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Pattern formation in singly resonant second-harmonic generation
with competing parametric oscillation

P. Lodahl and M. Saffman
Optics and Fluid Dynamics Department, Risø National Laboratory, Postbox 49, DK-4000 Roskilde, Denmark

~Received 30 October 1998; revised manuscript received 14 February 1999!

We theoretically investigate the generation of spatial patterns in intracavity second-harmonic generation. We
consider a cavity with planar mirrors that is resonant at the fundamental frequency, but not at the second-
harmonic frequency. A mean-field model is derived that describes the resonant fundamental field, and its
coupling to a pair of nondegenerate parametric fields. The parametric fields are driven by the nonresonant
second-harmonic field. Analysis indicates the existence of transverse instability of the pump field alone, as well
as the possibility of simultaneous instability of the pump and the parametric fields. A range of spatial structures
including periodic planforms as well as spatially localized states are found numerically. The simplicity of the
singly resonant cavity makes it well suited for experimental studies. Estimates of experimental parameters
necessary for observation of spatial structures are given.@S1050-2947~99!02810-3#

PACS number~s!: 42.65.Sf, 42.65.Ky, 42.65.Tg
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I. INTRODUCTION

Optical pattern formation has been studied intensively
the last few years@1#. Although the field started with studie
of instabilities in cubicly nonlinear media, much recent
tention has been directed at interactions governed by a
dratic,x (2) nonlinearity. Spatial patterns are generated un
the combined action of diffraction and nonlinearity in th
presence of spatial feedback. One way of introducing fe
back is to allow two interacting beams to counterpropag
Although backwards parametric interactions in quadratica
nonlinear media were proposed in the 1960s@2# there is not
sufficient birefringence in available materials to phase ma
a fundamental wave at frequencyv1 to a counterpropagating
second harmonic at frequencyv252v1 . Studies of pattern
formation in quadratic media have, therefore, concentra
on intracavity geometries, where feedback is provided by
cavity mirrors @3–8#. An exception is the possibility o
quasi-phase-matching counterpropagating beams using
riodically poled crystal, for which the corresponding tran
verse instabilities were studied recently@9#.

The existence of spatial patterns in ax (2) mediated inter-
action was predicted first for the degenerate doubly reso
optical parametric oscillator~OPO! by Oppoet al. @3#. One
mechanism for pattern formation was found to be off-a
emission of down-converted light leading to a lowering
the threshold for parametric generation when the cavity
tuned away from resonance. This mechanism comes
play when the cavity length is slightly longer than that f
which the signal field is resonant. We will refer to this
positive detuning of the cavity. Stationary roll solutions a
preferred in favor of phase-traveling waves due to interf
ence between the degenerate pairs. Numerical simulation
the degenerate OPO have also revealed hexagonal pa
@3,10#. In addition, a singly resonant degenerate OPO wh
only the signal field is resonated has been investigated@5#
and the relevance of the phase mismatch as a tuning pa
eter was identified. In the triply resonant nondegenerate O
the degeneracy of the parametric pairs is broken and, co
PRA 601050-2947/99/60~4!/3251~11!/$15.00
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quently, traveling waves are always stable with respec
standing waves as demonstrated by Longhi on the basis
nonlinear analysis@6#. Furthermore, a square pattern can a
be stable near threshold@7#. When the cavity detuning is
negative there is no lowering of the threshold for parame
generation. Nonetheless, spatial structures can be gener
and for negative detuning spatially localized states are
neric @11,12#.

The formation of spatial structures in doubly resonant
tracavity second-harmonic generation~SHG! was studied in
@8,13#. Linear stability analysis reveals the presence of fo
different types of instabilities leading to bistability and se
pulsing of the homogeneous solutions@14#, and to both sta-
tionary and oscillating transverse instabilities. SHG is qua
tatively different from the OPO since there is no thresho
for frequency conversion, and some amount of both frequ
cies are always present, irrespective of pump power
strength of the nonlinearity. Numerical investigations
doubly-resonant SHG have demonstrated the appearanc
both oscillatory and stationary patterns, including rolls, he
gons@8#, and solitary structures@13#. Transverse instabilities
have also been studied for type-II phase-matched S
@15,16#.

One motivation for studying spatial instabilities inx (2)

media is that they are well suited for producing nonclass
states of light. Strong nonclassical temporal correlatio
have been generated using both the OPO@17# and SHG@18#.
Since these devices can also be used for creating sp
structures there is a clear prospect of obtaining patterns
nonclassical spatial correlations, as has been emphasize
Lugiato and co-workers@19#.

From an experimental point of view it is important to loo
for simple configurations, and this makes singly reson
SHG interesting. In this configuration the fundamental fie
is resonated in a cavity, while the second harmonic esca
freely. Both bistability @20#, as well as nonclassical ligh
@21,22#, have already been demonstrated experimentally
the present paper we study transverse instabilities and pa
formation in the singly resonant configuration.

A problem with the standard description of the OPO
3251 ©1999 The American Physical Society
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3252 PRA 60P. LODAHL AND M. SAFFMAN
that a model with only one pair of down-converted freque
cies may not be sufficiently general. Above oscillati
threshold several down-converted pairs may experience g
and the mutual competition between different longitudin
modes complicates the dynamical evolution@23#. Use of a
single-mode pump field in SHG can be used to ensure sin
mode behavior of the cavity. However, another complicat
may arise since the generated second harmonic field ca
as a source for a nondegenerate competing parametric
cess. This process is important since it can suppress dyn
ics that would otherwise be observed. For example, the s
pulsing instability found in doubly resonant SHG in th
absence of cavity detuning has been shown to be suppre
by competing parametric down conversion@24#. By intro-
ducing cavity detuning the situation becomes more com
cated and the importance of the competing process dep
on the detailed values of the relevant parameters@25#.

Even in singly resonant SHG the competing parame
process can be above threshold and cannot, in genera
ignored. Generation of competing parametric pairs has b
observed experimentally in a monolithic cavity by Schill
and co-workers both for doubly resonant@26# and singly
resonant@27# SHG. Furthermore, the process has been
scribed theoretically for the prospect of generating nonc
sical light, also both in the doubly resonant@28# and the
singly resonant@29# cases. In this paper we demonstrate t
the parametric process can also influence significantly
pattern formation dynamics.

The paper is structured as follows. Mean-field equatio
describing the interaction of the pump at the fundamen
frequency, and the down-converted parametric beams are
rived in Sec. II A. In Sec. II B we calculate thresholds f
transverse instabilities assuming the parametric beams
below threshold, and do not participate in the dynamics. T
threshold for excitation of the parametric process is found
Sec. II C. Parameter regions are identified where either
transverse instability or the parametric process have the
est threshold. The above-threshold nonlinear behavio
studied numerically in Sec. III. In Sec. III A we concentra
on parameters for which the parametric process is not
cited, yet transverse instabilities exist. The numerics reve
rich variety of spatial structures including periodic patter
and localized states. The nonlinear behavior when the p
metric beams are also present is studied numerically in S
III B. Estimates of the experimental parameters necessary
observation of spatial structures given presently availa
nonlinear materials are made in Sec. IV. We conclude in S
V.

II. STABILITY ANALYSIS

A. Mean-field model

The propagation equations describing the seco
harmonic generation and the competing parametric pro
can in the paraxial limit be written in the form

]E1

]z
2 ia1¹'

2 E15 ik1e2 iDkzE1* E2 , ~1a!

]E2

]z
2 ia2¹'

2 E25 ik2eiDkzE 1
212ik6eiD k̃zE1E2 , ~1b!
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]E1

]z
2 ia1¹'

2 E15 ik1e2 iD k̃zE2* E2 , ~1c!

]E2

]z
2 ia2¹'

2 E25 ik2e2 iD k̃zE1* E2 , ~1d!

whereE1 , E2 , andE6 denote the complex amplitudes of th
fundamental, second harmonic, and down-converted fie
respectively. The real physical fields propagating along thz
coordinate with wave numberkj and frequencyv j are given
by Ej (r ,z)5 1

2 Ej (r )ei (kjz2v j t)1c.c., wherer5(x,y) denotes
the transverse coordinates, andj 51,2,1,2. The phase-
mismatch parameters for the SHG and the parametric pro
are Dk52k12k2 and D k̃5k11k22k2 , respectively. Dif-
fraction is accounted for by the terms containing the tra
verse Laplacian¹'

2 5]2/]x21]2/]y2 with coefficients aj

51/(2kj ). In the configuration described below the param
ric fieldsE6 are nearly degenerate with the fundamental f
quency uv12v6u!v1 . Phase-matching requirements f
the second-harmonic and parametric processes lead to
approximationn[n1.n2.n6 . Under these conditions we
havea1.2a2.a6 and can thus write Eqs.~1! with a single
nonlinearity parameterk[k15k25k6 .

The fundamental field is resonated in the cavity while t
second harmonic is coupled out after one round-trip,
shown in Fig. 1. In the following a standing-wave monolith
cavity is considered, but the description can be extended
ily to other configurations. The phase shift between the f
damental and the second harmonic at the reflecting mirro
assumed to be zero so that the cavity effectively works a
ring resonator of length 2L, whereL is the crystal length.
Furthermore, a cavity with plane mirrors is considered; co
sequently, the homogeneous ground-state solutions are p
waves. The parametric photons will be resonant in the ca
if they are emitted at frequenciesv65v16mpc/(nL) cor-
responding to a multiple of the cavity free-spectral ran
wherem is an integer andc is the speed of light in vacuum
The threshold for the generation of the parametric pairs w
be minimized when they are emitted at frequencies clos
that of the fundamental due to phase matching restrictio
Therefore, a reasonable assumption will be equal intraca
losses for the fundamental and parametric fields.

Scaled equations for the four amplitudes can be deri
iteratively. Propagating the fundamental field in Eq.~1a! a
length 2L in the crystal gives

FIG. 1. The singly resonant SHG configuration in a monolith
cavity. The fundamental fieldv1 is resonated while the secon
harmonicv2 escapes after one round-trip in the cavity. Also sho
are the nondegenerate resonant parametric pairsv6 .
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PRA 60 3253PATTERN FORMATION IN SINGLY RESONANT . . .
DE 1
prop5E1~z52L !2E1~z50!

5E
0

2L

~ ia1¹'
2 E11 ike2 iDkzE1* E2!dz

.2ia1L¹'
2 E11 ikE1* E

0

2L

e2 iDkzE2~z!dz. ~2!

The final equality assumes a mean-field description whe
the fundamental fieldE1 is independent of the longitudina
coordinatez. It follows from this assumption that the non
linear and diffraction terms are only included to lowest ord
in a perturbative solution. The validity of this approximatio
is borne out both by comparison with a numerical integrat
of Eqs. ~1! with cavity boundary conditions~see Sec. III A
below! as well as consideration of physically relevant para
eters. As is shown in Sec. IV the cavity field experienc
small diffraction and nonlinear conversion in a single rou
trip under experimentally relevant conditions.

The axial dependence of the second-harmonic field, us
E2(0)50 and the mean-field approximation forE1 and
E1 ,E2 , is given by

E2~z!5k
eiDkz21

Dk
E 1

212k
eiD k̃z21

D k̃
E1E2 . ~3!

For the moment the diffraction term in Eq.~1b! that acts on
the nonresonant second-harmonic field has been negle
The consistency of this approximation is discussed be
@see Eq.~19!#.

The round-trip time for propagation through the cavity
given byt52Ln/c. The change in the intracavity field du
to linear losses and phase shifts, as well as the extern
supplied pump, during one cavity round-trip time is

DE 1
cav5t~2g11 id1!E11hEin , ~4!

where g1 and d15v12v1,c (v1,c is the cavity resonance
frequency closest tov1) are the cavity loss rate and detunin
specified below andh5AT determines the input coupling o
the pump field to the cavity, withT the intensity transmis-
sion coefficient of the input coupler.

A mean-field equation is then obtained by combining
changes to the fundamental field from propagation and c
ity effects @30#

]E1

]t
'

DE 1
prop1DE 1

cav

t
5~2g11 id1!E1

1
ikE1*

t E
0

2L

e2 iDkzE2~z!dz1
2ia1L

t
¹'

2 E11
h

t
Ein ,

~5!

Substituting Eq.~3! into Eq. ~5! as well as the analogou
equations for the parametric fields, and introducing appro
ate scalings leads to the dimensionless mean-field equat
in

r
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]A1

]t
5~211 iD1!A11 f ~j!uA1u2A112h~j,j̃ !A1A2A1*

1 i¹'
2 A11E, ~6a!

]A1

]t
5~211 iD1!A11h~ j̃,j!A1

2A2* 12 f ~ j̃ !uA2u2A1

1 i¹'
2 A1 , ~6b!

]A2

]t
5~211 iD2!A21h~ j̃,j!A1

2A1* 12 f ~ j̃ !uA1u2A2

1 i¹'
2 A2 . ~6c!

The second-harmonic field at the cavity output is given

A2~2L !5g~j!A1
212g~ j̃ !A1A2 . ~7!

The parameters have been rescaled asg1t→t,
Ag1t/(2a1L)r→r , E5(hkL/A(g1t)3)Ein , A15(kL/
Ag1t)E1 , A25@kL/(g1t)#E2 , A65(kL/Ag1t)E6 , j

5DkL, and j̃5D k̃L. The cavity loss rate of the fundamen
tal and the parametric pairs is defined asg15(T1TL)/2t,
whereTL accounts for any additional linear cavity losses.Ein
is the amplitude of the pump field external to the cavity
the fundamental frequency and can be taken to be real du
a free choice of the overall phase. The detuningsD j5(v j
2v j ,c)/g1 , j 51,1,2, are defined as the difference b
tween the frequencies of the fundamental and parame
fields, and their nearest cavity resonance frequencies nor
ized to the loss rate of the fundamental. Finally, the comp
functions f (j1), g(j1), and h(j1 ,j2) contain the depen-
dence on the phase mismatches

f ~j1!5
2i

j1
1

e22i j121

j1
2 , ~8a!

g~j1!5
e2i j121

j1
, ~8b!

h~j1 ,j2!5
e2i (j22j1)21

j2~j22j1!
1

e22i j121

j1j2
. ~8c!

Equations~6! were first given in@31# in a modal approxi-
mation, without the transverse Laplacians, while a me
field equation for the OPO with a phase-mismatch-depend
nonlinear term was given in@5#. The validity of Eqs.~6! is
ensured by the conditionsg1t!1, D jg1t!1, j 51,1,2, in
addition to the already mentioned assumption that diffract
and nonlinear conversion have only a small effect in a sin
cavity round trip.

The appearance of the cubic nonlinearity in Eq.~6a! for
the fundamental and the ensuing intensity-dependent p
shift originating from the imaginary part off (j) is known as
cascading of the fundamental field@14,20,32,33#. The in-
duced phase shift occurs at nonzero values of the phase
match parameterj and leads to a Kerr-type nonlinearity th
gives rise to bistability as discussed and observed in@20#. By
investigating the sign of the imaginary part off (j) the non-
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3254 PRA 60P. LODAHL AND M. SAFFMAN
linearity is seen to be focusing forj.0 and defocusing for
j,0. The real and imaginary parts of the functionf (j) are
shown in Fig. 2.

Below threshold for the competing parametric proce
Eq. ~6a! is of a general form that can be used to descr
passive cavities with cubic nonlinearities as well as cert
types of lasers@34#. For j an integer multiple ofp, f (j) is
purely imaginary and Eq.~6a! is equivalent to the equatio
used in Ref.@35# to describe transverse structures in a cav
with Kerr nonlinearity.

B. Instability analysis in pure singly resonant SHG

In this section we calculate transverse-instability thre
olds assuming the parametric fields are not excited. We
put A15A250 in Eqs.~6!. The homogeneous solutions o
the cavity equation for the fundamental field are obtained
omitting all derivatives from Eq.~6a!. The resulting cubic
equation is similar to the one given in@8# for doubly resonant
SHG. Below the bistability threshold only one solution
physically relevant and it will be denotedA1

0.
The homogeneous solution may destabilize above a

tain pump threshold that can be obtained through a line
stability analysis. For this purpose a general perturbation
the form dA15dAelt1 ik'•r1dBel* t2 ik'•r is introduced.
After substituting into Eq.~6a! and linearizing in the pertur
bations a two by two matrix equation is obtained,

Fl1M1 M2

M2* l1M1*
G S dA

dB* D5S 0
0D , ~9!

with the definitions

M1511 i ~k'
2 2D1!22 f ~j!uA1

0u2, ~10a!

M252 f ~j!~A1
0!2. ~10b!

Equation~9! has nontrivial solutions when the eigenvaluel
fulfills the following equation:

l21b1l1b2~k'
2 !50, ~11!

where

b152~122 f r uA1
0u2!, ~12a!

FIG. 2. The real part~full curve! and imaginary part~dotted
curve! of the functionf (j).
,
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b2~k'
2 !5k'

4 22@D112 f i uA1
0u2#k'

2 1~11D1
2!

14~D1f i2 f r !uA1
0u213u f u2uA1

0u4. ~12b!

Here subscriptsr and i denote real and imaginary parts, r
spectively. The homogeneous solution destabilizes when
real part of the largest eigenvaluel r exceeds zero. Since
b1.0 the largest eigenvalue is given by

l5
b1

2 S 211A12
4b2~k'

2 !

b1
2 D , ~13!

i.e., the instability threshold condition isb2(k'
2 )50. The

imaginary part of the eigenvalue vanishes at threshold so
instability is frequency degenerate, or nonoscillatory. This
different from doubly resonant SHG where oscillatory ins
bilities leading to self-pulsing are found@14#.

Two different types of instabilities appear in the sing
resonant configuration. Assuming perturbations withk'50,
limit points characterizing bistability of the homogeneo
solutions are obtained,

uA1,b
0,6u25

2~ f r2D1f i !

3u f u2 S 16A12
3u f u2~11D1

2!

4~D1f i2 f r !
2 D .

~14!

Bistability is only possible whenf i and D1 have opposite
signs, which from Fig. 2 is seen to correspond to oppo
signs of the detuningD1 and the phase-mismatch parame
j, i.e., sgn(jD1),0. Furthermore, the absolute value ofD1
has to be sufficiently large. From numerical solutions t
condition uD1u*1.7 is obtained.

Transverse patterns appear due to instabilities to pertu
tions with k'Þ0. An additional condition determining th
transverse threshold is]l r /]k'

2 50 or equivalently
]b2 /]k'

2 50. This gives the wave-numberkc of the pertur-
bation with the largest growth rate. Hence, the homogene
solutions destabilize to transverse perturbations at an int
avity amplitude given by

uA1,t
0 u25

1

u f u12 f r
, ~15!

with transverse wave number

kc5AD112 f i uA1,t
0 u2. ~16!

Equation~15! is valid whenf i
2.3 f r

2 . If the inequality is not
satisfied there is no spatially periodic transverse instabil
The amplitude of the intracavity fieldA1

0 can from Eq.~6a!
be related to the pump field amplitudeE by

E25@11D1
212~D1f i2 f r !uA1

0u21u f u2uA1
0u4#uA1

0u2.
~17!

The equation has been squared to avoid dependence o
phase ofA1

0.
In Fig. 3 the limit points for bistability~dotted curves! are

shown together with the threshold for the transverse insta
ity as a function of the SHG phase-mismatch parameterj in
the caseD156. Decreasing the detuning transverse instab
ties, in general, exist in a smaller interval of values of p
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PRA 60 3255PATTERN FORMATION IN SINGLY RESONANT . . .
rameterj. This can be seen from Eq.~16! since a small or
negativeD1 can lead to unphysical imaginary values ofkc .
Figure 4 shows the variation of the critical wave numb
with j for three values of the fundamental detuningD1 .

As was already mentioned diffraction of the secon
harmonic field has been neglected in the above analysis
justify this approximation it can be included iteratively in th
solution of Eq.~1b!. This leads to the following second-orde
modification of Eq.~3! in the case where the parametric pa
are not excited:

E 2
(2)~z!5k

eiDkz21

Dk
E 1

21
a2k

Dk S eiDkz21

Dk
2 izD¹'

2 E 1
2 .

~18!

The extra diffractive term leads to an additional term in t
mean-field equation for the intracavity amplitude. Thus E
~6a! for the fundamental generalizes to

]A1

]t
5~211 iD1!A11 f ~j!uA1u2A11

1

2
g1tp~j!A1* ¹'

2 A1
2

1 i¹'
2 A11E, ~19!

where

p~j1!5 i
11e22i j1

j1
2 1

e22i j121

j1
3 . ~20!

The real and imaginary parts ofp(j) are plotted in Fig. 5.
Including the extra term in the linear stability analysis lea
to an equation of the same form as Eq.~9! but with modified
Mi ,

FIG. 3. The fundamental pump amplitudeE necessary to reach
the bistability limit points~dotted curves! and transverse-instability
threshold~full curve! as a function ofj for D156. Also shown is
the threshold for the onset of the competing parametric proc
~dashed curve!.

FIG. 4. The variation of the critical wave numberkc
2 with j for

D156 ~full curve!, D150 ~dashed curve!, and D1522 ~dotted
curve!.
r

-
To

.

s

M1511 i ~k'
2 2D1!1uA1

0u2@g1tp~j!k'
2 22 f ~j!#,

~21a!

M252 f ~j!~A1
0!2. ~21b!

The term containing the functionp(j) is seen to be negli-
gible provided

g1tpr~j!k'
2 uA1

0u2!1, ~22a!

g1tpi~j!uA1
0u2!1. ~22b!

Clearly,g1t!1 since this is an assumption necessary for
validity of the mean-field description. Using this togeth
with typical threshold values ofk'

2 and uA1
0u2 from Figs. 4

and 6, and values ofp(j) from Fig. 5, the conditions are
seen to hold in the threshold analysis for almost all values
the SHG phase-mismatch parameterj. Only in the very lim-
ited region close to the boundary of existence of the tra
verse instability might the approximation not be appropria
However, this region is not of great interest due to the c
responding dramatic increase in the instability threshold
leads, in addition, to a breakdown of the assumptions m
for the mean-field description. Similar argumentation can
used to neglect the iterative terms in the analysis of
mean-field equations forA6 presented in the next section
This demonstrates the consistency of Eqs.~6! for the pre-
sented threshold calculations.

C. Competing parametric process

The threshold for the competing parametric oscillation
calculated in this section. It can be obtained from a stabi
analysis of the ground-state solutionsA650, by intro-

FIG. 5. The real part~full curve! and imaginary part~dotted
curve! of the functionp(j).

FIG. 6. The variation of the intracavity fundamental intens
with j. From Eq. ~15! uA1,t

0 u2 is found to be independent of th
fundamental detuningD1 . However, only values ofj andD1 where
kc is real and positive correspond to an instability.

ss
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3256 PRA 60P. LODAHL AND M. SAFFMAN
ducing the perturbationsA15dA1el̃t1 i k̃'•r and A2

5dA2el̃* t2 i k̃'•r. The calculation is similar to the one pre
sented in@36# and leads to the threshold

uA1,p
0 u25

A11~ k̃'
2 2D1!2

uh~ j̃,j!u
. ~23!

Here, energy conservation expressed asD11D252D1 has
been used.

The parameterj̃ is free in the sense that the paramet
pair with the largest gain~lowest threshold! will be selected.
Therefore, the threshold for onset of parametric oscillation
obtained from Eq.~23! by maximizinguh( j̃,j)u with respect
to j̃, which leads toj̃50 or j̃5j. Since the down-converte
frequencies are assumed to be within the phase-matc
bandwidth of the fundamental frequencyj5 j̃

can be fulfilled. We find uh( j̃50,j)u5uh( j̃5j,j)u
5ue2i j22i j21u/j2. Similarly, the parametric photons wi
be emitted with the value of the transverse wave-numberk̃' ,
which lowers the threshold. For positive detuningD1.0 the
critical wave-numberk̃'5AD1 is selected leading to off-axi
emission. In the case of negative detuningk̃'50, and the
down-converted fields have a homogeneous spatial struc

In Fig. 7 the threshold for the parametric process is p
ted at resonance (D150) together with the threshold for th
transverse instability. Here, the parametric-generation thr
old is seen to be below the pattern-forming threshold. T
was also found to be the case for almost all values ofj for
D156 ~Fig. 3!. Thus, the limitation of the pure SHG calcu
lation presented in the previous section is pointed out, an
more general analysis would also have to include nonvan
ing amplitudes of the parametric fields. However, it is wo
noticing that the pure SHG description is a good approxim
tion when describing the behavior close to the parame
threshold where the parametric term in Eq.~6a! is negligible
compared to the cubic nonlinearity of the fundamental fie
Furthermore, it is possible to choose the fundamental de
ing so that the transverse instability threshold is below
parametric threshold for all values ofj and thus the pure
SHG description is strictly valid. An example is given in Fi
8 for D1522.

It is worth emphasizing that apart from complicating t
analysis of the linear instability thresholds, the existence
the competing parametric process can have a strong no
ear influence on the subsequent pattern formation. Ind

FIG. 7. The transverse instability threshold~full curve! and the
threshold for the parametric process~dotted curve! as a function of
j for D150.
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the mentioned off-axis emission of parametric pairs is
mechanism for pattern formation in the ordinary OPO. T
is also the case in the subharmonic pumped OPO as is d
onstrated numerically in the next section.

III. NUMERICAL ANALYSIS

A. Singly resonant SHG

In this section we study the above-threshold behavior
merically, assuming that the parametric process does not
ticipate in the dynamics. We thus solve the equation

]A1

]t
5~211 iD1!A11 f ~j!uA1u2A11 i¹'

2 A11E. ~24!

In this approximation the second-harmonic field is given
A2(2L)5g(j)A1

2 .
As already noted this equation is of the same type as th

that arise in descriptions of driven cavities containing a m
dium with cubic nonlinearity@34,35#. We thus expect, and
indeed find, spatial structures including periodic patterns
localized states, which are known from previous studies
nonlinear cavities. Equation~24! was solved using a split
step algorithm on a square domain with periodic bound
conditions and a constant, position-independent pump am
tude E. Grid sizes of 32332 up to 1283128 points were
used. The forcing, linear, and nonlinear terms were solve
real space using a Runge-Kutta routine, while the diffract
term was solved in Fourier space. As a check on the res
an alternative operator splitting where the forcing and lin
terms were accounted for in Fourier space was also used
significant numerical difference was found between the t
approaches. The dynamics were seeded by starting the
culation with a small amount of random noise in the cav
field A1 , and then integrating until the temporal transien
had died out. Integration was stopped when the calcula
mean and peak amplitudes were stable to an accuracy
least 1024. Depending on parameters typical time steps w
1023– 1024 and integration times to reach stationary con
tions were up to several thousand time units.

Figure 9 shows an example of hexagonal pattern form
tion for a focusing nonlinearity withD1522 and j54.5.
For these parameters the mean intracavity amplitude
single-valued function of the pump amplitudeE. From Fig. 9
we see that this corresponds to a situation where the p
metric threshold is higher than that of the transverse insta

FIG. 8. The transverse instability threshold~full curve! and the
threshold for the parametric process~dotted curve! for D1522.
The bistability is not shown since it appears almost on top of
transverse instability.
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ity, so that Eq.~24! is a good approximation. From Eqs.~15!
and ~17! the threshold for transverse instability occurs atE
.2.85, which agrees closely with the onset of instabil
observed numerically. The hexagonal patterns seen in
the fundamental and second-harmonic fields were obta
after integrating for several hundred time constants. Th
patterns are sometimes free of defects, and sometimes
tain a few, depending on the initial conditions and integ
tion time. The patterns appear as a modulation on a unif
background for both the fundamental and the seco
harmonic field. Since the second harmonic leaving the ca
is proportional to the intracavity field squared, the patte
appears on top of a relatively weaker background, than d
the pattern in the fundamental.

For other values of detuning and phase mismatch ei
transverse instabilities or parametric generation may have
lowest threshold. However, whenD1 is non-negative andj
5np with n integer, the two thresholds are strictly equal a
the pure SHG approximation is a reasonable one clos
threshold. An example of pattern formation in such a case
D156 and j56.1 ~for which the intracavity amplitude is
single valued! is shown in Fig. 10. There are branches w
apparently stable hexagonal and square patterns that ca
accessed by changing the initial conditions or the pump
plitude.

An additional numerical check on the validity of th
mean-field model was made in the pure SHG limit by
rectly integrating propagation Eqs.~1a! and ~1b! from z50
to z52L, updating the fields in time atz52L with boundary

FIG. 9. Hexagonal patterns in a pure SHG forD1522 andj
54.5. The solid line is the plane-wave solution of Eq.~17! while
the filled triangles give the maximum value ofuA1u. The open tri-
angles are the maximum value ofuA1u in the presence of parametri
down conversion, while the open squares give the maximum v
of uA6u. The calculations were made on a square domain of
25325.

FIG. 10. Intensity distribution of the second-harmonic fie
uA2(2L)u2 for D156 andj56.1. ~a! E513.20 and~b! E512.25.
The window size is 15315.
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conditions corresponding to the input coupler, propagat
the fields again, and so on. Although this direct approac
generally more time consuming than solving the mean-fi
equations since we calculate the fields as functions
(x,y,z,t) instead of just (x,y,t) in the mean-field model, it
has the advantage of being correct, even when the appr
mations leading to the mean-field model break down. R
caling the variables in Eqs.~1a! and ~1b! as A1P5kLE1 ,
A2P5 ikLe2 iDkzE2 , zP5z/L, andr P5(2k1 /L)1/2r , and ne-
glecting the parametric fields, gives the normalized set

]A1P
(m)

]zP
2 i¹'P

2 A1P
(m)5A1P

(m)* A2P
(m) , ~25a!

]A2P
(m)

]zP
2

i

2
¹'P

2 A2P
(m)1 i jA2P

(m)52A1P
(m)2. ~25b!

In Eq. ~25! the fields are functions of the continuous spat
variables (x,y,z) and the discrete time variabletm5mt in-
dicated by the superscript.

These are solved together with the normalized cav
boundary conditions

A1P
(m11)~r P ,zP50!5EP1A12TeiD1PA1P

(m)~r P ,zP52!,
~26a!

A2P
(m)~r P ,zP50!50, ~26b!

whereEP5ATkLEin andD1P5(T/2)D1 .
Figure 11 compares the mean-field and propagation

culation results for the homogeneous intracavity amplitu
~neglecting diffraction! as a function of pump amplitudeE.
For the parameters used the mean-field result for the thr
old for transverse instability of the fundamental isEt515.8
~see Fig. 14 below!. Calculations are given for cavity trans
mission losses ofT50.05 and 0.2. For the smaller transmi
sion value there is no visible difference betweeen mean-fi
and Maxwell equation results. Even forT50.2, which is
many times higher than typical experimental values of
cavity transmission~see Sec. IV B!, there is only a few per-

e
e

FIG. 11. Comparison of mean-field and propagation equa
calculations forD156 andj54.5. The solid line shows the mean
field result for the plane-wave intracavity amplitude from Eq.~17!
while the filled squares and circles are numerical results obta
from Eqs.~25! and~26!. The open squares show the peak amplitu
of the hexagonal pattern in the fundamental field and the vert
dotted line indicates the mean-field result for the threshold of tra
verse instability. Mean-field and propagation equation results w
plotted on the same figure using the relationsA15A2/TA1P and
E5(A8/T3/2)EP .
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cent difference between the two calculations at a pump
plitude about twice the transverse instability threshold.

Numerical results for instability thresholds, spatial stru
tures, and characteristic transverse wave number, were
erally consistent with the results obtained from the me
field equations. For example the mean-field prediction for
wave number of the transverse instability for the parame
of Fig. 11 iskc53.07. Numerical solution of the propagatio
equations withT50.05 resulted in a periodic hexagonal pa
tern with ~after rescaling to mean-field values! kcP.3.3,
which agrees to within 10% of the mean-field analysis. T
peak amplitude of the hexagonal pattern as a function of
pump amplitude is shown by the open squares in Fig.
~compare with the filled squares in Fig. 14 for the mean-fi
result!. The pump amplitude at the threshold of transve
instability as calculated from the mean-field theory a
propagation equations is also seen to agree closely. A m
detailed comparison of results obtained from propaga
equations with the predictions of the mean-field descript
will be given elsewhere.

Localized states, also called cavity solitons, appear
parameter values where the plane-wave solution exhibits
stability. Looking for conditions where the parametr
threshold is equal to that of the transverse instability wo
suggest choosingj5np. However, f (j) is then purely
imaginary and we recover the Kerr limit of Eq.~24! in which
case cavity solitons are unstable@37#. We choose, therefore
a somewhat different value ofj that adds an effective ab
sorptive component to the nonlinearity, and leads to sta
cavity solitons@38#.

Figure 12 gives an example of a localized state obtai
for D1526 andj54.5. For these parameter values the s
tem is bistable. The solution was seeded by adding a Ga
ian perturbation to the driving fieldE with a width similar to
the localized state. The Gaussian seed was switched off
a few time constants, after which the evolution was follow
numerically. The depicted solution has only very weak rin
around the central lobe and was stable for hundreds of t

FIG. 12. Localized states obtained forD1526 andj54.5. The
solid ~dashed! line is the stable~unstable! part of the plane-wave
solution of Eq.~17!. The filled circles give the maximum value o
uA1u, the open circles are the maximum value ofuA1u when the
parametric process is allowed, and the open squares are the m
mum value ofuA6u. The inset showsuA1u2 on a window of size 9
39.
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constants. For more vigorous initial seeding solutions w
several coexisting localized states were obtained.

B. Singly resonant SHG with parametric generation

In this section we investigate the validity of the pure SH
description of the cavity dynamics. We thus solve Eqs.~6!
for the intracavity fields, and use Eq.~7! for the resulting
second harmonic. In the calculations below we have for s
plicity taken D15D25D1 , and, in order to minimize the
parametric threshold,j̃5j.

One effect of the competing parametric generation is
damp the patterns at high values of the pump parameter.
is seen in Fig. 9 where the open triangles and squares s
the maximum amplitudes of the fundamental and parame
fields as a function of the pump amplitudeE. The threshold
for parametric generation isE.3.40. Below this point the
parametric fields are unexcited. As the pump amplitude
increased beyond this threshold the parametric fields g

FIG. 13. Intensity distribution of all four fields obtained for th
parameters of Fig. 9, andE53.45.

FIG. 14. Dependence of the intracavity fields on the pump a
plitude when the parametric threshold is lower than that of the S
transverse instability.D156 andj54.5. The solid line is the plane
wave solution of Eq.~17!, the filled squares give the maximum
value of uA1u without parametric oscillation, the open squares g
the maximum value ofuA1u with parametric oscillation, and the
open triangles give the maximum value ofuA6u.
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while the intracavity fundamental decreases. Thus, the m
effect of the parametric process in this situation is to
crease the level of the intracavity field. The parametric fie
are modulated with the same hexagonal symmetry see
the fundamental and second-harmonic fields as shown in
13 obtained forE.3.45. The figure was obtained befo
complete relaxation of the fields so that some nonuniform
particularly in the parametric fields, is visible. The two pa
metric fields are seen to have very similar intensity distrib
tions. Note also that they appear on a vanishing backgro
as opposed to the fundamental and second harmonics
pump amplitudes ofE;4 and higher the maximum ampl
tudes of both the fundamental and the parametric fields s
rate and even fall slightly. At these high-pump conditions
hexagonal symmetry is no longer perfect, and defects in
patterns appear.

The parametric process can also be excited below
threshold of transverse instability. In Fig. 14 we have tak
D156 andj54.5 that gives a parametric generation thre
old at Ep510.7, while the fundamental first becomes tran
versely unstable atEt515.8. The numerical results reve
that the fundamental and parametric beams take on fi
values forE.Ep ; however, there is no spatial structure. T
fundamental is emitted as an on-axis plane wave while
parametric beams are emitted as plane waves with an an

FIG. 15. Intensity distributions for the same parameters as
14 atE516.75. The intracavity amplitude is a single-valued fun
tion of the pump amplitude. The window size is 12312.
in
-
s
in

ig.

,
-
-
d,
or

u-
e
e

e
n
-
-

te

e
lar

tilt given by kc56AD1. Thus, belowEt the subharmonic-
pumped OPO exhibits the same features as the sec
harmonic-pumped OPO@5#. WhenE.Et transverse instabil-
ity sets in, and there is a cooperative effect leading to a sh
rise in the peak amplitude of the parametric fields, as see
Fig. 14. ForE not too far aboveEt roll structures, with some
transverse modulation are seen, as shown in Fig. 15. Incr
ing E further leads to patterns with predominantly squa
symmetry.

Finally, we show in Fig. 16 that localized states can c
exist in the four interacting fields. The parameters were
same as those used in Fig. 12, except that strong initial s
ing was used to generate multiple solitons. The parame
threshold for the parameters of the figure is atE.8.7, which
coincides within a few percent with the onset of parame
cavity solitons seen numerically. Generation of solitons
the parametric fields serves also to dampen slightly the p
amplitude of the fundamental solitons, as seen in Fig.
where the data points were obtained for the case of a si
soliton in the computation window.

IV. EXPERIMENTAL FEASIBILITY

In this section we discuss the experimental feasibility
observing transverse instabilities in singly resonant SHG
Sec. IV A the effect of propagation losses of a Gauss
pump beam in a plane cavity is accounted for, while nume
cal estimates of the pattern formation threshold are given
Sec. IV B.

A. Propagation losses

In the theoretical model the electric-field amplitudes we
treated as plane waves. In a real experiment the propaga
spread of a Gaussian beam inside the plane cavity will l
to effectively lower buildup compared to the plane-wave e
pression. This can be a serious problem if the Rayle
length of the Gaussian beam is not sufficiently large co
pared to the cavity length, since the fields effectively exp
rience many roundtrips in the cavity. The importance of t
propagation losses will in the following be investigated
numerical integration of the Gaussian beam propaga
equations.

We define the intracavity build-up factor as the ratio
the intracavity power to the external pump power:B
5Pc /Pp . The plane-wave expression is given by

BPW5
T

S 12A12T2TL1
1

2
PcENLD 2 , ~27!

g.
-

ll

ve
ch
12
FIG. 16. Localized states coexisting in a
four fields. The spatial distribution ofuA2u2 was
the same as that in the other fields. The plots ha
been scaled to give the same visual height in ea
field. The parameters were the same as in Fig.
and the pump amplitude wasE510.
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with the nonlinearity of the crystal defined through the co
ficient ENL5P2 /P1

2, whereP2 is the power generated from
an inputP1 in a single-pass propagation through the cav
of length 2L. Thus,PcENL is the nonlinear loss of the fun
damental, which adds to the transmission loss. For the
perimental parameters presented below the nonlinear
turns out to be completely negligible compared to pass
losses and can, therefore, be omitted in the following. T
intracavity electric field of the Gaussian beam is calcula
from

Etot5AT (
m50

`

~12T!m/2~12TL!m/2E~r ,z52mL!. ~28!

Here, the Gaussian beam field amplitude is given by

E~r ,z!5
A

11z/q0
ei ~np/l0!@1/~q01z!# r 2

, ~29!

with amplitudeA and complex parameterq052 inpw0
2/l0

assuming the beam waist is positioned atz50. The build-up
factor for a Gaussian beamBGB is obtained by integrating
the modulus of the total electric fielduEtotu2 over the trans-
verse plane to get the power and dividing by the input pu
power

BGB5
*0

`r uEtot~r !u2dr

*0
`r uAu2e22r 2/w0

2
dr

. ~30!

Sum~28! is calculated numerically. The necessary numbe
terms to include depends on the value of the input cou
transmissionT; typically, about 5000 terms were sufficien
Numerical estimates of the importance of the propaga
loss are given in the following section.

B. Physical parameters corresponding to an instability
threshold

In order to relate the calculated thresholds to experime
parameters we will consider the case of noncritically te
perature phase-matched SHG in potassium niobate wher
effective nonlinearity coefficient isdeff521 pm/V @39#. The
coefficient k introduced in Eqs. ~1! is given by k
5v1deff /nc, wherev1 is the frequency of the fundament
field taken to be 2.231015Hz corresponding to a wavelengt
l05860 nm, andn.2.3 is the refractive index. Further
more, a cavity lengthL51 cm is assumed in addition to
typical residual round-trip loss ofTL51%. The waist radius
w0 of the fundamental beam is determined by a trade
since focusing is needed to enhance the nonlinearity w
too narrow focusing is not allowed in order to observe spa
structures. The spatial period of the transverse structur
L52p/kc and the number of spatial periods within th
Gaussian envelope of the pump beam is defined al
52w0 /L. Notice,kc now denotes the critical wave numb
in the original unscaled parameters and the relation to
scaled quantityk̄c is kc5 k̄cAg1tk1 /L. This leads tow0

5(p l / k̄c)A2L/@(T1TL)k1#.
Taking also the propagation loss into account as descr

in the previous section the expression for the fundame
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pump power necessary to reach the instability threshold
given by

P15
e0nc

2

pw0
2

2

BPW

BGB

uE inu2

5
e0n2c4p3l 2

16k̄c
2v1

3deff
2 L

~T1TL!2

T

BPW

BGB

E2, ~31!

wheree0 is the vacuum permittivity. From Fig. 7 the lowe
threshold is found to be atj52.9 whereE51.7 or uA1,t

0 u
51.2 corresponding tok̄c51.4 ~Fig. 4!. Figure 17 shows the
threshold power needed to reach instability and the co
sponding waist as a function of the transmission of the in
couplerT for l 51,2. The optimum input coupler choiceT
5TL corresponds to impedance matching of the cavity. T
lowest threshold appears to be on the order of 1 W, wh
should be readily attainable with existing high power ne
infrared continuous wave lasers. The corresponding ge
ated blue power is about 1 mW. The very poor convers
efficiency of the process is due to the introduced phase m
match and weak focusing necessary for observing transv
structures. The effect of including the propagation losses
to a threshold power increase of about 15% forl 51 and 2%
for l 52 compared to the plane-wave calculation.

In the above analysis the phase-matching bandwidth
the crystal was not taken into account. Indeed we assu
j5 j̃ could be fulfilled. In a short cavity the parametric pai
positioned an integer multiple of the free-spectral cav
length away from the fundamental frequency may lie outs
the phase-matching bandwidth. From@39# the phase-
matching bandwidth for a 2-cm-long potassium niobate cr
tal phase matched at 860 nm can be found to bedvbw
564 GHz. This should be compared with the free-spec
range vFSR541 GHz of the cavity. Thus, an increase
threshold for the parametric pairs is expected. Both
phase-matching bandwidth and the free-spectral range s
as 1/L, i.e., the analysis holds for all monolithic cavities.

FIG. 17. The pump power necessary to reach the transve
instability threshold~full curves! and the corresponding waist~dot-
ted curve! as a function of the transmission of the input couplerT
for l 51 ~lower curves! and l 52 ~upper curves!.
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nonmonolithic cavity could be used to avoid increasing
parametric threshold.

V. CONCLUSIONS

In this paper pattern formation in phase-mismatched S
in a plane-plane cavity, resonant only for the fundamen
field, has been investigated. Instability thresholds for bis
bility and transverse pattern formation were calculated. T
possibility of the second-harmonic field serving as a pu
for a competing parametric down-conversion process was
vestigated. Parameter regimes were identified where e
transverse instability of pure SHG or parametric genera
have the lowest threshold. In the former case numer
analysis revealed periodic patterns, as well as localized st
tures, similar to those found earlier in doubly resonant int
cavity SHG. The presence of parametric generation affe
the amplitude of the generated patterns, but does not ch
their spatial structure.

Alternatively, when the parametric threshold is lower th
that of the transverse instability the parametric process
influences the spatial structure of the patterns. Below
L
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e

G
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e
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er
n
al
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-
ts
ge

so
e

transverse-instability threshold the normal picture of pa
metric generation of tilted plane waves is observed. Wh
the pump amplitude is increased beyond the transve
instability threshold the parametric process affects the spa
patterns so that roll-like structures are seen, instead of
hexagons or squares otherwise observed in SHG. In add
to periodic patterns, excitation of cavity solitons is possib
Depending on the parameters chosen they can exist in
SHG, or in all four fields simultaneously. Finally, numeric
estimates of the pump power necessary to reach transv
instability given realizable experimental parameters w
given. The thresholds are considerably higher than in a d
bly resonant SHG, yet attainable with available continuo
wave laser sources.
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