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Abstract
In [1], the authors found that a particular ’double-box’ Feynman diagram in
planar N=4 super Yang-Mills theory gives rise to a type of function known
as an elliptic polylogarithm. Other authors have since developed a new
formalism for elliptic polylogarithms in [2, 3], which gives control over
relations between these functions. The goal of this thesis is to write a toy
model of the elliptic double-box integral in the new formalism of elliptic
multiple polylogarithms, and to investigate whether the new formalism un-
covers all of the relations this integral satisfies.
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1 Introduction
In perturbative quantum field theory, the observables are expanded into a series in the
coupling constants of the theory. The n-th order in perturbation theory involves a sum
of n-loop Feynman diagrams with a fixed set of external legs that are integrated over
the momentum flowing in each of the loops. Thus, the evaluation of higher orders is
directly related with the computation of multi-loop Feynman integrals.

Feynman integrals have branch cuts that encode the physics of the theory. Some of
the functions that reproduce the branch cut structure are the multiple polylogarithms
(MPLs), that appear in multi-loop computations [4, 5, 6, 7]. The study of these func-
tions has helped in the development of new techniques for the evaluation of Feynman
integrals. For example, some use the concept of pure functions and pure integrals [8],
i.e., integrals such that all the non-vanishing residues of the integrand are equal up to a
sign.

Certain QFTs show that some observables can be expressed in terms of pure combi-
nations of MPLs. An important concept is an ‘invariant of the observable’ called its
weight, corresponding to the number of iterated integrations in its definition. It is con-
jectured that for certain QFTs like the N = 4 Super Yang-Mills (SYM) theory quantum
corrections evaluate to pure combinations of MPLs of uniform weight. Therefore, the
property of uniform weight might not be coincidental, instead it might be an intrinsic
part of the mathematical structure of multi-loop integrals and QFT.

Not all Feynman integrals can be expressed in terms of MPLs. Non-polylogarithmic
functions appear in different higher-order computations and these functions have shown
a relation to elliptic curves in some cases. Since then, it has been crucial to understand
the mathematical properties of these elliptic functions that appear in multi-loop compu-
tations.

From a mathematical point of view, the family of functions relevant to elliptic Feynman
integrals are the so-called elliptic multiple polylogarithms (eMPLs) [9]. The eMPLs
are defined as iterated integrals on an elliptic curve defined as a complex torus and they
can also be described as iterated integrals on an elliptic curve defined by a polynomial
equation. This description is convenient when working with elliptic Feynman integrals,
since the explicit algebraic description of the elliptic curve is directly related to the
kinematics of the process and Feynman parameter integrals.

A lot progress have been made in computing Feynman integrals that do not evaluate
to ordinary MPLs. It has been particularly relevant to extend the notion of pure func-
tions to the elliptic case and the study of Feynman integrals that rely on the concept of
pure functions [10]. Therefore, a further analysis of purity in the elliptic case and the
conjectured property of uniform weight is necessary. In this sense, the purpose of this
master’s thesis is to write a toy model of the elliptic double-box integral in a basis of
elliptic multiple polylogarithms and see if the uniform weight property holds.

This paper is organized as follows. In Section 2, we give a short review of ordinary
MPLs. In Section 3, we go through a review of the elliptic curves and elliptic multiple
polylogarithms. In Section 4, we see the background of pure functions, we motivate
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the introduction of the elliptic multiple polylogarithms functions and define them and
some of their most relevant properties. In Section 5, we review briefly the elliptic
double-box integral and give some original results related to the eMPLs. Firstly, we
introduce a toy model and, then, we present the expressions in terms of the eMPLs for
this integral and the methodology developed to get them. Finally, in Section 6, we draw
some conclusions and give the outlook.
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2 Multiple polylogarithms
In this section we review the multiple polylogarithms, following closely ref. [11].

The Laurent coefficients of the expansion of Feynman integrals close to ε = 0, working
in dimensional regularisation D = D0 − 2ε,

I =
∑
k≥k0

Ikε
k = Ik0ε

k0 + Ik0+1ε
k0+1 + Ik0+2ε

k0+2 + . . . , k0 ∈ Z (2.1)

form a restricted set numbers called periods, if all scalar products of momenta are nega-
tive or zero, internal masses are positive and all ratios of invariants are algebraic. These
periods are defined as complex numbers whose real and imaginary parts can be written
as integrals of an algebraic function with algebraic coefficients over a domain defined by
polynomial inequalities with algebraic coefficients. This is the case of scalar Feynman
integrals defined as

I =

∫
(
L∏
j=1

eγEε
dDkj
iπD/2

)
N ({pi, kj})

(q2
1 −m2

1 + i0)ν1 . . . (q2
N −m2

N + i0)νN
(2.2)

where νi ∈ Z are integers and mi ≥ 0, 1 ≤ i ≤ N are the masses of the propagators.
Some of the periods that appear in the computation of this kind of integrals are zeta
values and polylogarithms. In the case of Feynman integrals with multiple loops and
multiple legs that depend of many scales, a new kind of functions appear called multiple
polylogarithms that generalise the logarithm function.

2.1 Definition
In an analogous manner of classical polylogarithms, defined by

Lin(z) =

∫ z

0

dt

t
Lin−1(t) =

∞∑
k=1

zk

kn
, (2.3)

where the starting point is the ordinary logarithm Li1(z) = − log(1 − z), multiple
polylogarithms (MPLs) can be defined recursively as

G(a1, . . . , an; z) =

∫ z

0

dt

t− a1

G(a2, . . . , an; t) (2.4)

with n ≥ 0, G(z) = G(; z) = 1 and where ai ∈ C and z is a complex number. In the
case where all the ai′s are zero

G(0, . . . , 0︸ ︷︷ ︸
n times

; z) =
1

n!
logn z, log z =

∫ z

1

dt

t
, (2.5)
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The vector ~a = (a1, . . . , an) is called the vector of singularities and the number of
elements n is called weight of the MPL. From these definitions, it is clear that MPLs
are periods.

It is obvious from the equation above that MPLs contain the logarithm but, more ex-
plicitly, we can see that

G(~an; z) =
1

n!
logn(1− z

a
) and G(~0n−1, 1; z) = −Lin(z), (2.6)

where ~an = (a, . . . , a︸ ︷︷ ︸
n

).

2.2 Basic properties
In this section we include a general review of some of the properties that characterise
the multiple polylogarithms.

Divergences Firstly, we can see from (2.4) thatG(a1, . . . , an; z) is divergent at z = a1

and is analytic at z = 0 whenever an 6= 0. When we consider that ai′s are constant, the
MPLs will have branch cuts in z at most extending from z = ai to z = ∞ due to the
singularities present at z = ai.

Rescaling Secondly, if the rightmost index an is non-zero, the function G(~a;x) is
invariant under a rescaling of all the arguments:

G(k~a; kz) = G(~a; z), an 6= 0, (2.7)

where k ∈ C∗.

Hölder convolution Thirdly, multiple polylogarithms satisfy the Hölder convolution,
i.e, if a1 6= 1 and an 6= 0 we have

G(a1, . . . , an; 1) =
n∑
k=0

(−1)kG(1− ak, . . . , 1− a1; 1− 1

p
)G(ak+1, . . . , an;

1

p
), (2.8)

with ∀p ∈ C∗.

In the case that p→∞, this expression becomes

G(a1, . . . , an; 1) = (−1)nG(1− an, . . . , 1− a1; 1). (2.9)
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Shuffle algebra The last property that we present explicitly in this section is the shuf-
fle algebra. This property will be crucial in the computation of Feynman integrals ex-
pressed in terms of multiple polylogarithms and their regularisation. When we make
the product of MPLs with weights n1 and n2, we obtain a sum of MPLs with weight
n1 + n2,

G(a1, . . . , an1 ; z)G(an1+1, . . . , an1+n2 ; z) =
∑

σ∈Σ(n1,n2)

G(aσ(1), . . . , aσ(n1+n2); z)

(2.10)
where Σ(n1, n2) represents the set of all shuffles of n1 + n2 elements, i.e, the subset of
the symmetric group Sn1+n2 defined by

Σ(n1, n2) = {σ ∈ Sn1+n2 | σ−1(1) < . . . < σ−1(n1)
and σ−1(n1 + 1) < . . . < σ−1(n1 + n2)} , (2.11)

where it is clear that the subset Sn1+n2 preserves the ordering inside the vectors (a1, . . . , an1)
and (an1+1, . . . , an1+n2). Thus, the set of all MPLs form a shuffle algebra, i.e, a vector
space equipped with the shuffle multiplication. It is important to note that the shuffle
product preserves the weight of the multiple polylogarithms.
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3 Elliptic curves and elliptic polylogarithms
This section includes a review of elliptic curves and the generalisation of multiple poly-
logarithms to elliptic curves, functions called elliptic multiple polylogarithms. The
study of these functions and some of their properties will provide the basis to obtain
one of the main results of this thesis, express a toy model double-box integral in terms
of the so-called pure elliptic multiple polylogarithms. For the first part, we follow care-
fully the development made in ref. [2]. The definitions in the second part are mostly
taken from ref. [10].

3.1 Elliptic curves
In this section we will consider a cubic polynomial P3(x) that defines an elliptic curve
as the solution set of the following equation

y2 = P3(x) = (x− a1)(x− a2)(x− a3). (3.1)

It is of special interest to study how rational functions of this polynomial behave in an
integral, since this structure is what we will encounter in the toy model double-box.

Following ref. [2], we work in projective space CP2 and interpret the polynomial equa-
tion in terms of homogeneous coordinates [x, y, 1], where the elliptic curve also con-
tains the point at infinity [0, 1, 0]. This point, together with the points [ai, 0, 1], will be
referred to as branch points.

The elliptic curve defines a compact Riemann surface of genus one. A rational function
on the elliptic curve is defined to be a rational function in the variables (x, y), that must
fulfill y2 = P3(x). Thus, a rational function on the elliptic curve can be written as

R(x, y) =
p1(x) + p2(x)y

q1(x) + q2(x)y
=
p1(x) + p2(x)

√
P3(x)

q1(x) + q2(x)
√
P3(x)

, (3.2)

where pi and qi are polynomials in x. Multiplying both the numerator and denominator
by the conjugate of the denominator, this can be rewritten as

R(x, y) = R1(x) +
1

y
R2(x) = R1(x) +

1√
P3(x)

R2(x) (3.3)

for some rational functions Ri.

Using the equation above, we see that R1(x) contributes with an ordinary integral of
a rational function and can be computed in terms of rational functions and logarithms.
When using partial fractioning in the contribution of R2(x), the only integrals that need
to be considered are

∫
dx

y
xk and

∫
dx

y(x− c)k
, (3.4)
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where k is an integer and c is a constant. After integration by parts, these integrals can
be reduced to a linear combination of

∫
dx

y
,

∫
xdx

y
,

∫
dx

y(x− c)
. (3.5)

These integrals cannot be reduced more and, therefore, can be considered as the ana-
logues of the master integrals, i.e., the set of Feynman integrals that span all the Feyn-
man integrals in a given family . They can be evaluated in terms of the incomplete
elliptic integrals of the first, second and third kind

F(x | m2) =

∫ x

0

dt√
(1− t2)(1−m2t2)

E(x | m2) =

∫ x

0

dt
1−m2t2√

(1− t2)(1−m2t2)

Π(n2, x | m2) =

∫ x

0

dt√
(1− t2)(1−m2t2)

1

1− n2t2
.

(3.6)

The computation of these integrals on the elliptic curve can present obstructions to
finding a rational primitive when integrating on an elliptic curve and, in this sense, the
incomplete integral of the third kind Π can be considered as a generalisation of the
logarithm in the case of the Riemann sphere.

There are some invariants that are attached to an elliptic curve. For the following defi-
nitions we will consider a quartic

y2 = P4(x) = (x− a1)(x− a2)(x− a3)(x− a4), (3.7)

since this is the polynomial equation that will appear in the study of the double-box
integral. Nevertheless, the definitions for the cubic polynomial are analogous. The
periods of an elliptic curve are defined by integrating dx/y between two branch points:

ω1 = 2c4

∫ a3

a2

dx

y
= 2 K(λ)

ω2 = 2c4

∫ a2

a1

dx

y
= 2i K(1− λ),

(3.8)

where K corresponds to the complete elliptic integral of the first kind, K(λ) = F (1 |
λ), and

λ = cr(a1, a4, a3, a2) =
a14a23

a13a24

c4 =
1

2

√
a13a24,

(3.9)

with aij = ai − aj .
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The quasi-periods of the elliptic curve are defined by

η1 = −1

2

∫ a3

a2

dxΦ̃4(x) = E(λ)− 2− λ
3

K(λ)

η2 = −1

2

∫ a2

a1

dxΦ̃4(x) = −iE(1− λ) + i
1 + λ

3
K(1− λ),

(3.10)

with E(λ) = E(1 | λ) and

Φ̃4(x,~a) ≡ 1

c4y
(x2 − s1

2
x+

s2

6
), (3.11)

where sn(~a) ≡ sn(a1, a2, a3) is the elementary symmetric polynomial of degree n in
three variables. This function has the property that the differential one-form dxΦ̃4(x,~a)
has a double-pole with vanishing residue at x =∞.

The periods and quasi-periods are not independent and are related through the Legendre
relation

ω1η2 − ω2η1 = −iπ. (3.12)

The periods and quasi-periods are strictly speaking not invariants of the elliptic curve,
since there can be different values of ωi and ηi that correspond to the same elliptic
curve. This redundancy is due to the fact that they only depend on the cross-ratio λ of
the branch points. On the other hand, the j-invariant uniquely characterises an elliptic
curve,

j = 256
(1− λ(1− λ))3

λ2(1− λ)2
. (3.13)

Every elliptic curve defined over the complex numbers is isomorphic to a complex torus,
i.e, the quotient of the complex plane C by a two-dimensional lattice Λ. The relevant
lattice that we will use in our results is Λ = ω1Z + ω2Z spanned by the two periods. A
rescaling of the lattice can be done without changing the geometry, defining the lattice
Λ = Z + τZ, where τ = ω2/ω1, with Im τ > 0. Thus, every τ in upper half-plane
H = {τ ∈ C : Im τ > 0} defines a two-dimensional lattice and, therefore, an elliptic
curve. Different values of τ , τ, τ ′ ∈ H define the same elliptic curve if and only if they
are related by a modular transformation, i.e, a Möbius transformation for SL(2,Z).
Then, the space of geometrically-distinct tori (moduli space) can be identified with the
quotient of the upper half-plane H by the modular group SL(2,Z).

The map from the torus C/Λ to the curve defined by the polynomial equation y2 =
P4(x) can be realised by a function κ, κ(.,~a) : C/Λ→ C. This function is a meromor-
phic function of z and it is doubly-periodic, i.e, κ(z + 1,~a) = κ(z + τ,~a) = κ(z,~a).
The functions that satisfy this property are called elliptic functions.
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Taking [X, Y, 1] ∈ CP2 as a point satisfying Y 2 = P4(X), we can define its image on
the torus, the inverse map to κ called Abel’s map, as

zX =
c4

ω1

∫ X

a1

dx

y
=

√
a13a24

4 K(λ)

∫ X

a1

dx

y
. (3.14)

The image on the torus of the point x = −∞ will be especially relevant in the develop-
ment of the results,

z∗ =
c4

ω1

∫ −∞
a1

dx

y
=

√
a13a24

4 K(λ)

∫ −∞
a1

dx

y
. (3.15)

To conclude this section, we will consider the branch points as conjugate pairs with the
following order from now on,

a1 = a∗2, a3 = a∗4
Re(a1) < Re(a3), Im(a2), Im(a3) > 0, Im(a1), Im(a4) < 0,

(3.16)

Therefore, the choice of the branch cut is

y =
√
P4(x). (3.17)

3.2 Elliptic multiple polylogarithms
In this section we review the generalisation of polylogarithms to elliptic curves, the
elliptic multiple polylogarithms (eMPLs). Firstly, we define these functions as iterated
integrals on the complex torus and, secondly, what these integrals become in terms of
the variables (x, y).

3.2.1 Elliptic multiple polylogarithms on a complex torus

We define the elliptic multiple polylogarithms by the iterated integral

Γ̃(
n1 . . . nk
z1 . . . zk

; z, τ) =

∫ z

0

dz′g(n1)(z′ − z1, τ)Γ̃(
n2 . . . nk
z2 · · · zk

; z′, τ), (3.18)

where zi are complex numbers and ni ∈ N are positive integers. The integers k and∑
i ni are called the length and the weight of the eMPL respectively. In the case where

(nk, zk) = (1, 0), the integral is divergent and requires regularisation. This matter will
be further discussed in the results.

The integration kernels that appear in (3.18) are defined through a generating series
known as the Eisenstein-Kronecker series,

F (z, α, τ) =
1

α

∑
n≥0

g(n)(z, τ)αn =
θ′1(0, τ)θ1(z + α, τ)

θ1(z, τ)θ1(α, τ)
, (3.19)
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where θ1 is the odd Jacobi theta function, and θ′1 is its derivative with respect to its
first argument. The function g(1)(z, τ) has a simple pole with residue 1 at every point
of the lattice Λ. In the case that n > 1, g(n)(z, τ) has a simple pole only at the lattice
points that do not lie on the real axis. Thus, the integrals (3.18) have at most logarithmic
singularities. Adding to this, the functions g(n) have definite parity,

g(n)(−z, τ) = (−1)ng(n)(z, τ), (3.20)

and are invariant under translations by 1, but not by τ ,

g(n)(z + 1, τ) = g(n)(z, τ) and g(n)(z + τ, τ) =
n∑
k=0

(−2πi)k

k!
g(n−k)(z, τ). (3.21)

Between all the properties that define the eMPLs, it is relevant to mention that eMPLs
form a shuffle algebra, in the same way that MPLs did in (2.10),

Γ̃(A1 · · ·Ak; z, τ)Γ̃(Ak+1 · · ·Ak+l; z, τ) =
∑

σ∈Σ(k,l)

Γ̃(Aσ(1) · · ·Aσ(k+l); z, τ), (3.22)

where Ai = (
ni
zi

). Again, the shuffle product conserves both the length and the weight

of the eMPLs.

3.2.2 Elliptic multiple polylogarithms in terms of (x, y)

In this section, we consider the map from the torus to the elliptic curve defined by the
polynomial equation y2 = P4(x) to redefine the elliptic multiple polylogarithms in the
variables (x, y). The iterated integrals now are

E4(
n1 . . . nk
c1 · · · ck

;x,~a) =

∫ x

0

dtψn1(c1, t,~a)E4(
n2 . . . nk
c2 · · · ck

; t,~a), (3.23)

with ni ∈ Z and ci ∈ Ĉ = C ∪ {∞}, and the recursion starts with E4(;x,~a) = 1.

The integration kernels ψn are chosen to satisfy the following conditions.

1 The functions ψn are non-trivial, i.e, they cannot be expressed as total derivatives
of a rational function on the elliptic curve. Thus, they are related to the irreducible
integrands that we introduced in (3.5).

2 The integration kernels are linearly independent, we cannot find a linear combina-
tion that evaluates to a total derivative.
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3 Each kernel ψn can have at most simple poles since elliptic polylogarithms should
have at most logarithmic singularities (and no poles).

The integration kernels with n = 0, 1,−1 will appear extensively in the results and,
therefore, we present a brief discussion of their construction based on [2]. For the case
n = 0, we can define

ψ0(c, x) =
c4

y
=

c4√
P4(x)

, (3.24)

where the right-hand side is independent of c and, consequently, we will set c = 0 in this
kernel. The integral of ψ0 is related to the incomplete elliptic integral of the first kind
F , (3.6). This kernel defines a rational function that is free of poles, setting x = 1/u2

we see that there is no pole at infinity,

∫
dxψ0(0, x) = −2c4

∫
du(1 +O(u)). (3.25)

On the contrary, the functions ψ±1(c, x) have a simple pole at x = c,

ψ1(c, x) =
1

x− c
ψ−1(c, x) =

yc
y(x− c)

,
(3.26)

where we use yc =
√
P4(c). Firstly, we see from these expressions that the integral

involving ψ−1 with c = ai can be reduced to simpler integrals by using integration-
by-parts identities. Therefore, the functions ψ−1(ai, x) cannot be part of the basis of
integration kernels. Secondly, the function ψ1 is independent of the branch points ai
and it is identical to the integration kernel in the multiple polylogarithms, (2.4). Hence,
MPLs are a subset of the eMPLs,

E4(
1 . . . 1
c1 . . . ck

;x) = G(c1, . . . , ck;x), ci 6=∞. (3.27)

Here the differential xdx/y, which provided the differential of the second kind in the
cubic case in (3.5), is no longer an option. Setting u = 1/x,

∫
xdx

y
=

∫
du

[
−1

u
+O(u0)

]
. (3.28)

We see that the differential has a simple pole at infinity and, therefore, defines a differ-
ential of the third kind. In the quartic case, we define the valid differential as

x2dx

y
− s1

2

xdx

y
. (3.29)
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Here it is important to notice that this choice is motivated by the fact that the first term
cannot be broken into smaller parts by integrations-by-parts identities. Also, the second
term is mandatory since the differential x2dx/y has a non-vanishing residue at infinity,

∫
x2dx

y
=

∫
du

[
− 1

u2
− s1

2u
+O(u0)

]
. (3.30)

We can add any multiple of dx/y to (3.29) and, thus, we will use Φ̃4(x,~a) defined in
(3.11).

Finally, we can summarize the previous results to write the relevant kernels [2, 3, 10],

ψ0(0, x) =
c4

y
,

ψ1(c, x) =
1

x− c
ψ−1(c, x) =

yc
y(x− c)

,

ψ1(∞, x) =
c4

y
Z4(x)

ψ−1(∞, x) =
x

y
,

(3.31)

where

Z4(x,~a) ≡
∫ x

a1

dx′Φ4(x′,~a) (3.32)

and

Φ4(x) ≡ Φ̃4(x) + 4c4
η1

ω1

1

y
. (3.33)

The differential dxΦ̃4 has a double pole without residue at infinity and, consequently,
the function Z4 has a simple pole there. In a similar manner, the kernels ψn(c, x,~a) with
|n|≥ 1 have at most a simple pole at x = c.

3.2.3 Relations between Γ̃ and E4

We have defined the elliptic multiple polylogarithms in two different ways, in terms of
Γ̃ and E4. These two functions are two different bases for the same space of functions.
Thus, we can write the kernels ψn as linear combinations of the coefficients g(n) of the
Eisenstein-Kronecker series in (3.19). Specifically, the kernels in (3.31) [10],
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dxψ0(0, x,~a) = dz

dxψ1(c, x,~a) = dz
[
g(1)(z − zc, τ) + g(1)(z + zc, τ)− g(1)(z − z∗, τ)− g(1)(z + z∗, τ)

]
dxψ−1(c, x,~a) = dz

[
g(1)(z − zc, τ)− g(1)(z + zc, τ) + g(1)(zc − z∗, τ) + g(1)(zc + z∗, τ)

]
dxψ1(∞, x,~a) = dz

[
−g(1)(z − z∗, τ)− g(1)(z + z∗, τ)

]
dxψ−1(∞, x,~a) =

a1ω1dz

c4
+ dz

[
g(1)(z − z∗, τ)− g(1)(z + z∗, τ) + 2g(1)(z∗, τ)

]
(3.34)

where zc is defined in (3.14) and z∗ in (3.15). Using these relations, it is clear that there
exists a one-to-one map between the functions Γ̃ and E4, and we can write a function
from one class as a linear combination of the functions from the other class. Finally, we
can also write the function Z4 in terms of the coefficients of the Eisenstein-Kronecker
series,

Z4(x,~a) = − 1

ω1

[
g(1)(zx − z∗, τ) + g(1)(zx + z∗, τ)

]
. (3.35)
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4 Pure functions and pure elliptic multiple polylogarithms
In this section, we review the concept of pure elliptic multiple polylogarithms based on
ref. [10], including the form of the integration kernels that appear in the iterated inte-
grals and some of their basic properties. Before defining these functions, we introduce
the pure functions and we discuss why these functions are relevant.

4.1 Pure functions
The main goal of this section is to generalise the concept of pure functions to the elliptic
case. Hence, we must define first what characterises a pure function. A pure integral is
defined as an integral such that all non-vanishing residues of its integrand are the same
up to a sign (it is possible then to normalise the integrals such that the non-vanishing
residues are ±1). Another definition uses the concept of weight, which we have in-
troduced in previous sections. A pure function of weight n is a function whose total
differential can be written in terms of pure functions of weight n − 1 (multiplied by
algebraic functions with at most single poles). This definition is therefore recursive and
starts with assigning weight zero to algebraic functions. Sums and products of pure
functions are still pure and the weight of a product of two pure functions is the sum of
their weights. The concept of weight can be extended from functions to numbers, e.g,
the weight of iπ is one and the weight of ζn = −G(~0n−1, 1; 1) is n.

Now we can see clearly that MPLs are pure functions. They satisfy the following dif-
ferential equation

dG(a1, . . . , an; z) =
n∑
i=1

G(a1, . . . , âi, . . . , an; z)d log
ai−1 − ai
ai+1 − ai

, (4.1)

where âi indicates that ai is absent and it follows thatG(a1, . . . , an; z) is a pure function
of weight n. If an integral can be evaluated in terms of algebraic functions and MPLs,
this integral is pure if and only if can be expressed as a linear combination of MPLs
whose coefficients are rational numbers.

In [12], it is argued that Feynman integrals usually do not evaluate to pure functions but
we can make a choice of basis such that all members of a given of Feynman integrals can
be written as a set of pure integrals (master integrals) with algebraic basis coefficients.

In the case of MPLs the basis of pure master integrals can be reached in an algorithmic
way and the change of basis only involves algebraic functions. This can be illustrated
on a one-loop example, specifically the family of bubble integrals with two massive
propagators in D = 2− 2ε dimensions,

Bn1n2(p
2,m2

1,m
2
2) = eγEε

∫
dDk

iπD/2
1

(k2 −m2
1)n1((k + p)2 −m2

2)n2
, (4.2)

where γE = −Γ
′
(1) is the Euler-Mascheroni constant. Using integration-by-parts iden-

tities [13, 14], every integral in this family can be written as a linear combination of
three master integrals,
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B10(p2,m2, 0) = B01(p2, 0,m2) = eγEε
∫

dDk

iπD/2
1

k2 −m2

= −1

ε
+ logm2 +O(ε),

B11(p2,m2
1,m

2
2) = eγEε

∫
dDk

iπD/2
1

(k2 −m2
1)((k + p)2 −m2

2)

=
1

p2(w − w̄)
log(

w̄(1− w)

w(1− w̄)
) +O(ε),

(4.3)

with ww̄ = m2
1/p

2 and (1 − w)(1 − w̄) = m2
2/p

2. These master integrals are not pure
since the logarithms are multiplied by algebraic prefactors, but we can perform a change
of basis

B10

B01

B11

 =

−1/ε 0 0
0 −1/ε 0
0 0 −2/(εp2(w − w̄))


B̃10

B̃01

B̃11

 . (4.4)

Now the functions B̃ij are pure, i.e., the coefficient of εk is a linear combination of terms
of uniform weight k. The algebraic factor in the one-loop bubble integral corresponds
to the maximal cut of the integral,

Cut
[
B11|D=2

]
= − 2

p2(w − w̄)
(4.5)

and, therefore,

B11 = Cut
[
B11|D=2

]
× [−1

2
log(

w̄(1− w)

w(1− w̄)
) +O(ε)]. (4.6)

From this example, we can see that having a basis of pure master integrals facilitate
their computation. Furthermore, the concept of purity and uniform weight has led to
breakthroughs in the computation of master integrals.

4.2 Motivation
The previous section showed how the concepts of purity and uniform weight can be
relevant in the study of Feynman integrals. In this section, we will see what conditions
are needed for many of the properties of pure Feynman integrals to carry over to the
elliptic case. In this case, we will demonstrate it with the example of the sunrise integral
[3],
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Figure 1: Sunrise integral diagram, where p is the momentum and m1, m2, m3 are the
masses of the propagators.

The two-loop sunrise integral in D = 2 − 2ε with three equal masses can be evaluated
in terms of E4. We consider the family of integrals

Sn1n2n3(p
2,m2) = −e

2γEε

πD

∫
dDkdDl

(k2 −m2)n1(l2 −m2)n2((k + l + p)2 −m2)n3
, (4.7)

with ni ∈ N. Using integration-by-parts identities, we obtain that every integral in this
family can be written as a linear combination of the following master integrals

S0(p2,m2) = S110(p2,m2),
S1(p2,m2) = S111(p2,m2),
S2(p2,m2) = S112(p2,m2).

(4.8)

For the purpose of this example, it is sufficient to consider only the master integral S1,

S1(p2,m2) =
1

(m2 + p2)c4

[
1

c4

E4(
0 0
0 0

; 1,~a)− 2E4(
0 −1
0 ∞ ; 1,~a)− E4(

0 −1
0 0

; 1,~a)

− E4(
0 −1
0 1

; 1,~a)− E4(
0 1
0 0

; 1,~a)] +O(ε),

(4.9)
where the branch points are

~a = (
1

2
(1 +

√
1 + ρ),

1

2
(1 +

√
1 + ρ̄),

1

2
(1−

√
1 + ρ),

1

2
(1−

√
1 + ρ̄)) (4.10)

with

ρ = − 4m2

(m+
√
−p2)2

and ρ̄ = − 4m2

(m−
√
−p2)2

. (4.11)

The result for S1 in (4.9) is not pure because not all the E4 functions are multiplied by
rational numbers. Nevertheless, some facts indicate that the two-loop sunrise integral
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should define a pure function. In [3] we see that, firstly, the result for S1 obtained
from dispersion relations can be written as a Q-linear combination of E4 functions, and
no extra algebraic factors are needed. Secondly, in the case where one propagator is
massless, the integral can be computed in terms of pure linear combination of MPLs.
Thirdly, the equal-mass sunrise integral S1(p2,m2) can also be expressed in terms of
iterated integrals of Eisenstein series and, again, no extra algebraic factors are needed.

Therefore, we conclude the basis of E4 functions does not have the needed properties
for elliptic purity. Nevertheless, we can consider the basis of Γ̃ functions on the complex
torus. With these functions, the equal-mass sunrise integral is a Q-linear combination of
Γ̃ functions, i.e., it can be described as pure. The Γ̃ functions, like the ordinary MPLs,
have at most logarithmic singularities in all variables and no poles. On the contrary, the
E4 functions have logarithmic singularities and poles. Thus, considering the function

E4(
−1
c

;x,~a) with c 6=∞, we obtain [10]

E4(
−1
c

;x,~a) = Γ̃(
1
zc

; zx, τ)− Γ̃(
1
−zc

; zx, τ) + [g(1)(zc − z∗, τ)

+ g(1)(zc + z∗, τ)]Γ̃(
0
0

; zx, τ) = Γ̃(
1
zc

; zx, τ)− Γ̃(
1
−zc

; zx, τ)

− ω1Z4(c,~a)Γ̃(
0
0

; zx, τ).

(4.12)

We see clearly that, while Γ̃ functions have at most logarithmic singularities, the func-
tion Z4 has a pole at c = ∞ and, consequently, E4 functions have poles (but in the
variable x they only have logarithmic singularities). Based on this, a pure function can
be defined as a function that it is unipotent, i.e., a function that satisfy a differential
equation without homogeneous term, and its total differential involves only pure func-
tions and one-forms with at most logarithmic singularities. The sums and products of
pure functions are also pure.

From the previous results, we have seen that the Γ̃ functions provide a basis of pure
eMPLs but they are not the most convenient when working with Feynman integrals due
to the following reasons.

1 Feynman integrals have an intrinsic notion of parity, the final analytic result is in-
dependent of the choice of the branch of the root. Hence, the pure function must have
definite parity with respect of changing the sign of the root. In the case of eMPLs, this
corresponds to (x, y)↔ (x,−y) and, on the torus, this operation changes the sign of z.
Therefore, Γ̃ functions does not have definite parity.

2 Feynman integrals are more naturally expressed in the coordinates (x, y) because
these variables are related to the kinematics of the physical process.
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4.3 Pure elliptic multiple polylogarithms
The new class of iterated integrals can be introduced once we know what characteristics
they should have.

1 They form a basis for the space of all eMPLs.

2 They are pure.

3 They have definite parity.

4 They manifestly contain ordinary MPLs.

4.3.1 Definition

The pure elliptic multiple polylogarithms can be defined as

E4(
n1 . . . nk
c1 . . . ck

;x,~a) =

∫ x

0

dtΨn1(c1, t,~a)E4(
n2 . . . nk
c2 · · · ck

; t,~a), (4.13)

with ni ∈ Z and ci ∈ Ĉ.

The length and weight are specified in the same way as in theE4 functions. The integra-
tion kernels can be expressed in terms of the coefficients of the Eisenstein-Kronecker
series in the following way (for n ≥ 0)

dxΨ±n(c, x,~a)

= dzx[g(n)(zx − zc, τ)± g(n)(zx + zc, τ)− δ±n,1(g(1)(zx − z∗, τ) + g(1)(zx + z∗, τ))].
(4.14)

Now we can check that the pure elliptic multiple polylogarithms fulfill all the necessary
properties.

1 There is a one-to-one map between the E4 and Γ̃ functions and, consequently, they
define a basis of all eMPLs.

2 The coefficientes in (4.14) are all ±1 and the E4 functions can be written as a Q-
linear combination of Γ̃, therefore they are pure.

3 From (4.14), it is clear that they have definite parity under changing the sign of zx.
Then, the E4 functions define a pure basis of eMPLs with definite parity.
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4 Taking

dxΨ±n(c, x,~a) =
dx

x− c
, c 6=∞, (4.15)

we see that the ordinary MPLs are a subset of eMPLs

E4(
1 . . . 1
c1 . . . ck

;x,~a) = G(c1, . . . , ck;x), ci 6=∞. (4.16)

4.3.2 Integration kernels

We have written the integration kernels of the pure eMPLs in terms of their relations to
the coefficients of the Eisenstein-Kronecker series in (4.14). Now we can present the
explicit form of the relevant kernels, up to n = 1. For n = 0, we have

Ψ0(0, x,~a) =
1

ω1

ψ0(0, x,~a) =
c4

ω1y
. (4.17)

For n = 1 (and c 6=∞), we obtain

Ψ1(c, x,~a) = ψ1(c, x,~a) =
1

x− c
Ψ−1(c, x,~a) = ψ−1(c, x,~a) + Z4(c,~a)ψ0(0, x,~a) =

yc
y(x− c)

+ Z4(c,~a)
c4

y

Ψ1(∞, x,~a) = −ψ1(∞, x,~a) = −Z4(x,~a)
c4

y
,

Ψ−1(∞, x,~a) = ψ−1(∞, x,~a)− [
a1

c4

+ 2G∗(~a)]ψ0(0, x,~a) =
x

y
− 1

y
[a1 + 2c4G∗(~a)].

(4.18)
The quantity G∗(~a) corresponds to the image of z∗ under the function g(1),

G∗(~a) ≡ 1

ω1

g(1)(z∗, τ). (4.19)

We see that the integration kernels that define the pure elliptic multiple polylogarithms
involve the functions Z4 and G∗(~a). While, in general, these functions are transcenden-
tal, they can often be expressed in terms of algebraic quantities and will simplify the
analytic structure of the integration kernels. Specifically, in the result of the double-box
integral, we will see that all terms containing the function Z4 will cancel.

4.3.3 Basic properties

Here we summarize some of the basic properties of the pure elliptic multiple polylog-
arithms. We can see that most of them are analogous to the properties of the E4 and Γ̃
functions.
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Shuffle algebra In the same manner that we saw with the ordinary MPLs and the
eMPLs, the pure eMPLs form a shuffle algebra,

E4(A1 · · ·Ak;x,~a)E4(Ak+1 · · ·Ak+l;x,~a) =
∑

σ∈Σ(k,l)

E4(Aσ(1) · · ·Aσ(k+l);x,~a) (4.20)

with Ai(
ni
ci

).

Rescaling of arguments Again, like ordinary MPLs, the E4 functions are invariant
under a rescaling of the arguments,

E4(
n1 . . . nk
pc1 · · · pck

; px, p~a) = E4(
n1 . . . nk
c1 · · · ck

;x,~a), p, ck 6= 0. (4.21)

Value at infinite cusp For τ → i∞, the pure eMPL always reduce to a pure com-
bination of ordinary MPLs of weight

∑
i ni. This follows from the coefficients of the

Eisenstein-Kronecker series when studying the limit τ → i∞. Specifically, they admit
the Fourier expansions [15, 16, 17]

g(1)(z, τ) = π cot(πz) + 4π
∞∑
m=1

sin(2πmz)
∞∑
n=1

qmn

g(k)(z, τ)
∣∣
k=2,4,...

= −2ζk − 2
(2πi)k

(k − 1)!

∞∑
m=1

cos(2πmz)
∞∑
n=1

nk−1qmn

g(k)(z, τ)
∣∣
k=3,5,...

= −2i
(2πi)k

(k − 1)!

∞∑
m=1

sin(2πmz)
∞∑
n=1

nk−1qmn

(4.22)

with q = exp(2πiτ).

Regularisation In the case where (nk, ck) = (±1, 0), the integral in (4.13) is diver-
gent and must be regularised. This is analogous to the case of ordinary MPLs where
the iterated integral representation G(0, . . . , 0;x) diverges. In the case of eMPLs the
divergence exists for (nk, ck) = (±1, 0) and, therefore, we need a special definition for

the cases E4(
n1 . . . nk
0 . . . 0

;x;~a) with ni = ±1. For Ai(
±1
0

), we have

E4(A1 . . . Ak;x;~a) =
1

k!
logk x+

k∑
l=0

l∑
m=1

∑
σ

(−1)l+m

(k − l)!
logk−l x

× ER
4 (A

(m)
σ(1) . . . A

(m)
σ(m−1)A

(m)
σ(m+1) . . . A

(m)
σ(l) | Am;x;~a),

(4.23)

where the third sum runs over all shuffles and A(m)
i = Ai if i < m and A(m)

i = (
1
0

).

The ER4 are iterated integrals with certain subtractions to make the integrations finite,

20



ER
4 (
n1 . . . nk
0 . . . 0

|na
0

;x;~a) =

∫ x

0

dt1Ψn1(0, t1)

∫ t1

0

. . .

∫ tk−1

0

dtk(Ψna(0, tk)−Ψ1(0, tk)).

(4.24)

For instance,

E4(
−1
0

;x;~a) = logx+ ER
4 (| −1

0
;x;~a)

E4(
1 −1
0 0

;x;~a) =
1

2
log2 x+ ER

4 (
1
0
| −1

0
;x;~a)

E4(
−1 1
0 0

;x;~a) =
1

2
log2 x+ logx ER

4 (| −1
0

;x;~a)− ER
4 (

1
0
| −1

0
;x;~a)

E4(
−1 −1
0 0

;x;~a) =
1

2
log2 x+ logx ER

4 (| −1
0

;x;~a)− ER
4 (
−1
0
| −1

0
;x;~a) + ER

4 (
1
0
| −1

0
;x;~a)

(4.25)
with

ER
4 (| −1

0
;x;~a) =

∫ x

0

dt(Ψ−1(0, t)−Ψ1(0, t))

ER
4 (
±1
0
| −1

0
;x;~a) =

∫ x

0

dt1Ψ±1(0, t1)

∫ t1

0

dt2(Ψ−1(0, t2)−Ψ1(0, t2)).

(4.26)

The regularisation of eMPLs fulfill the following properties.

1 The regularisation of eMPLs is consistent with the regularisation of ordinary MPLs.

2 The regularisation preserves the shuffle algebra structure.

3 The regularisation preserves the derivative with respect to x.

4 The regulated value for E4(
n1 . . . nk
0 . . . 0

;x;~a) with ni±1 has a logarithmic singularity

for x = 0,

E4(
n1 . . . nk
0 . . . 0

;x,~a) ∼ E4(
1 . . . 1
0 . . . 0

;x,~a) =
1

k!
logk x, if x→ 0. (4.27)

All these requirements fix the form of the regulated pure eMPLs.
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5 Elliptic double-box integral
In this section, we will review the double-box integral and we will introduce an elliptic
toy model where a result of the integral in terms of pure elliptic multiple polylogarithms
will be presented. The first subsection refers to [1] and, after that, we explain our
original work.

The elliptic double-box integral is the simplest non-polylogarithmic contribution to
scattering amplitudes of massless particles in four dimensions. This process can be
represented as

Figure 2: On the left, Feynman diagram representation of the elliptic double-box inte-
gral; on the right, its dual graph.

This integral can be understood as a contribution to the ten-point amplitude in mass-
less ϕ4 theory but also contributes to the (pure or supersymmetric) Yang-Mills and
integrable fishnet theories. Furthermore, in the context of planar maximally supersym-
metric Yang-Mills, it is the only diagram that contributes to a particular helicity config-
uration, making it the entire amplitude in this case. Following [18, 19], we will obtain
a representation explicitly by direct integration of Feynman parameters.

5.1 Toy model
Here we present a toy model that is restricted to a particular three-dimensional subspace
of ten-particle kinematics. Hence, it depends symmetrically on only three cross-ratios.

We consider dual-momentum x-coordinates, where the momentum of the ath external
particle is defined as pa = (xa−1 − xa) (with cyclic labeling). Using these coordinates,
we define

(a, b) = (b, a) ≡ (xa − xb)2 = (pa + . . .+ pb−1)2. (5.1)

where each loop momentum li can be represented by a dual point xl, and inverse prop-
agators as (li, a) = (xli − xa)2.

In the case of the toy model, we take the dual coordinates to describe the momenta of
six massless particles by assigning xa, . . . , xf in the diagram to x1, x3, x5, x4, x6, x2,
i.e., we have the following restrictions

(a, f) = (f, b) = (b, d) = (d, c) = (c, e) = (e, a) = 0. (5.2)
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This choice of coordinates does not correspond to a physical process but can be evalu-
ated on a well-defined three-dimensional subspace of ten-particle kinematics. We can
write the integral as

Iell
toy ≡

∫
d4`1d

4`2 N(1, 4)(2, 5)(3, 6)

(`1, 1)(`1, 3)(`1, 5)(`1, `2)(`2, 4)(`2, 6)(`2, 2)
, (5.3)

where N corresponds to a normalization factor. Now we can transform the integral
into a manifestly dual-conformally invariant parametric integral. To achieve this, we
must integrate one loop at a time. We assign associate Feynman parameters to the l1
propagators according to

Y1 ≡ (1) + β1(3) + β2(5) + γ1(`2) ≡ (R1) + γ1(`2), (5.4)

where (a) denotes the dual coordinate (xa). The l1 integration gives

∫
d4`1Iell

toy =

∫ ∞
0

d2~β

∫ ∞
0

dγ1
N(1, 4)(2, 5)(3, 6)

(Y1, Y1)2(`2, 2)(`2, 4)(`2, 6)

=

∫ ∞
0

d2~β
N(1, 4)(2, 5)(3, 6)

(R1, R1)(`2, R1)(`2, 2)(`2, 4)(`2, 6)

(5.5)

where we have considered that the γ1 integral is a total derivative in the second step.

In a similar manner, we introduce the following Feynman parameters for l2

Y2 ≡ (R1) + α(6) + β3(2) + γ2(4) ≡ (R2) + γ2(4), (5.6)

and repeat the same method as above. The four-fold representation is

Iell
toy =

∫ ∞
0

dα

∫ ∞
0

d3~β
N(1, 4)(2, 5)(3, 6)

(R1, R1)(R2, 4)(R2, R2)
. (5.7)

We must rescale the Feynman parameters to render this manifestly dual-conformally
invariant,

α 7→ α
(1, 3)

(3, 6)
, β1 7→ β1

(1, 5)

(3, 5)
, β2 7→ β2

(1, 3)

(3, 5)
, β3 7→ β3

(1, 5)

(2, 5)
(5.8)

and, therefore, Iell
toy becomes

Iell
toy ≡

∫ ∞
0

dα

∫ ∞
0

d3~β
N

f1f2f3

,


f1 ≡ β1 + β2 + β1β2

f2 ≡ 1 + αu1 + u2β3

f3 ≡ f1 + α(β1 + u3β3) + β2β3

 . (5.9)

This expression depends on the usual six-particle cross-ratios u1 = (13; 46), u2 =
(24; 51), u3 = (35; 62), with
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(ab; cd) ≡ (a, b)(c, d)

(a, c)(b, d)
. (5.10)

To conclude that the integral is elliptic, it is sufficient to see that

Resfi=0(
d3~β

f1f2f3

) =
1√
Q(α)

(5.11)

where we introduce the irreducible quartic Q(α),

Q(α) ≡ (1 + α(u1 + u2 + u3 + αu1u3))2 − 4α(1 + αu1)2u3. (5.12)

After evaluating the βi integrals, we obtain

Iell
toy =

∫ ∞
0

dα
N√
Q(α)

Htoy(α) (5.13)

where Htoy(α) is sum of pure weight-three hyperlogarithms that depend on the final
integration variable. Specifically, we get Htoy(α) = F1(α)− F2(α), with

Fi(α) ≡ G(w̄i, 0, 0;α) +G(w̄i, 0, 0;α)−G(w̄i, 0, 0;α)−G(w̄i, 0, 0;α)

−G(w̄i,−w̄1w̄2, 0;α)−G(w̄i,
w̄1w̄2

w1 + w2

, 0;α) +G(w̄i,
w̄1w̄2

w1 + w2

;α) log(w1w2w̄1w̄2)

−G(w̄i,−w̄1w̄2;α) log(
−1

w̄1w̄2

) + (G(w̄i, 0;α)−G(w̄i, 0;α)) log(−w1w2)

+G(w̄i;α){1

2
log2(

1

w1 + w2

) + log(w1w2) log(
−1

w̄1w̄2

)

− log(
1

w1 + w2

) log(
1

w̄1w̄2

) + Li2(−w1 + w2

w̄1w̄2

)},
(5.14)

where we have introduced the notation x̄ ≡ −1/(1 + x) (such that 0̄ = −1). G(w̄i;α)
is the ordinary multiple polylogarithm defined in (2.4), and

w1,2 ≡
[
α((αu3 − 1)u1 − u2 + u3)− 1±

√
Q(α)

]
/(2αu2). (5.15)

The goal of the following sections is to rewrite every term in (5.14) and, ultimately, Iell
toy

in terms of Γ̃ functions and pure elliptic multiple polylogarithms.

5.2 Methodology
In this section, we explain schematically the methodology used to obtain the results and
illustrate the process in further detail with one example. Furthermore, we make some
remarks about the numerical evaluation of eMPLs.
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The process that we have followed to rewrite the logarithms and multiple polyloga-
rithms in (5.14) in terms of pure elliptic multiple polylogarithms is the following.

1 Take the derivative of the logarithm or ordinary MPL with respect to α.

2 Apply a series of simplifications such as partial fractioning to the derivative and
collect terms that are equal or proportional to the differentials that describe the kernels
in (4.17) and (4.18).

3 Once we have a linear combination of kernels, we integrate back to obtain the cor-
respondent eMPLs.

4 Evaluate numerically to check that the result matches with its original form.

These steps can be seen in detail in the following example, where all the considerations
taken are fully explained.

5.2.1 Example

To illustrate the methodology that has been used in all the functions, we will rewrite
G(w̄1;α) in terms of pure eMPLs.

The first step is taking the derivative respect to α of the function. To perform this,
we use the package PolyLogTools [20] in Mathematica, that includes a function that
takes the derivative of MPLs directly. Before simplifying the result, we must take two
considerations.

First, we perform the following change of variables

x→ α

1 + α
, (5.16)

such that the integrations limits in the integral (5.13) become (0,∞) → (0, 1). In this
step, it is important to take into account a factor 1/(x−1)2 in the derivative ofG(w̄1;α)
that corresponds to the integration variable in Iell

toy.

Second, the variable y that appears in the integration kernels in (4.17) and (4.18) does
not correspond to y2 = Q(α) (before changing the variable), since the coefficient of α4

is not equal to 1. Thus, y2 corresponds to the quartic polynomial after normalisation.

Now that we have these considerations, we can start simplifying the derivative, that now
depends on x. After partial fractioning we obtain three terms. The first one is simply

− 1

x− 1
. (5.17)

We can instantly relate this expression with the kernel of the form −Ψ1(1, x).
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The second term is

2u1u3x− u1 − u2 − 2u3x+ u3 + 1

2(u1u3x2 − u1x− u2x+ u2 − u3x2 + u3x+ x− 1)
. (5.18)

Here we can prove that the cross-ratios cannot factor rationally the denominator and,
thus, we cannot perform partial fractioning. To proceed with the partial fractioning, we
must introduce variables for the cross-ratios,

u1 =
y1(1− y2)(1− y3)

(1− y1y2)(1− y3y1)

u2 =
y2(1− y3)(1− y1)

(1− y2y3)(1− y1y2)

u3 =
y3(1− y1)(1− y2)

(1− y3y1)(1− y2y3)
,

(5.19)

where y1, y2, y3 are now the cross-ratios that we consider in all the results. These vari-
ables correspond to familiar parametrizations of functions with hexagon kinematics
[21]. We obtain

(y1 − 1)((2x− 1)(y1 − 1)y3 − y1y
2
3 + 1)

2(x2(y1 − 1)2y3 − x(y1 − 1)(y3 + 1)(y1y3 − 1) + (y1y3 − 1)2)
, (5.20)

and now the partial fractioning is direct, where we obtain two simple terms that can be
related to the integration kernels of the pure eMPLs.

In an identical manner, we proceed with the third term of the derivative, that we omit
here due to its length.

Finally, we identify the different terms with the integration kernels and, integrating
them, we obtain the pure elliptic multiple polylogarithms. In this example, the result is

G(w̄1;α) =
1

2
E4(

−1
1−y1y3
y3−y1y3

;x) +
1

2
E4(

−1
y1y3−1
y1−1

;x) +
1

2
E4(

1
1−y1y3
y3−y1y3

;x)

+
1

2
E4(

1
y1y3−1
y1−1

;x)− E4(
−1
1

;x)− E4(
1
1

;x).

(5.21)

Clearly, the result we obtain is pure. It is important to remark that terms proportional
to the function Z4 appear before obtaining the final result but all of them cancel after
applying the following identity,

Z4(1) =
1

2
(
B

c4C
+ Z4(

(y1y2 − 1)(y1y3 − 1)

(y1 − 1)(y1y2y3 − 1)
) + Z4(0))

=
1

2
(− A

c4C
+ Z4(

1− y1y3

y3 − y1y3

) + Z4(
y1y3 − 1

y1 − 1
)),

(5.22)

where we have introduced
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A = −2(y2
1y

2
2 − 2y2

1y2 + y2
1 − 2y1y

2
2 + 4y1y2 − 2y1 + y2

2 − 2y2 + 1)

(y1 − y2)(y1y2 − 1)(y1y3 − 1)2

+
−3y31y

2
2+6y31y2−3y31+y21y

3
2+4y21y

2
2−11y21y2+6y21−2y1y32+y1y22+4y1y2−3y1+y32−2y22+y2

(y1−y2)2(y1y2−1)(y1y3−1)

+
y31y

3
2−3y31y

2
2+3y31y2−y31+y21y

4
2−3y21y

3
2+3y21y

2
2−y21y2−y1y42+3y1y32−3y1y22+y1y2−y52+3y42−3y32+y22

y2(y1−y2)2(y1y2−1)(y2y3−1)

− −3y1y2 + y1 + y2
2 + y2

y2(y1y2 − 1)
+
y1(y2 − 1)y3

y1y2 − 1
+

y2 − 1

y3(y1y2 − 1)
,

B =
(y2−1)(y3−1)(y41y

2
2y

3
3+y31y2y

2
3(y2−y3−2)+y21y3(−2y22y3+3y2(y3−1)+2)+y1(2y2y3+y2−y3)−1)

(y1y2−1)(y1y3−1)2(y2y3−1)(y1y2y3−1)
,

(5.23)
and C is the square root of the coefficient of α4 in the quartic polynomial Q.

5.3 Result in terms of pure elliptic multiple polylogarithms
5.3.1 Result in terms of E4

Following the methodology explained in the previous section, we can rewrite all the
terms in (5.14) in terms of pure elliptic multiple polylogarithms. Then, we simply
substituteHtoy and 1/

√
Q(x) = c4/(ω1C)Ψ0(0, x) in (5.13). Integrating in the variable

x from 0 to 1, we get the final expression. Iell
toy in terms of pure eMPLs is

ω1

c4C
× T, (5.24)

with

T = 3E4(
0 −1 1 1
0 0 0 1

; 1)− 2E4(
0 −1 1 1
0 0 1 0

; 1) + 3E4(
0 −1 1 1
0 0 1 1

; 1)

− E4(
0 −1 1 1

0 0 1 (y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1)

; 1)− 3E4(
0 −1 1 1

0 0 (y1y3−1)(y2y3−1)
(y1−1)(y2−1)y3

0
; 1)

− 2E4(
0 −1 1 1

0 0 (y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1) 1

; 1) + E4(
0 −1 1 1

0 0 (y1y3−1)(y1y2y3−1)
(y1−1)(y1y2y23−1)

1
; 1)

− E4(
0 −1 1 1

0 0 (y1y3−1)(y1y2y3−1)
(y1−1)(y1y2y23−1)

(y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1)

; 1)

+ 3E4(
0 −1 1 1

0 0 (y1y3−1)(y2y3−1)
−2y2y3+y1(y3y2+y2−2)y3+y3+1 0

; 1)

− 3E4(
0 −1 1 1

0 0 (y1y3−1)(y2y3−1)
−2y2y3+y1(y3y2+y2−2)y3+y3+1 1

; 1)− E4(
0 −1 1 1
0 1 0 1

; 1)

− 2E4(
0 −1 1 1

0 1 0 (y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1)

; 1) + 3E4(
0 −1 1 1
0 1 1 0

; 1)

− 3E4(
0 −1 1 1
0 1 1 1

; 1) + 2E4(
0 −1 1 1

0 1 1 (y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1)

; 1)
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+ E4(
0 −1 1 1

0 1 (y1y3−1)(y2y3−1)
(y1−1)(y2−1)y3

0
; 1)− 2E4(

0 −1 1 1

0 1 (y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1) 0

; 1)

+ 3E4(
0 −1 1 1

0 1 (y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1) 1

; 1)− 2E4(
0 −1 1 1

0 1 (y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1)

(y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1)

; 1)

− E4(
0 −1 1 1

0 1 (y1y3−1)(y1y2y3−1)
(y1−1)(y1y2y23−1)

1
; 1) + E4(

0 −1 1 1

0 1 (y1y3−1)(y1y2y3−1)
(y1−1)(y1y2y23−1)

(y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1)

; 1)

− 3E4(
0 −1 1 1

0 1 (y1y3−1)(y2y3−1)
−2y2y3+y1(y3y2+y2−2)y3+y3+1 0

; 1) + 3E4(
0 −1 1 1

0 1 (y1y3−1)(y2y3−1)
−2y2y3+y1(y3y2+y2−2)y3+y3+1 1

; 1)

− E4(
0 −1 1 1

0 1−y1y3
y3−y1y3 0 1

; 1) + E4(
0 −1 1 1

0 1−y1y3
y3−y1y3 0 (y1y2−1)(y1y3−1)

(y1−1)(y1y2y3−1)

; 1)

− E4(
0 −1 1 1

0 1−y1y3
y3−y1y3 1 0

; 1) + E4(
0 −1 1 1

0 1−y1y3
y3−y1y3

(y1y3−1)(y2y3−1)
(y1−1)(y2−1)y3

0
; 1)

+ E4(
0 −1 1 1

0 1−y1y3
y3−y1y3

(y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1) 0

; 1)− E4(
0 −1 1 1

0 1−y1y3
y3−y1y3

(y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1) 1

; 1)

+ E4(
0 −1 1 1

0 1−y1y3
y3−y1y3

(y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1)

(y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1)

; 1) + E4(
0 −1 1 1

0 1−y1y3
y3−y1y3

(y1y3−1)(y1y2y3−1)
(y1−1)(y1y2y23−1)

1
; 1)

− E4(
0 −1 1 1

0 1−y1y3
y3−y1y3

(y1y3−1)(y1y2y3−1)
(y1−1)(y1y2y23−1)

(y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1)

; 1)− E4(
0 −1 1 1

0 y1y3−1
y1−1 0 1

; 1)

+ E4(
0 −1 1 1

0 y1y3−1
y1−1 0 (y1y2−1)(y1y3−1)

(y1−1)(y1y2y3−1)

; 1)− E4(
0 −1 1 1

0 y1y3−1
y1−1 1 0

; 1)

+ E4(
0 −1 1 1

0 y1y3−1
y1−1

(y1y3−1)(y2y3−1)
(y1−1)(y2−1)y3

0
; 1) + E4(

0 −1 1 1

0 y1y3−1
y1−1

(y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1) 0

; 1)

− E4(
0 −1 1 1

0 y1y3−1
y1−1

(y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1) 1

; 1) + E4(
0 −1 1 1

0 y1y3−1
y1−1

(y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1)

(y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1)

; 1)

+ E4(
0 −1 1 1

0 y1y3−1
y1−1

(y1y3−1)(y1y2y3−1)
(y1−1)(y1y2y23−1)

1
; 1)− E4(

0 −1 1 1

0 y1y3−1
y1−1

(y1y3−1)(y1y2y3−1)
(y1−1)(y1y2y23−1)

(y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1)

; 1)

+ E4(
0 −1 1 1

0 (y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1) 1 0

; 1)− E4(
0 −1 1 1

0 (y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1) 1 (y1y2−1)(y1y3−1)

(y1−1)(y1y2y3−1)

; 1)

+ E4(
0 −1 1 1

0 (y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1)

(y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1) 1

; 1)− 2E4(
0 −1 1 1

0 (y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1)

(y1y3−1)(y1y2y3−1)
(y1−1)(y1y2y23−1)

1
; 1)

+ 2E4(
0 −1 1 1

0 (y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1)

(y1y3−1)(y1y2y3−1)
(y1−1)(y1y2y23−1)

(y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1)

; 1)

− 2E4(
0 −1 1

0 1 (y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1)

; 1) log(
(y2 − 1)(y1y2 − 1)y3

y2(y3 − 1)(y1y3 − 1)
)

+ E4(
0 −1 1

0 1−y1y3
y3−y1y3

(y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1)

; 1) log(
(y2 − 1)(y1y2 − 1)y3

y2(y3 − 1)(y1y3 − 1)
)

+ E4(
0 −1 1

0 y1y3−1
y1−1

(y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1)

; 1) log(
(y2 − 1)(y1y2 − 1)y3

y2(y3 − 1)(y1y3 − 1)
)
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+ E4(
0 −1 1

0 (y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1) 1

; 1) log(
(y1 − 1)2(y2 − 1)y2(y3 − 1)y3

(y1y2 − 1)(y1y3 − 1)(y2y3 − 1)2
)

+ E4(
0 −1 1

0 0 (y1y3−1)(y1y2y3−1)
(y1−1)(y1y2y23−1)

; 1) log(
(y1 − 1)y2(y3 − 1)

(y1y2 − 1)(y2y3 − 1)
)

+ 2E4(
0 −1 1
0 1 0

; 1) log(
(y1 − 1)y2(y3 − 1)

(y1y2 − 1)(y2y3 − 1)
)

+ E4(
0 −1 1

0 1−y1y3
y3−y1y3

(y1y3−1)(y1y2y3−1)
(y1−1)(y1y2y23−1)

; 1) log(
(y1 − 1)y2(y3 − 1)

(y1y2 − 1)(y2y3 − 1)
)

+ E4(
0 −1 1

0 y1y3−1
y1−1

(y1y3−1)(y1y2y3−1)
(y1−1)(y1y2y23−1)

; 1) log(
(y1 − 1)y2(y3 − 1)

(y1y2 − 1)(y2y3 − 1)
)

− 2E4(
0 −1 1

0 (y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1)

(y1y3−1)(y1y2y3−1)
(y1−1)(y1y2y23−1)

; 1) log(
(y1 − 1)y2(y3 − 1)

(y1y2 − 1)(y2y3 − 1)
)

− 3E4(
0 −1 1

0 0 (y1y3−1)(y2y3−1)
(y1−1)(y2−1)y3

; 1) log(
(y1 − 1)(y2 − 1)y3

(y1y3 − 1)(y2y3 − 1)
)

+ 3E4(
0 −1 1

0 0 (y1y3−1)(y2y3−1)
−2y2y3+y1(y3y2+y2−2)y3+y3+1

; 1) log(
(y1 − 1)(y2 − 1)y3

(y1y3 − 1)(y2y3 − 1)
)

+ E4(
0 −1 1

0 1 (y1y3−1)(y2y3−1)
(y1−1)(y2−1)y3

; 1) log(
(y1 − 1)(y2 − 1)y3

(y1y3 − 1)(y2y3 − 1)
)

− 3E4(
0 −1 1

0 1 (y1y3−1)(y2y3−1)
−2y2y3+y1(y3y2+y2−2)y3+y3+1

; 1) log(
(y1 − 1)(y2 − 1)y3

(y1y3 − 1)(y2y3 − 1)
)

+ E4(
0 −1 1

0 1−y1y3
y3−y1y3

(y1y3−1)(y2y3−1)
(y1−1)(y2−1)y3

; 1) log(
(y1 − 1)(y2 − 1)y3

(y1y3 − 1)(y2y3 − 1)
)

+ E4(
0 −1 1

0 y1y3−1
y1−1

(y1y3−1)(y2y3−1)
(y1−1)(y2−1)y3

; 1) log(
(y1 − 1)(y2 − 1)y3

(y1y3 − 1)(y2y3 − 1)
)

+ E4(
0 −1 1

0 1 (y1y3−1)(y1y2y3−1)
(y1−1)(y1y2y23−1)

; 1) log(
(y1y2 − 1)(y2y3 − 1)

(y1 − 1)y2(y3 − 1)
)

+ E4(
0 −1 1

0 1−y1y3
y3−y1y3 0

; 1) log(
(y1y2 − 1)(y2y3 − 1)

(y1 − 1)y2(y3 − 1)
)

+ E4(
0 −1 1

0 y1y3−1
y1−1 0

; 1) log(
(y1y2 − 1)(y2y3 − 1)

(y1 − 1)y2(y3 − 1)
)

+ E4(
0 −1 1
0 1 1

; 1)(2 log(
(y1y2 − 1)(y2y3 − 1)

(y1 − 1)y2(y3 − 1)
)− 3 log(

(y1y3 − 1)(y2y3 − 1)

(y1 − 1)(y2 − 1)y3
))

+ E4(
0 −1 1

0 1−y1y3
y3−y1y3 1

; 1) log(
(y1y3 − 1)(y2y3 − 1)

(y1 − 1)(y2 − 1)y3
)

+ E4(
0 −1 1

0 y1y3−1
y1−1 1

; 1) log(
(y1y3 − 1)(y2y3 − 1)

(y1 − 1)(y2 − 1)y3
)

+ E4(
0 −1 1
0 0 1

; 1)(log(
(y1 − 1)y2(y3 − 1)

(y1y2 − 1)(y2y3 − 1)
) + 2 log(

(y1y3 − 1)(y2y3 − 1)

(y1 − 1)(y2 − 1)y3
))
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+ E4(
0 −1
0 0

; 1)(− log(
(y1 − 1)y2(y3 − 1)

(y2 − 1)(y1y2y3 − 1)
) log(

(y1 − 1)y2(y3 − 1)

(y1y2 − 1)(y2y3 − 1)
)

+ iπ log(
(y1 − 1)y2(y3 − 1)

(y1y2 − 1)(y2y3 − 1)
)− Li2(

(y1y2 − 1)(y2y3 − 1)

(y1 − 1)y2(y3 − 1)
))

+ E4(
0 −1

0 1−y1y3
y3−y1y3

; 1)(−1

2
log2(

(y1y2 − 1)(y2y3 − 1)

(y1 − 1)y2(y3 − 1)
)

+ log(
(y1 − 1)(y1y2 − 1)y3

(y1y3 − 1)(y1y2y3 − 1)
) log(

(y1y2 − 1)(y2y3 − 1)

(y1 − 1)y2(y3 − 1)
)− iπ log(

(y1y2 − 1)(y2y3 − 1)

(y1 − 1)y2(y3 − 1)
)

− Li2(
(y1y2 − 1)(y2y3 − 1)

(y1 − 1)y2(y3 − 1)
) +

π2

6
)

+ E4(
0 −1

0 y1y3−1
y1−1

; 1)(−1

2
log2(

(y1y2 − 1)(y2y3 − 1)

(y1 − 1)y2(y3 − 1)
)

+ (log(
(y1 − 1)(y1y2 − 1)y3

(y1y3 − 1)(y1y2y3 − 1)
)− iπ) log(

(y1y2 − 1)(y2y3 − 1)

(y1 − 1)y2(y3 − 1)
)− Li2(

(y1y2 − 1)(y2y3 − 1)

(y1 − 1)y2(y3 − 1)
) +

π2

6
)

+ 2E4(
0 −1

0 (y1y2−1)(y1y3−1)
(y1−1)(y1y2y3−1)

; 1)(log(
(y1 − 1)y2(y3 − 1)

(y2 − 1)(y1y2y3 − 1)
) log(

(y1 − 1)y2(y3 − 1)

(y1y2 − 1)(y2y3 − 1)
)

− iπ log(
(y1 − 1)y2(y3 − 1)

(y1y2 − 1)(y2y3 − 1)
) + Li2(

(y1y2 − 1)(y2y3 − 1)

(y1 − 1)y2(y3 − 1)
))

+ E4(
0 −1
0 1

; 1)(log2(
(y1y2 − 1)(y2y3 − 1)

(y1 − 1)y2(y3 − 1)
)− 2 log(

(y2 − 1)(y1y2 − 1)y3

y2(y3 − 1)(y1y3 − 1)
) log(

(y1y2 − 1)(y2y3 − 1)

(y1 − 1)y2(y3 − 1)
)

+
1

2
log(

(y2 − 1)(y1y2y3 − 1)

(y1 − 1)y2(y3 − 1)
) log(

(y1y2 − 1)(y2y3 − 1)

(y1 − 1)y2(y3 − 1)
) +

1

2
iπ log(

(y1y2 − 1)(y2y3 − 1)

(y1 − 1)y2(y3 − 1)
)

+
1

2
iπ log(

(y2 − 1)(y1y2 − 1)y3

y2(y3 − 1)(y1y3 − 1)
) +

1

2
iπ log(

(y1y3 − 1)(y2y3 − 1)

(y1 − 1)(y2 − 1)y3
)

+
1

2
log(

(y2 − 1)(y1y2 − 1)y3

y2(y3 − 1)(y1y3 − 1)
) log(

(y2 − 1)(y1y2y3 − 1)

(y1 − 1)y2(y3 − 1)
)

+
1

2
log(

(y1y3 − 1)(y2y3 − 1)

(y1 − 1)(y2 − 1)y3
) log(

(y2 − 1)(y1y2y3 − 1)

(y1 − 1)y2(y3 − 1)
) + Li2(

(y1y2 − 1)(y2y3 − 1)

(y1 − 1)y2(y3 − 1)
)− π2

3
)

+ E4(
0
0

; 1)(−1

6
log3(

(y1 − 1)y2(y3 − 1)

(y2 − 1)(y1y2y3 − 1)
)− 1

6
π2 log(

(y1 − 1)y2(y3 − 1)

(y2 − 1)(y1y2y3 − 1)
)

+ log2(
(y1 − 1)y2(y3 − 1)

(y1y2 − 1)(y2y3 − 1)
)(
iπ

2
− 1

2
log(

(y1 − 1)y2(y3 − 1)

(y2 − 1)(y1y2y3 − 1)
))

+ log(
(y1 − 1)y2(y3 − 1)

(y1y2 − 1)(y2y3 − 1)
)(log(

(y2 − 1)y3

y2(y3 − 1)
)(log(

(y2 − 1)(y1y2y3 − 1)

(y1 − 1)y2(y3 − 1)
) + iπ)

+ log(
y1y2 − 1

y1y3 − 1
)(log(

(y2 − 1)(y1y2y3 − 1)

(y1 − 1)y2(y3 − 1)
) + iπ))

− log(
(y2 − 1)(y1y2 − 1)y3

y2(y3 − 1)(y1y3 − 1)
)Li2(

(1− y1y2)(1− y2y3)

(1− y1)y2(1− y3)
) + Li3(

(y1y2 − 1)(y2y3 − 1)

(y1 − 1)y2(y3 − 1)
)

− Li3(− (y1 − 1)y2(y3 − 1)

(y2 − 1)(y1y2y3 − 1)
) + ζ(3)). (5.25)
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5.3.2 Result in terms of Γ̃

To find an expression for Iell
toy in terms of the Γ̃ functions, we can simply take the pre-

vious result in (5.25) and use the relations in (3.34) (substituting the integration kernels
ψ for Ψ according to (4.17) and (4.18)). We omit the result due to its length but we can
state that it preserves the same properties as (5.25) and its pure form.

5.3.3 Numerical evaluation and properties

There are some checks that we can perform to provide evidence that the results obtained
are right.

Numerical evaluation Firstly, it is straightforward to compute numerically the func-
tions E4 from their definition as iterated integrals (4.13), for some given cross-ratios y1,
y2, y3. Clearly, this numerical implementation must include the proper regularisations
(4.24). In a similar manner, we can obtain the regularised version by taking advantage
of the shuffle algebra. Particularly, we can express any eMPL function in terms of a
linear combination of products of other eMPLs where the indices (nk, ck) 6= (±1, 0) in
the last place. We use this property to make sure that the Γ̃ functions are not divergent
and, then, take the q-expansion of the Eisenstein-Kronecker coefficients in (4.22) in the
iterated integrals.

Finally, we can evaluate numerically the ordinary MPLs in (5.14) using GiNaC and
check our results.

Properties There are two main conditions that our results must fulfil. In the first
place, all terms in our results must have uniform weight and it must be four. To check
this, we can look at the following table, where it shows the weight of the different
functions [10]
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Figure 3: Weight and length of different building blocks encountered in elliptic Feyn-
man integrals.

Indeed, we see that this is the case.

In the second place, our results must give the same numerical result under permutations
of cross-ratios. This can be directly demonstrated by a numerical evaluation of the
results with different values for y1, y2, y3, using the methodology explained above.
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6 Discussion
In this section, we give some remarks on the results obtained and discuss briefly what
future research can be explored in the line of the work done in this thesis.

6.1 Summary
In this thesis, we have written a toy model of the elliptic double-box integral in terms
of pure elliptic multiple polylogarithms.

To achieve this, we have reviewed the background needed to understand the motivation
and the building blocks of the results. Firstly, we have reviewed the multiple polyloga-
rithms, including some of their basic properties. Secondly, we have reviewed the elliptic
curves and generalised the MPLs to the elliptic case, defining the elliptic MPLs both
on a complex torus and in terms of the variables (x, y). After that, we have introduced
the concept of pure functions and pure eMPLs, giving some motivation about why the
properties of this class of functions are interesting in the study of elliptic Feynman in-
tegrals. Finally, after a brief review of the double-box integral, we have presented our
results.

In summary, we can draw some conclusions about the results.

1 It is possible to write a toy model of the elliptic double-box integral expressed en-
tirely in terms of the E4 and the Γ̃ functions, and there exists a direct relation between
both.

2 The results preserve the properties of the toy model written in terms of ordinary
MPLs, i.e., they have uniform weight (equal to 4 in this case) and are symmetric with
respect to permutations of the cross-ratios.

3 We found identities that relate the Z4 functions and, as a consequence, we obtained
pure results by cancelling some terms.

6.2 Outlook
A natural extension of this thesis would be to study the symbol of our results, simi-
larly to [22]. The symbol is defined as a map which associates to an MPL a tensor
whose entries are rational (or algebraic) functions and is a particularly powerful tool for
computing with MPLs. The main advantage of the symbol is that it trivializes compli-
cated functional relations among MPLs. The research would consist in extending this
to eMPLs.

Another direction worth exploring is to seek identities between the eMPLs in the results
that manifest the symmetry under permutation of the cross-ratios in the toy model. As
we have stated on previous occasions, this property has been demonstrated numerically
but it might be worth studying it analytically.
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