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Abstract

Gravitational waves were �rst detected in 2015. Since then, gravitational wave in-
terferometers have pushed the limits on what is possible when it comes to measuring
changes in length. As classical noise sources have been decreased to a level approaching
the quantum noise, quantum noise has begun to play an increasingly important role. The
aim of this thesis is to investigate theoretically how quantum noise can be reduced to
improve the sensitivity of gravitational wave interferometers further by using squeezed
light. To achieve this, the noise spectral density is derived for a standard Mach Zehnder
interferometer, and an adapted Mach Zehnder interferometer where the intensity of the
laser in�uence the phase change of the light. As a result, the e�ect of using squeezed light
in the otherwise unused port of the interferometer has been found. For a standard Mach
Zehnder interferometer, amplitude squeezed light suppress the quantum noise for all fre-
quencies. For the adapted Mach Zehnder interferometer, broadband amplitude squeezed
light decreases the quantum noise for low frequencies, while broadband phase squeezed
light decreases the quantum noise for high frequencies. Also, by making the rotation in
phase space frequency dependent, it was found that an increased sensitivity for all fre-
quencies can be achieved. The implication of this is that weaker gravitational waves than
currently possible are detectable, if the results are implemented.
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1 Introduction

For the �rst time in history, on September 14th 2015, the Laser Interferometer Gravitational-
Wave Observatory (LIGO) detected gravitational waves [1]. Not only is it the �rst evidence of
binary black holes and a con�rmation of part of Einstein's theory of general relativity, it also
proved that interferometry can be used as a completely new tool to gain knowledge about the
universe. The importance of this can hardly be overstated. In 2017, the discovery let to the
Nobel Prize in physics being awarded to Weiss, Thorne and Barish for �decisive contributions
to the LIGO detector and the observation of gravitational waves� [2].

When two heavy celestial bodies orbit each other - such as the in-spiral and merging of the
binary black holes detected in 2015 by LIGO - it creates disturbances in the curvature of
space time. These disturbances propagate as waves and cause distances to slightly stretch
and shorten. Other sources of gravitational waves are the spinning of slightly non-symmetric
neutron stars and, possibly, the in�ation after big bang. [3] The miniscule changes in distance
is what LIGO and other gravitational wave interferometers such as Virgo interferometer and
Kamioka Gravitational Wave Detector (KAGRA) measure using the interference property of
light [4, 5, 6].

In an interferometer, a light beam is split into two di�erent arms and later combined. A relative
change in distance between the two di�erent arms leads to a change in the phase di�erence
between the two light beams and thereby in their interference.

Currently, LIGO is able to detected changes 10−4 the width of a proton in distance between
its four kilometer long arms [7]. To achieve this incredibly high sensitivity, noise have to be at
a minimum. There are several di�erent noise sources, among which are thermal �uctuation of
the mirror coating, thermal �uctuations in the suspension system of the mirrors, and seismic
activity [4].

Another noise source is quantum noise, or quantum �uctuations, due to Heisenberg's uncer-
tainty principle. There are two sources of quantum noise: shot noise and back action. Shot
noise stems from �uctuations in the arrival time of photons at the detectors while back action
stems from �uctuations in radiation pressure at the mirrors of the interferometer. At low
frequencies, the quantum noise is dominated by back action while at higher frequencies, it is
dominated by shot noise. Both sources of quantum noise originate from vacuum entering the
interferometer through the unused port [8, 9].

Employing state-of-the-art technology, LIGO have successfully decreased its various classical
noise sources to such an extent, that quantum noise now plays a signi�cant role in the mea-
surements, especially at higher frequencies. This makes it worthwhile to attempt to minimize
the quantum noise. A way to achieve this is by injecting broadband squeezed states into the
interferometer, decreasing either shot noise or back action. During its third observation run
(O3), this has been implemented in LIGO, decreasing the shot noise and achieving a better
sensitivity for frequencies above 50 Hz. Thereby the expected detection rate was increased up
to 50 %. [10, 11]

However, as the shot noise decreases, the back action increases, making the sensitivity for
low frequencies worse. By changing the squeezing angle as a function of frequency, a higher
sensitivity may be reached for both high and low frequencies.Recently, this has been tested
experimentally by McMuller et al. and Zhao et al., but has not yet been implemented at any
gravitational wave interferometers [12, 13].

The improving of the sensitivity of gravitational wave interferometers by using squeezed light
is the phenomenon explored in this thesis. The aim of this project is to investigate where the
quantum noise arises from in a Mach Zehnder interferometer and in an interferometer, where
the phase di�erence arises from the movement of a mirror in a cavity. Furthermore, I will study
how squeezed light can be used to decrease the quantum noise for certain frequencies and how
frequency-dependent rotation in phase-space of squeezed vacuum can be used to increase the
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sensitivity simultaneously in frequency regions dominated by shot noise and regions dominated
by back action.

To achieve this, the necessary background theory of light is brie�y introduced in Sec. 2 after
which a standard Mach Zehnder interferometer is studied in Sec. 3. This gives the necessary
background knowledge to study an adapted Mach Zehnder interferometer, which is more similar
to the interferometers used in gravitational wave detection, described in Sec. 4.

2 Theory

2.1 States of light

To understand quantum noise in interferometry, it is necessary to have a quantum description
of light. The Hamiltonian for light in a cavity is

Ĥ = ~ω
(
â†â +

1

2

)
, (1)

where â is the annihilation operator, â† the creation operator, and ω the frequency of the
light. Their commutation relation is [â, â†] = 1. Using â and â†, the quadrature operators
X̂ ′ = 1

2 (â + â†) and P̂ ′ = 1
2i (â − â

†) can be de�ned. It follows from the commutation relation

between â and â† that [X̂ ′, P̂ ′] = i
2 . X̂

′ is proportional to the electric �eld of the light while P̂ ′

is proportional to the magnetic �eld. As X̂ ′ and P̂ ′ do not commute, they have an uncertainty
relation. This can be shown to be

∆X̂ ′ ∆P̂ ′ ≥ 1

4
(2)

from their commutation relation. The uncertainty is de�ned as ∆X̂ ′ =

√
〈X̂2〉 − 〈X̂〉2 and

likewise for P̂ ′.

To visualize a state of light, a phase space picture as seen in Fig. 1 can be used. Here, the
circle represents the uncertainty, while ϕ is the phase of the light and α is the centre of the
circle. The time-evolution of the states is

∣∣ψ(t = 0) e−iωt
〉
.

(a) Coherent state (b) Vacuum state (c) Squeezed state

Figure 1: Di�erent states of light shown in phase-space. The circle represents �uctuations in
the quadrature operators due to Heisenberg's uncertainty principle with the center of the circle
being the average value. Seen in a lab frame, all the states rotate as a function of time, as
indicated by the arrow.

A coherent state, |α〉, which is the light from e.g. a laser, have the property â|α〉 = α|α〉.
Its �uctuations in X̂ and P̂ is equal and minimum - i.e. ∆X = ∆P = 1

2 , this is called the
standard quantum limit (SQL). The average number of photons, 〈â†â〉, are |α|2.
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Through this report, the X̂ ′-quadrature will also be called the amplitude quadrature, while the
P̂ ′-quadrature will be called the phase quadrature. This is because if a coherent state |α〉 with
α ∈ R experience a small change of its phase, this will mainly be seen in the P̂ ′-quadrature,
while a small change in its amplitude, will be seen in the X̂ ′-quadrature.

In the case, where α = 0, it is a vacuum state. Due to the uncertainty relation Eq. 2, there will
still be �uctuations of the electric and magnetic �eld even when no photons are present. These
vacuum �uctuation will play an important role when analyzing the noise in gravitational wave
interferometers.

To decrease the �uctuations in one quadrature at the expense of larger �uctuations in the other
quadrature, one could imagine that the circle representing the uncertainty got �squeezed� into
an oval, such that either ∆X̂ ′ < 1/2 or ∆P̂ ′ < 1/2, as seen in Fig. 1c. Such a state is called
a squeezed state, |ξ >. It is described by the squeezing parameter ξ = reiϕξ , where r is how
squeezed the light is, and ϕsq.i the squeezing angle.

The squeezing operator, Ŝξ, works on a vacuum state such that Ŝξ |0〉 = |ξ〉. In the case of

ideally squeezed light, i.e. ∆X̂ ′ ∆P̂ ′ = 1
4 ,

Ŝ†(ξ)â(ω)Ŝ(ξ) = â(ω) cosh(r)− â†(−ω)eiθsq./2 sinh(r)

Ŝ†(ξ)â†Ŝ(ξ) = â† cosh(r)− âe−iθsq./2 sinh(r) .
(3)

2.2 Continuum case

In Eq. 1, the Hamiltonian was for a cavity, and as such, â and â† were operators for discretely
quantized light. To describe light in free space, one could imagine that the cavity becomes
in�nitely large. At this limit, â and â† has the commutation relation in the time and frequency
domain

[â(t), â†(t′)] = δ(t− t′) (4)

[â(ω), â†(ω′)] = δ(ω − ω′) . (5)

Combining the Eq. 3 and Eq. 5 it can be shown that for |ξ〉 or |0〉〈
X̂†(ω′)X̂(ω)

〉
=
〈
X̂(ω)X̂†(ω′)

〉
=

1

4
S−1 δ(ω − ω′)〈

P̂ †(ω′)P̂ (ω)
〉

=
〈
P̂ (ω)P̂ †(ω′)

〉
=

1

4
S δ(ω − ω′) ,

(6)

if ϕsq. = 0, where S = e2r is the amount of squeezing.

2.3 Heisenberg's and Schrödinger's picture

When studying the time evolution of a system, which is necessary when studying a time-
dependent gravitational wave, it can be described in di�erent ways.

In the Schrödinger picture, the states are time-dependent while the operators are not. A change
due to a gravitational wave would therefore be seen in the state of the light. On the other
hand, in the Heisenberg's picture, the time evolution is in the operators while the states are
time-independent.

These di�erent ways of looking at the same system are interchangeable. In this report, Heisen-
berg's picture has been used, as it in this cases proves to be a more simple approach.
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Figure 2: The set up of a Mach Zehnder interferometer. Light, associated with the annihilation
operator â, enters the interferometer through the beam splitter (BS) at the top, left corner
and is split into two paths. One path experiences a phase shift, ϕ(ω), and an additional phase
shift of π/2 after which the two beams are combined in the second beam splitter. Finally, the
output is measured at the two detectors.

3 Mach-Zehnder interferometer

To measure gravitational waves, an interferometer is used. An interferometer works by splitting
a light beam and later combining the two resulting beams again. A change in the relative optical
path length between the two arms will change the interference pattern, which is detected.

To �rst study a simpler model, I analyse how a Mach-Zehnder interferometer with a phase
shift ϕ works, as seen in Fig. 2. In the interferometer, the light �rst enters the beam splitter
and is split equally into two arms, one of which has a phase shift ϕ(t), which is the signal we
want to measure. ϕ(t) is not a�ected by the laser. Then, the two beams are combined again
in a second 50/50 beam splitter. Furthermore, a phase-shift of eiπ/2 is added to arm 3. This
balances the intensity so that the intensity will be equal at the two detectors when ϕ = 0.
Finally, the intensity at the two detectors are measured and subtracted from each other.

With the numbering of the di�erent beams seen on Fig. 2, the measured di�erence in intensity
is

Î = â†4â4 − â
†
5â5 . (7)

Using the input output relation for the beam splitters

â†0 →
1√
2

(â†2 + i â†3)

â†1 →
1√
2

(i â†2 + â†3) ,

(8)

and knowing that the phase takes â → âeiϕ, the input-output relation of the interferometer is

â†4 → −
1

2

(
(e−iϕ + i) â†0 + (i e−iϕ + 1) â†1

)
â†5 →

1

2

(
(i e−iϕ + 1) â†0 − (e−iϕ + i) â†1

)
.

(9)

This can be used to �nd the intensity di�erence between the two detectors as a function of the
phase and the incoming light:

Î = â†4â4 − â
†
5â5 = sin(ϕ) (â†1â1 − â

†
0â0) + cos(ϕ) (â†1â0 + â†0â1) . (10)
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Figure 3: A coherent state seen in two di�erent coordinate frames.

Here, I will do two things. Firstly, I move to a reference frame with origo at the expectiation
value of â and with �uctuations δâ around this origo, as seen in Fig. 3. Since 〈â〉 = α(t =
0) e−iωt, this means the origo rotates in space. For coherent and squeezed light, the coordinate
transformation is

âcoh = αcoh(t = 0) e−iωLt + δâcohe
−iωLt

âsq. = δâsq.(t = 0) e−iωsq.t ,
(11)

where ωL is the frequency of the laser (i.e. the coherent light) and ωsq. the frequency of the
squeezed light.

Secondly, I move from a lab frame to a rotating laser frame in which the phase of the laser
does not oscillate with time. This is done by de�ning a new creation operator ˆ̃a = â eiωLt,
where ωL is the frequency of the laser.

Using this and assuming coherent light is sent through the arm 1 while squeezed is sent through
arm 0, I �nd

Î(t) = sin(ϕ)
(

(α̃∗1 + δˆ̃a†1)(α̃1 + δˆ̃a1)− δˆ̃a†0δˆ̃a0
)

+ cos(ϕ)
(

(α̃∗1 + δˆ̃a†1)δˆ̃a0 + δˆ̃a†0(α̃1 + δˆ̃a1)
)
.

(12)

To �nd the noise spectra, the relevant term is
〈
Î(ω)†Î(ω)

〉
[14]. It is therefore necessary �rst

to Fourier transform Î(t) and thereafter �nd the expectation value. To simplify the expression,

I omit terms from Î(t) that in the end will give zero when the expectation value
〈
Î(ω)†Î(ω)

〉
is calculated (e.g. terms ∝ δâ or δâ†1δâ1).

Furthermore, I am interested in the limit, where the noise is the same order of magnitude as
the signal - if the noise is much smaller than the signal, other sources of noise will dominate

instead. When �nding
〈
Î(ω)†Î(ω)

〉
while assuming ϕ is small, the signal is ϕ2|α|4. Terms in〈

Î(ω)†Î(ω)
〉
, which are small compared to the signal, are ∝ ϕα, ϕ2α2, α and δâ†0δâ0. In the

expression for Î(t), terms that only contribute to small terms or gives zero, when
〈
Î(ω)†Î(ω)

〉
is found, are omitted. Using this, Eq. 12 can be written as

Î(t) ≈ ϕ(t) |α|2 + α̃∗ δˆ̃a0(t) + α̃ δˆ̃a†0(t) . (13)

We are interested in the gravitational wave signal and therefore also in the noise spectral
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density as a function of frequency. For this reason, Eq. 13 is Fourier transformed:

Î(ω) = F
(
Î(t)
)

= ϕ(ω)|α|2 +

∫ ∞
−∞

dt
α̃∗√
2π

eiωtδˆ̃a0 +

∫ ∞
−∞

dt
α̃√
2π

eiωtδˆ̃a†0

= ϕ(ω)|α|2 + α̃∗ δˆ̃a0(ω) + α̃ δˆ̃a†0(−ω) , (14)

where to Fourier transform convention

â(ω) =

∫ ∞
−∞

dt
â(t)√

2π
eiωt (15)

â†(ω) =

∫ ∞
−∞

dt
â(t)†√

2π
e−iωt (16)

is used. This convention means that the signal will lie on the two sidebands ω and −ω around
ω = 0 in the laser frame [14]. I.e., in the lab frame the sidebands are at ωL ± ω.

Without loss of generality, the coherent light can be chosen to be real, since the important
quantity is the relative phase di�erence between the coherent and squeezed light. Letting α =
α∗ = |α| Eq. 14 can be written in term of the quadrature operator X̂(ω) = 1

2 (δˆ̃a(ω)+δˆ̃a†(−ω))

Î(ω) = ϕ(ω)|α|2 + 2|α|X̂(ω) . (17)

It is not the magnitude of the quantum noise on its own that is important, but rather its
magnitude relative to the magnitude of the signal: the signal to noise-ratio. Therefore, the
intensity is normalized with regard to the strength of the signal, i.e., the factor before ϕ.

Înorm = Is + δI = ϕ+
2 X̂0

|α|
. (18)

Here, Înorm is the normalized intensity di�erence, Îs is the signal, while δÎ is the �uctuations
around Îs.

To understand the quantum noise, I am interested in the symmetrized noise spectral density
SδI [15, 14]:

SδIδ(ω − ω′) =
1

2
〈δÎ†δÎ + δÎδÎ†〉 . (19)

Using Eq. 3, the noise spectral density becomes

SδIδ(ω − ω′) =
2

|α|2
〈X̂†X̂ + X̂X̂†〉 =

S−1

|α|2
δ(ω − ω′) . (20)

First, let us consider the δ-function on the right hand side. Vacuum �uctuations at one
frequency are independent of vacuum �uctuations at any other frequency. If ω 6= ω′, the δ-
function will therefore be 0. At ω−ω′, δ(ω−ω′) diverges. This happens since it was assumed
the measurement would go from t = −∞ to t = ∞ when taking the Fourier transform. In an
in�nite amount of time, there would be an in�nite amount of quantum noise. Even though this
might seem problematic, it is not, because in a measurement taken over an in�nite amount of
time, the signal will likewise be in�nitely large. In reality, the measurement does of course not
run for an in�nite amount of time.

To �nd the noise spectral density, the δ-function on the right hand side is therefore cancelled
with the δ-function on the left hand side to get

SδI =
S−1

|α|2
(21)
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In the case, where coherent light is sent into the interferometer in one port while vacuum enters
in the other, S−1 = 1 and SδI = α−2. This is as expected since the �uctuations on α for a
coherent state is V ar(α) = α. The higher intensity of the beam, the less quantum noise there
will be relative to the signal.

If r > 0, S−1 < 1 and the vacuum is squeezed in the amplitude quadrature. This decreases
SδI making the signal less noisy. By letting r → ∞, S−1 → 0 and there will be no quantum
noise on the signal! One might question whether this obeys Heisenberg's uncertainty principle
but as r →∞ the uncertainty on the intensity becomes in�nitely large.

Important to note here is that ϕ did not depend on the intensity of the light. When measuring
gravitational waves, the laser intensity exerts a force on a mirror leading to a change of phase,
just like the gravitational wave does. Letting r →∞, which removes the quantum noise on the
phase measurement above, would, as mentioned, create in in�nitely large uncertainty on the
intensity of the light. This leads to an in�nitely large uncertainty on the radiation pressure on
the mirror.

To see how the quantum noise might be minimized in gravitational wave measurements, let us
therefore consider what happens, if the phase di�erence arises from movement of a mirror in a
cavity, as is the case at LIGO. This is done in Sec. 4.

4 Interferometer with a cavity

To improve the model of Sec. 3, a cavity can be added in one arm, where the movement of one
mirror leads to the phase change, which causes the interference pattern. This is a model more
similar to how LIGO and other gravitational wave observatories work.

Figure 4

The setup of the interferometer is as seen in Fig 4. It should not be considered a sketch of how
an actual gravitational wave interferometers would be constructed. Instead, it is a mathemat-
ical consistent model that captures the main aspect of gravitational wave interferometers. It
produces displaced squeezed states, that interacts with a cavity whose length can be changed
by a gravitational wave, and homodyne detection, which is used to read out the signal from
the light beam.

First, light enters the �rst beam splitter after which it is split into two di�erent paths. Unlike
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the example looked at in Sec. 3, the �rst beam splitter is unbalanced, letting only a fraction of
the light towards to cavity (but enough to measure something!) while the rest travels through
the other arm.

Using the numbering seen on Fig. 4, a phase shift of ϕ = π
2 is imposed on the beam in arm

2 - this phase shift selects which quadrature operator from the arm 3 is being studied. In
arm 3, the light is being rotated in phase-space such that light originally squeezed along the
X̂- or P̂ -quadrature can be oriented in any direction, as seen in Fig 6. This rotation can be
frequency dependent. Afterward, the light enters the cavity, whose length can be changed by
a gravitational wave.

Finally, the two beams from arm 2 and arm 3 is merged in the second, balanced beam splitter,
and the intensity of at the two detectors are substracted from each other. This way acquiring
the information carried in the phase of one beam (here beam 3) by combining it with a local
oscillator derived from the same laser (here beam 2) is called homodyne detection.

When a gravitational wave pass through Earth, its a�ect on the interferometer can be modelled
as a force acting on the mirror.

4.1 Hamiltonian

To describe the light and �nd the noise spectral density, it is necessary to describe the motion
of the mirror in the cavity, and - using that - to �nd the input-output relation of the cavity.
For both, the Hamilton of the cavity is needed.

Figure 5: The cavity in the interferometer. The motional degree of freedom for the second
mirror is modelled as a harmonic oscillator. A gravitational wave can be seen as a force acting
on the mirror, thereby changing the length of the cavity

The Hamilton for the light in the cavity is

Ĥcav = ~ω̂cav â†cavâcav , (22)

where ωcav is the frequency of the cavity and depends on the position of the mirror. The
vacuum energy 1

2~ωcav has been omitted, as it will not a�ect the results. In Fig. 5 a sketch of
the cavity can be seen.

Writing ωcav in terms of the displacement of the mirror, x, the length of the cavity L and the
speed of light c, I have

ω̂cav =
cπ

L+ x̂
≈ c π

L

(
1− x̂

L

)
= ω0

(
1− x̂

L

)
, (23)

where it is used that the displacement of the mirror is much smaller than the length of the
cavity, x << L. ω0 is the frequency of âcav if x = 0. Using this, Eq. (22) can be written as

Ĥcav ≈ ~ω0â
†
cavâcav(1−

x̂

L
) . (24)
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4.2 Movement of the mirror

Describing the mirror as a damped, harmonic oscillator, the equations of motion that governs
its movement is

˙̂x(t) =
p̂(t)

m
(25)

˙̂p(t) = −m ω2
m x̂(t)− γ p̂(t) + F̂ba(t) + F̂d(t) + F̂s(t) (26)

where x̂ is the position-operator of the mirror, p̂ the momentum operator of the mirror, ωm
is mirror's mechanical frequency, γ is the damping factor, F̂ba is the back action force, F̂d is
a di�usive force, and F̂s is the signal (caused by a gravitational wave). Back action is caused
by the radiation pressure on the mirror. The di�usive force stems from the dampening of the
system.

The back action force can be found using Hamilton's equation

Fba = ṗcav = −∂Hcav

∂x
=

~ω0

L
â†cavâcav (27)

≈~ω0

L
(|αcav|2 + α∗cavδâcav + αcav δâ

†
cav) (28)

In the last step, the coordinat transformation from Eq. (11) is used and the term δâ†cavδâcav
is omitted as it is small compared to the terms ∝ αcav
To solve the system of equations, I let x̂→ 〈x̂〉+ δx̂, similar to the coordinat transformation in
Eq. (11). 〈x̂〉 is the average displacement of the mirror due to the average radiation pressure,
while δx̂ is �uctuations around this new equilibrium.

To �nd 〈x̂〉, Eq. (26) needs to be solved for the terms which are constant in time. This, however,
depends on αcav, which in itself depends on x̂, as can be seen in Eq. (39). The consequence is
a non-linear set of equations which cannot easily be solved analytically. Instead, a numerical
solution is possible. The exact value of 〈x̂〉 is less important for these calculations.

The time-dependence, and therefore both the noise and the signal, lies in δx̂. To �nd an
expression for δx̂, the time-dependent parts of Eq. (25) and 26 is set equal to each other:

˙δx̂ =
p̂

m
(29)

˙̂p = −m ω2
m δx̂− γ p̂+

~ω0

L
(α∗cavδâcav + αcav δâ

†
cav) + F̂d + F̂s (30)

To solve this, the Fourier transform is found

−i ω δx̂(ω) =
p̂(ω)

m

−i ω p̂(ω) = −m ω2
m δx̂(ω)− γ p̂(ω) +

~ω0

L

(
α∗cavδâcav(ω) + αcav δâ

†
cav(−ω)

)
+ F̂d(ω) + F̂s(ω)

(31)

The solution to which is

δx̂(ω) = χm

(
~ω0

L

(
α∗cavδâcav(ω) + αcav δâ

†
cav(−ω)

)
+ F̂d(ω) + F̂s(ω)

)
. (32)

Here, the susceptibility

χm =
1

m(iγω + ω2 − ω2
m)

(33)

is a measure of how easily the mirror is being moved by a force.
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4.3 Input-output relation of the cavity

Now, that there is an expression for the movement of the mirror in the cavity, the input-output
relation of the cavity can be found. To do this, the equation of motion for the light in the
cavity needs to be solved.

The equation of motion for the light in the cavity is [16]

˙̂acav =− κ âcav +
√

2κ âin +
i

~
[Ĥcav, âcav] (34)

âout = âin −
√

2κ âcav (35)

Here, 1/κ is the cavity �eld decay rate, âin is the incoming light in the cavity, âcav is the light
in the cavity, and âout is the outgoing light from the cavity, as seen on Fig. 5.

Rewriting Eq. (34) in the laser frame, ˆ̃a = â eiωLt, using the product rule on the left hand
side, and cancelling all factors e−iωLt, I get

˙̂
ãcav − iωLˆ̃acav =− κˆ̃acav +

√
2κˆ̃ain +

i

~
[Ĥ, ˆ̃acav] (36)

Inserting the commutation relation [Ĥ, ˆ̃acav] = ~ω0( x̂L −1) ˆ̃acav, which follows from the Hamil-
ton Eq. (24) and the commutation relation [âcav, â

†
cav] = 1, and using the coordinate transfor-

mation Eq. (11), I �nd

δ
˙̂
ãcav + ˜̇α− iωL(δˆ̃acav + α̃cav) = (37)

− κ(δˆ̃acav + α̃cav) +
√

2κ(δˆ̃ain + α̃in) + iω0(
〈x̂〉 − δx̂

L
− 1) (δˆ̃acav + α̃cav)

α̃out + δˆ̃aout = α̃in + δˆ̃ain −
√

2κ (α̃cav + δˆ̃acav) (38)

To solve Eq. (37) and Eq. (38), all the small terms are set equal to the small terms, and the
large terms are set equal to the large terms.

For the large terms, the new system of equations are

˜̇αcav =
√

2κα̃in + α̃cav(−κ− iω0 + iωL + i
〈x̂〉
L
ω0) (39)

α̃out = α̃in −
√

2κα̃cav (40)

While for the small terms, after Fourier transforming, the system of equations are

−iω δˆ̃acav(ω) =
√

2κ δˆ̃ain(ω) + iα̃cavω0
δx̂(ω)

L
+ δˆ̃acav(ω)(iωL − iω0 + i

〈x̂〉
L
ω0 − κ) (41)

δˆ̃aout(ω) = δˆ̃ain(ω)−
√

2κδˆ̃acav(ω) (42)

As the radiation pressure changes the length of the cavity, the frequency of the cavity's mode,
when δx̂ = 0, is changed into ω′0 = ω0 (1− <x̂>

L ). Using ω′0, the detuning, ∆, is de�ned to be
the di�erence between the laser frequency and that of the cavity ∆ = ωL − ω′0.

From here on, the laser frequency is chosen such that ∆ = 0. Furthermore, I chose α̃ ∈ R,
which can be done without loss of generality, by letting the squeezed light be oriented in any
direction, since it is the relative phase di�erence between the coherent and squeezed light that
is important.
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4.3.1 Input-output relation for α

Eq. (39) and Eq. (40) determine what happens with the intensity of the light as it pass through

the cavity. Assuming the laser intensity α†inαin is constant, α̇cav = 0, and Eq. (39) and Eq. (40)
reads

0 =
√

2κα̃in − α̃cav κ (43)

α̃out = α̃in −
√

2κα̃cav . (44)

Here, it is also used that the laser frequency is chosen such that the detuning is zero, ∆ =
ωL − ω′0 = 0.

Solving for α̃cav in Eq. (43) and inserting in Eq. (44), I �nd

α̃out = α̃in −
2κ

κ
α̃in = −α̃in (45)

This means the light gets a phase shift of eiπ but is still real.

To see the phase di�erence from the movement of the mirror, it is necessary to solve the set of
equations Eq. (41) and Eq. (42) containing the small terms.

4.3.2 Input-output relation for δâ

To �nd how the movement of the mirror will change the light, Eq. (41) and Eq. (42) need to
be solved. By rewriting Eq. (41) in terms of the quadrature operators X̂ = 1

2 (δˆ̃a + δˆ̃a†) and

P̂ = 1
2 i (δˆ̃a + δˆ̃a†), Eq. (41), the complex conjugate of Eq. (41) and Eq. (32) can be written

in the form of the matrix equation:


κ− iω 0 i

ω0

2 L
(α̃∗cav − α̃cav)

0 κ− iω ω0

2 L
(α̃∗cav + α̃cav)

~ω0

L
(α̃∗cav + α̃cav) i

~ω0

L
(α̃∗cav − α̃cav)

1

χm(ω)



X̂cav

P̂cav

δx̂

 =


√

2κ X̂in

√
2κ P̂in

F̂s + F̂d

 (46)

Here, it is still assumed that ∆ = 0. It is used that δx(t) = δx†(t), since it is an observable and
must therefore be hermitian, which leads to F (δx(t)) = F (δx†(t)) = δx̂(ω) and F (F (t)) =
F (F †(t)) = F (ω).

In Sec. 4.3, the incoming light was chosen to be real and positive. It follows from Eq. (??)hat
the light in the cavity is also real and positive. Therefore, I let αcav = α∗cav = |αcav|.

Solving for the inverse of the matrix on the left hand side and using α̃in ∈ R, I �nd:


X̂cav

P̂cav

δx̂

 =



1

κ− iω
0 0

2χm~ω2
0 |αcav|2

(κ− iω)2L2

1

κ− iω
− χmω0|αcav|

L(κ− iω)

− 2χm ~ω0|αcav|
L(κ− iω)

0 χm(ω)




√

2κ X̂in

√
2κP̂in

F̂s + F̂d

 (47)

Combining Eq. (42) and Eq. (47), the input-output-relation for the quadrature operators are
found to be

X̂out = X̂in(1− 2κ

κ− iω
) = −X̂in

κ+ iω

κ− iω
(48)
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and

P̂out = P̂in −
√

2κP̂cav (49)

= −P̂in
κ+ iω

κ− iω
− X̂in

2 · 2κ ~ω2
0 |αcav|2

(κ− iω)2f(ω)L2
+

√
2κ ω0|αcav|

L(κ− iω)f(ω)
(F̂s + F̂d) .

As it can be seen, the cavity gives the outgoing X̂-quadrature a frequency-dependent phase
compared to the incoming X̂-quadrature. However, for the outgoing P̂ -quadrature, it mixes
the incoming X̂in- and P̂in-quadrature. Importantly, all the information about the signal is
also carried by P̂out
-quadrature. The interferometer should therefore be tuned to only detect this quadrature.

By de�ning tan(θ) = ω
κ , the Lorentzian function L(ω) =

κ

κ− iω
=

κ√
(κ2 + ω2)

eiθ, and using

the trigonometric identity tan(2θ) = 2 tan(θ)
1−tan2(θ) , Eq. (49) can be written as

P̂out =− P̂inei2θ(ω) − X̂in
4 ~ω2

0χm(ω) |αcav|2

L2
ei2θ(ω)

|L(ω)|2

κ

+
2|L(ω)|eiθ(ω) ω0χm(ω)|αcav|√

2κL
(F̂s + F̂d) .

(50)

L(ω) is a Lorentzian function that describes the respond of the cavity to the gravitational wave
frequencies. If the cavity is broad, that is ω

κ � 1 and |L(ω)| ≈ 1 for the relevant frequencies,
the mirror's position is approximately constant in the time it takes for a photon to enter the
cavity and exit again. This will be the case for low frequencies but not for high frequencies.
For high frequencies, the movement of the mirror in the time it takes the photons to enter and
exit the cavity, cannot be assumed constant.

The gravitational force, F̂signal will vary between di�erent interferometers with mirrors of
di�erent masses. For this reason, the force is rewritten in terms of the distance, the mirror is
moved due to the gravitational wave, δx̂s, which is independent of the mass of the mirror:

F̂s =
δx̂s

χm(ω)
. (51)

De�ning the constant g, which depends on the interferometer,

g =
2 ω0 |αcav|

√
~

L
√
κ m

, (52)

Eq. (50), can be written as

P̂out =− P̂inei2θ − X̂in
g2 |L(ω)|2

(iγω + ω2 − ω2
m)

ei2θ (53)

+
eiθ g |L(ω)|√

2~m (iγ + ω2 − ω2
m)
F̂d +

eiθ g |L(ω)|
√
m√

2~
δx̂s . (54)

Now, that the input-output relation for the cavity is known, this can be used to analyze the
entire interferometer.

4.4 Noise spectral density

By using the input-output of the cavity, it is possible to examine the intensity di�erence, Î,
between the two detectors and �nd the noise spectral density. The setup of the interferometer
can be seen in Fig. 4 and its description in the beginning of Sec. 4.
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Using the input-output relation Eq. (8) the intensity di�erence, Î, between the two detectors
is

Î = â†4â4 − â
†
5â5

BS−−→ −iâ†2â3,out + iâ†3,outâ2 . (55)

To select the quadrature operator carrying the information about the signal, P̂out, a phase
di�erence of eiπ/2 is applied to â2

iâ†2â3,out + iâ†3,outâ2
phase−−−−→ −â†2â3,out − â

†
3,outâ2 (56)

= −(α∗2 + δâ†2)(α3,out + δâ3,out)− (α∗3,out + δâ†3,out)(α2 + δâ†2) , (57)

where in the last step, the coordinat transformation Eq. (11) was used.

From 45 I know that α̃3,out = −α̃3,in. Since the incoming light in the cavity is real, α̃3,in = α̃∗3,in
and α̃2,in = −α̃∗2,in. Using this and omitting terms ∝ δâ†δâ, as they are small compared to
the terms ∝ α, I �nd

Î = α̃3,in(δˆ̃a2 + δˆ̃a†2) + α̃2(δˆ̃a3,out − δˆ̃a†3,out) (58)

As the �rst beam splitter is very unbalanced, α̃3 � α̃2, this reduces to

Î ≈ α̃2 2i P̂3,out (59)

= −P̂inei2θ − X̂in
g2 |L(ω)|2

(iγω + ω2 − ω2
m)

ei2θ (60)

+
eiθ g |L(ω)|√

2~m (iγ + ω2 − ω2
m)
F̂d +

eiθ g |L(ω)|
√
m√

2~
δx̂s . (61)

The incoming light of the cavity may be oriented in any direction. This is achieved by squeezing
the light sent into the interferometer along the quadrature axis and then rotating it ϕ(ω)
in phase-space before it enters the cavity. The light squeezed along the quadrature axis is

described using ˆ̃X and ˆ̃P while the rotated light is described with X̂in and P̂in, as seen in Fig.

6. Note here that both X̂ and ˆ̃X is in the laser frame, as was de�ned in Sec. 3.

Figure 6: Rotation of squeezed light. First, before the light reaches the cavity

Using the inverse rotation matrix, the relation between ( ˆ̃X, ˆ̃P ) and (X̂in, P̂in) is(
X̂in

P̂in

)
=

(
cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

)
·

(
ˆ̃X
ˆ̃P

)
(62)

As a function of ˆ̃X and ˆ̃P the intensity di�erence of the light then becomes

Î =α2 2i

(
−(− sin(ϕ) ˆ̃X + cos(ϕ) ˆ̃P )ei2θ − (cos(ϕ) ˆ̃X + sin(ϕ) ˆ̃P )

g2 |L(ω)|2

(iγω + ω2 − ω2
m)

ei2θ (63)

+
eiθ g |L(ω)|√

2~m (iγ + ω2 − ω2
m)
F̂d +

eiθ g |L(ω)|
√
m√

2~
δx̂s

)
(64)
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As in Eq. (18), the intensity is normalized to the signal to �nd the signal-to-noise ratio, i.e.
divided with the term in front of δx̂s:

Înorm =

((
sin(ϕ) ˆ̃X − cos(ϕ) ˆ̃P

)
eiθ

√
2~

g |L(ω)|
√
m
− (cos(ϕ) ˆ̃X + sin(ϕ) ˆ̃P )

g
√

2~ |L(ω)|eiθ√
m(iγω + ω2 − ω2

m)

(65)

+ δx̂s +
F̂d

m(iγω + ω2 − ω2
m)

)
. (66)

This can be written as Înorm = δx̂s + δI as in Eq. (18). To analyse the quantum noise, I am
interested in the symmetrized noise spectral density, de�ned in Eq. (19).

SδIδ(ω − ω′) =
1

2
〈δδÎ†δÎ + δÎδÎ†〉 (67)

=
1

2
〈
((

sin2(ϕ)( ˆ̃X† ˆ̃X + ˆ̃X ˆ̃X†) + cos2(ϕ)( ˆ̃P † ˆ̃P + ˆ̃P ˆ̃P †)
) 2~
mg2 |L(ω)|2

+
(

cos2(ϕ)( ˆ̃X† ˆ̃X + ˆ̃X ˆ̃X†) + sin2(ϕ)( ˆ̃P † ˆ̃P + ˆ̃P ˆ̃P †)
) g2 2~ |L(ω)|2

m|iγω + ω2 − ω2
m|2

− 8~
m

(ω2 − ω2
m)

|iγω + ω2 − ω2
m|2

cos(ϕ) sin(ϕ)
(

ˆ̃P † ˆ̃P + ˆ̃P ˆ̃P † − ( ˆ̃X† ˆ̃X + ˆ̃X ˆ̃X†)
)

+ (68)

(F̂ †d F̂d + F̂dF̂
†
d )

1

m2|iγω + ω2 − ω2
m|2

)
〉 (69)

Here, the cross terms have been omitted, since their expectation value is 0. This is due to

〈 ˆ̃X† ˆ̃P + ˆ̃P † ˆ̃X〉 = 0 and 〈 ˆ̃X† ˆ̃P 〉 = 〈 ˆ̃X ˆ̃P †〉 = −〈 ˆ̃P † ˆ̃X〉 = −〈 ˆ̃P ˆ̃X†〉, which follows from Eq. (3)
letting ϕsq. = 0.

As in Sec 3 the δ-function are due to the fact that it is assumed the measurement run over an
in�nite amount of time, and there will therefore be an in�nite amount of noise - but likewise,
the signal will also become in�nitely large.

The di�usive force Fd has the expectation values [17]

< F̂ †d (ω)F̂d(ω
′) > = 2mγ~ωn(ω)δ(ω − ω′) (70)

< F̂d(ω)F̂ †d (ω′) > = 2mγ~ω(n(ω) + 1)δ(ω − ω′) (71)

where n(ω) =
(
e~ω/kbTm − 1

)−1
and kb is Boltzmann's constant, and Tm the temperature of

the mirror. In the high temperature limit kbTm � ~ω, this becomes

< F̂ †(ω)F̂ (ω′) > + < F̂ (ω)F̂ †(ω′) >≈ 4mγkbTmδ(ω − ω′) (72)

Using Eq. (72) and the expectation value of the quadrature operators from Eq. (6), the noise
spectral density Eq. (69) can be written

SδI =
1

2

((
sin2(ϕ)S−1 + cos2(ϕ)S

) 2~
mg2 |L(ω)|2

+
(
cos2(ϕ)S−1 + sin2(ϕ)S

) g2 2~ |L(ω)|2

m|iγω + ω2 − ω2
m|2

− 8~
m

(ω2 − ω2
m)

|iγω + ω2 − ω2
m|2

(
S − S−1

)
+

4γkbTm
m|iγω + ω2 − ω2

m|2

)
(73)
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The dampening of the mirror is contributing both to the shot noise and to the noise from the
di�usive force in the last term. To minimize the last term as much as possible, γ is engineered
to be extremely small. Therefore, |iγω+ω2−ω2

m|2 ≈ |ω2−ω2
m|2, since the dampening is ∝ γ2

while the other two terms are ∝ ω2 or ∝ ω4 and, as such, much larger.

When looking at the position sensitivity, the noise from the di�usive force is stronger for low
frequencies than high frequencies, which is a property of the noise from seismic activity and
thermal �uctuations of the mirror as well [4]. As the aim of this project is to minimize the
quantum noise, and this term contribute to the classical noise, it will be omitted from here on.

A characteristic noise spectral density, found by considering which constants SδI depend, is
Schar = ~

m g2Ligo
, where gLigo = 60 · 2πs−1 is the value of g used in LIGO [18].

Using this, the unitless quantity Σ = SδI
Schar is de�ned. Applying the approximations above, Σ

is

Σ =

((
sin2(ϕ)S−1 + cos2(ϕ)S

) g2Ligo
g2|L(ω)|2

+
(
cos2(ϕ)S−1 + sin2(ϕ)S

) g2g2Ligo
|ω2 − ω2

m|2
|L(ω)|2

− 4g2Ligo(ω
2 − ω2

m) cos(ϕ) sin(ϕ)
(
S − S−1

))
. (74)

Here, the �rst term ∝ g−2 is the shot noise caused by �uctuations in the arrival time of the
photons at the detectors [9]. Increasing the intensity of the laser and thereby g, which is
∝ |αcav|, would decrease this noise. For high frequencies, this noise dominates. In the setup
used in the report g has to be small due to the �rst beam splitter being unbalanced - real
gravitational wave interferometers instead use Michelson interferometers which do not have
this problem.

The second term ∝ g2 is the backaction. If the intensity of the laser is increased, the uncertainty
of the radiation pressure on the mirror is, too, and this noise term becomes larger. For low
frequencies, the back action dominates.

The ideal g, that minimizes the quantum noise will therefore be a balancing of the shot noise
and quantum noise and depends on which frequency is studied. In reality, g is limited by the
possible laser power and shot noise is the dominating quantum noise above 50 Hz in LIGO
[10].

In Fig 7 the sensitivity Σ de�ned in Eq. (74) as a function of frequency of the gravitational
wave can be seen for di�erent values of g. There is no squeezing, so S = 1. ωm is set to zero.
L(ω) depends on κ, that has been set to κ = 450 Hz, which is the value LIGO uses [11]. As
it can be seen, a low value of g leads to less quantum noise at low frequencies, where the back
action dominates, and more quantum noise at higher frequency, where shot noise dominates,
while it is opposite for a high value of g. However, at low frequencies other noise sources such
as seismic noise, thermal �uctuations and even wind on the building will contribute and the
actual sensitivity will therefore be worse than Figure 7 suggest [4]. The (relatively small) gain
of sensitivity at low frequencies by choosing a low value of g instead of a higher value will
therefore not be worth it, when all noise sources are considered, compared to the (relatively
high) lost sensitivity at high frequencies. A high value of g is therefore wanted. However, g is
limited by the possible laser intensity.

In the frequency range dominated by shot noise, the sensitivity becomes worse the higher the
frequency is. This is not due to the quantum noise but instead arises from L(ω) < 1, meaning
that the frequency is not coupling as well to the interferometer.

In Fig. 8 the sensitivity Σ for di�erent choices of ωm can be seen. Again, κ = κLigo = 450 Hz
and g is g = gLigo. A high value of ωm leads to more quantum noise at low frequencies and
slightly less at higher frequencies. In reality, such a high ωm as the blue or even the orange
lines in Fig 8 cannot be achieved. To achieve the extremely low γ - which is necessary for the
thermal suspension noise not to be dominating, the suspension system is designed such that the
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Figure 7: The position sensitivity of the interferometer seen for di�erent values of g. The higher
value of g, the better sensitivity for high frequencies. A lower value of g creates a slightly better
sensitivity for low frequencies. Only quantum noise is considered. S = 1, κ = 450 Hz, ωm = 0.

Figure 8: The position sensitivity of the interferometer seen for di�erent values of ωm. A high
value of ωm creates a better sensitivity for high frequencies. However, experimentally this is
infeasible as the dampening needs to be extremely low. Only quantum noise is considered.
S = 1, κ = 450 Hz, g = 60 Hz.

mirror is approaching a free mass [4]. ωm will therefore by very small, leading to a sensitivity
close to the green color line. From here on, it will therefore be assumed that ωm ≈ 0.

To increase the sensitivity, broadband squeezed light can be used - i.e., squeezed light that has
the same phase in phase-space for all frequencies. Amplitude squeezed light (S > 1, ϕ = 0)
will decrease the back action while increasing the shot noise, while phase squeezed light (S >
1, ϕ = π

2 ) will contrarily decrease the shot noise while increasing the back action, as can be
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Figure 9: The position sensitivity of the interferometer with broandband squeezed light seen
for di�erent values of ϕsq.. ϕ = 0 suppress back action while ϕ = π

2 suppress shot noise. Only
quantum noise is considered. S = 5, κ = 450 Hz, g = 60 Hz.

seen from Eq. (74). This can be seen in Fig. 9 together with the sensitivity without squeezing.
Here, κ = κLigo, ωm = 0, and S = 5.

From the plot, it is possible to see where back action and shot noise dominates by considering
the point where the orange and green line crosses. As was also the case for value of g, the
sensitivity gained at higher frequencies by choosing phase squeezed light is much larger than
the sensitivity lost at low frequencies. Adding to this that other noise sources such as seismic
noise and thermal �uctuations are largest for low frequencies, phase squeezed light is the
best choice to increase the sensitivity if broadband squeezed light in used. E�ectively, phase
squeezed light mimics a higher laser intensity, letting g →

√
S g. As a higher value of g than is

currently experimentally feasible is desirable, using broadband squeezing is a way to overcome
this. In its third observatory run, LIGO has used broadband squeezed light rotated to suppress
a mix of shot noise and back action, optimized to measure the gravitational waves from binary
neutron star mergers [10, 11]. This increased the sensitivity above 50 Hz, while decreasing the
sensitivity for lower frequencies and lead to a 40 % increase in expected observations in one of
its two interferometers and a 50 % increase in its other interferometer. [10]

As can be seen on Fig. 9, for small values of ω the lowest sensitivity is found using ϕ = 0
while for high frequencies, the best sensitivity is found using ϕ = π

2 . If the squeezed light,
instead of having the same phase for all frequencies, had a frequency-depending phase, it should
therefore be possible to select the best sensitivity both at high and low frequencies. Then, it
would not be necessary to decide which astrophysical events the interferometer should be tuned
to and instead the optimal sensitivity would be achieved for all events. This will especially be
important as classical noise at low frequencies is reduced even further and an increase in back
action will be more noticeable [13].

To �nd how the optimal angle depends on frequency Eq. (74) is di�erentiated with regard to
the phase:

Σ

dϕ
= −(S − S−1)

((
|L(ω)|2 g2

g2Ligo
− |ω2 − ω2

m|2

g2g2Ligo|L(ω)|2

)
sin(2ϕ) + 2

ω2 − ω2
m

g2Ligo
cos(2ϕ)

)
= 0 ,

(75)

18



which can be rewritten as

tan(2ϕ) =
−2(ω2 − ω2

m)|L(ω)|2g2

|ω2 − ω2
m|2 − g4|L(ω)|4

(76)

For ωm << ω, using the tan-identity tan(2θ) = 2 tan(θ)
1−tan2(θ) , this can be reduced to

ϕ = arctan

(
−|L(ω)|2g2

ω2 − ω2
m

)
+
π

2
(77)

Figure 10: The position sensitivity of the interferometer with frequency dependent squeezed
light is seen in orange, while broadband squeezed light is seen in green and red. The dotted
line is the sensitivity with vacuum �uctuations. Below, the angle for the frequency-dependent
squeezed light is seen. Only quantum noise is considered. S = 5, κ = 450 Hz, g = 60 Hz.

In Fig 10, the sensitivty with frequency-dependent squeezing can be seen together with sen-
sitivity using broadband squeezing and the sensitivity without squeezing. Furthermore, the
optimal angle as a function of frequency can be seen. As can be seen, the frequency-dependent
squeezing achieves a better sensitivity than with no squeezing for all frequencies! At low fre-
quencies, the sensitivity matches that of broadband, amplitude squeezed light, while at higher
frequencies matching the sensitivity of broadband, phase squeezed light. At frequencies at
around 50 ≈ Hz, it outperforms both. If implemented at gravitational wave interferometers, it
will thereby be possible to achieve better sensitivity than without squeezing for all frequencies,
and better sensitivity for low frequencies than using shot-noise suppressing broadband squeezed
light, as LIGO currently do. This means that it will be possible to observe astrophysical events
emitting gravitational waves weaker than is currently possible to measure.

To date, this has not been implemented at any gravitational wave interferometers but is planned
in both LIGO, Virgo interferometer and KAGRA [13, 12]. However, this technology has been
experimentally tested by McCuller et al. and Zhao et al. Independently of each other, they
published two papers/articles in April about how the frequency depending rotating of the
squeezed light practically could be achieved. Both succeeded with results showing an reduced
quantum noise compared to vacuum entering the unused port.
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5 Conclusion

In this thesis, the noise spectral density in a standard Mach-Zehnder interferometer with a
phase in one arm, that may depend on frequency, but not on the laser power, has been derived.
Furthermore, the noise spectral density for an adapted Mach Zehnder interferometer, has been
derived. In the adapted Mach-Zehnder interferometer two things have been changed. One, the
phase stems from a cavity with one movable mirror and, two, the �rst beam splitter is very
unbalanced, letting only a fraction of the light to the cavity. In both cases, a strong coherent
beam enters one port of the interferometer while either vacuum or squeezed vacuum enters the
other port.

Fundamentally, the quantum noise is a consequence of Heisenberg's uncertainty relation and
stems from the two quadrature operators of light not commuting.

In both interferometers, has been found that the quantum noise arises from vacuum entering
the unused port. For the standard Mach Zehnder interferometer, inserting amplitude squeezed
vacuum in the otherwise unused port decreases the signal-to-noise ratio. In theory, if in�nitely
squeezed light could be produced, the quantum noise would go to zero. Similar results can be
gained by increasing the intensity of the laser.

The adapted Mach-Zehnder interferometer with a cavity closer resembles the interferometers
used by LIGO and other gravitational wave observatories, as the phase stems from the move-
ment of a mirror in a cavity. Here, there are two di�erent quantum noise sources both stemming
from Heisenberg's uncertainty principle. One, shot noise, dominates the quantum noise spec-
trum for high frequencies, and stems from �uctuations in arrival time of the photons at the
detectors. The other, back action, dominates the quantum noise spectrum at low frequencies,
and stems from �uctuations in radiation pressure on the mirror. Classical noise sources such
as seismic activity also plays a vital role at especially lower frequencies.

By inserting broadband squeezed light into the otherwise unused port of the interferometer, a
higher laser power can be mimicked. For amplitude squeezed light, back action is decreased
but at the expense of more shot noise. As such, the sensitivity for low frequencies is improved
while the sensitivity for high frequencies is worsened. For phase squeezed light, shot noise is
decreased at the expense of more back action. This worsen the sensitivity for low frequencies
while the sensitivity for high frequencies is improved. This has already been implemented at
LIGO, where using broadband squeezed light to e�ectively increase the intensity in the cavity
led to an increased amount of observations.

The fact that squeezing in di�erent quadratures is better for di�erent frequencies indicates that
an overall improvement in sensitivity can be achieved if the squeezed light is rotated in phase
space as a function of frequency. The optimal angle for the squeezed light has been derived,
which produces amplitude squeezed light at low frequencies and phase squeezed light at high
frequencies. Using this angle produces better sensitivity than vacuum for all frequencies and
outperforms both amplitude and phase squeezed light at around 50 Hz for the interferometer
studied. As such, implementing it at gravitational wave observatories will increase the overall
amount of observations and make observations possible from events that, at the moment,
produce too weak a signal to measure. This has not been attained yet, as it is experimentally
challenging, but is planned to implemented at LIGO, Virgo interferometer and KAGRA.
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