , un_linked , a x i s = a)

d_ands = np . d e l e t e (d_ands , un_linked , a x i s = a)

return d_mtx , d_ands

return d_mtx , d_ands

def dupl_mutation (mtx , ands , n_steps) :

N = np . shape (ands) [0]

node = r . randint (N)

d_mtx = dupl_node (mtx , node)

d_ands = expand_mtx (ands , node)

d_ands [0 :N, N] = np . copy (d_ands [0 :N, node])

i f d_ands [node , N] != 0 : # i f a l i n k from d o u p l i c a t e t o o r i g i n a l found

d_ands [N, N] = d_ands [node , N] # s e l f − l i n k t h e d u p l i c a t e

50 Appendix A. Simulation Code

d_ands [node , N] = 0 # d e l e l t e l i n k from d u p l i c a t e t o o r i g i n a l

d _ s t a t e = r . randint (2 , s i z e = (N+ 1))

m_state = np . copy (d _ s t a t e [0 :N])

for i in range (n_steps) :

m_state_n = update (mtx , ands , m_state)

d_state_n = update (d_mtx , d_ands , d _ s t a t e)

i f np . any (d_state_n [0 :N] − m_state_n) :

return mtx , ands

m_state = m_state_n

d _ s t a t e = d_state_n

return d_mtx , d_ands

def order_inputs (mtx) :

s inks , sources = np . nonzero (mtx)

for s ink in np . unique (s inks) :

ordered_vals = np . arange (np . count_nonzero (s inks == sink)) + 1

r . s h u f f l e (ordered_vals)

mtx [sink , sources [s inks==sink]] = ordered_vals

return mtx

def randomize_smpl (ntwrk , ands_mt , num_steps) : # randomize network w i t h o u t p r e s e r v i n g d e g r e e d i s t r i b u t i o n

ntw = np . copy (ntwrk)

ands = np . copy (ands_mt)

N = np . shape (ntw) [0]

z0 , z1 = np . nonzero (ntw) # c o o r d i n a t e s o f nonzero v a l u e s o f c u r r e n t network

ntw = ntw . f l a t t e n ()

r . s h u f f l e (ntw)

ntw = ntw . reshape (N, N)

ntw = order_inputs (ntw)

Appendix A. Simulation Code 51

ands_values = ands [z0 , z1] # v a l u e s o f ands f o r n o n z e r o s v a l u e s o f c u r r e n t network

r . s h u f f l e (ands_values)

ands [z0 , z1] = 0 # put c u r r e n t ands v a l u e s = 0

ands [np . nonzero (ntw)] = ands_values # a s s i g n s h u f f l e d ands v a l u e s from c u r e n t network t o nonzero v a l u e s o f random network .

return f rozens (ntw , ands , num_steps)

def randomize_presrv_degres (ntw , ands , num_steps) : # randomize network p r e s e r v i n g d e g r e e d i s t r i b u t i o n

m = np . copy (ntw)

matr_a = np . copy (ands)

N = np . shape (ntw) [0]

count = 0

while count < (i n t (1 . 5 * np . count_nonzero (ntw))) :

sources = np . unique (np . nonzero (m) [1])

a = r . choice (sources)

randomly c h o o s e s o u r c e A

s inks_a = np . unique (np . nonzero (m[: , a]))

s i n k s t h a t A l i n k s t o

s inks_a = sinks_a [s inks_a != a]

remove A from s i n k s

i f np . s i z e (s inks_a) > 0 :

b = r . choice (s inks_a)

c h o o s e B from s i n k s (doesn ’ t c o n t a i n A)

sources = sources [(sources != a) & (sources != b)]

d e l e t e B and A from s o u r c e s

sources = np . s e t d i f f 1 d (sources , np . nonzero (m[b , :]))

d e l e t e s o u r c e s t h a t l i n k i n t o B (S o u r c e s t h a t l i n k i n t o A a r e f i n e)

i f np . s i z e (sources) > 0 :

c = r . choice (sources)

c h o s e a s o u r c e C t h a t d o e s ’ nt l i n k t o B and i s n ’ t A or B

52 Appendix A. Simulation Code

s inks = np . unique (np . nonzero (m[: , c]))

a l l s k i n k s from C

s inks = np . s e t d i f f 1 d (sinks , np . nonzero (m[: , a]))

d e l e t e s i n k s t h a t A l i n k s i n t o (d may not be l i n k e d with A, but may l i n k with B)

i f np . s i z e (s inks) >0:

d = r . choice (s inks)

from a l l o w e d s i n k s (not l i n k e d or = t o A or B) s e l e c t D

m[(b , d , d , b) , (a , c , a , c)] = np . array ([0 , 0 , 1 , 1])

s w i t c h A−−>B , C−−>D t o A−−>D and C−−>B

matr_a [(d , b) , (a , c)] = matr_a [(b , d) , (a , c)]

a d j u s t ands mat r i x t o p r e s e r v e p r o t e i n t y p e

matr_a [(b , d) , (a , c)] = 0

count +=1

m = order_inputs (m)

return f rozens (m, matr_a , num_steps)

def prep_mutation (ntw , ands , n_steps , N_min , N_max, p _ l i l o , p _ l i) :

i f r . random () < p _ l i :

return l ink_mutat ion (ntw , ands , p _ l i l o , n_steps)

N = np . shape (ands_network) [0]

i f r . random () < N/2.0/ f l o a t (N_max) :

return lose_mutat ion (ntw , ands , n_steps , N_min)

e lse :

return dupl_mutation (ntw , ands , n_steps)

def boundary_mutation (ntw , ands , n_steps , N_min , N_max, p _ l i l o , p _ l i) :

i f r . random () < p _ l i :

return l ink_mut_frz (ntw , ands , p _ l i l o , n_steps)

N = np . shape (ands_network) [0]

i f r . random () < N/2.0/ f l o a t (N_max) :

Appendix A. Simulation Code 53

return lose_mut_frz (ntw , ands , n_steps , N_min)

e lse :

return dupl_mut_frz (ntw , ands , n_steps)

def s t e a d y _ s t a t e (ntw , ands , n_steps , N_min , N_max, p _ l i l o , p _ l i) :

r e s u l t = np . zeros (8)

ntw , ands , r e s u l t [6 :] = boundary_mutation (ntw , ands , n_steps , N_min , N_max, p _ l i l o , p _ l i)

f r o z e n component computed from network (on , o f f)

netw_size = np . shape (ntw) [0]

r e s u l t [0] = netw_size

r e s u l t [1] = np . count_nonzero (ntw)

t o t a l number o f l i n k s in network

i f np . any (r e s u l t [6 :] < 0) :

r e s u l t [2 :] = −3

return ntw , ands , r e s u l t

r e s u l t [2 : 4] = randomize_presrv_degres (ntw , ands , n_steps)

f r o z e n o f , f r o z e n o f f f o r ne twork randomized with p r e s e r v e d d e g r e e d i s t r i b u t i o n

r e s u l t [4 : 6] = randomize_smpl (ntw , ands , n_steps)

f r o z e n on , f r o z e n o f f , f o r s imp ly randomized network

return ntw , ands , r e s u l t

i n i t i a l v a l u e s

p_l inks = # p r o b a b i l i t y t o a t t e m p t l i n k muta t i on

p _ l i n k l o s s = # c o n d i t i o n a l p r o b a b i l i t y t o c h o s e l i n k l o s s in c a s e o f l i n k muta t i on

depth = #number o f nodes t o t r a c e s i g n a l p a t h s be tween

N_start = # i n i t i a l s i z e o f ne twork

k _ s t a r t = # i n i t i a l c o n n e c t i v i t y

54 Appendix A. Simulation Code

N_mutations = #number o f m u t a t i o n s t o a t t e m p t

N_max = # weak network s i z e c o n s t r a i n t

N_min = #minimum network s i z e

network , ands_network = in i t_ntwrk (k _ s t a r t , N_start , depth)

un_linked = unlinked (network)

for a x i s in range (2) :

network = np . d e l e t e (network , un_linked , a x i s)

ands_network = np . d e l e t e (ands_network , un_linked , a x i s)

print (’ a f t _ d e l _ u n l ’ , np . shape (network))

netw_size = N_start

temp = np . zeros (2)

while (netw_size <N_max) : #grow t h e network t o s t e a d y s t a t e

i f r . random () < p_l inks :

network , ands_network = l ink_mutat ion (network , ands_network , p_ l ink loss , depth)

e l i f r . random () < 0 . 5 :

network , ands_network = lose_mutat ion (network , ands_network , depth , N_min)

e lse :

network , ands_network = dupl_mutation (network , ands_network , depth)

netw_size = np . shape (network) [0]

data = np . zeros ((N_mutations , 8))

for i in range (N_mutations) : # s t a t i o n a r y s t a t e e v o l u t i o n h e r e

network , ands_network , data [i , :] = s t e a d y _ s t a t e (network , ands_network , depth , N_min , N_max, p_ l ink loss , p_ l inks)

55

Bibliography

Axelsen, Jacob, Sandeep Krishna, and Kim Sneppen (Dec. 2007). “Cost and Capacity

of Signaling in the Escherichia coli Protein Reaction Network”. In: Journal of Sta-

tistical Mechanics Theory and Experiment 2008. DOI: 10.1088/1742-5468/2008/01/

P01018.

Axelsen, Jacob Bock, Sebastian Bernhardsson, and Kim Sneppen (Mar. 2008). “One

hub-one process: a tool based view on regulatory network topology”. English. In:

B M C Systems Biology 2, p. 25. ISSN: 1752-0509. DOI: 10.1186/1752-0509-2-25.

Bornholdt, Stefan and Kim Sneppen (1998). “Neutral Mutations and Punctuated

Equilibrium in Evolving Genetic Networks”. In: Phys. Rev. Lett. 81 (1), pp. 236–

239. DOI: 10.1103/PhysRevLett.81.236.

Erdös, P. and A Rény (1960). “On the evolution of random graphs”. In: Publications of

the Mathematical Institute of the Hungarian Academy of Sciences 5 (1), pp. 17–60. DOI:

10.1103/PhysRevLett.81.236.

Kauffman, Stuart A. (1990). “Requirements for evolvability in complex systems: Or-

derly dynamics and frozen components”. In: Physica D: Nonlinear Phenomena 42.1,

pp. 135–152. ISSN: 0167-2789. DOI: https://doi.org/10.1016/0167-2789(90)

90071 - V. URL: https : / / www . sciencedirect . com / science / article / pii /

016727899090071V.

Lee, Tong Ihn et al. (2002). “Transcriptional Regulatory Networks in Saccharomyces

cerevisiae”. In: Science 298.5594, pp. 799–804. ISSN: 0036-8075. DOI: 10.1126/science.

1075090. URL: https://science.sciencemag.org/content/298/5594/799.

Maslov, Sergei, Kim Sneppen, and Alexei Zaliznyak (2004). “Detection of topolog-

ical patterns in complex networks: correlation profile of the internet”. In: Phys-

ica A: Statistical Mechanics and its Applications 333, pp. 529–540. ISSN: 0378-4371.

https://doi.org/10.1088/1742-5468/2008/01/P01018
https://doi.org/10.1088/1742-5468/2008/01/P01018
https://doi.org/10.1186/1752-0509-2-25
https://doi.org/10.1103/PhysRevLett.81.236
https://doi.org/10.1103/PhysRevLett.81.236
https://doi.org/https://doi.org/10.1016/0167-2789(90)90071-V
https://doi.org/https://doi.org/10.1016/0167-2789(90)90071-V
https://www.sciencedirect.com/science/article/pii/016727899090071V
https://www.sciencedirect.com/science/article/pii/016727899090071V
https://doi.org/10.1126/science.1075090
https://doi.org/10.1126/science.1075090
https://science.sciencemag.org/content/298/5594/799

56 Bibliography

DOI: https://doi.org/10.1016/j.physa.2003.06.002. URL: https://www.

sciencedirect.com/science/article/pii/S0378437103008409.

“Traffic and Queueing Theory” (2008). In: Mathematics for Engineers. John Wiley Sons,

Ltd. Chap. 6, pp. 289–361. ISBN: 9780470611449. DOI: https://doi.org/10.1002/

9780470611449.ch6. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.

1002/9780470611449.ch6. URL: https://onlinelibrary.wiley.com/doi/abs/

10.1002/9780470611449.ch6.

Trusina A Sneppen K, Dodd IB Shearwin KE Egan JB (2005). “Functional Alignment

of Regulatory Networks: A Study of Temperate Phages”. English. In: PLoS Comput

Biol. DOI: https://doi.org/10.1371/journal.pcbi.0010074.

https://doi.org/https://doi.org/10.1016/j.physa.2003.06.002
https://www.sciencedirect.com/science/article/pii/S0378437103008409
https://www.sciencedirect.com/science/article/pii/S0378437103008409
https://doi.org/https://doi.org/10.1002/9780470611449.ch6
https://doi.org/https://doi.org/10.1002/9780470611449.ch6
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470611449.ch6
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470611449.ch6
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470611449.ch6
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470611449.ch6
https://doi.org/https://doi.org/10.1371/journal.pcbi.0010074

	Acknowledgements
	Introduction
	Boolean logic and biological networks
	Signal paths

	Methods
	Evolution model
	Mutation cycle
	Network randomization with preservation of degree distribution
	Regulation
	Nested Canalizing Boolean functions
	Regulation types

	Network matrix and regulation matrix
	Visualization of evolved Canalizing Boolean Networks

	Results
	Network Structure
	Link density time series
	Stationary link density time scale
	Distribution of average link density

	Parameter investigation
	System size
	Mutation acceptance probabilities
	Link to node mutation acceptance ratio
	Approximate average link density model

	Degree Distribution
	Average degree distribution
	Dispersion of average degree distribution

	Expression pattern of the evolved networks
	Summary

	Simulation Code
	Bibliography

