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We develop a self-consistent finite-element method to quantitatively study spontaneous emission from emit-
ters in nanoscale proximity of plasmonic waveguides. In the model, it is assumed that only one guided mode
is dominatingly excited by the quantum emitter, while the cross section of the plasmonic waveguide can be
arbitrary. The fraction of the energy coupled to the plasmonic mode can be calculated exactly, which can be
used to determine the efficiency with which single optical plasmons are generated. We apply our numerical
method to calculate the coupling of a quantum emitter to a cylindrical metallic nanowire and a square metallic
waveguide, and compare the cylindrical metallic nanowire with previous work that employs quasistatic ap-
proximation. For the cylindrical metallic nanowire we observe good agreement with the quasistatic approxi-
mation for radii below 10 nm, but for increasing radius the spontaneous emission � factor and the plasmonic
decay rate deviate substantially, by factors of up to 5–10 for a radius of �100 nm, from the values obtained
in the quasistatic approximation. We also show that the quasistatic approximation is typically valid when the
radius is less than the skin depth of the metals at optical frequencies. For the square metallic waveguide we
estimate an optimized value for the spontaneous emission � factor up to 80%.

DOI: 10.1103/PhysRevB.81.125431 PACS number�s�: 73.20.Mf, 78.55.-m, 42.50.Pq, 03.67.-a

I. INTRODUCTION

It has long been realized that the spontaneous emission
rate is not an intrinsic property of a quantum emitter itself.1

The general explanation is that the spontaneous emission rate
depends on the transition strength between the upper and
lower levels of the quantum emitter as well as the local den-
sity of optical states. The local density of states �LDOS�
measures the available number of electromagnetic modes
into which the photons can be emitted at a specific location
of the emitter and can be manipulated by tailoring the pho-
tonic environment of the emitter. A number of structures
such as interfaces,2,3 cavities,4,5 photonic crystals,6,7 and
waveguides8,9 have already been used to modify the sponta-
neous emission rate. Apart from fundamental studies, engi-
neering the spontaneous emission rate of a quantum emitter
can lead to new possibilities to boost the efficiency of opto-
electronic devices, i.e., single-photon sources, low threshold
lasers, and LED lightening.

As an alternative to dielectric materials, the spontaneous
emission rate can be manipulated by subwavelength metallic
systems, which support surface plasmon polaritons. Surface
plasmon polaritons are electromagnetic excitations associ-
ated with charge density waves on the surface of a conduct-
ing object. The tight confinement of the electromagnetic field
to the metal-dielectric interface due to the boundary condi-
tion constraints gives the possibility of inventing new ways
to enhance light-matter interaction, such as efficient single
optical plasmon generation,10,11 single molecule detection
with surface-enhanced Raman scattering,12,13 enhanced pho-
toluminescence from quantum wells,14 and nanoantenna
modified spontaneous emission.15–17

Although limited by the intrinsic losses of the metals in
the optical frequency range, different metallic structures have
been extensively studied in the last few years due to the
possibilities of integration and miniaturization. The dramatic
enhancement of the field intensity due to the field concentra-

tion and geometric slowing down of the mode propagation
provides an excellent platform to study single-photon nonlin-
ear optics18 and light-matter interaction at the single-emitter-
single-photon level. There are also considerable interests in
surface plasmons for subwavelength optics19 and applica-
tions in sensing, near-field imaging, waveguiding, and
switching below the diffraction limit.20–23 The study of plas-
monic effects to enhance light-matter interaction and the
preferential spontaneous emission from, e.g., a quantum dot
into a desired mode is currently a hot research topic. It is
important for solid-state quantum information devices as
well as for improving our understanding of light-matter in-
teraction at the nanoscale. So far, there are only a few theo-
retical papers11,24on this topic, and they employ simplifying
assumptions that limit their applicability for analyzing real-
istic structures, e.g., by assuming geometrical shapes that are
not readily achievable using current fabrication technology
and making assumptions that are only valid at some length
scales. The realistic description of all competing, radiative
and nonradiative, decay channels for an emitter placed in
close proximity to a plasmonic waveguide of general geom-
etry is important in order to understand the physics and the
fundamental limitations.

The present paper focuses on modeling of the spontane-
ous emission of a quantum emitter at nanoscale proximity to
realistic plasmonic waveguides by using a finite-element
method �FEM� with special emphasis on calculating the
spontaneous emission � factor. The � factor describes the
fraction of the emitted energy that is coupled to the plas-
monic mode. Subwavelength waveguiding of plasmons in
metallic structures has been studied theoretically22,25 and has
also been observed in a number of recent experiments.23 En-
hanced spontaneous emission of an emitter coupled to plas-
monic waveguides has been proposed11,26 and experimentally
demonstrated10 recently. Chang et al.24 studied the spontane-
ous emission of an emitter coupled to a metallic nanowire by
exploiting, except for a single example, the quasistatic ap-

PHYSICAL REVIEW B 81, 125431 �2010�

1098-0121/2010/81�12�/125431�11� ©2010 The American Physical Society125431-1

http://dx.doi.org/10.1103/PhysRevB.81.125431


proximation. Their model qualitatively shows that, for small
nanowire radii, it is possible to obtain efficient coupling
without taking into account the wave properties of the plas-
monic mode. Jun et al.26 employed an finite-difference time-
domain �FDTD� numerical method to study the different
spontaneous emission decay rates of an emitter coupled to a
metallic slot waveguide, but using simplifying assumptions
for the LDOS calculations of the plasmonic mode. A self-
consistent model with rigorous treatment of all the spontane-
ous decay rates involved, i.e., radiative as well as nonradia-
tive, has not been presented in the literature. The aim of this
paper is to provide such a detailed modeling and to extend
earlier results to realistic structures.

This paper is organized as follows. In Sec. II, the compu-
tational principle and the numerical method are presented.
First we study the dispersion relation and the mode proper-
ties of the plasmonic waveguide, and then we calculate the
decay rate into the plasmonic channel in a two-dimensional
�2D� model by taking advantage of the translational symme-
try of the waveguides. Finally, the wave equation with a
current source is solved numerically for a full three-
dimensional �3D� configuration, and the total decay rate of
the quantum emitter is extracted by calculating the total
power emitted from the current source. Section III presents
results obtained by applying the numerical method to two
different plasmonic waveguides. The results for the cylindri-
cal nanowire are compared to those obtained in the quasi-
static approximation. We observe substantial differences and
give a qualitative assessment regarding the validity of the
quasistatic approximation. As an inspiration for many other
geometries, which are particularly interesting when consid-
ering available fabrication technology, the square plasmonic
waveguide is also studied. Section IV concludes the paper.

II. COMPUTATIONAL APPROACH

As shown in Fig. 1, we consider an ideal quantum emitter
coupled to a plasmonic waveguide. The excitation energy of
the quantum emitter can be dissipated either radiatively or
nonradiatively. Radiative relaxation is associated with the
emission of a photon, whereas nonradiative relaxation can be
various pathways such as coupling to vibrations, resistive
heating of the environment, or quenching by other quantum
emitters. The resistive heating of the metallic waveguide is
the only mechanism of nonradiative relaxation considered in
our model. The quantum emitter is positioned in the vicinity
of the metallic nanowire, thus there are three channels for the
quantum emitter to decay into, i.e., the radiative channel, the
plasmonic channel, and the nonradiative channel. The corre-
sponding decay rates are denoted by �rad, �pl, and �nonrad,
respectively. The radiative channel accounts for the sponta-
neous emission in the form of far field radiation. The plas-
monic channel is the excitation of the plasmonic mode,
which is guided by the plasmonic waveguide. The nonradia-
tive channel is associated with the resistive heating of the
lossy metals, which is due to electron-hole pair generation
inside the metals. The spontaneous emission � factor is de-
fined by �=

�pl

�total
, where �total is the sum of the three rates,

�total=�rad+�nonrad+�pl. The � factor gives the probability

that the quantum emitter excites a single plasmonic mode.

A. Dispersion relation and decay rate into the plasmonic
channel

The starting point of the numerical analysis of the wave-
guide is the wave equation for the electric field,

� � �� � Ē�r̄�
�r

� − k0
2��r̄�Ē�r̄� = 0, �1�

where k0=���0�0 is the vacuum wave number, ��r̄� denotes
the dielectric function relative to vacuum, and �r represents
the relative permeability constant, which is assumed to be 1
throughout the paper. Due to the invariance along the Z axis,
the Z dependence of the solution to the wave equation must
be that of a plane wave �complex exponential�,

Ē�x,y,z� = Ē��x,y�e−j��t−�z�. �2�

For the guided plasmonic modes, at a specific frequency �,
two quantization indices are needed to specify a complete set
of orthogonal modes, i.e., �= �p ,��. � denotes the propaga-
tion constant �the component of the wave vector along the Z
axis�, and the index p represents the polarization of the
mode. The waveguide structure examined consists of two
regions � and 	. � is the lossy metal core, which is sur-
rounded by an infinite lossless dielectric medium 	. The
transverse component of the wave vector, defined as ki�

= j
i�, fulfills j
i�=��2

c2 �i−�2 with i� 	� ,	
, where �i is
the relative permittivity.

Radiation
channel

Plasmonic
channel

Nonradiative
channel

FIG. 1. �Color� Different emission channels involved in the de-
cay process of a quantum emitter �red dot� coupled to a plasmonic
waveguide. In the radiation channel the photons are traveling in free
space. In the plasmonic channel the plasmonic modes are excited
and guided by the metallic nanowire. In the nonradiative channel,
electron-hole pairs are generated.
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The FEM method is utilized as a numerical tool to calcu-
late the guided plasmonic modes, the reason for choosing
this method will be discussed later. The infinite dielectric
medium is truncated to perform the finite-element analysis of
the waveguide structure by placing the structure inside a
computational window, which is large enough to guarantee
the field vanishing at the boundary. Here, we consider an
optical wavelength of 1 �m and the relative optical permit-
tivities of the waveguide are ��=−50+3.85i and �	=2, cor-
responding to gold27 and an ordinary polymer, i.e., polym-
ethylmethacrylate �PMMA�. The dispersion and the field
orientation of the possible modes for cylindrical and square
waveguides are presented in Figs. 2 and 3, respectively. As
shown in the inset of Fig. 2, these modes can be represented
by two indices, where the first index corresponds to the mode
with angular moment of m and the second index describes
the polarization degenerate mode with the same m. For ex-

ample, if Em,0 denotes a mode related with angular moment
of m, then Em,� denotes the corresponding degenerated mode,
the field distribution of which is rotated by � along the Z axis
compared with Em,0, where �=� /2m. As pointed out by Ta-
kahara et al.,22 the fundamental mode E�0,0� does not have a
cut-off size of the radius, which is confirmed by the disper-
sion relation in Fig. 2. The modes supported by the metallic
nanowire preserve the cylindrical symmetry of the wave-
guide. Due to the constraints from the boundary condition,
only TM modes exist. For the square surface plasmon polar-
iton waveguides, the fundamental modes, which were stud-
ied by Jung et al.,28 can be labeled in terms of two indices,
which denote the number of sign changes in the dominant
component of the electric field along the X and Y axes, re-
spectively. Both plasmonic waveguides support one funda-
mental mode �E0,0� without any cut-off size of the metal
core, and the corresponding propagation constants increase
when the size of the metal core is further shrunk, which
slows down the propagating plasmonic mode. Such geomet-
ric slowing down enhances the LDOS and the coupling effi-
ciency to a nearby quantum emitter. We note that plasmonic
modes supported by the metallic strips attracted considerable
interest recently, due to the tight confinement of the field as
well as the long-range propagation.29–32 In the following cal-
culations, the size of the metal core is restricted to be below
the cut-off size of higher order modes so that only a single
mode is supported. We note that apart from the highly local-
ized mode, a weakly localized mode also exists. However,
since the contribution to the total decay rate from such a
weakly guided mode is small, we simply treat this mode as
one of the radiation modes in our model.

The electric field dyadic Green’s function for a specific
guided plasmonic mode is constructed from the numerical
calculation of the electric field. In the following part we will
explain how to construct the electric field dyadic Green’s
function for one guided plasmonic mode.33

The electric dyadic Green’s function G� �r̄ , r̄� ,�� is defined
by

	� � � � − k0
2��r̄�
G� �r̄, r̄�,�� = I�
�r̄ − r̄�� , �3�

where I� is the unit dyad. Rigorously speaking, the operator

defined by L̂= 	����−k0
2��r̄�
 does not have a set of com-

plete and orthogonal eigenmodes due to its non-Hermitian
character if ��r̄� is complex. Without loss of generality, we
adopt biorthogonality in the present paper to form a complete
set of “orthogonal” modes of the waveguides initially, and
then we will end up with an approximation from the power

orthogonality for the plasmonic waveguides. Suppose that Ēn

is a set of eigensolutions defined by L̂, the biorthogonal

modes Ēm
† are defined as the eigensolutions of the adjoint

operator denoted by L̂†, which is obtained from the operator

L̂ by replacing ��r̄� with its complex conjugate. The bior-
thogonality condition is then given by

� ��r̄�Ēn�r̄� · 	Ēm
† �r̄�
�d3r = 
nmNn, �4�

with the completeness relation �n
��r̄�Ēn�r̄�	Ēn

†�r̄��
�

Nn
= I�
�r̄− r̄��.

From the biorthogonal completeness relation, the dyadic
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FIG. 2. Dispersion relation versus radius for the cylindrical gold
nanowire with the background medium of PMMA �n=1.414� at the
wavelength of 1 �m. Inset �a� shows the waveguide structure. Inset
�b�–�g� show electric field orientation of the possible eigenmodes
supported by the waveguide.
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Green’s function G� �r̄ , r̄� ,�� can be constructed from the
eigenfunction expansion as follows:33

G� �r̄, r̄��� = G� GL�r̄, r̄��� + G� GL�r̄, r̄��� = �
n

Ēn�r̄�	Ēn
†�r̄��
�

Nn�n

+ �
n

��n�r̄�	��n
†�r̄��
�

Mnk0
2 , �5�

where the generalized transverse part of the dyadic Green’s

function, G� GT, is constructed from the complete set of trans-

verse eigenfunction Ēn�r̄� given by

− � � � � Ēn�r̄� + k0
2��r̄�Ēn�r̄� = �n��r̄�Ēn�r̄� ,

� · 	��r̄�Ēn�r̄�
 = 0 �6�

with the eigenvalue �n. The longitudinal or quasistatic part

G� GL is constructed from longitudinal eigenfunctions that can
be found from a complete set of scalar eigenmodes �n�r̄�
satisfying

� · 	��r̄� � �n�r̄�
 = �n�n�r̄� �7�

with the biorthogonality relation,

��r̄���n�r̄� · 	��n

†�r̄�
�d3r=
nmMn. Since we are studying
the guided plasmonic mode, which describes the field solu-

tion in the absence of electric charges �� · 	��r̄�Ēn�r̄�
=0�, the
longitudinal component will vanish in the following calcula-
tions.

By applying the principle of constructing the electric field
dyadic Green’s function to the case of a plasmonic wave-
guide, we find the contribution to the dyadic Green’s func-
tion from the plasmonic modes as

G� pl�r̄, r̄��� = �
p
�

−�

+� �	Ē��x,y�	Ē�
†�x�,y��
�ej��z−z��

	k0
2�	 − ��2 − 
	�

2 �
N
d� ,

�8�

where the normalization factor N is given by


�� − ���
pp�N = 
��r̄�E�̄�r̄� · 	Ē��
† �r̄�
�d3r

= 2�
�� − ���
pp�
��x,y�Ē��x,y� · 	Ē��
† �x,y�
�dxdy ,

which can be further simplified as

N = 2�
��x,y�Ē��x,y� · 	Ē�
†�x,y�
�dxdy ,

if one realizes that � and �� are required to denote the same
mode in Eq. �8�. For one plasmonic mode, the expression �8�
is evaluated in closed form by the method of contour inte-
gration as the integrand decays to zero at infinity in the upper
and the lower � planes,

G� pl�r̄, r̄,�� = j2�
�	Ē�0

�x,y�	Ē�0

† �x,y�
�

d�k0
2�	�

d�
N

=
j�c2Ē�0

�x,y�	Ē�0

† �x,y�
�

�Nvg
, �9�

where vg is the group velocity, defined by vg=d� /d�. The
corresponding projected LDOS for one plasmonic mode can
be calculated from the dyadic Green’s function according to

Novotny,34 ���r0 ,�0�=6�	n̄� · Im�G� �r0 ,r0 ,�0�� · n̄�
 / ��c2�,
where n� is the unit vector of the dipole moment. If the
dipole emitter is oriented along the X axis, the projected
LDOS for the plasmonic mode is given by �pl�r̄ ,��
=6�E�,x�x ,y��2 / �Nvg�. The spontaneous emission decay rate
into the plasmonic mode can be calculated by �pl

=
��0

3��0
���2�pl�r̄ ,��. Normalized by the spontaneous emission

decay rate in the vacuum, the emission enhancement due to
the plasmonic excitation is

�pl

�0
=

6�2c3E�0,X�x,y�	E�0,X
† �x,y�
�

�0
2N�g

. �10�

Equation �10� gives a general expression for the
spontaneous-emission decay rate into a guided mode, sup-
ported by a lossy or lossless waveguide. In dielectric
waveguides, losses are generally small, and the biorthogonal

modes Ēm
† can to a good approximation be replaced by

the orthogonal mode Ēm. Such an approximation is also
valid for our plasmonic waveguide, where the imaginary
part of the propagation constant for the fundamental mode
is around 1% of the real part. According to Snyder,35

the group velocity can be calculated by vg=
A�
�Ē

� H̄�� · z̄dA /
A�
�0��x ,y��Ē�x ,y��2dA, where A� denotes inte-

gration over the transverse plane. By applying the power
orthogonal approximation and plugging the explicit form of
the group velocity into Eq. �10�, we obtain the following
expression for the plasmonic decay rate of the fundamental
mode:

�pl

�0
=

3�c�0E�0,X�x,y�E�0,X
� �x,y�

k0
2
A�

�Ē � H̄�� · z̄dA
. �11�

B. Total decay rate

As described in the previous section, the well-defined
field components in the transverse plane of the waveguide
give the possibility of constructing the plasmonic part of the
dyadic Green’s function numerically. The reason is that the
field is concentrated around the metallic core and decays to
zero on the borders when the modeling domain is reasonably
large. Hence, the perfect electric conductor boundary condi-
tion is implemented to truncate the 2D modeling domain.
However, for the radiation modes, the field components in
the transverse plane of the waveguide do not vanish no mat-
ter how large the modeling domain is. Hence, it is extremely
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difficult to construct the dyadic Green’s function numerically
for the radiation modes in a similar way as for the guided
mode. Therefore, we implement a 3D model to include the
radiation modes, as well as the nonradiative contributions, by
solving the wave equation with a harmonic �time-dependent�
source term,

�� �
1

�r
� � − k0

2��r̄��Ē�r̄,�� − j��0J̄��� = 0. �12�

Substantial efforts have been made to solve a more gen-
eral form of Eq. �12�, namely, with arbitrary time depen-
dence. However, only for a few geometries such as spheres
and cylinders, one is able to obtain analytical solutions, by
the assistance of, e.g., Mie’s theory36 and other modal
descriptions.37 For many other geometries, one has to resort
to numerical methods, like FDTD method, FEM, or other
methods. Though FDTD can model dielectric structures rea-
sonably well, i.e., photonic crystals, it has severe drawbacks
for modeling plasmonic structures. First, the rectangular
grids typically used in FDTD are not suitable for complex
plasmonic structures due to the high localization of the field
at the metal-dielectric interfaces, which requires much finer
grid resolution than modeling of dielectric structures. The
piecewise constant approximation of the fields within grids
in FDTD poses difficulties in applying boundary condition at
the metal-dielectric interfaces, which is crucial for modeling
the plasmonic structures. Second, in FDTD and other time-
domain methods the dielectric functions of the material need
to be approximated by proper analytical expressions which
give rise to considerable error in broadband calculations.
Apart from these general drawbacks, the LDOS calculations
present additional challenges for FDTD, due to difficulties in

accurately transforming J̄* · Ē from the time to frequency do-
main, as explained in Koenderink et al.38–40 However, FEM
does not have such challenges due to the more advanced
discretization strategy for complex geometric structures by
using a variety of elements of different shapes, and FEM is a
frequency method which can handle arbitrary material dis-
persion. One might consider other options, i.e., the Green’s
dyadic function method41 or point dipole method,42 however,
the Green’s dyadic function method encounters difficulties in
constructing Green’s functions for complex geometries, and
the point dipole model is limited to homogenous dielectric
environments in which the metals are embedded. Since we
want to develop a generally applicable quantitative method
of modeling spontaneous emission for complex plasmonic
structures, FEM is chosen as the numerical tool to attack the
problem.

In this paper, we introduce the FEM method to calculate
the LDOS in a 2D model and solve an equivalent problem in
a 3D model. We found that the LDOS can be efficiently
extracted from the FEM numerical calculations, without the
numerical difficulties encountered in FDTD, when the
boundary condition of the modeling domain is properly
handled. Concerning implementation of a FEM calculation,
Eq. �12� needs to be reformulated. If we introduce a test

function F̄�r̄ ,��, we can construct the functional correspond-
ing to the wave equation in the following way:43

L = �
V
�� �

1

�r
� � − k0

2��r̄��Ē�r̄,�� · F̄��r̄,��dV

− �
V

j��0J̄��� · F̄��r̄,��dV

= �
V

1

�r
� � Ē�r̄,�� · � � F̄��r̄,��dV

− �
V

k0
2��r̄�Ē�r̄,�� · F̄��r̄,��dV

− �
V

j��0J̄��� · F̄��r̄,��dV

+ �
�V

F̄��r̄,�� · � 1

�r
n̄ � � � Ē�r̄,���ds , �13�

where �V denotes the surface that encloses the volume V and
n̄ denotes the outward unit normal vector to the surface of
the modeling domain. This is the variational formulation of
the wave equation, which is required to hold for all test func-
tions. Equation �13� enables us to formulate the finite-
element solution for such a boundary-value problem by em-
ploying the standard finite-element solution procedures,
including discretization and factorization of a sparse
matrix.43 The boundary-value problem defined by Eq. �13�
was solved by utilizing a commercial software package,
COMSOL MULTIPHYSICS.44

It is crucial to truncate the computational domain prop-
erly. As shown in Fig. 4, we use two techniques for truncat-
ing the modeling domain. �I� In the X-Y plane, the computa-
tion domain is truncated by the perfectly matched layers with
thickness of half a wavelength in vacuum. �II� Along the Z
axis, the computation domain is terminated by a mode

Dielectrics

Metals

Perfectly matched layers

Quantum emitter

Z

X Y

x

Y

Z
Λ

Γ

FIG. 4. �Color� A single quantum emitter coupled to a metallic
nanowire. The gray transparent region represents the perfectly
matched layers, the mode matching boundary condition is applied
on the top and the bottom of the structure. The quantum emitter is
implemented by an electric line current.
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matching boundary condition, which will induce a certain
amount of reflection from the radiation modes and the higher
order plasmonic modes if they exist. Essentially, the mode
matching boundary is an absorbing wall, which behaves as a
sink of electromagnetic waves. There are different options
for realizing the mode matching boundary to absorb a single
mode, depending on whether the absorbed mode is TE, TM,
or a hybrid mode. For a pure TM or TE mode, it can be
matched by simply applying the conditions

1

�r
n̄ � � � Ē�r̄,�� = −

k0
2��r̄�Ēt�r̄,��

j�
, TM, �14a�

1

�r
n̄ � � � Ē�r̄,�� = − j�n̄ �

1

�r
n̄ � Ēt�r̄,��, TE,

�14b�

on the boundary, where � is the propagation constant, and

Ēt�r̄ ,�� is the tangential components of the dependent vari-

able Ē�r̄ ,�� on the boundaries in the numerical model. The
mode matching boundary condition for the hybrid mode can
be implemented as

1

�r
n̄ � � � Ē�r̄,�� = j��0n̄ � H̄0, �15�

where Ē�r̄ ,�� is the dependent variable solved in the 3D

model and H̄0 denotes the matched mode that is applied. In

our model, H̄0 corresponds to the fundamental hybrid mode
supported by the plasmonic waveguide. It is calculated from
the 2D eigenvalue problem and is given by

H̄0 =��plP0

�0P2d
H̄2dej�L0 = �H0x,H0y,H0z� . �16�

Here, P2d, H̄2d, and � are the time-averaged power flow, the
magnetic field, and the propagation constant, respectively,
calculated from the 2D model, while P0 denotes the normal-
ization factor of the power emission in the 3D model, and L0
represents the half length of the 3D model. Due to the losses
of the metals, the magnitude of the magnetic field is a com-
plex number. In order to guarantee that the phase of Ex at the
position of the emitter is zero when the emitter is oriented

horizontally, the extra phase �=arctan�
imag�E2D

x �
real�E2D

x � � needs to be

compensated, i.e., H̄0=� �plP0

�0P2d
H̄2dej��L0−��. In the 2D eigen-

value calculations, there are six components involved for the
hybrid fundamental model, the relations of which are tabu-
lated in Table I. The magnitudes of the magnetic field,

�H2d,m
x ,H2d,m

y ,H2d,m
z �, are the dependent variables, which are

calculated directly from the 2D numerical model.
The total decay rate, �total, is extracted from the total

power dissipation of the current source coupled to the nearby
metallic waveguide, �total /�0= Ptotal / P0, where Ptotal

=1 /2
VRe�J̄� · Ētotal�dV is the power dissipation of the cur-
rent source coupled to the metallic waveguide and P0

=1 /2
VRe�J̄� · Ē0�dV is the emitted power by the same cur-
rent source in vacuum. P0 is a normalization factor, which is
also used to normalize the power flow on the boundaries in
Eq. �16�. As demonstrated in Fig. 4, the field is generated by
the current source, namely, the dipole emitter, which is
implemented by a small electric line current. In our model,
the dipole is oriented horizontally. For an electric current
source with finite size of l �l��0�, and linear distribution of
current I0, the dipole moment of the source45 is, �= jI0l /�.
In order to avoid higher order multipole moments, the size of
the current source should be restricted below a certain value.
Our numerical tests show that the variation of the total power
dissipation from the size dependence of the emitter is negli-
gible when the size of the emitter is smaller than 2 nm.

Basically, the accuracy of �total /�0 depends on the length
of the plasmonic waveguide, which is studied in Appendix A
�Appendix B� for the metallic nanowire �square plasmonic
waveguide�. Accordingly we estimate the relative error on
the computed data of �total /�0 for the metallic nanowire
�square plasmonic waveguide� to be �2.5% ��2.0%� in the
following calculations for L0 larger than 1 �m.

III. RESULT AND DISCUSSION

Due to the tight confinement of the plasmonic mode as
well as the geometric slowing down of the mode
propagation,24 one can achieve very efficient coupling of a
single quantum emitter to metallic nanowires,24 which was
previously studied mainly by employing a quasistatic
approximation.46 Here, we quantitatively study the spontane-
ous emission of an emitter in nanoscale proximity to a plas-
monic waveguide beyond the quasistatic approximation,
which is necessary when one is concerned with realistic plas-
monic waveguides that are compatible with current nanofab-
rication technology. Normally it is claimed that the quasi-
static approximation is valid when the size of the structure
and the distance of the emitter to the surface are substantially
less than the radiation wavelength. To resolve this ambiguous
criterion, we compare our numerics with the results obtained
within the quasistatic approximation and give a qualitative
assessment regarding the validity of the quasistatic approxi-
mation.

TABLE I. The relations between the six field components for the fundamental hybrid mode.

Description Relation

Tangential electric field, s� 	x ,y
 E2D,t
s =− �

��0��r̄� �n̄�H2D,t�s− j
��0��r̄� ��t� n̄H2D

n �s

Normal electric field E2D
n =− j

��0��r̄� n̄ · ��t�H2D,t�
Tangential magnetic field, s� 	x ,y
 H2D,t

s =H2d,m
s

Normal magnetic field H2D
n = jH2d,m

z
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We calculate the full electrodynamic solutions by using
the rigid full-vectorial three-dimensional finite-element
method, as detailed in Sec. II. Our numerical values and the
quasistatic values of the plasmonic decay rate and spontane-
ous emission � factor of the gold nanowire with different
radius are plotted in Fig. 5. The radius of the gold nanowire
varies from 5 to 100 nm. Figure 5 shows the transition of the
quasistatic approximation from approximate to inadequate,
depending on the size of the radius with a cross indicating
R=20 nm. According to the deviations between the numeri-
cal values and the quasistatic approximated values, the ten
subplots associated with different radius in Fig. 5 are
grouped into three different regimes, namely, the quasistatic
approximation regime, the skin depth regime, and the full-
wave regime in which the quasistatic approximation breaks
down. The quasistatic approximation regime is limited to
radii of the nanowire less than 10 nm, as shown in Figs.
5�a�–5�d�, where we observe a good agreement between our
numerical values and the quastatic approximated values. In
this regime, the radius of the wire is 100 times smaller than
the vacuum wavelength, meanwhile the field is strongly lo-
calized to an area on the order of the cross section of the gold
nanowire, which results in the vanishing of the wave prop-
erties in the transverse plane and the applicability of the qua-
sistatic approximation. We also note that in Fig. 5�b� there is
a few percent deviation between the FEM-simulated sponta-
neous emission � factor and the quasistatic approximated
values due to numerical artifacts, since it is not easy to ob-
tain a good convergence when both the radius of the wire
and the distance of the emitter to the wire are very small. For
large wires, as indicated in Figs. 5�g�–5�j�, we find signifi-
cantly larger values of �pl /�0 and the � factor compared to
those obtained in the quasistatic approximation. The break
down of the quasistatic approximation is due to the incapa-
bility of describing the coupling between the electric field
and the magnetic field that form the propagating waves,
since the quasistatic approximation assumes that the mag-
netic field vanishes. One may suspect that one can still obtain
reasonable results from the quasistatic approximation if the
radius of the nanowire is 1

20 of the vacuum wavelength,
namely, 50 nm in our case, since 20 sampling points in one
period normally is good enough to resolve the wave proper-
ties. However, our numerical calculations, shown in Figs.
5�g� and 5�h�, indicate that this assumption is incorrect. Even
for wires as small as 50 nm, the quasistatic approximation
breaks down, consistent with Akimov’s experimental work.10

The full electrodynamic solutions predict significantly larger
values, up to 5–10 times, compared with the quasistatic ap-
proximation, even though the radius of the nanowire is 1

10 or
1

20 of the vacuum wavelength.
Figures 5�e� and 5�f� and others with the size of the radius

close to the skin depth are grouped into the skin depth re-
gime. In this regime, the deviation between the full electro-
dynamic solutions and the quasistatic approximation is
somewhere in between, compared with Figs. 5�a�–5�d� and
5�g�–5�j�. To further study the influence of the skin depth and
the limitations of the quasistatic approximation, we investi-
gate the radius dependence of

�pl,FEM

�pl,quasi
, which denotes the ratio

of the plasmonic decay rate obtained from our numerical

method and that of the quasistatic approximation, for metals
with different skin depth, cf. Fig. 6. In Fig. 6, the distance of
the emitter to the surface of the metals, i.e., d, is a fixed
value for each curve. As can be seen from Fig. 6, the devia-
tion between the two results strongly depends on the size of
the radius as well as the optical properties of the metals,
namely, the skin depth. Coincidentally, the ratio of the plas-
monic decay rate obtained from our numerical method and
the quasistatic approximation for the four different metals is
around 1.5 when the radius of the nanowire equals the skin
depth. In other words, one can qualitatively assess the valid-
ity of the quasistatic approximation by considering the ratio
between the radius of the metallic nanowire and the skin
depth. The electric field is severely depleted in the center of
the metallic nanowire when the radius is larger than the skin
depth, and for the fundamental mode the electric field is
mediated by the magnetic field, which reaches its maximum
in the depletion area of the electric field. However, in the
quasistatic approximation there is no magnetic field to
couple with the electric field, which significantly impacts the
field distribution and reduces the plasmonic decay rate and
the spontaneous emission � factor. Based on our numerical
calculations, we conclude that the quasistatic approximation
is valid only when the radius is smaller than the skin depth of
the metals.

To extend the cylindrical wire to other structures, i.e.,
rectangular metallic waveguide or slot waveguides which are
more compatible with current lithographic fabrication tech-
nology, we studied the coupling of the quantum emitter with
a square plasmonic waveguide as an example. As shown in
the inset in Fig. 7, the quantum emitter is oriented along the
X axis, and the distance dependence of the plasmonic decay
rates and spontaneous emission � factors is calculated as
function of distance from the emitter to the metal surface
along the X axis. For the square plasmonic waveguide,
though the electric field of the fundamental mode is concen-
trated around the four corners, one can achieve an efficient
coupling between the plasmonic mode and a horizontally
oriented quantum emitter. With optimized side length of the
waveguide and distance of the emitter to the edge of the
waveguide, the � factor can reach 80%.

IV. CONCLUSION

In conclusion, we developed a self-consistent model to
quantitatively study the spontaneous emission of a quantum
emitter at nanoscale proximity to a plasmonic waveguide
using the finite-element method, which is beyond the quasi-
static approximation. The dyadic Green’s function of the
guided modes supported by the plasmonic waveguide can be
constructed numerically from the eigenmode analysis, and
subsequently the normalized decay rate into the plasmonic
channel can be extracted. The 3D finite-element model is
also implemented to calculate the total decay rate, including
the radiative decay rate, nonradiative decay rate, and the
plasmonic decay rate. In the 3D model, it is assumed that
only one guided plasmonic mode is dominatingly excited,
which is normally true when the size of the cross section of
the plasmonic waveguide is below 100 nm. Under such con-
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FIG. 5. Comparison of FEM-simulated results based on the dyadic Green’s function with the quasistatic approximation for the metallic
nanowire.
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dition, the spontaneous emission � factor is calculated. We
compared our numerical approach with the quasistatic ap-
proximation for the gold nanowire. The comparison shows
that our results are 5–10 times larger values for the normal-
ized plasmonic decay rate �pl /�0 and the spontaneous emis-
sion � factor compared to the values obtained in the quasi-
static approximation. We examined the limitation of the
quasistatic approximation by taking into account the skin
depth of the metals. We conclude that the quasistatic ap-
proximation is valid only when the radius is smaller than the
skin depth of the metals. We also applied our numerical
model to calculate the spontaneous emission of a quantum
emitter coupled to a square plasmonic waveguide. The nu-
merical calculations show that spontaneous emission � fac-
tors up to 80% can be achieved for a horizontal dipole emit-
ter, when the distance and the side length are optimized.
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APPENDIX A: LENGTH DEPENDENCE OF TOTAL
DECAY RATE FOR THE METALLIC NANOWIRE

In order to check the validity of the mode matching
boundary condition we studied the length dependence of the
total decay rate for two different plasmonic waveguides. The
length dependence of the total decay rate �total for the metal-
lic nanowire is shown in Fig. 8. The fundamental mode sup-
ported by the metallic nanowire is TM, hence the mode
matching boundary condition defined by Eq. �14a� is imple-
mented. As can be seen from Fig. 8, the variation in the total
decay rate is reduced by increasing L0, and the damped os-
cillation of the total decay rate with L0 indicates a certain
amount of reflection from radiation modes, which is con-
firmed by the period of the oscillation �equal to the wave-
length in a media with �=2�. We also see that the variation in
the total decay rate due to the length dependence is below
�2.5% due to the dominating excitation of the plasmonic
mode for L0 larger than 1.0 �m. The relative error on the
computed data is even smaller, less than �1.0% for L0 larger
than 1.75 �m.

APPENDIX B: LENGTH DEPENDENCE OF TOTAL
DECAY RATE FOR SQUARE PLASMONIC WAVEGUIDE

Regarding the square plasmonic waveguide, the condition
defined by Eq. �15� is applied on the boundary to absorb the

hybrid mode supported by the waveguide, where H̄0 is the
magnetic field for the matched field. As shown in Fig. 9,
there is also a damped oscillation of the total decay rate with
the length of the computation domain, and the tendency of
achieving higher accuracy for �total when L0 is lengthened,
which is similar to the length dependence study of the total
decay rate for the nanowire. Nevertheless, there are two dis-
tinctions between the two plots: �I� the variation in the total
decay rate for the square plasmonic waveguide is much
larger than that for the metallic nanowire; �II� the variation in
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the total decay rate for the square plasmonic waveguide with
L0 primarily stems from the reflection of two different
modes, which are indicated by two different periods in the
damped oscillation. The reflection of the fundamental mode,
which is supposed to be absorbed at the boundaries, is re-
sponsible for the oscillation with the period of 400 nm, the
other oscillation with the period of 740 nm results from the
reflection of a quasiguided mode, denoted by Eqg. The expla-
nation is the following: the boundary condition defined by
Eq. �14a� can completely absorb the matched pure TM mode,
while it is not true for the boundary condition defined by Eq.
�15� for the hybrid mode, and a significant reflection from a
quasiguided mode also exists for the square plasmonic wave-
guide. For the hybrid mode the last term in Eq. �13� relies
not only on the tangential components of the electric �mag-
netic� field but also on the normal component of the electric
�magnetic� field, which is intrinsically lost on the boundary
in the vector-element formulation of the 3D numerical
model.43 Our interpretation is that even though the normal
component of the electric field can be included on the bound-
aries by Eq. �15�, the normal component of the magnetic
field is essentially missing in our 3D FEM model that em-
ploys a vector finite-element formulation,47,48 resulting in the
reflections in the total decay calculations for the square plas-

monic waveguide. However, in Fig. 9�a�, it appears that the
points for which real�ej��L0−���=0 holds approximately con-
verge quickly with minimum impact of the reflection from
the fundamental hybrid mode. The mode Eqg, with effective
wavelength of 740.07 nm, is characterized by the material
properties of the waveguide and is rather insensitive to the
size of the metallic core. Compared with other quasiguided
modes or radiation modes, the mode Eqg has a relatively
significant contribution to �total, the normalized spontaneous
emission rate is 0.107. Since no extra effort is made to pre-
vent the reflections of other components of the mode Eqg, it
is understandable that the induced reflections give rise to
several peaks in Fig. 9�a�.

The normal component of the magnetic field of the fun-
damental mode in the 3D model can be obtained by a 2D

eigenvalue calculation, Hn,l=� �plP0

�0P2d
H2d

n ej��l−��, where l is the
distance from the observation plane to the emitter. Similarly,
the reflected normal component of the magnetic field at the
position of the emitter can be obtained by taking into account
the phase shift due to propagation and reflection, Hn,0

r

=r� �plP0

�0P2d
H2d

n ej�2�L0−�+��, as shown in Fig. 9�c�. The reflected
normal component of the magnetic field will “generate” a
perturbation term Ex

r to the original Ex component, the real
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part of which is integrated to calculate the total power dissi-
pation. According to Table I, the reflected term Ex

r from the
fundamental hybrid mode is given by

Ex
r = −

1

��0��r̄�
��t � n̄�r��plP0

�0P2d
H2d,m

z ej�2�L0−�+����
x
.

�B1�

The real part of Ex
r can be zero when L0 is appropriately

chosen, therefore, the obtained total decay rates are expected

to approach the true values more closely due to the vanishing
contribution of Ex

r to the total decay rate. In Fig. 9�a�, at the
points with marked ellipses, the half model length L0 fits the
requirement 	real�Ex

r�=0
, and we also found that the phase
shift � is required approximately to be � /2. Further investi-
gation of the phase shift � involves technical details regard-
ing the implementation of the vector-element formulation of
the finite-element method, which is beyond the scope of the
present paper, we refer to the Refs. 43 and 47–49.
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