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abstract

In this thesis an adaptive and automated pipeline for static novelty detection
of foreign objects and other defectives in food products using X-ray imaging
is demonstrated. First, the fundamental principles underlying the interactions
of radiation withmatter are presented, whereas the primary focus is placed on
the contrast mechanism in X-ray imaging. To gain the necessary knowledge
required to understand feature extractions in images, deep learning with
images and more specially convolutional neural networks are presented. The
unsupervised convolutional autoencoder (CAE) and convolutional variational
autoencoder (CVAE) networks are trained using only normal samples, and
their abilities at reconstructing inputs are utilized to successfully distinguish
between normal and anomalous samples. But, before data are fed to the
neural networks it however needs to be prepared, and the �eld of computer
vision provides many techniques to do so, such as contrast enchantment,
noise reduction and image augmentations.

Collectively these frameworks lay the foundation for the proposed pipeline
as summarized by three main steps: (1) training an unsupervised deep model
able to reconstruct normal samples so precisely as possible; (2) computing
statistical distributions based upon a chosen anomaly score and; (3) threshold
selection. Various anomaly scores are examined and compared, whereas we
learn that the particular choice of anomaly score has a large impact on the
evaluation scores, and the anomaly score that works the best varies from
dataset to dataset. Moreover, the anomaly ratio have also been showed to
have an impact on the scores, as the precision decrease with decreasing ratio.

Identifying anomalous chocolate bar from normal ones are achieved with a
top accuracy of 99% using a 50% anomaly ratio by utilizing the zero-mean nor-
malized cross-correlation (ZNCC), operating with only 10 individual choco-
late bars and 22 separate scans.

Using only 50 individual potatoes with 540 distinct scans, whereas 196 scans
are of inserted needles and 156 scans of arti�cial created hollow hearts, we �nd
that the models repeatedly have an easier time detecting needles compared
to hollow hearts. Utilizing the structural similarity index measure (SSIM)
and a 50% anomaly ratio yields the top accuracy of 89%.

Additionally, the novelty pipeline was tested using a di�erent potato dataset
consisting of only 45 unique perfect potatoes and 66 potatoes with natural
hollow heart disease, also given a 50% anomaly ratio. This scan data are
inherently di�erent from the former datasets, and the generative model
was found to have a more di�cult time separating anomalous from normal
samples, but by using the SSIM a top accuracy of 87% are achieved.
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MATHEMAT I CA L NOTAT ION

Throughout this thesis, the following conventions regarding mathematical
notation are being assumed, unless stated otherwise:

General

I The base-10 logarithmic scale is implicitly referred to as log = log10. The
natural logarithm, i.e. the base-𝑒 , is explicitly written as log𝑒 = ln.

I The expectation or mean value of a variable 𝑋 is denoted by E
[
𝑋
]
.

Sets

I Writing 𝑥 ∈ X = {𝑥1, 𝑥2, ..., 𝑥𝑛} means that 𝑥 is an element of the set X,
and X consists of the listed elements 𝑥1, 𝑥2, ..., 𝑥𝑛, 𝑛 ≥ 1. Alternatively, the
notation X = {𝑥 (𝑖) }𝑛𝑖=1 = {𝑥 (1) , 𝑥 (2) , ..., 𝑥 (𝑛) } is an equivalent denotation.

I The closed interval from 𝑎 to 𝑏 is denoted by [𝑎, 𝑏], and consists of all real
numbers 𝑥 ∈ R satisfying 𝑎 ≤ 𝑥 ≤ 𝑏.

I The half-open interval from 𝑎 to not including 𝑏, is denoted by [𝑎, 𝑏), and
consists of all real 𝑥 ∈ R satisfying 𝑎 ≤ 𝑥 < 𝑏.

Vectorial Quantities

I Vectorial quantities are represented in non-italic and bold font, such as v.
I The space of real-valued vectors of length 𝑛 is denoted by R𝑛 , while the

space of real𝑚 × 𝑛 matrices is denoted R𝑚×𝑛 given𝑚 rows and 𝑛 columns.
I It is assumed that x𝑛×1 is a column vector , i.e.;

x =


𝑥1
...

𝑥𝑛

 .
The transpose of x is denoted by x𝑇 and returns the row vector:

x𝑇 =
[
𝑥1 · · · 𝑥𝑛

]
,
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i.e. x1×𝑛 . It is also often written with parentheses as x =
(
𝑥1, ..., 𝑥𝑛

)
.

I An identity matrix of size 𝑛 is the 𝑛 × 𝑛 square matrix, I𝑛×𝑛 , with 1’s on
the main diagonal and zeros elsewhere, i.e.:

I𝑛 =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1


.

If the size of the identity matrix is immaterial and can be determined by
the context it is simple denoted by I.

Dot Product

I A dot · between vectors denotes a scalar product. The algebraic de�-
nition of the dot product of two vectors a =

(
𝑎1, 𝑎2, ..., 𝑎𝑛

)𝑇 ∈ R𝑛 and
b =

(
𝑏1, 𝑏2, ..., 𝑏𝑛

)𝑇 ∈ R𝑛 is de�ned as;

a𝑇 · b =

𝑛∑︁
𝑖=1

𝑎𝑖𝑏𝑖 = 𝑎1𝑏1 + 𝑎2𝑏2 + ... + 𝑎𝑛𝑏𝑛,

where Σ denotes summation, 𝑛 is the dimension of the vector space, and 𝑖
the 𝑖th component.

Hadamard Product

I A � between two vectors denotes the Hadamard product (or Schur product),
i.e. the element-wise product between two vector;

s � t =


𝑠1
...

𝑠𝑛

 �

𝑡1
...

𝑡𝑛

 =

𝑠1𝑡1
...

𝑠𝑛𝑡𝑛

 ,
such that

(
𝑠 � 𝑡

)
𝑖
= 𝑠𝑖𝑡𝑖 , given s𝑛×1 and t𝑛×1.

I For two matrices of same dimension A𝑚×𝑛 and B𝑚×𝑛 , it follows that the
Hadamard product is a matrix of same dimension as the operands, with
elements given by

(
𝐴 � 𝐵

)
𝑖 𝑗
= (𝐴)𝑖 𝑗 (𝐵)𝑖 𝑗 , i.e.:

A � B =


𝑎11 · · · 𝑎1𝑛
...

. . .
...

𝑎𝑚1 · · · 𝑎𝑚𝑛

 �

𝑏11 · · · 𝑏1𝑛
...

. . .
...

𝑏𝑚1 · · · 𝑏𝑚𝑛

 =

𝑎11𝑏11 · · · 𝑎1𝑛𝑏1𝑛
...

. . .
...

𝑎𝑚1𝑏𝑚1 · · · 𝑎𝑚𝑛𝑏𝑚𝑛

 .
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Vector Norms

I The ℓ2 norm is explicitly written as ‖ · ‖2. For a vector x ∈ R𝑛 it is de�ned
by:

‖x‖2 ≡
( 𝑛∑︁
𝑖=1

𝑥2𝑖

)1/2
,

and is also called the Euclidean norm, as it corresponds to the distances
between two points in Euclidean space.

Di�erentiation

I The Nabla operator ∇ is written as

∇ =

[
𝜕

𝜕𝑥1
· · · 𝜕

𝜕𝑥𝑛

]𝑇
,

and its length depends on the number of inputs it is applied to. Component
𝜕𝑖 = 𝜕/𝜕𝑥𝑖 denotes the partial derivative of quantity 𝑥𝑖 .

I Given a 𝛼 ∈ R𝑛 vector, 𝜕𝜑 denotes the gradient of scalar �eld 𝜑 in the
𝑛-dimensional parameter space;

∇𝜑 (𝛼) =


𝜕𝜑

𝜕𝛼1
...
𝜕𝜑

𝜕𝛼𝑛


.

Here, 𝜕𝜑/𝜕𝛼𝑖 represents the partial derivative of 𝜑 w.r.t. 𝛼𝑖 . In particular,
the following short-hand notation is de�ned

∇𝛼𝑖𝜑 ≡ 𝜕𝜑

𝜕𝛼𝑖
.

Other

I Given two functions 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 the resulting function
composition is denoted 𝑔 ◦ 𝑓 : 𝑋 → 𝑍 and de�ned by (𝑔 ◦ 𝑓 ) (𝑥) =

𝑔
(
𝑓 (𝑥)

)
,∀𝑥 ∈ 𝑋 .

I The convolution operation between two matrices is marked by a ∗.
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Part I

SE T T ING THE STAGE



0 PROLOGUE

“ You kinda want to look for the anomalies. You don’t actually
want to look for the expected behaviour.

—Keith Rabois ”
Manufactured products undergoing testing are commonly known as device
under tests (DUTs). For every product line the interest typically lies in detect-
ing DUTs that are defective, whereas a product can only either pass or fail.
The DUT will likely pass if it is performing in accordance with the speci�c
product speci�cations and fail otherwise.

In the machine learning terminology this falls under the problem of binary
classi�cation. However, training such a binomial classi�er turns out to be im-
practical as (well-de�ned) samples from both normal and defective products
are required. On one hand, defective products are typically hardly present in
the speci�c product line. Furthermore, there might be many di�erent types
of malfunctions in a speci�c product that could lead to failure, thus leading
to the easily violated problem of collecting enough samples of all possible
variations within defective products. On the other hand, products that ful�ll
the particular speci�cations are typically better well-de�ned and easier to
obtain.

Hence, it leads us to consider alternative models able to lean exclusively from
DUTs that are to pass. Subsequently, in the inference stage the model should
be able to reject defective samples that look immensely di�erent compared to
normal representations. Likewise, it is a requirement that samples living up
to the speci�cations should pass. Nevertheless, a training paradigm for such
a problem scenario is non-trivial, and till today’s date there is a scarcity of
deep learning oriented approaches utilized for (successfully) anomaly/novelty
detections [12].

;

The work in this thesis is a contribution to a larger research collaboration
termed Adaptive X-Ray Inspection System (AXIS) that consists of four di�erent
facilities. Each partner from the industry has their own part of the solution
to deliver: Magnatek Aps are responsible for delivering the X-ray source;
Qtechnology A/S for producing the camera; and Newtec Engineering A/S for
building the machine and integrating the software. On the other hand, the
Niels Bohr Institute is responsible for the software solution, which motivates
the focus on robust and automate detections of defective DUTs, particularly
in food inspection. Especially, there is much interest in achieving automated

2

https://magnatek.dk/
https://qtec.com/
https://www.newtec.com/


solutions that are able to detect if there exists any type of foreign objects
in speci�c products without knowing beforehand what objects they are
searching after.

X-ray imaging are increasingly used in the food production industry for
quality control inspection. X-ray provide a non-destructive testing as the
radiation dosage does not permanently alter the inspected non-living product
or objects. Therefore, X-rays makes it possible to quantitatively examine
both internal and external factors of an DUT, hence locating mistakes before
it is too late.

In some (rare) events foreign objects can be found inside food wrappers
or the product themselves, and if sold on the market, such situations can
possible result in bad customer experience or legal issues. Therefore, the
detection of foreign objects is crucial, and the aim of this thesis is testing
a possible deep learning scenario able to automate food control processes.
Speci�cally, using X-ray images of particular chocolate bars and potatoes, the
presence of foreign objects and other possible defects are predicted. These
two food products are considered separately and their datasets have each
of their challenges. The deep anomaly detection algorithms are trained
using only data consisting of X-ray images of normal DUTs (without added
foreign objects or other defects). Next, given a new unseen X-ray image, the
algorithms predicts it either as normal or abnormal (with foreign objects or
other malfunctions).

This thesis is roughly structured in two parts. In the �rst part the theoretical
backgrounds needed to set the foundation for the rest of the thesis are re-
viewed. In chapter § 1 the basic principles of radiography and X-ray imaging
are introduced. Chapter § 2 introduces the concepts of deep learning with
special focus on computer vision tasks, in particular to convolutional neural
networks (CNNs) that combines the two �elds. Chapter § 3 serves as a formal
de�nition to the terminology and methodology of detecting abnormalities in
machine learning oriented tasks.

In the second part the pipeline behind possible automated solutions to novelty
detection are demonstrated on the case studies — chocolate bars and potatoes.
The theoretical framework behind the deep learning algorithms used for the
novelty detections are examined in chapter § 4; the so-called convolutional
autoencoder (CAE) and convolutional variational autoencoder (CVAE). Subse-
quently, the data of the case studies and the necessary theoretical background
for preprocessing it are explored in chapter § 5. Having reviewed the theoret-
ical background and prepared the data the novelty pipeline are implemented
using the case studies, whereas the results are investigated in chapter § 6.
Finally, chapter § 7 serves as a wrap-up on the work demonstrated in this
thesis and possible future investigations.

The code related to this thesis is available at:

https://github.com/alinasode/novelty-detection-xray/

3
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1X-RAY CONCEPTS

At present X-ray is utilized in a wide range of �elds including physics and
industry. In this chapter the physical principles of X-ray are introduced with
special attention on X-ray imaging. In section § 1.1 the X-ray energy range
are introduced. Following in § 1.2 the behaviour of X-rays when they interact
with matter is outlined as it is the most relevant concept needed to understand
contrast di�erences in X-ray images. Subsequently, two non-destructive X-
ray detector types typically used for X-ray imaging in inspection of food
products and industrial products are sparsely described in section § 1.3.

1.1 light as photons

In

Figure 1.1: Light as an electromag-
netic wave. The electric �eld, mag-
netic �eld and wave propagation
direction are all perpendicular to
each other. Image adapted from:
Wavelength, Frequency, Amplitude
and phase – de�ning Waves! Tech-
playon (2017).

order to capture an image the particular camera requires some sort of mea-
surable energy, speci�cally electromagnetic waves or "light". In this context
"light" represents electromagnetic radiations in all part of the electromagnetic
spectrum, cf. Fig. 1.2.

Electromagnetic waves are waves from electric and magnetic �elds that oscil-
late perpendicular to each other and to the direction of propagation [31], cf.
Fig. 1.1. In the perspective of quantum mechanics, electromagnetic waves are
described as a massless entity known as the photon. The electric and magnetic
�elds oscillates sinusoidally and the distance that the electromagnetic wave
propagates during one cycle is known as the wavelength, 𝜆𝛾 . The wavelength
of the incident photon is connected to its frequency, 𝜈𝛾 , by [54]

𝜆𝛾 =
𝑐0
𝜈𝛾
, 𝑐0 ' 2.998 · 108ms−1, (1.1)

where 𝑐0 is the speed of light in vacuum. Furthermore, the energy associated
with a single photon is

𝐸𝛾 =
ℎ𝑐0
𝜆𝛾

= ℎ𝜈𝛾 , (1.2)

whereℎ denotes Planck’s constant,ℎ ' 6.626·10−34 J s. The energy ismeasured
in electron volt, equal to 1 eV ' 1.602 · 10−19 J.

From eq. (1.2) it can be deduced that 𝐸𝛾 ∝ 𝜆−1𝛾 ∝ 𝜈𝛾 , which means the shorter
the wavelength, the higher the frequency and the higher the energy. Consider
the electromagnetic spectrum in Fig. 1.2. X-rays have high frequency, hence
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Figure 1.2: The electromagnetic
spectrum given di�erent fre-

quencies and wavelengths that
are related by eq. (1.1). The X-
rays lies in the the domain of
[0.01, 10] nm. Image from [54].

short wavelength, and in particular the wavelength of X-rays lies in the range
of 0.01 nm up to 10 nm, which approximately corresponds to the energy range
of 124 keV down to 124 eV. Due to their high penetrating ability, the hard
X-ray region with energies typically spanning in [10, 124] keV is utilized in
industrial and medical radiography [54].

1.2 interactions of photons with matter

When X-rays propagates though matter they lose a certain amount of energy
dependent on the absorption behaviour of the speci�c media. This section
serves to explaining the relation between the energy of the photon and
the absorption in the materials since such reductions of energy is the main
principle of X-ray imaging. Sections § 1.2.1-§ 1.2.4 summarises the major
mechanics that cause attenuation of an incident photon beam, whereas in
§ 1.2.5 the attenuation contrast in X-ray imaging is explained.

1.2.1 Photoelectric Absorption

When

Figure 1.3: In the photoelectric
absorption a photon, 𝛾 , is fully
absorbed by an electron, e−, re-

sulting in the ejection of the
electron, leaving the atom in an
ionized state. Image from [54].

an incident photon is absorbed completely by a tightly bound orbital
electron (i.e. when 𝐸b . 𝐸𝛾 ) that results in the electron being ejected with
kinetic energy 𝐸e− = 𝐸𝛾 − 𝐸b, an photoelectric absorption is said to have
occurred, cf. Fig. 1.3 [43, 59]. Here, 𝐸b denotes the electron shell binding
energy. This process results in the atom being ionized, and by subsequently
emission of a characteristic radiation the vacancy in the inner shell can be
�lled by an outer shell electron, such that the atom can return to its neutral
state.

These interactions are non-trivial, but a rough approximation for the probabil-
ity of photoelectric absorption per atom is proportional to 𝑍𝑛/𝐸3.4𝛾 , where 𝑍
is the atomic number and 𝑛 ∈ [4, 5] [43]. From this relationship it follows that
the photoelectric process is more dominant for lower energies, and absorber
materials of high atomic numbers absorbs photons to a larger degree.
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1.2.2 Incoherent Compton Scattering

Compton scattering

Figure 1.4: Compton scattering.
The incident photon, 𝛾 , transfer
a portion of its energy to the re-

coil electron, e−, whereas the path
of the scattered photon, 𝛾 ′, with
energy ℎ𝜈𝛾 ′ < ℎ𝜈𝛾 is de�ected

by some angle. Image from [54].

occurs when an incident photon is de�ected from its
original path by an interaction with a loosely bound orbital electron, i.e.
when 𝐸b � 𝐸𝛾 , see Fig. 1.4. Due to the interaction the electron gains kinetic
energy and is ejected from the atom, while the photon loses energy but
continues to travel through the material along an altered path with a longer
wavelength [54]. The event is known as an incoherent scattering as the energy
transfer depends on the angle of scattering. Furthermore, the probability of
occurrence of Compton scattering depends on the number of free electrons
available, thus the probability increases with increasing atomic number [43].

1.2.3 Pair Production

In

Figure 1.5: Pair production in the
nuclear �eld. An incident photon,
𝛾 , interacts with the nucleus and
its total energy is transformed into
and electron, e−, and a positron, e+.
Image from [54].

order to produce a positron and an electron the energy of the incident
photon must exceed 𝐸𝛾 ≥ 2𝑚e𝑐

2
0 = 1.02MeV as the rest energy of an electron

and positron is𝑚e𝑐
2
0 = 0.51MeV [43, 61]. Such process is known as a pair

production in the nuclear �eld, and with the annihilation of the photon a
electron-positron pair is created, see Fig. 1.5. The e�ect of pair production
only becomes signi�cant at even larger energies — well outside the scope of
the X-ray range.

1.2.4 Coherent Rayleigh Scattering

Rayleigh scattering

Figure 1.6: Rayleigh scattering. An
incident photon, 𝛾 , interacts with
the atom and changes its direction
without any loss of energy. Image
from [54].

is a coherent process that is caused by an interaction of
an incident photon with bounded orbital electrons, and typically occurs only
for low photon energies [43, 54]. The process neither excites nor ionizes
the atom, but the photon simply changes its direction with no change in
internal energy, cf. Fig. 1.6. Compared to that of the photoelectric e�ect the
contribution of coherent scattering is negligible for X-ray imaging [61].

1.2.5 Attenuation Contrast

Given the intensity of an incident monoenergetic photon beam, 𝐼0, the atten-
uation of radiation after the beam penetrates a layer of material with mass
thickness 𝑥 is described by Lambert-Beer’s law [54, 59]

𝐼 (𝑥) = 𝐼0e−𝜇𝑥 . (1.3)
LAMBERT-BEER ’ S L AW

Here, the linear attenuation coe�cient is material dependent and consists of
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all possible di�erent types of absorption and scattering interactions, i.e. the
total sum [61]

𝜇 = 𝜇pe + 𝜇comp + 𝜇pp + 𝜇cs, (1.4)

where 𝜇pe, 𝜇comp, 𝜇pp and 𝜇cs are the contributions from the photoelectric
e�ect, Compton scattering, pair production and coherent scattering, respec-
tively. Hence, attenuation is simply the reduction of the number of photons
that arrive at the detector. It follows that 𝜇 decreases with increasing pho-
ton energy, and 𝜇 increases with increasing atomic number and increasing
density of the absorbing material, 𝜌 .

The

Figure 1.7: Log-log plot of the lin-
ear attenuation coe�cient versus

photon energy between pure carbon
(𝑍 = 6) and pure iron (𝑍 = 26). The
absolute maximum seperation be-

tween the two curves occurs around
12 keV. Values from the database

compiled by [23] have been used.

attenuation coe�cients can be used for selecting an optimal radiation
energy that will produce the largest contrast between speci�c materials in
X-ray imaging. Consider for example Fig. 1.7 where the linear attenuation
coe�cients of pure iron and carbon have been plotted. The energy at the
largest di�erence in attenuation between the two materials will result in the
greatest contrast in the X-ray image.

Since 𝜇 is dependent on the density of the medium the normalized density
independent mass attenuation coe�cient is often used for convenience [43]

𝜇𝑚 =
𝜇

𝜌
. (1.5)

As for the linear attenuation coe�cient described by (1.4), the total mass
attenuation coe�cient also consists of separate mass attenuation coe�cients
for the di�erent processes outlined in § 1.2.1-§ 1.2.4. Depending on the photon
energy and the absorber material the partial contributions varies.

Consider

Figure 1.8: Log-log plot of the mass
attenuation coe�cients for pure
iron (𝑍 = 26) with contributions
sources of attenuation. The gray
shaded area spans the hard X-ray

region of [10, 124] keV. Values from
the XCOM (Berger and Hubbell,
2010) database have been used.

for example the mass attenuation coe�cients for iron plotted as
a function of photon energy in Fig. 1.8. It can be seen from the plot that at
relative low photon energies (< 100 keV) the photoelectric e�ect dominates.
At intermediate energies (100 keV - 10MeV) the Compton scattering con-
tributes the most. In general, the contribution from Rayleigh scattering is
small compared to the other processes. At even larger energies (> 10MeV)
the pair production dominates, however, since the industrial X-ray radio-
graphy is typically done in the hard X-ray region, the contribution from
pair production becomes irrelevant. Hence, the photoelectric absorption and
Compton scattering accounts for the majority of attenuation encountered in
the application of food inspection.

Obvious food products does not consists of a single chemical element. Nev-
ertheless, the mass attenuation coe�cient of mixtures or compounds of
elements can be obtained according to the simple additivity [43]

(𝜇𝑚)c =
∑︁
𝑖

𝑤𝑖 (𝜇𝑚)𝑖 , (1.6)

where𝑤𝑖 is the weight fraction of the 𝑖th atomic element.
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1.3 x-ray imaging

The images described in section § 5 have been obtained either by an area
scintillator detector or a line detector, and the intuitive working mechanic
behind them are sparsely described in § 1.3.3 and § 1.3.4, respectively. Common
for both detector based methods are that incoming X-rays are converted
into visible light though the detectors by use of a speci�c detector material
introduced in § 1.3.2. Nevertheless, �rst and foremost the principle behind
how X-ray are produced and how they are characterized are described in
§ 1.3.1.

1.3.1 Generation of X-Rays

An

Figure 1.9: Schematic illustration of
an X-ray tube. In order to direct the
produced X-rays the anode is tilted
by a certain angle. Image source:
X-rays. ARPANSA.

X-ray tube is a vacuum tube whose main components are a negatively
charged cathode and a positively charged anode [54], see Fig. 1.9. The electrons
emitted by the cathode are accelerated through a potential di�erence towards
the anode whereas they interacts with this target material. There are two
types of interactions that produces X-ray radiation.

An incident electron may collide with an electron within an atom and dislodg-
ing it, hence leaving a vacancy that is �lled by another orbital electron from a
higher energy level. This process results in the production of a characteristic
X-ray photon whose energy depends on the atomic number of the target
material. This interaction can only occur if the incoming electron has kinetic
energy larger than the binding energy of the orbital electron it collides with.

As

Figure 1.10: Bremsstrahlung. Inci-
dent electrons are subjected to the
columnb �eld of an atomic nucleus,
resulting in the emission of a photon.
Image source: Bremsstrahlung Radia-
tion. PhysicsOpenLab (2017).

incoming electrons penetrate the anode material and pass close to an
atomic nucleus they are de�ected and deaccelerated, resulting in a loss of
kinetic energy that is converted into a photon. This type of electromagnetic
radiation is known as bremsstrahlung since the path of charged particles are
being bended. As illustrated on Fig. 1.10, the amount of energy lost can vary
from zero to the total incident energy [54]. Electrons striking near the center
are subjected to a greater interaction resulting in the producing of photons
with higher energy, whereas electrons hitting further away produces lower-
energy photons. The probability of electrons hitting the outer nuclear �eld
zones is largest, and so the emission of lower-energy photons are dominating.

The
Figure 1.11: Simulated X-ray emission
spectra at di�erent tube voltages for
pure tungsten given 55° target an-
gle and �ltered by 1mm aluminium.
The bremsstrahlung spectrum has a
maximum photon energy that corre-
sponds to the energy of the incident
electrons. Simulations generated
with SpekPy.

metallic anode plate is typically a materiel of high atomic number and
high melting point, such as tungsten with 𝑍 = 74. Fig. 1.11 shows simulated
X-ray emission spectra for pure tungsten. The sharp peaks at certain energies
corresponds to the characteristic X-rays associated with tungsten, whereas
the continuous X-rays are due to bremsstrahlung. The lower-energy photons
have been �ltered out by applying a thin metal plate, which entails that the
average energy of the emitted spectra has lowered — such change is known
as beam hardening. The soft X-rays (< 10 keV) are easily absorbed, re�ected,
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Figure 1.12: Behaviour of the
bremsstrahlung spectrum emitted

by an X-ray tube when modify-
ing its current while keeping the

voltage constant (left) and voltage
while keeping the current constant
(right). Images adapted from [82].

or scattered, but cannot penetrate the samples for imaging purposes; hence
they are being absorbed by such an pre-�ltering in order to increase the
quality of recorded images. Increasing the tube voltage, which electrons are
accelerated though, in�uence the production of characteristic X-ray and the
peak intensities. As the voltage di�erence between the anode and cathode
limits the maximal energy of created X-rays, the peak value of the emission
spectrum implicitly corresponds to the tube voltage.

Consider the illustrations in Fig. 1.12 for which the e�ects of varying the tube
current and voltage is shown. The overall energy of an X-ray beam is refereed
to as the quality. The photon distribution, and thus the quality, is a�ected by
a number of parameters such as the atomic number of the target material,
changes in the �ltration, and most importantly of all, the tube voltage. As the
tube voltage determines the penetrating ability of the X-ray beam, increasing
the voltage results in the X-ray beam having higher mean energy, causing a
beam hardening e�ect that shifts the energy spectrum.

On the other hand, the quantity refers to the number of photons produced
during an exposure, or the intensity. A number of factors in�uences the
quantity, however the two most important ones are the tube current and
the exposure time — but not the voltage. The exposure time is simply the
duration of X-ray production. Hence, as either the current or exposure time
increases the number of electrons striking the target increases, thus the
photons generated in the X-ray tube increases. I.e. in summary the voltage
controls the contrast and the current the amount of X-rays.

1.3.2 Scintillators

Scintillator is a material that convert high photon energy into optical light.
The scintillator completely absorbs the energy of the incident photon, re-
sulting in exciting atoms of the material. Subsequently, when the atoms
de-excites, photons with energy within the optical region of the electromag-
netic spectrum are emitted. Hence, in this way the incident X-ray has been
converted into visible light.

Scintillators are employed in indirect X-ray detection methods. First, the
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incident photons are converted to optical light using a scintillator. However,
the emitted light is far to weak to be detectable, and thus needs to pass
though a charged coupled device (CCD). Here, the optical light is converted
into current which in turn can be transferred into digital signals that can
form the X-ray images.

1.3.3 Area Scintillator Detectors

One dataset consisting of speci�c chocolate bars, which is further presented
in section § 5.2, have been acquired by an X-ray set-up with a 2D area scintil-
lator detector borrowed from Newtec Engineering A/S. The set-up requires
scanning objects to be motionless and stationary during the process. It how-
ever provides easy real-time access to adjust the settings for the voltage and
current, reducing the time needed for calibrating. After manually calibrating
for optimal settings, the machine are capable of producing images of high
quality and resolution. The machine are capable at operating in the tube
voltage range [35, 105] kV and tube current range [0.35, 7.50]mA, and given
a maximal tube power 525W.

1.3.4 Line Detectors

Besides area scintillator detector, industries frequently employs line detectors
due to their fast image acquisition and data processing.

In the typically set-up utilized in food inspections, the scanning object moves
past a stationary placed line-camera by means of an in-line conveyor belt
under a constant velocity. In fast succession, the camera only captures one
image line at a time, �nally producing a continuous 2D image by "stitching"
them together, cf. Fig. 1.13.

However, it is all a matter of the right settings. The line rate of the camera,
i.e. the number of rows sampled each second, should be adjusted to match
the current speed of the conveyor belt. If they are synchronized, precise and
meaningful 2D analysis of the images can be made. If not, e.g. if the line rate
is �xed but the speed of the conveyor belt varies, the object image will either
be elongated or compressed [36].

ButeoX

The second dataset presented in section § 5.2 consists of potatoes with and
without needles and holes. A former Master student at Niels Bohr Institute
have recorded this data on the X-ray prototype-machine known as ButeoX
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Figure 1.13: Schematic illustra-
tion of the principle of image

acquisition using line-scan cam-
eras. Image source: Vision Doc-

tor, Line scan camera basics (2019).

which was located at the H.C. Ørsted Institute in Copenhagen. The ButeoX is
a line scanner, whose main components are the conveyor belt, X-ray source
and line detector.

The set-up consist of the conveyor belt which is mounted inside a steel case.
In combination with a scintillator, the line detector is placed in the area in
between the belt layers, i.e. beneath the scanning samples. The X-ray source
produces X-rays with a Tungsten anode tube and the unit is placed above
the conveyor belt.

The installed X-ray source operates within voltages [40, 80] kV and with a
maximal power of 100W. As for the camera during the scanning, the line
rate was set to 1000Hz.

The ButeoX always returns images with a width of 410 pixels, but have
arbitrary lengths that naturally varies depending on the scanning object. The
pixel size of the line detector is 0.8mm. The speed of the conveyor belt can
then be calculated by taking the product of the resolution and line rate, i.e.
the maximum speed during the scanning is 0.8mm · 1000Hz = 0.8m s−1.

1.4 case studies: potatoes and chocolate

As brie�y mentioned, X-ray images of potatoes and a brand-name chocolate
bar are the objectives considered in this thesis. During the X-ray scanning
the tube voltage and current needs to be explicitly chosen, with primary
focus on increasing the contrast between food product and foreign objects.
And although raw images have been forwarded to be examined, it is still
considerable to explicitly investigate the absorption of the primary elements
found in the organic products.

Ideally, eq. (1.6) should be used to investigate the expected spectrum from
a potato or chocolate bar. However, since neither food products have been
chemically analysed, the actual chemical compositions are not known.

Nevertheless, the primary compounds of potatoes are starch (C6H10O5), water
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(H2O), and a negligible amount of protein, and where the typically starch
content of the total potato mass is around 15 − 25%. To the potatoes are
added foreign objects mainly composed of iron (𝑍 = 26). Fig. 1.14 shows the
mass attenuation for starch and water within the relevant domain for the
ButeoX. Depending on the starch content the attenuation of potatoes will
change slightly, and carving holes in the potatoes reduces the thickness of
the potato. Nonetheless, the signi�cant higher mass attenuation coe�cient
for iron makes it easy to detect foreign objects inside the food product, while
the hollow hearts are a bit more problematic but can still be detected.

The

Figure 1.14: Log-log plot of the mass
attenuation coe�cients for pure iron
(𝑍 = 26) and compounds of water
and starch. Values from the XCOM
(Berger and Hubbell, 2010) database.

chocolate bars primary consists of milk chocolate (∼ 66%), and its re-
maining content mainly of wheat �our and sugar. The chemical composition
of these factory made chocolate bars are way harder to analyse compared
to potatoes, however its primary elements are carbon (𝑍 = 6), hydrogen
(𝑍 = 1), nitrogen (𝑍 = 7) and oxygen (𝑍 = 8). The foreign objects added to
the chocolate bars are mainly composed of iron, lead (𝑍 = 82) and aluminium
(𝑍 = 13). On Fig. 1.15 the mass coe�cients for each of these elements are
plotted within the range relevant for the area scintillator detector, cf. section
§ 1.3.3. Again, it is worth noticing the distances between the elements in the
organic chocolate bar and the elements the non-organic foreign objects are
composed of.

Hence,

Figure 1.15: Log-log plot of the mass
attenuation coe�cients for pure iron
(𝑍 = 26), lead (𝑍 = 82), aluminium
(𝑍 = 13), carbon (𝑍 = 6), hydrogen
(𝑍 = 1), nitrogen (𝑍 = 7), and oxygen
(𝑍 = 8). Values from the XCOM
(Berger and Hubbell, 2010) database.

the attenuation coe�cient explains why X-rays pass freely thoughma-
terials of low atomic number, while objects of much higher atomic numbers
absorbs the incident photons. That is, the very large attenuation coe�-
cients of the elements found in foreign objects, leads to photon starvation as
most photons are absorbed and only an insu�cient number of them can be
measured; this is essentially what gives the contrast di�erence in the X-ray
imaging. Hence, dense areas, such as foreign objects, will appear darker on
the X-ray images compared to the food products which will appear in shades
of gray. Air, that have even lower densities than the scan objects, will show
up as almost completely white.
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2DEEP LEARN ING FOR COMPUTER
V I S ION

This Most considerations in this chapter
follow two great textbooks, one
by M. A. Nielsen: Neural Networks
and Deep Learning [56] and another
by I. Goodfellow, Y. Bengio, and A.
Courville: Deep Learning [27].

chapter summarizes some of the concepts in computer vision, deep
learning and convolutional neural network required to understand the later
chapters of this thesis. It touches upon the intuitions, concepts as well as
speci�c tools used in the algorithms described in chapter § 4 and forward.

Section § 2.1 presents an introduction to the �eld of deep learning, and show-
cases the fundamental ideas, concepts and architecture behind neural net-
works.

In section § 2.2 the �elds of computer vision and deep learning are combined,
such that the concept and architecture of convolutional neural networks can
be introduced.

2.1 introduction to deep learning

Deep learning is one of the most popular sub�eld of machine learning that
deals with di�erent types of arti�cial neural networks (ANNs). Deep learning
can perform task such as image classi�cation, object detection, image seg-
mentation and image restoration — common for all such tasks is that deep
learning uses large neural networks to teach machines to automate tasks.

A dataset is split into subsets called training set, testing set and validation set.
During training, the model is given the training set and the aim is for the
model to gradually learn from those training examples. The goal of training is
to learn enough on the training data so that the model can make predictions
about the testing data. The validation set is typically used to provide an
unbiased evaluation of a given model �t.

Many techniques and practices are applied in training neural networks and
this section seeks to give an overview about them. The main concepts of
ANNs are introduced in § 2.1.1, while some types of most popular activation
functions are outlined in § 2.1.2. Back-propagation algorithms are used during
training of neural networks and an overview is outlined in § 2.1.3. Loss
functions and optimizers are necessary for compiling the model and are
discussed in § 2.1.4 and § 2.1.5, respectively.
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2.1.1 Artificial Neural Networks

ANNs
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Figure 2.1: Illustration of how two
biological neurons might connect:
The terminal axon of the �rst neu-
ron connects to the dendtries of the
second target neuron and commu-
natates togehter through the synapse.
Inputs (stimuli) are taken through
the dendrites, and upon �ring of an
action potential (which �res above
some certain threshold), the pre-
synaptic ("sending") neuron sends a
signal down its axon to its terminal
axons. Here, the signal is transmitted
and outputted to the post-synaptic
("receiving") neuron, which in turn
decides whether or not to �re its
own action potential [1, 45]. Illustra-
tion modi�ed from Motifolio.

are computational models inspired by animal’s central nervous systems
(in particular the brain) and their functionalities. Inspired by biological neural
networks, ANNs consists of arti�cial neurons (processing units), which are
interconnected by edges. Imitating how two biological neuronsmight connect
through a synapse (cf. Fig. 2.1), the processing units of the ANN are made up
of inputs and outputs units. Based on some internal weighting system, the
input unit receive various forms and structures of information, and using an
assigned activation function the neural network (NN) attempts to learn about
the information presented in order to produce an output unit [56].

Consider the mathematical model shown in Fig. 2.2. The simplest and the
basis forming unit of an ANN is the so-called perceptron, which simply can
be understood as anything that takes multiple inputs and produces one
output. Terminology following Fig. 2.1, the perceptron can be thought of
as the cell body. Based on the strength at a synapse (𝑤𝑖 ), the signals that
travel along the axons (𝑥𝑖 ) from a pre-synaptic neuron and onto the dendrites
of a post-synaptic neuron interact multiplicatively (𝑤𝑖𝑥𝑖 ). The dendrites
carry the signal to the cell body where they all get summed. Given some
activation function, neurons can then �re along its axon, whereas the output
𝑦 represents the output axon [71]. ANNs are thus inspired by mechanisms
of biological neural networks, but they are in no way identical and their
similarities are very far fetched.

As mentioned above, when inputs are transmitted between neurons, respec-
tive weights are applied to them. The weights are essentially re�ecting how
important an input is, and the larger the value, the more in�uence the partic-
ular input has on the neuron’s output. Typically, an optimal bias is added
to the product of inputs and weights for a perceptron. The bias is simply a
constant value, and depending on the assigned weight it is utilized to o�set
the result. With other words; the bias can be thought of as how �exible the
perceptron is.

Hence, the activation function takes the sum of weighted input plus the
bias term, 𝑏, as arguments and returns the predicted output, 𝑦. Thus, the
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activation function is fed with the following linear term [1, 56]

𝑦 = 𝑓
(
x ·w𝑇 + 𝑏

)
= 𝑓

( 𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏
)
, (2.1)

where x =
(
𝑥1, ..., 𝑥𝑛

)𝑇 is the feature input vector and w =
(
𝑤1, ...,𝑤𝑛

)𝑇 the
weights. There are multiple activation functions that can be used in order to
make a computation non-linear, and a discussion follows in § 2.1.2.

So far, only a single perceptron has been considered for an ANN. Subse-
quently, amulti-layer perceptron (MLP) consists of multiple interlinked layers,
called hidden layers, stacked between the input layer and the output layer
[66], see Fig. 2.3. Each layer is made up of a set of nodes, where each node is
fully connected to all nodes in the previous layer. Furthermore, the nodes in
a single layer are completely independent and do not share any connections
to each others.

It is now possible to transform eq. (2.1) into a generalized formula for a
fully connected neural network (FCNN), [56]. Let u𝑙 =

(
𝑢𝑙1, ..., 𝑢

𝑙
𝑝𝑙

)
denote the

outputs for layer 𝑙 for 𝑝𝑙 number of nodes. Furthermore, let the input layer
be initialized by setting 𝑢0𝑗 = 𝑥 𝑗 ,∀𝑗 ∈ {1, 2, ..., 𝑛}, where 𝑗 denotes a node. For
each neuron 𝑗 in layer 𝑙 , the weighted input, i.e. the intermediate quantity, is
calculated according to

𝑧𝑙𝑗 = w𝑙
𝑗 · u𝑙−1 + 𝑏𝑙𝑗 , ∀𝑗 ∈ {1, 2, ..., 𝑝𝑙 }, (2.2)

where 𝑏𝑙𝑗 denotes the bias and w𝑙
𝑗 =

(
𝑤𝑙𝑗1, ...,𝑤

𝑙
𝑗𝑝𝑙−1

)
the weights for layer

𝑙 and node 𝑗 . I.e. the notation for the weight 𝑤𝑙𝑗𝑝𝑙−1 should be read as the
connection from the 𝑝 th neuron in the (𝑙 − 1)th layer to the 𝑗 th neuron in the
𝑙 th layer. Then, an activation function 𝑓𝑙 (·) is applied and the neuron outputs
the following entity to the subsequent nodes

𝑢𝑙𝑗 = 𝑓𝑙
(
𝑧𝑙𝑗
)
, ∀𝑗 ∈ {1, 2, ..., 𝑝𝑙 }. (2.3)

This transformation occurs at all nodes in the (𝐿 − 1) hidden layers of the
FCNN, and the output layer will thereafter yield u𝐿 .
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2.1.2 Activation Functions

The

Figure 2.4: The logistic sigmoid
and hyerbolic tangent func-
tions and their derivatives.

single layer perceptron is e�ectively simply a dot product between an
input layer and a set of learning weights, which means that it is actually
just a linear transformation, cf. eq. (2.1). In order to make complex problems
easier to solve it is therefore important to use non-linear activation functions.
This is owned by the fact that any linear combination of linear functions
collapses down to be a linear function [81].

Depending on the problem at hand, there exists a wide variety of di�erent
activation functions that can be used. In principle, the activation function
decides if an entire node gets to send data or not, and therefore the particular
choice of activation type is crucial. Moreover, they have a signi�cant impact
on the learning speed of the network. The non-linear activation functions
that have been used in the implementations in § 6 are the sigmoid, hyperbolic
tangent, recti�ed linear units (ReLU) and leaky ReLU activations, cf. Figs.
2.4-2.5.

All types of sigmoid functions saturates at either ends. Speci�cally, inmachine
learning it is the logistic sigmoid function that is referred to, and this non-linear
transformation is described by [66, 71]

𝜎 (𝑥) = e𝑥
e𝑥 + 1 =

1
1 + e−𝑥 ,

d
d𝑥

(
𝜎 (𝑥)

)
= 𝜎 (𝑥)

(
1 − 𝜎 (𝑥)

)
.

(2.4)LOG I ST I C S I GMO ID AC-
T I VAT ION FUNCT ION

This function takes in any real-valued input and will render outputs in [0, 1].
In the limit 𝑥 → ∞ the sigmoid function converges to 1, and towards 0 in the
case of 𝑥 tending towards −∞, and so its values saturate at either end. This
yields the undesirable property that its gradients rapidly converges towards
and reaches zero1

1. The sigmoid function is di�eren-
tiable ∀𝑥 . Evaluating the limits for

the gradient of the sigmoid function
yields: lim𝑥→∞ 𝜎 (𝑥)

(
1 − 𝜎 (𝑥)

)
=

lim𝑥→−∞ 𝜎 (𝑥)
(
1 − 𝜎 (𝑥)

)
= 0. Fur-

thermore, simply by looking at its
graph in Fig. 2.4, moving away from

the origin 𝑥 = 0 at either sides
returns smaller and smaller val-
ues for its gradient at a fast rate.

. This makes networks slow to train because the gradients
control how rapidly the network changes during training (as elaborated
in § 2.1.3). But, if gradients are so small (or zero), such that the change a
weight undergoes is negligible, and hence making the network stuck at a
particular measure of loss, then little to no training can take place. This issue
is commonly known as the vanishing gradient problem, and leads to poor
network performance.

The hyperbolic tangent activation is a non-linear continuous function that
produces outputs in the scale of [−1, 1] for all 𝑥 ∈ R, as it is given by [71]

tanh(𝑥) = e𝑥 − e−𝑥
e𝑥 + e−𝑥 ,

d
d𝑥

(
tanh(𝑥)

)
= 1 − tanh2(𝑥) .

(2.5)HYPERBOL I C TANGENT
ACT I VAT ION FUNCT ION

Compared to eq. (2.4), the derivatives of the hyperbolic tangent are steeper,
however this activation also su�ers from the vanishing gradient problem.
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Another commonly used activation, that does not saturate in R+, is ReLU.
The ReLU is simply a max operation between zero and an input. Hence,
compared to the sigmoid function, which has negative 𝑥 values in addition
to positive ones, the ReLU function only has positive 𝑥 values [66, 71]:

𝑓 (𝑥) =
{
0, for 𝑥 ≤ 0
𝑥, for 𝑥 > 0 = max (0, 𝑥),

d
d𝑥

(
𝑓 (𝑥)

)
=

{
0, for 𝑥 ≤ 0
1, for 𝑥 > 0 = max (0, 1).

(2.6) RELU ACT I VAT ION FUNC-
T ION

The ReLU has a constant gradient of 1 for positive 𝑥 , however on the other
end for negative 𝑥 it has zero gradients. Since the activation is constant in
the region R+ it is therefore more resilient over for the vanishing of gradients.
However, its zero gradient in the region R− poses another problem known
as the zero gradient problem, whereas data will belong to "dead" ReLU nodes
that will not contribute to updates of the weights during training.

In order to compensate for this problem a small positive linear term in 𝑥 is
often added to give a non-zero slope at all points. This way, the leaky ReLU
activation remedy the problem by adding 𝛼 = 0.01 [71]:

𝑔(𝛼, 𝑥) =
{
𝛼𝑥, for 𝑥 ≤ 0
𝑥, for 𝑥 > 0 = max (𝛼𝑥, 𝑥),

d
d𝑥

(
𝑔(𝛼, 𝑥)

)
=

{
𝛼, for 𝑥 ≤ 0
1, for 𝑥 > 1 = max (𝛼, 1).

(2.7) L EAKY RE LU ACT I VAT ION
FUNCT ION

Leaky ReLU thus entails some leakage for 𝑥 ∈ R−, which counteracts nodes
being inactive in this region, as was the problem with the ReLU. This leads
to its gradient being non-zero in R.

ReLU

Figure 2.5: The ReLU and leaky ReLU
(given 𝛼 = 0.01) functions and their
derivatives.

and leaky ReLU are usually employed in the intermediate layers of a
FCNN. ReLU is cheap to compute, and in [46] it was found that compared
to using sigmoid or tangent activations, using ReLU activations greatly ac-
celerates the convergence of the optimizer. The characteristic S-shape of
the sigmoid makes it useful at converting a real-value into one that can be
interpreted as a probabilistic score in the interval [0, 1]. The hyperbolic
tangent squeezes outputs in the domain [−1, 1] and is zero-centred. Because
of these properties and depending on what the NN should return, the sigmoid
or tangent usually serves as the last activation function in a FCNN [27].

2.1.3 Backpropagation

The data �ow of the processes explained until now in § 2.1.1, where the output
is computed by the input, is know as forward propagation. Upon initialization
of a NN, the estimated output is typically far away from the desired output
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ingly. Illustration inspired by [81].

and so the weights of the model will be far from ideal. In order to reduce this
error, the weights and biases are adjusted and updated based on the impact
each had on the current error. Such process is know as backward propagation
[81], where the data �ow has been reversed (going from output unit to input
units), so that the weights and biases are recalculated for each activated node.

Henceforth, the NN is executed in two distinct modes during the training
phase, see Fig. 2.6. A loss function, whose role is elaborated in § 2.1.4, is
de�ned in the forward propagation; one best �t for evaluating the speci�c
model for what it should achieve. A backpropagation (BP) algorithm works
by evaluating the loss at the output and then propagating it back into the
network, for which weights are updated in order to minimize the error.

In order to get successful results from a FCNN, some large amounts of training
data is usually required. Accordingly, in practice the dataset is typically
divided into smaller pieces, called mini-batches. During training, each mini-
batch will in turn be loaded and fed to the network, where the BP algorithm
will calculate the gradients and update its weights [81]. This procedure is
repeated until all samples in the training set have been used once; then one
epoch of training is said to have been executed.

Under the BP algorithm, gradients are calculated of each parameter w.r.t.
to the di�erentiable loss function. This is what makes the NN "learn" by
combining it with a gradient-based optimizer (that are introduced in § 2.1.5).
But why gradients? Gradients (rate of changes) gives how one quantity
changes in relation to another quantity. Hence, using the chain-rule from
calculus2

2. The single-variable chain rule
written in nested form is given by:

𝑧′ =
(
𝑓 ◦ 𝑔

) ′(𝑥) = 𝑓 ′
(
𝑔(𝑥)

)
𝑔′(𝑥),∀𝑥 ,

where 𝑓 and 𝑔 are di�erentiable
functions [57]. Alternatively, by in-
troducing an intermediate variable
𝑦 = 𝑔(𝑥) it can instead be written
in Leibniz’s notation: d𝑧

d𝑥 = d𝑧
d𝑦

d𝑦
d𝑥 .

That is; variable 𝑧 is dependent
on variable 𝑦, which in turn is de-
pendent on variable 𝑥 , and hence
𝑧 depends on both 𝑥 as well as 𝑦.

the in�uence of a certain input, on systems that are composed of
multiple functions, can be found. As an example illustrating such gradient
�ow, consider Fig. 2.7 [66]. The forward pass (indicated by green arrows)
calculates 𝑧 as a function 𝑓 (𝑥,𝑦) using the input variables 𝑥 and 𝑦. In turn, in
the backward pass (indicated by red arrows) the following operations occurs:
By receiving the gradient of the loss function, w.r.t. 𝑧, i.e. 𝜕L/𝜕𝑧, then the
gradients of 𝑥 and 𝑦 on L can be calculated using the chain-rule as indicated
in the �gure.

Following this logic, the error in each layer of a FCNN can be described and
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Figure 2.7: Gradient �ow during
back-propagation.

related to its weights and biases [7, 56]. Suppose the error in layer 𝑙 and
neuron 𝑗 is de�ned by

𝛿𝑙𝑗 ≡
𝜕L
𝜕𝑧𝑙
𝑗

. (2.8)

Here 𝛿𝑙 =
(
𝛿𝑙1, ..., 𝛿

𝑙
𝑝𝑙

)
denotes the vector of errors associated with layer 𝑙 . If

the layer in question is the output layer, s.t. 𝑙 = 𝐿, eq. (2.8) can be re-expressed
using the chain-rule and eq. (2.3) according to

𝛿𝐿𝑗 =
𝜕L
𝜕𝑢𝐿

𝑗

𝜕𝑢𝐿𝑗

𝜕𝑧𝐿
𝑗

=
𝜕L
𝜕𝑢𝐿

𝑗

𝜕𝑓𝐿
(
𝑧𝐿𝑗
)

𝜕𝑧𝐿
𝑗

, (2.9)

for an activation function 𝑓𝐿 (·) at layer 𝐿. The �rst term of the right-hand
side is a measure of how the loss change w.r.t. the 𝑗 th output, whiles the
second term is a measure of how fast the activation function changes w.r.t. the
weighted input to the node. Eq.

u
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Figure 2.8: Backpropagation of er-
rors through the network. Once
the forward pass is evaluated
for all output units, the errors
𝛿
(𝑙+1)
𝑘

,∀𝑘 ∈ {1, ..., 𝑝𝑙+1} can be propa-
gated backwards. 𝛿 (𝑙+1) corresponds
to the errors that are propagated
back from layer (𝑙 + 1) to layer 𝑙 .

(2.9) can easily be rewritten in vector-based
form as

𝛿𝐿 = ∇𝑢L �
𝜕𝑓𝐿

(
𝑧𝐿
)

𝜕𝑧𝐿
, (2.10)

with ∇𝑢L =
(
𝜕L/𝜕𝑢𝐿1 , ..., 𝜕L/𝜕𝑢𝐿𝑝𝐿

)
. By back-propagating 𝛿𝐿 through the

FCNN, the error for any arbitrary layer 𝑙 can be derived according to

𝛿𝑙 =

( (
w𝑙+1)𝑇 · 𝛿𝑙+1

)
�
𝜕𝑓𝑙

(
𝑧𝑙
)

𝜕𝑧𝑙
, (2.11)

where w𝑙+1 is the weight matrix for the (𝑙 + 1)th layer, interconnecting layers
𝑙 → (𝑙 + 1). I.e. given the error 𝛿𝑙+1 and applying the transpose weight
matrix, the error are moved backward through the network, see Fig. 2.8. By
then taking the element-wise product with the node in layer 𝑙 , it moves the
error through the activation function, �nally resulting in 𝛿𝑙 . This way, by
computing 𝛿𝐿 using eq. (2.10), and subsequently applying eq. (2.11) contin-
uously, errors are successfully computed all the way through the network:
𝛿𝐿 → 𝛿𝐿−1 → ... → 𝛿0.
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In particular, the error quantities for the parameters of the network are
characterised by the gradient of the loss, s.t. component-wise, ∀𝑗 ∈ {1, ..., 𝑝𝑙 }
and ∀𝑘 ∈ {1, ..., 𝑝𝑙−1}, they are described by [7, 56]

𝜕L
𝜕𝑏𝑙
𝑗

= 𝛿𝑙𝑗 and 𝜕L
𝜕𝑤𝑙

𝑗𝑘

= 𝑢𝑙−1
𝑘
𝛿𝑙𝑗 . (2.12)

2.1.4 Loss Functions

During the learning process the purpose is to minimize the error for each
epoch and this is done using some optimization strategy, which is introduced
in cf. § 2.1.5, aiming to minimize the cost function. Compared to the loss
function, that is used for a single training example, the cost function is the
average loss over the entire training dataset [27]. That is, the error comes
from the loss function, which essentially is an objective function that can
inform the network how well it is doing during training. Hence, it acts as a
guide and tells the optimizer if it is moving in the right direction to reach
the global minimum. Therefore, depending on what an ANN should achieve,
the speci�c choice of loss function has to be very selective in order to gain
the optimum result.

The Kullback-Liebler (KL) divergence is a measure of how a probability dis-
tribution di�ers from another distribution over the same variable, i.e. it
measures how similar two distributions are. Let 𝑃 (𝑥) and 𝑄 (𝑥) be two prob-
ability distributions of a discrete random variable 𝑥 de�ned on the same
probability space X. That is, both 𝑃 (𝑥) and𝑄 (𝑥) sums up to 1, also 𝑃 (𝑥) > 0
and𝑄 (𝑥) > 0 for any 𝑥 ∈ X. Then, the KL-divergence of 𝑃 from𝑄 is de�ned
by [15]

𝐷KL
(
𝑃 ‖𝑄

)
=
∑︁
𝑥 ∈X

𝑃 (𝑥) log 𝑃 (𝑥)
𝑄 (𝑥) . (2.13)D I SCRETE KUL LBACK-

L I EB L ER D I V ERGENCE

With other words; it is the expectation of logarithmic di�erence between 𝑃
and 𝑄 w.r.t. 𝑃 , i.e.33. Recall the de�nition of the ex-

pected value for any function. Let Ω
be the �nite state space of all possi-
ble outcomes and let 𝑔 : Ω → R be
a probability distribution de�ned on
Ω. Then, for any function 𝑓 : Ω → R,

the expected value of 𝑓 under dis-
tribution 𝑔 is computed as E

[
𝑓
]
=

E𝑥∼𝑔
[
𝑓 (𝑥)

]
=

∑
𝑥 ∈Ω 𝑔(𝑥) 𝑓 (𝑥).

Hence, setting 𝑔(𝑥) = 𝑃 (𝑥) and
𝑓 (𝑥) = log 𝑃 (𝑥) − log𝑄 (𝑥), then

for some �xed 𝑄 (𝑥) eq. (2.13) can be
rewritten in terms of expectations.

:

𝐷KL
(
𝑃 ‖𝑄

)
= E

[
log 𝑃 (𝑥) − log𝑄 (𝑥)

]
. (2.14)

A KL-divergence of zero indicates that the distributions are identical, and the
larger the value, the more the distributions di�ers from each others. Do note
that the KL-divergence satis�es 𝐷KL

(
𝑃 ‖𝑄

)
≥ 0, and only 𝐷KL

(
𝑃 ‖𝑄

)
= 0 if,

and only if, 𝑃 (𝑥) = 𝑄 (𝑥) [7].

The KL-divergence has its origins in information theory [47], and so it is a
way to quantify exactly how much information is lost when approximating a
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distribution. By using the de�nition of information entropy4

4. The information entropy of a
discrete set of probabilities 𝑝 is
𝐻 = −∑

𝑖=1 𝑝 (𝑖) log𝑝 (𝑖); also
known as Shannon entropy [67].

, eq. (2.13) can
be re-expressed as the di�erence between two types of entropies:

𝐷KL
(
𝑃 ‖𝑄

)
=
∑︁
𝑥 ∈X

𝑃 (𝑥) log 𝑃 (𝑥)−
∑︁
𝑥 ∈X

𝑃 (𝑥) log𝑄 (𝑥) = 𝐻
(
𝑃,𝑄

)
−𝐻

(
𝑃
)
, (2.15)

where 𝐻
(
𝑃
)
is the entropy of 𝑃 and 𝐻

(
𝑃,𝑄

)
the cross-entropy of 𝑃 and 𝑄 .

Hence, the KL-divergence can be thought as a measure of entropy increase
when 𝑄 (𝑥) is used to approximate the true distribution 𝑃 (𝑥).
The KL-divergence is non-symmetric in the sense that𝐷KL

(
𝑃 ‖𝑄

)
≠ 𝐷KL

(
𝑄 ‖𝑃

)
.

In deep learning the objective is to approximate the true distribution 𝑃 of the
target variables w.r.t. the input features, given some approximate distribution
𝑄 . Accordingly, since the KL-divergence is non-symmetric it can be done in
two ways; by minimizing the forward KL-divergence (𝐷KL

(
𝑃 ‖𝑄

)
), or minimiz-

ing the backward KL-divergence (𝐷KL
(
𝑄 ‖𝑃

)
). For instance, in section § 4.2

the KL-divergence is used as part of the loss function in order to measure
how closely two probability densities are related.

2.1.5 Optimizers

In

v0
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v4

Figure 2.9: Visulaisation of level
curves for a simple convex loss
function in v ∈ R2. Given the initial
parameters v0, as the parameter
position moves downhill in the level
curves, the parameters are then
iteratively updated untill it reaches
the extrema — in turn succesfully
minimizing L(v).

BP algorithms, di�erentiable loss functions are evaluated, and it is the
optimizers job to update the network’s weights in such a way that that
the training loss is going to be minimized. The most common optimization
techniques lies in the family of gradient descent (GD). Below the GD, stochastic
gradient descent (SGD) and adaptive moment estimation (Adam) techniques
are introduced. Moreover, the derivation leading to eqs. (2.18) and (2.20)
heavily follows [56].

Before thinking in terms of the neural network context, then suppose the
loss function L(v) has parameters given by v ∈ R𝑀 in the 𝑀-dimensional
parameter space. For purpose of visualization, it helps to imagine L as a
function of only two variables, and Fig. 2.9 shows an example of a minimizing
trajectory on the level curves for v ∈ R2.
In such context the objective behind GD is therefore to �nd the set v ∈ R𝑀
that minimizes L, and topologically it corresponds to �nding the deepest
valley point of the loss landscape. Starting o� by de�ning some initial guess
for the parameters, the local shape around the current position is found and
the current position is moved to the next in the direction that reduces the loss
the most given a step size. Such iteratively process is repeated until either a
local or global minima is reached.

Let a change in the parameters be denoted as Δv ≡
(
Δ𝑣1,Δ𝑣2, ...,Δ𝑣𝑀

)𝑇
and the �rst partial derivatives of the loss function de�ned by ∇L(v) ≡(
𝜕L/𝜕𝑣1, 𝜕L/𝜕𝑣2, ..., 𝜕L/𝜕𝑣𝑀

)𝑇 . From calculus, it then follows that a change
in L produced by a small change Δv is described by the approximation
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ΔL(v) ≈ ∇L(v) · Δv =

𝑀∑︁
𝑚=1

𝜕L
𝜕𝑣𝑚

Δ𝑣𝑚 . (2.16)

The gradient ∇L indicates the direction of maximum increase, but in the
minimization problem the aim is to go downhill, and so it is necessary to
insure that the gradient is negative and points in the direction in which
the function decreases most rapidly. One method in guaranteeing that the
direction for which the loss is reduced is to set

Δv = −𝜂∇L, (2.17)

where 𝜂 is a small, positive parameter refereed to as the learning rate. Then,
according to eq. (2.16) it yields that ΔL ≈ −𝜂∇L · ∇L = −𝜂‖∇L‖2, where
‖∇L‖2 ≥ 0 such that ΔL ≤ 0. Hence, in such way L will always decrease by
an alternation of v, but will never increase. Furthermore, by the displacement
of v, it follows component-wise that 𝑣𝑖 → 𝑣𝑖+1 = 𝑣𝑖 + Δ𝑣𝑖 , and by insertion of
eq. (2.17) the parameters are iteratively updated according to

𝑣𝑖+1 = 𝑣𝑖 − 𝜂∇L(𝑣𝑖) .

In the NN setting, the loss function are parametrized for weights and biases,
i.e. v = {w, 𝑏}. Consequently, the corresponding GD update rules are;

𝑤𝑖+1 = 𝑤𝑖 − 𝜂∇𝑤𝑖
L = 𝑤𝑖 − 𝜂

𝜕L
𝜕𝑤𝑖

,

𝑏𝑖+1 = 𝑏𝑖 − 𝜂∇𝑏𝑖L = 𝑏𝑖 − 𝜂
𝜕L
𝜕𝑏𝑖

.

(2.18)GRAD I ENT DESCENT

I.e. until convergence, GD changes the weights and bias proportional to
the negative of the gradient of the loss function times a step size w.r.t. the
preceding weight or bias.

GD utilizes the entire training data before it updates. When the size of
the training set is large, then one iteration of GD involves computations
of a considerable number of gradients, which is computationally expensive
[27]. To resolve this issue, the SGD method may be applied instead. It simply
chooses a mini-batch consisting of 𝑆 samples {𝑥1, 𝑥2, ..., 𝑥𝑆 } that are randomly
drawn from the data, and performs an update for each of those mine-batches.
The overall gradient of the loss function is computed by averaging over the
gradient of each training input, i.e. the estimation

∇L(w, 𝑏) ≈ 1
𝑆

𝑆∑︁
𝑠=1

∇L𝑥𝑠 (w, 𝑏), ∀𝑥𝑠 ∈ {𝑥1, ..., 𝑥𝑆 }. (2.19)
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Hence, the network parameters are component-wise updated according to

𝑤𝑖+1 = 𝑤𝑖 −
𝜂

𝑆

𝑆∑︁
𝑠=1

∇𝑤𝑖
L𝑥𝑠 = 𝑤𝑖 −

𝜂

𝑆

𝑆∑︁
𝑠=1

𝜕L𝑥𝑠

𝜕𝑤𝑖
,

𝑏𝑖+1 = 𝑏𝑖 −
𝜂

𝑆

𝑆∑︁
𝑠=1

∇𝑏𝑖L𝑥𝑠 = 𝑏𝑖 −
𝜂

𝑆

𝑆∑︁
𝑠=1

𝜕L𝑥𝑠

𝜕𝑏𝑖
,

(2.20) STOCHAST I C GRA -
D I ENT DESCENT

where the sums are over all the training samples 𝑥𝑠 in the current mini-batch.
Subsequently a new mini-batch is randomly chosen and the procedure is
repeated until the training inputs has been exhausted. This executes one
epoch and a new training epoch can thereupon begin.

The calculated gradients for each mini-batches are but noise estimators of
the true gradient of the whole training set [81]. But by repeatedly obtaining
small noisy updates, the algorithm will eventually converge to a close enough
good minima of the loss function. Small batch sizes usually require small
learning rates in order to maintain stability, hence resulting in a long runtime
[27]. Conversely, using larger batch sizes provides more accurate estimates
of the true gradient and allows for larger learning rate, but the trade-o� is
that more memory is required during training.

Optimizers
w

L
random

initial value

minima

L

w
local

minimum
global

minimum

plateau

Figure 2.10: Incremental steps for
random inital values are shown on
a convex (upper) and a non-convex
(lower) functions. If 𝜂 is too large,
the algortihm might just jump across
the valley and possible even end up
at a point higher than the intial one,
making the algorithm diverge and
failing to �nd a good solution. If 𝜂
is to low, the algorithm has to go
thorugh many iterations to converge,
and it might not converge to the
global minima but get trapped or
stuck at other places.

have con�gurable hyperparameters, and the learning rate is
a crucial one. As one may have noticed from eqs. (2.18) and (2.20), 𝜂 is
proportional to the slope of L, and it thus controls how fast the optimizer
tries to minimize the loss function. Consider for instance Fig. 2.10. If 𝜂 is set
to small, then the algorithm will converge very slowly and it can happen that
it get trapped in some bad local minima or get stuck at some �at region where
the gradient is zero [27, 81]. On the other hand; if 𝜂 is set to large, problems
for converging to a minima at all will arise. Another aspect is that as training
progresses and the error drops, the initial chosen value for the learning rate
might become to large such that the algorithm might start overshooting the
minimum.

The non-linearity of a NN typically causes the loss function being non-convex
[27], which requires extra techniques during training. In order to address such
issues, the adaptive optimizer Adam [39] is brie�y mentioned. Adam is an
extension to the SGDmethod, and has been designed so that the learning rate
of the model automatically adjusts and reduces during the training phase.
In particular, Adam has shown to be an e�cient choice in deep learning
scenarios [13], and consequently it has been chosen as the optimizer of the
implementations in chapter § 6. Additionally, Adam is regarded to be fairly
robust to the choice of hyperparameters [27], and a method for choosing the
initial learning rate for the implementations follows in section § 6.2.1.

Besides utilizing such adaptive learning rates in order update the network
weight more e�ciently, Adam also employsmomentum in favour to converge
faster. Learning using the SGD strategy can be slow, but by introducing the

25



method of momentum, it helps accelerating the learning in the relevant
direction and damping oscillations [27]. The e�ect of the momentum scheme
is illustrated in Fig. 2.11. In order for the learning rate to adapt over time, Adam
employs two exponentially decaying averages of gradients, and computes
bias-corrected estimates of them. Speci�cally, writing 𝜃 = {w, 𝑏}, the update
rules of Adam is [39]

𝑚𝑖+1 = 𝛽1𝑚𝑖 + (1 − 𝛽1)∇𝜃L(𝜃𝑖),
𝑣𝑖+1 = 𝛽2𝑣𝑖 + (1 − 𝛽2)∇𝜃L(𝜃𝑖)2,
𝑚̂𝑖+1 =𝑚𝑖+1/(1 − 𝛽𝑖+11 ),
𝑣𝑖+1 = 𝑣𝑖+1/(1 − 𝛽𝑖+12 ),

𝜃𝑖+1 = 𝜃𝑖 − 𝛼𝑖𝑚̂𝑖+1/(
√︁
𝑣𝑖+1 + 𝜀),

(2.21)ADAPT I V E MO-
MENT EST IMAT ION

,

where

Figure 2.11: Illustartion of SGD with
and without the method of momen-

tum. Momemtum helps to accelerate
the convergence. Image source:

Gradient Descent Optimizers for Neu-
ral Net Training. D. Chang (2020).

𝛼 is the learning rate, 𝛽1, 𝛽2 ∈ [0, 1) the exponentially decay rates for
the momentum estimates, 𝜀 = 10−8 the default numerical stability parameter,
and𝑚0 = 0, 𝑣0 = 0 the initial 1th and 2th moment vectors, respectively.

2.1.6 Batch Normalization

Batch normalization is an important concept �rst proposed in [37] and acts
as a regularization technique. It has the e�ect of stabilizing the learning
process and dramatically reducing the number of training epochs required to
train deep networks. The technique is implemented during training, where
it calculates the mean and standard derivation of each input variable per
batch, subsequently using these statistical values to perform normalization.
I.e. letting B denote a mini-batch of size 𝑆 of the entire training set, B =

{𝑥1, ..., 𝑥𝑆 }, the mean and variance of B are respectively calculated as

𝜇B =
1
𝑆

𝑆∑︁
𝑖=1

𝑥𝑖 , 𝜎2B =
1
𝑆

𝑆∑︁
𝑖=1

(
𝑥𝑖 − 𝜇B

)2
. (2.22)

Given a 𝑑-dimensional layer input, x =
(
𝑥 (1) , ..., 𝑥 (𝑑) ) , normalization is ap-

plied to each activation 𝑥 (𝑘) separately. That is

𝑥
(𝑘)
𝑖

=
𝑥
(𝑘)
𝑖

− 𝜇 (𝑘)B√︃
𝜎
(𝑘)2
B + 𝜀

, 𝑘 ∈ {1, ..., 𝑑}, 𝑖 ∈ {1, ..., 𝑆}, (2.23)

where 𝜀 in the denominator is an arbitrarily small constant added for numer-
ical stability. Finally, the following scale and shift transformation is applied
in order to restore the representative power of the network

BN𝛾,𝛽
(
𝑥
(𝑘)
𝑖

)
≡ 𝑦 (𝑘)

𝑖
= 𝛾 (𝑘)𝑥 (𝑘)

𝑖
+ 𝛽 (𝑘) , (2.24)BATCH NORMAL I Z AT ION
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where the parameters 𝛽 and 𝛾 are subsequently learned in the optimization
process. As can be deduces from the equations above, batch normalization is
unstable when using small batch sizes [37].

Consequently, each training iteration in the NN will be slower because of the
extra normalization calculation during the forward pass and the additional
hyperparameters to train during backpropagation. However, the bene�t of
the batch normalization is that the network will converge more quickly and
thus overall training is faster [37]. Furthermore, batch normalization allows
for higher learning rates without risk of divergence and reduces the need for
dropout, which concept is introduced in section § 2.2.4.

2.2 convolutional neural network

In

Figure 2.12: 8-bit pixel intensities
falls between values 0 and 255. Usu-
ally 0 represents black and 255 white.
Image source: Hack Till Dawn. T.
Mulc (2017).

this section, concepts from the �eld of computer vision are combined with
practices from § 2.1 in order to introduce a NN specially designed to handle
data with a grid-like topology, such as images. Convolutional neural networks
(CNNs) falls under supervised learning as it takes an input image, process it,
and classi�es it under a certain category. § 2.2.1 serves as a motivation behind
and overview of the architecture of a classical CNN. In § 2.2.2-§ 2.2.5 each
individual layer and their operations will in turn be introduced and �nally
§ 2.2.6 presents the concept of transpose convolution. But, before dealing
with CNNs it is considerably to shortly present exactly what an image is and
how computers interpret them.

Computers

Figure 2.13: RGB images has 𝐶 = 3
color chanels, and all 2D maps have
same height and width. Each map
represents the pixel intensities for
its representive primary color. Each
element in the full RGB grid are
represented by a pixel, which is a
combination of the three intensities
of (red, green, blue).

sees images as arrays of pixels and depends on the image reso-
lution. Based on the resolution, it will percept a two-dimensional image as
𝐼 ∈ R𝐻×𝑊 ×𝐶 , where 𝐻 is the height,𝑊 the width, and 𝐶 the number of color
channels. If 𝐶 = 1, there is talk about an grayscale image with pixel values
usually given in 8-bit byte format, such that values spans in [0, 255] [48].
The pixel value is simply a scalar that represents the brightness of the pixel,
cf. Fig. 2.12. RGB (red, green, blue) images are represented by 𝐶 = 3 and its
pixel value is a vector combined by its three color planes [66], see Fig. 2.13.

2.2.1 Overview: General Structure of a CNN

CNNs are very similar to regular NNs from § 2.1 in the sense that they still
have learnable weight and biases, activations functions and a loss function.
The essential change is the assumption that inputs are images, which in turn
allows the network to encode certain properties into the architecture.

Hence, it leads one to wonder how the human brain process images? Ac-
cordingly, it is convenient to develop an intuition for how the human visual
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input image
l = 0

convolutional layer
(& batch normalization)
& activation function

l = 1

max pooling layer
l = 2

(dropout layer)
l = 3

fully connected layer
& activation function

l = 4

fully connected layer
& activation function
output layer l = 5Figure 2.14: A visualization over

the architecture of layers in a com-
mon CNN. Batch normalization
and dropout layers are optional.
Instead of max pooling, another
subsampling method may be per-
formed. The depth of the convolu-
ational layer corresponds to the
number of feature maps, and in

this particular illustration 𝐹 = 6.

processing system works. Processing in the brain is mostly hierarchical, and
the visual cortex of the brain contains a wealth of neurons which are tuned
to detect very speci�c stimuli [50]. Following the hierarchical organization,
the brain detect increasingly more complex visual features. The arti�cial
CNN is build upon this foundation, and mathematically convolution is used
(as explained in cf. § 2.2.2). In order to capture increasingly abstract features,
lower level features are convoluted to produce feature maps (or activation
maps) in the next layer. It is such subsequent passing of input through various
layers that extracts higher level patterns.

CNNs are typically composed of three types of layers (or building blocks)
that are stacked together: convolution, pooling, and fully connected layers
[66, 81]. The �rst two layers, convolution and pooling, performs the feature
extractions, whereas a fully connected layer maps the extracted features into
a �nal output, such as class scores. Additionally, dropout regularization is
commonplace [75], and such layer follows after the pooling layer. Moreover,
batch normalization can be performed in between the convolution and its
subsequently activation function. Fig. 2.14 shows an illustrative example of
such architecture.

The depth of the network corresponds to the number of �lters, 𝐹 , used for the
convolution operation. It is the number of �lters that controls the number
of features that a convolutional layer will look for [81]. Hence, each feature
map will extract and re�ect one image characteristic.

2.2.2 Convolutional Layer

It is impractical to connect all neurons in a fully connected manner as is done
in regular NNs, since images are high-dimensional inputs, hence containing
many parameters. Instead, neurons are locally connected to a small region
of the layer before it, such that the amount of parameters in the network is
vastly reduced in the forward propagation [81]. The spatial extent of this
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Figure 2.15: Visualization of a 2D
discrete convolution between the ker-
nel and input, producing the output
that is the feature map. Each output
pixel is computed by sweeping the
kernel over the input and computing
the weighted sum of its neighbors
that lie within some speci�c win-
dow. Image source: the River Trail
documentation.

connectivity is called the local receptive �eld for an rendered neuron in the
feature map [56]. Similar to the recognition process on how human gazes at
an object and recognizes it, the concept of locality is an important concept
to images. Convolution is used to sweeping the kernel, and each connection
learns a shared weight and an overall bias. While features are extracted
on local perceptions, subsequent convolution layers will be comprised of a
combination of the receptive �elds of the earlier layers, enabling an expansion
in the overall receptive �eld which gradually converts local features to global
features.

The convolution operation is a linear operation that merges two signals.
Given an input 𝑥 (𝑖) and a kernel 𝑤 (𝑎), discrete convolution is performed
according to [27]

𝑆 (𝑖) = (𝑥 ∗𝑤) (𝑖) =
∞∑︁

𝑎=−∞
𝑥 (𝑎)𝑤 (𝑖 − 𝑎), (2.25)

resulting in a feature map 𝑆 (𝑖). Following the approach of the local receptive
�eld, then given a two-dimensional input, such as an image 𝐼 ∈ R𝐻×𝑊 ×𝐶 , dis-
crete convolution is performed with a two-dimensional kernel 𝐾 ∈ R𝑘1×𝑘2×𝐶
and bias 𝑏 ∈ R1 according to [56]

𝑆 (𝑖, 𝑗) = (𝐾 ∗ 𝐼 ) (𝑖, 𝑗) = 𝑏 +
𝑘1−1∑︁
𝑚=0

𝑘2−1∑︁
𝑛=0

𝐾𝑚,𝑛𝐼𝑖−𝑚,𝑗−𝑛, (2.26)

where a grayscale image is supposed for ease of notation. It follows from
eq. (2.26) that the resulting feature map ful�lls 𝑆 ∈ R(𝐻−𝑘1+1)×(𝑊 −𝑘2+1) given
𝐼 ∈ R𝐻×𝑊 and 𝐾 ∈ R𝑘1×𝑘2 . The input could be either the input image or an
input feature map. Fig. 2.15 visualizes how convolution is performed between
the weight kernel and input for a small scale example. Flipping the kernel,
such that the kernel is rotated 180◦, yields the subsequent form of eq. (2.26)

𝑆 (𝑖, 𝑗) = (𝐾 ∗ 𝐼 ) (𝑖, 𝑗) = 𝑏 +
𝑘1−1∑︁
𝑚=0

𝑘2−1∑︁
𝑛=0

𝐾𝑚,𝑛𝐼𝑖+𝑚,𝑗+𝑛, (2.27)

called the cross-correlation. Cross-correlation is conveniently more straight-
forward to implement numerically compared to convolution [27].
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Figure 2.16: Upper: Convolving
a weight kernel 𝐾 ∈ R3×3 over
an 𝐼 ∈ R4×4 input using strides
𝑆𝑡 = 1 and no padding, 𝑃 = 0,
results in a 𝑆 ∈ R2×2 feature

map. Lower: Half padding, 𝑃 = 1,
and 𝑆𝑡 = 1 convolution results
in 𝑆 ∈ R5×5 given 𝐾 ∈ R3×3

and 𝐼 ∈ R5×5. Images from [22].

The convolution process (with �ipped kernel) can be generalized in a neural
network implementation as following. Let 𝑢𝑖 𝑗 denote the outputs for layer 𝑙
and let 𝑢0𝑖 𝑗 = 𝐼 be the elements of the input image. Then the weighted input
to layer 𝑙 is derived by [56]

𝑧𝑙𝑖 𝑗 = 𝑏
𝑙 +

∑︁
𝑚

∑︁
𝑛

𝑤𝑙𝑚,𝑛𝑢
𝑙−1
𝑖+𝑚,𝑗+𝑛, (2.28)

where𝑤𝑙𝑚,𝑛 are weight �lters connecting layer 𝑙 and 𝑙 − 1, and 𝑏𝑙 the shared
bias for layer 𝑙 . Then, the weighted output at locations 𝑖, 𝑗 for layer 𝑙 is

𝑢𝑙𝑖 𝑗 = 𝑓𝑙
(
𝑧𝑙𝑖 𝑗

)
, (2.29)

given an activation function 𝑓𝑙 (·) in the 𝑙 th layer. Successive convolutional
layers consists of a combination of the earlier layers local receptive �elds.
Hence, the deeper layers into the CNN will extract more abstract image
features, i.e. patterns recognized by the convolution kernels becomes more
complex and sparse.

Strides, 𝑆𝑡 , indicates the number of pixels the kernel window shifts over the
input at each step of convolution. E.g. setting 𝑆𝑡 = 1 would ensure that no
locations are missed in an image, as the kernel would successively move one
index to derive the next element in the feature map.

Consider Fig. 2.16. In the upper case, the feature map resulting from the
convolution is smaller in size compared to the input image 𝐼 . However, such
a dimension reducing might not be the sought one for the resulting feature
map. Instead, a zero padding can be applied to the input, such that 𝐼 is altered
by padding with zeros around its border, yielding 𝐼 → 𝐼 . In the lower case
in Fig. 2.16, a zero padding around the input has been applied such that the
spatial dimension of the output has been preserved.

Formally, let 𝑃 denote the zero padded pixel thickness around the original
input. If given symmetric square input and kernel so𝑊 = 𝐻 and 𝑘 = 𝑘1 = 𝑘2,
then the spatial dimension for any output feature map 𝑆 ∈ R𝑂×𝑂 is

𝑂 =

(
𝑊 − 𝑘 + 2𝑃

)
𝑠

+ 1, (2.30)
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Figure 2.18: An example of what a
feedforward FCNN could look like
with dropout. Red circles represents
activated neurons while gray circles
represents deactivated neurons.

given same integer strides along both axes 𝑠 = 𝑠1 = 𝑠2 so 𝑆𝑡 ∈ R𝑠×𝑠 [22].

2.2.3 Max Pooling Layer

A pooling layer may be periodically inserted in-between successive convo-
lutional layers. Pooling is a downsampling from a convolutional layer, and
its function is to reduce the amount of parameters while preserving the
most prominent features. Pooling operations spatially reduce the size of fea-
ture maps by using some pooling function to summarize subregions. Hence,
provided a kernel and a stride, pooling works by sliding a window across
the input and feeding the content of each frame to a prede�ned operation,
resulting in a reducing of information [22].

The

Figure 2.17: Illustative example of
max pooling with 2 × 2 �lters and
strides 𝑆𝑡 = 2. Image source: Convo-
lutional Neural Networks to Classify
Sentences. A. G. Walters (2019).

most common downsampling operation is max pooling [56]. This type
of pooling simply outputs the maximum activation of each disjoint subset.
These dominant entities are what is propagated to the next layer in the CNN.
Fig. 2.17 shows an illustrative example of a max pooling operation.

Pooling layers can be gotten rid of in favour of architectures that only consists
of repeated convolutional layers with very few to no pooling layers [69].
Instead, using larger strides of the convolutional layers can precede the
spatial dimensionality reduction accordingly. In particular, [60] has found
that discarding pooling layers helps training good generative models, which
practices have be applied to the implementations in § 6.

2.2.4 Dropout Layer

Dropout is a regularization method presented in [35]. The dropout neural
network aim to increase a NN’s ability to generalize properly and perform
well with unseen data, hence preventing over�tting. The dropout neural
network works by randomly dropping out a percentage of units for each
training input, and in that way samples a thinned version of the original
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network that it trains on. Hence, for a neural network with 𝑛 units, there are
in turn 2𝑛 unique thinned neural networks over which weights are shared
[70].

Given that a unit is retained with probability 𝑝 during training, such a feed-
forward dropout network is formally formed by setting55. A Bernoulli distribution takes

the value of 1 with probability
𝑝 and the value 0 with probabil-
ity 𝑞 = 1 − 𝑝 , i.e. a set of pos-
sible outcomes of either 1 or 0.

𝑟 𝑙𝑗 ∼ Bernoulli(𝑝), 0 ≤ 𝑝 ≤ 1, 𝑟 𝑙𝑗 ∈ {0, 1},
ũ𝑙 = r𝑙 � u𝑙 ,

𝑧𝑙+1𝑗 = w𝑙+1
𝑗 · ũ𝑙 + 𝑏𝑙+1𝑗 ,

𝑢𝑙+1𝑗 = 𝑓𝑗
(
𝑧𝑙+1𝑗

)
,

(2.31)

using the notations from § 2.1.1. Neurons of the network is rendered activate
by 𝑟 𝑙𝑗 = 1 and consequently inactivate by 𝑟 𝑙𝑗 = 0. A randomly thinned version
of a feedforward FCNN is shown in Fig. 2.18. In [70] it has been shown that
applying dropout layers in a CNN improves the generalization performance,
and can outperform ordinary CNNs.

2.2.5 Fully Connected Layer

After multiple convolutional, subsampling (such as max pooling) and possible
dropout layers, a fully connected layer completes the network [66]. The last
feature map matrix will be �attened and converted to a vector and fed into
the fully connected layer. In a classi�cation task, the �nal output layer would
be the probabilities of the inputs being in a particular class.

2.2.6 Transpose Convolution

Transpose convolution is not part of the regular CNN algorithm, nevertheless
it is convenient to introduce, as it is a layer used in generative modeling. The
transpose convolutional layer is usually carried out for upsampling, i.e. to
generate an enlarged output feature map which has has spatial dimensions
greater than that of the input.

Just like the standard convolutional layer, transposed convolutional layer is
also de�ned by zero padding and stride. Fig. 2.19 visualizes the transpose
convolutions to the convolutions in Fig. 2.16. The transposed convolutions
are given inputs that are the results of direct convolutions applied on some
initial input. The operation of the transpose convolution reconstructs the
spatial dimensions of the initial input, however it does not guarantee to
recover the input itself, as it does not act as the inverse to the convolutional
operand [22].
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Figure 2.19: The original convolutions
are seen in Fig. 2.16, respectively.
Upper: The transpose convolution is
applied on a 𝑃 = 2 zero padded input
𝐼 ′ ∈ R2×2, given a kernel 𝐾 ∈ R3×3
using 𝑆𝑡 = 1, resulting in a 𝑆 ′ ∈ R4×4
feature map. Lower: The transpose
convolution using 𝑆𝑡 = 1 and 𝑃 = 1
given 𝐼 ′ ∈ R5×5 and 𝐾 ∈ R3×3
produces 𝑆 ′ ∈ R5×5. Images from
[22].

Only the fractional stride 𝑆𝑡 = 1 has been considered above. Conversely
to belief, 𝑆𝑡 > 1 involves inserting 𝑧 = 𝑠 − 1 zeros between each rows and
columns of the input before applying a possible zero padding. The associated
output feature map 𝑆 ′ ∈ R𝑂′×𝑂′ of the transposed convolution given input
𝐼 ′ ∈ R𝐻 ′×𝑊 ′ with𝑊 ′ = 𝐻 ′, is then described by [22]

𝑂 ′ = 𝑠
(
𝑊 ′ − 1

)
+ 𝑘 − 2𝑃, (2.32)

using a square kernel 𝐾 ∈ R𝑘×𝑘 and stride 𝑆𝑡 ∈ R𝑠×𝑠

To quantify eq. (2.32), consider the example in Fig. 2.20. Here, strides 𝑆𝑡 = 2
has been considered given an kernel 𝐾 ′ ∈ R3×3 and input 𝐼 ′ ∈ R3×3 zero
padded by 𝑃 = 1. I.e. explicitly evaluating eq. (2.32) gives 𝑂 ′ = 2 · (3 − 1) +
3 − (2 · 1) = 5, hence the output is a 𝑆 ′ ∈ R5×5 feature map. Notice, an input
𝐼 ′ ∈ R3×3 was given, but when adding the zeros in between it instead yields
an input 𝐼 ′ ∈ R5×5. This input is hereafter zero padded by 𝑃 = 1. Still utilizing
the kernel 𝐾 ′ ∈ R3×3, but instead using strides 𝑆𝑡 = 1, it would likewise result
in an 𝑆 ′ ∈ R5×5 output as 𝑂 ′ = 1 · (5 − 1) + 3 − (2 · 1) = 5.

Figure 2.20: Given an 𝐼 ′ ∈ R3×3
input, zeros are inserted between
each row and column, whereas 𝑃 = 1
zero padding has been applied. The
transpose convolution is then applied
using 𝑆𝑡 = 1 and kernel 𝐾 ′ ∈ R3×3,
resulting in the output 𝑆 ′ ∈ R5×5.
Image from [22].
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3ABNORMAL I T Y DETECT ION
SCENAR IOS

In the literature a mix-up exists between the terminology and problem state-
ments of the terms outliers, anomalies and novelties. The following de�nitions
of the terms and their distinctions in § 3.1 are proposed in the survey [11]. Ad-
ditionally, an overview of how each of their detection techniques are related
to machine learning tasks is included.

3.1 what are outliers, anomalies and novelties?

As

outliers

θ2

θ1
Figure 3.1: Outliers are deviated
instances in a dataset without any
clear pattern. In machine learning, a
problem like this would be attacked
as an unsupervised classi�cation
tasking to �nd and isolate outliers.

known from the statistics literature, outliers are data points expected to
be present in the dataset, cf. Fig. 3.1. Usually their occurrences are caused
by unavoidable random errors or from systematic errors relating to how the
data was sampled, such as human mistakes [1].

In a machine learning perspective an outlier detection task can be formalised
as an unsupervised classi�cation problem. Given a dataset, the objective is
detecting the events that (highly) deviates from others and without a clear
pattern.

Anomalies are data instances that stands out as being dissimilar to all others
data observations and do not follow the rest of the pattern. They are outliers
or other values that are not expected to exist [1]. In that sense, taking into
account all normal data, anomalies have a very low probability of occurrence.

According to [11], an anomaly detection is given a (highly) unbalanced training
dataset, consisting of two categories: normal,N , and anomaly,A. The model
is then trained as a supervised classi�cation problem, and learns to recognise
anomalies by teaching it what a normal instance looks like compared to what
an anomaly looks like. However, since anomalies are so scarce it poses a
problem for this detection technique due to the lacking samples ofA. During
training the algorithm never gets su�cient look at this underlying class,
hence the results will not be optimized for the unbalanced class.
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Like outliers and anomalies, novelties are also a form of abnormalities. But
compared to an anomaly detection, where the model learns to �nd patterns
that do not adhere to what is considered as normal using two classes, in
novelty detection the model learns using a dataset that contains only one
class. The survey [11] distinguish between two di�erent types of novelty
detection problems in machine learning. They di�erentiate between what
they call static and dynamic novelty learning scenarios.

In

Train
normal

θ2

θ1

Prediction
normal

novelties

θ2

θ1

Figure 3.2: Example of static nov-
elty detection. A supervised class-

�cation with only one class for
training — the normal instances.
In the prediction stage the model

will recieve new samples, whereas
instances are classi�ed as either nor-
mal or novel. Some sort of decision
boundary can for example be used
in order to isolate the behaviors.

a static novelty detection, the model learns from a dataset composed
singularity by the normal dataN , see Fig. 3.2. In that sense, it can be thought
of as a supervised classi�cation with only one class represented in the training
data. The objective is to determine whether observations it has never seen
before �t within the exposed dataset, such that new instances can be predicted
either as normal (expected patterns) or novel (unexpected patterns). For
instance, as elaborated in § 6.3.3, it will be seen that novelties can be identi�ed
and classi�ed by computing a so-called anomaly score. Based upon this metric,
some appropriate threshold can be set, which in turn is used to determine
what is suspicious and whatnot.

Alternatively,

Train

class 1

class 2

θ2

θ1

Prediction

class 1

class 2

new class

θ2

θ1

Figure 3.3: Example of dynamic
novelty detection. The model is

trained given some known number
of classes. In the prediction stage,
new instances will either be clas-
si�ed among known classes or as

novel, for which it is kept in a bu�er
and may emerge as a new class.

a dynamic novelty detection is a supervised classi�cation
problem that has unknown number of classes for which the class variable
dynamically changes during the classi�cation process. The objective is to
discover new emerging classes, and when new instances is received the
predictor has to either classify them among the current classes or, if instances
are not similar to any current known class, store them in a bu�er that is
considered a candidate for a potential new class [11]. A new class then may
emerge if the bu�er is considered "full". Hence, the learning scenario of a
dynamic novelty detection is given a settled number of classes in its training
phase, after which new classes may emerge, disappear, reappear and drift in
the prediction stage, cf. Fig. 3.3.

Speci�cally, the key di�erence between what is called anomaly detection
and novelty detection lays in the methods for which they are utilized in
training. In anomaly detection the training dataset contains both normal
and abnormal instances, whereas in novelty detection the data only consists
of normal samples. In particular, the terms for "anomaly" and "novelty" are
interchangeable and mixed-up in the literature, and bottom line is that both
types are in fact abnormal observations. Therefore, in the remaining thesis
these two terms will be used interchangeable and undi�erentiated. But, bear
in mind that in reality the applications found in § 6 all practices what is
termed novelty detections in [11].
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4DEEP ANOMALY DETECT ION
TECHN IQUES

“ The key is to let computers do what they are good at, which is
trawling these massive data sets for something that is mathe-
matically odd. And that makes it easier for humans to do what
they are good at — explaining those anomalies.

—Daniel Bruhl ”
This chapter serves as an introduction to the algorithms applied in chapter
§ 6 using the data described in chapter § 5. Deep anomaly detection (DAD)
techniques, as described in the survey [12], includes some common operation
procedures and faced challenges. They aim to learn hierarchical discrimi-
native features from the training data, and subsequently some well-de�ned
boundary between normal and anomalous behaviours needs to be selected.

Possible deep learning techniques that are able to detect anomalies using
images are the convolutional autoencoder (CAE) and the generative model
convolutional variational autoencoder (CVAE). The common idea behind these
two approaches is having the encoder accept the input data, compress it into
an lower dimensional latent space representation, and letting the decoder
reconstruct the input data from that space. By letting the neural network
train on a single speci�c class of data, then when applying anomalous images
as test images the reconstructed images are expected to have a larger error
since the network have never seen such kind of sample data before. By
de�ning an anomaly score, that is described in section § 6.3.3, some threshold
are determined in order to distinguish between normal images and anomaly
images. Hence, it is possible to detect abnormal behaviours using such
pipelines.
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Figure 4.1: Architecture of the
CAE model. The encoder takes

an original image sample, returns
a single data point in the latent
space, which is then passed into
the decoder that reconstruct the

image. Image source: Autoen-
coder to Beta-VAE. Weng, L. (2018).

4.1 convolutional autoencoders

The fundamental and most common unsupervised deep architectures used
in DADs are the autoencoders [12]. This section thereby serves as an intro-
duction to the framework of the classic CAE.

An autoencoder is a neural network that is trained in an unsupervised way
and attempts to reconstruct the original input as its output, such that x ↦→ x̃.
It consists of an encoder network that compress the input image into a lower
dimensional latent code, 𝑓 : R𝑛 → R𝑝 , 𝑓 (x) → z. Subsequently, a decoder
network use this representation to recover a reconstruction with same dimen-
sion as the input, 𝑔 : R𝑝 → R𝑛 , 𝑔(z) → x̃. Specially, to learn a hierarchical
feature representation, the encoder is constructed upon convolutional layers
as for the CNN (as outlined in section § 2.2), whilst the decoder follows an
inverse architecture of the CNN. The schematic architecture of a CAE is
visualized in Fig. 4.1.

Hence, the encoder network are structured to take an input image and com-
press it into a di�erent feature representation; an lower-dimensional code, or
embedding, of the input. In the process useful properties and features of the
input are extracted and learned without the need for the training data to be
labelled. Subsequently, the decoder network aims to reconstruct the original
input as precisely as possible by decompressing the coded representation.
The aim of the encoder is to keep maximum information of the input, and
the decoder to reconstruct with minimum error.

As formally de�ned in [3], the objective is to learn the functions that minimize
the loss function, which for the CAE typically is themean squared error (MSE)
between the input and output entities:

LAE = L
(
x, 𝑔 ◦ 𝑓 (x)

)
=

1
𝑁

𝑁∑︁
𝑖=1

(
𝑥 (𝑖) − 𝑔

(
𝑓 (𝑥 (𝑖) )

) )2
, (4.1)LOSS FUNCT ION

FOR AUTOENCODER
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where 𝑔
(
𝑓 (x)

)
= x̃. The CAE is supposed to learn an approximation to the

identity map on the data, and since 2D input images can be transformed to
1D vectors of length 𝑁 , and as the output has the same dimension as the
input, the "distance" between the original and reconstructed sample can be
quanti�ed by the MSE metric. Hence, the MSE is a well-suited loss function
for the CAE as it is a measure of dissimilarity between input and output.

CAEs are often used for dimensionality reduction purposes in order to dis-
cover more e�cient and compressed representations of the data. In the
special case where a CAE is trained using the MSE criterion and is comprised
of a single fully-connected hidden layer, as well where all non-liner opera-
tions are dropped in favour for linear ones, then the latent representation of
the CAE is nearly equivalent to the principal component analysis (PCA) [58].
Because, in this case the CAE is searching for the best linear subspace to
project data with as little information loss as possible, just as the PCA does.
Hence, the CAE is a generalization of PCA, but while PCAs are restricted to
linear dimensionality reduction, CAEs can enable both linear and non-linear
transformations [4].

The deterministic CAEs are not designed to reconstruct input images exactly,
but only approximately [27]. No matter how the latent space is organized, the
CAE is solely trained to minimize the loss function. Hence, the learned latent
space of an CAE is not imposed to be organized following some prede�ned
distribution and its structure is not regular enough for the model being able
to producing new data by a generative process [81]. That is, the latent space
lacks continuity which prevents interpolations between training points, thus
preventing its generative ability.

The CVAE is topologically similar to the CAE, but instead of learning a
function that solely represent the training data, it is a generative model
that aims to learn parameters of a prede�ned probability distribution that
generates the input data. If trained successfully, new data that resembles
the training data can be generated by sampling new points from the learned
latent distribution and feeding a point though the decoder part of the network
which produces an new arti�cial image. CVAEs thus models the latent space
probabilistically, enabling the production of new content, since new samples
that looks like the ones in the training data can be created.

4.2 convolutional variational autoencoders

A CVAE is essentially a stochastic generalization of the CAE [40]. CVAEs
combines the research areas of deep learning and probabilistic modeling,
hence it falls under the domain of probabilistic generative models. In general,
it is known as a latent variable model.

The generative process of the CVAE is reviewed in § 4.2.1. The simple Gaus-
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sian case is de�ned in § 4.2.2, and a trick necessary for training the model is
introduced in § 4.2.3. Having explained the probabilistic model interpretation
of the CVAE, its deep learning interpretation is summarized in § 4.2.4.

4.2.1 Probabilistic Model Interpretation

From

Figure 4.2: The directed probability
graph model for the variational au-
toencoder. Solid lines denotes the
generative model, whilest dashed

lines denote the variational (approx-
imate) interference. Image source:
A Variational Stacked Autoencoder
with Harmony Search Optimizer
for Valve Train Fault Diagnosis of

Diesel Engine. Chen K, et al. (2019).

a probabilistic perspective the CVAE is described by two stochastic
entities; the observable set 𝑋 = {x(𝑖) }𝑁𝑖=1 and unobservable latent set 𝑍 =

{z(𝑖) }𝑁𝑖=1 consisting of 𝑁 independent and identically distributed samples of
variable x ∈ R [40].

The CVAE generates x by sampling from the distribution of z, as shown
partly by the solid lines in Fig. 4.2. The joint distribution expressed by this
model is given as11. If 𝑝 (𝑥,𝑦) is the value of the joint

probability distribution of the dis-
crete random variables X and Y at
(𝑥,𝑦), and 𝑝 (𝑦) is the value of the

marginal distribution of Y at 𝑦, then
𝑝 (𝑥 |𝑦) ≡ 𝑝 (𝑥,𝑦)

𝑝 (𝑦) for each 𝑥 within
the range of X given Y = 𝑦, and
provided that 𝑝 (𝑦) ≠ 0, is called

the conditional probability function.

𝑝𝜽 (x, z) = 𝑝𝜽 (x|z)𝑝𝜽 (z) . (4.2)

I.e. each local latent variable is related to its corresponding local observation
though the likelihood 𝑝𝜽 (x|z), and for that reason it is also known as the
probabilistic decoder. Latent variables are sampled from a prior density 𝑝𝜽 (z),
which describes the original distribution of z. In a typical instance of the
CVAE, there is only a single layer of latent variables, and its distribution is
usually an isotropic centred Gaussian, i.e. 𝑝𝜽 (z) = N(0, I) [40].

Accordingly, this framework describes a generative process using the follow-
ing procedure

Draw z(i) ∼ 𝑝𝜽 (z),
Draw x(i) ∼ 𝑝𝜽 (x|z(i) ) .

Hence, the distribution of observed variables are generated and governed
by the hidden lower-dimensional latent variables. Consequently, the true
parameter values, as well as the hidden lower-dimensional latent variables,
are unknown. Speci�cally, themaximum likelihood estimator (MLE) is usually
used to estimate the generative parameters, 𝜽 [40].

;

Having speci�ed the generative process, approximate inference is performed
regarding the hidden latent variables and generative parameters [40]. Now,
given an observed data example x the goal is to understand what possible
values of the hidden variable z were responsible for it — i.e. the task is
manifested into a probabilistic inverse problem.
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In particular, the objective is to compute the posterior 𝑝𝜽 (z|x), i.e. the condi-
tional density of z given x. Bayes’ theorem2 2. Given events 𝐴 and 𝐵, 𝐴 ≠ 𝐵,

Bayes’ Theorem is stated by

𝑃 (𝐴|𝐵) = 𝑃 (𝐵 |𝐴)𝑃 (𝐴)
𝑃 (𝐵) .

Here 𝑃 (𝐴) and 𝑃 (𝐵) ≠ 0
are marginal probabilities,
whiles 𝑃 (𝐴|𝐵) and 𝑃 (𝐵 |𝐴)

are conditional probabilities.

can be used to �nd the expression
for such probabilistic encoder :

𝑝𝜽 (z|x) =
𝑝𝜽 (x|z)𝑝𝜽 (z)

𝑝𝜽 (x)
, (4.3)

and where its directed graphical model is seen partly in Fig. 4.2. Themarginal
likelihood (or evidence), 𝑝𝜽 (x), is the distribution of x that needs to be gener-
ated, and is attained by marginalizing out the latent variables from the joint
probability distribution, so that

𝑝𝜽 (x) =
∫

𝑝𝜽 (x, z)dz =
∫

𝑝𝜽 (x|z)𝑝𝜽 (z)dz. (4.4)

However, evaluation of this evidence integral requires exponential time to
compute and it follows that the posterior cannot be evaluated in closed-form,
hence it is intractable [8].

Consequently, it is necessary to somehow approximate the posterior. One
option would be to estimate the objective via sampling-based techniques
such as Markov chain Monte Carlo or Monte Carlo expectation-maximization
algorithms3

3. Such methods for sampling from
a probability distribution will not be
discussed, as they are not relevant
for the work in this thesis.. However, such techniques are ruled out for being inapplicable

in this setting due to them being computationally expensive when 𝑁 is large
[40]. An alternative approach to approximate Bayesian inference would be
using deterministic approximation techniques, such as variational interference
[38].

;

Variational inference is used to circumvent this intractability by getting rid
of the integration. It formulates inference as an optimization problem, and
seeks an approximate posterior 𝑞φ(z|x) closets to the true posterior 𝑝𝜽 (z|x)
in order to make the interference computationally feasible.

The KL divergence from section § 2.1.4 is used as a measure of dissimilarity
between the two distributions4 4. For the sake of brevity Ez∼𝑞φ(z|x) ≡

E𝑞φ is de�ned.
:

𝐷KL
(
𝑞φ(z|x)‖𝑝𝜽 (z|x)

)
= E𝑞φ

[
log𝑒 𝑞φ(z|x) − log𝑒 𝑝𝜽 (z|x)

]
, (4.5)

which quanti�es how much information is lost when 𝑞φ(z|x) represents
𝑝𝜽 (z|x). Consequently, the approximate posterior is parameterized by varia-
tional parameters, φ, and the problem is rendered to the following optimiza-
tion problem [8]

φ∗ = argmin
φ
𝐷KL

(
𝑞φ(z|x)‖𝑝𝜽 (z|x)

)
. (4.6)
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Hence, it seeks to �nd the best approximation that minimize the KL diver-
gence to the exact posterior, such that 𝑞φ(z|x) is "closets" to 𝑝𝜽 (z|x) in some
sense.

Accordingly, applying Bayes’ theorem on 𝑝𝜽 (z|x) and using the de�nition of
conditional probability, eq. (4.5) can be simpli�ed as following:

𝐷KL
(
𝑞φ(z|x)‖𝑝𝜽 (z|x)

)
= E𝑞φ

[
log𝑒 𝑞φ(z|x)

]
− E𝑞φ

[
log𝑒 𝑝𝜽 (z|x)

]
= E𝑞φ

[
log𝑒 𝑞φ(z|x)

]
− E𝑞φ

[
log𝑒

𝑝𝜽 (x, z)
𝑝𝜽 (x)

]
= E𝑞φ

[
log𝑒

𝑞𝜙 (z|x)
𝑝𝜽 (x, z)

]
+ E𝑞φ

[
log𝑒 𝑝𝜽 (x)

]
= E𝑞φ

[
log𝑒 𝑞φ(z|x) − log𝑒 𝑝𝜽 (x, z)

]
+ log𝑒 𝑝𝜽 (x), (4.7)

since log𝑒 𝑝𝜽 (x) is a constant that can break out of the expectation. Unfor-
tunately, from eq. (4.7) it can be seen that the KL divergence also depends
on the intractable 𝑝𝜽 (x), which means the minimization problem described
by eq. (4.6) is infeasible, because the intractable marginal likelihood cannot
be written down exactly. Instead, an alternative tractable objective function
is found and maximized, such that the KL divergence in turn is minimized
indirectly.

This trick is done by �nding a variational lower bound on the logmarginal like-
lihood. Ergo, contemplate the Jensen’s inequality that is given by 𝑔

(
E[𝑋 ]

)
≥

E
[
𝑔(𝑋 )

]
for any concave function 𝑔(·). Accordingly, using concavity of the

natural logarithm, the log marginal likelihood is

log𝑒 𝑝𝜽 (x) = log𝑒
∫

𝑝𝜽 (x, z)dz = log𝑒
∫

𝑝𝜽 (x, z)
𝑞φ(z|x)
𝑞φ(z|x)

dz

= log𝑒 E𝑞φ
[
𝑝𝜽 (x, z)
𝑞φ(z|x)

]
≥ E𝑞φ

[
log𝑒 𝑝𝜽 (x, z) − log𝑒 𝑞φ(z|x)

]
, ELBO

(
x;𝜽 ,φ

)
, (4.8)

EV I DENCE LOWER
BOUND ( E LBO )

where the right-hand side is known as the evidence lower bound (ELBO). Upon
inspection with eq. (4.7), the ELBO is related to the KL divergence according
to

𝐷KL
(
𝑞φ(z|x)‖𝑝𝜽 (z|x)

)
= −ELBO

(
x;𝜽 ,φ

)
+ log𝑒 𝑝𝜽 (x) . (4.9)

Importantly, the ELBO is a lower bound to the log marginal likelihood.
I.e. as log𝑒 𝑝𝜽 (x) is independent of φ it can be disregarded as a constant,
such that minimizing the KL divergence w.r.t. to φ amounts to maximiz-
ing the ELBO. Speci�cally, the gap between the ELBO and the marginal
log likelihood is called the tightness of the lower bound and is de�ned by
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𝐷KL
(
𝑞φ(z|x)‖𝑝𝜽 (z|x)

)
≥ 0 [41]. The better 𝑞φ(z|x) approximates 𝑝𝜽 (x|z),

the smaller the Kullback-Liebler (KL) divergence gap is — see Fig. 4.3 for
a simple illustration. Only if 𝑞φ(z|x) = 𝑝𝜽 (x|z), the ELBO and log𝑒 𝑝𝜽 (x)
coincide and the bound is tight.

Furthermore,

Figure 4.3: Illustration for the KL
divergence gap between log𝑒 𝑝𝜽 for
a point x(i) and the corresponding
ELBO for any value φ (with �xed
𝜽 ). The better 𝑞φ (z|x) approximates
𝑝𝜽 (x|z) in terms of eq. (4.9), the
thighter the gap is. Image adapted
from: Variational Rejection Sampling,
Grover, A. (2018).

recall that the primary goal of the generative process was to
estimate 𝜽 ∗ through maximum likelihood estimation. It follows that max-
imizing ELBO w.r.t. to 𝜽 approximately maximizes log𝑒 𝑝𝜽 (x) [41]. Hence,
the original optimization problem described by eq. (4.6) can be revised into

𝜽 ∗,φ∗ = argmax
𝜽 ,φ

ELBO
(
x;𝜽 ,φ

)
. (4.10)

That is, the variational parameters are simultaneously optimized with the
generative parameters when maximizing the lower bound.

Moreover, the ELBO can be rearranged and decomposed into two terms
according to

ELBO
(
x;𝜽 ,φ

)
= E𝑞φ

[
log𝑒 𝑝𝜽 (x, z) − log𝑒 𝑞φ(z|x)

]
= E𝑞φ

[
log𝑒 𝑝𝜽 (x|z)𝑝𝜽 (z) − log𝑒 𝑞φ(z|x)

]
= E𝑞φ

[
log𝑒 𝑝𝜽 (x|z)

]
− E𝑞φ

[
log𝑒 𝑞φ(z|x) − log𝑒 𝑝𝜽 (z)

]
= E𝑞φ

[
log𝑒 𝑝𝜽 (x|z)

]
− 𝐷KL

(
𝑞φ(z|x)‖𝑝𝜽 (z)

)
, −Lrec − LKL. (4.11)

Recall eqs. (2.13)-(2.15). It can be deduced that the reconstruction term
E𝑞φ

[
log𝑒 𝑝𝜽 (x|z)

]
= −𝐻

(
𝑞φ(z|x), 𝑝𝜽 (x|z)

)
is actually the cross-entropy be-

tween the approximate encoder and the decoder. The reconstruction term
encourages the model to be able to reconstruct the data accurately whiles
the regularization term, LKL, penalizes posterior approximations that are too
far from the prior.

As a result, the ELBO for a single data point x(𝑖) can be parametrised by [40]

ELBO
(
x(𝒊) ;𝜽 ,φ

)
=

𝑁∑︁
𝑖=1

ELBO
(
x(𝑖) ;𝜽 ,φ

)
= E𝑞φ

[
log𝑒 𝑝𝜽 (x(𝑖) |z)

]
− 𝐷KL

(
𝑞φ(z|x(𝑖) )‖𝑝𝜽 (z)

)
.

(4.12)

4.2.2 CVAE in a Strictly Gaussian Case

Eq. (4.11) can be applied to just about any distribution, and the task is now
to evaluate the closed-form of the KL term and the reconstruction term.
Supposed that the prior is a standard multivariate Gaussian, and assume
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that the likelihood as well as the posterior and its approximation follows a
multivariate isotropic Gaussian with diagonal covariance, according to55. For the sake of brevity the sub-

scripts for 𝜽 and φ for the mean and
variances will be omitted later on.

𝑝𝜽 (z) ≡ N (0, I), (4.13)
𝑝𝜽 (x|z(𝑖) ) ≡ N

(
𝝁𝜽 (z(𝑖) ),𝝈2

𝜽 (z
(𝑖) ) · I

)
, (4.14)

𝑞φ(z|x(𝑖) ) ≡ N
(
𝝁φ(x(𝑖) ),𝝈2

φ(x
(𝑖) ) · I

)
, (4.15)

where 𝝁 (x(i) ) and 𝝈2(x(i) ) are the mean and variance for data point x(𝑖) ,
respectively. Note that this particular prior has no parameters 𝜽 .

The imposed prior distribution assumed over the latent space acts as a reg-
ularizer, enforcing the learned latent representations to follow a profound
structure. The prior distribution thus gives signi�cant control over how one
want to model the latent distribution, and changing the assumed prior would
thus change the characterized data distribution.

Suppose 𝐽 is the dimensionality of the latent variable, such that z ∈ R𝐽 , and
let 𝑖 denote the data point at which evaluation occurs. As shown in [40] and
given all these assumptions, evaluating of the KL divergence then reduces to:

−𝐷KL
(
𝑞φ(z|x(𝑖) )‖𝑝𝜽 (z)

)
= −𝐷KL

(
N

(
𝝁 (x(𝑖) ),𝝈2(x(𝑖) ) · I

)
‖N (0, I)

)
=
1
2

𝐽∑︁
𝑗=1

(
1 + log𝑒

(
𝜎
(𝑖)
𝑗

)2 − (
𝜇
(𝑖)
𝑗

)2 − (
𝜎
(𝑖)
𝑗

)2)
.

(4.16)

REGULAR I Z AT ION LOSS
G I V EN THE GAUSS I AN CASE

The cross entropy term can be estimated using Monte Carlo estimators of
exceptions for large enough samples [40]. The likelihood is assumed to be
an isotropic Gaussian, and not a Bernoulli distribution (which is otherwise
the usual assumption when given binary data). I.e. using eq. (4.14) the
expectation can be decomposed according to

E𝑞φ
[
log𝑒 N

(
𝝁 (z),𝝈2(z) · I

) ]
' 1
𝑁

𝑁∑︁
𝑖=1

log𝑒 N
(
𝝁 (z(𝑖) ),𝝈2(z(i) ) · I

)
.

In accordance with [19], the log probability of x is then proportional to the
negative squared Euclidean distance between reconstruction x̃ and ground
truth x. And as shown by e.g. [27] and [25], the reconstruction loss yields
the negative mean squared Euclidean distance, or MSE:

E𝑞φ
[
log𝑒 N

(
𝝁 (z(𝑖) ),𝝈2(z(𝑖) ) · I

) ]
= − 1

𝑁

𝑁∑︁
𝑖=1

(
𝑥 (𝑖) − 𝑥 (𝑖) )2, (4.17)RECONSTRUCT ION LOSS

G I V EN THE GAUSS I AN CASE

where the reconstructed variance has been �xed, 𝝈 (z) = 1,∀z, and x̃ = 𝝁 (z)
represents the mean value of the probabilistic decoder.
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4.2.3 Reparameterization Trick

In

Figure 4.4: Upper: The original form.
Lower: The reparameterized form.
Gray triangles and blue circles in-
dicates deterministic nodes and
random nodes, respectively. In a
typically Gaussian setting then
𝑃 (ε) = N(0, I). Image adapted

from: Notes on the Reparametriza-
tion Trick. Errica, F. (2018).

order for the model to learn back-propagation is required, i.e. the gradients
of the ELBO w.r.t. 𝜽 and φ is needed. In particular, ∇𝜽 ,φE𝑞φ (z |x(i) )

[
log𝑒 𝑝𝜽

(x(i) , z) − log𝑒 𝑞φ(z|x(i) )
]
needs to be evaluated [53]. The gradient w.r.t. 𝜽 :

E𝑞φ (z |x(i) )
[
∇𝜽 log𝑒 𝑝𝜽 (x(i) , z)

]
' ∇𝜽 log𝑒 𝑝𝜽 (x(i) , z), is immediate and can

be estimated by Monte Carlo sampling [41]. On the other hand, the gradi-
ent w.r.t. φ: E𝑞φ (z |x(i) )

[ (
log𝑒 𝑝𝜽 (x(i) , z) − log𝑒 𝑞φ(z|x(i) )

)
∇φ log𝑒 𝑞φ(z|x(i) )

]
,

is the problematic one as its estimator exhibits high variance, thus being
impractical in this setting [53].

Accordingly, the current issue is that the network involves a sampling step,
as z is drawn from a distribution and is not a function of φ, and there is no
way to di�erentiate through a stochastic node. Instead, the reparameteriza-
tion trick [40] is used to facilitate back-propagation. The stochastic part is
moved into a branch of the network, such that z is written as a deterministic
transformation of a simpler random auxiliary noise variable, ε, governed by
a parameterless distribution, so as ε ∼ 𝑃 (ε). Furthermore, the di�erentiable,
deterministic vector-valued function𝑔φ

(
x, ε

)
to the random noise ε and input

x, parametrised by φ, is introduced.

Hence, using the Gaussian distribution speci�ed by eq. (4.15), and �xing
ε to be drawn from the normal base distribution, then sampling from the
probabilistic encoder 𝒛 ∼ 𝑞φ(z|x) is simulated by evaluating

z = 𝑔φ
(
x, ε

)
= 𝝁 (x) + 𝝈 (x) � ε, ε ∼ N(0, I), (4.18) REPARAMETER I Z AT ION

TR I CK

where 𝝁 (x) and 𝝈 (x) are the output of the inference network with φ.

It is now possible to compute the the gradient w.r.t. φ, which in turn allows
back-propagation. In particular, given objective function 𝑓 (z), expectations
can be rewritten in terms of ε, such that E𝑞φ (z |x) [𝑓 (z)] = E𝑃 (ε) [𝑓 (z)] [41].
In turn, substituting all occurrences of z with 𝑔φ

(
x, ε

)
forms a simple Monte

Carlo estimator: ∇φE𝑞φ (z |x) [𝑓 (z)] = E𝑃 (ε) [∇φ 𝑓 (z)] ' ∇φ 𝑓 (z). See Fig. 4.4
for an illustration between the naïve and reparametrized implementations.

4.2.4 Deep Learning Interpretation

In this section an intuition behind the CVAE is given and how it is related to
deep learning.

First and foremost, it is important to note that the gradient descent algorithm,
by default, seeks to minimize the loss function (as elaborated in section
§ 2.1.5).
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The ELBO serves as the loss function, however the objective was to maximize
ELBO by eq. (4.10). Hence, ELBO is modi�ed into a loss function that is to
be minimized such that LVAE ≡ −ELBO [41], i.e.:

LVAE , Lrec + LKL

= −E𝑞φ
[
log𝑒 𝑝𝜽 (x|z)

]
+ 𝐷KL

(
𝑞φ(z|x)‖𝑝𝜽 (z)

)
.

(4.19)LOSS FUNCT ION FOR VAR I -
AT IONAL AUTOENCODER

Speci�cally, given the Gaussian densities from section § 4.2.2, the LKL term
can be substituted by eq. (4.16) and the Lrec term by eq. (4.17).

Given a data set of input images 𝑋 = {x(𝑖) }𝑁𝑖=1, the probabilistic encoder
speci�ed by eq. (4.15) produces parameters of Gaussian distributions in the
the lower dimensional latent space z(𝑖) , z ∈ R𝐽 . It is expected that 𝑞φ(z|x)
approximately maps the input images to 𝑝𝜽 (z), such that

𝑁∑︁
𝑖=1

𝑞φ(z|x(i) ) = N
( 𝑁∑︁
𝑖=1

𝝁 (x(𝑖) ),
𝑁∑︁
𝑖=1

𝝈2(x(𝑖) ) · I
)
≈ 𝑝 (z), (4.20)

entailing that the the encoder happens to approximate the prior given by
eq. (4.13). The quality of how well the sum of distributions produced by
𝑞φ(z|x) approximates the standard normal distribution is exactly what the
KL divergence, 𝐷KL

(
𝑞φ(z|x)‖𝑝𝜽 (z)

)
, in the loss function measures.

So, the data points in the latent space are distributed following an approximate
standard normal distribution. Drawing z(𝑖) ∼ 𝑞φ(z|x(𝑖) ), the probabilistic
decoder returns a reasonable reconstructed image of the original input image.
Specially, assuming that the probabilistic decoder is described by eq. (4.14), z
is transformed into a mean value of the distribution 𝑝𝜽 (x|z). I.e. new arti�cial
images are generated according to 𝝁 (z) = x̃.

The

Figure 4.5: Taxonomies of CVAE
implementations. The dashed ar-

rows denotes a sampling operation.
Image adapted from: Variational
Autoencoders for Collaborative

Filtering. Liang, D. et al. (2018).

reparameterization trick is used in order to be able to implement the
CVAE. In particular, Fig. 4.5 shows an illustration for the Gaussian cases
described by the distributions in § 4.2.2. In the naïve implementation of the
CVAE, the input x is mapped to the intermediate layers taking the values
of 𝝁φ(x) and 𝝈2

φ
(x) as described by eq. (4.15). The latent variable z is then

sampled from the probabilistic encoder 𝒛 ∼ 𝑞φ(z|x). Finally, through the
decoder 𝒛 is mapped back to the input dimension yielding the reconstruction
x̃. Contrary, using the reparameterization trick, sampling from 𝒛 ∼ 𝑞φ(z|x)
is simulated by evaluating eq. (4.18). It makes back-propagation feasible in
the network such that the optimization problem derived in eq. (4.10) can be
solved.
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Figure 4.6: Architecture of the
CVAE model speci�ed by the the
multivariate Gaussian assumptions.
For a given input image, the encoder
produces a distribution governed
by parameters 𝝁 and 𝝈 . Using the
reparameterization trick, a point
in the latent space is sampled from
𝒛 ∼ 𝑞φ (z|x). Hereafter the point
is propagated through the decoder,
which produces an arti�cial image.
Image adapted from: Autoencoder to
Beta-VAE. Weng, L. (2018).

Finally, consider Fig. 4.6 and take a look at the full architecture of the CVAE.
The encoder takes an input image and compresses it into a smaller form
through a CNN (as summarized in § 2.2), and produces parameters 𝝁 and 𝝈
that describes a probability distribution in the latent space. Using the repa-
rameterization trick, a latent point sampled from this distribution of 𝑞φ(z|x)
is then simulated. The decoder decompresses this latent point through an
inverse architecture of the CNN used, and transforms it into an approximate
reconstruction of the input.
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5THE DATA

“ Life is like a box of chocolates. You never know what you’re
gonna get.

—From the �lm Forrest Gump ”
This chapter serves as a presentation to the case studies and data used for
the implementations in chapter § 6. However, �rst it is necessary to review
and examine advanced computer vision techniques that have been utilized
for preprocessing the data, and these technical explorations are found in
section § 5.1. Subsequently, the data are formally presented in section § 5.2.
This includes how the data was constructed as well as the pipelines for how
it have been prepared for the neural networks.

5.1 computer vision

This section is dedicated to provide the necessary understandings of various
computer vision techniques that all will be proved to be very useful for
the preprocessing processes of the datasets introduced in § 5.2. Firstly, in
section § 5.1.1 two di�erent techniques of intensity transformations in images
are introduced. In sections § 5.1.2 and § 5.1.3 two methods for matching the
intensities in images are reviewed. Thereupon an advanced �ltering method
is examined in § 5.1.4. Section § 5.1.5 is dedicated to asses various methods for
image resizing. Section § 5.1.6 serves as a necessary introducing for a method
able to correct distorted pixels in an image. Additionally, § 5.1.7 serves as
a brief discussion for the importance and need of feature scaling in neural
networks. Finally, before images are fed to the neural networks it is good
practice to perform various image transformations, a concept introduced in
section § 5.1.8.
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5.1.1 Intensity Transformations

The contrast of a grayscale image indicates how easily objects can be distin-
guished from other objects and is essentially a matter of how di�erent the
gray-level values are [55]. Especially, the contrast of an image can be revealed
and quanti�ed by its image histogram, for which count of pixels versus pixel
intensity values are plotted, cf. eq. (5.3). A low contrast image have pixel
values concentrated in a narrow range, and thus the human eye has a hard
time distinguishing them. On the other hand, a high contrast image have
pixel values far from each others, which makes them easy to distinguish.

Point processing manipulations are applied directly on the pixels of an image,
i.e. in the spatial domain. Two fundamental intensity transformations opera-
tions are descried in the section; the contrast stretching and gamma correction
that have been used for contrast and brightness manipulations. For both
datasets these two image enhancement methods have been used in favour
of increasing the contrast of the foreign objects as well as obtaining white
uniform backgrounds.

Piecewise Linear Contrast Stretching

Contrast stretching is used to enhance a low contrast 8-bit grayscale image.
The aim is to improve the contrast by stretching the intensity values to �ll
the entire dynamic range of the image. Using a piecewise linear function it
transforms the gray levels in the range [0, 255]. It involves the identi�cation
of a number of linear enhancement steps, and for each segmented line the
equation of a straight line is used to compute the piecewise linear function
[52]. Thus, letting 𝑇 denote a function that maps 𝑟 = 𝐼 (𝑖, 𝑗) to 𝑠 = 𝐼 (𝑖, 𝑗), the
operation can be expressed by [63]

𝑇 (𝑟 ) =



(𝑠1/𝑟1)𝑟, for 0 ≤ 𝑟 ≤ 𝑟1
𝑠2 − 𝑠1
𝑟2 − 𝑟1

(𝑟 − 𝑟1) + 𝑠1, for 𝑟1 < 𝑟 ≤ 𝑟2

255 − 𝑠2
255 − 𝑟2

(𝑟 − 𝑟2) + 𝑠2, for 𝑟2 < 𝑟 ≤ 255,

(5.1)P I EC EW I S E L INEAR CON -
TRAST STRETCH ING

where 𝑟 and 𝑠 denotes the gray level of the input image and the output image
at any point (𝑖, 𝑗), respectively. In general 𝑟1 ≤ 𝑟2 and 𝑠1 ≤ 𝑠2 is chosen such
that the function used is always linear and monotonically increasing [26].

As

Figure 5.1: Illustration of contrast
stretching on an image. Each piece-

wise linear constrast stretch is
computed using the equation of a

straight line; 𝑠 − 𝑠𝑘 =
𝑠𝑘+1−𝑠𝑘
𝑟𝑘+1−𝑟𝑘 (𝑟 − 𝑟𝑘 ),

for 𝑟𝑘 < 𝑟 ≤ 𝑟𝑘+1, 𝑘 = 0, ..., 𝐾 − 1.
Image source: Python | Intensity
Transformation Operations on
Images. GeeksforGeeks (2019).

illustrated in Fig. 5.1, by changing the location of points (𝑟1, 𝑠1) and (𝑟2, 𝑠2)
the shape of the transformation function can be controlled. If 𝑠1 = 𝑟1 and
𝑠2 = 𝑠2 the operation is simply an identity transformation and no change will
occur in the image. When 𝑟1 = 𝑟2, 𝑠1 = 0 and 𝑠2 = 255 a threshold function
is applied, i.e. the images is converted into a binary image with black and
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Figure 5.3: To the left the original
image is shown. Gamma correction
with 𝛾 = 1.8 results in a darker
output image while 𝛾 = 0.2 returns a
brighter output. 𝛾 = 1 would return
an image with no change as it simple
corresponds to a linear mapping.

white pixels. Various degree of spread in the intensity level of the output
image is produced by choosing intermediate values of (𝑟1, 𝑠1) and (𝑟2, 𝑠2).

Gamma Correction

Gamma correction

Figure 5.2: Gamma-mapping curves
for di�erent values of gamma. Pixel
values in domain [0, 255].

is used for brightness manipulations by use of a non-
linear transformation between the input image 𝐼 (𝑖, 𝑗) and the processed
image 𝐼 (𝑖, 𝑗). Mathematically, this power-law transformation is expressed as
[26]

𝐼 (𝑖, 𝑗) = 𝑐
[
𝐼 (𝑖, 𝑗)

]𝛾
, 𝑐 > 0. (5.2) GAMMA CORRECT ION

In the common case of 𝑐 = 1 the gamma-mapping is de�ned such that
input and output pixels are in the domain of [0, 1] [55]. Nevertheless, it is
easy to convert pixel values between the two ranges of [0, 1] and [0, 255],
in particular cf. eq. (5.16) for this rescaling process of pixels values. This
transformation can easily be incorporated as an intermediate step in eq.
(5.2) if the user want values to be scaled in [0, 255], speci�cally by 𝐼 (𝑖, 𝑗) =
255

[
𝐼 (𝑖, 𝑗)/255

]𝛾 .
As the gamma transformation is non-linear, the e�ect depends on the original
pixel values and will not be the same for all pixels. In Fig. 5.2 some di�erent
gamma-mapping curves are illustrated. Given 𝛾 = 1 the identity-mapping
is rendered. For 0 < 𝛾 < 1 the intensity increases, i.e. the dark regions of
the input image becomes brighter. On the other hand, if 𝛾 > 1 the processed
image becomes darker as the intensity of pixels decreases.

To better illustrate the e�ect of the gamma mapping, Fig. 5.3 shows some
concrete image examples as well as their respective image histogram, for
where 𝛾 has been varied towards both small and large values. Given 𝛾 > 1
the histogram shifts towards the left, resulting in the bright regions becomes
darker, thus the resulting image will be darker compared to the input image.
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Vice versa, for 𝛾 < 1 the output image will be brighter than the input image
as the histogram shifts towards the right.

5.1.2 Histogram Matching

For simplicity, consider again a grayscale image 𝐼 (𝑖, 𝑗) ∈ R𝐻×𝑊 . The his-
togram of such an image is a discrete frequency distribution as the intensity
value in each bin describes the observed counts of the corresponding value.
Formally, given a grayscale value 𝑠 , the sum of all histogram entries is [10]∑︁

𝑠

ℎ(𝑠) = 𝐻 ·𝑊, (5.3)IMAGE H I STOGRAM

since the total number of pixels in an image is 𝐻 ·𝑊 . The probability of
occurrence of each pixel value can easily be computed by

𝑝 (𝑠) = ℎ(𝑠)
𝐻 ·𝑊 , where

𝑘∑︁
𝑠=0

𝑝 (𝑠) = 1 as 𝑝 (𝑠) ≥ 0, (5.4)NORMAL I Z ED H I STOGRAM

and is known as the normalized histogram, or probability density function
(PDF). The associated discrete cumulative distribution function (CDF) is then
the sum of all frequencies of intensity values lying in its domain, de�ned by

𝐶 (𝑘) = 1
𝐻 ·𝑊

𝑘∑︁
𝑠=0

ℎ(𝑠) =
𝑘∑︁
𝑠=0

𝑝 (𝑠), 𝑘 = 0, ..., 𝐿 − 1, (5.5)CUMULAT I V E D I STR I -
BUT ION FUNCT ION

where 𝐿 is the number of possible intensity levels in an image [10, 26]. It
follows that the CDF is monotonic increasing upwards and 𝐶 (𝑘) ∈ [0, 1].
Sometimes circumstances occurs where images have been taken under e.g.
di�erent conditions or from di�erent sources. Given such cases it can be
useful to be able to specify the shape of the histogram that the processed
image should have. Such an image processing method able to manipulate
the pixels of a source image in such a way that its histogram matches that of
an target image does indeed exist, and is known as histogram matching (or
histogram speci�cation).

Given two grayscale images, a source image 𝐼s(𝑖, 𝑗) ∈ R𝐻s×𝑊s and target
image 𝐼t(𝑖, 𝑗) ∈ R𝐻t×𝑊t , each of their respective histograms are computed by
eq. (5.3). Following, given the number of bins, 𝐿, their CDFs are obtained by
eq. (5.5), that is

𝐶s(𝑘) =
1

𝐻s ·𝑊s

𝑘∑︁
𝑠=0

ℎs(𝑠) and 𝐶t(𝑘) =
1

𝐻t ·𝑊t

𝑘∑︁
𝑠=0

ℎt(𝑠), (5.6)
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Figure 5.4: The histogram of the
source image is modi�ed based
on the distribution of the tar-
get/reference image. Notice how
the intensities of the source image
have been mapped towards the tar-
get image, resulting in an optimal
matched image.

where 𝑘 = 0, ..., 𝐿 − 1, for which 𝐿 = 256 is the upper limit for an 8-bit
grayscale image. Subsequently, given the information above, the matched
image can then be described by the mapping [10, 26]

𝐼 (𝑖, 𝑗) = 𝐶 (−1)
t

(
𝐶s

(
𝐼s(𝑖, 𝑗)

) )
. (5.7) H I STOGRAM MATCH ING

Hence, histogram matching performs a mapping that optimally transform in-
tensities of the source image towards the target image, such that the matched
image 𝐼 (𝑖, 𝑗) with distribution 𝐶 ′

s matches the reference distribution 𝐶t as
closely as possible, that is 𝐶 ′

s (𝑘) ≈ 𝐶t(𝑘). If the images have multiple color
channels, the histogram matching is performed independently for each chan-
nel.

In general the CDF is however not invertible since constant plateaus are
encountered at ranges where intensities are not occurring in the image,
hence it might not be a strictly monotonically increasing function. In order
to overcome the problem of non-invertibility for histogram matching the
pseudo-inverse is considered instead. That is, for any CDF de�ned on the
integer set 𝑠 ∈ {0, ..., 255}, its pseudo-inverse is de�ned as following [10]

𝐶 (−1) (𝑙) = min{𝑠 | 𝐶 (𝑠) ≥ 𝑙}, where 𝑙 ∈ [0, 1] . (5.8)

To illustrate the e�ect of the histogram matching, the image histogram and
CDF for the gray channel is plotted on Fig. 5.4. Clearly, the matched output
image has the same CDF as the reference image.
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5.1.3 General Midway Equalization

Instead of matching the histogram of a source image with the histogram of a
target image as described in § 5.1.2, a pair of images can instead be matched
toward a ’midway’ histogram, yielding them the same distribution.

If given two grayscale images, 𝐼1(𝑖, 𝑗) and 𝐼2(𝑖, 𝑗), the change given by [17]

𝜑 (𝑥) = 1
2

(
𝐶

(−1)
1 (𝑥) +𝐶 (−1)

2 (𝑥)
)
, (5.9)

where 𝐼1(𝑖, 𝑗) = 𝜑 (𝐶1 ◦ 𝐼1) = 𝜑
(
𝐶1(𝐼1)

)
and 𝐼2(𝑖, 𝑗) = 𝜑 (𝐶2 ◦ 𝐼2) = 𝜑

(
𝐶2(𝐼2)

)
,

are called the midway equalizations (or midway speci�cations) of 𝐼1 and 𝐼2.
In order words, by writing the equations explicitly the corrected images are
easily constructed by

𝐼1(𝑖, 𝑗) =
1
2

(
𝐶

(−1)
1

(
𝐶1(𝐼1)

)
+𝐶 (−1)

2
(
𝐶1(𝐼1)

) )
=
1
2

(
𝐼1 +𝐶 (−1)

2
(
𝐶1(𝐼1)

) )
𝐼2(𝑖, 𝑗) =

1
2

(
𝐶

(−1)
1

(
𝐶2(𝐼2)

)
+𝐶 (−1)

2
(
𝐶2(𝐼2)

) )
=
1
2

(
𝐶

(−1)
1

(
𝐶2(𝐼2)

)
+ 𝐼2

)
,

as 𝑖𝑑 = 𝐶
(−1)
𝑘

(𝐶𝑘◦𝐼𝑘 ), 𝑘 ∈ {1, .., , 𝐾} are identi�ed as the identity functions [17].
This way, 𝐼1 and 𝐼2 will end up having the same cumulative histogram𝜑 found
by the harmonic mean between the input images cumulative histograms 𝐶1
and 𝐶2. Do notice that the pseudo-inverse 𝐶 (−1) is computed by eq. (5.8).

The midway equalization method as described by eq. (5.9) can however
be generalized to 𝑁 arbitrary numbers of images. Speci�cally, the general
midway equalization [30]

𝜑 (𝑥) = 1
𝑁

𝑁∑︁
𝑝=1

𝐶
(−1)
𝑝 (𝑥), (5.10)GENERAL M IDWAY

EQUAL I Z AT ION

for 𝑝 ∈ {1, ..., 𝑁 } and where 𝐼𝑛 = 𝜑
(
𝐶𝑛 (𝐼𝑛)

)
with 𝑛 ∈ {1, ..., 𝑁 }. Given RGB

images, the midway equalization is applied channel-wise.

To illustrate the e�ect of the general midway equalization three grayscale
images of the same size are considered on Fig. 5.5. Notice how the contrast
of all input images have been equalized with each others, hence the output
images yields the same intermediary grey level distribution.
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Figure 5.5: General midway equaliza-
tion for three grayscale images with
same size. The CDFs of the input
images and output image are repre-
sented by continuous and dashed
lines, respectively.

5.1.4 Filtering

The images are infected by noise, i.e. random variations of brightness. In
order to modify such noisy variations, images can be smoothed by �ltering.
Filtering methods are so-called neighborhood processings as the outputs is
determined by not only the pixel value at the same position as the input, but
of the values of the pixel neighborhood at the same time [55].

Neighborhood processing of an 2D image, 𝐼 ∈ R𝐻×𝑊 ×𝐶 , are performed
though convolution (or correlation) with a kernel 𝐾 ∈ R𝑘1×𝑘2×𝐶 . The process
is described in details in section § 2.2.2, and mathematically expressed by

𝐼 (𝑖, 𝑗) = (𝐾 ∗ 𝐼 ) (𝑖, 𝑗) =
𝑘1−1∑︁
𝑛=0

𝑘2−1∑︁
𝑚=0

𝐾 (𝑚,𝑛)𝐼 (𝑖 −𝑚, 𝑗 − 𝑛), (5.11) 2D CONVOLUT ION

As will be seen in section § 5.2 below, the datasets contains important edge
informations, and therefore convolution with �lters such as mean or median
kernels, that typically blurs out a signi�cant amount of details, have not
been utilized. Instead, in order to preserve edges when �ltering noise, the
bilateral �lter has been applied successfully. Given pixel positions p and q,
the resulting intensity at center position p is de�ned by [44]
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Figure 5.6: Median, Gaussian and bi-
lateral denoising �lters applied onto
the same noisy input image. Notice
their abilities in preserving edges
and texture while removing noise.

BF[𝐼 ]p =
1
𝑊p

∑︁
q∈S

𝐺𝜎s
(
‖p − q‖2

)
𝐺𝜎r

(
|𝐼p − 𝐼q |

)
𝐼q, (5.12)B I L AT ERAL F I LT ER

where the normalization factor𝑊p =
∑

q∈S𝐺𝜎s
(
‖p−q‖2

)
𝐺𝜎r

(
|𝐼p−𝐼q |

)
ensures

pixel weights sums to 1.0. Here, s ∈ S denotes the set of all possible pixel
locations in the spatial domain and the range domain r ∈ R corresponds to
all possible intensity values. Hence, this non-linear �lter takes a 2D Gaussian
kernel in both space and range following

𝐺𝜎 (𝑥) =
1

2𝜋𝜎2 exp
(
− 𝑥2

2𝜎2

)
. (5.13)

The Gaussian function in domain performs a Gaussian blurring of nearby
pixels, and as the spatial parameter 𝜎s increases, the larger the neighborhood.
This Gaussian blurring is simple a weighted average of intensities, thus
leading to potential edge blurring. As pixel values at edges corresponds to a
signi�cant change in gray-level values, the Gaussian function of intensity
di�erence ensures that only pixels with similar intensities to the central pixel
are considered for the blurring process. Hence, this component penalize
pixels with a di�erent intensity, and the smaller the range parameter 𝜎r, the
shaper the edge. As 𝜎r → ∞, eq. (5.12) tends to a Gaussian blurring since the
range of eq. (5.13) widens and �attens.

To illustrate the convolution with di�erent kernels consider Fig. 5.6, where
image blurring utilizing a Gaussian, median and bilateral �lter have been
considered. In general, the bigger the kernel, the more smoothing are pro-
vided. The Gaussian �lter results in both noise and edges being blurred. The
median �lter is e�ective at removing the noise, however here there is also a
loss of texture. On the other hand, the bilateral �lter is better at preserving
edges while also removing noise.

5.1.5 Downsampling

Downsampling is the process of reducing the dimensions and spatial reso-
lution of an image while keeping the 2D representation, and this process is
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Figure 5.7: Original image downsam-
pled from (136, 80) → (32, 32) pixels
using various interpolation methods.

typically achieved though image interpolation techniques. Particularly, it is
common practice to standardize the image size given to a neural network,
although they do no require any speci�c pixel dimensions. Furthermore,
downscaling of an image makes the data of a more manageable size, hence
reducing the storage size and enables faster processing of the data.

Consider Fig. 5.7 where �ve di�erent and commonly used downscaling meth-
ods have been examined: nearest neighbor, bicubic, bilinear, area, and lanczos
interpolation. As noticed, each method has its own advantages and disad-
vantages.

The nearest neighbor interpolation preserve the edges in the image, but it
does not work well for the �ner details. That is, the downsampled image
looks edgy and sharp as the method does not blend the information together
smoothly. Hence, it result in the foreign object being less visible compared
to the other methods, and so this technique is not ideal for the data.

Both the bilinear and bicubic interpolations tends to blur the image. Although
it is not very noticeable on the �gure, the bicubic method usually performs
better than the bilinear method [24]. On the other hand, the Lanczos tech-
nique can lead to ringing e�ects. Ringing e�ects in image processing are the
appearance of rippling artifacts in the vicinity of image edges, producing
bands of "echos" that potentially can make it hard to approximate sharp edges
— e�ects one would like to avoid.

The area method (or box �lter) results in an over-smoothing, but the foreign
objects are still visible. Nevertheless, this over-smoothing of the food product
is actually desirable, since it is expected this will help the CAE and CVAE
models better reconstruct the original samples as the pixel values does not
di�ers as much.
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Figure 5.8: Left: The degraded in-
put image. Middle: The binary

mask used for the image inpaint-
ing. Right: The resulting image
using the Navier-Stokes method.

5.1.6 Image Inpainting

Unfortunately, due to the scanning set-up of one particular dataset introduced
in section § 5.2.1 — the chocolate bar dataset — it is necessary to consider
image inpainting, which is another image interpolation technique.

Image inpainting is the process of restoring damaged or missing parts of an
image. Using a binary mask that speci�es the location of the damaged pixels
in the input image, these pixels are automatically reconstructed by some
chosen algorithm. In particular, presented information from non-damaged
regions, the reconstruction is performed automatic with the Navier-Stokes
inpainting technique [6].

As the name might be spoiling, the mathematical framework of this algorithm
is based on �uid dynamic and utilize partial di�erential equations to travel
along boundaries until a steady state is reached, subsequently �lling the in-
paintig region with the correct color gradient. The mathematical description
behind the method is non-trivial plus rather tedious, and is beyond the scope
of this thesis. However, the curious reader may �nd detailed walk-through in
[2, 6]. Rather, it is primary the practical application behind image inpaining
that is examined in this section.

Suppose the binary mask

𝑀 (𝑖, 𝑗) =
{
1, if (𝑖, 𝑗) 𝑖𝑠 damaged in 𝐼 (𝑖, 𝑗)
0, if (𝑖, 𝑗) 𝑖𝑠 𝑛𝑜𝑡 damaged in 𝐼 (𝑖, 𝑗) (5.14)

speci�es the location of the damaged pixels (𝑖, 𝑗) in the input image 𝐼 (𝑖, 𝑗)
that should be corrected. I.e. given the mask, non-zero pixels corresponds to
the areas that are to be modi�ed, and regions of zero pixels should be kept as
it is.

Hence, a mask of the same size as the input image should be created. Fig.
5.8 shows �rst an degraded input image and secondly the constructed mask.
Notice the two remarkable thick vertical stripes going though the chocolate
bar; these are mainly the ones we wish to correct. The mask have automatic
been constructed by subtracting two calibration images from each other
— subtracting of an "exposure OFF calibration image" with an "exposure
ON calibration image" — and subsequently applying global thresholding in
order to produce a binary mask. The �nal image is the result of applying
the Navier-Stokes algorithm. This resulting image is not perfectly restored,
as the vertical lines are very thick and thus hard to correct, however the
inpainting regions have reasonable been �lled in by the surrounding regions.
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5.1.7 Feature Scaling

The objective of feature scaling is to change numerical values to a common
scale without distorting di�erences in the ranges of values, helping to ensure
all feature contributed equally and no speci�c feature dominates the other.
Additionally in deep learning, data scaling typically improves the perfor-
mance of the model and accelerate training [81]. The speci�c choice of which
scaling methods that are to be performed typically depends on the speci�c
of the problem as well as on the statistics of the whole dataset. Especially,
it is important to note that the scale of the output variable of the network
matches that of the activation function on the output layer.

The min-max normalization is one of the most common ways to normalize
data. The mathematical formulation for the min-max scaling is given by

x′ =
x −min(x)

max(x) −min(x) . (5.15) MIN -MAX NORMAL I Z AT ION

That is, given an 8-bit grayscale image, the minimum pixel value gets trans-
formed into a 0 and the maximum pixel value gets transformed into a 255.
Every other pixel value gets transformed into a decimal between 0 and 255.
Hence, for images this is a form of histogram stretching (or contrast stretch-
ing) as the process changes the range of pixel intensity values to span the
full domain.

The raw grayscale images with pixel integers in the range between 0 and
255 can be presented directly to neural networks however, as discussed in
§ 2.1.2, inputs with large integer values slows down training and can disrupt
the learning process. Instead, prior to modeling the pixel values are rescaled
into the domain [0, 1] by applying the following normalization procedure

x′ =
x

255.0 . (5.16) NORMAL I Z AT ION

This is bene�cial for the model as it likely will perform better and speed up
training. As the sigmoid activation given by eq. (2.4) renders outputs between
0 and 1, it is consistently used as the output function in the implementations
presented in section § 6. Especially for the CAE and CVAE, that compares
input image with output image, pixel values needs to be enforced into the
same hard range. Henceforth, the feature scaling given by eqs. (5.15)-(5.16)
are the only one utilized.

5.1.8 Image Augmentation

Image augmentation can be used to enlarge a dataset, which is especially
helpful when the number of samples is sparse or if the scan image were taken
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under a limited set of conditions. By generating synthetically modi�ed data
to the training set, it will help the neural network model to generalize better
as both the count of images and their associated variations are increased
[27]. A partial goal with augmentation is to make the neural network robust,
i.e. invariant to relevant variances such as translation, size, viewpoint or
illumination.

Augmentation is pretty straightforward to perform on images as they includes
a range of di�erent factors which easily can be simulated, such as distinct
locations, orientations or scales. Depending on what kind of images the
dataset contains and on the process of how scan images are being taken,
only relevant augmentations should be performed. The user usually have
knowledge about what kind of variances the network should be invariant to
— and this is also the case for the datasets introduced in section § 5.2 below.

When feeding data to the neural network, the transformations can be per-
formed in two ways; either by o�ine augmentation or online augmentation
(on-the-�y augmentation). O�ine augmentation is performed before data is
fed to the model, and this option is usually preferred for relatively smaller
datasets. On the other hand, online augmentation is utilized while the net-
work is being trained, speci�cally the transformations are performed on the
mini-batched fed to the model. This method is typically preferable for larger
datasets.

5.2 creating the datasets

In this thesis two di�erent device under tests (DUTs) case studies are exam-
ined. They cannot be compared easily and so the considerations made about
the datasets di�ers at some points. The data are formally presented in section
§ 5.2.1 whereas the applied foreign objects and otherwise defects are outlined
in section § 5.2.2.

It is worthwhile to mention that all X-ray images are read and processed
as 8-bit grayscale images, which scale is shown in Fig. 2.12. Accordingly, in
order for a good model to be trained, image preprocessing is needed before
applying the data to the algorithms established in section § 4. Thereby, § 5.2.3
presents the individual preprocessing pipelines applied to each individual
dataset.

Subsequently, in § 5.2.4 the training, validation and testing sets and their
assumptions are formally presented. As the number of images taken by
the detectors are limited, image augmentation has been used in order to
increase the total image count, hence the applied image augmentations for
each dataset are also outlined here.
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Table 5.1: Foreign objects imposed on anomalous samples. All sizes are measured using an
electronic caliper, and as the speci�c foreign objects have their own natural variances, the
reported measures are approximate. If the length, 𝑙 , is known for non-spherical objects the
measurement is reported. The estimated chemical compositions are speci�ed if known.

Type Chemical Composition Morphology Diameter [mm]
Size 1 Size 2

Lead ball Lead (94%) Spherical 2 —
Steel ball Iron (95%) Spherical 1.5 4
Steel wire Unknown Rectangle 0.4 0.8
Thumbtack Aluminium (99%) Rectangle (𝑙 = 5 mm) 1 —
Staple Iron (62%), zinc (37%) Rectangle (𝑙 = 7 mm) 0.3 —
Needle Iron Rectangle (𝑙 = 20 mm) 1 —

5.2.1 Data Presentation: Scan Settings

Two type of food products have been investigated; a particular type of choco-
late bar and potatoes. Information about the di�erent classes and how they
have been constructed are found in § 5.2.2 below.

The �rst dataset consists of X-ray images of motionless chocolate bars inside
their food wrappers. The images have been recorded by a 2D scintillator
detector 1 1. Once again, I owe my gratitude

to Newtec Engineering A/S for for-
warding me images of the chocolate
bars recorded on their 2D scintillator
detector.

with tunings 60 kV (tube voltage) and 7.5mA (tube current).

The second dataset is comprised of X-ray images of mobile potatoes. These
images have been taken by the ButeoX scanner introduced in section § 1.3.4.
This data were recorded at 80 kV voltage and 100W power, i.e. corresponding
at an 1, 25mA tube current. Moreover, the line rate was set to 1000Hz.

5.2.2 Foreign Objects

In this section the foreign objects applied to the X-ray images and other types
of defects are outlined. Normal samples are typically alike and relatively easy
to collect and de�ne. In practice, defective samples are scarce and under-
represented, thus typically not easily obtained nor collected. Instead, all
data labelled as abnormal have been created arti�cially. Table 5.1 shows an
overview of the foreign objects and their measured sizes and compositions
used in creating the abnormal data.

On

Figure 5.9: RGB image of potato with
hollow heart disease. Image source:
Hollow heart in potatoes. Agriculture
and Food, Australia (2016).

the one hand, the hollow heart disease that might emerge internal in pota-
toes are an international problem. One cannot distinguish perfect potatoes
from potatoes with hollow heart until they are cut open, whereas it then
will be obvious. As shown in Fig. 5.9 hollow heart in potatoes manifests
irregularly-shaped and rather in a ’star’-shaped cavity form. The hollow
hearts varies in shape and size, nevertheless X-ray imaging are able to detect
this disease.
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Figure 5.10: Small selections of raw
X-ray images of potatoes and af-
ter downsampling to dimensions

(128, 128). Upper row: Perfect sam-
ples. Middle row: Potatoes with in-

serted needles. Lower row: Potatoes
with arti�cially hollow heart disease.

On the other hand, in Australia needles have been found in strawberries and
later on in potatoes as well2

2. The curious reader may �nd more
information in the article: Strawberry
needle scare: Growers to look to metal
detectors to contain contamination
crisis. In: Australian Broadcasting
Corporation. By: Jo Prendergast and
David Weber (2018).

. Thus, it motivates to consider a second anomaly
class.

The potato dataset consists of 50 ’perfect’ potatoes. The foreign object
categorized as ’needle’ in Table 5.1 were randomly inserted in 49 of these
same potatoes. Subsequently, the needles were removed and hollow hearts
were arti�cially created in 39 of these potatoes. Each of these classes were
recorded four times in the ButeoX scanner, yielding a dataset consisting of
540 images. On Fig. 5.10 a small X-ray selection of perfect potatoes, potatoes
with added metal and potatoes with arti�cial made hollow hearts are shown.

The

Figure 5.11: Selected RGB im-
ages of chocolate bars used for

the case study. Left: normal
sample. Right: added foreign
objects and a vertical crack.

chocolate bar dataset consists of 22 recorded images in two classes: 10
normal samples and 12 abnormal samples. 5 out of 10 bars were used to
construct the abnormal samples; �rst by randomly placing the remaining
foreign objects in Table 5.1 onto the bars, and afterwards by tearing them
apart vertically — with or without added foreign objects, cf. Fig. 5.11. A
selection of X-ray images of the chocolate bars before preprocessing can be
seen in Fig. 5.12. Contrary to the potato dataset, which already poses real-life
problems, the chocolate bar dataset is made as an experimental set-up in order
to investigate both another shape and possible defects of a food product.

Figure 5.12: Selection of X-ray samples
of chocolate bars before preprocess-

ing. Upper row: normal samples.
Lower row: anomalous samples
with randomly added foreign ob-
jects and possible vertical cracks.
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5.2.3 Image Preprocessing: Pipelines

The raw X-ray images of the two datasets cannot be easily compared, and so
the particular preprocessing methods and their applied sequences are slightly
di�erent. However, the intentions and motivations behind the preprocessing
are the same. Notice, a particular pipeline has been applied on both normal
and anomalous data.

Commonly, as elaborated in § 4.1-§ 4.2, the generative models seeks to re-
construct images as close to the originals as possible, hence it serves as
motivation enough for ’removing’ the background around the object at inter-
est. The grayscale background of the raw images is a mix of values within
the range of 0 to 255. But by removing the background all these values can
instead be replaced by a single intensity value, such as 255. Feeding the
generative models with images of removed backgrounds should thus serve as
being better at reconstructing the original images. As will be demonstrated
below, the piecewise linear contrast stretching o�ers an elegant approach for
replacing backgrounds containing various intensities with a singular white
background.

Primarily, the focus lies on increasing the contrast in the images. In particular,
the data are undergoing selected intensity transformations in order to increase
the contrast between product and foreign objects or other defects.

Moreover, in preparation of feeding images to the neural networks, all image
samples of both datasets have been rescaled to a lower dimension, specially
𝐼 ∈ Roriginal× original → 𝐼 ∈ R128×128. As the computational memory is limited,
this lower dimensionality have �rst and foremost been chosen in order to
avoid the memory limit and for faster computations. Secondly, this square
dimensionality have convincingly struck a reasonable balance between reso-
lution and dimensionality reduction, and is furthermore an appropriate input
dimension for both the CAE and CVAE models.

Dataset: Potatoes

For
Figure 5.13: The downsampling pro-
cess for potatoes. Upper: the raw
scan of a perfect potato. Middle: The
background is cropped away such
that only the potato itself is left in
the frame. Lower: Utilzing the area
interpolation, the image is downsam-
pled to its desired dimensions.

the potato dataset, the following preprocessing pipeline and parameters
have been applied:

i Due to the line rate and the speed of the conveyor belt not being syn-
chronized, the recorded potato images have been stretched along the
direction of travel. Hence, �rstly the backgrounds have been cropped
away, whereas all images have been downsampled to the desired dimen-
sions of (128, 128) by use of the area interpolation, cf. § 5.1.5. On Fig. 5.13
an example is shown.

ii Consider the image histogram of a normal potato on Fig. 5.14. This
histogram is representative for the whole potato dataset, and it can be
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Figure 5.14: Left: Raw X-ray image
example of perfect potato after being

downscaled to (128, 128). Middle:
Result of utilizing piecewise linear
contrast stretching given (𝑟1, 𝑠1) =

(30, 0) and (𝑟2, 𝑠2) = (140, 255). Right:
Result of applied gamma correction

given 𝛾 = 0.6. Notice the log scale on
the y-axis of the image histograms.

seen it has low contrast that does not spend the full range of [0, 255].
By scanning the histogram of its pixel groupings, the operation given
by eq. (5.1) is applied onto the full dataset with settings (𝑟1, 𝑠1) = (30, 0)
and (𝑟2, 𝑠2) = (140, 255). Hence, pixels values less than 30 becomes 0
and pixels above 140 becomes 255, i.e. this way the non-uniform gray
background is automatic removed and replaced by an uniform white
background. Furthermore, the contrast in the image is increased such
that bright pixels becomes brighter and dark pixels becomes darker, and
the image gets normalized in the process as well since it spans the full
range of [0, 255].

iii Subsequently, in order to increase the contrast between foreign objects
and hollow hearts, gamma correction given 𝛾 = 0.6 has been applied as
well, see Fig. 5.14.

iv To reduce noise the bilateral �lter given parameters 𝜎s = 15 and 𝜎r = 20
and neighbour diameter have hereafter been applied, cf. § 5.1.4.

v Lastly, in order to prepare the data for the neural networks, the normal-
ization described by eq. (5.16) have been utilized.

Dataset: Chocolate Bars

The preprocessing steps for the chocolate bar dataset is very much in accor-
dance with the potato dataset above. However, there are a few changes and
the applied parameters di�ers slightly. Nonetheless, the following prepro-
cessing pipeline and parameters for the full chocolate bar dataset have been
utilized:

i First and foremost, inpainint utilizing Navier-Stokes method have been
applied, see § 5.1.6. The approach for �nding the most appealing solution
is heuristic, and an inpainting radius, i.e. the neighborhood around a
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pixel to inpaint, of 20 has been implemented, due to the regions that are
to be inpainitng are pretty thick.

ii The images are noisy, and in order to denoise the images while preserv-
ing edges the bilateral �lter given neighborhood diameter 𝑑 = 10, and
parameters 𝜎s = 20 and 𝜎r = 25 have successfully been applied, cf. § 5.1.4.

iii As for the potato dataset, the piecewise linear contrast stretching have
been utilized in order to obtain a white background consisting of intensity
values 255, cf. § 5.1.1. The image histograms of normal chocolate bars
have been scanned, for which parameters (𝑟1, 𝑠1) = (170, 0) and (𝑟2, 𝑠2) =
(240, 255) heuristically have been chosen.

iv Next, gamma correction given 𝛾 = 0.8 have been applied, cf. § 5.1.1.

v Downsampling using the area interpolation have been applied, cf. § 5.1.5.
All images have been resized to the desired dimensions of (128, 128).

vi Furthermore, in preparation for the neural networks, the images are
scaled using the min-max normalization and the normalization given by
eq. (5.15) and eq. (5.16), respectively.

5.2.4 Splitting the Data

An X-ray image of a regular intact chocolate bar is de�ned as normal, N choc,
while an X-ray image of a sample that might have been slightly broken
and where foreign objects have been placed randomly is refereed to as an
anomaly, Achoc. The training data singularly consists of normal data, while
the test data consists of both normal and anomalies, i.e. Dchoc

train = {N choc
train } and

Dchoc
test = {N choc

test ,Achoc}. Accordingly, the validation set consists exclusively
of normal samples, i.e. Dchoc

val = {N choc
val }.

Consistent with the chocolate set, the potato images are also distributed
in normal and anomaly classes such that Dpotato

train = {Npotato
train }, Dpotato

val =

{Npotato
val }, and Dpotato

test = {Npotato
test ,Apotato}. There are two type of anomaly

instances for this potato set; (1) potatoes with needles, and (2) hollow potatoes,
hence Apotato = {Apotato

metal ,A
potato
hollow}. As far as the X-ray imaging have been

able to capture, the normal class consists entirely of ’perfect’ potatoes ready
to be distributed to customers.

Accordingly, the �owchart of splitting the datasets are shown in Fig. 5.15.
All original data have been undergoing the exact same data preprocessing,
whose individual pipelines are reported in § 5.2.3. Hereafter normal and
abnormal samples have been subdivided into each of their individual classes.
Subsequently, the normal data were randomly split into a large training set
and smaller validation and test sets. Henceforth, all anomalous data have
been combined with the normal test data in order to construct a full test set.
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Figure 5.15: Flowchart of the
main steps of splitting the data
using data augmentation. Per-
centages are approximate and
may be changed appropriately.

Flowchart created with Creately.

Usually data augmentation is a step solely utilized onto the training data,
and only after data is split into their subsets. Augmentation is performed on
the training set in order to help the neural network generalize better. As the
trained neural network is intended to make predictions for unseen data, the
same operations on the validation and test data are normally performed. Due
to the sparse number of accessible and original data, it have been necessary
to also perform augmentation on the test and validation sets, and if more
real data was available this would not be a requirement. A bias might be
introduced by performing the augmentations, but leaving out variations in
the validation set might as well present a bias if such left-out variations will
occur in the inference phase.

The datasets introduced in sections § 5.2.1-§ 5.2.2 are sparse — the potato
dataset only consists of a little more than �ve hundred images in total, and
the chocolate only around twenty or so in total. Since so few original images
obviously are not enough for training an outstanding neural network, the
number of samples is increased by applying o�ine image augmentations in
order increase the size of the datasets. To make sure the implementations in
section § 6 can be compared appropriated, the same transformations for the
individual datasets have been performed. The ultimate goal is however to
have the augmented samples re�ect variations of how "real" data looks like
as close as possible.

The chocolate bars barely varies in shape and size — they are after-all pro-
duced to be homogeneous. If one hypothesize an assembly line used for
sorting of chocolate bars, it may just likely be that the products are rotated
randomly, shifted slightly in each direction or �ipped upside down, as an
X-ray image is taken at a point in time using a constant tuning setting. Hence-
forth, this motivates the following chosen transformations to be used in the
augmentations of the chocolate set: in-plane 𝜃 ∈ (0, 360)° rotations, transla-
tion in horizontal and vertical axis, as well as a small scale transformation
for compensating natural variances in the samples.

As previously stated the potato dataset have been recorded by a line detector.
But as the images are resized to a square dimension, it is obvious to notice
that potatoes indeed do vary in shape and size. Thus, the potatoes are also
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Table 5.2: Total counts of the data having been randomly split into training, validation and
testing sets. The data is utilized in section § 6. Here the default anomaly rate has been reported,
which is simply approximately 50/50 between normal and abnormal samples.

Dataset |Dtrain | |Dval | |Dtest |
|Ntest |∗ |A|∗

Chocolate Bar 1400 100 340 340
Potato 1639 100 350 350

allowed for in-plane 𝜃 ∈ (0, 360)° rotations, small scale transformations, and
very small translations in the horizontal and vertical axis.

As mentioned in section § 3.1, anomalous instances are very scarce and only
occurs a small fraction of the time. For practical evaluation of the demonstra-
tions, in these case studies the rate of anomalies are set to occur 50% of the
time as the default setting. Nevertheless, this does not change the fact and
problem that there is a massive imbalance between normal and abnormal
classes in real life.

Hence, in order to match the anomalies with the normal samples in the
inference phase, the test set is balanced with ∼ 50% normal and ∼ 50%
anomalies. Speci�cally, Table 5.2 summarizes the total counts of images
generated by their respective augmentation pipeline, all having dimensions
(1, 128, 128). It is important for the data to be reproducible through runs, and
to ensure the evaluating is not based on a particular "lucky" split of the data,
random splits have been performed.

In order to investigate the anomaly ratio’s impact on the models, di�erent
anomaly percentages are varied. The sample counts are calculated upon
�xing a total count, and Table 5.3 elaborates the di�erent types of anomalies
within |Ntest | and |A|.

Table 5.3: Di�erent anomaly rates used in the inference phases in section § 6. Percentages are
approximate and rounded w.r.t. to a �xed |Dtest | = |Ntest | + |A|.

Anomaly Ratio 5% 10% 30% 50% 70% 90% 95%
Chocolate Bar

Total |A| 20 40 160 340 560 594 599
Total |Ntest | 380 360 350 340 240 66 32
Potato

|Ametal | 10 20 72 175 273 279 285
|Ahollow | 10 21 72 175 273 279 285
Total |A| 20 41 144 350 546 558 570
Total |Ntest | 380 369 336 350 234 62 30

69



contents

6 Demonstrations 71
6.1 Implementations of CAE and CVAE 71

6.1.1 Architecture of CVAE 72
6.1.2 Architecture of CAE 74

6.2 Investigation of Losses 74
6.2.1 Learning Rate Finder 76

6.3 Results 78
6.3.1 Entering the Encoded Space 78
6.3.2 Evaluation of Reconstructions 79
6.3.3 Static Novelty Detection: Automated Threshold Selection 81
6.3.4 Evaluation Metrics 84
6.3.5 Detecting Anomalies 85

6.4 Re�ections upon Results 91
6.4.1 Static Novelty Detection: The Pipeline 91
6.4.2 Anomaly Scores Revisited 92
6.4.3 Case Studies Reexamined 99
6.4.4 Model Complexity and Hyperparameter Optimization 105

70



6DEMONSTRAT IONS

In this chapter, the anomaly detection techniques introduced in chapter § 4
is applied onto the dataset described in chapter § 5.

A large quantity of training samples is needed to train a model so that it can
learn the best possible weights. Usage of a graphics processing unit (GPU) is
therefore preferable to reduce the time of training, as GPUs can signi�cantly
accelerate the training process for many deep learning models.

In all algorithms the normal and anomaly data are correctly labelled, so
basically it is known what are normal and what are abnormalities. But do
keep in mind, that in real-life sorting scenarios this is not the case, which
is exactly why applications of novelty detections training on only normal
data are at interest. The correctly labelled data is simply used to evaluate the
models and their performances.

6.1 implementations of cae and cvae

The implemented architectures of the CAE and CVAE is described in sections
§ 6.1.2 and § 6.1.1, respectively. Both have been constructed with the open-
source library TensorFlow 2.3.0 along with Keras 2.4.3. Throughout
the applications, a couple of Keras Callbacks have been implemented,
which includes:

• Check-pointing model with weights. Model weights are saved
after the �rst epoch as well as after each 200th epochs.

• Early stopping. During training, the model will at some point start
to make very marginal improvements or simply have converged. Early
stopping can halt over�tting and signi�cantly reduce the training time,
as it terminates the training at this point [27]. Due to minimal loss
improvements, the pre-speci�ed patience to wait before stopping the
training process is set to 50 epochs.

Batch sizes usually takes values of {32, 64, 128, 256} [27]. In all model imple-
mentations and each training session the networks is trained for maximum
2000 epochs with a batch size of 256 on a GPU powered by NVIDIA Tesla
P100s.
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6.1.1 Architecture of CVAE

Special considerations have been taken into account upon building the main
architecture of the CVAE. Especially, a modi�ed version of the deep convolu-
tional generative adversarial network (DCGAN) architecture in [60] has been
adapted as it has proven to be very successful for generative models. The
article presents a recommended guideline and adjusting it to the language of
the CVAE some of its practices have carefully been selected.

Leaky ReLU activation have been employed for all layers in the encoder,
expect for onto the bottleneck. No activation function for the 𝝁 ∈ R and
𝝈 ∈ R layers is appropriate as they are unconstrained; instead they get send
though a linear activation to allow for any value. Expect for the dense and
output layer, ReLU activations have been used in all layers in the decoder.
The ReLU and leaky ReLU activations are utilized in the intermediate layers
for speed, and the logistic sigmoid is used as the output activation of the
decoder to render pixel values back to the domain of [0, 1]. Meanwhile,
the hyperbolic tangent is used as the immediately activation following the
latent dimension, as the bottleneck assumingly follows an isotropic Gaussian
distribution. Additionally, the hyperparameter for the leaky ReLU has been
set to 𝛼 = 0.1 as it showed better reconstruction capabilities compared to the
standard value 𝛼 = 0.01.

Furthermore, in accordance with [60, 69] it is recommended not to use
(max) pooling layers, but instead be replaced in favour of using strided
convolution to perform downsamplings in the encoder, hence strides of
size 2 together with kernel sizes [2, 2]. Subsequently, fractional strided
convolutions should be used for the upsampling process in the decoder. In
addition, batch normalization is omitted from the network as it have shown
to interrupt the probabilistic sampling process of the CVAE and hurts the
performance of the model [42]. Adequate results are found by letting all
convolutional layers have 32 �lters.

Added dropout has shown to result in more blurriness in both generation
and reconstruction of the CVAE [79]. As the model is to be exploited as a
static novelty detector, the objective is to get as precise reconstructions as
possible, and so the dropout scheme has not been included in any part of the
architecture. Hence, the CVAE foregoes explicit regularizations and relies
entirely on the image augmentations to produce a self-regularized neural
network. Nevertheless, in [33] recent work has found that augmentation
alone equals or betters the test performance compared to augmentation plus
regularization techniques. I.e. performing heavier image augmentations
increases the total number of data images and domain knowledge, which in
turn allows the network to self-achieve its own regularization as it helps the
CNN towards better mimicking the human visual processing.

Having taken all the above considerings into account, the main architecture
of the CVAE is seen in Tables 6.1 and 6.2. A single dense bottleneck layer
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Table 6.1: Encoder architecture of the CVAE. 𝐽 = {2, 4, 8, 16, 32, 64, 128} denotes the di�erent
latent dimensions used.

Encoder
Layer Params Kernel Padding Stride Output Shape
Input (128, 128, 1)

Conv2D �lters = 32 [2 x 2] ’same’ 2 (64, 64, 32)
LeakyReLU 𝛼 = 0.1
Conv2D �lters = 32 [2 x 2] ’same’ 2 (32, 32, 32)

LeakyReLU 𝛼 = 0.1
Conv2D �lters = 32 [2 x 2] ’same’ 2 (16, 16, 32)

LeakyReLU 𝛼 = 0.1
Conv2D �lters = 32 [2 x 2] ’same’ 2 (8, 8, 32)

LeakyReLU 𝛼 = 0.1
Conv2D �lters = 32 [2 x 2] ’same’ 2 (4, 4, 32)

LeakyReLU 𝛼 = 0.1
Flatten (512)
Dense size = 200 (200)

LeakyReLU 𝛼 = 0.1
2 x Dense size = 𝐽 ∗ 2 x (𝐽 ∗)
Linear

Table 6.2: Decoder architecture of the CVAE. 𝐽 = {2, 4, 8, 16, 32, 64, 128} denotes the di�erent
latent dimensions used.

Decoder
Layer Params Kernel Padding Stride Output Shape
Input (𝐽 ∗)
Dense size = 512 (512)
Tanh

Reshape (4, 4, 32)
TransConv2D �lters = 32 [2 x 2] ’same’ 2 (8, 8, 32)

ReLU
TransConv2D �lters = 32 [2 x 2] ’same’ 2 (16, 16, 32)

ReLU
TransConv2D �lters = 32 [2 x 2] ’same’ 2 (32, 32, 32)

ReLU
TransConv2D �lters = 32 [2 x 2] ’same’ 2 (64, 64, 32)

ReLU
TransConv2D �lters = 32 [2 x 2] ’same’ 2 (128, 128, 32)

ReLU
TransConv2D �lters = 1 [2 x 2] ’same’ 2 (128, 128, 1)

Sigmoid
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have been kept in the encoder as it showed to generate richer reconstructions
compared to removing it. In particular, �nding an optimal dimensionality of
the latent vector is often a matter of guessing and varies for the application
at hand and so this main architecture has been ran using di�erent latent
dimensions, speci�cally 𝐽 = {2, 4, 8, 16, 32, 64, 128} for testing a wide range
range. In general it is expected that larger latent dimensions leads to smaller
reconstruction loss, such that the decoder outputs higher-quality reconstruc-
tions [9]. Half padding is used to zero pad the input feature maps. Speci�cally,
the Keras command padding = ’same’ is the accordingly operation to be
used [66].

6.1.2 Architecture of CAE

With the same reasoning as for the CVAE, in the CAE main architecture any
pooling layer is replaced by strided and fractional strided convolutions for
the encoder and decoder, respectively. Furthermore, dropout regularization
has been foregone in favour of letting the network rely entirely on heavy
image augmentations. ReLU activation has been used in all layers of the
encoder, while Leaky ReLU given 𝛼 = 0.1 has been used in all layers of the
decoder, expect for the output layer where the sigmoid activation has been
used in order to render values into the range between 0 and 1. However,
as the CAE is not a true generative model, in the light of the latent input
variable not having a probability distribution associated to it and thus not
being able to generate synthesis data, batch normalization has been added to
its architecture in favour of speeding up training.

The main architecture of the CAE is found in Tables 6.3 and 6.4, and is trained
using the di�erent latent dimensions 𝐽 = {2, 4, 8, 16, 32, 64, 128}.

6.2 investigation of losses

Recall, during the back-propagation stage the model aims to minimize the
loss function in each mini-batch, but the model is trained as the average of
loss functions, i.e. the cost function. Formally, the loss functions given by eqs.
(4.1) and (4.19), respectively, the convolutional autoencoder (CAE) is trained
using the MSE:

LAE =
1
𝑁

𝑁∑︁
𝑖=1

(
𝑥 (𝑖) − 𝑥 (𝑖) )2, (6.1)LOSS FUNCT ION

FOR AUTOENCODER

and utilizing the strictly Gaussian case for the CVAE:
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Table 6.3: Encoder architecture of the CAE. 𝐽 = {2, 4, 8, 16, 32, 64, 128} denotes the di�erent
latent dimensions used.

Encoder
Layer Params Kernel Padding Stride Output Shape
Input (128, 128, 1)

Conv2D �lters = 32 [2 x 2] ’same’ 2 (64, 64, 32)
BatchNorm
LeakyReLU 𝛼 = 0.1
Conv2D �lters = 32 [2 x 2] ’same’ 2 (32, 32, 32)

BatchNorm
LeakyReLU 𝛼 = 0.1
Conv2D �lters = 32 [2 x 2] ’same’ 2 (16, 16, 32)

BatchNorm
LeakyReLU 𝛼 = 0.1
Conv2D �lters = 32 [2 x 2] ’same’ 2 (8, 8, 32)

BatchNorm
LeakyReLU 𝛼 = 0.1
Conv2D �lters = 32 [2 x 2] ’same’ 2 (4, 4, 32)

BatchNorm
LeakyReLU 𝛼 = 0.1
Flatten (512)
Dense size = 𝐽 ∗ (𝐽 ∗)

LeakyReLU 𝛼 = 0.1

Table 6.4: Decoder architecture of the CAE. 𝐽 = {2, 4, 8, 16, 32, 64, 128} denotes the di�erent
latent dimensions used.

Decoder
Layer Params Kernel Padding Stride Output Shape
Input (𝐽 ∗)
Dense size = 512 (512)

BatchNorm
ReLU

Reshape (4, 4, 32)
TransConv2D �lters = 32 [2 x 2] ’same’ 2 (8, 8, 32)
BatchNorm

ReLU
TransConv2D �lters = 32 [2 x 2] ’same’ 2 (16, 16, 32)
BatchNorm

ReLU
TransConv2D �lters = 32 [2 x 2] ’same’ 2 (32, 32, 32)
BatchNorm

ReLU
TransConv2D �lters = 32 [2 x 2] ’same’ 2 (64, 64, 32)
BatchNorm

ReLU
TransConv2D �lters = 32 [2 x 2] ’same’ 2 (128, 128, 32)
BatchNorm

ReLU
TransConv2D �lters = 1 [2 x 2] ’same’ 2 (128, 128, 1)

Sigmoid
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LVAE =
1
𝑁

𝑁∑︁
𝑖=1

(
𝑥 (𝑖) − 𝑥 (𝑖) )2

− 1
2

𝐽∑︁
𝑗=1

(
1 + log𝑒

(
𝜎
(𝑖)
𝑗

)2 − (
𝜇
(𝑖)
𝑗

)2 − exp
(
log𝑒 (𝜎

(𝑖)
𝑗
)2
) )
,

(6.2)LOSS FUNCT ION FOR VAR I -
AT IONAL AUTOENCODER

with reparameterization trick z = 𝝁 + exp(0.5 log𝑒 𝝈2) � ε. Notice, in order to
ensure numerical stability in the latent space, and without loss of generality,
log𝑒 𝝈2 ∈ R is learning instead of the constrained 𝝈2 ∈ R+.

Given 𝐽 = 64, the average loss during training for both the CVAE and CAE
models described by Tables 6.1-6.2 and 6.3-6.4, respectively, is seen on Fig.
6.1 for both the chocolate bar and the potato datasets. The initial learning
rates have been chosen based the technique described in section § 6.2.1 below.
Too many models have been trained to consider them all in one illustration,
however in Appendix §A the reaming learning curves can be found.

In general the training cost is very large for the �rst couple of epochs where-
after it rapidly falls and slowly converges. It is evident that the average losses
monotonically decreases as the epochs increases, which constitutes a sought
converging behaviour. Moreover, it seems that the CVAEs have an easier
time to generalize in the early training phase compared to the CAEs.

Furthermore, from the individual model’s loss curves it can be seen they con-
verges nicely towards the same tendencies as both the training and validation
metrics are moving towards the same direction simultaneously. The small
di�erences between the two learning curves are normal observations, and
there are no indication of the models either over�tting or under�tting. The
deep networks could be allowed to continue training, but the losses would
simple oscillate minimally as a plateau in terms of what the capacity of the
network is capable of learning has been reached. Furthermore, as training
progresses, the model’s ability to generalize to the unseen validation set tends
to drop — and at this point the early stopping can help as an regularization
technique as it stops the training when the performance degrades.

6.2.1 Learning Rate Finder

The Adam optimizer described by eq. (2.21) has been used in all implementa-
tions. The initial con�gurable exponential decay rates have been set to the
Keras default values which are 𝛽1 = 0.9 and 𝛽2 = 0.999. The initial learning
rate however has been chosen bases on the so-called learning rate �nder
method for each and every implemented model con�guration. As discussed
in § 2.1.5, the learning rate is the hyperparamter that has the largest impact
during training of a model and therefore extra care have been taken into
account.
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Figure 6.1: Average loss functions
as a function of number of epochs,
derived on training images. The
points at certain epochs indicates
check-point savings. Upper left: CAE,
𝐽 = 64, chocolate bar. Upper right:
CVAE, 𝐽 = 64, chocolate bar. Lower
left: CAE, 𝐽 = 64, Potato. Lower
right: CVAE, 𝐽 = 64, Potato.

The approach to systematically �nd a learning rate was developed and pre-
sented in [68]. Specially, it was found there is enough information available
to tune the learning rate simply by monitoring the loss early in the training.
The idea is to initialize the model with a small learning rate and train it on a
mini-batch of data. The learning rate is then increased exponentially at every
iteration, so that each new mini-batch is trained using a larger learning rate
than the previous one, until a high learning rate is reached or the loss value
explodes. This entire training process typically only takes a couple of epochs
to complete.

In

Figure 6.2: The results of the learning
rate �nder of the Adam optimizer on
the CVAE model given 𝐽 = 128 and
using the potato dataset. Smoothed
losses are plotted against the log-
scaled learning rates. A good ini-
tial learning rate would be in the
range where the loss is rapidly, but
strictly descreasing, i.e. the region
[10−3, 10−2]. Such an analysis is per-
formed for every implemented model.

Fig. 6.2 the associated smoothed losses to the learning rates for each
iteration is plotted for the CVAE model given 𝐽 = 128 for the potato dataset.
The learning rate is picked by examining this plot. In the beginning for very
low rates 𝛼0 < 10−3 the loss is essentially �at as the rates are to small for the
network to start learning. A little before 10−3 the network can actually learn
as the loss begins to decrease. The network begins to learn very quickly in
the range between 10−3 and 10−2 as the loss is rapidly decreasing. A little
after 𝛼0 > 10−2 is reached the rate is far to large as the loss begins to explode.

Contrary to belief, the optimal learning rate is not the value for which the
loss reaches its minimum, but where the rate creates the greatest decrease in
loss, i.e. where the loss is strictly decreasing at a rapid rate. The minima value
is at the edge between improving the loss and �uctuating towards explosion,
thus this valley is already a little to high of an learning rate. Instead, by
choosing one order of magnitude smaller the model will still train quickly but
be on the safe side from an explosion. Hence, for this model 10−3 is chosen
as the initial learning rate.
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Figure 6.3: 15 random selected nor-
malized histograms of the learned
low-dimensional latent represen-

tations. Constructed from the
CVAE model given 𝐽 = 32 and

the full chocolate bar dataset con-
sisting of only normal samples.

6.3 results

6.3.1 Entering the Encoded Space

The CAE and CVAE models have been trained to reduce the set of images
into a low-dimensional space made up of a limited set of 𝐽 latent dimensions.
Using the encoder half of either the CAE or CVAE models, each image is
rendered to a compact data point set and can be represented in these 𝐽 multi-
dimensions, i.e. in the encoded space. This mapped space enable one to
perform various analysis as it can be utilized as powerful tool to e.g. capture
reduced visual structures or generalize the underlying features and variations
into, hopefully, a spectrum of patterns or even emerging clusters.

It is good practice to analyse the distribution of the extracted bottleneck
layer of the CVAE model. As an example consider the CVAE model trained
with 𝐽 = 32 using the chocolate bar dataset. Due to space limitations, Fig. 6.3
shows the normalized histograms of 15 randomly chosen latent dimensions
out of the possible 32. Note that each histogram is constructed using the
corresponding hidden dimension for every normal sample in the full dataset.
According to the CVAE model set-up, as described in § 4.2.2, all hidden latent
dimensions are expected to be normally distributed — and not be separated
in e.g. a mixture of Gaussians. Happily, this is indeed the case, as each
dimension in general roughly follows a smooth and normal distribution.

This

Figure 6.4: Two-dimensional em-
bedding map of the encoded space.
Result from the CVAE model given

𝐽 = 2 and normal testing im-
ages of the chocolate bar dataset.

forced penalty of the CVAE model assists the network to learn the un-
derlying low-dimensional data manifold and capture its local structures. Still
considering the chocolate bar dataset, but in favour of simplicity, regard the
resulting encoded space of the CVAE model given 𝐽 = 2 as shown in Fig.
6.4. Each encoded dimensions describe a position of each image within this
embedding space, and essentially this plot shows how similar or dissimilar
two images are. Only the normal testing samples have been visualized, how-
ever it is clear to see a spectrum of variations, in particular varying rotations
of the chocolate bars. This means that the CVAE model has successfully
learned from higher order features of the training images, resultantly found
some common speci�c characteristic between them — primary the rotation
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Figure 6.5: Randomly selected recon-
structions of training images derived
at di�erent epochs. Upper rows for
each datasets constitutes the inputs
and lower rows the outputs of the
CVAE networks at certain epochs.
For the chocolate bar dataset 𝐽 = 8
has been utilized, and for the potato
dataset 𝐽 = 32.

degrees — and are able to represent them in a set of normally distributed
latent variables.

6.3.2 Evaluation of Reconstructions

Oppositely, the decoder half of the CAE and CVAE models takes the 𝐽 latent
dimensions representing a single image as their input, and have been trained
to produce a version of the original image that is reconstructed from the
encoding. If the networks have been well-trained, these reconstructed images
will preserve the features the autoencoder has learned from, but they will
not maintain every details from the original images.

In Fig. 6.5 the CVAE network’s reconstructions of random training inputs
can be seen at certain epochs for which the average loss is derived during
training. In accordance with Fig. 6.1, it is evident that the models gradually
increases their performance as the loss decreases with the number of epochs
being run — the reconstructions becomes more and more alike with the input.

To empirically investigate the models’ ability to generalize to unseen data
some example reconstructions of test data derived at the models’ �nal epochs
are presented in Fig. 6.6 for both datasets. Promptly, there is a couple of
noticeable observations worth discussing while examining these outcomes.

First and foremost, when inspecting the reconstructions by the CVAEs one
immediately notice that the model has problems with generating sharp edges,
and instead results in slightly blurred representations. This blurriness is a
natural limitation to the CVAE as images are sampled using the Gaussian
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Figure 6.6: Randomly selected re-
constructions of test images derived

at the �nal epoch. Especially, no-
tice the di�erence between the

reconstructions of the CVAE mod-
els compared to the CAE model,
as well as how they all fail to re-
construct anomalous samples.

Here, 𝐽 = 8 is considered for both
the CAE and CVAE model given the
chocolate bar test set. To the left nor-
mal samples are reconstructed by the

models, and to the right anoma-
lous samples are reconstructed.

On the other hand, 𝐽 = 32 has been
considered for the potato test set

for both the CAE and CVAE model.
In the left �rst two rows perfect
potatoes are reconstructed, and
to the right hollow potatoes are

considered. In the last row potatoes
with metal in them are reconstructed.

assumption. Furthermore, using the MSE loss usually yields blurry results
[20], and therefore blurriness is also observed in the resulting images of the
CAEs. The chocolate bars have sharp edges compared to the potatoes with
their ellipsoidal and rounder shapes, whereas it follow that the models have
an ’easier’ time generating the potatoes compared to the chocolate bars.

Secondly, the quality of the reconstructed images are, as anticipated, lower
than that of the original inputs. In particular, there is a loss of textures and
details; primary for the chocolate bar dataset for which the biscuit-like texture
has disappeared. Nevertheless, the models shows their ability to reconstruct
the images of the food products to a certain degree. Furthermore, comparing
the reconstruction derived at the models’ �nal epoch it is slightly apparent
that the networks’ performances are better on the training data than on the
testing data, cf. Fig. 6.5. This is however an expected result.

Next, and the most important �nding; when comparing the models’ recon-
structions of normal and anomaly samples there if a remarkable di�erence
between the networks’ ability to capture and reconstruct details. The quality
of the models’ reconstructions indicates they are good at reconstructing the
normal samples, whereas they fail to reconstruct foreign objects ect. found
on the anomaly instances. This malfunction is due to the fact that the models
are solely trained on normal samples and thus have no idea what to do when
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they encounter something they have never seen before. Still, empirically they
strive to reconstruct the anomalous samples as being similar to the normal
samples.

Hence, the networks have successfully learned from not only individual
pixel intensity values, but also considers larger areas of the image, which
empower them to extract insights from speci�c properties such as features,
structures and illumination. Importantly, do notice the intensity di�erences
between normal samples and anomaly samples — especially noticeable for
the chocolate bars and the potatoes with inserted metal. This distinction
is something that will be revisited in § 6.4.2, but for now simply bear it in
mind. Nevertheless, it seems that, at least the CVAEmodels, have successfully
managed to become robust to the augmentations applied, i.e. invariant to size,
position and orientation, hence essentially boosting the overall performance.

Following, the CAEs attempts to represent inherent characteristics of the
original images. However, contrary to the CVAE that enforces the encodings
to �t a normal distribution during training, the CAE does not. Hence, the
produced encoded representations of the CAE does not follow any kind of
pre-de�ned structure or are limited in some con�ned space, which may make
them hard to understand. Recall, the decoder attempts to reconstruct the
original image using just the latent space representation. However, due to the
usually lack of interpretable and exploitable structure of the CAE bottleneck,
this network cannot produce any new content. However, the CVAE with
its regularized and organised encoded distributions are able to cope with
varieties in shape etc., hence able to generate new data.

I.e. as the CAE is solely trained to encode and decode with as minimal loss
as possible it does so without taking into account the organisation of the
bottleneck. To achieve this task the CAE will take advantage of any over-
�tting possibilities during training. By introducing the regularization term
to the CVAE, this model will ensure good properties in the encoded space
that enables generative processes and avoids the same amount of over-�tting
during training. All this is re�ected in the reconstructions, where it is obvious
that the CVAE model generates more precise reconstructions compared to
the CAE model — especially for the potato set.

6.3.3 Static Novelty Detection: Automated Threshold Selection

As was explained in section § 3.1, recall the necessity of some boundary or
threshold needed to distinguish between normal and abnormal instances in
static novelty detection scenarios. The CAE and CVAE are both exploited
as static novelty detections, and since their objective is similar, a common
threshold metric as well as other evaluation metrics are ideal for comparisons.

The squared Euclidean distance, also known as the squared error (SE), is the
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sum of all the squared di�erences between the ground truth and the predicted
value. This particular metric has been chosen as the reconstruction error as
it is a measure that puts a progressively larger weight on larger di�erences
between pixel values, since the squares cause it to be very sensitive to large
outliers:

SE = ‖x − x̃‖22 =
𝐻𝑊∑︁
𝑘=1

(
𝑥 (𝑘) − 𝑥 (𝑘) )2. (6.3)RECONSTRUCT ION ERROR

I.e. accordingly to the gray levels of each pixel, the Euclidean distance
converts each image x ∈ R𝐻×𝑊 and x̃ ∈ R𝐻×𝑊 into vectors, whereas it
compares the di�erences pixel by pixel. Together with various other anomaly
scores, the Euclidean distance is further examined in § 6.4.2.

When the CAE and CVAE algorithms are trained solely on normal data
instances they fail to reconstruct the anomalous data samples. It is therefore
expected that the reconstruction error, as the anomaly score, have lower
values if given normal test samples, while the error becomes larger given
anomalous samples [62, 76]. Based on this tendency, simple thresholding
can discriminate between those two classes. I.e. using eq. (6.3) a threshold
value, 𝜉 , must be chosen to determine if an image belongs to either the
normal class or the anomaly class. This boundary must be carefully selected,
and the aim is to maintain a large true positive (TP) rate whilst eliminating
false positives (FPs). Samples with reconstruction error larger than 𝜉 will be
classi�ed as anomaly, and as normal otherwise.

As an illustrative example, consider for now the CVAE model given 𝐽 = 32
for the chocolate bar dataset provided a 50/50 split rate between true normal
and anomalies samples in the test set. By computing the anomaly score given
by (6.3), and knowing the true labels, the normalized sampling histograms
in Fig. 6.7 have been obtained. As expected, compared to the anomaly score
for the normal samples, the reconstruction error is larger for the anomalies.
Furthermore, notice the histogram statistic of the two sampling distributions.
Not surprisingly, their shapes both approximates (single-peaked) Gaussian
distributions, and the spread of the distribution of the anomalies are larger
than that of the distribution of the normal samples. As the overlap between
the two distribution is very small, this is rather an exemplary case — and
very close to an ideal case (where no overlap is present). Nevertheless, the
next problem is now to �gure out how to separate these two histograms in
the best way possible, i.e. obtaining an ideal measure of separability.

The quick and dirty way to choose a threshold value would be by eye, but
using such non-qualitative technique will never obtain the best possible
cut-o�. Instead, the receiver operating characteristic (ROC) curve can partly
be used to determine an optimal optimal threshold value, 𝜉∗. The ROC
assessment technique utilize the true positive rate (TPR = TP/(TP + FN))
and false positive rate (FPR = FP/(FP+TN)), where FN and TN denotes false
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Figure 6.7: Results of the CVAE
model given 𝐽 = 32 for the chocolate
bar dataset given an anomaly rate
of 50%. Left: Normalized sampling
distributions calculated upon eq.
(6.3) and whereas the true labels
are known. Right: Corresponding
ROC curve for which the G-mean
is utilized to determine on optimal
threshold value.

negative and true negative, respectively [32]. By de�nition, the ROC space
depends on the relative trade-o�s between the bene�ts of TPs and costs of
FPs, and so each point represents one predicted result.

Speci�cally, for this problem the ROC is calculated between the true labels
and target anomaly score de�ned by eq. (6.3) for all test samples. Such a
resulting ROC curve is seen on Fig. 6.7. As illustrated on this ROC curve,
the threshold value can be adjusted, which in turn will change the point of
separation between the sampling distributions. E.g. increasing the threshold
value, corresponding to a leftward movement on the ROC curve, will result
in fewer FPs at the cost of more false negatives (FNs). In general, the closer
the ROC curve is to the upper left corner, the more e�cient the model is.
Subsequently, the objective is now to determine the threshold point in ROC
space that produces the best possible prediction.

Since the two-class test set is severely imbalanced (in real life), the geometric-
mean (G-mean) metric can be used to �t the optimal threshold on the ROC
curve [49]. It seeks to balance the TPR and the true negative rate (TNR =

TN/(TN+ FP) = 1− FPR), and is calculated for various threshold values. The
G-mean aggregates both metric into a single value in [0, 1] and assigns equal
importance to both [21]:

G-mean =
√︁
TPR(1 − FPR) . (6.4)

Hence, by calculating the G-mean for all rates and optimizing it:

𝜉∗ = argmax
𝜉

G-mean, (6.5) OPT IMAL THRESHOLD SE-
L ECT ION

the index of the largest G-mean value is located and consequently used to
�nd the optimal threshold value. Hence, 𝜉∗ is automated selected through
this process.

Consider again Fig. 6.7. By use of eqs. (6.4)-(6.5) an optimal threshold value
has successfully been determined as the ideal measure of separability, and is
graphically placed in the upper left corner on the ROC curve. Following the
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color codes on the plot over the sampling distributions, TPs are designated
as anomaly (red) instances on the right of the threshold line. Consequently,
true negatives (TNs) corresponds to normal (green) instances to the left of
the line. FPs denotes normal samples wrongly predicted as anomalies, i.e. the
green instances to the right of the line. On the other hand, red instances to
the left of the line corresponds to anomaly samples being wrongly predicted
as normal samples, i.e. FNs. In § 6.3.4 below, statistic over these di�erent
outcomes will be used for evaluating and comparing the models.

6.3.4 Evaluation Metrics

When comparing the performance of di�erent learning algorithms using
di�erent data sets, evaluation metrics are used as measuring sticks. They
must capture the details of what the frame of the problem seeks to solve,
henceforth the selection of metrics is crucial. In this section the chosen metric
are shortly introduced and later on in section § 6.3.5 used to evaluate the
model implementations given their hyperparameters.

First and foremost, a confusion matrix is a cross table that records the number
of occurrences and represents the proportion between true and predicted
instances of classes, i.e. one point in ROC space. Computed directly from the
confusion matrix, the accuracy and error rate (or misclassi�cation) are used
to describe a classi�er’s overall performance as they are calculated by [32]

accuracy =
TP + TN

TP + TN + FP + FN , error rate = 1 − accuracy. (6.6)

However, theses metrics are highly sensitive to the data distribution and can
be deceiving for imbalanced datasets, as the majority classes will have a larger
weight compared to the minority classes, henceforth the accuracy tends to
hide strong classi�cation errors for the smaller classes [29, 32]. Accordingly,
in addition to the the accuracy, a couple of other frequently used metrics
are evaluated to provide comprehensive performance representations of the
models.

As both FPs and FNs are considered equally important and costly, the tradi-
tionally 𝐹1-score ∈ [0, 1] for a single class label is computed by [29]

𝐹1-score = 2 · precision · recall
precision + recall , (6.7)

where

precision = PPV =
TP

TP + FP , recall = TPR =
TP

TP + FN . (6.8)
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Precision expresses the total proportion of occurrences that are predicted
positive and they actual positives, i.e it is a measure of how trustful the model
is when predicting an unit as positive — namely as abnormal. Recall (or
sensitivity), on the other hand, measures the proportion of actual positives
that was identi�ed correctly, i.e. it gives a measure of how accurately the
model is able to identify relevant data. Thus, following the set-up of the
problem, it speci�es the ratio of how many anomaly samples are correctly
identi�ed as being abnormal. Precision and recall are dependent on each other,
and changing the threshold value changes their rates accordingly, which is
why the 𝐹1-score is needed to seek a balance between them. Speci�cally, to
�gure out how the system performs overall across all class instances, it is the
macro-average 𝐹1-score that is evaluated. It is simply the harmonic mean of
the macro-average precision and macro-average recall such that

𝐹macro
1 -score = 1

𝐾

𝐾∑︁
𝑘=1

𝐹1-score𝑘 , (6.9)

given each class label 𝑘 . Compared to the accuracy, the 𝐹1-score usually gives
a better performance estimate if the dataset has an uneven class distribution
as it assigns same importance to each class instance.

Furthermore, another commonly reported evaluation metric is the speci�city,
which convey howmany occurrences is predicted as negative out of all actual
negatives, i.e. the true negative rate:

speci�city = TNR =
TN

TN + FP . (6.10)

Hence, this rate speci�es how many normal samples are identi�ed as being
normal samples.

Finally, the area under the curve (AUC) in ROC space is another measurement
commonly used when all classes are considered equally important. It is often
used as a summary of the ROC curve as it aggregates values into [0, 1]. The
closer the AUC is to 1.0, the better the average performance of the model at
distinguishing between normal and anomaly classes.

6.3.5 Detecting Anomalies

Consider again the same case study introduced in the previous section § 6.3.3
and Fig. 6.7. Together with its confusion matrix, using the predictions of
the classes based on the optimal threshold value determined by eq. (6.5), the
anomalies in comparison to the normal data points can be visualized, cf. Fig.
6.8. As earlier observed; simply by looking at the sampling distributions
this particular model is doing very well at separating normal instances from
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Figure 6.8: Continuing from the
case described in Fig. 6.7; CVAE
given 𝐽 = 32 and 50% anomaly
ratio for chocolate bar test set.
Left: Anomalies relative to the
optimal threshold value. Right:

Visualization of its resulting con-
fusion matrix and accuracy score.

anomaly instances; an observation that is also backed-up by the metrics
utilized for evaluating the model’s performance. Green circles above the
threshold line on Fig. 6.8 thus corresponds to normal samples being misclas-
si�ed as abnormal (FPs); vice versa red crosses below the line are analogous
to anomalous samples being predicted as normal (FNs). A few samples con-
sistently being predicted wrong (upper row) and correctly (lower row) are
shown on Fig. 6.10.

Chocolate bars being predicted correctly with high certainty are anomalous
samples with an obvious intensity di�erence and whose foreign objects are
cracks are obvious. Anomalous samples being wrongly predicted are typically
samples with only one foreign object or whose overall luminance are closer
to the normal samples. However, in general it especially depends on how
well the network manages to reconstruct the structure — in particular the
sharp edges of the chocolate bars.

As

Figure 6.9: The average reconstruc-
tion errors and its errors in CAE and
CVAE as a function of the latent di-
mensions, derived on the chocolate

bar test set with a 50% anomaly ratio.
Errorsbars represents the standard
error on the mean. The larger the

distance between normal and anoma-
lous, the better the model typically is
at correctly predicting the classes.

for the potato test set, the networks’ ability to reconstruct their inherent
shapes also plays a role. Here, they tends to predict perfect samples having
non-typically potato shapes being wrong. Furthermore, they are inclined to
wrongly predict potatoes with needles in the outer rim and potatoes whose
hollow hearts are of smaller volumes as being normal. Even to the trained
human eye such wrongly predicted potatoes can be di�cult to assess. On the
other hand, normal potatoes whose shapes are round or ellipsoidal without
any obvious "weirdness", they tend to predict correct. Hollow hearts of larger
volumes and potatoes with needles placed further toward the middles they
also predict correctly with high certainty.

;

All the model performances across the evaluation metrics described in § 6.3.4
above are summarized in Table 6.5. In this table an anomaly ratio of 50% has
consistently been used in the inference phase. In the following, the obtained
results will be discussed in further details.

Consider the example cases on Fig. 6.9. Both the CAE and CVAE are trained
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Figure 6.10: Few examples of sam-
ples being classi�ed correctly and
wrongly with high certainty — both
datasets trained by the CVAE given
𝐽 = 32. Upper row: Wrongly pre-
dicted samples. Lower row: Correctly
predicted samples. First columns
from the left for each individual
datasets: normal samples. Last two
columns for each datasets: anoma-
lous samples.

using the chocolate bar dataset for various latent dimensions, and the average
reconstruction errors of a 50% anomaly rate have been computed. Start of by
considering the plot over the CVAE examples. The �rst observation to notice
is that the average reconstruction error of anomaly samples consistently are
larger than that of normal samples, no matter what the latent dimension
is. Secondly, contrary to what was expected of the behaviour of the latent
dimensionality, the average reconstruction error does not change signi�cantly
for 𝐽 > 2 given this example case, implying that this dataset is pretty robust
w.r.t. the latent dimension. The most noticeable �nding is the results for
𝐽 = 2, which reconstruction errors and instabilities are larger compared
to the results for the remaining latent dimensions. On the other hand, the
corresponding plot over the CAE examples corresponds to the expectations of
the reconstruction error mainly decreases with increasing latent dimension,
expect for 𝐽 = 16 being an apparent outlier and for 𝐽 > 64 the pattern starts
to stagnate. These discovered tendencies are also re�ected in the reported
results found in Table 6.5.

Besides,

Figure 6.11: The average reconstruc-
tion errors and its errors in CAE
and CVAE as a function of the latent
dimensions, derived on the potato
test set with a 50% anomaly ratio.
Notice the di�erence in reconstruc-
tion errors for potatoes with foreign
objects and potatoes with hollow
heart disease. Errorsbars represents
the standard error on the mean.

the same tendency of the CVAE model being more robust w.r.t. to
the latent dimensionality contrary to the CAE model is also re�ected by
performance of the same analysis, but given the potato test set, cf. Fig. 6.11.
What is however especially worth noticing in these plots are the di�erences
in the reconstructions errors between potatoes with incorporated metal
and potatoes with arti�cially hollow heart disease. Observe how close the
reconstruction error of the hollow potatoes are to the perfect ones, as well as
to how much larger the reconstruction error of potatoes with metal in them
are. Since these two reconstruction errors are gathered into a single anomaly
class, their scores meets in between.

As a consequence, the models are more prone to predict potatoes with metal
in them correctly contrary to hollow potatoes. As an example, consider
Fig. 6.12 where the CVAE model have been trained given 𝐽 = 32 and the
potato dataset with a 50/50 anomaly ratio. As can be seen, the sampling
distribution over potatoes withmetal in them are �at andwide, while potatoes
with hollow hearts overlaps the distribution over perfect potatoes more
thoroughly. Accordingly, as shown in the corresponding "pseudo-confusion
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Table 6.5: Comparisons between the implemented algorithms using di�erent datasets, but
all having an anomaly ratio of 50%. 𝐽 is the dimensionality of the bottleneck and di�erent
values has been used for both the CAE and CVAE models, whereas the mean results are
reported. Here, it is the macro-average 𝐹1-score, AUC-ROC and accuracy that is referred to.
Boldface indicates the best individual results across the models. Mean values are reported,
and uncertainties are calculated as the standard error on the mean.

CVAE

𝐽 AUC-ROC Speci�city Recall Precision 𝐹1 Accuracy
Chocolate Bar

2 0.740 ± 0.002 0.668 ± 0.012 0.703 ± 0.013 0.680 ± 0.004 0.685 ± 0.002 0.685 ± 0.002
4 0.996 ± 0.000 0.968 ± 0.003 0.973 ± 0.003 0.969 ± 0.002 0.970 ± 0.001 0.970 ± 0.001
8 0.996 ± 0.000 0.972 ± 0.002 0.976 ± 0.002 0.973 ± 0.002 0.974 ± 0.001 0.974 ± 0.001
16 0.995 ± 0.000 0.964 ± 0.003 0.982 ± 0.002 0.965 ± 0.003 0.973 ± 0.001 0.973 ± 0.001
32 0.996 ± 0.000 0.968 ± 0.002 0.975 ± 0.003 0.968 ± 0.002 0.972 ± 0.002 0.972 ± 0.002
64 0.993 ± 0.001 0.955 ± 0.003 0.965 ± 0.003 0.956 ± 0.003 0.960 ± 0.002 0.960 ± 0.002
128 0.991 ± 0.001 0.959 ± 0.002 0.956 ± 0.002 0.959 ± 0.002 0.957 ± 0.001 0.957 ± 0.001

Potato
2 0.774 ± 0.002 0.674 ± 0.009 0.707 ± 0.011 0.685 ± 0.003 0.690 ± 0.002 0.690 ± 0.002
4 0.832 ± 0.002 0.715 ± 0.008 0.804 ± 0.009 0.739 ± 0.004 0.759 ± 0.002 0.760 ± 0.002
8 0.873 ± 0.002 0.830 ± 0.005 0.778 ± 0.004 0.821 ± 0.004 0.804 ± 0.002 0.804 ± 0.002
16 0.892 ± 0.002 0.840 ± 0.007 0.801 ± 0.007 0.834 ± 0.005 0.820 ± 0.002 0.820 ± 0.002
32 0.903 ± 0.002 0.846 ± 0.009 0.814 ± 0.011 0.843 ± 0.006 0.830 ± 0.002 0.830 ± 0.002
64 0.894 ± 0.001 0.832 ± 0.005 0.810 ± 0.005 0.829 ± 0.004 0.821 ± 0.001 0.821 ± 0.001
128 0.899 ± 0.001 0.845 ± 0.006 0.809 ± 0.007 0.840 ± 0.005 0.827 ± 0.002 0.827 ± 0.002

CAE
Chocolate Bar

2 0.640 ± 0.003 0.623 ± 0.005 0.600 ± 0.006 0.614 ± 0.003 0.612 ± 0.003 0.612 ± 0.003
4 0.799 ± 0.003 0.683 ± 0.006 0.855 ± 0.006 0.729 ± 0.003 0.767 ± 0.003 0.769 ± 0.003
8 0.928 ± 0.001 0.853 ± 0.002 0.932 ± 0.002 0.864 ± 0.002 0.892 ± 0.001 0.893 ± 0.001
16 0.914 ± 0.002 0.832 ± 0.003 0.942 ± 0.003 0.849 ± 0.002 0.887 ± 0.002 0.887 ± 0.002
32 0.966 ± 0.001 0.931 ± 0.002 0.959 ± 0.002 0.933 ± 0.002 0.946 ± 0.001 0.946 ± 0.001
64 0.990 ± 0.000 0.962 ± 0.001 0.955 ± 0.002 0.961 ± 0.001 0.958 ± 0.001 0.958 ± 0.001
128 0.989 ± 0.000 0.953 ± 0.003 0.949 ± 0.003 0.953 ± 0.002 0.951 ± 0.001 0.951 ± 0.001

Potato
2 0.742 ± 0.003 0.717 ± 0.007 0.623 ± 0.008 0.688 ± 0.003 0.669 ± 0.002 0.670 ± 0.002
4 0.803 ± 0.002 0.732 ± 0.013 0.697 ± 0.011 0.725 ± 0.007 0.714 ± 0.001 0.714 ± 0.001
8 0.847 ± 0.003 0.794 ± 0.006 0.757 ± 0.007 0.787 ± 0.004 0.775 ± 0.003 0.776 ± 0.003
16 0.882 ± 0.001 0.798 ± 0.008 0.811 ± 0.008 0.801 ± 0.005 0.804 ± 0.002 0.804 ± 0.002
32 0.870 ± 0.002 0.788 ± 0.004 0.831 ± 0.006 0.797 ± 0.002 0.809 ± 0.002 0.810 ± 0.002
64 0.873 ± 0.002 0.785 ± 0.007 0.816 ± 0.007 0.792 ± 0.005 0.800 ± 0.002 0.800 ± 0.002
128 0.894 ± 0.001 0.826 ± 0.004 0.838 ± 0.004 0.828 ± 0.003 0.832 ± 0.002 0.832 ± 0.002

matrix", hollow potatoes gets misclassi�ed as being normal to a greater extent
than potatoes with needles in them does.

Impact of the Anomaly Ratio

The

Figure 6.12: Upper: Sampling dis-
tributions over perfect potatoes,

potatoes with needles and potatoes
with hollow hearts as calulated by
eq. (6.3) and results of the CVAE

model given 𝐽 = 32 for the potato
dataset given an anomaly ratio
of 50%. Lower: The correspond-
ing "psedu-confusion matrix".

e�ect of the anomaly ratio, given the numerical values found in Table 5.3,
is now investigated. For completeness, and by screening Table 6.5, the models
with the best overall performances in accuracy and 𝐹1-score are empirically
chosen for each dataset. Subsequently, the anomaly ratio is varied in order
to examine its impact and the same evaluation metrics are reported in Table
6.6 given di�erent ratios.
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Figure 6.14: Mean macro-average
𝐹1-scores across various anomaly
ratios. The error bars represent the
standard error on the mean.

Consider �rst the chocolate bars. From the results in Table 5.3 each individual
models who did best for this dataset are the CVAE given 𝐽 = 8 and CAE given
𝐽 = 64. Notice, as in accordance with Fig. 6.9, the results for the CVAE model
given 𝐽 > 2 are all pretty close to each other since the reconstruction errors
starts to �atten out for increasing latent dimensionality. As for the CAE
model the results in general gets better with increasing latent dimensionality,
which is also in line with the �gure.

Moreover, no matter which individual latent dimensions are compared, the
CVAE model seems to have performed better than the CAE model for all
evaluation metrics. This is linked to the CVAE’s ability to reconstruct and
create variations of the images to a greater extent. The CAE lacks the capa-
bility of handling the variations such as illumination, orientation and shapes
of the samples, thus resulting in worse reconstructions.

However,

Figure 6.13: Selected reconstructions
of potatoes of the CAE model given
𝐽 = 128. From upper to lower row:
reconstructions of perfect potato,
potato with needle, and potato with
hollow heart, respectively.

it actually seems like the CAE model given the potato dataset
yields better results compared to the CVAE model in some of the larger latent
dimensions(!) However, take then a look at some of the reconstructions of
the CAE model given 𝐽 = 128 in Fig. 6.13. The reconstructions are, to say,
pretty useless as the model fails to capture the inherent features of potatoes.
The results reported by this model are pretty much associated with ’luck’ and
the reconstructions suggest the need of additional variations in the training
set. In summary, it is expected that in real life applications this model would
be ine�ectual.

As can be seen from Table 6.6 and Fig. 6.14, in the potato dataset, when the
anomaly ratio is between 30% and 70% the 𝐹1-scores are all greater than 0.8
indicating the CAE and CVAE models have a good performance. When the
anomaly ratio is grater than 70%, the 𝐹1-scores of the networks decreases as
the anomaly ratio increases, and on the other side; when the anomaly ratio
is less than 30%, the 𝐹1-scores decreases as the anomaly ratio decreases. The
𝐹1-scores have a similar trend for the chocolate bar dataset, although their
scores are better, indicating great performances.

These patterns are mainly due to when the anomaly ratio is small, the preci-
sions are small, and as the anomaly ratio increases, the precision increases.
However, this phenomenon is not so uncommon at all. It follows that as the
anomaly score decreases the precision decrease, since there simply will be
more FPs for every TP, because one is hunting for a "needle in a haystack",
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Table 6.6: Based upon the results found in Table 6.5 the anomaly ratio is varied for (A) CVAE
given 𝐽 = 8 and CAE given 𝐽 = 64 for the chocolate bar dataset; and (B) CVAE given 𝐽 = 32
and CAE given 𝐽 = 128 for the potato dataset. Mean values are reported, and uncertainties
are calculated as the standard error on the mean.

Anomaly
Ratio [%]

CVAE

AUC-ROC Speci�city Recall Precision 𝐹1 Accuracy
Chocolate Bar

5 0.996 ± 0.001 0.977 ± 0.004 0.989 ± 0.005 0.717 ± 0.033 0.906 ± 0.012 0.978 ± 0.004
10 0.995 ± 0.001 0.978 ± 0.003 0.979 ± 0.005 0.834 ± 0.018 0.945 ± 0.006 0.979 ± 0.003
30 0.995 ± 0.000 0.970 ± 0.002 0.978 ± 0.002 0.934 ± 0.004 0.968 ± 0.002 0.973 ± 0.002
50 0.996 ± 0.000 0.972 ± 0.002 0.976 ± 0.002 0.973 ± 0.002 0.974 ± 0.001 0.974 ± 0.001
70 0.995 ± 0.000 0.972 ± 0.005 0.975 ± 0.003 0.988 ± 0.002 0.969 ± 0.001 0.974 ± 0.001
90 0.996 ± 0.001 0.979 ± 0.006 0.971 ± 0.004 0.998 ± 0.001 0.931 ± 0.007 0.972 ± 0.003
95 0.995 ± 0.001 0.985 ± 0.006 0.973 ± 0.004 0.999 ± 0.000 0.894 ± 0.012 0.974 ± 0.003
Potato

5 0.906 ± 0.007 0.832 ± 0.018 0.880 ± 0.018 0.234 ± 0.006 0.634 ± 0.015 0.835 ± 0.017
10 0.883 ± 0.006 0.828 ± 0.015 0.816 ± 0.017 0.361 ± 0.021 0.694 ± 0.012 0.827 ± 0.012
30 0.898 ± 0.003 0.859 ± 0.007 0.794 ± 0.010 0.709 ± 0.009 0.815 ± 0.004 0.839 ± 0.004
50 0.903 ± 0.002 0.846 ± 0.009 0.814 ± 0.011 0.843 ± 0.006 0.830 ± 0.002 0.830 ± 0.002
70 0.905 ± 0.002 0.852 ± 0.010 0.809 ± 0.010 0.928 ± 0.004 0.803 ± 0.004 0.822 ± 0.005
90 0.908 ± 0.003 0.861 ± 0.016 0.822 ± 0.013 0.982 ± 0.002 0.698 ± 0.009 0.826 ± 0.010
95 0.887 ± 0.007 0.840 ± 0.015 0.813 ± 0.013 0.990 ± 0.000 0.607 ± 0.013 0.815 ± 0.013

CAE
Chocolate Bar

5 0.990 ± 0.002 0.968 ± 0.005 0.977 ± 0.009 0.645 ± 0.032 0.876 ± 0.013 0.969 ± 0.005
10 0.989 ± 0.001 0.960 ± 0.005 0.963 ± 0.007 0.740 ± 0.021 0.906 ± 0.008 0.961 ± 0.004
30 0.990 ± 0.000 0.958 ± 0.004 0.962 ± 0.004 0.908 ± 0.007 0.952 ± 0.003 0.959 ± 0.003
50 0.990 ± 0.000 0.962 ± 0.001 0.955 ± 0.002 0.961 ± 0.001 0.958 ± 0.001 0.958 ± 0.001
70 0.991 ± 0.001 0.967 ± 0.002 0.951 ± 0.001 0.985 ± 0.001 0.949 ± 0.001 0.956 ± 0.001
90 0.991 ± 0.001 0.967 ± 0.006 0.961 ± 0.004 0.996 ± 0.001 0.908 ± 0.007 0.962 ± 0.003
95 0.990 ± 0.002 0.971 ± 0.009 0.962 ± 0.006 0.998 ± 0.000 0.860 ± 0.016 0.962 ± 0.005
Potato

5 0.908 ± 0.006 0.829 ± 0.016 0.900 ± 0.015 0.230 ± 0.015 0.633 ± 0.014 0.833 ± 0.015
10 0.894 ± 0.006 0.822 ± 0.008 0.872 ± 0.015 0.356 ± 0.008 0.700 ± 0.006 0.827 ± 0.007
30 0.897 ± 0.003 0.827 ± 0.005 0.857 ± 0.007 0.681 ± 0.006 0.817 ± 0.003 0.836 ± 0.003
50 0.894 ± 0.001 0.826 ± 0.004 0.838 ± 0.004 0.828 ± 0.003 0.832 ± 0.002 0.832 ± 0.002
70 0.898 ± 0.002 0.826 ± 0.004 0.850 ± 0.005 0.919 ± 0.001 0.821 ± 0.002 0.842 ± 0.002
90 0.898 ± 0.007 0.834 ± 0.012 0.856 ± 0.005 0.979 ± 0.001 0.724 ± 0.005 0.854 ± 0.004
95 0.889 ± 0.007 0.856 ± 0.017 0.838 ± 0.014 0.991 ± 0.001 0.632 ± 0.012 0.839 ± 0.013

thus being more likely to mistake other things as the "needle" — namely the
abnormal class.

The precision is the probability that instances being predicted as abnormal
truly are an anomalous sample. For example, given a precision of 72%, then
among those samples that are being predicted positive, i.e. as abnormal, the
model are falsely predicting a normal sample as being anomalous 28% of the
time.

Hence, given a low anomaly ratio the networks thus have some di�culties
with correctly detecting normal samples, i.e. a large FP rate, but not many
anomalous samples are being misclassi�ed as being normal, i.e. few FNs. On
the other hand, if the anomaly ratio is large, the models are prone to return a
large FN rate, i.e. many anomalous samples are misclassi�ed as being normal
samples — which is typically the worst-case scenario. Accordingly, not a lot
of normal samples are being misclassi�ed as abnormal since they are so rare
in this reverse case, i.e. a low rate of FPs.
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Figure 6.15: Generalized pipeline of
the static novelty detection scheme
as it has been compiled in this thesis.
Flowchart created with Creately.

6.4 reflections upon results

6.4.1 Static Novelty Detection: The Pipeline

Let us take a step back and consider how the systematic framework of this
static novelty detection scheme has been proceeding. The whole pipeline
can be generalized, summarized and visualized as in Fig. 6.15. Essentially it is
a rather simple set-up process, and the essential task lies in the choices of
the generative model, the anomaly score and the technique of (automated)
threshold selection. These selections can be replaced accordingly to the data
considered and for the problem at hand and what it seeks to solve. Moreover,
the largest challenge is training a generative model able to generate images
similar to the training inputs to such a precision that small foreign objects
can be detected in abnormal samples.

In this thesis two di�erent generative models have been considered; the CAE
and CVAE. Accordingly to the evaluations throughout § 6.3 the CVAE has
consistently showed to perform the best out of the two models. However,
why limit ourself to these two neural networks? Simply in the family of
autoencoders other variations exists such as the 𝛽-CVAE [34], whereas an
additional hyperparameter, 𝛽 , is added to the loss function and works as an
constraint on the bottleneck, potentially outperforming the CVAE. Alterna-
tive generative models that have not really been considered in this thesis is
the family of generative adversarial networks (GANs) [28]. For instance, [16]
and [64] utilizes similar detection pipelines, but instead of using the CAE or
CVAE, they make use of the so-called ADGAN and AnoGAN, respectively.
They both obtains promising performances on image benchmark datasets,
hence playing a hand in proposing anomaly detections based on the family
of GANs. GANs are however harder to train since the generator network
that tries to fool the discriminator network plays a min-max game in such
a way that the cost function of the model may not converge using gradient
descent.

Additionally, the choice of the anomaly score can be attuned. In the above
performances and empirical results in § 6.3, the reconstruction error — cal-
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culated as the Euclidean distance and given by eq. (6.3) — was chosen as
the anomaly score. The particular choice of metric function for the anomaly
score is however pretty extensive, as the user themself has the freedom to
pick and utilize any kind of useful similarity measure. In particular, a couple
of di�erent anomaly scores are revisited in § 6.4.2 below.

Finally, it is appropriate to also consider ways to choose and tuning the
classi�cation threshold. The choice of the G-mean has empirically shown
to work well in the above result sections for for various anomaly ratios.
Here, the true negative rate and true positive rate were considered equally
important and that is a fact worth noticing. E.g. alternatively of computing
the G-mean, the 𝐹1-score (or accuracy score if non-skewed classes) could
instead be computed at each threshold value, subsequently choosing an
optimal cut-o� by maximizing this metric.

For instance, if the positive class, i.e. the abnormal samples, were given a
higher priority of discovering — upon the cost of predicting an increasing
number of false positives — another threshold metric should be considered.
Due to the way the problem is de�ned, on the ROC curve this scenario would
corresponds to a rightward movement of the threshold value. In this case the
recall/sensitivity (i.e. the TPR) should be maximized as one would want to
�nd all abnormal samples, but it will be at the expense of the speci�city (aka
the TNR) falling accordingly. Vice versa if the negative class, i.e. the normal
class, was deemed most important.

Nevertheless, when the anomaly score is computed the samples are rendered
to histograms, i.e. probability distributions. And probabilities we understand
though statistic. Hence, practices from advanced statistic could also be
considered for detecting outliers, ultimately �nding some tolerance limit
in order separate the two class distributions. For instance, if the two class
distributions are reasonable separated, the so-called part average testing [14]
could be exploited.

6.4.2 Anomaly Scores Revisited

Recall

Figure 6.16: Image luminances as
computed by eq. (6.15) over origi-
nal preprocessed images. Due to
the white background area in the

chocolate bar dataset, their average
pixel values are automatic increased.

the (noticeable) intensity di�erences between the normal and abnormal
images showcased in Fig. 6.6. To quantify, the luminance calculated by eq.
(6.15) can loosely be though of as the image brightness, as it simply sums all
pixels values and takes the average, i.e. the overall mean intensity value of
an image. On Fig. 6.16 the luminance of each preprocessed original image (i.e.
excluded augmented images) have been computed for both the chocolate bar
and potato datasets, respectively.

As discussed in section § 1.4, due to the large atomic numbers of foreign
objects, when they are present in the X-ray imaging they absorbs almost all
the photons, hence increasing the overall luminance of the resulting image.
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Hence, the noticeable luminance di�erence of anomalous samples in the
chocolate bar dataset and in general when needles are present in the potato
dataset. On the other hand, the mean image luminance decreases slightly for
potatoes with hollow hearts, but overall is similarly to the image luminance
for perfect potatoes.

As will be discussed below, the (squared) Euclidean distance, used as the
anomaly score and given by eq. (6.3), is sensitive to illuminations. Hence, it
motivates us to explore other potential metrics that can be utilized as the
anomaly score, and in the end determining if such non-invariance to changes
in intensity are either bene�cial or disadvantageous given a case study.

There exists a certain degree of �exibility in selecting a metric by which
to evaluate the candidate models. The essential part lies in choosing some
kind of appropriate distance or similarity measure between the original and
reconstructed image. In this section a few image matching techniques are
explored and later on applied to case studies.

IMage Euclidean Distance (IMED)

Due to the simplicity of the Euclidean distance it is one of the most commonly
used distance measurements in the �eld of computer vision. Contemplate
therefore again the squared Euclidean distance given by eq. (6.3). Formally,
accordingly to the gray levels of each pixel an image with �xed width𝑊
and height 𝐻 can be transformed from its 2D matrix form to the 1D vector
x = {𝑥 (1) , 𝑥 (2) , ..., 𝑥 (𝐻𝑊 ) }. Given the vectorized original and reconstructed
images, x ∈ R𝐻×𝑊 and x̃ ∈ R𝐻×𝑊 respectively, the SE can also be written as
[51, 73]

𝑑2ED =

𝐻𝑊∑︁
𝑘=1

(
𝑥 (𝑘) − 𝑥 (𝑘) )2 = (x − x̃)𝑇 (x − x̃) . (6.11)

I.e., the Euclidean distance 𝑑ED ∈ [0,
√
𝐻𝑊 · 255] is only a summation of the

pixel-wise intensity di�erences between two 8-bit gray scale images. I.e. this
metric is sensitive and non-invariant to constant changes in brightness, such
as noise. Furthermore, the squared Euclidean distance cannot re�ect the real
spatial distances as it only takes gray levels on pixels into account. Thus, it
discards the image structures and cannot properly represent real distances
between two images.

On the other hand, the IMage Euclidean Distance (IMED) overcomes this
problem by exploring the spatial relationship between pixels. The IMED
between two images is de�ned by [73]

𝑑2IMED(x, x̃) =
𝐻𝑊∑︁
𝑖=1

𝐻𝑊∑︁
𝑗=1

𝑔𝑖 𝑗
(
𝑥 (𝑖) − 𝑥 (𝑖) ) (𝑥 ( 𝑗) − 𝑥 ( 𝑗) ) = (x− x̃)𝑇G(x− x̃), (6.12) IMAGE EUCL I D EAN D I S -

TANCE
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Figure 6.17: Similar and dissim-
ilar 28 × 28 8-bit gray scale im-

ages. Here image d has the same
structure as that of image c, but
its brightness has been manipu-

lated by adding a constant 𝑐 = 70;
making the image brighter. Data

from the MNIST handwritten digits.

introducing the symmetric and positive-de�nite matrix1

1. A symmetric matrixM ∈ R𝑁×𝑁 is
said to be positive-de�nite if x𝑇Mx >

0 for all non-zero x in R𝑁 .

G = (𝑔𝑖 𝑗 )𝐻𝑊 ×𝐻𝑊 ,
called the metric matrix. Here, 𝑔𝑖 𝑗 is the metric coe�cients which indicates
the spatial relationship between pixels 𝑝 𝑗 and 𝑝 𝑗 whose entries are given by
the formula

𝑔𝑖 𝑗 = 𝑓
(
𝑑𝑠𝑖 𝑗

)
=

1
2𝜋𝜎2 exp

(
−

(𝑑𝑠𝑖 𝑗 )2

2𝜎2

)
, (6.13)

where 𝜎 = 1 is the width parameter, and 𝑑𝑠𝑖 𝑗 = |𝑝𝑖 − 𝑝 𝑗 | the spatial distance
between pixels 𝑝 𝑗 and 𝑝 𝑗 for 𝑖, 𝑗 = 1, 2, ..., 𝐻𝑊 . E.g. if 𝑝𝑖 and 𝑝 𝑗 are located at
locations (𝑘, 𝑙) and (𝑘 ′, 𝑙 ′) on the image lattice respectively, then the distance
between them is

𝑑𝑠𝑖 𝑗 =
√︁
(𝑘 − 𝑘 ′)2 + (𝑙 − 𝑙 ′)2. (6.14)

Notice, eq. (6.13) is identi�ed as the Gaussian function; thus 𝑓 is a continuous
function, and as |𝑝𝑖 − 𝑝 𝑗 | increases, 𝑔𝑖 𝑗 decreases monotonically [73]. Hence,
eq. (6.12) determines the relationship between pixels on the images by using
the prior knowledge that pixels located near one another have little variance
in gray levels [51]. Thus, small spatial deformations yields small image
distances, while larger deformations results in larger distances.

Hence, compared to eq. (6.11), that is highly sensitive to small spatial de-
formations, the IMED is relatively insensitive to such small perturbations.
As an illustration, consider the example images shown in Fig. 6.17. Image
b ∈ R28×28 is di�erent from image a ∈ R28×28, while image c ∈ R28×28 is
slightly deformed compared to a. Image d ∈ R28×28 is identical to c expects
that its brightness has been manipulated. Computing the Euclidean distances
yields 𝑑ED(a, b) = 117.85 and 𝑑ED(a, c) = 123.74. But, the pair with less simi-
larity has a smaller Euclidean distance(!) On the other hand, computing the
IMED gives 𝑑IMED(a, b) = 1707.42 and 𝑑IMED(a, c) = 1308.18. Hence, IMED
provides intuitively better results, while the Euclidean distance yields counter
intuitively results. Moreover, 𝑑ED(c, d) = 126.62 and 𝑑IMED(c, d) = 1366.77,
implying their sensitivity to changes in illumination. Do notice, given the
image dimensions 28 × 28 results in the metric matrix G ∈ R784×784, i.e. an
already rather large matrix. Computing the IMED is however computational
feasible for these small images, but it might pose some problems for larger
images, such as large memory consumptions and execution times.
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Structural Similarity Index Measure (SSIM)

Contrary to distance measurements, di�erent similarity measures could also
be investigated. The structural similarity indexmeasure (SSIM) is such ametric
and it extract three key features from an image; the luminance, contrast and
structure, hence the comparison between two images are performed on the
basis of these features [74].

The luminance of an image x ∈ R𝐻×𝑊 is measured by the average over all
pixel values, i.e.

𝜇x =
1

𝐻𝑊

𝐻𝑊∑︁
𝑘=1

𝑥 (𝑘) . (6.15)

The luminance comparison function is then a function between the means
𝜇x and 𝜇x̃, that is

𝑙 (x, x̃) = 2𝜇x𝜇x̃ +𝐶1

𝜇2x + 𝜇2x̃ +𝐶1
, 𝐶1 = (𝐾1𝐿)2, (6.16)

given another image x̃ ∈ R𝐻×𝑊 . Here, 𝐶1 is a stabilization constant and
𝐾1 � 1 another small constant. 𝐿 is the dynamic range for pixel values,
which for 8-bit gray scale images is 256.

The contrast of image x is measured by taking the standard deviation of all
the pixel values, i.e. 𝜎x =

(
1

𝐻𝑊 −1
∑𝐻𝑊
𝑘=1

(
𝑥 (𝑘) − 𝜇x

)2)1/2. Accordingly, the
contrast comparison function is then

𝑐 (x, x̃) = 2𝜎x𝜎x̃ +𝐶2

𝜎2x + 𝜎2x̃ +𝐶2
, 𝐶2 = (𝐾2𝐿)2, where𝐾2 � 1. (6.17)

By removing the mean intensity from image x and dividing it with its own
standard deviation results in the output being normalized and having unit
standard deviation, that is (x − 𝜇x)/𝜎x. This allows for a more robust com-
parison, and the structure comparison function is thus

𝑠 (x, x̃) = 2𝜎xx̃ +𝐶3
𝜎x𝜎x̃ +𝐶3

, (6.18)

where 𝜎xx̃ is the covariance which is estimated by 𝜎xx̃ =
(

1
𝐻𝑊 −1

∑𝐻𝑊
𝑘=1

(
𝑥 (𝑘) −

𝜇x
) (
𝑥 (𝑘) − 𝜇x̃

)
.

The SSIM score is then a weighted combination of the luminance, contrast
and structure between the two images and given by the combination function
SSIM(x, x̃) = [𝑙 (x, x̃)]𝛼 · [𝑐 (x, x̃)]𝛽 · [𝑠 (x, x̃)]𝛾 , where 𝛼, 𝛽,𝛾 > 0 denotes the
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relative importance of each of the metric components. Assuming 𝛼, 𝛽,𝛾 = 1
and 𝐶3 = 𝐶2/2, the SSIM can then �nally be described by

SSIM(x, x̃) = (2𝜇x𝜇x̃ +𝐶1) (2𝜎xx̃ +𝐶2)
(𝜇2x + 𝜇2x̃ +𝐶1) (𝜎2x + 𝜎2x̃ +𝐶2)

. (6.19)STRUCTURAL S IM I L AR I T Y
INDEX MEASURE

Output values are SSIM ∈ [−1, 1], where 1 means a perfect similarity, 0 no
similarity and −1 a maximum negative similarity.

The three components are relatively independent from each other. Consider
the examples on Fig. 6.17. Computing the SSIM yields SSIM(a, b) = 0.12,
SSIM(a, c) = 0.68 and SSIM(a, d) = 0.61, which all are satisfactory results.
Moreover SSIM(c, d) = 0.92, i.e. a constant change in illumination but keep-
ing the same structure still yields a large, but not perfect, similarity as ex-
pected.

Notice, it is expected that anomalous samples have an error lager than that of
normal samples, but the SSIM is a similarity measure. Hence, for it to work
as an anomaly score in the scheme of the novelty detection, then without
loss of generality 1 −max

(
0, SSIM(x, x̃)

)
should be utilized instead.

Zero-Mean Normalized Cross-Correlation (ZNCC)

Another similarity measure worth contemplating is the zero-mean normalized
cross-correlation (ZNCC), also known as Pearson correlation coe�cient. In
computer vision, this measure is widely used in template or image matching,
whereas its purpose typically is to locate speci�c objects in an image by
applying a template, or to compare two images.

As usual, considering an original and reconstructed image in their vectorized
forms, the Pearson correlation coe�cient is described by [78]

ZNCC(x, x̃) =
∑𝐻𝑊
𝑘=1

(
𝑥 (𝑘) − 𝑥

) (
𝑥 (𝑘) − ¯̃𝑥

)√︃∑𝐻𝑊
𝑘=1

(
𝑥 (𝑘) − 𝑥

)2√︃∑𝐻𝑊
𝑘=1

(
𝑥 (𝑘) − ¯̃𝑥

)2 , (6.20)Z ERO -MEAN NORMAL I Z ED
CROSS - CORRELAT ION

where 𝑥 (𝑘) is the 𝑘 th pixel in x, and 𝑥 = 1
𝐻𝑊

∑𝐻𝑊
𝑘=1 𝑥

(𝑘) the sample mean
of x; and analogously for x̃. Its output domain is ZNCC ∈ [−1, 1], where
1 indicates a maximum similarity match, 0 for no similarity, and −1 for a
complete negative correlation. Contrary to the Euclidean distance, the ZNCC
is expectedly invariant to constant changes in brightness as the output only
depends on how similar the reconstructed image are to the original image.

As an example, consider again the images on Fig. 6.17. Computing eq. (6.20)
yields ZNCC(a, b) = 0.04, and ZNCC(a, c) = 0.72. These are quiet satisfac-
tory results as far as the structural di�erences goes. Furthermore, computing
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the similarity between the same image system but with di�erent illumina-
tion gives ZNCC(c, d) = 0.99, i.e. the ZNCC is indeed (almost) invariant to
linear brightness and contrast variations, and the very small di�erence is as
anticipated [78].

Notice, since the ZNCC is a similarity measure, it is necessary to subtract the
metric by 1 such that it can be utilized as the anomaly score in an appropriate
way, i.e. 1 −max

(
0,ZNCC(x, x̃)

)
, as it furthermore does not make sense to

consider negative correlations in its application.

Gradient Magnitude Similarity Deviation (GMSD)

On the �ip side, how about considering edges and gradients? Due to foreign
objects and other defects present in abnormal samples, such as hollow hearts
and cracks, the anomalous samples are more likely to posses an additional
amount of edges compared to that of normal samples. Since the CAE and
CVAE models are (successfully) trained to reconstruct only normal samples
they fail to reconstruct the defects of anomalous samples. Hence, one could
begin to wonder if such loss of edges could be utilized to make use of an
anomaly score whose metric are based on gradients. Luckily, such a metric
that compares the gradient magnitude similarity between the reference and
distorted images to compute a quality score already exists, and is known as
the gradient magnitude similarity deviation (GMSD) [77].

In order to detect edges in images, an image is convolved with a linear �lter,
whereas the convolution operation is de�ned by eq. (5.11) in section § 5. In
[77] the authors have chosen to divide the well-known 3 × 3 Prewitt �lters
along the horizontal and vertical directions by 3, such that

h𝑥 =
1
3


1 0 −1
1 0 −1
1 0 −1

 ; h𝑦 =
1
3


1 1 1
0 0 0
−1 −1 −1

 , (6.21)

where h𝑥 denotes the horizontal derivative, and h𝑦 the vertical derivative.
Convolving an image x with such linear �lter yields the directional gradient
of the image, i.e. the image derivatives 𝜕/𝜕𝑥 = x ∗ h𝑥 and 𝜕/𝜕𝑦 = x ∗ h𝑦 .

Besides

Figure 6.18: Prewitt �lters decribed
by eq. (6.21) applied to a prepro-
cessed X-ray image of a potato with
an inserted needle. The horizontal
Prewitt enhances horizontal edges
while the vertical Prewitt enhances
vertical edges. The combined Prewitt,
i.e. the gradient magnitude, creates
very nice resulting edges.

a direction the gradient also has a magnitude, which is simply the
length of the gradient vector calculated as |H(h𝑥 , h𝑦) | =

√︃
h2𝑥 + h2𝑦 . At pixel

location 𝑖 , the gradient magnitudes of the original image x ∈ R𝐻×𝑊 and the
reconstructed image x̃ ∈ R𝐻×𝑊 are then

mx(𝑖) =
√︃(

x ∗ h𝑥
)2(𝑖) + (

x ∗ h𝑦
)2(𝑖),

mx̃(𝑖) =
√︃(

x̃ ∗ h𝑥
)2(𝑖) + (

x̃ ∗ h𝑦
)2(𝑖) . (6.22)
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Figure 6.19: First: An input im-
age of a preprocessed X-ray im-

age of a potato with hollow heart.
Second: The reconstructed image

from the CVAE model given 𝐽 = 32.
Third and Fourth: The correspond-
ing gradient magnitude images as
computed by eq. (6.22). Fifth: The

associated gradient magnitude sim-
ilarity map, i.e. quality map, com-
puted by eq. (6.23). The brighter

the gray levels, the higher the local
similarity between the two images.

To illustrate consider Fig. 6.18 where the Prewitt �lters described by eq. (6.21)
have been convolved with an input image of a preprocessed potato with an
inserted needle. Each derivatives �nds edges that the other does not, and by
computing the gradient magnitude as described by eq. (6.22) it creates a �nal
edge enhanced image.

Following, the gradient magnitude similarity (GMS) is then computed as

GMS(𝑖) = 2mx(𝑖)mx̃(𝑖) + 𝑐
m2

x(𝑖) +m2
x̃(𝑖) + 𝑐

, (6.23)

where the parameter 𝑐 > 0 is a numerical constant ensuring numerical
stability. If 8-bit images are in the domain of [0, ..., 255], then 𝑐 = 170 can be
assumed as a default value, however this parameter could be exploited further
[77]. The GMS serves as the local quality map (LQM of the reconstructed
image, and re�ects the local quality of each small patch in the reconstructed
image. Hence, if mx(𝑖) and mx̃(𝑖) are the same, then GMS(𝑖) = 1, where 1 is
the maximal value.

As an example, consider Fig. 6.19. The �rst two images shows an preprocessed
image of a potato with hollow heart disease and the CVAE’s reconstruction
of it, respectively. Their respective gradient magnitude images are computed
and shown in the next two images. Finally, the corresponding GMS map as
computed by eq. (6.23) is shown. The brighter the gray level, the larger the
pixel values in GMS(𝑖) ∈ [0, 1], and thus the higher the predicted similarity.

The overall quality score can then be estimated from the LQM via a pooling
stage, such as average pooling. I.e. by averaging the LQM values and taking
the mean yields the gradient magnitude similarity mean (GMSM)

GMSM =
1

𝐻𝑊

𝐻𝑊∑︁
𝑖=1

GMS(𝑖), (6.24)

where𝐻 ·𝑊 is the total number of pixels in the image. The higher the GMSM
score, the higher the image similarity. Finally, the authors in [77] proposes
the GMSD as the �nal score
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GMSD =

√√√
1

𝐻𝑊

𝐻𝑊∑︁
𝑖=1

(
GMS(𝑖) − GMSM

)2
. (6.25) GRAD I ENT MAGN I TUDE

S IM I L AR I T Y DEV I AT ION

The higher the GMSD score, the lower the image similarity. I.e. translated
to the set-up of the novelty detection, a larger GMSD score means a larger
reconstruction error. Moreover, it is important to note that gradients are
highly sensitive to noise. Thus it is essential to remove noise in the image
preprocessing stages.

As a �nal example consider our favourite handwritten digits in Fig. 6.17.
Computing the GMSD score yields GMSD(a, b) = 0.40 and GMSD(a, c) =

0.26, i.e. image c is indeed more similar to image a compared to image b.
Furthermore, it shows that the constant brightness di�erence does not have
such a large impact as GMSD(a, d) = 0.27 and GMSD(c, d) = 0.08. Moreover,
as a sanity check GMSD(a, a) = 0.00 as anticipated since the images are
identical.

6.4.3 Case Studies Reexamined

In this section each of the various anomaly scores just introduced in section
§ 6.4.2 above are applied to the two prior case studies, followed by a compari-
son. Furthermore, two new case studies are investigated in order to further
test the limits of the CVAE network and the anomaly scores.

The Chocolate Bar Dataset: Matching Intensities

Imaging if one had to deal with a dataset whose normal and abnormal samples
had more or less the same luminance. As an experimental set-up one could
thus try and even out the playing �eld between the normal and anomalous
samples in the chocolate bar dataset by matching their histograms. To do so,
the general midway equalization and histogram matching, whose techniques
are described in sections § 5.1.3 and § 5.1.2 respectively, could be utilized.

Prior

Figure 6.20: Image luminances as
computed by eq. (6.15) over: (Upper)
original chocolate bar images before
preprocessing and after midway
equalization and; (Lower) original
chocolate bar images after prepre-
cessing and histogram macthing.

to the data preprocessing outlined in section § 5.2.3 for the chocolate
bars, midway equalization using the CDFs of all normal and anomalous
samples are applied. This application results in the luminance distributions
shown on the upper plot in Fig. 6.20. As can be seen, the luminance stay
roughly consistent, but there are still a di�erence in luminance between the
two classes.

Attempting to match the intensities between the two classes even more,
histogram matching is performed for all normal and abnormal samples,
where the normal image corresponding to the median luminance is used
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as the reference. This results in the lower plot on Fig. 6.20. The histogram
matching e�ectively regularizes the data as images gets shifted towards a
common sample distribution, but still there is the smallest di�erence between
the normal and abnormal classes. When these operations are performed a
bias is however introduced at the same time.

Using

Figure 6.21: Average loss func-
tion as a function of number of

epochs, derived on training images
of the new chocolate bar dataset.

this new histogram matched dataset it is trained by the CVAE model
given 𝐽 = 8. The same number of augmentations and split ratios are reused
in this model. The average loss function as a function of number of epochs is
seen on Fig. 6.21. Notice, compared to the cost curves of the prior chocolate bar,
the cost at the �nal epoch is lower, indicating the model’s ability to estimate
reconstructions of training samples are ’better’. Furthermore, the loss have
yet to converge and keeps decreasing slowly, suggesting the model could
have been allowed to train for more epochs, but with minimal improvements.

Some

Figure 6.22: Selected recon-
structions of test samples of

the new chocolate bars by the
CVAE model given 𝐽 = 8.

selected reconstructions of test samples at the �nal epoch can be seen
on Fig. 6.22. Compared to Fig. 6.6 notice how the luminances looks similar
for both classes.

A New Potato Dataset

In the meantime, Newtec Engineering A/S has acquired new scan data of
perfect potatoes and potatoes with natural hollow hearts (and not simple
arti�cial created ones). They have been recorded by their in-house line
scanner given tube current 5.5mA and voltage 60 kV. Of distinct image
samples, there are a total of 45 perfect potatoes and 66 hollow ones. The
following preprocessing pipeline and image augmentations have been applied
to this potato dataset:

i Piecewise linear contrast stretching, given by eq. (5.1) have been utilized
given parameters (𝑟1, 𝑠1) = (12, 0) and (𝑟2, 𝑠2) = (140, 255).

ii Subsequently, application of gamma correction given 𝛾 = 0.7, cf. § 5.1.1.

iii The bilateral �lter given neighborhood diameter 𝑑 = 5, and parameters
𝜎s = 15 and 𝜎r = 10 have been applied, cf. § 5.1.4.

iv Contrary to the prior potato dataset, whose samples were elongated,
these images of potatoes are also stretched, but using an interpolation
method will not render the objects to be potato shaped. Nevertheless, the
area interpolation showed in § 5.1.5 are utilized to resize images into the
desired dimensions of (128, 128).

v Applied min-max normalization and the normalization given by eq. (5.15)
and eq. (5.16), respectively.

vi The augmentations applied on the other datasets, such as allowing rota-
tions in full range, should not be applied to this dataset as it would not
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re�ect how "real" data looks like. Instead, it is needed to consider more
complex types of augmentation. The following augmentations are uti-
lized; distortions by shearing, elastic distortion, changing the perspective
by zoom e�ect, and allowing potatoes to be rotated by 180 degrees.

Again

Figure 6.23: Image luminances as
computed by eq. (6.15) over original
preprocessed images of the new
potato dataset.

computing the luminance of the preprocessed original images, it can be
seen that there indeed are intensity di�erences between perfect and hollow
potatoes, as shown in Fig. 6.23.

Assuming

Figure 6.24: Average loss function
as a function of number of epochs,
derived on training and validation
images of the new potato dataset.

that the performances of CVAE models are more or less robust
to latent dimensions equal to or larger than 8, this dataset is trained using
the CVAE architecture described by Tables 6.1-6.2 given 𝐽 = 32. The model
is trained using {NNewPo

train } = 1683 and validated by {NNewPo
val } = 104, and

given an 50% anomaly ratio tested by {NNewPo
test } = 350 and {ANewPo} = 350.

The cost function as a function of number of epoch are seen on Fig. 6.24.
As can be seen, the training loss keeps decreasing while the validation loss
starts to converge. This is an indication of the model beginning to over�t, as
the model capture the training data well, but performs poorly on new data,
thus not being able to generalize well. Several reasons could be the cause of
this outcome, but expectedly it is due to the network architecture not being
customized very well for this dataset, or that the augmented data are not
su�ciently re�ecting real data.

On Fig. 6.25 a few selected test samples and their reconstructions are shown as
derived at the �nal epoch. Notice how it is already pretty hard to distinguish
perfect potatoes from hollow ones by the untrained human eye. Moreover,
as re�ected by Fig. 6.24 the CVAE model have a harder time training on this
dataset compared to the other ones. The network is however pretty descent
at reconstructing the outer shape of the potatoes, but still struggles with
reconstructing the variations and structures of the inner potato masses.

Evaluations Based on Various Anomaly Scores

In the following all results are based on a 50% anomaly ratio in the test set
and optimal thresholding automated by the G-mean, cf. eq. (6.4). Reusing

Figure 6.25: Selected test samples
and their reconstructions by the
CVAE network given 𝐽 = 32 for
the new potato dataset. First three
columns are perfect potatoes and the
last three columns are potatoes with
hollow heart disease.

101



Figure 6.26: Resulting interquar-
tile ROC curves and their mean

AUC-ROC results. Error bars
represents the standard error
on the mean. Upper left: Prior
chocolate bar dataset. Upper

right: New chocolate bar dataset.
Lower left: Prior potato dataset.
Lower right: New potato dataset.

the former trained CVAE models given 𝐽 = 8 for the prior chocolate bar
dataset and 𝐽 = 32 for the prior potato dataset, the models are evaluated by
utilizing the various anomaly score described in section § 6.4.2 and by eq.
(6.3). So is the newly trained chocolate bar dataset and second potato dataset
described just above. Selected evaluating metric are summarized in Table
6.7. Furthermore, the interquartile ROC curves over all four models and each
based on all �ve di�erent anomaly scores can be found in Fig. 6.26.

Consider Fig. 6.27 where the in-class error rates and overall misclassi�cations
are shown for the original chocolate and potato datasets as computed by the
di�erent anomaly score metrics. These two plots gives a clear overview of
how the metrics re�ects their abilities at distinguishing normal and anoma-
lous samples.

By utilizing the SE, that relies on di�erences in pixel-wise intensities, potatoes
with inserted needles whose overall image luminance are higher than images
of perfect potatoes are easily detected, whereas images of hollow potatoes
whose luminance are only slightly smaller than images for perfect potatoes
are harder to detect. Though the IMED provides intuitively better results,
its overall performance is in accordance with the SE. The di�erence lies
in the IMED detecting a few more perfect potatoes as being normal, but at
the cost of failing to detect a few more hollow potatoes as being abnormal
samples. As for the chocolate bar dataset, the SE, that is sensitive to small
spatial deformations, performs slightly better compared to the IMED, that
is insensitive to small spatial deformations. This implies that since foreign
objects are present at only small regions, the detection set-up works better
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Figure 6.27: Mean class error rates as
computed by the di�erent anomaly
score metrics. The former potato
dataset trained by the CVAE model
given 𝐽 = 32 and former chocolate
bar dataset given 𝐽 = 8 and trained
by the CVAE model, have been used
with a 50% anomaly ratio. The total
misclassi�cation rate is simple the
average of the in-class error rates.
The error bars represent the standard
error on the mean.

by putting a larger weights on small pixel di�erences compared to being
insensitive to such small deformations.

The overall performance of the SSIM, whose score is a weighted combination
of image luminance, contrast and structure, is the best out of all the anomaly
scores for the potato dataset. In particular, it predicts perfect potatoes and
hollow potatoes very well, however at the cost of wrongly predicting potatoes
with inserted needles to a larger degree. The SSIM also performs well for the
chocolate bar dataset where it correctly detects a larger amount of anomalous
samples contrary to normal samples.

Against expectations, the ZNCC, that is (almost) invariant to constant changes
in brightness and only depends on structural di�erences, is the worst out of
all the metric at detecting hollow hearts. On the other hand, compared to
the other anomaly scores, its ability to detect needles and perfect potatoes is
adequate, however slightly poorer. This suggest that the network’s ability
to reconstruct perfect potatoes is not satisfactory enough to, structure-wise,
provide a state-of-the-art performance, as the ZNCC has a hard time distin-
guishing between perfect and hollow heart potatoes. Again, surprisingly
the ZNCC is the metric that performs best out of them all on the chocolate
bar dataset. However, this is likely due to the fact that usually more than
one foreign object is present in the chocolate bars, given rise to increased
defective regions, thus larger structural di�erences.

The GMSD, that computes an overall quality score between gradient magni-
tude similarities, is the metric whose overall performance is the worst out of
them all on the potato dataset. The complication lies in its ability to correctly
predict perfect potatoes and potatoes with inserted needles in them. However,
it is the second best metric at correctly predicting hollow potatoes(!) Recall
the example potato in Fig. 6.19. Not only the hollow heart is being detected as
being dissimilar, but the outer rim of the potatoes does to, i.e. based on this
�gure, it is obvious that the network does not reconstruct the inherent shapes
of potatoes precisely. I.e. given reconstructions of perfect potatoes there are
also a dissimilarity in primary their outer rims (and to smaller degree in their
inner structures). Likewise, the small gradients of needles are not enough to
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Table 6.7: Selected mean results evaluated on:(Prior) CVAE given 𝐽 = 8 for former trained
chocolate bar dataset; and CVAE given 𝐽 = 32 for former trained potato dataset. (New) CVAE
given 𝐽 = 8 for the new chocolate bar dataset; and CVAE given 𝐽 = 32 for the new potato
dataset. Anomaly ratio sat to 50% in all studies and optimal threshold determined by the
G-mean. Uncertainties are calculated as the standard error on the mean.

Anomaly
Score

Prior New

AUC-ROC 𝐹1 Accuracy AUC-ROC 𝐹1 Accuracy
Chocolate Bar

SE 0.996 ± 0.000 0.974 ± 0.001 0.974 ± 0.001 0.993 ± 0.000 0.980 ± 0.001 0.980 ± 0.001
IMED 0.994 ± 0.000 0.967 ± 0.001 0.967 ± 0.001 0.993 ± 0.001 0.977 ± 0.001 0.977 ± 0.001
SSIM 0.996 ± 0.000 0.980 ± 0.001 0.980 ± 0.001 0.997 ± 0.000 0.976 ± 0.001 0.976 ± 0.001
ZNCC 0.997 ± 0.000 0.985 ± 0.001 0.985 ± 0.001 0.989 ± 0.001 0.976 ± 0.001 0.976 ± 0.001
GMSD 0.994 ± 0.000 0.975 ± 0.001 0.975 ± 0.001 0.992 ± 0.000 0.967 ± 0.001 0.967 ± 0.001

Potato
SE 0.903 ± 0.002 0.830 ± 0.002 0.830 ± 0.002 0.734 ± 0.002 0.680 ± 0.002 0.680 ± 0.002
IMED 0.904 ± 0.001 0.830 ± 0.002 0.830 ± 0.002 0.722 ± 0.003 0.672 ± 0.003 0.673 ± 0.003
SSIM 0.951 ± 0.001 0.885 ± 0.002 0.885 ± 0.002 0.923 ± 0.001 0.865 ± 0.002 0.865 ± 0.002
ZNCC 0.891 ± 0.002 0.820 ± 0.002 0.821 ± 0.002 0.653 ± 0.003 0.625 ± 0.003 0.626 ± 0.002
GMSD 0.849 ± 0.002 0.776 ± 0.002 0.776 ± 0.002 0.851 ± 0.002 0.779 ± 0.002 0.779 ± 0.002

signi�cantly add to the quality score, hence failing to distinguish them from
perfect potatoes.

Hence, it is expected that if a network could be trained to reconstruct the
inherent structures of potatoes to an even larger precision, a larger number
of perfect potatoes would be correctly predicted as their GMSD score would
decrease, while the quality score of potatoes with needles and hollow hearts
would increase. After all, the GMSD metric does perform reasonable well on
the prior chocolate bar dataset whose reconstructions and inherent edges
are more straightforward compared to the potatoes.

Against expectations the SE score yields better results for the new choco-
late bar dataset compared to the prior one. A potential explanation for this
observation lies in the altered intensity histograms that stays roughly consis-
tent, which causes the model to be very sensitive to even small changes in
luminance. The luminance of the two classes does not overlap completely
as observed on Fig. 6.20, which might just be causing this issue. Therefore,
this experiment have mainly been used to test the sensitivity of the CVAE
model that utilizes the intensity based MSE metric as its reconstruction term
during training. It has not been possible to completely overlap the distribu-
tions of luminance between the two classes, but only very closely. However,
it is expected that if the distribution between the classes were to overlap
each other, the performances based on the SE score would decrease as this
per-pixel reconstruction error would likely fail to reveal defective regions to
a larger extend.

Regarding the new potato dataset, the choice of anomaly score is especial
crucial as each distinct score yields very dissimilar performances. The SSIM
obviously performs the best, followed by the GMSD, while the ZNCC have
the hardest time out of all metrics at correctly separating anomalous samples

104



from normal ones. Again, the SE performs slightly better than the IMED.
Seemingly the weighted combination of luminance, contrast and structure
are best at correctly predicting hollow hearts whenever it is the prior or new
potato dataset.

6.4.4 Model Complexity and Hyperparameter Optimization

Hyperparameter optimization is non-trivial for neural networks or deep latent
variable models. Below are some considerations about model complexity and
hyperparameter tunings discussed.

The CVAE network architecture described in Tables 6.1-6.2 have carefully
been chosen after repeated experimentations and comparisons of results by
manual tuning of hyperparameters such as �lter sizes, kernel sizes, choice of
activation functions and sizes of the dense layers.

The complexity of the network depends partly on the input data dimension
and on the number of hidden layers. A sparse network with too little capacity
cannot learn the data representations well, whereas a deep network with
too much capacity learns the training data well, but results in over�tting. In
general it follows that the more number of parameters and layers, the larger
the chance the deep network have of over�tting. In either case, it results in a
model that does not generalize well. The �nal proposed architecture in Tables
6.1-6.2 have proved to workwell on the �rst two case studies as it have showed
to generalize well, but it is however prone to some over�tting typically given
lower latent dimensions. Since the new potato dataset seemingly are more
complex compared to the two other datasets, a deeper architecture of the
CVAE could be constructed in order to potentially better extract the inherent
features and capture more meaningful patterns that represents normal data.

Another issue is that of cross-validation during training of an unsupervised
model. Cross-validation can be de�ned in supervised learning as data are la-
belled and for which performance of prediction are measured against ground
truth (i.e. the labels), thus there are a clear de�nition of error. However, the
objective in unsupervised learning are dissimilar as features are captured and
passed to some feature space, i.e. there are no clear de�nition of error and
cross-validation cannot be de�ned in the same way as in supervised learning.
What can be done however is pre-splitting the data into training, validation
and testing sets, subsequently checking the model performance by looking
at the average loss of the validation set during training, whereat changes can
be made, and the process repeated.

Alternatively, other optimizers than Adam could be tested, however since the
results have shown to be justi�able, it has been deemed not to be necessity
contrary to tuning other hyperparameters.
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7WRAP-UP

7.1 outlook

The CAE and CVAE networks have successfully been trained using a given
dataset. The decoders of the networks thus have the abilities to generate mock
data instances corresponding to a given latent expression as based on the
training data. When new inputs are fed into the network, the corresponding
outputs are twofold; (a) if feeding the network with data input as that of
the training dataset, the models will generate a similar output, because the
networks are trained so. However, (b) if the input is dissimilar to that of
the training data, the model output will likely be di�erent from the input,
because the output is generated from a generative model that is not the one
that the decoder of the network approximates.

Hence, by having fed the networks with only the normal class, the generative
models have captured a progressively rich representation of the data. Thereby
comparing the input and output of the CAE and CVAE models, it have been
possible to detect the inputs whose outputs is di�erent from the training
data; thus separating normal from anomalous instances.

7.1.1 Summary of Findings

Having worked with datasets from real food production lines, it can be
testi�ed that there are a lot of preprocessing that needs to be done— the reality
is indeed pretty messy. Luckily, the labelling can be trusted as the annotating
processes have been straightforward. However, due to the sparse data the
trained models relies heavily on data augmentations as a compensation.
Hence, there could likely be an over-representation of similar variations, thus
the models might be over�tting to some degree.

The obtained results should thereby be taken with a grain of salt; for the
model will only ever perform as well as the quantity and quality of the data
given. I.e. the neural networks are only as good as the data they are fed. In
particular, if such a novelty detection as examined in this thesis ever should be
utilized in the industry, more data and variations of it are de�nitely required.

Mainly an anomaly ratio of 50% has been assumed throughout this thesis,
however a few variations have been examined, namely {5, 10, 30, 70, 90, 95}%.
In reality, it is expected that anomalies found in device under tests (DUTs)
are very rare, thus the ratio being on the lower end — and probably even
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lower than the rates tested in the case studies. When the anomaly ratio is
low, one should then be prepared for a decreased precision, as the models
will be hunting for a "needle in a haystack", thus naturally misclassifying an
increasing rate of normal samples as being anomalous.

Ultimately, a summarization of the key takeaways from the �ndings in this
thesis are listed below:

• The ability to train a generative model able to learn and reconstruct
commonalities and inherent characteristic of the speci�c DUTs, such
as structures or densities, is crucial. However, both the CAE and CVAE
are sensitive in the sense that inputs of deformed scan objects, the
models have never seen before, have a high probability of getting
detected as anomalous. Hence, it is essential that the generative model
can reconstruct normal samples as precise as possible, or else there will
be a higher certainty for normal samples being identi�ed as anomalous
and vice versa. Therefore, the CVAE in general produces better results
compared to the CAE.

• It is worthwhile to experiment with di�erent number of latent dimen-
sions, as the results potentially can improve greatly with increasing
dimensions.

• Since the generative models not only learn the underlying structures,
but also individual pixel intensities, potential luminance di�erences
between normal and anomalous images in the datasets should be con-
sidered and examined.

• The choice of anomaly score is essential. One should de�nitely examine
di�erent types and �gure out which one could possible provide the
best results on a given case study.

• The choice of optimal threshold technique based on which class is
deemed most important, i.e. are false positive or false negatives equally
costly or are false negatives more costly?

7.2 future work

7.2.1 Fusion of Anomaly Scores

The examined anomaly scores described in section § 6.4.2 each have their
own advantages and disadvantages given a dataset, especially as seen on Fig.
6.27. It thus leads one to wonder if the scores could somehow be combined
and given di�erent weights or con�dences, in order to increase the overall
performances.
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I.e. the problem lies in seeking a fusion approach that can aggregate the
observed anomalous behaviours from each anomaly score into a �nal score
in a somewhat meaningful way. In the end, improving the accuracy and
robustness of the novelty detection system.

7.2.2 Preprocessing Processes

Another former Master student have been classifying perfect potatoes from
hollow ones by using the supervised CNN method [72]. In the preprocessing
stage he e�ectively utilized the so-called content aware resizing (or seam carv-
ing) algorithm [65], that relies on gradients in order to adaptively removing
uninteresting part of images while keeping the interesting parts, such as for-
eign objects. This way, he reported that 50% in each image dimensions were
removed, hence successfully downsampling images to lower dimensions,
while keeping the interesting parts.

It could be interesting to explore this downsampling technique onto the
datasets used in this thesis and examine how it fare. Subsequently, the com-
plexity of the generative networks should be adapted to being less complex,
since the image dimension would likely have been decreased further. Ex-
pectedly, if the technique successfully could remove uninteresting parts of
the samples, the generative models potentially would have less common-
alities to learn within the training data, potentially increasing the overall
performances in the inference stage.

7.2.3 Altered Loss Function

Based on the fact the the SSIM metric in general performed well as the
anomaly score, and since it is a dissimilarity measure like the MSE, it could
be interesting to replace the MSE with the SSIM as the reconstruction term
during training of the CAE or CVAE. In particular, [5] explores such a substi-
tution for a CAE network, and reports promising results.

7.2.4 Alternative DAD Techniques

In this thesis, the only DAD technique that have been examined is that
of unsupervised generative models. However, this is far away from being
the only methods that can be utilized as a deep novelty detection. For a
complete and recently updated list over deep novelty/anomaly detection
techniques, the curious reader is recommended to take a look at the survey in
[12]. Primary, remaining in the �eld of generative models, mentioned below
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are a alternative practices that could be interesting to experiment with on
DUTs.

Contrary to closed-set classi�ers, such as the CNN that are error-prone to
samples of unknown classes, open-set classi�ers can detect samples that does
not belong to any of the classes covered in the trained data. Open-set recogni-
tion typically relies on training deep neural networks in a supervised manner
using known classes, and subsequently in the inference stage the algorithm
will work as a dynamic novelty detection seeking to identify outliers and
store them into a new unknown class while maintaining performance on
the known classes. Open-set recognition are a relatively new �eld that has
emerged within the last decade, and its possibilities and potential are vast.

One sub�eld is for which open-set recognition is combined with a generative
network, and the study in [80] is an instance of such a fusion. Together with
training a deep supervised classi�er, the authors utilize an unsupervised gen-
erative model to e�ciently learn latent representations within known classes.
Hence, in addition to provide supervised class predictions the unsupervised
learned representations works as a regularizer, which enables robust novelty
detection without harming the accuracy of the known-class accuracy.

The possibility of utilizing a CVAE network in an open-set recognition set-
up thus leads to a natural next step. Specially, since foreign objects and
other malfunctions of DUTs typically are non-trivial to detect due to their
commonalities, a state-of-the-art generative model must be trained for good
performances. Hence, it would be compelling to employ a network alike the
one in this thesis into a dynamic novelty detection regime and examine how
it fares.
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APPEND I C ES



A ADD I T IONAL P LOTS

a.1 investigation of losses

Below the investigation of average loss functions during training is plotted.

Figure A.1: Average loss func-
tions as a function of number
of epochs, derived on train-
ing images of the chocolate

bar dataset of the CAE model.
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Figure A.2: Average loss functions
as a function of number of epochs,
derived on training images of the
chocolate bar dataset of the CVAE
model.

Figure A.3: Average loss functions
as a function of number of epochs,
derived on training images of the
potato dataset of the CAE model.
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Figure A.4: Average loss functions
as a function of number of epochs,
derived on training images of the
potato dataset of the CVAE model.
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