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Abstract

On-shell methods have proven to be a powerful alternative to Feynman

diagrams for the calculation of scattering amplitudes. They can also be ap-

plied to partially off-shell quantities, such as form factors of gauge invariant

local composite operators. The discontinuities of these quantities can be

computed via phase-space integrals that are related to the anomalous di-

mensions of these operators as well as the β-functions of the corresponding

couplings. These integrals are computed by means of a parametrization of

the spinors. Based on the method in which the dilatation operator, which

measures the anomalous dimensions, is given by minus the phase of the scat-

tering matrix, divided by π, we study these parametrizations at one- and

for a special type of two-loop order. We also study the parametrization of

the triple cut in the three-particle channel that would allow to fully extend

these methods to the second order in perturbation theory.
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1 Introduction

There exists four well established fundamental interactions in nature; the gravitational, elec-

tromagnetic, weak and strong interactions. Up to this moment, we are able to explain at the

quantum level all except the gravitational one. Hence it is one of the long-standing challenges of

fundamental physics research activities to find a quantum theory for gravity and to unify these

four interactions. The other interactions are explained by the so-called Standard Model (SM) of

particle physics, which gives an explanation to a large amount of physical phenomena in nature.

In the Standard Model, matter fields are classified into fermions and bosons. Fermions are the

constituents of matter and they exist as quarks and leptons.

Each of them is composed by six particles that can be organized in three generations (pairs

of particles). The first generation corresponds to the lightest particles. Quarks (u, d, c, s, b, t)

carry also color charge, which is a defining feature of the strong interactions and they couple into

colourless bound states. Leptons are also arranged in three generations, each of them formed by

a charged particle, (e−, µ−, τ−), and their corresponding neutrino (νe, νµ, ντ ). They obey Fermi

statistics which leads to the Pauli Exclusion Principle. Vector bosons are the carriers of the

forces and in fact, fermions interact by exchanging bosons. Each fundamental force has its own

vector boson: photons γ mediates electromagnetism, Z and W± weak interactions, and gluons

strong interactions. Each of them carries spin 1. There is also a scalar boson with spin zero, the

Higgs boson.

However, the Standard Model fails to explain some physical phenomena in Nature, such as

the anomalous magnetic moment of the muon, whose measurement disagrees with the predictions

from the Standard Model in 4.2σ, result that was obtained from the experiment at Fermilab [1].

This measurement is one of the evidences that there should be physics beyond the Standard

Model. However, the theoretical direction is still unclear. One of the candidates would be

to extend the Standard Model to a supersymmetric theory leading to the so-called Minimal

Supersymmetric Standard Model.

Moreover, due to the arguments presented above, it is particularly useful to use the

simplest four dimensional quantum field theory, the so-called maximally supersymmetric N = 4

SYM theory. This theory, composed by massless fields, can be used as a toy model to develop

calculational techniques that can be applied to other theories such as the Standard Model. Like

the Standard Model, it is a non-Abelian gauge theory, but with many more symmetries. More

concretely, as already mentioned the Standard Model is a gauge theory with the gauge group

SU(3)c×SU(2)L×U(1)Y while N = 4 SYM theory is a gauge theory with gauge group SU(3).

It is composed of one gauge field, four fermions, four antifermions and six scalars, all related by

supersymmetry. One of the main particularities of this theory is that it is conformally invariant,

which when applied to a sypersymmetric theory leads to superconformal invariance.

In particular this symmetry is exact in the sense that it is still preserved when quantizing

the theory. This implies that the strength of the interactions is independent of the scale, i.e.,

that its β-function is zero up to all orders. All the symmetries present in this theory form
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the so-called PSU(2, 2|4) group, which is composed by translations, super translations, Lorentz

rotations, internal rotations, conformal and superconformal transformations, and the scaling or

dilatation operator, each of them with its own generator. Note that this group comes from

the irreducible superconformal algebra psu(2, 2|4), and that by adding the hypercharge B and

the central charge C one gets the u(2, 2|4) algebra. Although conformal invariance is an exact

symmetry, some other symmetries suffer anomalies when quantizing the theory, this means that

its generators do receive quantum corrections, this is the case of the dilatation operator.

Particularly, N = 4 SYM theory is not only useful for calculations in gauge theories.

Due to the Anti-de-Sitter/Conformal Field Theory (AdS/CFT) correspondence, N = 4 SYM

theory is dual to a type of string theory, the so-called type II B string theory in the AdS5 × S5.

More precisely, the 10-dimensional type II B superstring theory on the product space AdS5×S5

is equivalent to N = 4 SYM theory with gauge group SU(N)living on the flat 4-dimensional

boundary of AdS5 [28]. This equivalence means that there is a one-to-one correspondence be-

tween the symmetries, observables and correlation functions of the theories. Therefore, this

correspondence is significant in terms of a better understanding of string theory. Moreover, in

the so-called planar limit [24], both theories simplified and acquire the property of integrability.

Due to integrability one can obtain some observables of N = 4 SYM theory in an analyt-

ical way. Moreover, this supersymmetric theory matches some regimes of well-defined theories

present in Nature. In particular, computations of gauge boson amplitudes in N = 4 SYM theory

are really useful for gluon scattering at high energies where asymptotic freedom occur [23].

In the perturbative expansion, different powers of the number of colors occur. In the

planar limit, the number of colors N → ∞. This implies that the Feynman diagrams of the

corresponding interactions are associated to 2-dimensional surfaces, i.e., that these diagrams are

planar in their structure. Remarkably, planarity can in general refer to any space, but in this

work the focus will be on color and momentum space.

Although there are some examples in which planarity occurs in both spaces (such as

Feynman diagrams containing elementary interactions), in general one can have diagrams that

are planar in color space but not in momentum space (gauge invariant local composite operators

for instance), and viceversa, see fig. 1. Moreover, one can also have planar contributions made

of non-planar components. For instance the contraction of a diagram with double-trace color

structure and a composite operators (both non-planar in color space) gives a planar diagram.

The integrability property shown in the planar limit ofN = 4 SYM theory was found in the

spectrum of anomalous dimensions of gauge-invariant local composite operators, or equivalently

in the energy spectrum of strings in the dual AdS5×S5 string theory. The solutions in this limit

are given by the Bethe ansatz equations, [29], with some corrections coming from the so-called

finite-size effects. This effect arise from diagrams that are non-planar in momentum space but

can still be planar in their color structure and hence contribute to the ’t Hooft limit.

They appear by the wrapping mechanism, which stems from interactions wrapping around

the operator. The structure of gauge-invariant local composite operators stems from traces (or
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Figure 1: Three examples of planar and non planar topologies. Figure (a) represents a single

trace one-loop planar graph, (b) double-trace one-loop diagram and (c) single trace non-planar

diagram. Only the diagram in (a) contributes in the planar limit [35].

products of traces) of irreducible fields in the same spacetime point. Single trace operators are

considered the constituents of the spectrum of more general operators. In particular, it was

found that the action of the one-loop dilatation operator of N = 4 SYM theory on single-trace

operators maps to the action of the Hamiltonian of an integrable spin chain.

Remarkably important in this work are on-shell methods due to the fact that they are

based on general principles of quantum field theory, and consequently the techniques reviewed

here are expected to be applicable to general gauge theories. Observables obtained using on-shell

methods are based on physical quantities, since only physical degrees of freedom appear on-

shell. Some examples of on-shell methods are generalized unitarity [11, 8, 5], tree-level recursion

relations [12]. The on-shell methodology used throughout corresponds to the method derived

in [14] in terms of the spinor helicity formalism, which is particularly useful for theories based

on massless particles with spin such as N = 4 SYM theory. Since, by means of spinor helicity

formalism, one can focus on the physical helicities of the particles to build the corresponding

observables.

The main quantity computed via on-shell methods is the scattering matrix, which describe

the interaction between incoming and outgoing on-shell external states. The definition of on-shell

particles imply that they fulfill the condition pi = m2, and for massless particles m2 = 0. From

scattering matrices, one can compute cross-sections, that correspond to the physical quantities

detected at colliders.

In this work we will be interested in analyze to which extent on-shell methods can be used

to compute off-shell quantities such as correlation functions of gauge invariant local composite

operators. One way to do so is by the computation of form factors. In particular, form factors

provide a bridge between the purely on-shell amplitudes and the purely off-shell correlation

functions, figure 1. They act as matrix elements between on-shell asymptotic states and gauge

invariant operators:

FO,n(1, . . . , n;x) = 〈1, . . . , n | O(x) | 0〉 . (1)

These operators are local and therefore it becomes particularly interesting to work in

momentum space in order to remove the position dependence. In momentum space, this local

operator is an off-shell quantity with a momentum q 6= 0 associated. Additionally, in momen-
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tum space a delta function arises that ensures momentum conservation throughout the process.

Hence, each particle will be defined by simply specifying its momentum and its helicity. More-

over, form factors are important quantities when studying some mechanisms such as the Higgs

production at the LHC via its decaying to 3 gluons [19].

Figure 2: Form factors (center) as bridge between on-shell scattering amplitudes (on the left)

and purely off-shell correlation functions between gauge invariant local composite operators (on

the right) [35].

The method used in this work is based on the connection between the high-energy be-

havior of the scattering matrix and the running of the coupling as well as the renormalisation

of local operators. This relation is equivalent to find the connection between the phase and the

energy dependence of form factors. The computations made throughout this work are done in

perturbation theory. Due to the analyticity of form factors in this regime,

F (p1, . . . , pn)→ F
(
p1eiα, . . . , pneiα

)
= eiαDF (p1, . . . , pn) , where D ≡

∑
i

pµi
∂

∂pµi
≈ −µ∂µ.

(2)

Combining this expression with the formal definition of a form factor as a small pertur-

bation to the scattering matrix, one obtains the central relation of this work:

e−iπDF ∗ = SF ∗. (3)

This equation states that the dilatation operator is minus the phase of the S-matrix di-

vided by π. The right-hand side of this equation represents a unitarity cut. In the planar limit

of N = 4 SYM theory, the dilatation generator acts as a generator of the algebra psu(2, 2 | 4).

Moreover, this generator receives quantum corrections and hence one can express the renormal-

ization group equation as,

DF = −µ∂µF =

(
β
(
g2
) ∂

∂g2
+ γO − γIR

)
F, (4)

From this equation, we know that the action of the dilatation operator on a form factor

is given in terms of ultraviolet and infrared anomalous dimensions as well as the β-function.

4



Relating both definitions of the dilatation operator, we can obtain anomalous dimensions directly

from the scattering matrix. Based on both definitions of the dilatation operator, and performing

a perturbative expansion of the relation, one can obtain the anomalous dimensions at different

loop orders from the product of lower-loop scattering matrices and form factors.

The appearance of anomalous dimensions is a crucial aspect of interpreting results in the

Standard Model Effective Field Theory (SMEFT). The basic idea behind the SMEFT definition

is to use effective field theories that extend the Standard Model Lagrangian by adding higher

dimension operators [22]. Anomalous dimensions, through renormalisation, induces the mixing

of these operators, explaining how the constraints applied to one operator affect the coefficients

of other operators.

This work is structured as follows. We can divide this work in two parts with different

structure. The first part include chapters 2-4 and it contains theoretical grounds for the com-

putations in the consecutive chapters. In chapter 2, we give an introduction to N = 4 SYM

theory, explaining its symmetries, field content and important limits. In chapter 3, form factors

are introduced particularizing to minimal form factors, since they will play an important role

throughout this work. Also, spinor helicity formalism is reviewed, as well as the corresponding

Feynman rules. Chapter 4 will be a review of two different methods for computing anomalous

dimensions. Last section will be dedicated to the explanation of some selection rules that will

precisely set the motivation for obtaining non-vanishing anomalous dimensions.

The second part comprises different cases to which anomalous dimensions can be com-

puted by means of the method in [14]. In particular, in chapter 5 we will compute the spinor

parametrization for the computation of one-loop anomalous dimensions through 2 → 2 ampli-

tudes. Chapter 6 studies the one-loop case with the 2→ 3 amplitude case. Chapter 7 introduces

a new parametrization for the computation of two-loop anomalous dimensions from the 3 → 2

amplitude. In the last chapter, we study the parametrization for the 3→ 3 amplitude.
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2 N = 4 SYM theory

In this chapter we will review the maximally supersymmetric N = 4 SYM theory. In the first

section we will give a short introduction to supersymmetry, explaining its main motivation and

its basic principles. We will afterwards define the N = 4 SYM theory, specifying its particle

content as well as its symmetries. Then we will take the so-called planar limit of the theory,

and define single trace operators and the dilatation operator. In particular, we will study the

correspondence of the planar N = 4 SYM theory and the spin chain representation and how to

obtain the dilatation operator.

2.1 Introduction to supersymmetry

Supersymmetry maps particles and fields of integer spin (bosons) into particles and fields of half

odd integer spin (fermions) and viceversa. Supersymmetry is generated by a supercharge Qα,

which is a fermionic space-time spinor operator of spin 1/2 that commutes with the local and

global internal symmetries. Therefore, the spectrum comes in pairs of a boson and a fermion

where they have the same internal quantum numbers and the same mass.

All the particle physics we know is described by the Standard Model of particle physics,

which is built upon the local SU(3)c×SU(2)L×U(1)Y gauge symmetry. These symmetries are

directly related to the fundamental interactions. The strength of each interaction is controlled

by its coupling constant. Only from the particle content of the Standard Model, we see that

there is no candidate for a supersymmetric pair of particles and therefore the basic characteristic

of a supersymmetric theory is not fulfilled in the Standard Model. However, symmetries break

spontaneously, which means that although the laws of physics are invariant under this symme-

try, the equations of motions are no longer invariant under this symmetry. In particular, this

broken symmetries occur for each subsector of the Standard Model. For instance, in the SU(3)c

sector the spontaneous breaking of approximate chiral symmetry for the up and down quarks

is responsible for the comparatively small masses of the pions, as well as for the comparatively

large masses of the nucleons [32]. Moreover, the spontaneous breaking of SU(2) is responsible

for the masses of quarks, leptons, W± and Z particles.

This suggests that there may be a supersymmetry spontaneously broken in Nature. The

breaking of the sypersymmetry would be in the spectrum where fermions and bosons would

have the same quantum numbers, but different masses in each pair. The problem is that the

Standard Model does not fulfill this spontaneous breaking of supersymmetry either. However,

extending the particle content of the Standard Model via the introduction of the smallest number

of supplementary fields would give the o-called Minimal Supersymmetric Standard Model [16].

The idea behind it is that for each known non-supersymmetric particle, we add a hypothetical

supersymmetric partner, see figure 3.

The full significance of supersymmetry occurs when it is combined with the principle of the

unification of the strong, electromagnetic and weak forces (most likely also gravity). Remarkably,
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Figure 3: Particle contents of the Minimal Supersymmetric Standard Model [16].

the three couplings of the Standard Model gi(µ) approximately intersect in one point around

MU ∼ 1015GeV . This scale is not to far from the Planck scale MP ∼ 1019GeV at which quantum

gravity is supposed to play a central role. Therefore we can interpret the scale MU , where the

three couplings approximately meet considering the existence of a supersymmetric theory, as

the scale where the three forces are unified into a single one. The smallest such group which

contains the gauge group of the Standard Model as a subgroup is SU(5), but the inclusion of a

massive neutrino can be realized only in the larger SO(10).

SU(3)c × SU(2)L × U(1)Y ⊂ SU(5) ⊂ SO(10) (5)

Starting at the highest energy scale, just below MP , and running down to lower energy

scales, there will initially be only a single force, governed by the unified simple gauge group. The

strong, electromagnetic and weak interactions will emerge as the result of a phase transition at

the unification scales MU , where the unified gauge symmetry is broken down to the SU(3)c ×
SU(2)L × U(1)Y gauge group. This unification scheme supposes a suitable theory to remove

some problems that appears in our theory. For example, the Abelian gauge interactions U(1)Y

and U(1)em are not asymptotically free, which means that they would increase indefinitely as

the energy scale increases. This will lead to a Landau pole and a breakdown of unitarity at high

energies.

With the unification scheme this problem is automatically avoided since the U(1) gauge

group arises from the breaking of an asymptotically free gauge theory with simple gauge group

that it is the one that remains at large energies. But there are some other problems that

arises with this unification scheme (like the value of the proton life-time that comes 4 orders of

magnitude lower). But these problems can be solved by combining the unification scheme with

the Supersymmetric Extension of the Standard Model.

2.2 Maximally Supersymmetric Yang-Mills theory in 4 dimensions

The maximally supersymmetric Yang-Mills (SYM) theory in four dimensions was first considered

by Brink, Scherk and Schwarz who constructed its Lagrangian by dimensional reduction ofN = 1
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SYM in ten dimensions [10]. It is a simplified toy theory based on Yang-Mills theory that does

not describe reality but gives solution to problems that are a good approximation to the problems

in the real theory. Moreover, it also serves as a test ground to develop techniques that can be

used for the Standard Model. One of its remarkable properties is that it is conformal, which

means that there is no inherent mass scale in the theory, even at quantum level. The main

consequence is that its β-function is zero to all orders in perturbation theory.

In particular, in N = 4 SYM theory fermion and boson fields are related by four super-

symmetries (i.e, exchanging vector boson, fermion and scalar fields in a certain way leaves the

theory invariant). It is one of the simplest field theories in 4 dimensions and it can be thought

of as the most symmetric field theory that does not involve gravity. The importance of its study

relies on several reasons. More concretely, this theory becomes really important when we refer to

the maximal transcendentality principle [18], which relates some results of N = 4 SYM theory

to the maximally transcendental part of their counterparts in pure Yang-Mills theory.

Due to its symmetries, the Anti-de-Sitter/Conformal Field Theory (AdS/CFT ) correspon-

dence conjectures that N = 4 SYM theory is dual to type IIB string theory on AdS5 × S5 [28].

Although this correspondence is not proven yet, it is a conjecture that can be checked via inte-

grability. More concretely, integrability was shown in the planar limit of N = 4 SYM theory in

the spectrum of anomalous dimensions of gauge-invariant local composite operators, as well as

in the energy spectrum of strings in the dual AdS5 × S5 string theory.

In principle, in theories such as QCD that has a running coupling constant, there exists

a mass scale in which the interaction runs from weak to strong coupling. This scale determines

where the confinement sets. However, in N = 4 SYM where conformal invariance is present,

there is no confinement, which means that none of the physical particles of QCD could be formed.

But, although we know that QCD is not conformal, the behaviour it presents at high energies

is asymptotically free and is precisely at these high energies where it can be considered close to

being conformal. In fact, many essential features of high energy gluon scattering, relevant for

the LHC, can be learned by studying gauge boson amplitudes in N = 4 SYM theory.

2.3 Supersymmetric algebra

Fields in supersymmetric theories where the spin is not greater than one are formed by gauge

fields of spin 1, Weyl fermion fields of spin 1/2 and scalars of spin 0. These fields are restricted

to be organised in multiplets of the corresponding symmetry algebras. Consequently, the field

content of N = 4 SYM theory consists of one gauge field Aµ, four fermions ψAα transforming

in the anti-fundamental representation of SU(4), four antifermions ψα̇A transforming in the

fundamental representation of SU(4) (where A = 1, 2, 3, 4), and six real scalars φI with I =

1, ..., 6 transforming in the fundamental representation of SO(6) in order to match the number

of bosonic and fermionic on-shell degrees of freedom.

Remarkably, there is a global symmetry SU(4) = SO(6), called R-symmetry, that exploits
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the isomorphism between the algebras of SO(6) and SU(4). This means that there exists some

matrices σIAB that are the chiral projections of the gamma matrices in six dimensions, and obey

σIAB = −σIBA. In particular we can define the scalar field as φAB = σIABφI . The Lorentz

spacetime index µ = 0, 1, 2, 3, α, α̇ = 1, 2 represent the spinor indices of the SU(2) and SU(2)

algebras, respectively. These two independent SU(2) algebras make up the 4-dimensional Lorentz

algebra, which means that there exists some matrices σµα,α̇ = (1, σ1, σ2, σ3)α,α̇ that allows us to

exchange a Lorentz index µ for a pair of spinor indices α, α̇. All fields transform in the adjoint

representation of the SU(N) group.

We can define the covariant derivative as

Dµ = dµ − igYMAµ. (6)

Although the covariant derivative is not a field, it has to act on other field. Additionally,

one can construct the so-called field strength from the covariant derivative,

Fµν =
i

gYM
[Dµ, Dν ]. (7)

We assume the gauge group to be either SU(N) or U(N), where all the adjoint fields are

represented by (traceless) hermitian N ×N matrices. The action of N = 4 SYM is then [34],

S =

∫
d4x tr(−1

4
FµνFµν −

(
Dµφ̄j

)
Dµφj + iψ̄α̇ADα

α̇ψαA

+ gYM

(
i

2
εijkφi

{
ψαj , ψαk

}
+ φj

{
ψ̄α̇4, ψ̄jα̇

}
+ h.c.

)
−g

2
YM

4

[
φ̄j , φj

] [
φ̄k, φk

]
+
g2

YM

2

[
φ̄j , φ̄k

]
[φj , φk]

)
,

(8)

where we have defined the complex scalars φj = φj4, φ̄j = (φj)
∗ with withi = 1, 2, 3,

which transforms in the fundamental and anti-fundamental representations of SU(3) ⊂ SU(4),

respectively. This action is invariant under the N = 4 super Poincaré algebra. Furthermore,

N = 4 SYM theory is conformally invariant, that together with supersymmetry, leads to super-

conformal invariance. Remarkably, this symmetry is exact in the sense that it remains invariant

when quantizing the theory, contrary to what is expected from a conformal symmetry where

anomalies occur at quantum level. In this cases, it becomes necessary to renormalise the the-

ory. One of the coeffciients associated to renormalization is the β-function, which signals the

dependence of the coupling constant g on the energy scale,

β = µ
dg

dµ
. (9)

In the case of N = 4 SYM theory, since superconformal symmetry is preserved even at

quantum level, it is believed that the β-function vanishes to all orders both in perturbation
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theory and non-perturbatively,

β = 0. (10)

This fact makes the N = 4 SYM theory a more treatable theory in which performing

some computations becomes easier.

The super Poincaré algebra consists of translations and super translations Pµ, Lorentz

rotations Lµν , and internal rotations R. Furthermore, N = 4 SYM also include conformal

and superconformal transformations K,S,Q and the scaling or dilatation operator D. The

commutators of this symmetries are:[
Lαβ , Jγ

]
= δαγ Jβ − 1

2δ
α
βJγ , [Lα, Jγ ] = −δγβJα + 1

2δ
α
βJ

γ

[Ra
b , Jc] = δacJb − 1

4δ
a
b Jc, [Ra

b , J
c] = −δcbJa + 1

4δ
a
b J

c[
L̇α̇
β̇
, Jγ̇

]
= δα̇γ̇ Jβ̇ −

1
2δ
α̇
β̇
Jγ̇ ,

[
L̇α̇
β̇
, Jγ̇
]

= −δγ̇
β̇
Jα̇ + 1

2δ
α̇
β̇
Jγ̇[

Sα,Pβ̇γ

]
= δαγ Q̇β̇a,

[
Kαβ̇ , Q̇γ̇c

]
= δβ̇γ̇S

α
c[

Ṡaα̇,Pβ̇γ

]
= δα̇

β̇
Qa

γ ,
[
Kαβ̇ ,Qc

γ

]
= δαγ Ṡ

cβ̇{
Q̇α̇a,Q

b
}

= δbaPα̇β ,
{
Ṡaα̇,Sβ

b

}
= δabK

βα̇

(11)

[
Kαβ̇ ,Pγ̇δ

]
= δβ̇γ̇L

α
δ + δαγ L̇

β̇
δ̇ + δαγ δ

β̇

δ̇
D{

Sα
a,Q

b
β

}
= δbaL

α
β + δαβR

b
a +

1

2
δbaδ

α
β (D− C){

Ṡaα̇, Q̇β̇b

}
= δab L̇

α̇
β̇ − δ

α̇
β̇
Ra

b +
1

2
δab δ

α̇
β̇

(D + C)

(12)

All of these generators constitute the superconformal group U(2, 2|4). Note that this

group comes from the irreducible superconformal algebra psu(2, 2|4), and that by adding the

hypercharge B and the central charge C one gets the group U(2, 2|4). Only Lorentz and internal

symmetries (SU(2)× SU(2) and SU(4)) do not depend on the coupling constant of the theory,

the rest of the generators receive radiative corrections. In particular, the dilatation generator D

receive loop corrections.

2.4 ’t Hooft limit

For a U(N) gauge group, different powers of N appear in the perturbative expansion. Some

interesting properties arise when treating N as an additional coupling constant. In particular,

’t Hooft realised that in the large N limit, there is an association between a Feynman graph

and a 2-dimensional surface. This is the so-called ’t Hooft or planar limit N → ∞, gYM → 0

with the ’t Hooft coupling λ = g2
YMN fixed. This association between a Feynman graph and a

2-dimensional surface means that the graph should be planar in its structure. We can study this

structure in terms of the gauge group. This can be done by the use of fat graphs, also called

double line notation, see figure 4.
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Let us consider a gauge invariant Feynman graph. We define every U(N) vector index

of a field as a black or a white dot depending on the position of the index (black → upper,

white→ lower). In this way, all propagators of a Feynman graph are represented by two parallel

lines.In this representation, all dots have one incoming and one outgoing arrow, these arrows

form closed circles that are known as index loops and they do provide a power of the color

number δaa =Tr1 = N . Therefore it is easy to perform the contractions of indices. For a gauge

invariant graph all indices must be contracted, which means that there are no unconnected dots,

i.e., the graph is planar.

Figure 4: Fat graph. The circles are U(N) traces of the vertices and operators and the fat lines

are propagators. For each face of the graph there is a closed empty trace Tr 1 = N [4].

In particular, the notion of planarity can be applied to different spaces, in this work we will

consider both color and momentum spaces. Remarkably, the notion of planarity is not necessarily

fulfilled in both spaces. In particular, there are some diagrams that can be planar in color but

not in momentum space. This is the case of gauge-invariant local composite operators, which

are colour singlets but have a non-vanishing momentum. Moreover, there exists diagrams that

are not planar individually due to a double-trace structure, but becomes planar when contracted

with composite operators, see figure 5. The reason is that the contraction of a composite operator

with a double-trace diagram gives an extra power of the number of colors with respect to the

contraction with a single-trace diagram.

Figure 5: Example of a graph (left) that is not planar due to its double-trace structure which

becomes planar (right) in color space when contracted with a composite operator but (below) it

is still non-planar in momentum space [33].
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2.5 Single trace operators

In this section we will explain which type of operators we will use as well as their field content

and symmetries. In particular, we will study in more detail the algebra of this theory as well as

its generators and the relations between them. Our work will be based on the so-called gauge

invariant local composite operators. This type of operators are formed by traces of fields or

products of fields that transform covariantly. Therefore, these operators are formed by both

scalar φI and fermionic (antifermionic) fields ψAα (ψAα̇) and by gauge-invariant combinations of

the gauge field, as is the case for both the covariant derivative Dµ and the field strength Fµν .

The general structure of a single trace operators is [30],

O(x) = Tr [χ1(x)χ2(x) . . . χL(x)] , (13)

where χi(x) refers to a covariant field. We see that, taking or not the derivatives, this

operator is gauge invariant. Other operators can be formed by taking the product of single trace

ones. Note that the field strength tensor is composed by antisymmetric products of covariant

derivatives. Henceforth we will only consider symmetric products in the structure of these

operators. Moreover, by means of the Bianchi identity,

D ∧ F = 0, (14)

together with the equations of motion of the fields, we do not need to consider all the

combinations of the partial derivatives. Putting together all the constraints, one can define the

set of irreducible fields that will take part in the structure of gauge invariant local composite

operators, see figure 6:

Figure 6: Irreducible fields [4].

Once, we have the algebra of N = 4 SYM theory, it is necessary to find its representa-

tion. In field theories, we will mainly deal with non-compact or infinite-dimensional highest-

weight representations. The vector space on which the representation acts is characterised by

its highest − weight or primary state, which corresponds to a field or a local operator. The

primary state is defined by means of the action of the Cartan generators. For the particular case
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of the psu(2, 2|4) algebra, the generators of the Cartan subalgebra are given by [4],

J+ ∈
{
Kαβ̇ ,Sα

b , Ṡ
aβ̇ ,Lαβ(α < β), L̇α̇(α̇ < β̇),Ra

b (a < b)
}

J0 ∈
{
Lαβ(α = β), L̇α̇

β̇
(α̇ = β̇),Ra

b (a = b),D,B,C
}
,

J− ∈
{
Pα̇β ,Q

a
β , Q̇α̇b,L

α
β(α > β), L̇α̇β(α̇ > β̇),Ra

b (a > b)
}
.

(15)

All the elements of the Cartan subalgebra commute among each other. The primary state

is then defined as the state annihilated by the raising operator J+. The action of the Cartan

generator J0 gives the weight of the primary operator, and the application of lowering operators

J− leads to new states called descendants. In general, the action of the lowering operator will

create an infinite multiplet of states. These states create a space that corresponds to a module

of psu(2, 2|4). In general, the module obtained is irreducible. However, there will be special

highest weight for which one finds a reducible multiple. In that case, the irreducible module is

called short.

In the case of the maximal compact subalgebra su(2) × su(2) × su(4) of psu(2, 2|4), the

modules will split into finite-dimensional modules of the subalgebra. Note that the indices of the

fields associated with either of the SU(2) Lorentz group are symmetrized, whereas the indices

associated to SU(4) are antisymmetrized. For this reason, it can be conveniently expressed in

terms of bosonic and fermionic creation operators. The irreducible fields acting on the traces of

single trace operators transform in the so-called singleton representation VS of PSU(2, 2 | 4) and

form the spin chain of N = 4 SYM theory. This representation can be constructed by two sets

of bosonic oscillators ai,α,a
†β
j , bi,α̇,b

†β̇
j and one set of fermionic oscillator di,A,d

†B
j satisfying

the following commutation relations [33]:[
ai,α,a

†β
j

]
= δβαδi,j ,

[
bi,α̇,b

†β̇
j

]
= δβ̇α̇δi,j ,

{
di,A,d

†B
j

}
= δBAδi,j . (16)

The indices i, j refers to the sites in which the oscillators act. The fields are then obtained

by acting with the creation operator on a Fock vacuum |0〉:

DkF =̂
(
a†
)k+2 (

b†
)k

d†1d†2d†3d†4|0〉,
DkψABC =̂

(
a†
)k+1 (

b†
)k

d†Ad†Bd†C |0〉,
DkφAB =̂

(
a†
)k (

b†
)k

d†Ad†B |0〉,
Dkψ̄A =̂

(
a†
)k (

b†
)k+1

d†A|0〉,
DkF̄ =̂

(
a†
)k (

b†
)k+2 |0〉,

(17)

where ψABC = εABCDψ
D represents fermion fields and ψ̄A antifermion fields. In terms of

13



the set of oscillators, the generators of U(2, 2|4) can be expressed as:

Lαi,β = a†αi ai,β − 1
2δ
α
βa
†γ
i ai,γ , QαA

i = a†αi d†Ai ,

L̇α̇
i,β̇

= b†α̇i bi,β̇ −
1
2δ
α̇
β̇
b†γ̇i bi,γ̇ , Si,αA = ai,αdi,A,

RA
i,B = d†Ai di,B − 1

4δ
A
Bd
†C
i di,C , Qα̇

i,A = b†α̇i di,A,

Di = 1
2

(
a†γi ai,γ + b†γ̇i bi,γ̇ + 2

)
, ṠA

i,α̇ = bi,α̇d
†A
i ,

Pαα̇
i = a†αi b†α̇i , Ki,αα̇ = ai,αbi,α̇,

Ci = 1
2

(
a†γi ai,γ − b†γ̇i bi,γ̇ − d†Ci di,C + 2

)
, Bi = d†Ci di,C .

(18)

These are the generators of U(2, 2|4), which correspond to the generators of PSU(2, 2|4)

in addition to the central charge Ci and the hypercharge Bi. In particular, the central charge

vanishes in all the physical fields. Single trace operators are then obtained by taking tensor

product of the singleton representation,

V1 ⊗ V2 ⊗ . . .⊗ VL. (19)

In the spin chain representation, each index correspond to a site and the total number

L refers to the length of the chain. Moreover, single trace operators are invariant under cyclic

permutations. This means that remains invariant if a bosonic field changes its position from the

first to the last position of the traces, and acquires a minus sign if the field is fermionic.

2.6 One-loop dilatation generator

In this section we will show how to obtain the one-loop dilatation operator. First we will show

the result in terms of harmonic, to afterwards derive the more treatable results in terms of the

super harmonic variables. section is mainly based on [3].

In perturbation theory, the full generators of the algebra psu(2, 2|4) can be expressed as

a series expansion in the coupling constant:

J(g) =

∞∑
k=0

gkJk, (20)

.

where the sum runs over the different quantum corrections, the term k = 0 correspond

to the generator in the classical theory. The one-loop dilatation generator corresponds, D(2) to

the first quantum correction the classical dilatation generator receives, and hence it should be

invariant under the classical generators, [
J0,D

(2)
]

= 0. (21)

Therefore, under the classical algebra psu(2, 2|4), the one-loop anomalous dilatation gen-

erator will be considered as an independent object. Consequently, the one-loop dilatation gen-
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erator can act as a Hamiltonian of the one-dimensional psu(2, 2|4) spin chain representation, see

figure [:fig2.5]. In perturbation theory,

J(g) = J +O(g), D(g) = D + g2D(2) +O
(
g3
)
, [J,D(∈)] = 0, (22)

Figure 7: Correspondence between N = 4 SYM and the spin chain picture

The irreducible modules of PSU(2, 2|4) can be obtained as a tensor product of individual

singleton representations,

VF ⊗ VF =

∞∑
j=0

Vj , (23)

Denoting the projection operator to the subspace Vj ,

Pj : VF ⊗ VF → Vj , (24)

the one-loop dilatation operator is:

D(2) = 2

L∑
i=1

∞∑
j=0

h(j) (Pj)ii+1 , (25)

where h(j) =
∑i
i+1

1
i is the jth harmonic number. Let us obtain the one-loop dilatation

operator in terms of the harmonic oscillator rather than the projection operator. In particular,

this expression is more handy and will be more useful for general computations. We use A†i with

a = 1, . . . , 8 to represent the eight oscillators,

A†i =
(
a†1i ,a

†2
i ,b

†1
i ,b

†2̇
i ,d

†1
i ,d

†2
i ,d

†3
i ,d

†4
i

)
, (26)

Hence, we can define a general state in VF ⊗ VF as:

|s1, . . . , sn;A〉 = A†s1,A1
. . .A†sn,An |00〉. (27)

The label sk = 1, 2 determines the site on which the kth oscillator acts. The action of

the one-loop operator on one of these states can be written as a weighted sum over all the
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reorderings,

(
D(1)

)
12

A†A1
s1 · · ·A

†An
sn |0〉 =

2∑
s′1,...,s

′
n=1

δC2,0c (n, n12, n21)A†A1

s′1
· · ·A†Ans′n

|0〉. (28)

The sum goes over the sites 1,2, δC2,0 project to states where the central charge zero, n

denote the number of oscillators that are at both sites and nij the number of oscillators that

change site from i to j. From this we see that the action of the one-loop dilatation generator

does not depend on the type of oscillators, but only on the number of oscillators that change

site. In particular, the coefficients read:

c (n, n12, n21) =

{
2h
(

1
2n
)

if n12 = n21 = 0,

2(−1)1+n12n21 B
(

1
2 (n12 + n21) , 1 + 1

2 (n− n12 − n21)
)

else .

(29)

Using an integral representation by defining [36],

(
A†i

)~ni
=
(
a†1i

)a1
i
(
a†2i

)a2
i
(
b†1̇i

)bii (
b†2̇i

)b2̇i (
d†1i

)d1
i
(
d†2i

)d2
i
(
d†3i

)d3
i
(
d†4i

)d4
i

, (30)

one obtains:(
D(1)

)
12

(
A†1

)~n1
(
A†2

)~n2

|0〉 = 4δC2,0

∫ π
2

0

dθ cot θ

((
A†1

)~n1
(
A†2

)~n2

−
(
A′†1

)~n1
(
A′†2

)~n2
)
|0〉,

(31)

where (
A′†1

A′†2

)
= V (θ)

(
A†1

A†2

)
, V (θ) =

(
cos θ − sin θ

sin θ cos θ

)
. (32)

This last expression is more suitable when making the connection with scattering ampli-

tudes.
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3 Form factors

In this chapter we will study form factors. These quantities are of great importance since

they provide the connection between on-shell methods and off-shell quantities. Hence, they can

be used to test until which extent do on-shell methods apply to off-shell quantities, such as

correlation functions of gauge invariant local composite operators. We will afterwards define

the so-called minimal form factors. Finally, we will give some comments on the structure of

operators in different subsectors.

3.1 Introduction to form factors

In this section we will give a short introduction to form factors. We will also introduce the

variables we will be using throughout this work as well as the notation used.

Scattering amplitudes are of great importance since from them we can obtain cross-

sections, which represent the physical quantity measured in particle colliders. On-shell methods

have been a powerful method for studying these quantities. In particular, they represent the

overlap of an n-particle on-shell state with the vacuum,

An(1, . . . , n) = 〈1, . . . , n | 0〉. (33)

Correlation functions of gauge-invariant local composite operators O are off-shell quanti-

ties that represent the products of these operators at positions xi between two vacuum states.

Form factors of gauge-invariant local composite operators are defined as the overlap between

a state created by the operator O(x) from the vacuum with an n particle out-going on-shell

state. They form a bridge between the fully on-shell scattering amplitudes and the fully off-shell

correlation functions.

On-shell methods require to work in momentum space. The Fourier transformation of

form factors change the x-dependence of the operator to the off-shell momentum q which does

not satisfy the mass-shell condition,

FO(1, . . . , n; q) =

∫
d4xe−iqx〈1, . . . , n|O(x)|0〉 = (2π)4δ4

(
q −

n∑
i=1

pi

)
〈1, . . . , n|O(0)|0〉,

(34)

where the delta function ensure momentum conservation.

On-shell particle are defined as the ones satisfying the mass-shell condition p2 = m2. In

the case of masslss particles this means p2 = 0. Hence, it is useful to express the momenta of

the external on-shell particles i = 1, ..., n in terms of the spinor-helicity variables [17],

pαα̇j ≡ p
µ
j σ

αα̇
µ = λαj λ̃

α̇
j , (35)
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Figure 8: Pictorical representation of a form factor. The double line arrow represent the off-shell

inserted, whereas the outgoing arrows represent the on-shell n particles [25].

where (σµ)αα̇ represent the four-dimensional Pauli matrices. In particular, the spinor

variables are two dimensional and they do transform under SU(2) and SU(2). Hence, each

on-shell massless spin s particle is characterised by its helicity h = ±|s| and a pair of spinors

λαj , λ̃
α̇
j .In particular, these variables are really useful because physics remains invariant when

multiplying spinor and antispinor by opposite phases. This is the so-called little-group scaling

because the same phases would arise from a rotation along the propagation axis of the particle

i. Contractions of spinor helicity variables are written as:

〈ij〉 ≡ εαβ (λi)α (λj)β ,

[ij] ≡ εα̇β̇
(
λ̃i

)
α̇

(λj)β̇ ,

sij = 〈ij〉[ji].

(36)

where we have introduced the angle and square bracket notation. Another important

quantity is the so-called Mandelstam variables (pi + pj)
2 = 〈ij〉[ji] = sij . They also satisfy the

Schouten identities,

〈ij〉〈kl〉+ 〈ik〉〈lj〉+ 〈il〉〈jk〉 = 0, [ij][kl] + [ik][lj] + [il][jk] = 0. (37)

For real momenta we will have [ij] = 〈ij〉∗ and hence λ̄α̇i = (λαi )∗. Moreover, the spinor

products are complex square roots of the momentum invariants,

〈ij〉 =
√
sije

iφij , [ij] =
√
sije

−iφij . (38)

In N = 4 SYM theory, one can package all scattering amplitudes of n different particles

with fixed helicity into a superamplitude, making manifest the supersymmetries of the theory.
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This can be done by making use of the N = 4 Nair’s on-shell superfield [31],

Φ (pi, η̃i) = g+ (pi) + η̃Ai ψ̄A (pi) +
η̃Ai η̃

B
i

2!
φAB (pi) +

εABCDη̃
A
i η̃

B
i η̃

C
i

3!
ψD (pi) + η̃1

i η̃
2
i η̃

3
i η̃

4
i g− (pi) ,

(39)

where A acts as an anti-fundamental SU(4) index. This expression depends on fermionic

variables η̃, and the external states are characterised by different powers of these variables. A

state with a helicity hi corresponds to 2−2hi powers of ηi. By means of Nair’s on-shell superfield

we can combine also all the form factors into one super form factor.

Therefore, any external field Φi can be completely characterised by its super momentum

Λ = (λi, λ̃i, η̃). The superfield can also be expanded in the fermionic variables η, which are

related to the variables η̃ via:

1 = η1
i η

2
i η

3
i η

4
i , η̃iA =

1

3!
εABCDη

B
i η

C
i η

D
i , η̃iAη̃iB =

1

2!
εABCDη

C
i η

D
i ,

η̃iAη̃iB η̃iC = εABCDη
D
i , η̃i1 η̃i2η̃i3, η̃i4 = 1.

(40)

We can then combine component form factors into one super form factor. The component

form factors can be extracted from the super form factors by taking derivatives with respect to

the ηi variables:

FO
(

1g
+

, 2g
−
, . . . , nφ12 ; q

)
= 1

(
∂

∂η1
2

∂

∂η2
2

∂

∂η3
2

∂

∂η4
2

)
· · ·
(
− ∂

∂η1
n

∂

∂η2
n

)
FO(1, 2, . . . , n; q)

∣∣∣∣
ηAi =0

,

(41)

where the superscripts specify the helicities and flavours of the respective fields and the

sign takes into account that the η̃i variables anticommute. Amplitudes and form factors also

depend on the color degrees of freedom of each field. We can then split off the dependence on

the gauge group generators by defining color-ordered amplitudes Ân,

An(1, . . . , n) = gn−2
YM

∑
σ∈Sn/Zn

tr (Taσ(1) · · ·Taσ(n)) Ân(σ(1), . . . , σ(n)) + multi-trace terms ,

(42)

and color-ordered form factors F̂O,n

FO,n(1, . . . , n; q) = gn−LYM

∑
σ∈Sn/Zn

tr (Taσ(1) . . .Taσ(n)) F̂O,n(σ(1), . . . , σ(n); q) +multi-trace terms ,

(43)

where T a with a = 1, ..., N2 − 1 are the generators of the gauge group SU(N) and the

sum is over all non-cyclic permutations. We normalize the generator in the standard amplitudes

convention by Tr[T aT b] = δab and we define fabc = −i tr[[T a, T b]T c] as the structure constants.

The only difference between both expressions is that the momentum q in the operator does not

take part in the color ordering, because the operator is a color singlet.

Multi-trace terms start to appear at one-loop order, but they will be suppressed in the pla-
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nar limit (subleading in the ’t Hooft limit, they appear in powers of 1/N). Therefore, double-trace

terms part of amplitudes and form factors will be suppressed in single-trace parts of amplitudes

and form factors, respectively. However, the double-trace part of amplitudes can contribute to

single-trace form factors when contracted with composite operators, as was explained in the

previous chapter when defining the ’t Hooft limit.

3.2 Minimal form factors

The length of an operator O is defined as the number of irreducible fields in the operator. The

form factor of an operator O is minimal if the number of external legs is equal to the length of

the operator, i.e., it is the form factor with the lowest number of external legs. Equivalently, we

can define a minimal form factor FO,L(O), such that

F (0)
O,L(O) 6= 0 while F (0)

O,n = 0 when n < L(O). (44)

Consequently, in minimal form factors there is a one-to-one correspondence between on-

shell external particles and the fields in the operator. Form factors can now be easily computed

via Feynman rules. In particular, in the free theory no interactions occur and the Feynman rules

reduce to vertices of the composite operator and the outgoing fields.

Moreover, form factors in the free theory vanish unless the number of external fields

equals the number of irreducible fields in the gauge-invariant local composite operator O. As

every occurrence of the Yang-Mills coupling constant gYM either increases the number of legs or

the number of loops, the form factor in the free theory equals the minimal tree-level form factor

in the interacting theory.

Figure 9: Feynman rules [34].

For example, for a scalar φAB the Feynman rule is simply 1. But to this we have to add

the factor η̃Aη̃B in agreement with the Nair’s on-shell superfield definition. The same occurs

for fermion and antifermions, each of them have different powers of the fermionic variables

depending on its helicity. In particular an outgoing antifermion of positive helicity has to be

dressed with one power η̃A whereas an outgoing fermion of positive helicity carries a factor
1
3!εABCDη̃Aη̃B η̃C η̃D.
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In the free theory, the covariant derivative Dαα̇ reduces to the partial derivative ∂αα̇.

In momentum space the partial derivative translates simply to the on-shell momentum of the

external particles pαα̇ = λαλ̃α̇ on which the covariant derivative acts. The Feynman rules for an

outgoing gauge field of positive or negative helicity in spinor helicity variables look

εαα̇+ (pi; ri) =
√

2
λαri λ̃

α̇
pi

〈ripi〉
, εαα̇− (pi; ri) =

√
2
λαpi λ̃

α̇
ri

[piri]
, (45)

where r is an arbitrary reference vector. Recalling that gauge-invariant local composite

operators contain gauge fields only in the gauge-covariant and irreducible combinations of the

self-dual and anti-self-dual field strengths. For the free theory,

Fαβ =
1

2
√

2
εα̇β̇

(
∂αα̇Aββ̇ − ∂ββ̇Aαα̇

)
, F̄α̇β̇ =

1

2
√

2
εαβ

(
∂αα̇Aββ̇ − ∂ββ̇Aαα̇

)
. (46)

Replacing the fields by the polarization vectors and the derivatives for each spinor helicity

variables we obtain:

Fαβ
ε+−→ − 1

2
√

2
εα̇β̇

(
λαpi λ̃

α̇
piε

ββ̇
+ − λβpi λ̃

β̇
piε

αα̇
+

)
= 0

Fαβ
ε−−→ − 1

2
√

2
εα̇β̇

(
λαpi λ̃

α̇
piε

ββ̇
− − λβpi λ̃

β̇
piε

αα̇
−

)
= λαpiλ

β
pi

F̄α̇β̇
ε+−→ − 1

2
√

2
εαβ

(
λαpi λ̃

α̇
piε

ββ̇
+ − λβpi λ̃

β̇
piε

αα̇
+

)
= λ̃α̇pi λ̃

β̇
pi

F̄α̇β̇
ε−−→ − 1

2
√

2
εαβ

(
λαpi λ̃

α̇
piε

ββ̇
− − λβpi λ̃

β̇
piε

αα̇
−

)
= 0.

(47)

In the super form factor we thus have λαi λ
β
i η̃

1η̃2η̃3η̃4 and λ̃α̇i λ̃
β̇
i for the self-dual and

anti-self-dual parts of the fields strength, respectively. These comment are summarised in the

following table

Figure 10: Correspondence between local operators and minimal form factors [35].

Therefore, through the minimal form factor, the local operator is naturally translated in

terms of spinor helicity variables:

off-shell local field
minimal form factor−−−−−−−−−−−−→ on-shell spinor helicity quantity ,

as was summarize in figure 10. These expressions are both symmetric under SU(2) and
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SU(2) indices, and antisymmetric under SU(4) indices as it is necessary since the theory should

obey these symmetries due to the PSU(2, 2|4) group representation.

Consequently, for a gauge-invariant local composite operator O characterised by its os-

cillator representation {~ni}i=1,...,L =
{(
a1
i , a

2
i , b

i
i, b

2̇
i , d

1
i , d

2
i , d

3
i , d

4
i

)}
i=1,...,L

, the minimal color-

ordered tree-level super form factor is:

F̂O,L (Λ1, . . . ,ΛL; q) = (2π)4δ4

(
q −

L∑
i=1

pi

) ∑
σ∈ZL

L∏
i=1

(
λ1
σ(i)

)a1
i
(
λ2
σ(i)

)a2
i
(
λ̃1̇
σ(i)

)bii (
λ̃2̇
σ(i)

)b2̇i (
η̃1
σ(i)

)d1
i
(
η̃2
σ(i)

)d2
i
(
η̃3
σ(i)

)d3
i
(
η̃4
σ(i)

)d4
i

.

(48)

The sum in the expression reflects the cyclic invariance of the single-trace operator. The

product refers to the grading, i.e., the order with respect to i. At tree-level, form factors of

composite operators that are linear combinations of the eight oscillators n are given by the

respective linear combinations. This is due to the fact that at tree-level there is no operator-

mixing. However, at higher loops, operator-mixing occurs and the considerations above cannot

take place.

The expression of the super form factor above is just the one we would obtain by replacing

the oscillators in the oscillator representation according to (apart from the momentum-conserving

delta function and the normalisation factor L):

a†αi → λαi , b†α̇i → λ̃α̇i , d†Ai → η̃Ai ,

ai,α → ∂i,α = ∂
∂λαi

, bi,α̇ → ∂i,α̇ = ∂
∂λ̃α̇i

, di,A → ∂i,A = ∂
∂η̃Ai

.
(49)

Therefore, there is a direct correspondence between the super minimal tree-level form fac-

tor in terms of super spinor helicity variables and the normalised and graded cyclically invariant

state in the spin-chain picture in terms of the oscillators:

F̂O,L (Λ1, . . . ,ΛL; q) = L(2π)4δ4

(
q −

L∑
i=1

pi

)
×O |

a†αi → λαi

b†α̇i → λ̃α̇i

d†Ai → ηAi

(50)

Moreover, if we replace the oscillators according to eq. 49 in the generators in eq. 18 we

obtain the representation of the centrally extended algebra of PSU(2, 2|4) in terms of on-shell
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superfields,

Lαi,β = λαi ∂i,β −
1

2
δαβλ

γ
i ∂i,γ , QαA

i = λαi η̃
A
i ,

L̇α̇
i,β̇

= λ̃α̇i ∂i,β̇ −
1

2
δα̇
β̇
λ̃γ̇i ∂i,γ̇ , Si,αA = ∂i,α∂i,A,

RA
i,B = η̃Ai ∂i,B −

1

4
δAB η̃

C
i ∂i,C , Qα̇

i,A = λ̃α̇i ∂i,A,

Di =
1

2

(
λγi ∂i,γ + λ̃γ̇i ∂i,γ̇ + 2

)
, ṠA

i,α̇ = ∂i,α̇η̃
A
i ,

Ci =
1

2

(
λγi ∂i,γ − λ̃

γ̇
i ∂i,γ̇ − η̃

C
i ∂i,C + 2

)
, Pαα̇

i = λαi λ̃
α̇
i ,

B = η̃Ci ∂i,C , Ki,αα̇ = ∂i,α∂i,α̇.

(51)

Once we have defined both the form factors and the generators in the oscillator as well

as in the spinor helicity formalism, we are interested in knowing the action of any generator of

PSU(2, 2|4) on the on-shell part of the form factor,

n∑
i=1

JiF̂O,n(1, . . . , n; q). (52)

As can be seen from eq. 51, some of the generators contain differential operators that can

act on both the momentum-conservation delta function as well as in the polynomial in terms

of the super spinor helicity variables. The action on the momentum conserving delta function

will give some spacetime dependent terms that will be dropped out when performing the Fourier

transformation.

On the other hand, the action of the generators on the polynomials correspond to the

action of these generators on the fields that contain the composite operator in the oscillator

representation. Therefore, the action of the generators over the form factor corresponds to the

form factor of the generators acting directly on the operators,

L∑
i=1

JiF̂O,L(1, . . . , L; q) = F̂JO,L(1, . . . , L; q). (53)

From this last section, we can conclude that color-ordered minimal tree-level form factors

of any operator can be obtained by the replacement of the oscillators in the operator’s oscil-

lator representation by spinor helicity variables (apart from the normalization factor and the

momentum-conserving delta function). The generators of PSU(2, 2|4) are related by the same

replacement. Therefore, minimal tree-level form factors translate the spin-chain of free N = 4

SYM theory into the language of scattering amplitudes.

In fact, this is a special case of a superconformal Ward identity for form factors, that in

principle should also hold for the interacting theory. In practice, however, in the interacting the-

ory quantum corrections appear for generators both in composite operators as well as scattering

amplitudes. Indeed, form factors receive quantum corrections for the scattering amplitudes as

well as for the composite operators. Later in this work, we will calculate the corrections to the
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action of a generator, the dilatation operator, on composite operators via form factors.

3.3 Sectors of operators

Let us now give some comments on the different operators depending on the sector we are

considering. The simplest example we can have is an operator formed by one type of scalar field

with no covariant derivatives, as tr((φ12)2), that belongs to the stress tensor supermultiplet.

In particular, this operator is protected in the sense that it does not have UV divergences and

therefore no corrections are needed. Some of the simplest sectors that are not protected are

summarized as follows:

SU(2) :
{

Φ12,Φ13
}

SO(6) :
{

ΦAB ; for all A,B
}

SU(2 | 3) :
{

Φ12,Φ23,Φ13,Ψ123,α
}

for α = 1, 2

SL(2) :
{

Φ12, Dαα̇
}

for α = α̇ = 1

(54)

In particular, the operators of the SU(2) sector consist on two types of scalars and no covariant

derivatives, in the SL(2) operators carry only one scalar field but there is no restriction in the

number of covariant derivatives. A generalization of the SU(2) sector is the SO(6) where all six

scalars are allowed to appear in the operator. In particular this sector is only closed at one-loop

order. Finally the SU(2|3) also represents a generalization of SU(2) where operators contain

three scalars and a single fermion. The operators in these sectors are called non-BPS operators

and have non-trivial anomalous dimensions due to quantum corrections.
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4 Computation of anomalous dimensions

In four-dimensional theories with massless particles, the computation of anomalous dimensions

can be derived by means of different methods. In this chapter we will review two methodologies

for computing anomalous dimensions either from unitarity cuts or from generalized unitarity.

In the first section, we will give an overview of a method for obtaining anomalous dimensions

from the scattering matrix. In the second section we will introduce another method in which

anomalous dimensions are obtained from generalized unitarity, and by comparing them see the

advantages of the first method. In the last section we will particularize to the SMEFT, and

study the selection rules that provide trivial zeros for the anomalous dimensions, and therefore

see the motivation for obtaining methods for analysing non-vanishing entries of the anomalous

dimension matrix.

4.1 Anomalous dimensions from the S-matrix

The Lagrangian of a theory describes its particle content as well as its interactions. Therefore,

it is the central point around which all the physics arise inside a certain theory. On the other

hand, on-shell techniques are known to be a powerful tool based on physical grounds, since

on-shell particles are defined as real particles obeying the equations of motion. Our interest is

to approach via on-shell methods the physics that arise from the Lagrangian. The key idea is

to consider long distance propagation states, since they can be considered effectively on-shell in

the appropriate metric.

In particular, we will focus on the fact that large logarithms signaling the running of

couplings originate from these effectively on-shell states. This is achieved by the use of form

factors, which represent a bridge between on-shell external particle states and off-shell correlation

functions of local operators. Consequently, from form factors, we can obtain the scale dependence

of a local operator in terms of the propagation of on-shell external particles.

This method will be based on the connection between the high-energy behavior of the

scattering matrix of a theory (propagation of on-shell particles) and the running of the coupling

as well as the renormalization of local operators. This relation is equivalent to find the connection

between the phase and the energy dependence of form factors. Our study will be focused on

weakly-coupled field theories, and hence we will work in perturbation theory.

In this frame the analyticity of form factors can be made explicit since complex conjugation

requires to replace the time-ordered propagators by anti-time-ordered propagators. Due to the

Feynman prescription, sij → sij + iε, and analyticity then translates to sij + iε→ sij − iε. This

corresponds to a rotation in the sij complex plane and it is generated by a complex dilatation

of the momenta,

F (p1, . . . , pn)→ F
(
p1eiα, . . . , pneiα

)
= eiαDF (p1, . . . , pn) , where D ≡

∑
i

pµi
∂

∂pµi
≈ −µ∂µ.

(55)
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The second relation in the expression of the dilatation operator comes from working in

dimensional regularisation and from the fact that there is a single renormalisation scale µ =

µUV = µIR. From this picture, one can see that the form factor is related to its complex

conjugate when the rotation angle reaches the value α = π, that corresponds to the form factor

using anti-time-ordered propagators. By substituting this value of the angle in the previous

expression one obtains,

F = e−iπDF ∗. (56)

Moreover, a form factor can in general be defined as an amplitude where the operator

injects zero momentum q = 0,

Ai
(
1h1 , . . . , nhn

)
=
〈
kh1

1 , . . . , khnn |Oi(0)| 0
〉
. (57)

In particular, when the operator is set to the identity one recovers the usual scattering

amplitude. On the other hand, the optical theorem expresses the unitarity of the scattering

matrix SS† = 1. Recalling that the form factor (when acting as an operator) is formally defined

as a small perturbation to the scattering matrix, δS = iF , and together with the unitarity of

the scattering matrix leads to F = SF†S. This means that form factors also obey unitarity.

Particularizing for vacuum initial states, this relation reads,

F = SF ∗, (58)

where the product contains a phase-space integral over intermediate n-particle states

summed over all n, and in diagrammatic language this means that a cut goes through form

factors diagrams. Writing explicitly the initial and final states, this equation can analogously be

expressed as:

FO(~n) ≡ out 〈~n|O(0)|0〉 =
∑
~m

out〈~n | ~m〉in in〈~m|O(0)|0〉 =
∑
~m

Snm in〈~m|O(0)|0〉, (59)

where in the last step we used the definition of the scattering matrix between two states,

Snm = out 〈~n | ~m〉in. From this equation a CPT transformation is required [21]. This transfor-

mation relates in and out states in the inner product. More concretely, for a local operator we

have 〈~n|O(0)|0〉 =
〈
0
∣∣O†(0)

∣∣~n〉
in

. From this considerations we can derive the relation between

the anomalous dimensions and the scattering matrix [14]:

e−iπDF ∗ = SF ∗. (60)

This equation states that the dilatation operator is minus the phase of the S-matrix

divided by π. As already mentioned, the right-hand side of this equation represents a unitarity

cut. From this expression, we see precisely that the scale dependence of the form factor is

encoded in the coefficients of its logarithms.

26



In the definitions implemented so far we have not particularized to any theory. However,

in this work we particularize to the planar limit of N = 4 SYM theory, where the dilatation

generator act as a generator of the algebra psu(2, 2 | 4). Moreover, this generator receives

quantum corrections and hence one can express the renormalization group equation as,

DF = −µ∂µF =

(
β
(
g2
) ∂

∂g2
+ γO − γIR

)
F, (61)

where γO is the anomalous dimension of the local operator, γIR is the infrared anomalous

dimension that arises from soft and/or collinear divergences and β is the beta function that

signals the running of the coupling constant with respect to the renormalisation scale. From

this equation, we know that the action of the dilatation operator on a form factor is given in

terms of ultraviolet and infrared anomalous dimensions as well as the β-function. Relating both

definitions of the dilatation operator, we can obtain anomalous dimensions directly from the

scattering matrix.

Moreover, let us focus on the leading order approximation to this expressions by taking

the leading order approximation of the scattering matrix S = 1 + iM. Then eq.59 reads,

(e−iπD − 1)F ∗ = iMF ∗, (62)

Since the imaginary part does not affect our calculations, we can drop out the complex

conjugation of the form factor. Combining both definitions of the dilatation operator, one obtain,

at the leading order: (
β
(
g2
) ∂

∂g2
+ γO − γIR

)
F = − 1

π
(MF ) . (63)

The right hand side represents the convolution of the leading order scattering matrix and

the minimal form factor, represented by a phase-space integral of lower loop on-shell form factors

and leading order amplitudes. In particular, these equations are valid at any loop order, but

since our study focuses o weakly coupled field theories, we will consider perturbative expansions

of this expression at every loop order. In particular, at first loop order we obtain,(
γ

(1)
O − γ

(1)
IR

)
〈p1, . . . , pn|O|0〉(0)

= − 1

π
〈p1, . . . , pn|M⊗O|0〉(0)

, (64)

where ⊗ is the convolution at this loop order, represented by the phase-space integral

over intermediate two particle states in the product MF . The convolution then represents the

cut through form factor diagrams that are then joined to the particles that end up in the final

external states by the tree-level scattering matrix M , see figure 11.
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h

Figure 11: Unitarity cut relvevant at one-loop [34]

4.2 Anomalous dimensions from UV divergences

In this section we will give an overview of another a method that is traditionally used for com-

puting anomalous dimensions. In particular, in this method one obtain anomalous dimensions

from on-shell one-loop amplitudes. One can obtain the UV divergences by first calculating the

coefficients of scalar bubble integrals by unitarity cuts, and the subtracting the IR divergences.

This section is mainly based [7].

In theories such as the SMEFT, one studies the renormalisation of an operator Oi by

another operator Oj . In particular, the external particles correspond to the operator Oi with an

insertion of a higher dimension operator Oj . The Lagrangian of the operators also depend on the

so-called Wilson coefficients cj of the form ∆L =
∑
j cjOj . The Wilson coefficients associated to

the higher dimension operators are suppressed by powers of a high-energy scale that depends on

the dimension of the operator. Then the renormalization group equation in terms of the Wilson

coefficients takes the following expression [6]:

16π2 ∂ci
∂ logµ

= γijcj , (65)

where γij is the anomalous dimension matrix governing the renormalisation group running

and µ is the renormalisation scale. In massless four dimensional theories, one-loop on-shell

amplitudes can be decomposed in terms of a basis of scalar integrals and rational terms,

A
(1)
i =

∑
s

as4,iI4,s +
∑
s

as3,iI3,s +
∑
s

as2,iI2,s + rational terms, (66)

where I4,s refers to boxes, I3,s to triangles and I2,s to bubbles. The indices as4,i, a
s
3,i

and as2,i are the gauge-invariant coefficients of the boxes, triangles and bubbles, respectively. In

general, the coefficients depend on color and the dimensional regularization parameter ε.

The integrals are expanded in the regularization parameter producing UV and IR diver-

gences. These integrals capture the branch cuts of the loop amplitudes and their coefficients can

be obtained from the tree level amplitudes by generalized unitarity. Since only the scalar bubble

integrals contain UV divergences, we will look for a formula that relates the UV divergences to

the scalar bubble coefficients as2,i.

Bubble coefficients can come from massive bubbles, in which the momentum is greater
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than zero) or from massless bubbles (where the momentum is simply zero). Coefficients of

massive bubbles can be obtained through unitarity cuts. However, massless bubbles, that also

contain UV divergences, vanish in dimensional regularization due to the cancellation between

UV and collinear IR divergences.

(67)

Collinear factors depend only on the external legs. Therefore, the collinear divergences of

the tree amplitudes should be canceled by collinear loop IR divergences. Consequently, the UV

divergence in massless bubbles are obtained by the collinear divergences of the amplitudes,

− 1

2ε
γIR(1)

c A
(0)
i := − 1

2ε

∑
p

γIR
c,pA

(0)
i . (68)

where the sum runs over all external legs and and γIR
c,p is the collinear factor for each

particle p.

Finally, we can also find contributions to the 1/ε UV pole from the one-loop β-function:

1

2ε
(n− Li) β̃(1)A

(0)
i , (69)

where β̃(1) = β(1)/g(4), and Li is the length of the operator Oi. From this we can obtain

the UV anomalous dimensions from the bubble coefficients,

1

(4π)2

∑
s

as2,i = −1

2

[
γUV
ij − γIR

c δij + (n− Li) β̃(1)δij

]
A

(0)
j . (70)

This method is really powerful at one-loop. However, at higher loops it becomes more

and more complicated. At higher loops there is no decomposition of loop amplitudes in terms of

simple scalar integrals. Therefore, one has to construct the full amplitudes by means of unitarity

and then extracting the UV divergences by computing the loop integration.

The dilatation operator can also be obtained from UV divergences by means of loop

corrections. Considering the planar N = 4 SYM theory, loop corrections to scattering matrix

can be written as:

Ân
(
g̃2, ε

)
= Ĩ

(
g̃2, ε

)
Â(0)
n =

(
1 +

∞∑
`=1

g̃2`Ĩ(`)(ε)

)
Â(0)
n , (71)

where Ĩ(l) is the ratio between the l-loop and tree-level amplitude and g̃2 is the modified effective

planar coupling constant. The IR divergences from loop corrections are well known:

log
(
Ĩ
(
g̃2, ε

))
=

∞∑
`=1

g̃2`

[
− γ

(`)
cusp

8(`ε)2
− G

(`)
0

4`ε

]
n∑
i=1

(
−sii+1

µ2

)−`ε
+ Fin

(
g̃2
)

+O(ε), (72)
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where γcusp is the cusp anomalous dimension and G0 is the collinear anomalous dimension.

Fin(g̃2) refers to a finite part in the ε expansion. This expression is also valid for form factors,

but in this case renormalisation is required since local composite operators are not UV finite.

More concretely, for operators that are eigenstates under renormalization, loop corrections are

simply the ratio between the l-loop and the tree-level form factor.

Nevertheless, for operators that are not eigenstates under renormalization, i.e., that renor-

malise non-diagonally, loop corrections acts as operators over a tree-level form factor and giving

another tree-level form factor. The renormalized operators are defined in terms of the bare

operators and the renormalization constant Z,

Oren = ZObare , Z = 1 + g2Z(1) + g4Z(2) +O
(
g6
)
. (73)

Moreover, the anomalous dilatation operator is defined as:

δD = 2εg2 ∂

∂g2
logZ =

∞∑
`=1

g2`D(`). (74)

The renormalised form factor is just the form factor of the renormalised operator,

F̂Oaren,n
= ZF̂Oabare,L

(1, . . . , L; q), (75)

where on the right hand side, the renormalization constant Z acts as an operator on the

tree-level form factor. On the other hand, loop corrections to form factors can be written as:

F̂O,L(1, . . . , L; q) = IF̂ (0)
O,L(1, . . . , L; q) =

(
1 +

∞∑
`=1

g̃2`I(`)

)
F̂ (0)
O,L(1, . . . , L; q). (76)

Hence, the renormalized form factors can be obtained by acting with the renormalized

interaction operators:

I = IZ, I(`) =
∑̀
l=0

I(l)Z(`−l). (77)

Since the IR divergences are universal, we can express the bare loop correction as;

log(I) =

∞∑
`=1

g̃2`

[
− γ

(`)
cusp

8(`ε)2
− G

(`)
0

4`ε

]
L∑
i=1

(
−sii+1

µ2

)−`ε
−
∞∑
`=1

g̃2`D
(`)

2`ε
+ Fin

(
g̃2
)

+O(ε) (78)

Hence, we can obtain the dilatation operator form the loop corrections in the planar limit. In

particular, these loop corrections are computed via on-shell methods.

Moreover, when extracting anomalous dimensions from UV divergences in dimensional

regularization evanescent subdivergences occur. In these subdivergences, the counterterm van-

ishes in four dimensions, but cannot be ignored in dimensional regularization. Their operators

then vanish only for four-dimensional external states, but not for general D dimensions. An
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example of an evanescent operator is:(
ψ̄γ[αγµγνγσγρ]ψ

) (
ψ̄γ[αγµγνγσγρ]ψ

)
. (79)

At one-loop, they vanish for four dimensions. However, at higher loops in dimensional

regularization they can generate UV divergences. The effect of these operators must then be

taking into account in order to extract two-loop UV divergences and their anomalous dimension.

In fact, they will always appear in dimensional regularization and they get more and more

complicated when increasing the loop order. Since, they are not physical, it becomes necessary

to find a method where the evanescent operators are sidestepped.

Actually, on-shell methods defined in the previous section completely sidestep the evanes-

cent operators at any loop order, as demonstrated in [9] by focusing on renormalization scale

dependence instead of divergences.

4.3 Selection rules

In this section we will analyze vanishing entries of the anomalous dimension matrix at one and

higher loops. We will see that there exists some selection rules that allows to identify clearly and

faster these vanishing entries. The properties will be based only on the assumption of working

in massless field theories.

The zeros of the anomalous dimension relies on the supersymmetry of the theory [20].

Since one-loop amplitudes can be expressed in terms of tree-level amplitudes as follows from

unitarity, vanishing of tree-level amplitudes directly implies vanishing of certain logarithms and

their associated anomalous dimensions.

What makes them nontrivial is that Feynman diagrams exist but do not generate the ap-

propriate logarithms and therefore its anomalous dimension vanishes. Since Feynman diagrams

are not gauge invariant, at higher loop it is more convenient to work with on-shell quantities as

they use gauge-invariant quantities as inputs, and hence the vanishing o f anomalous dimensions

can be directly seen from them.

4.3.1 Length selection rules

In the language of operators, form factors can be seen as the renormalisation of an operator whose

field content overlap with the on-shell external states (lower dimension operator) by an operator

which inserts off-shell momentum (higher dimension operator). Therefore, confirmation of the

existence of a diagram is made by means of the renormalisation of operators. In other words, in

order to check at which order do diagrams exist one can check at which order renormalisation

of operators is possible.

The existence of diagrams is necessary for the computation of renormalisation coefficients

such as the anomalous dimensions. Hence, one would like to derive a theorem that states under
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which conditions a lower dimension operator Os can be renormalised by a higher dimension

operator Ol.

The use of minimal form factors makes locality manifest which means that there is no

dependence on the coupling constant and therefore the β-function vanishes. By definition, the

first order at which renormalization can occur means deriving the first order at which valid dia-

grams exist. This means that lower loop amplitudes do not exist and hence infrared singularities

vanish at that order, γIR = 0. With all of this constraints, it is straightforward to see that one

can analyze anomalous dimensions by means of sums of cuts.(
γUV
sl

)(0)
s 〈p1, . . . , pn |Os| 0〉(0)

= − 1

π
s 〈p1, . . . , pn |M⊗Ol| 0〉 . (80)

This equation makes straightforward that analyzing non-renormalisation of operators cor-

respond to study the possible unitarity cuts, and that this lead directly to the entries of the

anomalous dimension matrix. The method will be based on the length and field content of

operators. More concretely, the total number of external states correspond to the length of the

operator Os:
nM + nF − 2k = l (Os) , (81)

where nM refers to the number of particles in the scattering amplitude, nF to the number

of particles in the form factor and k to the number of particles crossing the cut. The factor

2 comes from the contribution of k particles crossing the cut coming form the amplitude and

another k particles crossing the cut coming from the form factor. In order to derive a non-

renormalisation condition that only depends on the length of both operators, one should put

some constraints. The number of particles crossing the amplitudes is bound from below by

kinematic arguments, since one needs at least two external particles in the amplitude and hence

nM ≥ k + 2.

The second constraint stems from the fact that all particles are on-shell and then scaleless

bubbles evaluate to zero since we are considering dimensional regularization. Hence, the number

of particles in the form factor at one-loop (including the ones crossing the cut) should be at least

equal to the length of the operator Ol, i.e,, nF ≥ l(Ol). This relation holds also at tree-level.

However, for the same operator, when the number of loops in the form factor increases, the

number of external legs decreases, nF ≥ l(Ol) − (LF − 1) − δLF ,0, where LF represents the

number of loops contained in the form factor.

However, at higher loops the number of external particles relative to the length of the

operator should decrease and the delta function states that the number of particles is the same

at tree-level and one-loop. The number of loops in the form factor LF is related to the total

number of loops L by means of the number of particles crossing the cut L ≥ LF + (k− 1). This

relations sets the minimum value of loops. One can then express nF in terms of the number of

32



loops L, and substituting the value of nM leads to the following equation:

l (Ol)− L+ 2− δLF ,0 ≤ l (Os) . (82)

From this statement, one can see that the general condition relating the lengths of both

operators is:

L > l (Ol)− l (Os) . (83)

Therefore, if the number of loops is equal or less than the difference between the length of

both operators, renormalisation cannot be given. This means that there are no valid diagrams

in which unitarity cuts are allowed and then that the anomalous dimension entry vanishes,

γUV = 0. This condition only depends on the length of the operators, but one wants to define a

condition in terms of the field content since depending on the particle content of the operators

unitarity cuts can appear even at higher loops that the one predicted with the condition above.

Consequently, the generalization of the theorem due to the particle content of the operators

states that whenever the only valid diagrams involve scaleless bubble integrals, then there will

be no renormalisation of Os by Ol. This is due to the lack of nonzero cuts encapsulating all the

loops.

An important consequence if this theorem is that at loop order L = l (Ol) − l (Os) + 1,

the only contribution will be the (L + 1)-particle cut. Therefore, the contributions to this cut

will only be by means of four dimensional tree-level amplitudes. In general, whenever an entry

is not vanishing at a loop order using length selection rules, one can evaluate this entry at the

next loop order since only tree-level quantities will enter the cut. One can see that this theorem

has been derived by means only of the particle content as well as the number of fields of both

operators. Hence, one can generalize this theorem to massless theories.

4.3.2 Zeros from vanishing one-loop amplitudes

In theories where the β-function is non-zero at one-loop, two-loop anomalous dimensions are

scheme dependent. This means that they can vanish depending on the scheme choice. This

selection rule does not apply to the maximally supersymmetric N = 4 SYM theory, since in this

case the β-function is zero.

However, we will briefly give some comments since they suppose another motivation for

finding a way to extract non-vanishing anomalous dimensions. As was seen in previous chap-

ters, the contributions to two-loop anomalous dimensions can come from different contributions:

the three particle cut between a tree-level amplitude and a tree-level form factor, two particle

cut between one-loop amplitude and tree-level form factor, and double cut between tree-level

amplitude a one-loop form factor.

Apart from the non-renormalisation theorem already described, zeros of anomalous dimen-

sions can come from other contributions. More concretely, there can be vanishing entries from
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the vanishing of one-loop amplitudes, where the two-loop anomalous dimensions will depend on

finite rational terms that can be set to zero by particularizing to another scheme.

In particular, this sometimes involves a cancellation between different contributions to the

logarithms from one-loop terms in the cut. The cancellation of divergences comes from the fact

that two-loop anomalous dimensions should not have any kinematic dependence (that appears in

the logarithms) and therefore this implies that logarithmic terms resulting from the cut should

cancel against logarithmic terms in the one-loop amplitudes.

Although one-loop amplitudes are zero, the two-loop anomalous dimensions can depend

on finite remainder terms, but since these terms are local, they can be redefined by picking an

appropriate choice of scheme and in that way eliminate the anomalous dimensions. This choice

of a particular scheme is equivalent to perform a finite renormalization of the operators [7]:

Õi = Zfin
ij Oj , where Zfin

ij = δij + fij

(
g(4)

)
, (84)

where (g(4)) refers to the dimensional-four coupling. Since we are studying a perturbation

expansion of weakly coupled theories, the coefficient fij has a perturbative expansion that starts

at one-loop, since at tree-level this problems do not arise. The form factor of that renormalised

operator starts changing at one-loop, that corresponds to when the constant fij starts acting,

F̃
(1)
i = F

(1)
i + f

(1)
ij F

(0)
j . (85)

Anomalous dimensions at one-loop are unaffected by this redefinition since they do only

depend on tree-level form factors that do not change under this renormalisation. However, at

two-loop, there exists dependence on one-loop form factors that lead to the appearance of the

constant fij . This, together with the fact that IR divergences are independent of the scheme

choice and recalling that one-loop anomalous dimensions are also independent of this scheme

redefinition, lead to the expression of the two-loop anomalous dimensions of the renormalised

operator,

γ̃
UV(2)
ij = γ

UV(2)
ij + f

(1)
ik γ

UV(1)
kj − γUV(1)

ik f
(1)
kj − β

(1)∂f
(1)
ij . (86)

Note that the anomalous dimension at one-loop do not have the tilde since they are

independent of this redefinition. However, one can see that there is an additional running of the

two-loop anomalous dimension matrix coming from the last term. One is interested in finding

the value of fij that will cause as many vanishings in the two-loop anomalous dimension matrix

as possible. The last term just corresponds to a mixing between operators at one-loop that were

already mixing. Consequently, the new scheme choice cause the mixing between operators at

one-loop that we already mixed in the original scheme but prevents these operators to mix at

two-loops.
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4.3.3 Zeros from color selection rules

Another way to set some of the entries of the two-loop anomalous dimension matrix to zero is

by a mismatch between the color structure of the cuts and the operators involved. The general

procedure will be to study the color structure of the amplitudes that compose the cuts and

determine whether a given operator can yield a nonzero contribution.
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5 2 → 2 case

In this chapter we will use the methodology introduced in the first section of the previous chapter

to review the computation of the one-loop anomalous dimension. This case is the simplest one

in which the method can be applied. In the first section we will derive the parametrization of

the spinors crossing the cut in terms of the external spinors. In the next section we will derive

the full one-loop anomalous dimension in any gauge theory, and more particularly in the planar

limit of N = 4 SYM theory. The following two sections constitute examples of this methodology,

in which we will derive the twist-two anomalous dimensions and the one-loop β-function from

the anomalous dimension.

5.1 Parametrization of spinors

In this section we will derive the full one-loop parametrization of spinors. The motivation of this

parametrization stems from the fact that the integrals computed in the convolution turn out to

be simpler if one uses the correct parametrization.

More concretely, we are interested in finding an angular dependence which sets the integral

dependence to be over the azimuthal and the polar angles. Since our theory is composed by

massless particles with spin, we work in the spinor helicity formalism, as was already described in

chapter 3. The main goal is then to describe the intermediate spinors (referring to the particles

crossing the cut) in terms of the external spinors (referring to the external particles), based only

on an angular dependence. At one-loop the convolution corresponds to the contraction between

the tree-level scattering matrix and the tree-level form factor with a two-particle phase space

integral [21]:

(87)

where the second equality stems from the fact that the scattering matrix could also act

between disconnected pieces. Therefore, the second equality means that the particles to the right

of the form factor are the disconnected particles of the scattering matrix, but are connected to

the form factor. This means that the disconnected pieces of the scattering matrix are absorbed

and connected to the form factor. Hence, both the scattering matrix and the form factors

are connected by two-particle cuts. At one-loop order, the cut in the figure is the only one

contributing, and, in terms of the spinor helicity formalism, the phase-space integral reads [21],

=
1

2

∫ 2∏
i=1

d3p′i
(2π)32p′0i

(2π)4δ(4) (p1 + p2 − p′1 − p′2) 〈12 |M2→2| 1′2′〉 〈1′2′3 . . . n|O|0〉 ,

(88)
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where the momentum conservation delta function arises from the interaction between

particles in the tree-level scattering matrix, and the sum runs over all possible intermediate

helicity states. The integration measure corresponds to the Lorentz Invariant Phase Space

integral. It will in general depend on the intermediate states labelled by spinor helicity variables.

The momentum conservation delta function fixes p1 + p2 = p′1 + p′2. Particularizing the final

states to vacuum states, and expressing the measure in terms of spinor helicity variables we

obtain the following expression:

2

(2π)3

∫
d2λ′1d

2λ̃′1d
2λ′2d

2λ̃′2δ
4 (p1 + p2 − p′1 − p′2) 〈12 |M2→2| 1′2′〉 〈1′2′|O|0〉 . (89)

The differential means the integration over spinor and antispinor variables, for instance

d2λ1
1 = dλ1

1dλ̃
1
1. Hence, it is straightforward to look for a parametrization that relates the

intermediate spinors with the external spinors.

In particular, we know that the external spinors in the scattering matrix, λ1 and λ2, form

a complete basis under which every intermediate spinor can be expressed as:(
λ′1

λ′2

)
= A

(
λ1

λ2

)
, A =

(
a11 a12

a21 a22

)
, (90)

where A is the transformation matrix. The intermediate spinors will rotate in terms of

the external spinors through the polar and the azimuthal variables. The polar angle dependence

will result in a rotation matrix over the angle θ, whereas the azimuthal dependence will be in

terms of complex phases. The most general parametrization can be expressed in terms of 8

parameters, in a one-to-one correspondence with the number of degrees of freedom. Hence, the

most general parametrization for the 2→ 2 case is:(
λ′11

λ′12

)
= r1e

iσ1U

(
λ1

1

λ1
2

)
,(

λ′21

λ′22

)
= r2U

(
cosσ2 − sinσ2

sinσ2 cosσ2,

)(
λ2

1

λ2
2

)
,

(91)

where

U =

(
eiφ2 cos θ −ei(φ1+φ2) sin θ

eiφ3 sin θ ei(φ1+φ3) cos θ,

)
, (92)

where r1 and r2 run from 0 to ∞, 0 ≤ θ, σ2 ≤ π/2 and 0 ≤ φ, σ1 ≤ 2π. We assume all the

parameters to be real. Replacing the complex phases by its complex conjugates, we obtain the
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expressions for the antispinors,(
λ̃′11

λ̃′12

)
= r1e

−iσ1U∗

(
λ̃1

1

λ̃1
2

)
,

(
λ̃′21

λ̃′22

)
= r2U

∗

(
cosσ2 − sinσ2

sinσ2 cosσ2,

)(
λ̃2

1

λ̃2
2

)
,

(93)

Hence, by imposing momentum conservation one fixes the value of some parameters[36]:

δ4(P ) = δ4

(
4∑
i=1

Pi

)
= δ4 (−p1 − p2 + p′1 + p′2) =

2∏
α=1

2∏
β̇=1

δ
(
−λα1 λ̃

β̇
1 − λα2 λ̃

β̇
2 + λ′α1 λ̃

′β̇
1 + λ′α2 λ̃

′β̇
2

)
=

iδ (r1 − 1) δ (r2 − 1) δ (σ1) δ (σ2)

4
(∑2

i=1 λ
1
i λ̄

i
i

)(∑2
i=1 λ

2
i λ̄

2
i

)(
〈12〉

(
λ̄i

1λ̄
2
1 + λ̄i

2λ̄
2̇
2

)
+ (λ1

1λ
2
1 + λ1

2λ
2
2) [12]

) .
(94)

Substituting the values of each parameters in both expressions below, we arrive at the

following parametrization:(
λ′1

λ′2

)
= U

(
λ1

λ2

)
=

(
eiφ2 cos θ −ei(φ1+φ2) sin θ

eiφ3 sin θ ei(φ1+φ3) cos θ

)(
λ1

λ2

)
. (95)

In the spinor helicity formalism, the momentum of the particles remains imvariant when

multiplying spinor and antispinor by opposite phases. This is known as little group scaling,

which states that there exists a global phase for each particle. We can easily convince ourselves

that the measure and the momentum conserving delta functions are also independent of these

phases. More concretely, also the integrand does not depend on the global phase. Consequently,

the integrals over two phases (one for each particle) are trivial and can be dropped out. Finally,

one gets the final 2→ 2 parametrization:(
λ′1

λ′2

)
=

(
cos θ − sin θeiφ

sin θe−iφ cos θ

)(
λ1

λ2

)
. (96)

This parametrization represents a rotation, in which the integration over spinor helicity

variables has been translated to the integration over angular variables. The complex conjugate of

this expression holds for the antispinors. This parametrization has been computed in the center

of mass frame, where p′1 + p′2 = p1 + p2, and it is clear that the parametrization only depends

on the polar angle θ and the azimuthal angle φ. Moreover, this parametrization is covariant and

hence it is valid for any frame.

Once we have the intermediate spinors parametrized in terms of external spinors, the

integration is over the azimuthal and the polar angle. In order to obtain the new expression, we

have to perform the change of variables in eq. 89. The change of variables is made through the
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computation of the Jacobian, which is just the derivative of each of the 8 spinor-helicity variables

with respect to each of the 8 parameters that are present in the most general expression of the

parametrization,

J =
[

∂λ
∂θ · · · ∂λ

∂r2

]
=


∂λ1

1

∂θ · · · ∂λ1
1

∂r2
...

. . .
...

∂λ̃2
2

∂θ · · · ∂λ̃2
2

∂r2

 . (97)

In order to express the measure in terms of the new variables, one should compute the

determinant of the Jacobian. The result I got is,

− 8(λ1
1λ̃

1
1 + λ1

2λ̃
1
2)(λ2

1λ̃
2
1 + λ2

2λ̃
2
2) sin θ cos θ((λ̃1

1λ̃
2
1 + λ̃1

2λ̃
2
2)〈12〉+ (λ1

1λ
2
1 + λ1

2λ
2
2)[12]), (98)

which is precisely the same expression as in the denominator of the momentum conserva-

tion delta function in Eq. 94 times a factor that depends only on the polar angle and a minus

sign. Hence, the change of variables reads,

d2λ′1d
2λ̃′1d

2λ′2d
2λ̃′2δ

4 (P ) −→ dφ1dφ2dφ3dθ(−2i) sin θ cos θ. (99)

However, we still have to consider the little group scaling. The fact that spinor and

antispinor are defined only up to a phase, allows to drop out the integration of φ2 and φ3, since

different values of these phases lead to the same momenta. Finally, the full integral in the 2→ 2

is,

I2→2 =
1

16π

∫ 2π

0

dφ

2π

∫ π/2

0

2 sin θ cos θdθ 〈12 |M2→2| 1′2′〉 〈1′2′|O|0〉 . (100)

This equation plays the central role of this chapter. We can then compute anomalous

dimensions by means of minimal form factors, and its contraction with tree-level scattering

amplitudes. In general, every operator acting in an on-shell state would lead to its anomalous

dimension, as can be seen from the previous equation. Therefore, this expression is valid for

every theory. However, the main focus in this work will be on gauge theories, since it is the

mathematical frame in which interactions between particles occur.

5.2 One-loop β-function in Yang-Mills theory

In this section we show the computation of the one-loop β-function in Yang-Mills theory by

means of the parametrization derived in the last section. This section is mainly based on [14].

Let us consider the Lagrangian density L = −GaµνGµν a/(4g2). Before using the expression

in eq. 100, IR divergences must be subtracted. In this particular case, where number of initial

states equals two, one can construct IR-safe ratios by putting the stress-tensor Tµν in the
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denominator leading to the one-loop equation,

γ
(1)
L 〈p1, p2|O|0〉(0)

= − 1

π
〈p1, p2|M⊗ L|0〉(0)

+
1

π
〈p1, p2|L|0〉(0) 〈p1, p2 |M⊗ Tµν | 0〉(0)

〈p1, p2 |Tµν | 0〉(0)
. (101)

In order to obtain the one-loop anomalous dimension, one should study how the four-point

tree amplitude acts on the form factors for the Lagrangian and the stress-tensor. The on-shell

four-gluon amplitude can be computed following the Parke-Taylor expression and considering

the initial state as a color-singlet:

Mabcd
1−2−3+4+δcd = −2g2CAδ

ab 〈12〉4

〈13〉〈32〉〈24〉〈41〉
, (102)

using the parametrization of eq. 96 the amplitude evaluates to,〈
1a−2b−

∣∣∣M(0)
∣∣∣ 1′c−2′d−

〉
δcd = 2g2CAδ

ab 1

cos2 θ sin2 θ
(103)

Therefore, convolution of the tree amplitude with both the Lagrangian density and the

stress-tensor correspond to the following integrals:

〈
1a−2b−|M⊗ L|0

〉(0)
=

2g2CA
16π

∫
dΩ

4π

1

cos2 θ sin2 θ

(
1

2
δab 〈1′2′〉2

)
, (104)

〈
1a−2b+

∣∣∣M⊗ Tαβ,α̇β̇∣∣∣ 0〉(0)

=
2g2CA

16π

∫
dΩ

4π

1

cos2 θ sin2 θ
(2δabλ′α1 λ

′β
1 λ̃
′α̇
2 λ̃
′β̇
2 cos4 θ

+2δabλ̃′α̇1 λ̃
′β̇
1 λ
′α
2 λ
′β
2 sin4 θe4iφ

)
.

(105)

In terms of the intermediate spinors. Using the parametrization in eq. 96, and substituting

the integrals below in eq. 101 the anomalous dimensions is,

γ
(1)
L ≡ −

1

π

〈1a−2b−|M⊗ L|0
〉(0)〈

1a−2b−|L|0
〉(0)

−

〈
1a−2b+

∣∣∣M⊗ Tαβ,α̇β̇∣∣∣ 0〉(0)

〈
1a−2b+

∣∣∣Tαβ,α̇β̇∣∣∣ 0〉(0)


= −2g2CA

16π2

∫ π
2

0

2 sin θ cos θdθ

(
1

cos2 θ sin2 θ
− cos8 θ + sin8 θ

cos2 θ sin2 θ

)
= − 2g2

16π2
× 11CA

3

(106)

In particular, the anomalous dimension is directly related to the β-function of the running

coupling. This anomalous dimension is related to the β-function,

γL = g2 ∂

∂g2

(
β
(
g2
)

g2

)
. (107)

Hence, the anomalous dimension of the Lagrangian density in Yang-Mills theory is simply

the derivative of the β-function. Substituting the value of the anomalous dimension in eq.106,
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the one-loop β-function is:

β
(
g2
)

= − 2g4

16π2
× 11CA

3
, where β

(
g2
)
≡ µ∂µg2(µ). (108)

5.3 Full one-loop anomalous dimension

In this section, we will review the computation of the full one-loop anomalous dimension for

general operators in any gauge theory. This derivation constitutes one of the main applications

of the method derived in [14]. As in the previous section, the goal is to apply eq.100. But, before

we give some comments on the infrared divergences.

Although physical observables are IR finite, as proven in the KLN theorem [26], its con-

stituents can be IR divergent. This is the case of form factors and amplitudes. In general, IR

divergences can be either soft divergences, arising when the momentum of massless particles

has vanishing components; or collinear divergences, pointing out that the massless propagator

is (anti)-parallel to an external state.

In gauge theories, infrared divergences are universal, as it was first predicted by Catani [15].

A generalization for arbitrary number of loops and legs in a general SU(N) gauge theory using

soft collinear effective theory (SCET) was given by Becher and Neubert [2]. The procedure to

obtain the IR divergences was to express UV renormalized amplitudes up to two loop order in

terms of universal subtraction operators I(n)(ε). These subtraction operators are defined as:

I(1)(ε) =
eεγE

Γ(1− ε)
∑
i

(
1

ε2
+

gi

T 2
i

1

ε

)∑
j 6=i

T ai T
a
j

2

(
µ2

−sij

)ε
,

I(2)(ε) =
e−εγEΓ(1− 2ε)

Γ(1− ε)

(
K +

β0

2ε

)
I(1)(2ε)− 1

2
I(1)(ε)

(
I(1)(ε) +

β0

ε

)
+H

(2)
R.S.(ε),

(109)

where T ai refers to the gauge group generator acting on the particle i, µ is the ’t Hooft

renormalisation scale of dimensional regularization. K is given by K = γcusp1 /(2γcusp0 and

gi = −γi0/2 and Ci = T 2
i corresponds to the Casimir operator of the corresponding color rep-

resentation Cq = Cq̄ = CF and Cg = CA. Due to color conservation, the following relation

between gauge group operators and scattering amplitudes is fulfilled
∑
i Ti|Mn(ε, p)〉 = 0, where

p ≡ p1, ..., pn. This in fact corresponds to a generalization of Catani’s result valid to all orders

in perturbation theory.

The exact expression for the full one-loop IR anomalous dimension in color space formalism

is:

γ
(1)
IR ({pi} ;µ) =

∑
i<j

T ai T
a
j γcusp log

µ2

−sij
+
∑
i

γcoll.
i , (110)

where the cusp anomalous dimension takes the following form γcusp = g2/(4π)2. The
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collinear contributions take different expressions depending on the particles considered [2]:

γcoll
g = −b0

g2

16π2
, γcoll

ψ = −3CF
g2

16π2
, (111)

where b0 is the one-loop beta function coefficient. The definition of the IR divergent parts

carries some arbitrariness as to which finite pieces are included, but this arbitrariness cancels in

physical quantities between real emission and virtual contributions. The first term in eq. 110,

that depends on logµ2 comes from soft radiation and can be identified with the integral in the

previous section, eq.104, which corresponds to an integral over real radiation. Therefore, the

general one-loop dilatation operator in an arbitrary gauge theory is,

γ
(1)
O 〈p1, . . . , pn|O|0〉(0)

=− 1

π

〈
p1, . . . , pn

∣∣∣∣∣∣
∑
i<j

(
M2→2

ij +
2g2T ai T

a
j

sin2 θ cos2 θ

)
⊗O

∣∣∣∣∣∣ 0
〉(0)

+ 〈p1, . . . , pn|O|0〉(0) ×
n∑
i=1

γcoll.
i ,

(112)

where Mij denotes the 2 → 2 amplitude acting on the particles i and j. Hence, the full

on-loop anomalous dimension is composed by two terms, the first one is a sum over unitarity

cuts and the soft contribution to the anomalous dimension and second correspond to a sum over

hard-collinear divergences.

5.3.1 Limit in the planar N = 4 SYM theory

In the planar limit of N = 4 SYM theory, interactions occur between neighbouring fields. At

one-loop order, this means that interactions can occur at two neighbouring fields at the same

time. At leading order in the 1/Nc expansion, Ti × Tj → −Nc2 1 for neighbouring legs and

zero otherwise. In N = 4 SYM theory each field is characterised by its super-momentum

λi = (λi, λ̃i, η̃i). Therefore, in N = 4 SYM, apart from the usual momentum conserving delta

function, there exists a super-momentum conserving delta function associated to the fermionic

η̃i variables. It is defined as:

δ8(Q) = δ8(

4∑
i=1

λiη̃i) =

4∏
A=1

4∑
j=2

j−1∑
i=1

〈ij〉η̃Ai η̃Aj sign(i, j), sign(i, j) = (−1)θ(2−i)+θ(2−j) (113)

In particular, for the 2→ 2 case, this equation reads:

δ8(Q) =

4∏
A=1

(
〈12〉η̃A1 η̃A2 − 〈1l1〉 η̃A1 η̃Al1 − 〈1l2〉 η̃

A
1 η̃

A
l2 − 〈2l1〉 η̃

A
2 η̃

A
l1 − 〈2l2〉 η̃

A
2 η̃

A
l2 + 〈l1l2〉 η̃Al1 η̃

A
l2

)
= 〈12〉4e4i(φ1+φ2+φ3)

4∏
A=1

(
e−i(φ1+φ2+φ3)η̃A1 η̃

A
2 + e−iφ3

(
sin θη̃A1 + e−iφ1 cos θη̃A2

)
η̃Al1

+e−iφ2
(
e−iφ1 sin θη̃A2 − cos θη̃A1

)
η̃Al2 + η̃Al1 η̃

A
l2

)
(114)
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From this expression, one can directly see that the η̃i variables follow a rotation of the

form: (
η̃Al

η̃Al2

)
= U∗

(
η̃A1

η̃A2

)
, (115)

which corresponds to the same rotation as the antispinors, see eq. 96. Hence, due to the

super-momentum conservation delta function, the η̃i transform analogously as the λ̃i. Further-

more, the amplitude in the planar limit generalizes the expression in eq. 102 by using Nair’s

on-shell superfield Eq. 39. In this expression, for the case of a gluon, one extracts four powers

of η̃i. In terms of the current parametrization, it corresponds to an extra cos4 θ factor,

〈
1a−2b+|M|1′Φ2′Φ̄

〉
= −2g2CAδ

ab 〈11′〉2 〈12′〉2

〈11′〉 〈12′〉 〈21′〉 〈22′〉
= −2g2CAδ

ab cos4 θ

cos2 θ sin2 θ
. (116)

Finally, substituting this amplitude and the expression for the generators in eq. 112, one

obtains [14]:

γ
(1)
O 〈1, . . . , n|O|0〉

(0) =
4g2Nc
16π2

n∑
i=1

∫ 2π

0

dφ

2π

∫ π
2

0

dθ cot θ

(
〈1, . . . , i, i+ 1, . . . , n|O|0〉(0)

−〈1, . . . , i′, (i+ 1)′, . . . , n|O|0〉(0)

)
.

(117)

This expression corresponds to the one-loop dilatation operator in the planar limit of

N = 4 SYM theory. In this limit, local operators represent spin chain states, and the dilatation

generator represents the spin chain Hamiltonian. Hence, by using the superoscillator repre-

sentation of the algebra psu(2, 2 | 4), Zwiebel derived the same expression for the spin chain

representation in [36].

The correspondence between superoscillator variables and the super spinor helicity vari-

ables used in this section relies on the fact that they do fulfill the same commutation relations,

[aα, a
†β ] = δβα = [∂α, λ

β ]. Moreover, this framework can also be used to study this methodol-

ogy in presence of matter fields. In the computations of the previous section, in terms of the

Lagrangian density, there is no couple to matter. However, the infrared structure of the theory

changes when considering matter contributions, detected by the stress tensor.

The way the stress tensor couples to matter fields, in particular to fermions and scalars,

can be seen from the following equations,〈
1Φ̄2Φ

∣∣∣Tαβ,α̇β̇∣∣∣ 0〉 =
1

3

(
pαα̇1 pββ̇1 + pαα̇2 pββ̇2 − pαα̇1 pββ̇2 − p

βα̇
1 pαβ̇2 − p

αβ̇
1 pβα̇2 − p

ββ̇
1 pαα̇2

)
,〈

1ψ̄2ψ

∣∣∣Tαβ,α̇β̇∣∣∣ 0〉 =
1

2

(
λα1λ

β
1 λ̃

α̇
1 λ̃

β̇
2 + λα1λ

β
1 λ̃

β̇
1 λ̃

α̇
2 − λα1λ

β
2 λ̃

α̇
2 λ̃

β̇
2 − λ

β
1λ

α
2 λ̃

α̇
2 λ̃

β̇
2

)
.

(118)

The derivation was made by requiring that the expectation value should return the mo-

mentum of the particles, and that the stress-tensor should be conserved. The computation of

the tree-level amplitude is analogous to the case below, eq. 116, but extracting different powers

of η̃i depending on which particle we consider.
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In this case, three contributions appear corresponding to fermions, scalars and antifermions,

for which we should extract three, two and one powers of η̃i, respectively. In terms of the

parametrization in eq. 96, this dependence will be reflected in terms of angular variables. After

dropping out the azimuthal integration, the general expression is,〈
1a−2b+

∣∣∣M⊗ Tαβ,α̇β̇∣∣∣ 0〉(0)

〈
1a−2b+

∣∣∣Tαβ,α̇β̇∣∣∣ 0〉(0)
' 2g2

16π

∫ π
2

0

2 sin θ cos θdθ

cos2 θ sin2 θ

[
CA
(
cos8 θ + sin8 θ

)
+2nfTf

(
cos6 θ sin2 θ + sin6 θ cos2 θ

)
+ 2nsTs cos4 θ sin4 θ

]
,

(119)

where ns, nf correspond to the number of complex scalars and Dirac fermions (2nf Weyl

fermions), respectively. CA denotes the Casimir operator in the adjoint representation, which

corresponds to Nc for a general gauge group SU(Nc), as occurs in eq. 116. Therefore, one can

see that depending on the particle content of the theory, the infrared structure will be modified

following this equation.

In order to check the validity of this expression, one can substitute the particle content

of N = 4 SYM theory and see that the only contribution in the brackets reduces to CA. Con-

sequently, substituting this expression in the anomalous dimensions, one obtain the vanishing

of the β-function by means of eq. 107, as was expected due to the superconformal invariance of

N = 4 SYM theory.

5.4 Anomalous dimensions in twist-two operators

Another interesting application due to its structure is the computation of anomalous dimensions

for twist-two operators decaying to two external states. Leading twist-two operators are very

important objects in Yang-Mills theory. They naturally appear in QCD for describing deep

inelastic scattering. In general, twist-two operators are particularly useful for theories involving

massless particles with spin.

The generic form of twist-two operators for spin j partilces isOµ1,...,µj
j =

∏
j [q̄γ

µ1Dµ2 ...Dµnq]

where
∏
j refers to the projector on a representation with spin j. Let us now consider an example

of a twist-two operator in a two-scalar interaction, i.e., with no spin interaction. The general

form of this operator is,

Om = inΦ̄∂µ1 · · · ∂µmΦ. (120)

Therefore, the contraction with external states will return polynomials in its momentum.

For the scalars particles in this example, the contraction takes the following form,〈
1Φ1Φ̄ |Om| 0

〉
= pµ1

1 · · · p
µm
1 , (121)

when contracted with the external particles. In general form factors are also contracted
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with the intermediate states crossing the cut. However, in this concrete example, the contraction

with intermediate states returns a momentum proportional to the external momenta, which

means that the angular dependence can be treated independently,

p′αα̇1 ≡ λ′α1 λ̃′α̇1 = λα1 λ̃
α̇
1

(
cos θ − sin θeiφ

) (
cos θ + sin θe−iφ

)
= pαα̇1 (cos(2θ)− i sin(2θ) sinφ).

(122)

Hence, from the structure of these form factors whose dependence resides only on the

external momentum, form factors of intermediate states are proportional to form factors of

external states. The second quantity to be computed is the tree-level scattering matrix, which

for scalar fields does not depend on the azimuthal angle.

Hence, the only dependence resides in eq. 122. In this way, one can already drop out

the integration over the azimuthal angle to simplify the computations. In this particular case,

by rescaling the polar angle from 2θ → θ, eq. 122 rescales as (cos(2θ) − i sin(2θ) sinφ) →
(cos(θ)− i sin(θ) sinφ), and the integration over the azimuthal angle is:∫ 2π

0

dφ

2π
(cos θ − i sin θ sinφ)m = Pm(cos θ), (123)

leads to the Legendre polynomials in terms of the polar angle. The remaining integration

over the polar angle depends on the tree-level amplitude, and it takes the following expression,

γ
(1)
Om − γ

(1)
IR = − 1

16π2

∫ π

0

sin θdθ

2
M(0)(cos θ)Pm(cos θ) ≡ − 1

π
a(0)
m , (124)

where am is identified with the partial-wave amplitude with angular momentum m. This

term can also be identified with the phase of the leading approximation of the scattering matrix

with definite angular momentum Sm = 1 + iMm = eiam . Hence, from this results, one can

interprets two different conclusions.

The first one shows the expected role of the anomalous dimension acting as minus the

phase of the scattering matrix divided by π, which is the central argument of this work. The

second stems from the fact that the phase corresponds also to the partial-wave amplitude with

definite angular momentum, which reflects that two-particle states with definite angular momen-

tum map to twist-two operators and that from twist-two operators, one can obtain the angular

decomposition of the scattering matrix.

As a final crosscheck, let us give one example of an application of this equation. Let us

consider the case of two scalar in the planar limit of N = 4 SYM theory, where the twist-two

operator takes the following form: Om = tr[Z∂+
mZ], where m is even. Substituting the value of

the operator in eq. 117, one simply obtains:

γ
(1)
Om = −2g2Nc

16π2

∫ π

0

2 dθ

sin θ
(Pm(cos θ)− Pm(1)) =

g2Nc
16π2

× 8S1(m), (125)

where S1(m) =
∑m
i=1

1
i denote the sum of harmonic numbers. This dependence in the
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harmonic numbers occurs in the computation of anomalous dimensions of operators in the SL(2)

sector, as stated for example in [27], which reflects the fact that twist-two operators constitute

a particular example of length-two operators in the SL(2) sector.
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6 2 → 3 case

In the previous chapter, we derived the full one-loop anomalous dimension from 2 → 2 am-

plitudes. However, in principle there are more diagrams that can contribute to the one-loop

anomalous dimension. In general, the requirement of having two-particle cuts leaves some free-

dom in the number of external particles. In this section, we review the computations of the

one-loop anomalous dimensions from 2→ 3 amplitudes.

These amplitudes correspond to length-changing effects. In particular, they occur when

different length operators mix under renormalisation. In order to illustrate this case, let us

consider a theory in which two different length operators interact. One suitable example for this

purpose corresponds to the Yukawa interaction.

6.1 Yukawa interaction

In this section we review the computations in [14], studying the Yukawa interaction between one

real scalar and one Weyl fermion. The interaction Lagrangian takes the following form,

Lint = −λOλ − yOy with Oλ =
1

4!
φ4 and Oy =

1

2
(ψψφ+ h.c.). (126)

Due to the presence of operators of different lengths, we will have different contributions

for the anomalous dimension matrix. One will have in general for different contributions to the

anomalous dimension matrix. The diagonal entries correspond to the length-preserving entries

which lead to the one-loop anomalous dimension with no operator mixing. These two examples

are analogous to the computations made in the last chapter. Moreover, infrared divergences are

diagonal in its structure and consequently they will only appear in the diagonal entries.

The other two contributions come from operator mixing. On the one hand, one case

corresponds to length-decreasing mixing which involves the study of the 3→ 2 amplitude over a

three-particle cut. This case will be studied in the next chapter, since it involves computations

at two-loop and a new parametrization is required.

On the other hand, the last contribution corresponds to length-increasing mixing, whose

anomalous dimension can be obtained form the sum of two contributions: a 2 → 2 amplitude

acting on the non-minimal form factor and the 2 → 3 amplitude acting on the minimal form

factor. The latter is the interesting case of study in this chapter. However, we will briefly derive

all the entries except for the two-loop contribution. Then, the matrix form of the renormalization

equation is:

µ ∂

∂µ
+
∑
a=y,λ

β(a)
∂

∂a

( Oy
Oλ

)
=

(
γyy γyλ

γλy γλλ

)(
Oy
Oλ

)
. (127)
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As was already discussed, the form factor can be defined as a small perturbation to

the scattering matrix, and hence they represent the derivative with respect to the coupling,

Fa = − ∂
∂aM. With this definition we can separate the renormalization group equations in

terms of the presence or not of the interaction,µUV
∂

∂µUV
+
∑
b=y,λ

β(b)
∂

∂b

M = 0,

µUV
∂

∂µUV
+
∑
b=y,λ

β(b)
∂

∂b

Fa = −
∑
b=y,λ

γabFb,

(128)

where in the second equation we can see explicitly the interaction between the form factors

of the different operators. In this case, we have only considered UV renomalization, since infrared

divergences will only appear in diagonal elements where there is no mixing of operators, and

they can be computed independently (see example of the previous chapter ??). Analogously to

eq. 107, but including operator mixing:

∂

∂a
β(b) = γab, a, b = λ or y. (129)

In order to make the computations consistent and easy to follow, we will first briefly review

the calculations of the diagonal anomalous dimensions corresponding to acting with the tree

2→ 2 amplitude over the minimal form factor, to straightforwardly show to the interesting case

of study in this chapter, i.e., the length decreasing mixing case involving the 2→ 3 amplitude.

The computation of the diagonal entries in the anomalous dimension matrix involves

infrared divergences that can be computed through the stress tensor. The minimal form factors

of the corresponding operators are,

〈1φ2φ3φ4φ |Oλ| 0〉 = 1,
〈
1ψ̄2ψ̄3φ |Oy| 0

〉
= 〈12〉, 〈1ψ2ψ3φ |Oy| 0〉 = [12], (130)

with the corresponding elemental scattering amplitudes,

M1φ2φ3φ4φ = −λ, M1ψ̄2ψ̄3φ = −y〈12〉, M1ψ2ψ3φ = −y[12]. (131)

Hence, the different four point amplitudes for this case will be the ones for which the final

states are either two (anti-)fermions, two scalars or one scalar and one fermion. Following the

parametrization in eq.96, the four point amplitudes reads:〈
1φ2φ|M|1′ψ̄2′ψ

〉
= −

〈
1ψ̄2ψ|M|1′φ2′φ

〉∗
= y2

(
cos θ

sin θ
− sin θ

cos θ

)
e−iφ,〈

1ψ̄2ψ̄|M|1′ψ̄2′ψ̄

〉
=
〈

1ψ̄2ψ|M|1′ψ̄2′ψ

〉
= −

〈
1ψ̄2ψ|M|1′ψ2′ψ̄

〉
= −y2,〈

1ψ̄2ψ̄|M|1′ψ2′ψ
〉

= −3y2,
〈

1ψ̄2φ|M|1′ψ̄2′φ

〉
= −y2 1 + cos2 θ

cos θ
.

(132)

The computation of these amplitudes was made by the factorization in terms of the
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elemental particles of eq. [:eq6.6]. Les us illustrate it with one example:

M1ψ2ψ1′
ψ̄

2′
ψ̄

=
〈
1ψ2ψ | M | 1′ψ2′ψ

〉
= 〈1ψ2ψ | M | iφ〉

1

〈12〉 [12]

〈
iφ | M | 1′ψ2′ψ

〉
= (−y[12])

1

〈12〉 [12]
(−y 〈34〉) = y2 〈34〉

〈12〉
,

(133)

where the first equality stems from crossing symmetry, and in the last step we have made

use of the parametrization. In the diagonal elements, the infrared divergences acting in the

diagonal elements will come form the coupling of the stress tensor to either scalars and fermions.

Then, we will have two different collinear anomalous dimensions. Acting with the tree-level

scattering matrix over the stress-tensor in the same way as in eqs. 104, 105 of the previous

chapter, we obtain:

2γcoll.
φ ≡ 1

π

〈
1φ2φ

∣∣M⊗ Tαβ,α̇β∣∣ 0〉(0)〈
1φ2φ

∣∣∣Tαβ,α̇β̇∣∣∣ 0〉(0)

=
1

16π2

∫ π
2

0

2 cos θ sin θdθ

(
−1

4
λ(1 + cos(4θ)) + 6y2 cos2(2θ)

)
=

2y2

16π2
,

2γcoll.
ψ =

1

16π2

∫ π
2

0

2 cos θ sin θdθ
(
2y2 cos2(2θ)− y2 cos(4θ)

)
=

y2

16π2
.

(134)

Both expressions do not depend on the λ term, since this corresponds to the pure 4-

scalar interaction, and in that case infrared divergences are zero. The extra two comes from the

contribution of fermions and antifermions.

Hence, the diagonal anomalous dimension in the scalar case comes from the sum of the

infrared divergences and the contribution of all the scalar four-point amplitudes. More concretely,

there will be a contribution for every possible combination of the final states. In this case, since all

particles are scalars, all possible combinations will contribute analogously. Finally the expression

of the anomalous dimension,

γ
(1)
λλ = 4γcoll.

φ − 1

π

〈1φ2φ3φ4φ |(M12 +M13 +M14 +M23 +M24 +M34)⊗Oλ| 0〉(0)

〈1φ2φ3φ4φ |Oλ| 0〉(0)

=
4y2

16π2
+

6λ

16π2
,

(135)

and the corresponding β-function:

β(λ) =
3λ2

16π2
. (136)

The other anomalous dimension entry corresponds to the Yukawa vertex, where the ampli-

tudes contributing correspond to the ones having either two (anti)fermions, or one (anti)fermion

with one scalar as final states, as they are the only ones the minimal form factor can be contracted
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with. The anomalous dimension and the β-function are:

γ(1)
yy = 2γcoll.

ψ̄ + γcoll.
φ − 1

π

〈
1ψ̄2ψ̄3φ |(M12 +M13 +M23)⊗Oy| 0

〉(0)〈
1ψ̄2ψ̄3φ |Oy| 0

〉(0)

=
2y2

16π2
− 1

16π2

∫ π
2

0

2 cos θ sin θdθ
(
−4y2 − 2y2

(
1 + cos2 θ

)
− 2y2

(
1 + sin2 θ

))
=

12y2

16π2
,

(137)

and the corresponding β-function:

β(λ) =
4y3

16π2
. (138)

After having reviewed the 2 → 2 amplitude, it is straightforward to continue with the

2 → 3 case. This case corresponds to the length increasing mixing between the operators Oλ
andOy. In this case there will be no infrared anomalous dimensions, since, as already commented

below, they are diagonal in their structure.

The anomalous dimension will then be computed from two contributions. The first one

corresponds to acting with the 2 → 2 on the non-minimal form factor Oy, which will carry

an extra scalar field. The second contribution will come from 2 → 3 scattering acting on the

minimal form factor,

γ
(1)
yλ =− 1

π

〈
1φ2φ3φ4φ

∣∣(M2←2
12 +M2←2

13 +M2←2
14 +M2←2

23 +M2←2
24 +M2←2

34

)
⊗Oy

∣∣ 0〉(0)

〈1φ2φ3φ4φ |Oλ| 0〉(0)

− 1

π

〈
1φ2φ3φ4φ

∣∣(M3←2
123 +M3←2

124 +M3←2
134 +M3←2

234

)
⊗Oy

∣∣ 0〉(0)

〈1φ2φ3φ4φ |Oλ| 0〉(0)
.

(139)

Contributions from the first line will carry a factor of y3 coming from the y2 in the

amplitudes and the y term in the non-minimal form factor. The amplitudes in the second line

will come from amplitudes of the form,

M1ψ2ψ3φ4φ5φ = yλ
1

〈12〉
− y3

(
〈35〉
〈13〉〈25〉

+ 5 permutations of (345)

)
. (140)

Therefore, contributions coming from the second line will carry both a λy factor from the

first term and y3 from the rest, leading to an interplay between both lines. Let us focus on the

first contribution. Let us illustrate the computation of anomalous dimensions by computing the

contributions of the three diagrams in figure 12, that will lead to some cancellations.

The first two diagrams correspond to the integral between four-point amplitudes and the

non-minimal form factor, whereas the third one to the five-point amplitude with the minimal

form factor. The first diagram corresponds to:〈
1φ2φ|M|1′ψ2′ψ̄

〉
first term

〈
1′ψ2′ψ̄3φ4φ | Oy | 0

〉
= y3 〈2′1〉 〈1′3〉

〈1′1〉 〈2′3〉
= y3 cos θ

sin θeiφ

(
〈13〉 cos θ − 〈23〉 sin θeiφ

〈13〉 sin θe−iφ + 〈23〉 cos θ

)
,

(141)
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Figure 12: Three different box diagrams whose sum leads to logarithm cancellations [14].

where in the second line we have particularized to the parametrization in eq.96. The

azimuthal integration can be done by the change of variables z = eiφ that leads to a contour

integral along the unit circle that is solved by means of Cauchy’s theorem,∫ 2π

0

dφ

2π

∫ π
2

0

dθ2 cos2 θ
〈13〉 cos θ − eiφ〈23〉 sin θ
〈13〉 sin θ + eiφ〈23〉 cos θ

=

∫ 1

0

dz

z

∫ π
2

0

dθ2 cos2 θ
〈13〉 cos θ − z〈23〉 sin θ
〈13〉 sin θ + z〈23〉 cos θ

= −
∫ π

2

0

dθ2 cos2 θ

(
cos θ

sin θ
− 1

cos θ sin θ
Θ

(
1−

∣∣∣∣ 〈13〉 sin θ
〈23〉 cos θ

∣∣∣∣)) = 1 + log
s23

s13 + s23
.

(142)

The second diagram corresponds to the exchange between particles 1 and 3. Therefore,

by simply replacing 1↔ 3 one obtains the contribution for the second diagram,〈
2φ3φ|M|1′ψ2′ψ̄

〉
first term

〈
1′ψ2′ψ̄1φ4φ | Oy | 0

〉
−→ 1 + log

s12

s12 + s13
. (143)

In the third diagram participates the five-point amplitude acting on the minimal form

factor. The parametrization in eq. 96 parametrizes two intermediate spinors in terms of two

external spinors. Hence, it becomes necessary to express the three external particles in terms

of two particles. Focusing only in the y3 term in the five point amplitude, the third diagram

corresponds to:〈
1φ2φ3φ|M|1′ψ̄2′ψ̄

〉〈
1′ψ̄2′ψ̄4φ |Oy| 0

〉
=

〈13〉
〈1′1〉 〈2′3〉

〈1′2′〉 =

=

∫ π
2

0

dθ2
cos θ

sin θ
Θ

(
1−

∣∣∣∣ [12]〈23〉 cos θ

〈13〉√s123 sin θ

∣∣∣∣) = log

(
(s12 + s13) (s13 + s23)

s12s23

)
.

(144)

In order to make use of the parametrization in eq.96 we should express the three external

particles as a two particle by means of,

pa = p1
s123

s12 + s13
, pb = p2 + p3 − p1

s23

s12 + s13
,

λa = λ1

√
s123

s12 + s13
, λb = ([12]λ2 + [13]λ3)

1√
s12 + s13

,

(145)

where we impose the particles a and b as on-shell particles fulfilling pa+pb = p1 +p2 +p3.
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Analogously to the previous cases, the integration then takes the explicit form,∫
dΩ

4π

〈1′2′〉 〈13〉
〈1′1〉 〈2′3〉

=

∫ 2π

0

dφ

2π

∫ π
2

0

dθ
2 cos θ

sin θ + eiφ cos θ [12](23〉
〈13)
√
s123

. (146)

These three diagrams are then an example of the non-trivial mixing of the two types of

contributions to the anomalous dimension, since the sum of them leads to the cancellation of

the logarithm terms,(
1 + log

s23

s13 + s23

)
+

(
1 + log

s12

s12 + s13

)
+ log

(
(s12 + s13) (s13 + s23)

s12s23

)
= 2. (147)

Finally, from the other term in the amplitude λy, we get the full anomalous dimension,

γyλ = − 96y3

16π2
+

8yλ

16π2
. (148)
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7 3 → 2 case

In this chapter we will use the unitarity method in order to compute the two-loop anomalous

dimension. Just as in the one-loop case, there are in general different cuts contributing to the

two-loop anomalous dimension. More concretely, in this chapter we will study the simplest two-

loop cut which corresponds to convolution between the 3→ 2 amplitude and the minimal form

factor form factor.

In the first section we will give the new parametrization corresponded to this cut. In

the next two sections, we will review two applications to this case. More concretely, the first

application, particularizing to the Yukawa theory, we will compute the final entry to the anoma-

lous dimension and, consequently, give the expression of the full anomalous dimension matrix

with its corresponding total β-function. In the second application we review another example of

the computation of the dilatation operator by means of the parametrization derived in the first

section.

7.1 Parametrization of spinors

In this section we will derive the full parametrization for the 2 → 3 amplitude. Starting with

the most general expression, we analyze which constrains should be applied in order to ob-

tain the final expression suitable for the computations of the next sections. The most general

parametrization will be of the form,
λ′1

λ′2

λ′3

 = A

(
λ1

λ2

)
, A =


a11 a12

a21 a22

a31 a32

 . (149)

The first step is to express the parametrization in terms of as many parameters as variables

have the theory. The goal is to express the three intermediate spinors crossing the cut in terms

of the two external spinors. Taking into account the first and second components of both spinors

and antispinors one amounts to a total of 12 spinor variables. Therefore, the parametrization

will in principle be constitute of 12 different parameters. We do show in order to obtain a square

matrix for the Jacobian, which simplifies some computations such as the determinant.

In particular, there will be 10 different contributions corresponding to angles and 2 radial

variables. Furthermore, from the previous equation we see that the transformation matrix is

a 3 × 2 matrix, formed in general by the product of a unitary 3 × 3 matrix U times a 3 × 2

rectangular matrix U0. This choice in not unique in the sense that the same total transformation

matrix holds by applying the following transformation to each of the matrices:

U → U diag
{
eiφa , eiφb , eiφc

}
, U0 → U0 diag

{
eiφa , eiφb

}
. (150)
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With this freedom we can then define both matrices as,

U = diag
(
eiφ2 , eiφ3 , eiφ4

)
R1 (θ3)R3 (θ2) diag

{
1, 1, eiρ

)
U0 diag

{
1, eiφ1

}
, (151)

where,

U0 =


1 0

0 cos θ1

0 sin θ1

 . (152)

The matrix Ri(x) refers to the rotation matrix along the i axis by an angle x. All in all,

the change of variables for this case will be of the form [36],
λ′11

λ′12

λ′13

 = r1e
iσ1U

(
λ1

1

λ1
2

)
,


λ′21

λ′22

λ′23

 = r2UR3 (σ2)

(
λ2

1

λ2
2

)
,

(153)

where r1 and r2 run from 0 to ∞, 0 ≤ θ, σ2 ≤ π/2 and 0 ≤ φ, σ1, ρ ≤ 2π. We assume all

the parameters to be real. The complex conjugate of this expression leads to the parametrization

of antispinors. Imposing momentum conservation from the delta function fixes the values of some

of the parameters. Computing the whole expression equivalents to,

δ4(P ) = δ4 (−p1 − p2 + p′1 + p′2 + p′3) =

2∏
α=1

2∏
β̇=1

δ
(
−λα1 λ̃

β̇
1 − λα2 λ̃

β̇
2 + λ′α1 λ̃

′β̇
1 + λ′α2 λ̃

′β̇
2 + λ′α3 λ̃

′β̇
3

)
=

iδ (r1 − 1) δ (r2 − 1) δ (σ1) δ (σ2)

4
(∑2

i=1 λ
1
i λ̄

i
i

)(∑2
i=1 λ

2
i λ̄

2
i

)(
〈12〉

(
λ̄i

1λ̄
2
1 + λ̄i

2λ̄
2̇
2

)
+ (λ1

1λ
2
1 + λ1

2λ
2
2) [12]

) .
(154)

Just as in the 2 → 2 parametrization, momentum conservation fixes ri = 1 and σi = 0.

Replacing these values in the transformation matrix leads to,

A =


eiφ2c2 −ei(φ1+φ2)c1s2

eiφ3c3s2 ei(φ1+φ3)
(
c1c2c3 − eiρs1s3

)
eiφ4s2s3 ei(φ1+φ4)

(
c1c2s3 + eiρc3s1

)
 . (155)

The little group scaling condition sets three of the azimuthal angles to zero due to the

three intermediate spinors. In particular, the vanishing phases will be the ones that lead to the
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same momenta. Hence, setting φ2, φ3, φ4 → 0 and φ1 → φ, the final parametrization,
λ′1

λ′2

λ′3

 =


c2 −eiφc1s2

c3s2 eiφ
(
c1c2c3 − eiρs1s3

)
s2s3 eiφ

(
c1c2s3 + eiρc3s1

)

(
λ1

λ2

)
(156)

The complex conjugation of this expression holds for the antispinors. Hence, through this

parametrization, the relation between intermediate and external spinors relies only on angular

variables. The integration now should be done over the polar angle θ and the azimuthal angle

φ.

The change of variables for the measure is done through the determinant of the Jacobian.

The computation of the Jacobian represents the partial derivative of each of the external spinors

with respect to each of the 12 parameters. Only after its computation, together with the mo-

mentum conservation delta function, one sets ri = 1 and σi = 0. The Jacobian for this case is

then a square 12× 12 matrix. The expression of the determinant that we obtained is:

32 cos θ1 cos θ2 cos θ3 sin θ1 sin3 θ2 sin θ3〈12〉[21]f(λ, λ̄) (157)

where f(λ, λ̄) represents the spinor dependence. We saw that after some calculations its

expression is:

f(λ, λ̄) =
(
(λ2

1)2(λ1
2)2 − (λ1

1)2(λ2
2)2
)
λ̄1̇

1λ̄
1̇
2

(
(λ̄2

1)2̇ + (λ̄2̇
2)2
)
−
(
λ1

1λ
2
1(λ̄1̇

1)2 + λ1
2λ

2
2(λ̄1̇

2)2
)

(
(λ̄2̇

1)2 + (λ̄2̇
2)2
)
〈12〉+

(
(λ2

1)2 + (λ2
2)2
)

(λ1
1λ̄

1̇
1 + λ1

2λ̄
1̇
2)(λ1

1λ̄
2̇
1 + λ1

2λ̄
2̇
2)[21].

(158)

After some computations, this function leads to the following expression:

f(λ, λ̄) =4
(
λ1

1λ̄
1̇
1 + λ1

2λ̄
1̇
2

)(
λ2

1λ̄
2̇
1 + λ2

2λ̄
2̇
2

)(
〈12〉

(
λ̄1̇

1λ̄
2̇
1 + λ̄1̇

2λ̄
2̇
2

)
+
(
λ1

1λ
2
1 + λ1

2λ
2
2

)
[12]
)
,

(159)

which is precisely the same that appears in the denominator of the momentum conserving

delta function, and hence when contracting the Jacobian with the momentum delta function,

one obtains the integration measure in terms of the angular variables,

d2λ′1d
2λ̃′1d

2λ′2d
2λ̃′2d

2λ′3d
2λ̃′3δ

4 (P ) −→ dρdφ1dφ2dφ3dφ4dθ2 cos θ1 sin θ12 cos θ3 sin θ34 cos θ2 sin3 θ2.

(160)

Furthermore, the integration of three of the phases drops out due to little group scaling in

the sense that different values of the phases φ2, φ3 and φ4 lead to the same momenta. Renaming

φ1 → φ, the full integral in the 3→ 2 case is,

I3→2 =
〈12〉[21]

44π33!

∫
dΩ3 〈12 |M3→2| 1′2′3′〉 〈1′2′3′|O|0〉 , (161)
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with the measure given by,

dΩ3 = 4 cos θ3 sin3 θ3dθ32 cos θ2 sin θ2dθ22 cos θ1 sin θ1dθ1
dρ

2π

dφ

2π
. (162)

This equation will be the starting point of the next sections. By means of this equation

one can compute two-loop anomalous dimensions.

7.2 Yukawa interaction

Considering the Yukawa interaction introduced in the last chapter, in this section we will review

the computation of the anomalous dimension from the 3 → 2 amplitude acting on the minimal

form factor. Moreover, being the only anomalous dimension entry not computed yet, the calcu-

lation will lead to the complete anomalous dimension matrix and the complete β-function. This

section is mainly based on [14].

In the previous chapter, we review the computation of the length-preserving and the

length-increasing mixing anomalous dimension. Therefore, in this case we will compute the

length-decreasing mixing of Oλ into Oy. The novelty of this method is that the computations

involve a three-particle cut, and this will lead to the two-loop anomalous dimension. Therefore

the anomalous dimension will take the form,

γλy = − 1

π

〈
1ψ2ψ3φ

∣∣(M2←3
12

)
⊗Oλ

∣∣ 0〉(0)

〈1ψ2ψ3φ |Oy| 0〉(0)
. (163)

The expression of the five point amplitude in eq. 140 leads to seven contributions, six

of them proportional to y3 and one proportional to λy. In particular the λy contribution does

not depend on the intermediate spinors and consequently the angular integration will be trivial.

Substituting this amplitude in the integral of eq. 160,

〈12〉[21]

44π33!

∫
dΩ3

〈
1ψ2ψ |M2→3| 1′φ2′φ3′φ

〉
λy term

〈
1′φ2′φ3′φ3φ|Oλ|0

〉
= −1

6

λy

44π3
〈1ψ2ψ3φ |Oy| 0〉 .

(164)

Let us now consider the first term proportional to y3 in the five-point amplitude. Ap-

plying the parametrization in eq. 156 leads to a contribution that only depends on elementary

trigonometric functions,

〈
1ψ2ψ

∣∣M2←3
∣∣ 1′φ2′φ3′φ

〉∣∣
first y3 term

= − y3

〈12〉
(
eiρ tan θ1 cot θ2 csc θ2 cot θ3 + cot2 θ2 + 1

)
.

(165)

Then the integration reads,

s12

44π3

1

3!

∫
dµ
〈
1ψ2ψ

∣∣M2←3
∣∣ 1′φ2′φ3′φ

〉∣∣∣∣
first y3 term

〈
1′φ2′φ3′φ3φ |Oλ| 0

〉
=

2y3

3!(4π)4
〈1ψ2ψ3φ |Oy| 0〉 .

(166)

56



From eq. 163, that only depends on trigonometric functions and the external spinors,

one can see that the contributions from the other five permutations lead to the same integral.

Consequently, the anomalous dimension is:

γλy = − 2y3

(4π)4
+

1

6

yλ

(4π)4
, (167)

and the corresponding two-loop β-function,

β2(y) = − 2y3λ

(16π2)2
+

1

12

yλ2

(16π2)2
. (168)

Recalling the results from the previous chapter, the total anomalous dimension matrix,(
γyy γyλ

γλy γλλ

)
=

1

16π2

(
12y2 +O

(
y4
)

−96y3 + 8yλ+O
(
y5
)

− 2y3

16π2 + 1
6
yλ

16π2 +O
(
y5
)

6λ+ 4y2 +O
(
y4
) )

, (169)

with the one-loop β-function,

β(1)(y) =
1

16π2

(
4y3
)
, β(1)(λ) =

1

16π2

(
−24y4 + 4y2λ+ 3λ2

)
(170)

7.3 Computation of D3→2

As another application of the parametrization derived in the first section, in this section we

will derive the dilatation operator in the planar limit of N = 4 SYM theory. In [36] Zwiebel

derived a relation between the dilatation generator DL→2 and tree-level scattering amplitudes.

The general form of this relation is,

〈Λ1,Λ2 |DL→2| PL〉 =

2(2π)1−2L

∫
dΛ3 dΛ4 . . . dΛL+2AL+2

(
1−, 2−, 3, . . . L+ 2

)
PL((L+ 2), (L+ 1), . . . 3),

(171)

where Λi = (λi, λ̄i, ηi) refers to the supermomentum of the particle i. In this section we

will use this expression particularizing to L = 3, that takes the following form,〈
Λ̄1Λ̄2

∣∣∣D[0]
3→2

∣∣∣P3

〉
= 2(2π)−5

∫
dΛ̄3 dΛ̄4 dΛ̄5A

MHV
5

(
1̄−, 2̄−, 3̄, 4̄, 5̄

)
P3(5̄, 4̄, 3̄)

= 2(2π)−5

∫
dΛ̄3 dΛ̄4 dΛ̄5

δ4(P )δ8(Q)

〈12〉〈23〉〈34〉〈45〉〈51〉
P3(5̄, 4̄, 3̄),

(172)

where the Λ̄i stems from the fact that we will use the variable η̄ instead of η in the

supermomentum definition. The particles 3, 4, 5 are the intermediate particles crossing the cut.

As in the 2 → 2 case, the supermomentum conservation imposes that the η̄ variables rotate in

the same way as the λ.

By means of the parametrization in eq. 155, the φi integrations can be dropped out and
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then the spinors λ, λ̄ and η̄ rotate as:
λ′1

λ′2

λ′3

 =


c2 −c1s2

c3s2 c1c2c3 − eiρs1s3

s2s3 c1c2s3 + eiρc3s1


(
λ1

λ2

)
,


λ̄′1

λ̄′2

λ̄′3

 =


c2 −c1s2

c3s2 c1c2c3 − e−iρs1s3

s2s3 c1c2s3 + e−iρc3s1


(
λ̄1

λ̄2

)
,


η̄′1

η̄′2

η̄′3

 =


c2 −c1s2

c3s2 c1c2c3 − eiρs1s3

s2s3 c1c2s3 + eiρc3s1


(
η̄1

η̄2

)
,

(173)

where the only difference resides in the complex conjugate of the ρ phase in the antispinor

parametrization.

Expressing now the intermediate spinors by means of this parametrization, and computing

the denominator of the amplitude, one obtains simply an expression that depends only on the

angular variables. Performing the change of variables in eqs. 157, 158, the integral takes the

form, 〈
Λ̄1Λ̄2

∣∣∣D[0]
3→2

∣∣∣P3

〉
=

16

2πi

∫
dρ

3∏
i=1

dθi
c2
c1

e−iρ

1− eiρ
s1c2s3
c1c3

[12]P3 (1̄′, 2̄′, 3̄′) . (174)

Expressing P3 (1̄′, 2̄′, 3̄′) by means of eq. 172, and performing the integral over ρ, yields

to different types of integrals,

I1(i, j, k) = 8

∫ π/2

0

dθ1

∫ π/2

0

dθ2

∫ π/2

0

dθ3θ

(
c1c3
s1s3

− c2
)(

s2i+1
1 c1

) (
s2j+1

2 c2

) (
s2k+1

3 c3
)
,

I2(i, j, k) = 8

∫ π/2

0

dθ1

∫ π/2

0

dθ2

∫ π/2

0

dθ3θ

(
c2 −

c1c3
s1s3

)(
s2i+1

1 c1
) (
s2j+1

2 c2

) (
s2k+1

3 c3
)
,

(175)

where θ is the Heaviside function. Both integrals, when evaluated analytically, depend on

the harmonic numbers Sk(n). Moreover, the integral in eq.174 is finite since it is expressed as a

finite sum of both I1 and I1.
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8 3 → 3 case

In this chapter, we will focus on the parametrization for the three-particle cut in the three-particle

channel. In particular, we will describe the computations derived towards this goal and the result

we obtained. We will also comment on what should be the ideal form of this parametrization.

We will briefly comment on what applications would the correct parametrization has.

The external spinors λ1, λ2, λ3 form a complete basis. Every intermediate spinor can be

expressed in terms of this basis through a transformation matrix A,
λ′1

λ′2

λ′3

 = A


λ1

λ2

λ3

 , A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 , (176)

where A represents a 3 × 3 square matrix, that will depend on the angular variables θ

and φ. This matrix belongs to the SU(3) group. Matrices contained in this group correspond to

square 3×3 unitary matrices with determinant 1. Consequently the matrix A should fulfill both

requirements: AA† = 1 and | A |= 1. Analogously to the cases explained in previous chapters,

the most general parametrization of the spinors takes the following expression,
λ′11

λ′12

λ′13

 = r1e
iσ1U


λ1

1

λ1
2

λ1
3

 ,


λ′21

λ′22

λ′23

 = r2UR3 (σ2)


λ2

1

λ2
2

λ2
3

 . (177)

The complex conjugate of this expression leads to the expression for the antispinors,
λ̄′11

λ̄′12

λ̄′13

 = r1e
−iσ1U∗


λ̄1

1

λ̄1
2

λ̄1
3

 ,


λ̄′21

λ̄′22

λ̄′23

 = r2U
∗R3 (σ2)


λ̄2

1

λ̄2
2

λ̄2
3

 . (178)

The focus of this chapter will be on finding the correct expression for the matrix U . In this

case, there exists 12 variables corresponding to the six spinor variables as well as six antispinor

variables. Hence, the matrix A should in principle be expressed in terms of 12 parameters, in a

one-to-one correspondence with the spinor variables. From the expression above, we have already

four of them corresponding to 0 ≤ r1, r2 < ∞, 0 ≤ σ1 ≤ 2π and 0 ≤ σ2 ≤ π/2. Therefore, we

should find the matrix U in terms of the eight remaining parameters.

In particular, due to the dependence in the r1, r2, σ1, σ2 parameters, the matrix U have

to fulfill the same requirements as the matrix A, which implies unitarity UU† = 1 and having

determinant one | U |= 1. The following transformation of U leaves the transformation matrix

A unchanged [21]:

U → U diag
{
eiφa , eiφb , eiφc

}
, (179)
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which simply corresponds to the multiplication by a diagonal matrix containing phases.

Hence, the general dependence of the matrix U will be on three polar angles 0 ≤ θ1, θ2, θ3 ≤ π/2
and five azimuthal ones 0 ≤ φ1, φ2, φ3, φ4, φ5 ≤ 2π. Further constraints can be applied to the

matrix U in terms of the phase space integral associated with this cut. In particular, they come

from the angular dependence of the determinant of the Jacobian. For this case the Jacobian

takes the following expression:

J =


∂λ′11
∂θ1

· · · ∂λ′11
∂r2

...
. . .

...
∂λ̃′23
∂θ1

· · · ∂λ̃′23
∂r2

 . (180)

It represents the partial derivative of the 12 intermediate spinor and antispinor variables

with respect to the 12 parameters contained in the matrix A. In general, the determinant of

the Jacobian will depend on these parameters as well as on the external spinors. However, the

dependence on the external spinors is the same as the one in the denominator of the momentum

conservation delta function, which also fixes the value of four parameters r1 = r2 = 1 and

σ1 = σ2 = 0. Hence, the determinant of the Jacobian will depend on the remaining eight

angular parameters. Moreover, through this determinant one obtains the measure of the phase

space integral in terms of the θi and φi variables [13],

1

2π5
sin θ1 cos3 θ1 dθ1 sin θ2 cos θ2 dθ2 sin θ3 cos θ3 dθ3 dφ1 dφ2 dφ3 dφ4 dφ5. (181)

Furthermore, due to little group scaling, the momentum of each of the three particles

is defined up to a phase, and hence three of the phase integrals should be trivial, leaving an

parametrization that depends only on five parameters. This is in accordance to what one would

expect after imposing the momentum conserving delta function. The three on-shell particles

have each one three degrees of freedom, which amounts to a total of nine degrees of freedom.

The momentum conserving delta function then fixes four of them obtaining the remaining five

degrees of freedom.

This means that the matrix U should be a unitarity matrix with determinant equals one.

The determinant of the Jacobian should depend only on five parameters: two phases and the

three polar angles, and the dependence on the latter should as the one in eq. 181. Imposing

these conditions we obtained the following expression for the matrix U ,
ei(φ3+φ5)c1c2 −ei(φ1+φ2)s1 −ei(φ2+φ3+φ5)c1s2

e−i(φ1+φ2−φ4)(c2c3s1 − ei(φ1+φ2)s2s3) e−i(φ2−φ4−φ5)(c1c3 e−i(φ1−φ4)(−c3s1s2 − ei(φ1+φ2)c2s3)

e−i(φ1+φ2+φ3+φ4)(ei(φ1+φ2)c3s2 + c2s1s3) e−i(φ2+φ3+φ4+φ5)c1s3 e−i(φ1+φ3+φ4)(ei(φ1+φ2)c2c3 − s1s2s3)


(182)

In particular, this matrix is unitary UU† = 1 and its determinant | U |= 1. By means of

eqs. 177, 178 we can obtain the spinor and antispinor variables and consequently compute the

Jacobian, eq. 180, and its determinant. The momentum conserving delta function cancels the

dependence on the external spinors and fixes the value of r1, r2, σ1, σ2.
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The dependence with respect to each of the angular variables will be done by giving

random values to all the parameters except one, and representing in terms of the non-fixed

parameter. By doing so, we obtained that, accordingly to what should be found, the Jacobian

depends only on five parameters. More concretely, on the three polar angles and on two phases

φ4 and φ5.

The dependence on the polar angles is also as expected, as shown in the figures A.3. This

dependence was made through a numerical approach. We know that the result has a simple

dependence in terms of trigonometric functions of the polar angles, see eq. 181. Hence, we can

just plot the determinant as a function of the parameters we are interested in, for numeric values

of all other parameters.

However, this parametrization still needs to be improved. The problem relies on the

dependence on the two phases. Let us illustrate it with one specific example. Consider simplest

example which corresponds to the minimal two-loop form factor for a generic operator in the

SU(2) sector. Operators in the SU(2) sector are formed from two types of scalar fields that share

one SU(4) index, as defined in eq. 54. Let us now consider the six-point scattering amplitude

between the same type of scalar field, [34]:

A
(0)
6 =

s23s1′2′

s11′s33′s233′
+

s12s2′3′

s11′s33′s33′2′
− s123

s11′s33′
, (183)

and let us pick one of the Mandelstam variables and express it by means of this parametriza-

tion,

s33′2′ = s121′ = (1 + cos2 θ1 cos2 θ2 + sin2 θ1)s12 + ei(φ2−φ1) cos θ1 sin θ1 sin θ2 〈p1 | p3〉 [p2 | p1]

+ eiφ2 cos2 θ1 cos θ2 sin θ2 〈p2 | p3〉 [p2 | p1] + ei(φ1−φ2) cos θ1 sin θ1 sin θ2 〈p1 | p2〉 [p3 | p1]

+ cos2 θ1 sin2 θ2s13 + e−iφ2 cos2 θ1 cos θ2 sin θ2 〈p1 | p2〉 [p3 | p2] + cos2 θ1 sin2 θ2s23.

(184)

Finding the residues of this expression already involves complicated expressions in which

changes of integration should be done repeatedly. Moreover, the denominator of that term also

contains another two Mandelstam variables s11′ and s33′ , that when expressed in terms of the

parametrization leads to more complicated expressions and to square roots in the denominator

that needs to be rationalized.

Therefore, the necessity of finding a better parametrization is evident. Then, the ideal

parametrization will depend only on the three polar angles. The fact that the phase dependence

drops out has direct consequences from a computational point of view. In this case, the integrand

would take more handy expression and the square roots in the denominator would be probably

be solvable more easily.

From a more physical point of view, the fact that the number of free parameters equals

three can also be explained. Let us know briefly comment on the 2 → 2 parametrization. In

that case, two particles carrying three degrees of freedom each, sum up to six free parameters.

Four of them are fixed by the momentum conserving delta function, leading to two remaining
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parameters. Of the two remaining parameters, the phase φ fixes the central charge to zero, eq.28,

and since the incoming particles have zero central charge, this fixes the central charge constraint

for the remaining particle.

The θ integration will then yields to transcendentality one functions, as desired for the

free parameter of the theory. This is in accordance with the result obtained of the anomalous

dimension from twist-two operators in 125, where the dependence relies on the harmonic number

S1(m), which represents a function of transcendentality 1.

Considering now the 3 → 3 case, three particles which has three degrees of freedom

amounts to nine free parameters. Again, momentum conservation fixes four, yielding to five

parameters. This is in accordance to the parametrization we found in eq.182. However, analo-

gously to the 2→ 2 case, one would expect that two of the phases fix the central charge of two

of the three particles, leading to the central charge constraint of the third particle automatically

fulfilled (incoming particles already carry zero central charge).

Hence, one would expect the ideal 3 → 3 parametrization to depend only on the three

polar angles. This would lead transcendentality 3 functions. In two-loop integrals, one can have

functions of transcendentality 4. For instance, two-loop remainder functions contains a univer-

sal piece of maximal transcendentality four [27]. Furthermore, integrals of transcendentality 4

functions, when computing the cuts, lowers the transcendentality by 1, leading a result of tran-

scendentality 3, as one would expect. The final result should be a rational term, which can be

obtained through the cancellation of transcendentality 3 functions, see eq. 147.

This parametrization would have a direct application in the SMEFT context, which will

allow to compute more entries in the two-loop anomalous dimension regarding the the three

particle cut in the three particle channel, that would extend the computations derived in [7,

21]. Moreover, another application would be to compute the D3→3 as an extension of the work

derived in [36].
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9 Conclusions

The main goal of this work was to apply the methodology derived in [14], which states that the

dilatation operator is minus the phase of the scattering matrix, divided by π, to compute the

anomalous dimensions and β-functions of the associated couplings. We gave an overview about

the mathematical framework we will be working in, the maximally supersymmetric N = 4 SYM

theory. In particular, we saw some of their important applications such as integrability in the

planar limit and its analogy with the spin chain in psu(2, 2 | 4).

We have afterwards studied form factors due to its role as a bridge between the purely

on-shell scattering matrices and the purely off-shell correlation functions in terms of the spinor

helicity variables. In particular, we have particularised to minimal tree-level form factors, since

they translate the spin chain picture of N = 4 SYM theory to the language of scattering

amplitudes.

More concretely, we have seen that, up to a normalisation factor and a momentum con-

serving delta function, the minimal color-ordered tree-level form factor of any operator can be

obtained by replacing the oscillators in the oscillator representation by spinor helicity variables.

In particular, the generators of PSU(2, 2|4) are related by the same replacement. Therefore,

minimal tree-level form factors translate the spin-chain of free N = 4 SYM theory into the

language of scattering amplitudes.

Hence, through form factors, one can apply on-shell methods to quantities that contains

composite operators. Moreover, the analyticity of form factors makes explicit its relation with

the dilatation operator. Recalling the formal definition of form factors as perturbations, we

saw the relation between the dilatation operator and the scattering matrix. Moreover, since the

dilatation operator acts also as a generator of the psu(2, 2 | 4) algebra, it does receive quantum

corrections when quantizing the theory and consequently is subject to renormalisation.

On the one hand, we obtained the dilatation operator as the phase of the scattering

matrix divided by π. On the other hand, we obtained the dilatation generator as a coefficient

in the renormalisation group equation, making explicit its relation with other coefficients in the

equation such as anomalous dimensions and β-functions. Therefore, the relation between both

definitions give the anomalous dimensions from the high-energy regime of the scattering matrix.

Particularizing to weakly coupled field theories, one can perform a perturbative expansion

and compute anomalous dimensions at every loop order from products of lower-loop amplitudes

and lower-loop form factors. In particular, trying to set a motivation for finding methods to

compute anomalous dimensions, we briefly commented on some of the trivial vanishing entries

of the anomalous dimensions via selection rules.

The applications of the method in [14] were reviewed in different cases. The first case

of study considered was the 2 → 2 tree amplitude. We derived the full parametrization from

which intermediate spinors can be expressed in terms of the external spinors through an angular

dependence. The applications of this derivation are multiple. For instance, this method provides
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an efficient way yo calculate the β-function of Yang-Mills theory by simply computing the tree-

level four-gluon amplitude and integrating over the two-body phase space integral.

Furthermore, through the subtraction of the one-loop infrared divergences, that are uni-

versal in gauge theories [15], we obtained the full expression of the one-loop anomalous dimension

in any gauge theory. Moreover, a similar expression can be taken in the planar limit of N = 4

SYM theory. The particularity of this limit is that particles are now expressed in terms of

their supermomentum (λi, λ̄i, η̄i) and that new constraints will come from the supermomentum

conservation delta function.

The coupling of Yang-Mills to masses was also reviewed. In the last section, anomalous

dimensions from twist-two operators was obtained, and its correspondence to the partial-wave

amplitude with definite angular momentum. This equivalence reflects that two-particle states

with definite angular momentum map to twist-two operators.

In the next chapter, we continue giving examples of the computation of one-loop anoma-

lous dimensions as well as its β-functions by studying the Yukawa interaction from 2 → 2 as

well as the 2 → 3 amplitude. In particular, the latter correspond to a case that can in general

appear at every loop order, in the sense, that at every loop, contributions from more external

particles can in general appear.

In the next chapter, we derived a new parametrization for the 3 → 2 amplitude from

which two-loop anomalous dimensions and β-functions are computed. Furthermore, two appli-

cations were presented, the length-increasing mixing of the Yukawa interaction from the previous

chapter, as well as the dilatation operator D3→2.

In the last chapter we described the computations made in order to derive a parametriza-

tion for the 3→ 3 case. We described our results and discuss that its limitations. In particular,

we analyzed what should be the ideal dependence relying on the central charge constraint and

on transcendentality.
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A Appendix

In this appendix, we show the numeric plots of the Jacobian in terms of the polar angles for each

of the three parametrizations. In the numeric approach, one gives numeric real random values

between 0 and 1 to all the parameters except the one represented. The plots for the Jacobian

are scale due to the random values given to the other parameters. For all the figures, we have

two plots. On the left, the plot of the Jacobian with respect to one of the parameters. On

the right the plot corresponding to the angular dependence. All the plots have been made with

Mathematica.

A.1 2 → 2 parametrization

In this section the Jacobian only depends on one plar angle θ. The computation in this case

was pretty simple and no numeric approach was needed. However, we represent it here for

consistency, and as a crosscheck.

(185)

Figure 13: Checking the θ dependence. On the left the plot for the Jacobian. On the right

expected dependence sin(2θ).
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A.2 3 → 2 parametrization

The numeric approach was necessary for this case due to the large expression of the Jacobian.

It was also computed analytically by the use of minors.

(186)

Figure 14: Checking the θ1 dependence. On the left the plot for the Jacobian. On the right

expected dependence sin(2θ1).

(187)

Figure 15: Checking the θ2 dependence. On the left the plot for the Jacobian. On the right

expected dependence − sin3(θ2) cos(θ2).

(188)

Figure 16: Checking the θ3 dependence. On the left the plot for the Jacobian. On the right

expected dependence sin(2θ3).
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A.3 3 → 3 parametrization

In this section, the way of computing the Jacobian was by the numeric approach.

(189)

Figure 17: Checking the θ dependence. On the left the plot for the Jacobian. On the right

expected dependence − sin3(θ1) cos(θ1).

(190)

Figure 18: Checking the θ2 dependence. On the left the plot for the Jacobian. On the right

expected dependence sin(2θ2).

(191)

Figure 19: Checking the θ3 dependence. On the left the plot for the Jacobian. On the right

expected dependence sin(2θ3).
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