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Abstract

In this thesis, we investigate a px + ipy superconductor. This is an intrinsic topological

superconductor subject to immense scientific interest, due to the possible hosting of Majorana

fermions. We determine the Bogoliubov-de Gennes equation and discuss the chirality as well

as the topology of the system. Subsequently we present results obtained from self-consistent

numerical solutions to the Bogoliubov-de Gennes equation. We first study the case with open

boundary conditions yielding chiral edge states. We further impose a vortex and confirm

the guaranteed zero-energy excitation in the core. Finally we display results obtained from

invoking a half-quantum vortex and argue that the zero-energy excitation in the core is a

topologically protected Majorana zero mode.
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1 Introduction

Over the past four decades the field of exotic superconductors has attracted immense scientific in-
terest [1–3]. In particular the subclass of topological superconductors have proven to be suitable
candidates for hosting the infamous Majorana zero modes [2]. A striking example of this is the lay-
ered Sr2RuO4 which exhibits chiral px + ipy superconductivity [2,4]. The likely existence of Majorana
fermions in such intrinsic topological superconductors has led to the belief that a full understanding
of these could be a crucial step towards the realization of a topological quantum computer [5]. Recent
studies suggest half-quantum vortex cores to be one of the most promising hosts of Majorana zero
modes in a spinful chiral p-wave superconductor [6].

In this thesis the exotic features of a px + ipy superconductor are investigated. A general intro-
duction to superconductivity and Majorana fermions is given in Section 2. In Section 3 the relevant
Hamiltonian is presented and the corresponding Bogoliubov-de Gennes equation and chirality is dis-
cussed, while Section 4 is a discussion of the model’s topology. These three sections all prepare for the
presentation of the numerical results in Section 5. We first present results yielding edge localized states
in the case of a finite system followed by a discussion of regular vortices and the corresponding zero-
energy excitations in the px + ipy superconductor. Finally we give an introduction to half-quantum
vortices and present results obtained from implementing this exotic phenomenon.

2 Superconductivity

The field of low temperature physics took its first steps in the laboratory of H. Krammerling Onnes
in 1908 with the liquefaction of 4He followed by the discovery of superconducting Hg in 1911 [3].
With this the existence of a completely new class of materials, known as superconductors, had been
uncovered. Superconductors are materials which, among other key properties, are characterized by
zero resistivity and the expulsion of magnetic fields (known as the Meissner-Ochsenfeld effect) [3].
The journey towards a theoretical understanding of these effects took its first step in 1935, where the
London brothers developed their theory based on the works by Drude and Maxwell. They reached
a theoretical explanation of the Meissner-Ochsenfeld effect, but their theory did not cover anything
near to a complete understanding of superconductivity.
The next big theoretical advance was done in the light of thermodynamic phase transitions. Landau
had previously studied different phase transitions based on the principle of free energy minimization. In
collaboration with Ginzburg he presented the Ginzburg-Landau (GL) model in 1950, which introduced
a complex order parameter, ψ(r), characterizing the superconducting state. Among other crucial
predictions, their theory was able to provide a greater understanding of the flux quantization of type
II superconductors [3]. Despite the many correct results obtained through the two macroscopic theories
above, it was well-known that they did not provide the full microscopic picture.

2.1 BCS Theory1

Bardeen, Cooper and Schrieffer (BCS) thus set in all efforts to develop the first microscopic description
of superconductivity. In their theory, published in 1957, the complex order parameter, ψ(r), known
from GL theory, was related to the superconducting order parameter ∆ while |ψ|2 was interpreted as
the density of so-called Cooper pairs.
BCS theory relies on the rather astonishing result that at low temperatures the effective electron-
electron interaction near the Fermi surface is attractive rather than repulsive. Since the full derivation
of this conclusion is based on Feynman diagrams and many-body Green’s functions it is beyond the
scope of this thesis. We will simply state the most important physical aspects.
First and foremost in a metal we should not consider bare electrons but quasiparticles. These quasi-
particles can be described as the excitations in solids consisting of a moving electron surrounded by an
exchange correlation hole. This exchange correlation hole stems from the Pauli exclusion principle as
well as the Coulomb interaction, since these prevent electrons from occupying the same point. Thus

1This section is based on theory and historical reviews from [3].
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between quasiparticles the Coulomb force is substantially reduced by an effective screening.
Secondly the electrons interact via the exchange of a phonon. BCS found that this electron-phonon
interaction 2 could be approximated by

Veff (ω) = |geff |2
1

ω2 − ω2
D

,

with ω as the frequency of the interacting phonon, ωD the Debye frequency, a characteristic phonon
frequency of the system, and geff being an approximation to the original matrix element describing
the scattering of the electron with the phonon [3]. In the low temperature regime where |ω| < ωD,
this can be further reduced to Veff = −|geff |2, that is an attractive potential. The related effective
Hamiltonian of the electron-electron interaction is

H = −|geff |2
∑

k,k̃,q,σ1,σ2

c†k+qσ1
c†
k̃−qσ2

ckσ1ck̃σ2
,

where we introduced the fermionic creation (c†k+qσ1
) and annihilation (ckσ1) operators. We see that the

Hamiltonian describes two electrons with momenta k and k̃ getting annihilated, while two electrons
with momenta k + q and k̃− q are created. Hence this is simply a momentum transfer between the
two. The readers not familiar with second quantization are referred to Chapter 1 of [7]. Due to the
low energy regime, we restrict the summation to wave vectors with energies within ±~ωD of the Fermi
surface.

2.1.1 Cooper Pairs

Having argued for an attractive potential between electrons near the Fermi surface, we move on to
discuss the allowed states of such two electrons and the corresponding energy.
Consider a spherical Fermi surface at zero temperature, that is a filled Fermi sea. Now add two
electrons to the system. Since all states below kF are occupied, the two added electrons must be placed
outside the Fermi surface. The two will constitute a two particle wave function, Ψ(r1, σ1, r2, σ2) =
eiKRψ(r1−r2)χσ1σ2 , where K and R are the center of mass momentum and position, respectively. To
minimize the energy there is no center of mass motion, thus our two particle state is described solely
by the spatial part, ψ(r1− r2), and spin part, χσ1σ2 . Taking the spin to be singlet pairing for now, we
must demand an even spatial part. Expanding this in terms of the Bloch waves (assumed to be plane
waves [3]), we get

ψ(r1 − r2) =
∑
k

φke
ik(r1−r2),

where φk are undetermined expansion coefficients. The demand of an even function implies φk = φ−k.
Since χσ1σ2 = 1/

√
2(|↑↓〉 − |↓↑〉) the two particle wave function can be written as a sum of Slater

determinants,

Ψ(r1, σ1, r2, σ2) =
∑
k

φk

∣∣∣∣ ψk↑(r1) ψk↓(r2)
ψ−k↑(r1) ψ−k↓(r2)

∣∣∣∣⇒ |Ψ〉 =
∑
k

φk |Ψk〉 ,

where ψk(r) = eikr and we imposed the condition that k2 = −k1 to minimize the energy. This wave
function must obey the two particle Schrödinger equation∑

k

(εk + ε−k)φk |Ψk〉 − |geff |2
∑
k

φk |Ψk〉 = E |Ψ〉 . (2.1)

The first term is nothing but the kinetic energy of the two pairs in the Slater determinant measured
relative to εF , while the second term describes the effective electron-electron interaction. To obtain an

2The interaction is formally described as the vertex of the related Feynman diagram. The interested reader is referred

to Chapter 17 of [7].
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expression for the energy of the two particle state, we pick out the terms for a given k by multiplying
Eq. 2.1 with 〈Ψk|. Using that εk = ε−k and that |geff |2 will ensure scattering from (k,−k) to
(k′,−k′), we find

2εkφk − |geff |2
∑
k′

φk′ = Eφk ,

φk = −
∑
k′

φk′ |geff |2
1

E − 2εk
,

∑
k

φk = −
∑
k′

φk′ |geff |2
∑
k

1

E − 2εk
,

1 = −|geff |2
∑
k

1

E − 2εk
,

1 = −|geff |2
∫ ~ωD

0
dεg(ε)

1

E − 2ε
.

In the last equality we used that a sum over k can always be converted into an integral over the
density of states3. Furthermore we invoked the limits due to the restriction on the attractive potential
as discussed previously. Given that the density of states is approximately constant within this small
interval around the Fermi surface, this can be taken out of the integral, and we find

1 = |geff |2g(0)

∫ ~ωD

0
dε

1

2ε− E
=
|geff |2g(0)

2
ln

(
2~ωD − E
−E

)
.

In the weak coupling limit, |geff |2g(0) << 1, this can be solved for E to yield,

E = −2~ωDe−2/|geff |2g(0) . (2.2)

This result is rather astonishing, since it shows that the electron pair will form a bound state, that
is with energy less that 2εF , as soon as any attractive potential is present. Cooper thus reached the
conclusion that the filled Fermi sea must be unstable against the formation of bound electron pairs
known as Cooper pairs. E is the energy scale relevant when studying superconductors, which explains
the very low critical temperature in conventional superconductors.

2.1.2 The Mean-Field Hamiltonian

With the formation of Cooper pairs in place, we wish to study the full system of a superconduc-
tor rather than the two particle wave function. To do so it is convenient to write up the effective
Hamiltonian in terms of creation and annihilation operators,

H =
∑
kσ

(εk − µ)c†kσckσ − |geff |
2
∑
k,k̃

c†k↑c
†
−k↓c−k̃↓ck̃↑. (2.3)

We subtract the chemical potential to show explicitly that we set the zero kinetic energy at the Fermi
surface. The ground state of this effective Hamiltonian is known as the BCS ground state, which is a
product of the filled zero-temperature Fermi sea with 0,1,2,3 etc. Cooper pairs. The potential term
of the Hamiltonian is quartic in the particle field operators and analytically unsolvable except in very
limited 1D systems. Performing a mean-field decomposition allows us to rewrite it in a quadratic
form,

H =
∑
kσ

(εk − µ)c†kσckσ − |geff |
2
∑
k,k̃

(
c†k↑c

†
−k↓〈c−k̃↓ck̃↑〉+ 〈c†k↑c

†
−k↓〉c−k̃↓ck̃↑

)
,

H =
∑
kσ

(εk − µ)c†kσckσ −
∑
k

(
∆c†k↑c

†
−k↓ + h.c

)
, (2.4)

3Never forget.
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where we defined

∆ ≡ |geff |2
∑
k

〈c−k̃↓ck̃↑〉 . (2.5)

This is the previously mentioned superconducting order parameter (OP) replacing ψ(r) from GL
theory. Clearly geff = 0 corresponds to ∆ = 0 which emphasizes the fact that without an attractive
potential, there is no superconductivity. Eq. 2.4 can be rewritten into matrix form as

H =
∑
k

(
c†k↑ c−k↓

)(εk − µ −∆
−∆∗ −εk + µ

)(
ck↑
c†−k↓

)
. (2.6)

It is now straightforward to compute the eigenenergies of this Hamiltonian, which are

Ek = ±
√

(εk − µ)2 + |∆|2 . (2.7)

From this it is evident that the superconducting OP defines an energy gap around the Fermi surface
within which there can be no excitations. ∆ is therefore commonly referred to as the superconducting
gap.
The eigenvectors of H must correspond to some linear combination of ck↑ and c†−k↓ denoted by γk↑,
which is a so-called quasiparticle and will be discussed in greater detail throughout this thesis. For
now it is sufficient to state that they are excitations of the BCS ground state and their energies are
Ek.

2.2 Types of Superconductivity

As the attentive reader might have dwelled upon, we have thus far only considered Cooper pairs with
singlet pairing. In addition it turns out that since the electron-electron interaction is independent of q
the potential in real space can be expressed as Veff = −|geff |2δ(r1 − r2) [3]. This implies no internal
angular momentum, since only then, it will be possible for the two electrons to occupy the same point
in space. The solution thus relies on an s-wave pairing, l = 0, of the two. This singlet s-wave pairing
is the most common type of conventional superconductors, however some materials do exhibit other
types of attractive potentials allowing different types of pairings. To generalize the theory discussed
above one should consider all possible spin combinations of the Cooper pair while still restricting to
momenta (k,−k). Doing so, it is natural to express a general superconducting OP in terms of the
triplet and singlet pairing as follows [3, 8],

∆̂ =

(
∆++∆+−

∆−+∆−−

)
= i(∆s(k)I + d(k) · σ)σy ,

∆̂ =

(
−dx(k) + idy(k) dz(k) + ∆s(k)
dz(k)−∆s(k) dx(k) + idy(k)

)
, (2.8)

where + (−) is spin up (down) and σ is the Pauli matrices. We have split up the superconducting OP
into ∆s = 1/2(∆+−−∆−+), the singlet OP, and d = 1/2(∆−−−∆++,−i(∆−−+∆++),∆+−+∆−+),
the triplet OP. This thesis will focus on p-wave pairing, l = 1, with spin triplet pairing primarily of
type |↑↓〉+ |↓↑〉, that is an OP with ∆s = dx = dy = 0 and dz 6= 0.
An interesting feature of many non-s-wave superconductors is the presence of nodes in the supercon-
ducting gap. These are essentially points or lines at the Fermi surface, where the gap closes. Consider
the k dependence of the singlet and triplet OPs, which describes both the spin and orbital k depen-
dence. The OPs can be said to pick a direction in spin space which is then multiplied by a function
f(k) representing the orbital part of the wave function [9]. This part can be expanded in the basis of
spherical harmonics as [10]

f(k) =

l∑
m=−l

aml(k)Y m
l (k̂) .
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Relating the spherical harmonics to an assumed spherical Fermi surface and taking l = 0 as in the
previous section, it becomes clear why an s-wave superconductor has a full gap (that is with no nodes),
since Y 0

0 is perfectly spherical. In general f(k) will of course exhibit various shapes.

Some examples of p-wave gaps can be seen in
Fig. 1. The a) and b) cases both correspond
to the spin pairing investigated in the thesis,
but we see the important difference of point
nodes in the kx phase as opposed to a full gap
in the kx + iky phase. The transition from the
kx phase to the kx + iky phase can be under-
stood by considering the condensation energy,
that is the energy gained by the system in tran-
sitioning to a superconducting phase. The con-
densation energy depends on |∆(k)|2 averaged
over the entire Fermi surface [8], hence nodes
are in general not preferred by superconduc-
tivity. However the kx + iky phase is a chiral
superconducting state, where the phase of the
complex ∆k precesses +2π as k follows a closed
path around the kz axis. This exotic behavior
implies edge currents, which are of course en-
ergetically costly. Therefore the p-wave super-
conductor will prefer the kx phase close to Tc
to avoid edge currents but as the temperature
decreases it will at some point be favorable for
the system to create edge currents but in turn
transition to a phase with a fully gaped Fermi
surface.

Figure 1: Examples of triplet OPs in a p-wave su-

perconductor with their corresponding gap structure.

The three cases correspond to three different super-

conducting phases. a) has point nodes in 2D and a

line node in 3D, b) has a full gap in 2D and point

nodes in 3D while c) has full gaps in both cases. This

thesis will focus on case b) in 2D. The figure has been

adopted from [9].

2.3 Majorana Fermions and Topological Superconductivity

A topological superconductor is a superconductor which exhibits symmetries such that a non-trivial
topological invariant can be related to the system. Details of the topological classification and in-
variants will be discussed in Section 4. Let us for now simply state that the topological invariant
determines the number of so-called Majorana fermions (MFs) in the system. MFs are a special type of
quasiparticles represented by the previously mentioned γ† operator. The MFs must satisfy the relation
γ = γ†, that is they are their own hole. This requirement can be met by demanding equal electron
and hole part. MFs are anyons, meaning that a particle exchange of two MFs can pick up any phase
as opposed to usual fermions (always picking up -1). Furthermore they obey non-abelian statistics,
implying that the exchange operations are non-commuting. Their non-abelian nature has led to the
idea of low-decoherence topological quantum computation [5], and are thus of great scientific interest.
In principle all fermionic operators can be written as a superposition of two Majorana operators as

c†i =
γi,1 − γi,2

2
, (2.9)

in a real space representation, where γi,j are MFs living on site i [5]. However these states are not
topologically protected from decoherence and are of no significant importance. The term MF thus
typically refers to a fermionic state with two spatially separated MFs. The most intuitive way to
understand how such a state can appear, is to consider a 1D system with open the boundaries and an
odd number of fermions located at individual sites represented by the blue boxes in Fig. 2 4.

4This model is known as the Kitaev chain named after Alexei Kitaev who originally introduced it [11].
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Figure 2: Illustration of the formation of delocalized fermionic states in a 1D system. The blue boxes

correspond to fermion operators located at individual sites while the red dots correspond to Majorana

operators. This figure has been adopted form [5].

According to Eq. 2.9 these can be split up into two Majorana operators represented by the red dots.
If the topology is such that true MFs will appear, the Majorana operators will pair across neighboring
sites to create fermions as depicted in the figure. The edge sites will thus create a highly delocalized
fermionic state consisting of two true MFs, one at each edge. This delocalized fermionic state will not
enter in the Hamiltonian written in terms of the operators creating/annihilating the pairs indicated
by the dotted lines, and thus it must have zero energy cost [5]. Without any spatial overlap between
the wave functions of the MFs they are protected from any local perturbation, since a such can only
affect one of the two MFs constituting a pair.

3 The Bogoliubov-de Gennes Method

The previous section has been a discussion of some general phenomena necessary to form supercon-
ductivity or consequences thereof. In the remainder of this thesis we will investigate a particular
superconducting system. The aim is to examine a px+ ipy superconductor with triplet pairing of type
(| ↑↓〉+ | ↓↑〉) /

√
2 on a 2D square lattice.

The lattice Hamiltonian of a general superconducting system can be written,

H = −
∑
i,j,α

tijc
†
i,αcj,α − µ

∑
i,α

c†i,αci,α + Vpair, (3.1)

where we applied the tight-binding model to a two-dimensional square lattice with sites i = (ix, iy).

c†i,α (ci,α) is the creation (annihilation) operator, α is the spin, tij represents the kinetic energy related
to hopping between sites, µ is the chemical potential and Vpair is the pairing interaction. Vpair
is determined by an orbital part and a spin part. Assuming only one dominating orbital of the
superconducting properties [12], we will solely consider the spin part. Decomposing this into singlet
and triplet parts as discussed in Section 2.2, the potential can be written [12]

Vpair =
1

2

∑
i,j,α1∼α4

3∑
m=0

gm,ji(σmiσ2)†α3α1
(σmiσ2)α2α4(ciα1cjα3)†ciα2cjα4 , (3.2)

with g0,ji being the singlet component and g1,ji, g2,ji, g3,ji being the three triplet components. σ1∼3

are the Pauli matrices and σ0 is the 2-by-2 identity matrix, while α1∼4 are the spin indices and thus
represent all possible combinations of the spin pairing of two electrons at different sites.

To simplify Eq. 3.2 the first step is to perform a mean-field decomposition similar to Eq. 2.4 yielding

Vpair =
1

2

∑
i,j,α1∼α4

3∑
m=0

gm,ji(σmiσ2)†α3α1
(σmiσ2)α2α4

(
〈c†jα3

c†iα1
〉ciα2cjα4 + c†jα3

c†iα1
〈ciα2cjα4〉

)
.
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Defining the superconducting and triplet OPs as follows,

∆ji,α2α4 =
3∑

m=0

dm,ji(σmiσ2)α2α4 (3.3a)

dm,ji = gm,ji
∑
α1α3

(σmiσ2)†α3α1
〈ciα1cjα3〉 , (3.3b)

(3.3c)

enables us to write the full Hamiltonian as

H = −
∑
i,j,α

tijc
†
i,αcj,α − µ

∑
i,α

c†i,αci,α +
1

2

∑
i,j

∑
α2α4

(
∆ji,α2α4c

†
jα4
c†iα2

+ h.c.
)
.

As mentioned previously our focus will be on the triplet pairing of type (| ↑↓〉+ | ↓↑〉) /
√

2 corre-
sponding to d0,ji = d1,ji = d2,ji = 0 and d3,ji = dji. To ensure this we set g0ji = g1,ji = g2,ji = 0 and
g3,ji = g. Having defined these values the terms left to consider is,

∆ji,α2α4 = dji

(
0 1
1 0

)
α2α4

(3.4a)

dji = g (〈ci↑cj↓〉+ 〈ci↓cj↑〉) . (3.4b)

Note that dji, hence ∆ji,α2α4 , is antisymmetric due to the fermionic nature of the operators. This
suggests a further simplification to the Hamiltonian, since the spin summation can be performed
yielding

H = −
∑
i,j,α

tijc
†
i,αcj,α − µ

∑
i,α

c†i,αci,α +
1

2

∑
i,j

(
dji

(
c†jσc

†
i−σ + c†j−σc

†
iσ

)
+ h.c.

)
,

H = −
∑
i,j,α

tijc
†
i,αcj,α − µ

∑
i,α

c†i,αci,α︸ ︷︷ ︸
H0

+
∑
i,j

(
djic

†
jσc
†
i−σ + h.c.

)
︸ ︷︷ ︸

H∆

, (3.5)

where the last term has been rewritten using the anticommutator relation of the operators, the anti-
symmetry of dji and exchanging the dummy indices. This effective Hamiltonian is quadratic in the
creation (annihilation) operators and can be solved numerically without extensive complexity.

3.1 The Bogoliubov-de Gennes Equation

A common method of solving the real-space Hamiltonian (3.5) is by using the Bogoliubov-de Gennes
(BdG) equation. The derivation of this equation relies on performing an appropriate Bogoliubov
transformation which diagonalizes the Hamiltonian in the basis of a set of quasiparticle operators
(γ†ε , γε). In our case, a suitable transformation reads,(

cpσ
c†p−σ

)
=
∑
ε>0

(
upεσ v∗pεσ
vpε−σ u∗pε−σ

)(
γεσ
γ†ε−σ

)
, (3.6)

where the transformation matrix is unitary, thus |u|2 + |v|2 = 1. The summation over ε is chosen to
cover half the eigenstates, since the transformation itself should not introduce twice the number of
states in the system. The proceeding derivation is concerned with the computation of commutator
relations and can be found in Appendix A. The BdG equation with the assumptions of Eq. 3.4 applied
is,

Eε

(
ujεσ
vjε−σ

)
=
∑
i

(
Kji dji
−d†ji −K∗ji

)(
uiεσ
viε−σ

)
, (3.7)

where Kji = −tji − µδji. The spin index on the energies has been dropped, since they are spin
degenerate. It is evident that the BdG equation is an eigenvalue problem and can be solved to find
the excitation energies and wave functions of the quasiparticles.
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3.2 Self-Consistency Condition of the d-vector

Eqs. 3.4b and 3.7 clearly constitute a self-consistent problem, since the expectation values of the
operators will naturally depend on the eigenvectors of the BdG equation. Thus we wish to determine
the self-consistent condition in terms of u and v. Rewriting the expectation values to the γ-basis
yields,

〈ci↑cj↓〉 =
〈∑

ε

(
uiε↑γε↑ + v∗iε↑γ

†
ε↓

)(
ujε↓γε↓ + v∗jε↓γ

†
ε↑

)〉
=
∑
ε

(
uiε↑ujε↓〈γε↑γε↓〉+ uiε↑v

∗
jε↓〈γε↑γ

†
ε↑〉+ v∗iε↑ujε↓〈γ

†
ε↓γε↓〉+ v∗iε↑v

∗
jε↓〈γ

†
ε↓γ
†
ε↑〉
)

=
∑
ε

(
uiε↑v

∗
jε↓〈γε↑γ

†
ε↑〉+ v∗iε↑ujε↓〈γ

†
ε↓γε↓〉

)
,

where the last equality is simply obtained by using that the BSC ground state is not an eigenstate of
the γ†γ† or γγ operator. The expectation value of the occupation number operator, 〈γ†ε↓γε↓〉, is given
by the Fermi-Dirac distribution, since the γ operators refer to fermionic excitations. Furthermore the
quasiparticle energy is measured with respect to εF , hence 1− f(Eε) = f(−Eε). We thus find

〈ci↑cj↓〉 =
∑
ε

(
uiε↑v

∗
jε↓f(−Eε) + v∗iε↑ujε↓f(Eε)

)
.

To rewrite this expression it is useful to consider symmetries of the BdG equation (3.7) which has so

far been written in the eigensystem

{
Eε,

(
ujεσ
vjε−σ

)}
. However identical equations are can be derived,

if the eigensystem is shifted to

{
− Eε,

(
v∗jεσ
u∗jε−σ

)}
. Performing this shift to the last term yields,

〈ci↑cj↓〉 =
∑
ε

(
uiε↑v

∗
jε↓f(−Eε) + uiε↑v

∗
jε↓f(−Eε)

)
= 2

∑
ε

uiε↑v
∗
jε↓f(−Eε)

=
∑
all ε

uiε↑v
∗
jε↓f(−Eε) .

In the last line we remind ourselves of the implicit restriction to positive ε introduced in the definition
of the Bogoliubov transformation (3.6), which is now expanded to include all values of ε. Similarly
we obtain

〈ci↓cj↑〉 =
∑
ε

v∗iε↓ujε↑f(Eε) .

We now have the condition,

dji = g
∑
ε

(
uiε↑v

∗
jε↓f(−Eε) + v∗iε↓ujε↑f(Eε)

)
, (3.8)

which allows us to solve Eq. 3.7 in a proper, self-consistent manner.

3.3 Chirality and Excitation Energies in k-space

So far the triplet pairing has been imposed on the system. It remains, however, to investigate the
chirality of the system, which, as previously mentioned, is determined by the phase of the supercon-
ducting OP in k-space. To do so we perform a Fourier transform (FT) of Eq. 3.5 where we neglect all
other interactions than nearest neighbor (NN) and set tji = t. The full transformation can be found
in Appendix B, here we merely state the result

H =
∑
k

(
c†kσ c−k−σ

)(εk − µ dk
d∗k −(εk − µ)

)(
ckσ
c†−k−σ

)
, (3.9)
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where εk = −2t(cos(kx) + cos(ky)) and dk =
2d (sin(kx) + i sin(ky)). The corresponding excitation ener-
gies are

Ek = ±
√

(εk − µ)2 + |dk|2. (3.10)

These can be used to confirm the numerical result obtained
when solving the BdG equation (3.7) using the quantization
of k (kx, ky = 0,±2π

L ,±
4π
L , ...).

The result in Eq. 3.9 naturally depends on the defini-
tion of the superconducting NN interaction. The specific
expression of dk is obtained by imposing the following
interactions

dji =


−id , for i = j + x̂
id , for i = j − x̂
d , for i = j + ŷ
−d , for i = j − ŷ
0 , otherwise.

(3.11)

0 π 2π

-π

0

π

θ

ar
g
(d
k
)

Figure 3: Phase of dk as we precess +2π

around the z-axis. The plot confirms a

winding of +1.

To determine the chirality, we express (kx, ky) as (cos(θ), sin(θ)) and plot the argument of dk as a func-
tion of θ 5. This yields the result shown in Fig. 3. Clearly the argument returns to its original value
as we presses once around the z-axis, corresponding to a winding of +1 (×2π).

With the BdG equation, self-consistency of d and desired chirality in place, we have a full, solv-
able description of a chiral p-wave superconductor of type px + ipy.

3.4 Numerical Solution to the BdG Equation

Let us now discuss how to obtain the numerical solution to the BdG equation (3.7). The idea is to
create an N × N square grid and enumerate each grid site. We do this by starting in one corner of
the grid and scan upwards through all sites in vertical lines. Each site will correspond to both uiεσ
and viεσ values according to Eq. 3.7, hence the eigenvectors will have the form

(
uiεσ
viεσ

)
→



u(1)
.
.

u(N2)
v(1)
.
.

v(N2)


This leads to a BdG-matrix of dimensions 2N2 × 2N2 divided into four squares as follows Kji dji

−d†ji −K∗ji

 ,

each square with N2 entries. The on-site energy and NN hopping and coupling can be imposed by
setting all other entries than these to zero. As an example take u(5) in a 4 × 4 grid. With periodic

5Since the winding should be evaluated along the Fermi surface, we implicitly set kF = 1. This is without any loss of

generality, since the argument winding only changes by the enclosure of gap closings. In our case, the only gap closing

within the Brillouin zone is at (0,0), the rest is situated at the edges. Thus the conclusion remains a winding of +1 as

long as the Fermi surface has an approximately circular appearance.
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boundary conditions, this site, 5, interacts with sites 1, 5, 6, 8 and 9. In the first square, Kji, we set
entry (5,5) to −µ and entries (5,1), (5,6), (5,8) and (5,9) to −t. Moving on to the superconducting
couplings these combine u(j) with v(i) and vise versa, thus the NN entries of the second square will
be (5,17), (5,22), (5,24) and (5,25). Now to ensure chiral p-wave superconductivity of type px + ipy
we set the entries according to Eq. 3.11. Once the matrix is set up for all u and v and proper initial
values for t, µ and d are chosen, the eigenvalues and vectors are computed and these values are used
to set up a d̂ji-matrix applying Eq. 3.8, with each entry corresponding to a coupling between sites j
and i. The new values for the couplings are inserted the BdG-matrix, and once again the eigenvectors
and values are computed. The iterations continue until the error between the order parameters of two
successive iterations falls below some predefined value. In practice the convergence condition used for
the presented results is |d(2N + 4, 2N + 5)(n− 1)− d(2N + 4, 2N + 5)(n)|+ |d(3N + 5, 2N + 5)(n−
1)−d(3N +5, 2N +5)(n)| < 10−4 with n indicating the iteration number. The first term is a coupling
in the x-direction and the second is a coupling in the y-direction, both between non-edge sites. This
condition was chosen to ensure convergence of the interaction along both x and y, which is particularly
relevant if we wish to study different boundary conditions in the two directions.

3.4.1 The Pairing Potential and Local Density of States

The excitation energies alone do not provide information regarding the localization of the excited
quasiparticle states. As described in Section 2.3 the spatial separation of quasiparticles is essential
to the formation of true MFs, thus we should not inspect the excitation energy spectrum itself but
rather investigate the pairing potential (PP) and the local density of states (LDOS), which reveal the
spatial extent of the excited states.
The PP at each site is

∆(rj) = ∆px + i∆py , (3.12)

with

∆px =
dj,j+x̂ − dj,j−x̂

2
,

∆py =
dj,j+ŷ − dj,j−ŷ

2
.

We see that the PP averages the intersite interaction at each site. A low potential will, not surpris-
ingly, correspond to the quasiparticles preferred areas of inhabitance. This assertion is confirmed by
inspecting the LDOS at zero energy. The general expression is given by [12],

LDOS(rj , ω) =
∑
ε

(
|uε(rj)|2δ(ω − Eε) + |vε(rj)|2δ(ω + Eε)

)
, (3.13)

where ω denotes the entire energy spectrum. The derivation of the LDOS is beyond the scope of this
thesis, however it is apparent that if a state is excited at energy E1 the LDOS will have one spike at
E1 weighted by the amplitude of the creation (electron) operator and one spike at −E1 weighted by
the amplitude of the annihilation (hole) operator, which does indeed seem physically reasonable.
In the numerical computations the delta functions will be approximated by Lorentzians, that is
δ(ω ± Eε) ' −(1/π)Im((ω ± Eε + iη)−1) with η = 0.01t.

The topological features of the superconductor will now be discussed and the results will be presented
subsequently.

4 Symmetries and Topological Classification

Considering the symmetries and topological classification of our system is of the utmost relevance to
perform a correct analysis of our results, since, as described in Section 2.3, the value of the topolog-
ical invariant determines the number of possible Majorana modes in the system. To determine the
topological properties of a system one should consider the non-simplified Hamiltonian. To do so we
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Symmetry Condition Unitarity

Θ̂ Generalized time-reversal [Ĥ, Θ̂] = 0 Anti-unitary

Ξ̂ Charge-conjugation {Ĥ, Ξ̂} = 0 Anti-unitary

Π̂ Chiral {Ĥ, Π̂} = 0 Unitary

Table 1: The three operators to consider when topologically classifying a Hamiltonian. They each

represent a symmetry which is present, if the corresponding condition is satisfied. The value of the

operators’ squares categorize systems into the ten symmetry classes in Table 2.

expand Eq. 3.9 to be written in terms of the four Nambu spinor Ψ†k =
(
c†k↑, c

†
k↓, c−k↓,−c−k↑

)
and

find

H =
1

2

∑
k

Ψ†k [(εk − µ)τz + 2d(sin(kx)τxσz − sin(ky)τyσz)] Ψk , (4.1)

where τx,y,z (σx,y,z) are the Pauli matrices referring to particle-hole space (spin space) and the factor
of 1/2 makes up for the double counting. We have omitted all the ⊗ in the tensor products as well as
σI , the 2-by-2 identity matrix, in the first term. This is the full Fourier transform of Eq. 3.1 with the
restrictions of Eq. 3.4 still applied. We now wish to block diagonalize Eq. 4.1 to simplify the further
considerations. This can be done without any loss of generality by exchanging c†k↓ and c−k↓ in the
Nambu spinor, yielding

Hσ = (εk − µ)τz + σ2d(sin(kx)τx − sin(ky)τy) , (4.2)

with σ denoting the pseudospin, that is σ = +1 in the top block and σ = −1 in the bottom one.
To classify the Hamiltonian in Eq. 4.2 we consider the three operators in Table 1 each representing
a symmetry [13]. The symmetry represented by the given operator is present if it either commutes
or anti-commutes (depending on the operator in question) with the Hamiltonian as expressed in the
table. If that is indeed the case, the value of the operators’ square determines the class of the system.
Since Θ̂ and Ξ̂ are both anti-unitary they can square to ±I or 0, while Π̂ can only square to I or 0.
Usually ±I is simply denoted as ±1.

The proceeding analysis is concerned with determining the symmetries of Eq. 4.1. If we can find
operators satisfying the conditions in Table 1 the corresponding symmetry is present. To do so it is
useful to study the 1D case, where Eq. 4.2 reduces to

Hσ = (εk − µ)τz + σ2d sin(kx)τx . (4.3)

We immediately find that {Hσ, τy} = 0 and since τy is unitary, we can identify Π̂ = τy. We further

observe that H∗σ = Hσ and by defining K̂ to denote complex conjugation we find [Hσ, K̂] = 0 and can
identify Θ̂ = K̂. Finally we use the relation Π̂ = Ξ̂Θ̂ [13] to identify Ξ̂ = τyK̂, which is indeed anti-

unitary. Furthermore we find {Hσ, τyK̂} = 0. These three commutator/anti-commutator relations
reveal all three symmetries to be present.

This classifies the Hamiltonian in Eq. 4.3 to be BDI, see Table 2. Due to its dimensionality (d = 1)
we find the that a Z topological invariant can be defined and the Hamiltonian is said to exhibit
non-trivial topological properties. Before proceeding the discussion to these topological invariants we
have yet to determine the class of our full Hamiltonian in Eq. 4.2. Checking the commutator and
anti-commutators of this Hamiltonian with the predefined operators classifies it to be class D. Since
we have one block for each value of σ we say it is class D+D, where each block has an associated Z
topological invariant.
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Symmetry d

AZ Θ2 Ξ2 Π2 1 2 3 4 5 6 7 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII 0 0 1 Z 0 Z 0 Z 0 Z 0

AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z
BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2

D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII -1 1 1 Z2 Z2 Z 0 0 0 Z 0

AII -1 0 0 0 Z2 Z2 Z 0 0 0 Z
CII -1 -1 1 Z 0 Z2 Z2 Z 0 0 0

C 0 -1 0 0 Z 0 Z2 Z2 Z 0 0

CI 1 -1 1 0 0 Z 0 Z2 Z2 Z 0

Table 2: The ten classes associated with the three symmetry operators categorized according to the

values of the operators squared, where ±1 = ±I. Θ and Ξ are anti-unitary and can square to −1

while Π can only square to 0 or 1. d is the dimensionality of the system, and Z (Z2) denotes whether

a topological invariant can be defined. The table is adopted from [13].

4.1 Topological Invariant

Having classified the Hamiltonian in question we have left to define and compute a topological invariant
to count the possible number of Majorana modes. The following quantity,

N =
1

4π

∫
dk ĝ(k) ·

(
∂ĝ

∂kx
× ∂ĝ

∂ky

)
, (4.4)

is an integer and constitutes a topological invariant when g = (σ2d sin(kx),−σ2d sin(ky), (εk − µ))
so that H = g · τ [13]. The integrand in Eq. 4.4 has sharp peaks at the four possible gap closings
((kx, ky) = (0, 0), (0, π), (π, 0), (π, π)), thus it is sufficient to evaluate g at these four points of the
Brillouin zone. To further simplify, we linearize the integrand at each point yielding for instance
g(0, 0) = (σ2dkx,−σ2dky, εk − µ). Additionally, due to the sharp peaks at the gap closings, we can
extend the integration limits to all space. Finally we use that the collected factor of |g|−3 can be
multiplied onto the integrand after performing the partial derivatives. With these tricks imposed we
can solve Eq. 4.4 to find

N =
1

2
sign(4t+ µ)− sign(µ)− 1

2
sign(4t− µ) .
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Thus when µ = ±4t, 0 the topological invariant can
change. Evaluating the result at µ = −∞,−2t, 2t,∞
yields the spectrum seen in Fig. 4. Apparently all val-
ues of N lie within Z2 although they are in principle
allowed to take any value belonging to Z. However the
low values of N are solely due to the constraints im-
posed in our model. Had we for instance chosen to
include only next-next-nearest neighbor sites in the su-
perconducting coupling such that dk = 2d(sin(2kx) +
isin(2ky)) this would yield N = ±2 or 0. This choice of
coupling clearly has no physical justification but merely
argues that the values of N are indeed Z and not Z2

regardless of the opposing implication of Fig. 4. From
the result in Fig. 4 we find that as long as |µ| < 4t our
system is in a topologically non-trivial state, and thus
allows for one Majorana mode per edge per block.

N 0 1 -1 0

μ-4t 0 4t

Figure 4: The topological invariant’s com-

puted values within the energy regions of the

chemical potential. Topological transitions

occur at µ = ±4t and µ = 0 as expected. The

system exhibits non-trivial topological phases

if |µ| < 4t.

4.2 Defects and Topological Classification

In the results analysis in Section 5 the consequences of imposing a regular vortex as well as a half-
quantum vortex will be investigated. Such exotic features are not covered by this very general topo-
logical classification. Thus a brief overview of the idea behind classification of systems with defects
is required before the results are presented. Based on the framework developed in [14] we learn that
the overall dimension of the system alone can no longer classify it. Instead we consider a general
Hamiltonian H(k, r) and introduce δ = d − D, where d is still the dimension of the Brillouin zone
upon which k is defined (d = 2) while D is the dimension a surface SD surrounding the defect upon
which r is defined (D = 1 for a vortex) [14]. In the 2D px + ipy case (class D+D) we find that with
a vortex placed in the system, it is now characterized by a Z2 topological invariant determining the
presence or absence of a Majorana bound state in the vortex core. The new topological invariant can
be written ν = Nm mod 2, where N is the topological invariant computed in the previous subsection,
while m is the phase winding number of the vortex. In our case we will impose a vortex winding of
+2π which corresponds to m = 1. Thus we conclude that we should see one bound state at the vortex
core for each block, as long as |µ| < 4t.

5 Results

With the necessary theory and derivations in place, we are now ready to investigate solutions to the
px + ipy superconductor with triplet OP d = (0, 0, dji). This section will present results with t = 1.0,
µ = −2.5 t, g = 2 t, β = 10 t−1, while the size of the system will vary.

5.1 Edge States

The aim is to obtain excitations within the superconducting gap and the simplest way to do so is to
apply open boundary conditions (OBC) as described in the discussion of Fig. 2. Thus we consider a
strip with periodic boundary conditions (PBC) along the x-direction and OBC along the y-direction.
The PBC are imposed by performing a Fourier transform along x yielding a kx dependence in the en-
ergies. The BdG equation is then solved self-consistently for each value of kx with the usual parameter
values. In Fig. 5 the result is shown for Ny = N = 100. The top figure shows the excitation energies
as a function of kx, while the bottom figure shows the integrated LDOS within the gap plotted as a
function of N.
The first important note is that the energies of the excited quasiparticles hybridize into bands dispers-
ing across the gap, leaving only a single zero-energy mode at exactly kx = 0 per band. This should
be of no surprise, since the fermionic nature of the quasiparticles imposes Pauli’s exclusion principle.
Thus the quasiparticles pair up and divide symmetrically around E = 0 leaving the total energy of
the states to be 0 as required from the discussion in Section 2.3.
Furthermore the two branches confirm the predicted result obtained in Section 4.1, namely that one
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Figure 5: Energy dispersion and the integrated LDOS, n(N), obtained from applying PBC along x

and OBC along y. This solution has been computed self-consistently for one block of the Hamiltonian.

Top figure verifies the two predicted chiral edge modes, one at each edge, where the quasiparticle states

have hybridized into bands. The slopes confirm the presence of edge currents. Bottom figure is the

number of in-gap excitations as a function of N . It supports the edge localization of the modes.

mode of quasiparticle states within the gap emerges at each edge. This localization of the modes is
confirmed by the integrated LDOS plotted in the bottom figure. In principle the energies of the top
figure are two-fold degenerate (recall class D+D) but due to this degeneracy we only solve one block
of the Hamiltonian. We further note that the slope of the branches indicates edge currents (since
v = ∂ε/∂k) which should indeed be present in a chiral p-wave superconductor as briefly mentioned in
Section 2.2. It is possible to have several chiral edge modes if a system of higher chirality is considered
(recall chirality +1 of our model) such as d- or f -wave superconductors [8, 15]. The results presented
in Fig. 5 are in very good agreement with the ones presented in [8].

We further wish to consider results obtained from applying OBC in both directions, see Fig. 6.
The results were computed with N = 51.
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Figure 6: PP amplitude, a, and LDOS at zero energy, b, with OBC in both directions. The PP

is suppressed along the edges indicating the expected localization. The LDOS confirms the presence

of edge states and further displays hybridization all along the edge. This suggests no excitation at

exactly zero energy, but a non-zero LDOS at all energies within the gap, see Fig. 10 to verify. These

results were computed with N = 51.

Fig. 6a presents the amplitude of the PP which is suppressed along the boundaries. This behavior
indicates the presence of states all along the edges. Fig. 6b, which presents the LDOS at zero
energy, confirms this indication. As opposed to Fig. 5 all excitations hybridize into bands yielding no
single-site localized state at zero energy but a small, yet distinctly non-zero, LDOS at all edge sites.
This behavior of the LDOS repeats itself within the entire superconducting gap. Thus the predicted
presence of edge states in the case with OBC along one or two directions is confirmed.

5.2 Vortices

By applying an external magnetic field to a type II superconductor, the magnetic flux can penetrate
the superconductor and form an Abrikosov vortex lattice in a vortex state [2]. This occurs when
the strength of the magnetic field demands energetically costly supercurrents to eject the field. It
thus becomes favorable for the superconductor to suppress the superconducting OP in limited areas
(vortices), allowing magnetic flux quanta to penetrate the region. The vortex core is surrounded by
supercurrents to restore the superconductivity to the bulk value in the remaining material. In this
thesis we will not discuss the critical fields related to the emergence of such a vortex, but solely
investigate the consequences thereof.
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5.2.1 Caroli-de Gennes-Matricon Vortex Core Levels

When the superconducting OP is suppressed
this naturally allows for quasiparticle states
within the gap. To briefly discuss the study
and particularly the result obtained by Car-
oli, de Gennes and Matricon, we consider
the more common (and manifestly simpler)
s-wave superconductor. Allowing the OP to
vary as we approach the vortex and rewriting
it in polar coordinates yields

∆(r) = ∆(r)eiθ. (5.1)

With this one can redefine the eigenfunctions
and thus the BdG equation itself. By assum-
ing the shape of the OP as depicted in Fig.
7, the new BdG equation can be solved an-
alytically. It is done by introducing a radius
rC very close to the vortex core and consid-
ering the two regions r < rC (where ∆(r) is
neglected completely) and r > rC followed by
matching the two solutions at the boundary
r = rC .

ξ

Figure 7: Illustration of the behavior of the OP

around a single, isolated vortex, where ∆0 is the bulk

value. The OP is suppressed as the vortex is ap-

proached and ultimately zero in the vortex core. ξ is

the coherence length defining the width of the vortex

and the red lines illustrate the CdGM bound states in

the vortex core. The figure is adopted from [16]

Caroli, Matricon and de Gennes found

Em = m
∆2

0

εF
(5.2)

in the limit where εF >> ∆0. m is a half-integer 6 and ∆0 is, as seen in Fig. 7, the bulk value of the
OP [16]. This result yields several energy levels within the vortex, one for each m. These are known
as Caroli-de Gennes-Matricon levels (CdGM) and illustrated by red lines in the figure. The distance
between the levels is εC = ∆2

0/εF and the lowest lying level has m = 1/2. The full derivation can be
seen in [16, 18]. Naturally this distance must be affected by the width of the vortex, which is defined
by the coherence length, ξ = ~vF /2∆0. As one might expect, a large zero-energy coherence length
corresponds to close lying core levels, and the discretization is in practice thermally smeared, while a
short zero-energy coherence length yields a noticeable distinction [16].
To verify the prediction of the CdGM bound states, a simulation of an s-wave superconductor with a
vortex enforced in the center has been performed. The result can be seen in Fig. 8. The computation
was performed without self-consistency and with N = 40. The vortex is imposed by setting ∆(r) = 0
at the four central sites, which corresponds to setting rC to be the radius of a circle surrounding these.
A phase, eiθ(r), was applied to the remaining sites by inserting a coordinate system with origin in the
vortex core, where θ(r) is the angle from the x-axis to the position of the given site, naturally ranging
from 0 to 2π. This corresponds to a winding of +2π which can also be denoted as vorticity +1. It is
possible to consider cases with higher vorticity corresponding to stronger supercurrents, hence several
flux quanta passing through the vortex.

Fig. 8a presents the core LDOS within the gap with ∆0 = 0.4. In this case there are several in-
gap states at distinctly separated energies as predicted. Fig. 8b, having ∆0 = 0.1, does not yield this
discretization. This is due to the low OP, since it corresponds to a large coherence length resulting
in a smearing of the LDOS. However with ∆0 = 0.1 we are on the boarder of satisfying εF >> ∆0

6m is actually the azimuthal angular momentum of monopole harmonics, but since we have not gone into detail with

the derivation, this statement may confuse the reader. For our purposes it is sufficient to be aware of the half-integer

restriction. The interested reader is referred to [16–18].
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Figure 8: Results for a simple, isolated vortex in the center of an s-wave superconductor. a shows the

LDOS of the vortex core with ∆0 = 0.4. There are several excitations at distinct energies within the

gap. b shows the LDOS of the vortex core with ∆0 = 0.1. The discretization of the excitations has

been smeared out due to the large coherence length. Only the energies within the superconducting gap

are included in a and b. c is the excitation energies as a function of m. The levels yield a separation

of the order of εC as predicted from Eq. 5.2. In a and c it is evident that there are no zero-energy

excitations. All three figures have been computed non-self-consistently with N = 40.

(εF = 1.5), thus the mid-gap states should yield levels resembling Eq. 5.2. A thorough analysis of this
assertion has been performed in [17], where a spherical symmetric system with a vortex-antivortex
pair is considered. This symmetry allows m to be a good quantum number, enabling a diagonalization
of the BdG equation separately for each m. This is obviously in contrast to our grid model, thus we
merely compare the qualitative resemblance of the two results.
In Fig. 8c we have plotted the mid-gap excitation energy levels, where we imposed the assumed de-
pendence of m predicted by theory. First and foremost we can confirm the overall level splitting, since
the excitations collect in separate groups of four at distinct energies. Furthermore the order of the
discretization is indeed the same as the order of εC and the levels divide symmetrically around Em = 0
with no exact zero-energy state. There is a great resemblance to Fig. 6 in [17] with a discrepancy
regarding the degeneracy 7 due to the vast differences in the models considered. We can conclude
that by imposing a simple, isolated vortex in an s-wave superconductor, several in-gap states emerge
symmetrically around E = 0, while no exact zero-energy state will be present.

5.2.2 Vortex in a px + ipy Superconductor

With the theory concerning bound states in vortex cores of s-wave superconductors in mind, we can
now investigate the more complicated case of the px + ipy superconductor with a simple, isolated
vortex, which cannot be solved analytically. The vortex has once again been enforced by applying a
phase to all sites. Each intersite superconducting coupling has then been assigned to a corresponding
site, such that the coupling between j and j+x̂ as well as j and j+ ŷ corresponds to the phase at site j,
while the remaining two interactions obtain a phase defined by site j− x̂ and j− ŷ respectively. There
is no need to force the OP to 0 at any sites, since the PP is suppressed due to intersite interaction.
The PP and LDOS(r,0) are presented in Fig. 9. The results have been computed with OBC, and the
triplet OP has been found self-consistently as usual. In 9a the PP is shown. Comparing this to the

7Four-fold in our case, doubly in [17].
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Figure 9: PP amplitude (a) and LDOS (b) at zero energy for a px+ipy superconductor with OBC and

a vortex at the center site. The PP is strongly suppressed at the vortex and moderately suppressed

along the boundaries. The LDOS shows a highly localized zero-energy excitation in the vortex core

and vanishing amplitude along the boundaries.

PP seen in Fig. 6a we note that there is an additional strong decrease surrounding the vortex core,
while the edges are equally suppressed with and without a vortex. The computation has N = 51, thus
the vortex is narrowly centered at one site. Due to the non-trivial topology of the px + ipy supercon-
ductor a zero-energy quasiparticle is attainable. Fig. 9b shows the LDOS at zero-energy, and we note
that a highly localized zero-energy excitation has indeed emerged in the vortex core. The edge states
discussed in Section 5.1 are still present, but due to their hybridized energies the LDOS at the edges
is vanishing compared to the vortex core state.

To further compare the case of a px + ipy superconductor with a vortex to previous results, we
consider Fig. 10. Figs. a, b and c present the LDOS in the case with OBC and a vortex, d, e and
f are the results from the case with OBC but without a vortex and finally g, h and i are computed
with PBC also without a vortex. Top row is the LDOS of the site in the vortex core, where d, g
verify a full gap in the absence of a vortex, while a confirms the highly localized zero-energy state.
Interestingly we note that this is the only excitation in the core. This result is in great agreement
with the results presented in [2, 12]. Middle row is the LDOS of a site situated between the vortex
and the edge. All three plots present clear evidence of a full gap. Bottom row is the LDOS of a site
situated at the middle of one edge. Figs. c and f are practically identical but with a slightly larger
LDOS of near-zero-energy states in the case without a vortex. This is most likely due to the fact that
the zero-energy excitation in the core does not hybridize with the edge states. Finally Fig. 10i once
again confirms a full gap in the case of PBC. The result in Fig. 10a is in strong contrast to the s-wave
case discussed in the previous section, where no zero-energy excitation is present, but several in-gap
states appear. Distinct CdGM levels can still emerge in the p-wave case by widening the vortex. This
can be done by setting the OP to 0 at several central sites as done in the s-wave case. However the
guaranteed emergence of a zero-energy bound state in the vortex core is intrinsic only to the p-wave
superconductor and is one of its known exotic features [2, 8, 17].

This concludes the discussion of vortices with the regular winding of +2π (vorticity +1). Up un-

til now the term MF has been carefully avoided. A key property of a such is that γiσ = γ†iσ and
we have thus far considered the spinful case of a px + ipy superconductor, where the triplet OP has
dx = dy = 0. This implies a Bogoliubov transformation as described in Eq. 3.6, where regardless of

upεσ = vpεσ, γiσ 6= γ†iσ due to the spin dependence of the operators. Thus the zero-energy excitations
are not Majorana zero modes [8]. However in this spinful case the possibility of a half-quantum vortex
(HQV) has been predicted to host a true, robust Majorana zero-mode [6, 8].
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Figure 10: The LDOS in the case of OBC with a vortex (a b c), OBC without a vortex (d e f) and

PBC also without a vortex (g h i). Top row is LDOS of the center site, middle row is LDOS of a

site between the center and the edge, while bottom row is LDOS of an edge site. These plots were

computed with N = 51. The center site reveals a full gap with PBC and OBC without vortex, while

we see the sharp peak at zero energy when a vortex has been imposed corresponding to a quasiparticle

excitation with E = 0 in the vortex core. In all three cases there is a full gap at the site between the

edge and the core. The edge site has hybridized quasiparticle states in the cases with OBC and a full

gap in the case of PBC.

5.3 Half-Quantum Vortex

A HQV can be described as a vortex in only one spin component. Thus we abandon the model
discussed so far and now set dz = 0 and dx, dy 6= 0 to uncouple the spin directions. We will not engage
in a detailed discussion on the symmetry groups, but rather give an intuitive understanding of this
peculiar phenomenon. The HQV can arise by having a winding θ/2 = +π of the superconducting OP,
∆(r) (similar to Eq. 5.1 but with half the winding), while a rotation of the d-vector is performed
simultaneously in the xy-plane. This is done by letting d̂ = cos(φ)x̂+ sin(φ)ŷ, where φ changes by π
and denotes the angle from the x-axis [19]. Using the original definition of ∆̂ (Eq. 2.8) we immediately
find that the ∆++ (∆−−) pairing corresponds to −dx + idy = −e−iφ (dx + idy = eiφ) coupling, where

we imposed the new definition of d̂. Hence we can write the full OP as [8]

∆(r, φ, θ) = ∆(r)ei
θ
2 (−e−iφ |↑↑〉+ eiφ |↓↓〉), (5.3)

where ∆(r) is the magnitude of the OP as previously. With this notation it is obvious that the effect
of the rotation is to eliminate the phase angle completely from the spin up component, while the
spin down component sees an effective winding of +2π, yielding the usual full single-quantum vortex.
Since the magnetic flux penetrating the superconductor only depends on the winding of θ the total
flux through the superconductor is 1

2Φ0 = h/4e, hence the name half-quantum vortex [8].
To create a scenario giving rise to a rotation of the d-vector can seem far-fetched at first glance, since
in general the spin direction will favor an alignment with the orbital momentum due to spin-orbit cou-
pling. Thus the energy cost associated with the rotation is far too large to ever be favorable. However
studies suggest that in the px + ipy superconductor Sr2RuO4, applying a magnetic field along what is

currently believed to be the direction of l̂ (ẑ) which is strong enough to overcome the spin-orbit energy
will effectively neutralize the spin-orbit coupling and possibly permit the HQV state to stabilize [6,19].

To solve the described scenario we must naturally redefine the BdG equation, due to the decoupling
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of the spin directions. Performing calculations similar to the ones described in Section 3 yields

Eεσ

(
ujεσ
vjεσ

)
=
∑
i

(
Kji −σdx,ji + idy,ji

σd∗x,ji + id∗y,ji −K∗ji

)(
uiεσ
viεσ

)
, (5.4)

where σ = +1(−1) for pseudospin up (down). We can solve this separately for each spin component.

In addition to redefining the BdG equation, we should reconsider the classification of the system.
Repeating the procedure described in Section 4, we write the new Hamiltonian in terms of the four-
Nambu spinor and block diagonalize it, yielding

Hσ = σ(εk − µ)τz + 2(dx sin(kx) + σdy sin(ky))τx + 2(dy sin(kx)− σdx sin(ky))τy ,

with σ = +1(−1) for spin up (down) as previously. Thus the Hamiltonian remains in class D+D with
the same operators as identified in Section 4.

To impose the HQV in the solution to the new BdG equation (5.4), we implement the general phase
with angle θ/2 in the ∆̂-matrices, while the rotation phases are implemented directly into the BdG-
matrices. The result can be seen in Fig. 11, where a, b are the solutions to the spin up case and c,
d are the solutions to the spin down case.
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Figure 11: The LDOS of all sites at zero energy. a and b are solutions to the BdG equation with

spin up, while c and d are solutions to spin down. a, c are the cases without a HQV and with OBC.

They confirm the expected behavior, where only edge states are present. c, d are with OBC and

HQV. There is no change in the LDOS of spin up, while the spin down solution has a clear zero-

energy excitation. The computation was performed non-self-consistently with N = 51, dx = 0 and

dy = −i0.3.

All four plots were computed with OBC. a, c are the solutions without the HQV and are included
solely to verify the expected behavior in this case. Figs. b, d clearly show no effects of the vortex
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in the spin up case and the usual presence of a zero-energy excitation in the spin down case. The
computation was performed non-self-consistently with N = 51, dx = 0 and dy = −i0.3. The values
of the d-components were chosen by considering their original definition in Eq. 3.3b, where one finds
dx,ji = gx,ji(〈ci↓cj↓〉 − 〈ci↑cj↑〉) and dy,ji = −igy,ji(〈ci↓cj↓〉 + 〈ci↑cj↑〉). The sign on dy,ji has been

adopted from the definition of ∆ji in Eq. 3.3a to match sign of dy in the general ∆̂-matrix in Eq.
2.8, obviously without any loss of generality. We chose to compute the results for 〈ci↓cj↓〉 = 〈ci↑cj↑〉.
Not satisfying this equality does not have any effect besides leaving the edge amplitude of LDOS(r,0)
unequal in the different spin cases.

At first glance, the results in Fig. 11 and Figs. 6 and 9 appear quite similar. However the re-
sults have a crucial difference. While redefining our BdG equation, the Bogoliubov transforma-
tion used combines creation and annihilation operators of the same species, that is for instance
γε↓ =

∑
i(uiε↓ci↓ + viε↓c

†
i↓). Due to particle-hole symmetry this leads to γε↓(−Eε) = γ†ε↓(Eε), hence

at zero energy γε↓(0) = γ†ε↓(0) [19]. Altogether the spin down block of the Hamiltonian considered
in the subsection is class D with a point defect. Such a defect is characterized by a Z2 topological
invariant [14]. Since N = +1 (µ = −2.5t) and the vorticity of the spin down block is +1, ν = 1. Thus
we are in a non-trivial topological state allowing a single topologically protected zero-energy excitation
in the vortex core. Furthermore we know that this zero-energy excitation is its own antiparticle. Thus
we conclude the results presented in this thesis with the half-quantum vortex yielding a possibility of
realizing a Majorana bound state in a spinful px + ipy superconductor.

6 Conclusion and Outlook

Throughout this thesis an investigation of a chiral p-wave superconductor has been performed. Due
to the non-trivial topology, chiral edge modes emerged within the superconducting gap when finite
systems were considered. Furthermore we presented results describing the guaranteed presence of
a bound zero-energy excitation in a vortex core of the px + ipy superconductor, which is one of its
well-known exotic features. Finally we investigated the consequences of having a half-quantum vortex
present at the center site. This investigation led to an interesting phenomenon where a vortex was only
seen by one of the spin pairings present in the system. The half-quantum vortex yielded a Majorana
bound state in the vortex core.

The stabilization of the half-quantum vortex was briefly discussed during the results presentation.
In further works it would be of great interest to conduct an examination of the prospects mentioned.
This inquiry could appropriately take its offset in a proper establishment of a regular vortex via the
application of a magnetic field rather than the presented enforcement of a phase winding.
A thorough, realistic investigation would further imply the need of considering the material most
likely to exhibit the nature discussed throughout this thesis, that is strontium ruthenate. This would
demand a consideration of interband interaction and obviously the spin-orbit coupling expected to be
problematic with regards to the required rotation of d in the formation of the half-quantum vortex.

Altogether this thesis has provided a theoretical explanation of an intrinsic topological supercon-
ductor with triplet pairing. The emphasis has been on the exploration of some known exotic features
as well as the possible emergence of Majorana zero modes.
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Appendices

A Derivation of the Bogoliubov-de Gennes Equation

Starting with the Hamiltonian in the form of Eq. 3.5, H = H0 + H∆, the goal is to use the spin-
generalized Bogoliubov transformation to obtain the BdG equation. This is most commonly done by
calculating the commutator of H and cpσ in different bases and equating the two, where p and σ is
site and spin indices respectively. Thus we begin by calculating

[H0, cpσ] = −
∑
i,j,α

(ti,j + µδij)[c
†
iαcjα, cpσ]

= −
∑
i,j,α

(ti,j + µδij)(c
†
iα{cjα, cpσ} − {c

†
iα, cpσ}cjα)

Using the fermion anticommutator relations, {cν , cµ} = {c†ν , c†µ} = 0 and {c†ν , cµ} = δµν , we obtain

[H0, cpσ] =
∑
i,j,α

(ti,j + µδij)δipδασcjα

=
∑
j

(tp,j + µδpj)cjσ (A.1)

And

[H∆, cpσ] =
∑
i,j

(
dji[c

†
jσc
†
i−σ, cpσ] + d†ji[ci−σcjσ, cpσ]

)
=
∑
i,j

dji

(
c†jσ{c

†
i−σ, cpσ} − {c

†
jσ, cpσ}c

†
i−σ

)
= −

∑
i,j

djiδjpc
†
i−σ

= −
∑
i

dpic
†
i−σ

=
∑
j

djpc
†
j−σ (A.2)

Combining Eqs. A.1 and A.2 we find,

[H, cpσ] =
∑
j

[
(tp,j + µδpj)cjσ + djpc

†
j−σ

]
(A.3)

Now introducing the previously mentioned spin-generalized Bogoliubov transformation,(
cpσ
c†p−σ

)
=
∑
ε>0

(
upεσ v∗pεσ
vpε−σ u∗pε−σ

)(
γεσ
γ†ε−σ

)
(A.4)

where the summation over ε must be chosen to cover half of the eigenstates since the transformation
itself should not introduce twice the number of states in the system. From now on this restriction on
the sum will not be written explicitly. The transformation allow us to rewrite Eq. A.3 to

[H, cpσ] =
∑
j

[
(tp,j + µδpj)

∑
ε

(
ujεσγεσ + v∗jεσγ

†
ε−σ

)
+ djp

∑
ε

(
u∗jε−σγ

†
ε−σ + vjε−σγεσ

)]

=
∑
ε,j

[
((tp,j + µδpj)ujεσ + djpvjε−σ) γεσ +

(
(tp,j + µδpj)v

∗
jεσ + djpu

∗
jε−σ

)
γ†ε−σ

]
(A.5)
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The point of introducing the new basis, is to demand H to be diagonal in this basis, since the trans-

formation matrix is unitary, this can be expressed as UHU † = H̃, where U =

(
upεσ v∗pεσ
vpε−σ u∗pε−σ

)
.

Thus H̃ is expressed in the γ-basis as follows,

H̃ = E0 +
∑
εσ

Eεσγ
†
εσγεσ (A.6)

Where E0 is the ground state energy of the system. Notice that the γ operators creates (annihilates)
excitations of non-interacting fermionic quasiparticles above the ground state.

The next step is to obtain [H̃, cpσ], where we drop the E0 term since this is a scalar and will trivially
commute with any operator.

[H̃, cpσ] =
[
H̃,
∑
ε

(
upεσγεσ + v∗pεσγ

†
ε−σ

) ]
=
∑
ε

(
upεσ[H̃, γεσ] + v∗pεσ[H̃, γ†ε−σ]

)
=
∑
ε

(
−upεσEεσγεσ + v∗pεσEε−σγ

†
ε−σ

)
(A.7)

Where we used that

[H̃, γεσ] =
∑
ε̃,α

Eε̃α[γ†ε̃αγε̃α, γεσ]

=
∑
ε̃,α

Eε̃α

(
γ†ε̃α{γε̃α, γεσ} − {γ

†
ε̃α, γεσ}γε̃α

)
= −

∑
ε̃,α

Eε̃αδεε̃δασ

= −Eεσγεσ

Similarly we find,

[H̃, γ†εσ] = Eεσγ
†
εσ

Equating Eqs. A.5 and A.7 and separating into equations in γεσ and γ†ε−σ respectively yields

−Eεσupεσ =
∑
j

((tp,j + µδpj)ujεσ + djpvjε−σ) (A.8)

Eε−σv
∗
pεσ =

∑
j

(
(tp,j + µδpj)v

∗
jεσ + djpu

∗
jε−σ

)
(A.9)

Exchanging j → i and p→ j in Eq. A.8 gives

Eεσujεσ =
∑
i

((−tj,i − µδji)uiεσ − dijviε−σ)

Eεσujεσ =
∑
i

((−tj,i − µδji)uiεσ + djiviε−σ) (A.10)

Where we exploited the antisymmetry of dji in the second line. Complex conjugating Eq. A.8 gives

E∗ε−σvpεσ =
∑
j

(
(t∗p,j + µ∗δpj)vjεσ + d∗jpujε−σ

)

24



Using that E∗ε−σ = Eε−σ, since this is an eigenenergy of the system, hence it must be real, and

identifying d∗jp = d†jp in Eq. A.9 gives

Eε−σvpεσ =
∑
j

(
(t∗p,j + µ∗δpj)vjεσ + d†jpujε−σ

)
Again exchanging p→ j and j → i as well as σ → −σ, we get

Eεσvjε−σ =
∑
i

(
(t∗j,i + µ∗δji)viε−σ + d†ijuiεσ

)
(A.11)

=
∑
i

(
(t∗j,i + µ∗δji)viε−σ − d†jiuiεσ

)
(A.12)

Finally taking Eqs. A.10 and A.12 and rewriting them into matrix form, we obtain the Bogoliubov-de
Gennes equation

Eε

(
ujεσ
vjε−σ

)
=
∑
i

(
Kji dji
−d†ji −K∗ji

)(
uiεσ
viε−σ

)
, (A.13)

where Kji = −tj,i − µδji. The spin index on the energies has been dropped, since they are spin
degenerate. Eq. A.13 yields a self-consistent eigenvalue problem, which has been solved numerically.
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B Fourier Transform

We consider the Hamiltonian

H = −t
∑
i,j,α

c†i,αcj,α − µ
∑
i,α

c†i,αci,α︸ ︷︷ ︸
H0

+
∑
i,j

(
djic

†
jσc
†
i−σ + h.c.

)
︸ ︷︷ ︸

H∆

(B.1)

The Fourier transform can be performed using the well-known expansions,

c†iσ =
1√
V

∑
k

eikric†kσ

ciσ =
1√
V

∑
k

e−ikrickσ

Separating the Hamiltonian as indicated in Eq. B.1, we get

H0 = −t
∑
i,j,σ

c†iσcjσ − µ
∑
i,σ

c†iσciσ

= − t

V

∑
i,j,σ

∑
k,k̃

eikrie−ik̃rjc†kσck̃σ −
µ

V

∑
i,σ

∑
kk̃

eikrie−ik̃ric†kσck̃σ

Applying the NN restriction and setting the lattice spacing to 1 leads to,

H0 = − t

V

∑
i,σ

∑
k,k̃

(
eikri−ik̃(ri+x̂) + eikri−ik̃(ri−x̂) + eikri−ik̃(ri+ŷ) + eikri−ik̃(ri−ŷ)

)
c†kσck̃σ

− µ

V

∑
i,σ

∑
k,k̃

ei(k−k̃)ric†kσck̃σ

= − t

V

∑
i,σ

∑
k,k̃

(e−ikx + eikx + e−iky + eiky)ei(k−k̃)ric†kσck̃σ −
µ

V

∑
i,σ

∑
k,k̃

ei(k−k̃)ric†kσck̃σ

= − t

V

∑
i,σ

∑
k,k̃

(e−ikx + eikx + e−iky + eiky)δkk̃c
†
kσck̃σ −

µ

V

∑
i,σ

∑
k,k̃

δkk̃c
†
kσck̃σ

= − t

V

∑
i,σ

∑
k

(e−ikx + eikx + e−iky + eiky)c†kσckσ −
µ

V

∑
i,σ

∑
k

c†kσckσ

= −t
∑
k,σ

(2 cos(kx) + 2 cos(ky))c
†
kσckσ − µ

∑
k,σ

c†kσckσ

Yielding the usual hopping term of the Hamiltonian

H0 =
∑
k,σ

(εk − µ)c†kσckσ, (B.2)

where εk = −2t(cos(kx) + cos(ky)). Turning the attention to the second part of Eq. B.1, we get

H∆ =
∑
i,j

(
djic

†
jσc
†
i−σ + d†jici−σcjσ

)
=

1

V

∑
i,j

∑
k,k̃

(
djie

ikrjeik̃ric†kσc
†
k̃−σ + d†jie

−ikrie−ik̃rjck−σck̃σ

)

26



To implement the restriction to NN interaction and force the system to exhibit chiral p-wave super-
conductivity of type px + ipy, we set

dji =


−id , for i = j + x̂
id , for i = j − x̂
d , for i = j + ŷ
−d , for i = j − ŷ
0 , otherwise

(B.3)

Furthermore we have that d†ji = d∗ji. This can be seen explicitly by hermitian conjugating the Hamil-

tonian in Eq. B.1 and using that H† = H, that is the coefficients in front of c†jσc
†
i−σ (ci−σcjσ) must

be identical after the conjugation.

These definitions leads to,

H∆ =
1

V

∑
k,k̃

∑
j

d
(
−ieikx + ie−ikx + eiky − e−iky

)
ei(k+k̃)rjc†kσc

†
k̃−σ

+
(
ie−ikx − ieikx + e−iky − e−iky

)
e−i(k+k̃)rjck−σck̃σ

=
1

V

∑
k,j

d
(
−ieikx + ie−ikx + eiky − eiky

)
δ−kk̃c

†
kσc
†
k̃−σ

+
(
ie−ikx − ieikx + e−iky − eiky

)
δ−kk̃ck−σck̃σ

=
∑
k

d
((
−2i2 sin(kx) + 2i sin(ky)

)
c†kσc

†
−k−σ +

(
−2i2 sin(kx)− 2i sin(ky)

)
c−k−σckσ

)
=
∑
k

2d
(

(sin(kx) + i sin(ky)) c
†
kσc
†
−k−σ + (sin(kx)− i sin(ky)) c−k−σckσ

)
,

This combined with Eq. B.2 yields the final Hamiltonian in k-space,

H =
∑
k,σ

(εk − µ)c†kσckσ +
∑
k

(
dkc
†
kσc
†
−k−σ + h.c.

)
, (B.4)

with dk = 2d (sin(kx) + i sin(ky)) and as before εk = −2t(cos(kx) + cos(ky)). Rewriting this to matrix
form yields,

H =
∑
k

(
c†kσ
c−k−σ

)(
εk − µ dk
d∗k −(ε−k − µ)

)(
ckσ
c†−k−σ

)
(B.5)

Assuming the system exhibit inversion symmetry we have εk = ε−k. It is now straight forward to find
the excitation energies, that is the eigenvalues, which are

Ek = ±
√

(εk − µ)2 + |dk|2 (B.6)

These values can be directly related to the numerical solutions using the quantization of k.
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