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We analyze time-resolved spontaneous emission from excitons confined in self-assembled InAs quantum
dots placed at various distances to a semiconductor-air interface. The modification of the local density of
optical states due to the proximity of the interface enables unambiguous determination of the radiative and
nonradiative decay rates of the excitons. From measurements at various emission energies, we obtain the
frequency dependence of the radiative decay rate, which is only revealed due to the separation of the radiative
and nonradiative parts. It contains detailed information about the dependence of the exciton wave function on
quantum dot size. We derive the quantum optics theory of a solid-state emitter in an inhomogeneous environ-
ment and compare this theory to our experimental results. Using this model, we extract the frequency depen-
dence of the overlap between the electron and hole wave functions. We furthermore discuss three models of
quantum dot strain and compare the measured wave-function overlap to these models. The observed frequency
dependence of the wave-function overlap can be understood qualitatively in terms of the different compress-
ibility of electrons and holes originating from their different effective masses and binding energies.
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I. INTRODUCTION

Semiconductor quantum dots �QDs� are nanoscale solid-
state structures that provide three-dimensional quantum con-
finement of otherwise mobile charge carriers. Self-assembled
QDs of InAs embedded in GaAs provide confinement for
both electrons and holes in a direct band-gap semiconductor.
Hence, they are optically active with the benefits of a high
quantum efficiency and compatibility with existing semicon-
ductor technology. These properties make the QDs highly
promising light sources for novel optical devices including
optical quantum information devices.1 This has led to an in-
creasing interest in the quantum-optical properties of QDs,
and major achievements include the demonstration of the
Purcell effect for QDs in solid-state cavities2 and strong cou-
pling between a single QD and the optical mode of a
cavity.3,4 Very recently also electrical tuning of such quantum
photonics devices was demonstrated,5,6 which is a significant
milestone toward practical all-solid-state cavity quantum
electrodynamics devices.

Despite the recent progress, a thorough understanding of
the dynamics of light-matter coupling for QDs in nanostruc-
tured photonic media is still lacking. Such an understanding
is required for quantitative comparisons between experiment
and theory. The problem is twofold, i.e., a detailed under-
standing of both the optical part and the electronic part is
required. The optical part is described by the local density of
optical states �LDOS� expressing the distribution of modes
that the QD can radiate to, while the electronic part is deter-
mined by the exciton wave function for the QD. Here we
will investigate an optical system, where the LDOS can be
calculated exactly, and use that to extract detailed informa-
tion about the QD. Our experimental results are compared to
a theoretical QD model, and the effect of QD size, material
composition, and strain is investigated. Such quantitative
comparisons of experimental data to simple theoretical QD
models are much needed in order to assess the full potential

of QDs in nanostructured media for, e.g., single-photon
sources,7,8 low-threshold lasers,9 or spontaneous emission
control.10,11

When interpreting spontaneous emission decay curves
from QDs, it is often implicitly assumed that the QDs decay
through radiative recombination, while nonradiative pro-
cesses are negligible. Unfortunately, this assumption is not
generally valid, and omnipresent nonradiative processes
must be considered. Only few experiments have addressed
this issue. Robert et al. established an upper bound on the
contribution from nonradiative processes of 25% by measur-
ing the ratio of the biexciton to exciton emission intensity at
saturation.12 Quantitative measurements of the radiative and
nonradiative decay rates of QDs were only carried out re-
cently using a modified LDOS both for colloidal QDs �Refs.
13 and 14� and for self-assembled QDs.15 Precise measure-
ments of the radiative decay rates are essential since nano-
photonic devices rely on the ability to manipulate the radia-
tive processes, while nonradiative recombination leads to
loss in the system.

As first pointed out by Purcell,16 the radiative decay rate
of an emitter is modified inside a structured dielectric me-
dium, which is due to the modification of the LDOS. In early
experiments by Drexhage,17 this effect was experimentally
demonstrated by positioning emitters in the proximity of a
reflecting surface. Extending on this idea, we recently em-
ployed the modified LDOS near a semiconductor-air inter-
face as a spectroscopic tool to extract radiative and nonradi-
ative decay rates and from that infer the overlap between the
electron and hole wave functions.15 This technique relies on
the fact that the radiative decay rate is proportional to the
LDOS, while the nonradiative decay rate is unaffected. In the
present paper, we present additional data and compare the
measured radiative decay rate to theory, which requires a
detailed model of the QD electron and hole wave functions.
We have measured the radiative decay rate at different emis-
sion energies, which reveals the dependence of the QD opti-
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cal properties on its size. We derive the Wigner-Weisskopf
theory of spontaneous emission from QDs, predicting an ex-
ponential decay of the exciton population and the LDOS is
derived for the applied interface geometry using the Green’s
function technique. We furthermore show that the radiative
decay rate of a QD in a homogeneous medium is propor-
tional to the square of the overlap integral between electron
and hole wave functions and calculate the frequency depen-
dence of this overlap using a simple two-band model of the
QD. The QD model is discussed in details and compared to
our experimental data employing realistic parameters as in-
put to the theory. The pronounced size dependence of the
electron-hole wave-function overlap is found to originate
from the differences in effective mass and binding energy of
the electron and hole. Furthermore, we investigate three dif-
ferent strain models for the QD and compare their predic-
tions to experiment, thereby, providing valuable insight on
the complex strain mechanisms of self-assembled QDs.

This paper is organized as follows. In Sec. II we present
the experimental method and in Sec. III we present the ex-
perimental results. In Sec. IV we discuss the Wigner-
Weisskopf model for spontaneous emission and derive the
relation between the radiative decay rate, the LDOS, and the
wave-function overlap. In Sec. V we combine the analytical
expressions for the radiative rate with the numerical results
for the wave-function overlap and compare theory to experi-
ment. Finally, we present conclusions in Sec. VI.

II. EXPERIMENTAL TECHNIQUE FOR DETERMINING
THE RADIATIVE DECAY RATE

OF QUANTUM DOTS

Spontaneous emission of a photon from a QD occurs
when an electron-hole pair �an exciton� recombines, as illus-
trated schematically in Fig. 1�a�. As will be shown rigorously
in Sec. IV, the QD radiative decay rate �rad�r ,� ,ep� in a
structured environment is proportional to the projected
LDOS ��r ,� ,ep�, where the projection is along the direction
ep of the transition momentum matrix element, which corre-
sponds to the orientation of the transition dipole moment.
The LDOS is modified in an inhomogeneous dielectric me-
dium due to optical reflections at interfaces. In emission ex-
periments, the total decay rate is measured, which can be
expressed as18

��r,�,ep� = �rad
hom���

��r,�,ep�
�hom���

+ �nrad��� , �1�

where �hom��� is the density of optical states for a homoge-
neous medium, and �nrad��� is the rate for nonradiative re-
combination. � is the emission frequency and thus �� is the
emission energy, and r is the position of the QD. Nonradia-
tive recombination is due to intrinsic QD processes and thus
independent of the LDOS. �rad

hom��� is the QD radiative rate
in a homogenous medium without any boundaries. In our
case, the refractive index of the medium is n=3.5 corre-
sponding to that of GaAs. Investigating �rad

hom��� in detail
provides valuable insight into the properties of the exciton
wave function confined in the QD potential.

The exact nature of nonradiative recombination in QDs is
not yet fully understood. It is often implicitly assumed that
nonradiative recombination is negligible, but as we will see
in the following, even for very weak excitation intensities,
this is not a valid assumption. Possible nonradiative pro-
cesses include surface recombination at the interfaces be-
tween the QD and the surrounding semiconductor material,
Auger processes, and trapping of electron and/or holes at
defects,19 and any first-principles calculation of these effects
is a tremendous task. Reliable ways of extracting the radia-
tive and nonradiative parts of the decay rate are therefore
essential.

The radiative and nonradiative decay rates can be sepa-
rated by time-resolved spontaneous emission measurements
if the QDs are placed in an environment with a known LDOS
�cf. Eq. �1��. A planar interface between two regions with
different refractive indices is the most simple example of an
inhomogeneous dielectric medium.20 For this particular ge-
ometry, the LDOS can be calculated exactly. Here we em-
ploy the interface between GaAs �n=3.5� and air �n=1� as
illustrated in Fig. 1�b�. We calculate the LDOS by the
Green’s function technique and the results for dipole orien-
tations parallel or perpendicular to the interface are shown in
Fig. 1�c�. We stress that no assumptions need to be made
about, e.g., the QD density and the excitation beam profile in
order to employ this experimental technique, as opposed to
alternative ways of determining the radiative decay rate such
as by absorption spectroscopy.21–23
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FIG. 1. �a� Schematic band diagram illustrating the spontaneous
emission process in a QD. An electron is excited optically from a
valence band to a conduction-band wetting-layer �WL� state and the
generated electron and hole relax to the lowest-energy QD state on
a picosecond time scale. The electron can subsequently decay by
either radiative or nonradiative recombination with rates �rad and
�nrad, respectively. �b� Schematic illustration of the sample under
investigation. InAs QDs are embedded in GaAs and positioned at
different distances z to the GaAs-air interface. �c� The LDOS as a
function of distance z to a GaAs-air interface for a dipole orienta-
tion parallel �solid curve� or perpendicular �dashed curve� to the
interface.

STOBBE et al. PHYSICAL REVIEW B 80, 155307 �2009�

155307-2



III. MEASUREMENTS OF SPONTANEOUS EMISSION
DECAY RATES NEAR A SEMICONDUCTOR-AIR

INTERFACE

The starting point of our investigations is a GaAs wafer
grown by molecular-beam epitaxy �MBE�. The QDs were
grown using the Stranski-Krastranov method on a �001�
GaAs substrate. The growth sequence was 50 nm AlAs, 610
nm GaAs, 2.0 monolayers �MLs� InAs, 300 nm GaAs cap,
and finally 2.0 ML InAs. The AlAs layer was included for an
optional epitaxial lift-off process, which was not employed
here. Both InAs layers formed self-assembled QDs, but only
the embedded layer was optically active because nonradia-
tive surface recombination dominates for QDs at the surface.
However, since the QDs at the surface were fabricated under
identical growth conditions as the embedded ones, the den-
sity of the active QDs can be determined by atomic force
microscopy �AFM� of the sample surface.

Such an atomic force micrograph is shown in Fig. 2�a�.
The QD height can be determined accurately from this mea-
surement, but the measured width is convolved with the tip
shape function. We used the AFM data in Fig. 2�a� to obtain
a histogram of the heights recorded for 100 randomly se-
lected QDs. The result is shown in Fig. 2�b�. We fit the
height histogram by a log-normal distribution given by
f�h�=

h0

��2�h
exp�− �ln�h�−��2

2�2 � with h0=68, �=0.32, and �=1.9,
where h is a dimensionless length scale normalized to 1 nm.
In Sec. V, we test the applicability of the height distribution
for detailed quantum dot models.

From the AFM data, we found a QD density of 250 µm−2,
which corresponds to an average interdot distance of 60 nm.
This number should be compared to typical length scales for
various relevant QD interactions. Carrier tunneling is negli-
gible for distances beyond 15 nm �Ref. 24� and the dipole-
dipole interaction is only significant for distances close to the
Förster radius, which is typically 2–9 nm.18 Therefore, the
measurements performed here provide ensemble averaged
values of single QD properties with the advantage of an ex-
cellent signal-to-noise ratio in the measurements.

The wafer was processed by standard UV lithography and
wet chemical etching in five subsequent steps with nominal
etch depths of 160, 80, 40, 20, and 10 nm by which we
obtained 32 fields with specific distances from the QDs to
the semiconductor surface. The 32 fields were nominally

equidistantly spaced with 10 nm spacing. The wet etching
was done using an etchant comprised of H3PO4 �85%�, H2O2
�30%�, and H2O in the ratio 3:1:60, which has an etch rate on
GaAs at room temperature of 1 nm/s. We found that this
etchant results in surfaces of good optical quality with low
surface roughness. A schematic illustration of the resulting
sample is shown in Fig. 1�b�. Finally, we measured the actual
distance from the QDs to the semiconductor surface by using
a combination of secondary-ion mass spectroscopy and sur-
face profiling from which we found typical depth uncertain-
ties of �3.0 nm.

The experimental setup is illustrated in Fig. 3. The sample
was kept at 14 K and illuminated by a mode-locked Ti:sap-
phire laser emitting 300 fs pulses at 1.45 eV, which corre-
sponds to excitation of the wetting-layer states of the QD
ensemble. The repetition rate was 80 MHz and we used an
excitation intensity of 7 kW /cm2, which corresponds to less
than 0.1 excitons per QD generated in the wetting layer per
pulse, i.e., only the QD ground state is populated. Excitation
of the WL states is advantageous since the same density of
excitons is generated independent of sample thickness,
which would not be the case for excitation in the GaAs bar-
rier since the samples have different thicknesses. The pump
configuration is illustrated in Fig. 1�a�. The spontaneous
emission from the QD ensemble was collected and then dis-
persed by a monochromator with a spectral resolution of 2.6
meV from which it was directed onto a fast silicon APD. The
measured decay curves exhibit a biexponential decay evi-
denced by values of 	r

2 near unity for the biexponential fits
for all distances. Further details on the analysis of the decay
curves can be found in Ref. 15.

We measured the decay curves for 32 nominally equidis-
tantly spaced distances to the interface. We found that for the
two distances closest to the interface, there was no detectable
spontaneous emission due to the very close proximity of the
interface and/or damage by the etching process. In Fig. 4�a�,
we show the extracted fast and slow decay rates versus the
LDOS normalized to the density of states of a homogeneous
medium for the remaining 30 samples. The normalized
LDOS is that of a dipole orientation parallel to the interface.
The fast decay rate is expected to depend linearly on the
normalized LDOS. However, close to the interface �z

75 nm�, the measured decay rate is found to be systemati-
cally larger than expected by theory. This deviation could be
due to enhanced recombination rates induced by, e.g., scat-
tering or impurities at the semiconductor surface. Another

(a) (b)

FIG. 2. �Color online� �a� Topographic atomic force micrograph
depicting a surface area of 1�1 µm2 of uncapped QDs on the
unprocessed wafer. The color scale runs from 0 to 20 nm. �b� His-
togram of the QD height measured by analysis of the AFM data.
The blue line is a fit to the histogram data using a log-normal
distribution as discussed in the text.
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FIG. 3. Illustration of the optical measurement setup. The
sample is kept at 14 K in a cryostat and illuminated by a pulsed
laser. The spontaneously emitted light is collected and can be di-
rected either to a charge-coupled device camera for sample align-
ment or to a spectrometer equipped with a fast single-photon count-
ing avalanche photodiode �APD� for time-resolved measurements.
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mechanism which could cause deviations near the interface
is changes in the overlap of electron and hole wave functions
and hence changes in the radiative decay rate due to the
quantum-confined Stark effect. This could arise from a
built-in electric field due to the combined effect of Fermi-
level pinning at the semiconductor surface and unintentional
background impurity doping.

In order to exclude these effects in our analysis of intrin-
sic QD properties, we systematically excluded the data
points closest to the interface in the fit. We found that the
linear regression correlation parameter25 obtained from the
fit in Fig. 4�a� saturated close to the ideal value of unity
when excluding the seven innermost data points �see Fig.
4�b��. These points were consequently abandoned in the
analysis. For distances z�75 nm, we find an excellent
agreement between theory and experiment, which allows re-
liable extraction of the radiative and nonradiative rates of the
QDs. The slow rate does not vary with the distance to the
interface, so we conclude that it is dominated by nonradia-
tive decay. It is attributed to the recombination of dark exci-
tons and investigations of the dynamics will be published
elsewhere.26 In the remainder of this paper, we will consider
only the fast decay rate.

The linear fit in Fig. 4�a� is based on Eq. �1� and contains
two free parameters, namely, the homogeneous radiative de-

cay rate �rad
hom and the nonradiative decay rate �nrad. We ob-

tain �rad
hom=0.95�0.03 ns−1 and �nrad=0.11�0.03 ns−1 at an

emission energy of 1.204 eV. The excellent agreement be-
tween experiment and theory confirms that the QD dipole
moment is oriented perpendicular to the growth direction,
which was previously established by absorption
measurements.27

We measured the decay curves at six energies across the
inhomogeneously broadened emission spectrum. When ex-
tracting the fast rate from the fits, we obtain the curves
shown in Fig. 5. The different emission frequencies shift the
curves along the abscissa and more importantly the ampli-
tude and ordinate offsets are changing, which corresponds to
changes in �rad

hom and �nrad. This shows directly the frequency
dependence of �rad

hom and �nrad, which will be discussed be-
low.

The total decay rate in a homogeneous medium was ex-
tracted from Fig. 5 by the method outlined above and the
result is shown in Fig. 6. The total decay rate increases with
increasing emission energy, which could suggest that the ra-
diative rate increases with energy, as has been reported for
colloidal QDs.28 However, the opposite turns out to be true
for self-assembled QDs. In this case, �rad

hom��� is found to
decrease with increasing energy, and the overall increase in
the total rate is due to the pronounced increase in �nrad���
with emission energy. It should be stressed that such varia-
tions in the radiative rate can be assessed only because a
modified LDOS is employed allowing to separate radiative
and nonradiative contributions. The striking energy depen-
dence of the radiative rate can be explained as being due to
the dependence of the electron and hole wave functions on
the size of the QD, which will be discussed and analyzed in
detail in Sec. V.

At low excitation power, nonradiative recombination may
be due to thermally activated carrier escape or trapping at the
QD-GaAs interface.29,30 Our measurements of the energy de-

FIG. 4. �Color online� �a� Measured fast decay rate �black and
red squares� at an emission energy of 1.204 eV versus the normal-
ized LDOS for a dipole orientation parallel to the semiconductor-air
interface. The red line shows a linear fit, where only the black
points have been included. The red points have been omitted be-
cause at positions close to the interface a systematic deviation from
theory was observed, as quantified by the data in the lower panel.
The slow decay rate �black triangles� is independent of the LDOS
and is therefore dominated by nonradiative decay. The blue hori-
zontal line shows the average nonradiative rate �nrad=0.096 ns−1.
�b� Correlation between data and theory for the linear regression of
the radiative rate when systematically excluding the points nearest
the interface in the fit. The correlation parameter converges to a
value close to unity �blue line� when seven points �marked in red�
have been excluded.

FIG. 5. �Color online� Decay rates as a function of distance to
the interface for six different emission energies. Each curve has
been vertically offset by 0.1 ns−1 for visual clarity. The fits have
been obtained using a systematic exclusion of data points near the
interface �cf. Fig. 4�b��. The emission energies are 1.170 eV �solid
black squares�, 1.187 eV �open black squares�, 1.204 eV �solid red
circles�, 1.216 eV �open red circles�, 1.252 eV �solid blue dia-
monds�, and 1.272 eV �open blue diamonds�. For all emission en-
ergies, we note the excellent agreement with theory for z
75 nm.
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pendence of the nonradiative rate enable a test of these mod-
els. Although the nanoscopic details of these processes are
very complex, the energy dependence can be derived from
simple scaling arguments. We assume that nonradiative re-
combination due to thermally activated carrier escape is of
the form �nrad����exp�−�Eb−E���� /kBT�, where E��� is a
function describing the energy of the system, i.e., the elec-
tron or hole quantization energy, Eb is the barrier height, e.g.,
the electron or hole confinement potential or an impurity
potential, and kB is Boltzmann’s constant. The energy span of
the experimental data in Fig. 6 is 100 meV, which means that
E��� varies with approximately 50 meV for each band. This
is much larger than kBT=1.2 meV at 14 K so the thermally
excited carrier escape would lead to a much stronger energy
dependence than observed and we can rule out this mecha-
nism. For recombination at crystal defects at the QD-GaAs
interface, the recombination scales with the surface-to-
volume ratio, i.e., �nrad����1 /h���, where h��� is the radius
of the QD and we have assumed an aspect ratio of 1/2. Here
we define the aspect ratio as the ratio of height to width of
the QD. We can only model our nonradiative decay data by
subtracting an offset h0 from the heights used in the calcula-
tions of the radiative rate. This could indicate corrections to
the simple scaling relation due to the finite thickness of the
QD-GaAs interface due to intermixing or discrepancies be-
tween the heights used in our model and the actual confine-
ment potential. In Fig. 6, we show the result of this model,
where �nrad���=v / �h���−h0� and the QD heights are shown
on the upper axis. Here the surface recombination constant is
v=0.18 m /s and h0=3.2 nm. This model shows a good

agreement with experiment, which supports that the nonradi-
ative recombination in our QDs is due to recombination at
defects at the QD-GaAs interface.

To conclude this section, we want to stress some potential
pitfalls in the interpretation of the frequency dependence of
spontaneous emission decay rates from QDs. As already
pointed out, it is decisive to include the effects of nonradia-
tive recombination and implement a technique that allows to
separate it from radiative recombination. Thus, an a priori
assumption of negligible nonradiative recombination would
erroneously lead to the conclusion that the radiative rate in-
creases with energy. Furthermore, when extracting quantita-
tive data for the QD decay rates, one has to be aware of the
influence of the presence of interfaces. In a homogeneous
medium, the LDOS is proportional to the emission energy
squared, but this is not the case in proximity of interfaces. In
Fig. 7�a�, we compare the measured total decay rate versus
emission energy for an unprocessed wafer and compare to
the total rate that QDs in a homogeneous medium would
exhibit. The latter has been obtained using the LDOS tech-
nique explained above and provides “undisturbed” QD prop-
erties. For the unprocessed wafer, the distance to the inter-
face is 302 nm, and for this distance the LDOS increases
with increasing energy �cf. the solid blue line in Fig. 7�a��.
This frequency dependence of the LDOS modifies the mea-
sured emission rates and is an example of the importance of
considering nearby interfaces in quantitative assessment of
QD properties. This implies that a homogenous medium can-
not be approximated by an unprocessed wafer unless a very
thick capping layer is grown on top of the QDs. In a recently
published paper,31 the energy dependence of quantum dot
lifetimes was investigated. The authors assumed a wave-
function overlap and quantum efficiency of unity and found

FIG. 6. �Color online� The total decay rate �red squares�, radia-
tive decay rate �black triangles�, and nonradiative decay rate �blue
circles� as a function of QD emission energy. The radiative rate
decreases with energy but the nonradiative rate simultaneously in-
creases so that the total �measured� decay rate increases with in-
creasing energy. The solid black line is the result of the theoretical
model of the radiative decay rate using an aspect ratio of 1/2, omit-
ting the wetting layer, and for an indium mole fraction of 0.95. The
dashed blue curve shows the theoretical model of the nonradiative
decay. The dash-dotted red line shows the total decay rate given by
the sum of the two theoretical curves. The top scale shows the
heights used in the calculations. The details of the calculation of the
nonradiative rate are discussed in the text and the calculation of the
radiative rate is discussed in Sec. V.

FIG. 7. �Color online� �a� The fast decay rate obtained from
measurements on the unprocessed wafer �solid black squares� and
the total decay rate in a homogenous medium �open red circles�
obtained using the rigorous separation of radiative and nonradiative
homogeneous decay rates. Evidently, the frequency dependence of
the normalized LDOS �solid blue line� for the unprocessed wafer
�z=302 nm� results in faster decay rates for QDs on the unproc-
essed wafer than would be the case in a homogeneous medium. �b�
Normalized inhomogeneously broadened emission spectrum of the
QDs obtained under weak excitation.
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that the measured decay rates were generally faster than ex-
pected from theory. This led the authors to conclude that the
strong confinement model of QDs fails. We find on the con-
trary that the strong confinement model is fully valid for
QDs provided that the frequency dependence of the LDOS is
taken properly into account and that the quantum efficiency
and wave-function overlap are measured.

IV. THEORETICAL DESCRIPTION OF SPONTANEOUS
EMISSION FROM QUANTUM DOTS DUE TO

INTERACTION WITH THE QUANTIZED
ELECTROMAGNETIC FIELD

In this section, we give a theoretical description of the
radiative decay of excitons in QDs. QDs are many-particle
objects and the quantum states of QDs is properly described
in a many-particle picture. However, here we will restrict to
a single-particle approximation because it is known to give
correct results while being mathematically simpler.19,29 For
sufficiently small QDs, the energy difference between bound
states in the QDs is much larger than the Coulomb energy
and the effect of the Coulomb interaction on the internal
exciton dynamics becomes negligible.32 This means that the
electron and hole forming the exciton may be considered
independent, which is the strong confinement model. Fur-
thermore, we employ here a two-band description of the QD
including the effects of a wetting layer and strain, which is
sufficient to capture the essential properties of QDs.33,34 The
envelope function approach we use here is valid even for QD
sizes as small as an atomic unit cell because the small effec-
tive masses and shallow confinement potentials in this sys-
tem ensure that the envelope functions are slowly varying on
the atomic scale even if the confinement potential is not.35

The inclusion of more bands is important for studying
excited states of quantum dots, but for ground-state transi-
tions the effects are small. It has been estimated that the
inclusion of more bands in calculations of ground-state en-
ergies is relevant only when the lateral quantum dot dimen-
sions are known within �1.5 nm.36 In present experiments,
the size of the confinement potential of the quantum dots is
not known to such an accuracy and therefore a two-band
model is sufficient. Also the inhomogeneity of the strain field
in real structures can be used for detailed comparisons be-
tween experiment and theory only if the nanoscopic atomic
configuration of the QDs is known with a very high accu-
racy. Therefore, we investigate homogeneous strain models,
which have the additional benefit that they limit the number
of free parameters in our models. These assumptions are sup-
ported a posteriori by the fact that we are able to model our
experimental data very well.

Our objective here is to explore the validity of the two-
band model by a thorough comparison to our measurements
of the radiative decay rate and the emission spectrum, which
is carried out in Sec. V. Thorough explorations of simple QD
models are much needed since QD models, which are com-
plete and correct at the atomic scale, are outside reach both
due to the lack of experimental knowledge about exact
atomic composition and computational complexity.

Spontaneous emission occurs due to the interaction of the
exciton with a continuum of vacuum radiation modes. A rig-

orous description of spontaneous emission requires a fully
quantum description, where both the radiation field and the
exciton states in the QD are quantized. We employ here the
Wigner-Weisskopf model of spontaneous emission, which is
valid when the LDOS varies slowly with frequency over the
linewidth of the QD. This is an excellent approximation for
the dielectric structures investigated here but may break
down for QDs in photonic crystal leading to intricate non-
Markovian dynamics.37 The radiative coupling strength is
determined by the electron momentum matrix element and
depends furthermore sensitively on the overlap between the
electron and hole envelope wave functions that in turn gives
rise to the frequency dependence of the radiative decay rate.
We derive here this frequency dependence, which will be
compared in detail to the experimental data in Sec. V.

A. Wigner-Weisskopf theory of spontaneous emission
from quantum dots

According to effective-mass theory, the solution to the
Schrödinger equation for an electron in a solid is given by
�n�r�=Fn�r�un,0�r�, where Fn�r� is the envelope function,
un,0�r� is the Bloch function evaluated at the band edge q
=0, and n� �c ,v� denotes the conduction �c� or valence �v�
band. The envelope function is the solution to the effective-
mass Schrödinger-like equation governed by the
Hamiltonian38

H0�r� = Hkin,n + Vn�r� , �2�

where Hkin,n is the kinetic-energy operator, and Vn�r� is the
band confinement potential. Here we consider lens-shaped
QD geometries as shown in Fig. 8. For the conduction band,
the effective mass is isotropic, so that Hkin=− �2

2m0
� · 1

me�r��,
where m0 is the elementary electron mass and mn�r� is the
effective mass. For the valence band, the anisotropy of the
effective mass must be taken into account, which is dis-
cussed in Appendixes A and B.

For the valence band mv�0 and Vv�r��0, which leads to
negative eigenenergies. In the electron-hole representation,39

we define the hole in the valence band as a particle with
positive effective mass mh�r�=−mv�r� subject to a positive
confinement potential Vh�r�=−Vv�r� yielding positive
eigenenergies. Clearly, the envelope function remains the
same in the new representation, i.e., Fh�r�=Fv�r�. For III-V
semiconductors, the valence band is comprised of degenerate
bands with different effective masses. However, for QDs
strain lifts this degeneracy and we may consider the valence

FIG. 8. Schematic illustration of the QD geometry used to cal-
culate the envelope wave functions. We consider a lens-shaped QD
with lateral base diameter D and height h consisting of IncGa1−cAs
on a WL. The symmetry axis z is indicated along with the radial
directions x ,y.
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band as a single band �the heavy-hole band�. We discuss
details of the band structure in the presence of strain in Ap-
pendix A.

We describe the light-matter interaction by the Hamil-
tonian H��r , t�=− q

m0
p ·A�r , t�, where q is the elementary

charge, p is the momentum operator, and A�r , t� is the vector
potential of the quantized electromagnetic field. The latter is
given by40,41

A�r,t� = �
�

��

��

ê��A��r�a�e−i��t + A�
� �r�a�

† ei��t� . �3�

Here �= �k ,s� is the combined wave vector k and polariza-
tion index s� �1,2�, �� is the optical angular frequency,

��=����

2�0
is a normalization constant with �0 denoting the

vacuum permittivity, ê� is a unit vector in the direction of the
polarization s, A��r� is the spatial field distribution function,
and a� and a�

† are the field annihilation and creation opera-
tors, respectively. In a homogeneous medium, the field dis-
tribution functions are given by plane waves A��r�= eik·r

��rV
,

where �r=n2 is the static dielectric permittivity of the mate-
rial. We are working in the Coulomb gauge in which the
scalar potential of the electromagnetic field is zero and the
divergence of the vector potential vanishes.

We consider the initial state 	i
= 	c
 � 	0
 with 	c

=Fe�r�	uc,0
, corresponding to a QD with one electron pro-
moted to the conduction band and no photons in the radiation
field. The final state relevant for spontaneous emission is
	f�
= 	v
 � 	1�
 with 	v
=Fh�r�	uv,0
, where a photon is radi-
ated to the mode � while the excited electron has decayed to
the valence band. In a two-band model, the states 	c
 and 	v

form a complete set so that we can expand the interaction
Hamiltonian by insertion of complete sets to obtain an ex-
pression containing the raising and lowering operators of the
electronic system, which we define as �+= 	c
�v	 and �−
= 	v
�c	, respectively. It is convenient to change to the inter-
action picture, in which the time evolution of the raising and
lowering operators are given by �̃+�t�=�+ei�0t and �̃−�t�
=�−e−i�0t, where we have introduced the energy of the exci-
ton transition ��0. Furthermore, assuming that the spatial
distribution functions of the vector potential are slowly vary-
ing on the scale of the wave functions they can be evaluated
at the center position r0 of the QD, which is the dipole ap-
proximation. The interaction Hamiltonian in the interaction
picture now reads as

H��r0,t� = −
q

m0
�c	p	v
�+ · �

�

��

��

ê�A��r0�a�e−i��t

−
q

m0
�v	p	c
�− · �

�

��

��

ê�A�
� �r0�a�

† ei��t, �4�

where ��=��−�0 and we have omitted two terms propor-
tional to e�i��t since they are rapidly oscillating as a function
of time, which is the rotating wave approximation.

The general state vector of the system can be expanded as

	��t�
 = ce�t�	i
 + �
�

c��t�	f�
 , �5�

where ce�0�=1 and c��0�=0. By insertion into the
Schrödinger equation in the interaction picture, we obtain the
following equation of motion:40

d

dt
ce�t� = −

q2

2�m0
2�0

	�v	p	c
	2�
0

t

dt�ce�t���
−�

�

d�
��r0,�, êp�

�

�e−i��−�0��t−t��, �6�

where we have included an integration over a Dirac delta
function in frequency. ��r0 ,� , êp� is the projected LDOS de-
fined as

��r0,�, êp� = �
�

	êp · ê�	2	A��r0�	2��� − ��� , �7�

where êp is the unit vector specifying the direction of �v	p	c
.
This direction is determined by the Bloch matrix element as
discussed below. Since the term ��r0 ,� , êp� /� in Eq. �6�
varies on the scale of the emission energy �
1 eV�, it is
slowly varying on the scale of the homogeneous QD line-
width �
10 µeV�. Thus, ��r0 ,� , êp� /� can be evaluated at
the emission frequency �0 and taken outside the integral. In
this case, the QD population decays exponentially 	ce�t�	2
=e−�rad�r0,�0,êp�t with the radiative decay rate given by

�rad�r0,�0, êp� =
�q2

�m0
2�0

	�v	p	c
	2
��r0,�0, êp�

�0
. �8�

This is the Wigner-Weisskopf result for spontaneous emis-
sion from solid-state emitters. It states that the radiative de-
cay rate is proportional to the projected LDOS and the mo-
mentum matrix element. In the following subsection, we
discuss the evaluation of these two terms. In the experiment,
the number of photons emitted per time is measured, which
is given by

N�t� = ��rade
−��rad+�nrad�t, �9�

where additionally the rate for nonradiative recombination
has been added, and � is an overall scaling parameter deter-
mined by the detection efficiency and the total number of
photons recorded during the measurement period.

B. Evaluation of the projected LDOS
and the transition matrix element

The projected LDOS can be calculated using the Green’s
function technique. In terms of the Green’s tensor
G�r ,r� ,��, the projected LDOS is given by18,42

��r,�, êp� =
2�

�c0
2 �êp · Im�G�r,r,��� · êp� , �10�

where c0 is the speed of light in vacuum. The LDOS is a
classical electromagnetic quantity obtained by solving Max-
well’s equations. However, it enters the quantum-optical
theory of light-matter interaction, where it describes the local
density of vacuum modes that spontaneous emission can oc-
cur to. For the particular case of a semiconductor-air inter-
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face as considered here, the Green’s tensor is obtained by
solving the following closed expression:18,43

G�r,r,�� =
i

8�k2�
0

�

dk�

k�

kz
�M0 + Mr� , �11�

where

M0 = �2k2 − k�
2 0 0

0 2k2 − k�
2 0

0 0 2�k2 − kz
2�
� , �12�

and

Mr = ��k2rs − kzr
p� 0 0

0 �k2rs − kz
2rp� 0

0 0 �2k�
2rp�

�e2ikzz. �13�

Here k= 	k	, where k= �k� ,kz ,k�� is the k vector in cylindri-
cal coordinates, z is the distance from the QD to the inter-
face, and rs �rp� is the Fresnel reflection coefficient for
s-polarized �p-polarized� light.18 The result of the calculation
for a GaAs-air interface is shown in Fig. 1�c�.

We now consider the transition matrix element. Using the
fact that the momentum operator is a differential operator
�p=−i���, that the envelope functions are slowly varying on
the scale of a lattice parameter,29 and that the Bloch func-
tions uc/v,0�r� are orthogonal, which we will describe below,
we obtain

	�v	p	c
	2 
 	�Fh	Fe
	2	�uv,0	p	uc,0
	2 � 	�Fh	Fe
	2 �
m0Ep�c�

2
.

�14�

This important result states that the transition matrix element
is given by the product of the electron and hole wave-
function overlap and the squared Bloch matrix element
	�uv,0	p	uc,0
	2. The magnitude of the Bloch matrix element is
a material parameter that is expressed in terms of the Kane
energy Ep�c�.29 c is the indium mole fraction in the
IncGa1−cAs alloy.

In the Kane model,19,44 the valence-band Bloch functions
are written as linear combinations of the basis functions 	ux
,
	uy
, and 	uz
 that carry the symmetry properties of p orbitals.
The specific linear combination depends on the q vector of
the envelope function. QDs grown by the Stranski-Krastanov
technique are typically flat structures placed on top of a wet-
ting layer, and quantization along the growth direction �z� is
therefore dominating.45 As a consequence, we can set qx
=qy =0, which is exact in the limit of a quantum well, lead-
ing to q= 	q	êz. In this case, the heavy-hole Bloch functions
can be written as 	uv,0
= 	uhh
= 1

�2
�	ux
� i	uy
�. The

conduction-band Bloch functions have s symmetry, so the
Bloch functions for the valence and conduction bands are
orthogonal as was used above. Therefore, the matrix element
	�uv,0	p	uc,0
	2 is nonzero only for px and py from which we
conclude that the dipole axis of the QD for heavy-hole tran-
sitions is perpendicular to the growth direction in agreement
with our experiment.

C. Frequency dependence of the radiative
decay rate of quantum dots

We are now in a position to put together the results of the
previous sections and calculate the frequency dependence of
the spontaneous emission decay rates in a homogenous me-
dium. By insertion of Eq. �7� in Eq. �8� and using the plane-
wave expression for the field distribution functions, we
readily obtain

�rad
hom��� =

�q2

�m0
2�0

1

�rV
	�v	p	c
	2

1

�0
�
�

	êp · ê�	2��� − ��� .

�15�

The sum over all optical modes � can be converted to an
integration over all k vectors, where the dispersion relation
for a homogeneous medium ��=k�c0 /n is used. The sum
over polarizations yields a factor of 2. Using also Eq. �14�,
we obtain the important relation

�rad
hom��� =

nq2

6��m0c0
3�0

Ep�c��	�Fh���	Fe���
	2. �16�

Here we have indicated explicitly that the envelope wave
functions depend on the emission energy since varying the
QD size and, thereby, the emission energy, leads to modifi-
cations of the wave functions. This effect will be discussed in
detail in Sec. V. Equation �16� is the key result used to in-
terpret the experimental measurements of the radiative decay
rate presented in this paper. It furthermore allows extracting
an experimental value for the overlap between the electron
and hole wave functions.

V. COMPARISON BETWEEN EXPERIMENT
AND THEORY FOR THE ELECTRON-HOLE

WAVE-FUNCTION OVERLAP

In this section, we calculate the electron-hole wave-
function overlap and the QD emission spectrum and compare
to our experimental results. We investigate to what extent the
QD heights obtained from AFM measurements of uncapped
QDs �cf. Fig. 2� can be used as input to the models. Further-
more, we systematically test the model against experiment
by varying parameters such as the indium mole fraction, the
QD aspect ratio, the wetting-layer thickness, and the applied
strain model within physically realistic boundaries. The
model reproduces the decrease in the electron-hole wave-
function overlap with energy that we observed experimen-
tally. However, our investigations lead to the conclusion that
further knowledge of QD composition and more involved
QD models would be required in order to reach full quanti-
tative agreement between experiment and theory.

We describe the QD in the �� ,z� plane as one quarter of
an ellipse with a fixed aspect ratio. Here � denotes the radial
direction in cylindrical coordinates. The QD geometry is
solved numerically in a large simulation area, which spans
160 nm in the � direction and 80 nm in the z direction,
ensuring that the proximity of the boundaries has no effect
on the results. Further details on the numerical procedure are
provided in Appendix B. We use the commercial finite ele-
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ment software package COMSOL with an adaptive mesh to
solve the effective-mass equation �Eq. �B3��. For each QD
height, we obtain the transition energy and given the height
distribution function measured by AFM �cf. Fig. 2�, we cal-
culate the emission spectrum.

The fact that we only observe transitions involving heavy
holes motivates a further investigation of the analogy be-
tween QDs and quantum wells. In particular, the effect of
strain on the electronic level structure is well understood for
quantum wells.19 Strain has a significant effect on the level
structure also for QDs but is often discussed in qualitative
terms only due to the mathematical complexity and lack of
experimental input on the exact QD geometry and composi-
tion. In the following, we model the QD strain similar to the
case of a quantum well and compare the results to experi-
ment. In a quantum well of InGaAs in GaAs, the compres-
sive strain in the plane of the quantum well leads to an ex-
pansion in the direction perpendicular to the plane. This
biaxial strain can be decomposed into a hydrostatic and a
shear component. However, as opposed to the case of a
quantum well, a QD cannot expand freely in the growth di-
rection, which suggests that the hydrostatic component may
dominate. Therefore, we compare three different strain mod-
els including: �1� hydrostatic and shear strain, �2� only hy-
drostatic strain, and �3� no strain. Strain modifies the band
offsets and the valence-band effective masses, which is dis-
cussed in further detail in Appendix A.

Using the experimental data on both the QD height distri-
bution function, the emission spectrum, and the frequency
dependence of the wave-function overlap, we explore experi-
mentally realistic parameters in order to match our experi-
mental data. The first approach is to use the measured QD
height distribution of Fig. 2 and include both shear and hy-
drostatic strain. Using optimized parameters corresponding
to an aspect ratio of 1/6 and an indium mole fraction of 39%,
we find a very good agreement with the emission spectrum,
as shown in Fig. 9�a�. This aspect ratio is surprisingly small
and the electron-hole wave-function overlap extracted from
the radiative decay rate offers a needed additional test of this
parameter set. In Fig. 9�b�, the experimentally determined
wave-function overlap is plotted along with the resulting
theory.46 The theory predicts correctly that the wave-function
overlap decreases �increases� with emission energy �QD
size�, and the mechanism behind this effect is discussed in
detail below. However, a systematic deviation between
theory and experiment is observed, which turns out to be the
case for all three strain models provided that the model pa-
rameters are constrained to optimally reproduce the mea-
sured spectrum. As we will discuss below, this deviation can-
not be attributed to deficiencies in the theoretical model. We
conclude from this result that the measured height distribu-
tion of uncapped QDs does not directly determine the actual
confinement volume of the overgrown QDs that the experi-
ments are performed on. This is because of complex redis-
tribution and intermixing processes of indium and gallium,
which will occur during growth and subsequent regrowth47,48

and these are likely to modify the QD confinement potential
and strain significantly. Also, by comparing AFM measure-
ments on uncapped QDs with transmission electron micro-
graphs of capped QDs, it has been shown that QDs shrink by

overgrowth.49 Our results support the picture that gallium
diffuses into the QDs during formation of QDs and partly
diffuses out during the capping.

We have also investigated the impact of the lateral QD
extension on the calculated spectrum and wave-function
overlap within our model. It turns out that the lateral exten-
sion in has only quite small effects on the results. Changing
the aspect ratio changes the quantum dot height axis relative
to the emission energy axis �cf. Fig. 9� and hence the calcu-
lated spectrum but yields only very small changes in the
frequency dependence of the wave-function overlap.

Thus, abandoning at this point the interpretation of the
measured height distribution and its relation to the emission
spectrum, we focus on the electron-hole wave-function over-
lap. Keeping the aspect ratio fixed at a realistic value of 1/2
and excluding for the moment the wetting layer, we obtain
the overlap shown in Fig. 10. Here the only free parameter is
the mole fraction of indium c in the QD and the different
strain models are compared. Note that the experimentally
determined wave-function overlap depends on c since it en-
ters through the Kane energy �cf. Eq. �16��. We find that
including both shear and hydrostatic strain leads to a dis-
agreement between experiment and theory. This demon-
strates that the strain model developed for quantum wells
fails in the case of QDs, as opposed to what is sometimes
assumed in the literature.38 Good agreement between experi-
ment and theory can be obtained when including only hydro-
static strain or no strain at all for c=0.95 and c=0.46, respec-
tively. Judging from experiments available in the
literature,47,48 both these values of c are reasonable for over-
grown QDs, so there is no support for favoring one of the
two surviving strain models. We are led to the conclusion
that, in particular, shear strain is less significant for QDs
compared to quantum wells, although further nanoscopic de-

FIG. 9. �Color online� �a� Measured spontaneous emission spec-
trum �black curve, normalized� and calculated spectrum �dashed red
curve� using the height distribution of the QDs from Fig. 2�b� and
implementing strain model 1. The resulting parameters have been
optimized to fit the spectrum, and we find an aspect ratio of 1/6 and
an indium mole fraction in the QD of 39%. �b� Measured electron-
hole wave-function overlap �black squares� and the theoretical cal-
culation �solid red line� using the same parameters as in �a�.
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tails of QD composition and geometry would be required for
a further investigation of these issues.

Figure 11 investigates the effect of the wetting-layer
thickness on the wave-function overlap. In this case strain is
omitted, the aspect ratio is 1/2, and the indium mole fraction
is 0.46. We find that for wetting-layer thicknesses below 4
ML, the wave-function overlap is only slightly modified in
the emission energy range of interest to the experiment. For
a very thick wetting layer �6 ML�, the QD wave function is
modified such that the monotonic decrease in the wave-
function overlap with energy observed for all other thick-
nesses does not apply. This behavior can be understood as
follows: for very thick wetting layers and small QDs a sig-
nificant part of both the electron and hole wave functions are

expelled from the QD giving rise to quantum well-like
wetting-layer states that can have an increased mutual over-
lap. For the QD sample of the experiment, the wetting layer
was on the order of 2 ML.

The above discussions point to a number of subtleties
associated with a quantitative comparison between experi-
ment and theory. These are mainly related to lack of knowl-
edge about intrinsic properties of the QDs. Notably, the
monotonic decrease in the electron-hole wave-function over-
lap with emission energy is found to be a very general and
robust result for a large range of different parameters. The
generality of this result can be understood in a simple physi-
cal picture and is related to the differences in the electron
and heavy-hole effective masses. Thus, for any indium mole
fraction, we have from Eqs. �A10�–�A12� that mhh,b
me,b
and mhh,x ,mhh,z
me. Increasing the emission energy corre-
sponds to decreasing the QD size. The large QDs emitting at
small energies have a relatively large electron-hole wave-
function overlap. Decreasing the QD size �i.e., increasing the
emission energy� compresses both electron and hole wave
functions, but eventually the electron wave functions is par-
tially expelled from the QD so that the wave-function over-
lap is decreased. This effect is illustrated in Fig. 12, where
the calculated electron and hole wave functions for two dif-
ferent QD sizes are plotted. It is clearly observed that a re-
duction in the QD height leads to a compression of the hole
envelope wave function, while the electron wave function
extends further into the surrounding GaAs barrier.

Finally, we want to stress a subtlety in the interpretation
of the overlap integral. Contrary to what the name could
suggest, the overlap integral is not equal to the probability of
measuring the electron and hole at the same point in space.
In our model, that probability shows in fact the opposite

FIG. 10. �Color online� Calculated energy dependence of the
squared electron and hole wave-function overlap using the three
different strain models discussed in the text. The QD aspect ratio is
1/2 and no wetting layer was included. The curves are calculated for
strain model 1 with c=0.51 �dash-dotted blue line�, strain model 2
with c=0.95 �solid red line�, and strain model 3 with c=0.46
�dashed black line�. The data points show the experimentally deter-
mined wave-function overlap for these three indium mole fractions
using the same color coding. Clearly, strain model 1 does not de-
scribe the experimental data well, while both models 2 and 3 lead to
very good agreement. The inset shows the dependence of the QD
emission energy on height for the three different models using the
same color coding as in the main figure.

FIG. 11. �Color online� The effect of the thickness of the wetting
layer on the calculated electron-hole wave-function overlap when
varying between 0 and 6 ML in steps of 1 ML. Here we have
omitted strain and otherwise used the same parameters as in Fig. 10.
The experimental data for c=0.46 are shown as black squares.

FIG. 12. �Color online� Contour plots in the radial plane of the
amplitude of the wave function for electrons and holes. The param-
eters corresponding to the calculation for strain model 2 in Fig. 10
were used. �a� Electron wave function for a QD height of 4 nm. �b�
Hole wave function for a QD height of 4 nm. �c� Electron wave
function for a QD height of 8 nm. �d� Hole wave function for a QD
height of 8 nm.
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frequency dependence compared to the overlap integral. This
agrees with theoretical results in the weak confinement
regime.50 For very large QDs, the difference in effective
masses has a negligible effect on the wave functions and the
overlap integral is unity. When decreasing the QD size, the
effective-mass difference becomes significant, thus, reducing
the overlap integral and this determines the frequency depen-
dence of the radiative decay rate of QDs in a homogeneous
medium.

VI. CONCLUSION

We have presented time-resolved measurements of spon-
taneous emission from self-assembled QDs near a
semiconductor-air interface. The interface leads to a modifi-
cation of the LDOS, which can be calculated in an exact
model. The excellent agreement between theory and experi-
ment enables a separation of the radiative and nonradiative
decay rates, whereby they can be determined without any
adjustable parameters and with unprecedented accuracy. We
derived the theory behind the experiment by calculating the
spontaneous emission radiative decay rate in a full quantum
model in which spontaneous emission is described by
Wigner-Weisskopf theory. The radiative decay rate is propor-
tional to the projected LDOS, which was calculated using the
Green’s function formalism.

From our measurements of the radiative decay rate at dif-
ferent emission energies, we extracted the frequency depen-
dence of the overlap of the electron and hole envelope wave
functions. The experimental data were compared to theory
by solving the effective-mass equation numerically for a QD
potential, including the effects of shear and hydrostatic
strain. From this model, the spontaneous emission spectrum,
which is inhomogeneously broadened due to the different
sizes of QDs making up the ensemble, and the electron-hole
wave-function overlap were calculated. An attempt to model
the emission spectrum using the QD height distribution ob-
tained by AFM on uncapped QDs was unsuccessful leading
to the conclusion that this height distribution does not prop-
erly reflect the nanoscopic confinement potential of over-
grown QDs. Regarding the frequency dependence of the
electron-hole wave-function overlap, we found good agree-
ment between experiment and theory with reasonable as-
sumptions about QD size, geometry, strain, and wetting-layer
thickness assuming purely hydrostatic strain or no strain at
all. In contrast, systematic deviations were found when in-
cluding both shear and hydrostatic strain.

The frequency dependence of the wave-function overlap
can be understood in terms of a simple physical picture. The
larger hole mass leads to a larger compressibility of the hole
wave function as compared to the electron so for smaller
quantum dots �higher emission frequencies�, the hole can be
further compressed while the electron is partly expelled from
the QD, thus, reducing the overlap. Although the numerical
model employed here is too simple to reflect the nanoscopic
details of the QD geometry such as, e.g., indium-gallium
intermixing, it reflects this simple physical picture very well.
A more detailed comparison between experiment and theory
is limited by the lack of experimental input on the QD struc-

ture at the atomic scale, which would be required to verify
more sophisticated QD models. Also, we have shown by a
simple scaling analysis that the nonradiative decay is likely
due to nonradiative recombination at lattice defects near the
QD-GaAs interface.

Combining the detailed optical experiments presented
here with techniques to extract local material properties of
QDs, e.g., by high-resolution transmission electron micros-
copy, will be a very exciting future research direction that
also will pinpoint the need for more involved theoretical
models of the QDs. We believe that the technique presented
here to directly access the light-matter coupling strength will
have important applications regarding proper design and
characterization of solid-state quantum photonic devices.
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APPENDIX A: INFLUENCE OF STRAIN ON EXCITONS
CONFINED IN QUANTUM DOTS

Strain due to the lattice-constant mismatch between InAs
and GaAs is responsible for the formation of QDs during
MBE growth in the Stranski-Krastranov growth mode. This
means that the QDs are highly strained and this has signifi-
cant impact on the electronic band structure. The interplay
between geometry, chemical composition, and strain is com-
plicated for QDs. During the growth, diffusion of In and Ga
takes place, so that the resulting QD will consist of a signifi-
cant fraction of Ga even if it is grown by pure InAs.47 Fur-
thermore, it has been reported that In is mainly concentrated
in an inverted cone inside the QD giving rise to a complex
strain profile.48 Complete knowledge about such complex de-
tails is still lacking, and the purpose here is to introduce
simple strain models and judge their validity by comparing
to experimental data. We consider a lens-shaped QD with a
lateral extension, which is larger than the extension in the
growth direction. For this reason, we approximate the strain
of a QD by the model used in the case of a quantum well.
This is further motivated by the fact that the QD is placed on
top of a wetting layer �cf. Fig. 8�. The strain modifies the
band offsets and energy gap of the QD, and the valence-band
degeneracy is lifted so that the transition with the lowest
energy involves only heavy holes. This is illustrated in Fig.
13. We will assume that the bulk GaAs surrounding the QD
is unstrained, however, only heavy-hole bands are included
here as well since the influence of band mixing is minor in
the barrier where the electron and hole wave functions are
strongly damped.

One effect of strain is to shift the conduction and valence
bands in energy. The strain describes the compression or ex-
pansion of the crystal lattice, which in general is described
by a tensor �nm. For biaxial strain, which describes the strain
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at planar heterojunctions, only the diagonal elements are rel-
evant. We consider a thin layer of IncGa1−cAs with lattice
constant aQD embedded in a GaAs barrier with lattice con-
stant ab. We assume that all strain is incorporated in the
IncGa1−cAs layer and since aQD
ab the strain will be com-
pressive. We have19

�xx = �yy =
ab − aQD

aQD
�zz = −

2C12

C11
�xx, �A1�

where C11 and C12 are the elastic stiffness constants �matrix
elements of the stiffness tensor�. These strain components
lead to a change in band structure and thus a modification of
band energies and effective masses, as described by the
Pikus-Bir strain model.19 Biaxial strain can be decomposed
into components of hydrostatic and shear strain. The hydro-
static compressive strain of the QD leads to a decrease in the
band offsets exactly as for any hydrostatic compressive strain
resulting from, e.g., a decrease in the temperature. For a
thin-strained epitaxial layer, the energy can be lowered by

compensating the in-plane compressive strain by an expan-
sion in the z direction �shear strain�. We obtain the following
heavy-hole valence-/conduction-band offsets:19

�Ehh = �Ev� − P� − Q�, �A2�

�Ec = �Ec� − R�, �A3�

where

P� = av��xx + �yy + �zz� , �A4�

Q� = −
bv

2
��xx + �yy − 2�zz� , �A5�

R� = ac��xx + �yy + �zz� , �A6�

and we have introduced a number of quantities defined in
Table I. �Ec���Ev�� is the unstrained conduction�valence�-
band offset, which constitute 60% �40%� of the band-gap
difference between bulk and QD, so that, e.g., �Ec�
=0.6�Eg��0�−Eg��c��. The band gap of the strained QD is
given by

Eg�c� = Eg��c� + P� + Q� + R�, �A7�

where Eg��c� is the unstrained band gap of the material. These
effects on the band structure are illustrated in Fig. 13.

Another important consequence of strain is that the effec-
tive heavy-hole mass becomes highly anisotropic. In con-
trast, the effective electron mass is not modified considerably
since the conduction band is much more energetically iso-
lated than the valence bands.19,52 In our experiments, the
growth direction �z� is parallel to the �001� crystal axis,
which is perpendicular to the wetting-layer plane �x ,y� ori-

ented along �110� and �11̄0� directions. We will use mz
=m�=m�001� and mx=m� =m�110�. Furthermore, since the

crystal structure along the �110� and �11̄0� axes is identical
apart from a series of rotations, we have that mx=my.

FIG. 13. Schematic illustration of the effect of strain on the band
energies at q=0. �a� No strain and �b� biaxial strain. Biaxial strain
shifts both the conduction band and the heavy-hole valence band
closer to the continuum. The net effect is an increase in the band
gap and therefore in the transition energy. Importantly, the degen-
eracy of the light and heavy-hole states is lifted and the lowest-
energy transition involves heavy holes only.

TABLE I. Material parameters for IncGa1−cAs at cryogenic temperatures used in this work. CB and VB
indicate conduction- and valence-band parameters, respectively.

Quantity Value for IncGa1−cAs Unit Reference�s�

Lattice constant a 5.6503+0.4050c Å 51

Band gap Eg 1.515−1.580c+0.475c2 eV 51

CB effective mass me 0.0667−0.0419c−0.00254c2 m0 51

Luttinger parameter �1 1 / ��1−c� /6.98+c /20.0� 51 and 52

Luttinger parameter �2 1 / ��1−c� /2.06+c /8.5� 51 and 52

Luttinger parameter �3 1 / ��1−c� /2.93+c /9.2� 51 and 52

CB hydrostatic def. pot. ac −8.013+2.933c eV 51

VB hydrostatic def. pot. av −1.824+0.024c eV 51

VB shear def. pot. bv −2.0+0.2c eV 52

Elastic stiffness constant C11 1221−388.1c GPa 52

Elastic stiffness constant C12 566−113.4c GPa 52

Static dielectric constant �r 13.18+1.42c 51

Kane energy Ep�c� 28.8−7.3c eV 29 and 52
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The heavy-hole masses for unstrained bulk IncGa1−cAs
are given by

mhh,�,b� =
2

2�1 − �2 − 3�3
, �A8�

mhh,�,b� =
1

�1 − 2�2
, �A9�

where �1, �2, and �3 are Luttinger parameters.52 These are
listed along with all other relevant QD material parameters
for this work in Table I. For IncGa1−cAs, we have �2
�3
allowing for the axial approximation. Here �2 and �3 are
replaced by their average value �̄= ��2+�3� /2, leading to an
isotropic heavy-hole mass valid for unstrained bulk
semiconductors53

mhh,�,b� = mhh,�,b =
1

�1 − 2�̄
. �A10�

These bulk effective masses are used to describe the GaAs
barrier material surrounding the QDs. The strained heavy-
hole effective masses in the directions parallel with and per-
pendicular to the wetting-layer plane are given by19,29,53

mhh,�,QD =
1

�1 + �̄
, �A11�

mhh,�,QD =
1

�1 − 2�̄
, �A12�

showing that the parallel component is strongly modified by
strain.

APPENDIX B: NUMERICAL MODELING
OF ENVELOPE WAVE FUNCTIONS

We solve the effective-mass equation for electrons in the
conduction band and holes in the valence band in order to
calculate the overlap of the envelope wave functions. The
effective-mass equations describing the electron and the hole
have the same form, but the effective hole mass anisotropy
must be taken into account. We therefore consider the aniso-
tropic valence-band problem, which has the isotropic
conduction-band problem as a special case. For both elec-
trons and holes, the effective mass depends on position due
to the different effective masses in the QD and in the sur-
rounding crystal matrix.

Using cylindrical coordinates �� ,� ,z� and the axial ap-
proximation, the kinetic term in Eq. �2� reads as

Hkin = −
�2

2m0
�1

�

�

��
� �

mn���,z�
�

��
� +

1

mn���,z��2

�2

��2

+
�

�z
� 1

mn���,z�
�

�z
�� . �B1�

Using separation of variables F�r�=R�� ,z�����, the
effective-mass Schrödinger equation can be written as

− 1

����
�2

��2���� =
�

R��,z�
�

��
R��,z�

+
mn���,z��2

R��,z�
�

��
� 1

mn���,z�
�

��
R��,z��

+
mn���,z��2

R��,z�
�

�z
� 1

mn���,z�
�

�z
R��,z��

+
2m0mn���,z��2

�2 �V��,z� − E� . �B2�

The left- and right-hand sides of this equation are indepen-
dent and they must therefore equal a constant, i.e.,

1
����

�2

��2 ����=−l2. The solution of this equation is ����
=c1 cos�l��+c2 sin�l��, which by the boundary condition
��0�=��2�� implies that l must be an integer. We are con-
sidering the ground-state transition and therefore take l=0.
This leaves an equation describing the electronic motion in
the �� ,z� plane.

Equation �B2� is solved numerically after being reduced
to a dimensionless form in order to avoid numerical issues
related to the very small factors ���2� appearing in this equa-
tion. We define the new dimensionless quantities through �

=k��̃, z=kzz̃, R�� ,z�=kRR̃��̃ , z̃�, V�� ,z�=V0Ṽ��̃ , z̃�, E=V0Ẽ,
and V0=�2 / �2m0k�

2�, and furthermore take k�=kz=1 nm so
that all spatial dimensions are measured in units of nano-
meter. By this transformation, we obtain

1

m���̃, z̃��̃
�

� �̃
R̃��̃, z̃� +

�

� �̃
� 1

m���̃, z̃�
�

� �̃
R̃��̃, z̃��

+
�

� z̃
� 1

m���̃, z̃�
�

� z̃
R̃��̃, z̃�� + �Ṽ��̃, z̃�

−
l2

m���̃, z̃��̃2�R̃��̃, z̃� = ẼR̃��̃, z̃� , �B3�

which is solved numerically using a finite element method.
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