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Pattern formation in singly resonant second-harmonic generation
with competing parametric oscillation
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We theoretically investigate the generation of spatial patterns in intracavity second-harmonic generation. We
consider a cavity with planar mirrors that is resonant at the fundamental frequency, but not at the second-
harmonic frequency. A mean-field model is derived that describes the resonant fundamental field, and its
coupling to a pair of nondegenerate parametric fields. The parametric fields are driven by the nonresonant
second-harmonic field. Analysis indicates the existence of transverse instability of the pump field alone, as well
as the possibility of simultaneous instability of the pump and the parametric fields. A range of spatial structures
including periodic planforms as well as spatially localized states are found numerically. The simplicity of the
singly resonant cavity makes it well suited for experimental studies. Estimates of experimental parameters
necessary for observation of spatial structures are gi\&t050-2947©9)02810-3

PACS numbes): 42.65.5f, 42.65.Ky, 42.65.Tg

[. INTRODUCTION quently, traveling waves are always stable with respect to
. . L . . standing waves as demonstrated by Longhi on the basis of a
Optical pattern formation has b(_een studied lr}tenswe_ly "honlinear analysif6]. Furthermore, a square pattern can also

the_ last f(_ay\_/ yegr@l]. Although_the field s_tarted with studies o staple near threshold@]. When the cavity detuning is
of instabilities in cubicly nonlinear media, much recent at-pegative there is no lowering of the threshold for parametric
tention has been directed at interactions governed by a qu@eneration. Nonetheless, spatial structures can be generated,
dratic, x® nonlinearity. Spatial patterns are generated undepng for negative detuning spatially localized states are ge-
the combined action of diffraction and nonlinearity in the neric [11,12.
presence of spatial feedback. One way of introducing feed- The formation of spatial structures in doubly resonant in-
back is to allow two interacting beams to counterpropagatetracavity second-harmonic generati®HG) was studied in
Although backwards parametric interactions in quadratically{8,13]. Linear stability analysis reveals the presence of four
nonlinear media were proposed in the 196Bkthere is not  different types of instabilities leading to bistability and self-
sufficient birefringence in available materials to phase matclpulsing of the homogeneous solutidrisgt], and to both sta-
a fundamental wave at frequenay to a counterpropagating tionary and oscillating transverse instabilities. SHG is quali-
second harmonic at frequeney,=2w,. Studies of pattern tatively different from the OPO since there is no threshold
formation in quadratic media have, therefore, concentrateéPr frequency conversion, and some amount of both frequen-
on intracavity geometries, where feedback is provided by théies are always present, irrespective of pump power and
cavity mirrors [3—8]. An exception is the possibility of Strength of the nonlinearity. Numerical investigations of
quasi-phase-matching counterpropagating beams using a p@c_)ubly-r(_esonant SHG have demonstrat'ed thg appearance of
riodically poled crystal, for which the corresponding trans. Poth oscillatory a}nd stationary patterns, |nclud|r)g roIIs',. hexa-
verse instabilities were studied recenf). gons[ 8], and solitary st_ructure[is]. Transverse instabilities
The existence of spatial patterns iry&) mediated inter- have also been studied for type-ll phase-maiched SHG

action was predicted first for the degenerate doubly resonarg%S’lq'

. . ) One motivation for studying spatial instabilities jf?)
optical parametric oscillatfOPQ by Oppoet al. [3]. One . media is that they are well suited for producing nonclassical

mephgmsm for pattern format_|0n was _found to be O_ff'ax'sstates of light. Strong nonclassical temporal correlations
emission of down-converted light leading to a lowering of have been generated using both the G®P7 and SHG18].

the threshold for parametric generation when the cavity iSsjnce these devices can also be used for creating spatial
tuned away from resonance. This mechanism comes intgyctures there is a clear prospect of obtaining patterns with
play when the cavity length is slightly longer than that for nonclassical spatial correlations, as has been emphasized by
which the signal field is resonant. We will refer to this as Lugiato and co-worker§19].

positive detuning of the cavity. Stationary roll solutions are  From an experimental point of view it is important to look
preferred in favor of phase-traveling waves due to interferfor simple configurations, and this makes singly resonant
ence between the degenerate pairs. Numerical simulations §HG interesting. In this configuration the fundamental field
the degenerate OPO have also revealed hexagonal pattelissresonated in a cavity, while the second harmonic escapes
[3,10]. In addition, a singly resonant degenerate OPO wheréreely. Both bistability[20], as well as nonclassical light
only the signal field is resonated has been investigfséd [21,27, have already been demonstrated experimentally. In
and the relevance of the phase mismatch as a tuning paranhe present paper we study transverse instabilities and pattern
eter was identified. In the triply resonant nondegenerate OP@rmation in the singly resonant configuration.

the degeneracy of the parametric pairs is broken and, conse- A problem with the standard description of the OPO is
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that a model with only one pair of down-converted frequen- Input coupler L
cies may not be sufficiently general. Above oscillation o
threshold several down-converted pairs may experience gair \
and the mutual competition between different longitudinal ®; >
modes complicates the dynamical evoluti@8]. Use ofa @, , =
single-mode pump field in SHG can be used to ensure single
mode behavior of the cavity. However, another complication @2
may arise since the generated second harmonic field can a /
R, =0
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YvYyy

A
Y
~
I

as a source for a nondegenerate competing parametric pre

cess. This process is important since it can suppress dynamni-

ics that would otherwise be observed. For example, the self- F|G. 1. The singly resonant SHG configuration in a monolithic

pulsing instability found in doubly resonant SHG in the cavity. The fundamental field; is resonated while the second

absence of cavity detuning has been shown to be suppressggtmonicw, escapes after one round-trip in the cavity. Also shown

by competing parametric down conversif@4]. By intro-  are the nondegenerate resonant parametric pairs

ducing cavity detuning the situation becomes more compli-

cated and the importance of the competing process depends 9, s

on the detailed values of the relevant parameit2&s. ﬁ—'a+Vf5+=iK+e"AkZ€'ﬁ€2, (10
Even in singly resonant SHG the competing parametric

process can be above threshold and cannot, in general, be

ignored. Generation of competing parametric pairs has been E—ia V2E =ik e—iATQE*E (1d)

observed experimentally in a monolithic cavity by Schiller Jz B B e

and co-workers both for doubly resond6] and singly

resonant27] SHG. Furthermore, the process has been dewhere&,, &, and€.. denote the complex amplitudes of the

scribed theoretically for the prospect of generating nonclasfundamental, second harmonic, and down-converted fields,

sical light, also both in the doubly resondi8] and the respectively. The real physical fields propagating alongzthe

singly resonanf29] cases. In this paper we demonstrate thatcoordinate with wave numbdg and frequency; are given

the parametric process can also influence significantly théy E,-(r,z)=%Ej(r)e'(kizf‘”i‘)Jrc.c., wherer =(x,y) denotes

pattern formation dynamics. the transverse coordinates, afne1,2,+,—. The phase-
The paper is structured as follows. Mean-field equationgnismatch parameters for the SHG and the parametric process

describing the interaction of the pump at the fundamentabre Ak= 2k, —k, and Ak=k, +k_—k,, respectively. Dif-
frequency, and the down-converted parametric beams are dgaction is accounted for by the terms containing the trans-
rived in Sec. Il A. In Sec. IIB we calculate thresholds for yerse LaplacianV? = g%/ dx?+ %/ dy? with coefficients a
transverse instabilities assuming the parametric beams are1/(2k;). In the configuration described below the paramet-
below threshold, and do not participate in the dynamics. Thgic fields €. are nearly degenerate with the fundamental fre-
threshold for excitation of the parametric process is found i uency |w;— w.|<w,. Phase-matching requirements for

Sec. IIC. Parameter regions are identified where either thg,e second-harmonic and parametric processes lead to the
transverse instability or the parametric process have the '0"‘5pproximationnznlznzzm _ Under these conditions we
est threshold. The above-threshold nonlinear behavior iﬁavea1:2a2:a+ and can thus write Eqél) with a single
studied numerically in Sec. Ill. In Sec. Ill A we concentrate nonlinearity parzfmeteklezxzz o .

on parameters for which the parametric process is not ex- g fyndamental field is resonated in the cavity while the
cited, yet transverse instabilities exist. The numerics reveal @,cond harmonic is coupled out after one round-trip, as
rich vane'ty of spatial structures including 'perlodlc patternsghown in Fig. 1. In the following a standing-wave monolithic
and localized states. The nonlinear behavior when the pargq ity is considered, but the description can be extended eas-
metric bgams are also present is studied numerically in Segy, o other configurations. The phase shift between the fun-
Il B. Estimates of the experimental parameters necessary ffamental and the second harmonic at the reflecting mirror is
observation of spatial structures given presently available,ggmed to be zero so that the cavity effectively works as a
nonlinear materials are made in Sec. IV. We conclude in Se‘h’ng resonator of length [2, whereL is the crystal length.

V. Furthermore, a cavity with plane mirrors is considered; con-
sequently, the homogeneous ground-state solutions are plane
Il. STABILITY ANALYSIS waves. The parametric photons will be resonant in the cavity
A. Mean-field model if they are emitted at frequencies. = w,£marc/(nL) cor-

. . . responding to a multiple of the cavity free-spectral range,
The propagation equations describing the secondgherem is an integer and is the speed of light in vacuum.
harmonic generation and the competing parametric procesghe threshold for the generation of the parametric pairs will

can in the paraxial limit be written in the form be minimized when they are emitted at frequencies close to
JE that of the fundamental due to phase matching restrictions.
R ia,V2& =ike 2kt g, (1a  Therefore, a reasonable assumption will be equal intracavity
Iz losses for the fundamental and parametric fields.

Scaled equations for the four amplitudes can be derived
iteratively. Propagating the fundamental field in Etja a
length A in the crystal gives

€ . e
&—22 —ia,V2 &, =i kpe MK 24 2k 68K £ (1b)



PRA 60 PATTERN FORMATION IN SINGLY RESONAN' . .. 3253

AERP=E (z=2L)—&,(2=0) A , -
PP=E 1 &—tl:(—1+|A1)A1+f(g)|Al|2Al+2h(§,g)A+,o_,aglk

2L
_ . 2 : —iAkz
. (ia V& +ine 2 E &;)dz +iViA+E, 63

2L
~ i 2 ; —iAkz dA . ~ ~
—ZIalLVlé‘ﬁlKé’ffo e M (2)dz. (2) (9;’=(—1+|A+)A++h(§,§)A§A’L+2f(§)|A_|2A+

w2
The final equality assumes a mean-field description wherein VAL, (6b)
the fundamental field; is independent of the longitudinal JA
coordinatez. It follows from this assumption that the non- "= _(_11jA )A_+h(Z &)A2A% +2 f(F)|A,|2A_
linear and diffraction terms are only included to lowest order ~ dt
in a perturbative solution. The validity of this approximation
is borne out both by comparison with a numerical integration
of Egs. (1) with cavity boundary conditiongsee Sec. Il A
below) as well as consideration of physically relevant param-
eters. As is shown in Sec. IV the cavity field experiences
small diffraction and nonlinear conversion in a single round

B e o e fe,usin [ PEAMCIErs have  been rescaled ast—t,
£(0)=0 and Ft)he mean-field a imati a4 N al) =, E=(gel ())& Ai=(xL/
,(0)= pproximation fd&; and

£..£_ . is given by nnér, Ap=[xLl(7110]1E, Ac=(kLINynEs, &
=AkL, andé=AKkL. The cavity loss rate of the fundamen-

tal and the parametric pairs is defined as=(T+T,)/27,

whereT, accounts for any additional linear cavity loss&s.

is the amplitude of the pump field external to the cavity at

the fundamental frequency and can be taken to be real due to

a free choice of the overall phase. The detunidgs-(o;

For the moment the diffraction term in E(Lb) that acts on —wj o)y, j=1,+,—, are defined as the difference be-

the nonresonant second-harmonic field has been neglectegveen the frequencies of the fundamental and parametric

The consistency of this approximation is discussed belowields, and their nearest cavity resonance frequencies normal-

[see Eq(19)]. ized to the loss rate of the fundamental. Finally, the complex

The round-trip time for propagation through the cavity is functions f(&,), g(&,), and h(¢;,&,) contain the depen-
given by 7=2Ln/c. The change in the intracavity field due dence on the phase mismatches
to linear losses and phase shifts, as well as the externally

+iV2A_. (60)
The second-harmonic field at the cavity output is given by

Ax(2L)=g(&)AZ+2g(E)ALA_. @)

eiAkZ_ 1 ) eiAkZ_ 1

EXZ)=k .5 . 3)

Ak

supplied pump, during one cavity round-trip time is 2i e da-1
f =—+ —>" 8
(&1) £ & (8a)
AET=1(=y1+16) &+ néin, 4 e, q
et~

, _ 9(&1)= g (8b)
where y; and §;=w;— ;. (w1 is the cavity resonance 1
frequency closest t@;) are the cavity loss rate and detuning 2i(6y— ) ig,
specified below andy= /T determines the input coupling of h(&,, &)= e -1 n e -1 (80)
the pump field to the cavity, witil the intensity transmis- ’ &2(82—&1) §162

sion coefficient of the input coupler. . _ o _ _
A mean-field equation is then obtained by combining the Edquations(6) were first given in31] in a modal approxi-

changes to the fundamental field from propagation and cavation, without the transverse Laplacians, while a mean-
ity effects[30] field equation for the OPO with a phase-mismatch-dependent

nonlinear term was given ifb]. The validity of Eqs.(6) is
ensured by the conditiong; 7<1, A;y,;7<1,j=1,+,—, in

9&, - AERPHAETY addition to the already mentioned assumption that diffraction

=(—y1tio)&

at T and nonlinear conversion have only a small effect in a single
) ] cavity round trip.
N i k&L fZLe‘iAkZE (2)dz+ 2ia L v2e+ Te The appearance of the cubic nonlinearity in Egg) for
7 Jo 2 LELT i the fundamental and the ensuing intensity-dependent phase

shift originating from the imaginary part ¢{ &) is known as
) cascading of the fundamental fie[d4,20,32,3% The in-
duced phase shift occurs at nonzero values of the phase mis-
Substituting Eq.(3) into Eq. (5) as well as the analogous match parametef and leads to a Kerr-type nonlinearity that
equations for the parametric fields, and introducing approprigives rise to bistability as discussed and observd@h By
ate scalings leads to the dimensionless mean-field equatiorisyestigating the sign of the imaginary part f{f¢) the non-
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2 ' ] ba(k?) =k —2[A;+2 £ AQ?IK +(1+A%)
1+ R +A(Af—f)|AY2+3|f|JA%%  (12b
0— Here subscripts andi denote real and imaginary parts, re-
R | spectively. The homogeneous solution destabilizes when the
] real part of the largest eigenvalug exceeds zero. Since
2L 3 b,>0 the largest eigenvalue is given by
-6

6 b 4b
by [ ab,(3)
)\—7(—1+ 1— o2 ) (13

FIG. 2. The real partfull curve) and imaginary par(dotted ;o " the instability threshold condition i8,(k?)=0. The

curve of the functionf(¢). imaginary part of the eigenvalue vanishes at threshold so the

. . . ) instability is frequency degenerate, or nonoscillatory. This is

linearity is seen to be focusing f@>0 and defocusing for  itterent from doubly resonant SHG where oscillatory insta-

£<0. The r_eal and imaginary parts of the functitf€) are  pjjities leading to self-pulsing are fourfd4].

shown in Fig. 2. , _ Two different types of instabilities appear in the singly
Below threshold for the competing parametric process ggonant configuration. Assuming perturbations viith=0,

Eq. (68 is of a general form that can be used to describ§init noints characterizing bistability of the homogeneous
passive cavities with cubic nonlinearities as well as certainyo| tions are obtained

types of laser$34]. For £ an integer multiple ofm, (&) is

purely imaginary and Eq6a) is equivalent to the equation 2(f,—A,f) 3|f|2(1+A§)
used in Ref[35] to describe transverse structures in a cavity |AYr P=— | 1% — -
: o / 3|f] 4(Afi— 1)
with Kerr nonlinearity.
(14
B. Instability analysis in pure singly resonant SHG Bistability is only possible wherf; and A; have opposite

signs, which from Fig. 2 is seen to correspond to opposite

In this section we calculate transverse-instability thresh-signs of the detuning; and the phase-mismatch parameter

olds assuming the parametric fields are not excited. We thu i.e., sgn€A,)<O0. Furthermore, the absolute value &

_ _ . . , 1.T., 1 . )
putA+fA,—O in Egs.(6). The homogeneous solut|o_ns of has to be sufficiently large. From numerical solutions the
the cavity equation for the fundamental field are obtained by

e o : -~ “ondition|A,|=1.7 is obtained.
omitting ".’1" c_ienvauves from E_q(6a). The resulting cubic Transverse patterns appear due to instabilities to perturba-
equation is similar to the one given|i@] for doubly resonant

SHG. Below the bistability threshold only one solution is tions with k, #0. An add_ltlonal Cgid't'on determmmg the
hysically relevant and it will be denotettfl’. transverse threshold isd\,/dki=0 or equivalently
P Iﬁ_bzlakf=0. This gives the wave-numbdéy, of the pertur-

The homogeneous solution may destabilize above a ce r ith the | { th rate. H the h
tain pump threshold that can be obtained through a linea oation wi € largest growtn rate. Hence, e homogeneous

stability analysis. For this purpose a general perturbation o§o!utions d_estabil_ize to transverse perturbations at an intrac-
ikt KT avity amplitude given by
the form 6A;=6Ae ki T+ 5B t1kiT is introduced.

After substituting into Eq(6a) and linearizing in the pertur- 012 1
bations a two by two matrix equation is obtained, | ALl NER (15
r
NEM, M,

@) with transverse wave number

ke= A, T2 T AL (16)

Equation(15) is valid whenfi2> 3fr2. If the inequality is not

(5@):(8

M3  AN+M7

with the definitions

(K — _ 0[2 satisfied there is no spatially periodic transverse instability.
Mi=1Fi(ki=Ay)=2f(O]AL" (108 e amplitude of the intracavity field? can from Eq.(6a)
02 be related to the pump field amplitudéeby
Ma=—f(§)(AD" (100

E?=[1+AT+2(Afi— f,)|AY]>+[f]2| AZI“T|AYJ.

Equation(9) has nontrivial solutions when the eigenvalue (17)

fulfills the following equation: ) )

The equat(l)on has been squared to avoid dependence on the
2 2y _ phase ofA;.

AT+bak+by(k1) =0, (D In Fig. 3 the limit points for bistabilitydotted curvepsare
shown together with the threshold for the transverse instabil-
ity as a function of the SHG phase-mismatch paramétar

012 the case\ ;= 6. Decreasing the detuning transverse instabili-
b=2(1-2f|A}l?), (128 tjes, in general, exist in a smaller interval of values of pa-

where
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FIG. 3. The fundamental pump amplituBenecessary to reach g
the bistability limit points(dotted curvesand transverse-instability FIG. 5. The real partfull curve) and imaginary part{dotted
threshold(full curve) as a function of¢ for A;=6. Also shown is  curve) of the functionp(¢).
the threshold for the onset of the competing parametric process

(dashed curve My=1+i(K: —Ay)+|AJ y1mp(£)KE —2 (€)1,

(21a
rameteré. This can be seen from EL6) since a small or
negativeA; can lead to unphysical imaginary valueskgf M,= _f(g)(Ag)Z_ (21b
Figure 4 shows the variation of the critical wave number
with & for three values of the fundamental detunifg. The term containing the functiop(£) is seen to be negli-

As was already mentioned diffraction of the second-gible provided
harmonic field has been neglected in the above analysis. To

justify this approximation it can be included iteratively in the y17Pr (&) kf|A‘1)|2< 1, (229
solution of Eq.(1b). This leads to the following second-order
modification of Eq(3) in the case where the parametric pairs y17pi(€)|A9|?2<1. (22b

are not excited:
Clearly, y; 7<<1 since this is an assumption necessary for the
validity of the mean-field description. Using this together
with typical threshold values df? and |A3|? from Figs. 4
(18  and 6, and values of(¢) from Fig. 5, the conditions are

. . . . seen to hold in the threshold analysis for almost all values of
The extra diffractive term leads to an additional term in the y

. . i . X the SHG phase-mismatch paramefe©Only in the very lim-
mean-field equation for the intracavity amplitude. Thus Eqjgeq region close to the boundary of existence of the trans-
(6a) for the fundamental generalizes to

verse instability might the approximation not be appropriate.
IA 1 However, this region is not of great interest due to the cor-
—12(—1+iA1)A1+ f(&)|A?A+ Equ-p(g)AI V2AZ responding dramatic increase in the instability threshold and
at leads, in addition, to a breakdown of the assumptions made

iAkz__ 1

e arK
@ =T S gk

ol Akz_
Ak

—iz|V2g2,

+inA1+ E, (19) for the mean-field description. Similar argumentation can be
used to neglect the iterative terms in the analysis of the
where mean-field equations fofA. presented in the next section.
This demonstrates the consistency of E@. for the pre-
1+e % edag sented threshold calculations.
p(&1) =i & + & (20)

C. Competing parametric process
The real and imaginary parts @f(£) are plotted in Fig. 5.
Including the extra term in the linear stability analysis IeadsC
to an equation of the same form as E®). but with modified
M;,

The threshold for the competing parametric oscillation is
alculated in this section. It can be obtained from a stability
analysis of the ground-state solutiods.=0, by intro-

16 10.0
12- k—w\- 7-5- _
SN L | d 50
8 i 2.5 |
4 1
5 1

.‘.'\_/’\_‘»-\- 0-0
0 —\/\/\ -10 5 0
-10 56 0 65 10 13

1A, |

0

FIG. 6. The variation of the intracavity fundamental intensity
FIG. 4. The variation of the critical wave numbler with & for with & From Eq. (15) |A(1),1|2 is found to be independent of the
A,;=6 (full curve), A;=0 (dashed curye and A;=—2 (dotted fundamental detuning,. However, only values of andA,; where
curve. k. is real and positive correspond to an instability.
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FIG. 7. The transverse instability threshdfdll curve) and the

threshold for the parametric proce@otted curve as a function of FIG. 8. The transverse i_nstability threshdfdll curve) and the
£for A;=0. threshold for the parametric procegdotted curve for A,=—2.

The bistability is not shown since it appears almost on top of the
-~ o~ transverse instability.
ducing the perturbationsA, = SA,eMTKUT and AL

=5A_eMt"1ki T The calculation is similar to the one pre- the mentioned off-axis emission of parametric pairs is a

sented i 36] and leads to the threshold mechanism for pattern formation in the ordinary OPO. This
is also the case in the subharmonic pumped OPO as is dem-
1+(K2—A,)2 onstrated numerically in the next section.
|ALplP=———— (23
Ih(¢,8)] IIl. NUMERICAL ANALYSIS
Here, energy conservation expressed\ast A _=2A, has A. Singly resonant SHG
been used.

- . _ In this section we study the above-threshold behavior nu-
The parametet is free in the sense that the parametric merically, assuming that the parametric process does not par-
pair with the largest gaifiowest thresholgwill be selected. ticipate in the dynamics. We thus solve the equation
Therefore, the threshold for onset of parametric oscillation is
obtained from Eq(23) by maximizing|h(¢,¢)| with respect

to €, which leads t&=0 oré= ¢. Since the down-converted
frequencies are assumed to be within the phase-matching

bandwidth of the fundamental frequencyé=¢ N this approximation the second-harmonic field is given by

. ) e A(2L)=g(&)A2.
can be fulfilled. We find |h(é=0,8)|=|h(é=¢, 2 1 . o
= |e%€—2ig—1|/£2. Similarly th|e (pirarfglriJ p(hgotognsg)\lvill As already noted this equation is of the same type as those

. . ~ that arise in descriptions of driven cavities containing a me-
be emitted with the value of the transverse wave-nurkber  jiim with cubic nonlinearity[34,35. We thus expect, and
which lowers the threshold. For positive detunifig™0 the ’ '

- indeed find, spatial structures including periodic patterns and
critical wave-numbek, = A, is selected leading to off-axis |ocalized states, which are known from previous studies of
emission. In the case of negative detunhg= 0, and the nonlinear cavities. Equatiof24) was solved using a split-
down-converted fields have a homogeneous spatial structuretep algorithm on a square domain with periodic boundary

In Fig. 7 the threshold for the parametric process is plot-conditions and a constant, position-independent pump ampli-
ted at resonance\(;=0) together with the threshold for the tude E. Grid sizes of 3X 32 up to 12& 128 points were
transverse instability. Here, the parametric-generation threstused. The forcing, linear, and nonlinear terms were solved in
old is seen to be below the pattern-forming threshold. Thigeal space using a Runge-Kutta routine, while the diffractive
was also found to be the case for almost all valueg fifr ~ term was solved in Fourier space. As a check on the results
A,=6 (Fig. 3. Thus, the limitation of the pure SHG calcu- an alternative operator splitting where the forcing and linear
lation presented in the previous section is pointed out, and terms were accounted for in Fourier space was also used. No
more general analysis would also have to include nonvanisksignificant numerical difference was found between the two
ing amplitudes of the parametric fields. However, it is worthapproaches. The dynamics were seeded by starting the cal-
noticing that the pure SHG description is a good approximaculation with a small amount of random noise in the cavity
tion when describing the behavior close to the parametridield A;, and then integrating until the temporal transients
threshold where the parametric term in E6@ is negligible  had died out. Integration was stopped when the calculated
compared to the cubic nonlinearity of the fundamental fieldmean and peak amplitudes were stable to an accuracy of at
Furthermore, it is possible to choose the fundamental deturieast 10 4. Depending on parameters typical time steps were
ing so that the transverse instability threshold is below thel0"3-~10 * and integration times to reach stationary condi-
parametric threshold for all values @fand thus the pure tions were up to several thousand time units.
SHG description is strictly valid. An example is given in Fig.  Figure 9 shows an example of hexagonal pattern forma-
8 for Aj=—2. tion for a focusing nonlinearity withA\;=—2 and £=4.5.

It is worth emphasizing that apart from complicating the For these parameters the mean intracavity amplitude is a
analysis of the linear instability thresholds, the existence osingle-valued function of the pump amplitulie From Fig. 9
the competing parametric process can have a strong nonlinve see that this corresponds to a situation where the para-
ear influence on the subsequent pattern formation. Indeedyetric threshold is higher than that of the transverse instabil-

A, , s
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E FIG. 11. Comparison of mean-field and propagation equation

calculations forA ;=6 and¢=4.5. The solid line shows the mean-
field result for the plane-wave intracavity amplitude from ELy?)
while the filled squares and circles are numerical results obtained
from Egs.(25) and(26). The open squares show the peak amplitude
of the hexagonal pattern in the fundamental field and the vertical
Botted line indicates the mean-field result for the threshold of trans-
The calculations were made on a square domain of SIZ‘?/erse instability. Mean-field and propagation equation results were
plotted on the same figure using the relatiohs= \/ﬁAlp and

E=(V8/T*)Ep.
ity, so that Eq(24) is a good approximation. From Eq4.5)
and (17) the threshold for transverse instability occursEat  conditions corresponding to the input coupler, propagating
=2.85, which agrees closely with the onset of instability the fields again, and so on. Although this direct approach is
observed numerically. The hexagonal patterns seen in boenerally more time consuming than solving the mean-field
the fundamental and second-harmonic fields were obtainegquations since we calculate the fields as functions of
after integrating for several hundred time constants. Thesgx,y,z,t) instead of just X,y,t) in the mean-field model, it
patterns are sometimes free of defects, and sometimes coRas the advantage of being correct, even when the approxi-
tain a few, depending on the initial conditions and integra-mations leading to the mean-field model break down. Res-
tion time. The patterns appear as a modulation on a uniformgaling the variables in Eqgla and (1b) as A;p=«L¢&;,
background for both the fundamental and the seconda,,=ixLe 12K%, z,=z/L, andrp=(2k,/L)"%, and ne-
harmonic field. Since the second harmonic Ieaving the CaVitb|ecting the parametric fie|ds, gi\/es the normalized set
is proportional to the intracavity field squared, the pattern
appears on top of a relatively weaker background, than does A(m)

FIG. 9. Hexagonal patterns in a pure SHG foy=—-2 and¢
=4.5. The solid line is the plane-wave solution of Efj7) while
the filled triangles give the maximum value |&;|. The open tri-
angles are the maximum value|df,| in the presence of parametric
down conversion, while the open squares give the maximum valu
of |AL].
25% 25.

the pattern in the fundamental. - —iVZ A =AD" A (258
For other values of detuning and phase mismatch either P
transverse instabilities or parametric generation may have the A(m) |

lowest threshold. However, whek, is non-negative andg
=nsr with n integer, the two thresholds are strictly equal and Jzp
the pure SHG approximation is a reasonable one close to

threshold. An example of pattern formation in such a case foln Ed. (25 the fields are functions of the continuous spatial
A;=6 and £=6.1 (for which the intracavity amplitude is Vvariables §,y,z) and the discrete time variabtg,=mr in-
single valuedlis shown in Fig. 10. There are branches with dicated by the superscript.

apparently stable hexagonal and square patterns that can beThese are solved together with the normalized cavity
accessed by changing the initial conditions or the pump amboundary conditions

EVfPA(Z"F",) +ieAlD=—-AD2 (25h

plitude. _

An additional numerical check on the validity of the A" (rp,zp=0)=Ep+1-Te*PA{P(rp,2=2),
mean-field model was made in the pure SHG limit by di- (263
rectly integrating propagation Egéla) and (1b) from z=0
to z= 2L, updating the fields in time at=2L with boundary A (rp,zp=0)=0, (26b)

whereEp=TkLE, andA;p=(T/2)A,.

Figure 11 compares the mean-field and propagation cal-
culation results for the homogeneous intracavity amplitude
(neglecting diffractioh as a function of pump amplitude.

For the parameters used the mean-field result for the thresh-
old for transverse instability of the fundamentalEs=15.8

(see Fig. 14 beloy Calculations are given for cavity trans-
mission losses of =0.05 and 0.2. For the smaller transmis-
sion value there is no visible difference betweeen mean-field

FIG. 10. Intensity distribution of the second-harmonic field and Maxwell equation results. Even fdr=0.2, which is
|A,(2L)|? for A;=6 andé=6.1. (a) E=13.20 and(b) E=12.25. many times higher than typical experimental values of the
The window size is 1% 15. cavity transmissiorisee Sec. IV B there is only a few per-
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IA412 IAoI2

16.3

2.5
0.2

FIG. 12. Localized states obtained fvf=—6 andé=4.5. The
solid (dashedl line is the stablgunstable part of the plane-wave
solution of Eq.(17). The filled circles give the maximum value of

- |
Io.1

0.2
|A4|, the open circles are the maximum value |8f;| when the .Ioo
parametric process is allowed, and the open squares are the maxi- )

2 2
mum value of|A.|. The inset show$A,|2 on a window of size 9 Al IA_l
X9,

FIG. 13. Intensity distribution of all four fields obtained for the
) ) parameters of Fig. 9, anf=3.45.
cent difference between the two calculations at a pump am-
plitude about twice the transverse instability threshold.  constants. For more vigorous initial seeding solutions with
Numerical results for |nStab|l|ty thresholds, Spatlal StrUC'Severa| Coexisting localized states were obtained.
tures, and characteristic transverse wave number, were gen-

erally consistent with the results obtained from the mean-
field equations. For example the mean-field prediction for the
wave number of the transverse instability for the parameters [N this section we investigate the validity of the pure SHG
of Fig. 11 isk.=3.07. Numerical solution of the propagation description of the cavity dynamics. We thus solve E@s.
equations withT =0.05 resulted in a periodic hexagonal pat- fOr the intracavity fields, and use E) for the resulting
tern with (after rescaling to mean-field valyek p=3.3, sgcpnd harmonic. In the calculatlpns below we h'av'e for sim-
which agrees to within 10% of the mean-field analysis. Thé)IICIty takenA+=A:=A1, and, in order to minimize the
peak amplitude of the hexagonal pattern as a function of th@arametric thresholg=¢. _ o
pump amplitude is shown by the open squares in Fig. 11 One effect of the cpmpetmg parametric generation is tq
(compare with the filled squares in Fig. 14 for the mean-fieldd@MPp the patterns at high values of the pump parameter. This
resul). The pump amplitude at the threshold of transversd> S€€N N Fig. 9 where the open triangles and squares shqw
instability as calculated from the mean-field theory and'[.he maximum ar_nphtudes of the funda_lmental and parametric
propagation equations is also seen to agree closely. A moJ elds as a iu.ncuon of :he p;Tg ig\pgtulﬁe EE? thrgs{]?rlld
detailed comparison of results obtained from propagationoarrgr?:;rr?ce frilgl dgseg?;adglecit; d. A'S theemg)vum:c')s gr?"nlglitu dee is
\?V?I:JgiogiigwitzlstzsvﬁerfgiCtionS of the mean-field descriptio ncreased beyond this threshola the parametric fields grow

Localized states, also called cavity solitons, appear for
parameter values where the plane-wave solution exhibits bi-
stability. Looking for conditions where the parametric 3l
threshold is equal to that of the transverse instability would
suggest choosing=ns. However, f(§) is then purely
imaginary and we recover the Kerr limit of E4) in which
case cavity solitons are unstatpi7]. We choose, therefore, 1 .
a somewhat different value af that adds an effective ab-
sorptive component to the nonlinearity, and leads to stable 0 ‘ LA ,
cavity solitons[38]. 0 5 10 15 20

Figure 12 gives an example of a localized state obtained E
for Alz - 6 and{=4.5. qu these parameter valu.es the sys- FIG. 14. Dependence of the intracavity fields on the pump am-
tem is bistable. The solution was seeded by adding a Gausgjityde when the parametric threshold is lower than that of the SHG

ian pertu.rbation to the driving fieIE with a width ;imilar 10 transverse instability\ ;= 6 andé=4.5. The solid line is the plane-
the localized state. The Gaussian seed was switched off aft@ave solution of Eq.(17), the filled squares give the maximum

a few time constants, after which the evolution was followedvalue of|A,| without parametric oscillation, the open squares give

numerically. The depicted solution has only very weak ringsthe maximum value ofA;| with parametric oscillation, and the
around the central lobe and was stable for hundreds of timepen triangles give the maximum value |- |.

B. Singly resonant SHG with parametric generation

4

(Al 1AL, ]
N
T
o
o
|
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|A2|2 tilt given by k.= =+ \A;. Thus, belowE, the subharmonic-
0.4 pumped OPO exhibits the same features as the second-

harmonic-pumped OP({®]. WhenE> E, transverse instabil-
ity sets in, and there is a cooperative effect leading to a sharp
rise in the peak amplitude of the parametric fields, as seen in
Fig. 14. ForE not too far abové, roll structures, with some
transverse modulation are seen, as shown in Fig. 15. Increas-
ing E further leads to patterns with predominantly square
symmetry.

0.0 Finally, we show in Fig. 16 that localized states can co-

32 exist in the four interacting fields. The parameters were the
4 same as those used in Fig. 12, except that strong initial seed-
ing was used to generate multiple solitons. The parametric
threshold for the parameters of the figure i&€at 8.7, which
coincides within a few percent with the onset of parametric
cavity solitons seen numerically. Generation of solitons in
the parametric fields serves also to dampen slightly the peak
60 amplitude of the fundamental solitons, as seen in Fig. 12,

IALI2 IA |2 where the data points were obtained for the case of a single
+ = soliton in the computation window.

FIG. 15. Intensity distributions for the same parameters as Fig.
14 atE=16.75. The intracavity amplitude is a single-valued func-

tion of the pump amplitude. The window size isX122. In this section we discuss the experimental feasibility of

. . . .observing transverse instabilities in singly resonant SHG. In
while the intracavity fundamental decreases. Thus, the MaiBac |V A the effect of propagation losses of a Gaussian
effect of the parametric process in this situation is to de- ump beam in a plane cavity is accounted for, while numeri-

crease the level qf the intracavity field. The parametric field. al estimates of the pattern formation threshold are given in
are modulated with the same hexagonal symmetry seen 8o |vB.

the fundamental and second-harmonic fields as shown in Fig.
13 obtained forE=3.45. The figure was obtained before A. Propagation losses

complete relaxation of the fields so that some nonuniformity, . . .
P y In the theoretical model the electric-field amplitudes were

particularly in the parametric fields, is visible. The two para- . .
treated as plane waves. In a real experiment the propagation

metric fields are seen to have very similar intensity distribu- dofaG an b inside the ol ! il lead
tions. Note also that they appear on a vanishing backgroungP'€ad of a Gaussian beam inside the plane cavity will lea

as opposed to the fundamental and second harmonics. Fit effe_ctively _Iower buildup compared to the plane-wave ex
pump amplitudes oE~4 and higher the maximum ampli- pression. This can be a serious problem if the Rayleigh

tudes of both the fundamental and the parametric fields sat€N9th Of the Gaussian beam is not sufficiently large com-

rate and even fall slightly. At these high-pump conditions theP@red to the cavity length, since the fields effectively expe-

hexagonal symmetry is no longer perfect, and defects in thgence many roundtrip_s i.n the cavity._ The ‘”?F’O”af‘ce of the
patterns appear. propagation losses will in the following be investigated by

The parametric process can also be excited below thgumerical integration of the Gaussian beam propagation

threshold of transverse instability. In Fig. 14 we have takenequations._ . . . .
A;=6 and¢=4.5 that gives a parametric generation thresh- We deflng the intracavity build-up factor as the ratio of
old atE,=10.7, while the fundamental first becomes trans-tf% ;r:atraci\élty Ipower o the external pumpb powes:
versely unstable aE;=15.8. The numerical results reveal = " ¢"" p- € plane-wave expression Is given by
that the fundamental and parametric beams take on finite

values forE>E,; however, there is no spatial structure. The Bpw=
fundamental is emitted as an on-axis plane wave while the =1
parametric beams are emitted as plane waves with an angular I=VI=T =Tt 5 PeEn

IV. EXPERIMENTAL FEASIBILITY

T

7 (27

FIG. 16. Localized states coexisting in all
four fields. The spatial distribution dA_|? was
the same as that in the other fields. The plots have
been scaled to give the same visual height in each
field. The parameters were the same as in Fig. 12
and the pump amplitude wds=10.
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with the nonlinearity of the crystal defined through the coef- ¢
ficient Ey = lePf, whereP, is the power generated from

an inputP; in a single-pass propagation through the cavity 51
of length 4. Thus,P_.Ey, is the nonlinear loss of the fun-
damental, which adds to the transmission loss. For the ex- 44
perimental parameters presented below the nonlinear los: ]
turns out to be completely negligible compared to passiveg, ;.
losses and can, therefore, be omitted in the following. They2 |
intracavity electric field of the Gaussian beam is calculated |
from

W, [mm]

Eio= ﬁmE:O (1-T)™2(1—T,)™2E(r,z=2mL). (28

Here, the Gaussian beam field amplitude is given by T [%]

A ' 5 FIG. 17. The pump power necessary to reach the transverse-
E(r,z)= We'(””/"@[l’(qo“)]r , (29 instability thresholdfull curves and the corresponding wai&tot-
2190 ted curve as a function of the transmission of the input cougler

. . . for =1 (lower curveg and|=2 (upper curve)
with amplitudeA and complex parametey,= —mwwgl)\o ( > (upp .

assuming the beam waist is positionedat0. The build-up
factor for a Gaussian beaBgg is obtained by integrating
the modulus of the total electric fielE,,|> over the trans-
verse plane to get the power and dividing by the input pump ne 7wl B

power p, =0 0 PPW o 12

[5r|Ew(r) [ PR B

ol Etodl r

= : (30) n%c*m312 (T+T,)% B

Jor|A2e 2 ogy _ e Tl (T Bewe, (3D)
16k2w3d2 L T Bee

pump power necessary to reach the instability threshold is
given by

GB

Sum(29) is calculated numerically. The necessary number of
terms to include depends on the value of the input coupler i L i
transmissiorT; typically, about 5000 terms were sufficient, Whereeo is the vacuum permittivity. From Fig. 7 the I%west
Numerical estimates of the importance of the propagatioriifeshold is found to be a=2.9 whereE=1.7 or Ay |
loss are given in the following section. =1.2 corresponding tk.= 1.4 (Fig. 4). Figure 17 shows the
threshold power needed to reach instability and the corre-
B. Physical parameters corresponding to an instability sponding waist as a function pf the 'transmission of th.e input
threshold couplerT for 1=1,2. The optimum input coupler choice
. =T, corresponds to impedance matching of the cavity. The
In order to relate the calculated thresholds to experimentghest threshold appears to be on the order of 1 W, which
parameters we will consider the case of noncritically tem-shoy|d be readily attainable with existing high power near
perature phase-matched SHG in potassium niobate where thigrared continuous wave lasers. The corresponding gener-
effective nonlinearity coefficient isler=21pm/V[39]. The  ated blue power is about 1 mW. The very poor conversion
coefficient « introduced in Egs.(1) is given by x efficiency of the process is due to the introduced phase mis-
= w10er/NC, Wherew is the frequency of the fundamental match and weak focusing necessary for observing transverse
field taken to be 2.2 10'*Hz corresponding to a wavelength structures. The effect of including the propagation losses led
Ao=860nm, andn=2.3 is the refractive index. Further- to 3 threshold power increase of about 15%lferl and 2%
more, a CaVity |ength_= 1 cm is assumed in addition to a for|=2 Compared to the p|ane_wave calculation.
typical residual round-trip loss af =1%. The waist radius In the above analysis the phase-matching bandwidth of

W of the fundamental beam is determined by a tradeofihe crystal was not taken into account. Indeed we assumed
since focusing is needed to enhance the nonlinearity WhllE

S ) W2 ="¢ could be fulfilled. In a short cavity the parametric pairs
too narrow focusing is not allowed in order to observe spatia

T l iod of th ositioned an integer multiple of the free-spectral cavity
structures. The spatial period of the transverse structure ngth away from the fundamental frequency may lie outside
A=2m/k. and the number of spatial periods within the

. . X the phase-matching bandwidth. Frofi89] the phase-
Gaussian envelope of the pump beam is definedl s iching bandwidth for a 2-cm-long potassium niobate crys-

_=2W0/A_. [\Iotice,kc now denotes the critical wave _number tal phase matched at 860 nm can be found todas,,

in the original unscaled parameters and the relation to the. g4 Gz This should be compared with the free-spectral

scaled quantityk; is Kc=Kevy17Ki/L. This leads tow,  range wrpsg=41GHz of the cavity. Thus, an increased

= (ml/k) V2L/[(T+T)kq]. threshold for the parametric pairs is expected. Both the
Taking also the propagation loss into account as describephase-matching bandwidth and the free-spectral range scale

in the previous section the expression for the fundamentas 1L, i.e., the analysis holds for all monolithic cavities. A
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nonmonolithic cavity could be used to avoid increasing thetransverse-instability threshold the normal picture of para-
parametric threshold. metric generation of tilted plane waves is observed. When
the pump amplitude is increased beyond the transverse-
instability threshold the parametric process affects the spatial
) o ) atterns so that roll-like structures are seen, instead of the
~ Inthis paper pattern formation in phase-mismatched SHGyexagons or squares otherwise observed in SHG. In addition
in a plane-plane cavity, resonant only for the fundamentajy periodic patterns, excitation of cavity solitons is possible.
field, has been investigated. Instability thresholds for biStaDepending on the parameters chosen they can exist in pure
bility and transverse pattern formation were calculated. Th&sHG, or in all four fields simultaneously. Finally, numerical
possibility of the second-harmonic field serving as a pumpsstimates of the pump power necessary to reach transverse
for a competing parametric down-conversion process was inpstability given realizable experimental parameters were
vestigated. Parameter regimes were identified where elth%ﬁven_ The thresholds are considerably higher than in a dou-

transverse instability of pure SHG or parametric generatiotp|y resonant SHG, yet attainable with available continuous-
have the lowest threshold. In the former case numericalyaye laser sources.

analysis revealed periodic patterns, as well as localized struc-
tures, similar to those found earlier in doubly resonant intra-
cavity SHG. The presence of parametric generation affects
the amplitude of the generated patterns, but does not change
their spatial structure. Support for this work was provided by the Danish Natural

Alternatively, when the parametric threshold is lower thanScience Research Council. P.L. acknowledges support from
that of the transverse instability the parametric process alsthe Danish Research Academy and thanks S. Schiller for
influences the spatial structure of the patterns. Below théelpful discussions.

V. CONCLUSIONS
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