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This text is intended for use in a graduate-Ievel one-semester course on
many-particle physics. An effort has therefore been made to keep the number
of pages below 150. There exist several comprehensive texts on many-body
theory, starting with the classic treatise Methods 0/ Quantum Field Theory in
Statisticai Physics by A. A. Abrikosov, L. P. Gorkov and I. E. Dzyaloshinski.

The challenge of teaching many-body theory is to avoid spending too much
time on the formalism, but still provide a solid foundation which can be of
later use. The general understanding of the structure of the theory must be
combined with the insight obtained from calculating low-order diagrams. The
present text attempts to meet these rather different goals by severely limiting
the number of topics for which explicit calculations are carried out. Some of
the topics left out of the main text are introduced in the homework problems,
which are collected in the last chapter.

It is important that the student does not come away from an introductory
course on many-body theory with the belief of being equipped to tackle any
problem involving many partieles. The Green function methods described in
the present text complement a host of other important methods, including
semiclassical transport theory, renormalization group analysis and bosoniza­
tion techniqu'es. The aim of the present caurse is to give the student sufficient
understanding of the use of field-theoretical methads to be able to read the
literature and to evaluate simple diagrams. It is important that the student
learns to see the methods as alternatives to other methods. The derivation af
the Drude-formula for the frequency-dependent electrical conductivity (Chap­
ter 11) serves as an illustration. Here the use of elementary kinetic theary
yields the answer in a few lines, as shown in Chapter 1. The advantage of the
Green function method, on the ather hand, is that it allows one to consider
more general situations such as those involving weak localization.

The many-body caurse was given as a sequel to a course on semiclassical
transport theory, based on Transport Phenomena by H. Smith and H. Højgaard
Jensen. The first half of the problems in Chapter 12 of the present text (Prob­
lems 1-27) were used in the course on transport theory. In order to complement
the leetures these homework problems deal exclusively with two-dimensional
systems. The remaining homework problems (Problems 28-55) refer to the
present text.

Ørsted Laboratory, May 2, 1994

Henrik Smith
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Introduetion

1 Introduetion

1

A many-body problem, in the usual sense of the word, is a problem involving
many partieles. Not 30r 11, but N, where N -+ 00, while the volume V ofthe
system also tends to infinity in such a manner that the density N IV remains
finite. This is the thermodynamic limit, in which statisticai mechanics applies.

Even though the· motion of, say, the eonduction electrons in 1 cm3 of alu­
minum constitutes a many-body problem, it is possibie for some purposes to
treat it as an effective one-body problem. One of the first applications of quan­
tum mechanics to n1etals was the free-eleetron modelof Sommerfeld (1928).
This model was remarkably suceessful in explaining the thermodynamic and
transport properties of simple metals. The free-eleetron model reduced the
many-body problem involving approximately 1023 eleetrons, which repel each
other by Coulomb forces, to the motion of a single electron in a constant po­
tential. A deeper understanding of the reasons for this success - as well as the
limitations of the model - was obtained in the folIowing decades by eonsidering
the effects of the periodie potential, the repulsion between the eleetrons and
their interaetion with the phonons.

In the following ehapters we shaH often use the eleetron gas to illustrate
the use of the methods of many-body physics. This is not only due to the
historicai importance of the electron gas. It also refleets the faet that an
understanding of i ts properties is the starting point for the understanding of
the metals, semiconductors and superconductors that are being investigated
in today's laboratories.

1.1 Specific heat and susceptibility

According to elementary statisticai mechanics the heat capacity per unit vol­
urne (at constant volume) for a gas of non-interacting eleetrons is given at low
temperatures by

'7T'2
C =3k2Tg(fF), (1.1)

where k is the Boltzmann constant, and g( tF) is the density of states per unit
volume at the Fermi energy. For a gas of free electrons the Fermi energy is
tF = n2k~/2m, where kF = (3'7T'2 n )1/3, with n = N/V being the electron
density and m the electron mass. The density of states at the Fermi energy is
proportional to the electron mass, since

1
g(f)df = 411"341rk2dk

together with t = n2k2 /2m implies that

1 m ~
g(t) = 2sv2mf,

'7T' 11,

(1.2)

(1.3)
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yielding
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mkF
g(iF) = -2. (1.4)

1r2 /i
Within the free-eleetron model, the eleetronie heat eapaeity (per unit vol­

urne) only depends on the number density n and the eleetron mass m apart
from the temperature. This is no longer true, when the existence of a peri­
odie potential and interaetion effects are taken into account. For the purpose
of comparing with the free-eleetron model it is often convenient to write the
heat capacity in the form given by (1.1) and (1.4), but with m replaced by an
effective mass m* defined by

m*kF
g(iF) = 2""2.

7r li
(1.5)

When the periodic potential of the lattice as well as the effects of interactions
are ignored, one thus has m* = m.

The free-eleetron model mayaiso be used to calculate the paramagnetic
(spin) susceptibility X of a degenerate electron gas. The result is

(1.6)

where f3 = eli/2m is the (spin) magnetic moment of the electron, while Po is
the permeability of empty space. Note that the susceptibility is an intensive
quantity, proportional to the density of states per unit volun1e, g(EF ).

In Section 1.3 below we shaH compare the predictions of the free-electron
model with experiment. The discrepancies will provide a motivation for the
use of the rnethods of many-body physics. We stress, however, that the meth­
ods themselves are far more general. They may be applied to any interacting
system of ferm ions and/or bosons, to spin systems, to a single magnetic impu­
rity coupled to a non-interacting eleetron gas and to a host of other important
problems. The experiments chosen are thus only meant to provide examples
that illustrate the relation between quantities measured in the laboratory and
results obtained by the methods of many-body theory.

1.2 Conduetion of electricity and heat

In 1900 the German physicist Paul Drude introduced a statisticai model de­
scribing the conduetion af electricity and heat in a metal. Re assumed that the
electric current was carried by electrons in a steady state resulting from the
balance af the acceleration due to the electric field and the deceleration due
to collisions1 . Drude used a statisticai description, by taking the average time

1 Drude imagined that these collisions were caused by the electrons bumping into the ions
of the metal. Though the quantum theory of motion in a periodic potential showed trus
pieture to be wrong, the Drude model has remained useful to this clay, because the physica!
origin of the collisions playecl no explicit role in his theory.
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(1.7)

interval between two successive collisions to be a material-dependent constant
r, and assuming that the direction of the velocity of the electron immediately
after a collison is random with respect to the electric fieid. During the time
interval r the electron therefore obtains an increase v d in velocity given by

eEr
Vd =---,

m

the charge of the electron being -e. Because of the assumption that the
velocity of the electron is random immediately after a collision, the velocity
increase v d may be identified with the drift velocity of the entire system of
electrons. Now, since the current density j is given by the conduction electron
density n and the drift velocity v d according to

j = -neVd, (1.8)

we obtain the desired relation between the electric field and the current density
j,

j = O'E,

where the conductivity O' is given by

The resistivityp =0'-1 is thus

m
p= ne2r'

(1.9)

(1.10)

(1.11)

The Drude model would be of limited interest if it were onIy applied to
the d. c. conductivity of a metal, since r is an undetermined parameter. It
is, however, straightforward to extend the model to the case of a time-varying
electric field E = E o exp( -iwt). In this case the drift velocity is ohtained from

. e Vd
Vd =--E--,

m r

resulting in j = O'(w)E, where

ne2r 1
O'(w)=--­

m 1 - iwr

(1.12)

(1.13)

The frequency dependence of the Drude conductivity (1.13) is compared with
experiment in Transport Phenomena, Section 2.2.

As a final example of the use of the Drude model we quote the result for
the thermal conductivity /\" which is defined as the coefficient relating the
temperature gradient \lT to the heat current density jth,

(1.14)
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According to the Drude model the thelmal conductivity is

(1.15)

Here v is an average particle velocity (not the drift velocity) , while C is the heat
capacity per unit volume (at constant volume). In a classical gas, v is related
to the thermal velocity JkT/m, but in a highly degenerate gas such as the
conduction electrons in a metal the average velocity v should be identified with
VF, since only states with energies close to the Fermi energy yield a significant
contribution to the heat current.

1.2.1 Transport in a magnetic field

The classical Hall effect was first observed by E. H. Hall in 1880. When a
current-carrying wire is placed in a magnetic field perpendicular to the direc­
tion of the current, one observes a potential difference across the wire, perpen­
dicular to the direction of the current and to the magnetic fieid. This implies
that the electric field and the current density in the wire are not parallel to
each other. If the magnetic field is sufficiently strong,. the electric field may be
nearly perpendicular to the direction of the current.

The explanation for this effect is the following. When a current is passed
through a wire in a magnetic field perpendicular to the direction of the current,
the magnetic field acts to deflect the electrons in a direction perpendicular
to itself. and the velocity of the electrons. Since the drift velocity v d points
along the direction of the wire, a component of the electric field must exist
perpendicular to the current direction. The perpendicular field component has
a magnitude which is just sufficient to ensure that the electrons move along
the direction of the wire. The perpendicular field component is named the Hall
field and denoted by EH. Its magnitude is determined by the requirement that
the two forces perpendicular to the direction of the current, the Lorentz force
due to the magnetic field and the force due to the perpendicular component
of the electric fieid, cancel each other,

(1.16)

The Hall field is thus proportional to both the drift velocity and the magnetic
fieid. The current density j and the drift velocity v d are connected by the
relation j = -nevd, where n is the number density of the conduction electrons.
This allows the Hall field to be written as

where
1

RH=-­
ne

(1.17)

(1.18)
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is called the Hall constant. Within the simple treatment given here, the Hall
constant is seen to depend solely on the charge of the electrons and their
density.

If the magnetic field differs from zero, the conductivity thus becomes a
tensor, since the application of an electric field in a direction perpendicular to
the magnetic field gives rise to components of the current density both parallel
and perpendicular to the electric fieId.

1.3 Three experiments

Let usnow consider the results of three different types of experiment involving
i) the specific heat, ii) the spin susceptibility and iii) the electrical resistivity
of metals such as Al, Na and Cu. These results will be used in subsequent
chapters for comparing theory with experiment.

1.3.1 Specific heat of aluminum

The low-temperature specific heat of metals is found experimental1y to be lin­
early dependent on T, due to the contribution of the conduction electrans. In
addition, the lattice vibrations at low temperatures contribute a term propor­
tional to T 3 , and the measured specific heat af aluminum may therefore be
fitted by an expression of the form

(1.19)

at sufficiently low temperatures2 . For aluminum one finds from such a fit that
the molar specific heat emol is ImolT, where Imol = 3.0 . 10-4 cal/(mol K2).

Let us now compare this experimental observation with the results of the
free-electron model. Since aluminum is trivalent, each atom in the metal con­
tributes three electrons to the conduction electron gas. As the molar mass is
Mmol = 26.982 g/mol and the mass density is p = 2.698 g/cm3

, the conduc­
tion electron density is n = 3NA P/Mmo l == 1.8.1029 m- 3 , which allows us to
determine kF from kF = (31T'2 n )1/3, resulting in

(1.20)

Note that values of kF for different metals are generally af this order af magni­
tude, roughly equal to the inverse of the distance between neighboring atoms
in the metal. In the alkali metals kF ranges from 1.12 . 108 cm- 1 for Li to
0.65 . 108 cm- 1 for Cs, refiecting the increase in ionic radius with increasing

2The temperature must be much less than the Debye temperature, which is a few hundred
K for Al. Due to the existence of low-lying transverse phonon modes, the (frequency) density
of phonon modes may deviate considerably from being proportional to w2 even at fairly low
frequencies, thus further shrinking the t.emperature region in which a T3-term in the specific
heat may be observed.
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atomic number. Using I = Imolp/Mmol we may now express the experimen­
tally measured value of I in terms of an effective mass m* according to

2 *k_ ~k2m F
I - 3 11"2",2 '

(1.21)

and determine m*. By inserting in (1.21) the experimentally measured value
af I together with the fundamental constants and kF from (1.20) one obtains
that m* is equal to 1.38 times the electron mass m.

The Sommerfeld theory explains why the heat capacity of the electrons is
reduced drastically compared to its classical value, which would be temperature
independent, equal to C = 3nk/2. The fact that the measured low-temperature
specific heat is linear in T and that the calculated and abserved values agree
within 50 per cent constitutes a definite success af the free-electron model.
From the point of view of many-body physics, the remaining discrepancy is
however highly significant. One might think that the difference between the­
ory and experiment is due to the faet that the electrons move in a periodic,
rather than a constant potential. This effect turns out to be of negligibIe im­
portance for aluminum though it plays a significant role in a number of other
elements, notably the transition metals. As we shaH see in Chapter 9, the
interaction between the electrons and the phonons is responsibIe for the differ­
ence between the observed value of m* and the free electron mass m. This is
a real many-body effect. It implies that the electrons involved in a measure­
ment of specific heat carry a 'cloud' of phonons with them in their motion,
thereby obtaining a greater effective mass. Such a picture must, however, be
used with great care. If we measure instead the spin susceptibility of the elec­
trons, which in the free electron model is given by (1.6), we shaH find that the
electron-phonon interaction has no effect on the result. The density of states
in (1.6) thus involves an effective mass which is different from the effective
mass m* appropriate to the specific heat. Likewise one may show that the
Drude formula (1.10) is unaffected by the electron-phonon interactian, while
the frequency-dependent generalization (1.13) is modified by it. These exam­
ples illustrate some af the subtleties involved in the description of many-body
effects in metals. It is not in general possibIe to express many-bodyeffects in
terms of a single parameter m* /m characterizing different physical quantities.

1.3.2 Spin susceptibility of sodium

As our second example of a physical quantity which may be measured ex­
perimental1y, we shaH now consider the electron spin susceptibility. Since
the total magnetic moment of a metal in an external magnetic field contains
both diamagnetic and paramagnetic contributions, it is not a simple matter
to extract the paramagnetic part due to the spin of the conduction electron­
s. One method involves measuring a shift in the nuclear magnetic resonance
(NMR) arising from the splitting of the nuclear energy levels in a magnetic
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fieId. Since the conduction electrons are coupled via their magnetic dipole
moments to the nuclear magnetic moments, the nuclear magnetic resonance
is shifted in frequency as the conduction electrons are polarized by the exter­
nal fieid. This shift, known as the Knight shijt, also depends on the value of
the conduction-electron wave function at the site of the nucleus. Since the
magnitude of the spin-polarization is proportional to the conduction-electron
spin susceptibility, Knight shift measurements may therefore be used to de­
duce the conduction-electron spin susceptibility, provided something is known
about the conduction-electron wave function at the site of the nucleus. A more
direct method involves measurement of susceptibility by conduction-electron
spin resonance. The method involves a measurement of the absolute intensity
of the conduction-electron spin resonance signal by comparing it to the nuclear
magnetic resonance signal in the same sample.

For sodium one finds experimentally that X = 1.4· 10- 5 . In order to
compare with the results of the free-electron model we evaluate (1.6) for the
appropriate density of conduction electrons, n = 2.65 . 1028 m-3, resulting in
kF = 0.92 .108 cm-l, which yields X = 0.83 .10- 5

. Thus Xexp/Xtheory = 1.7.
The origin of-the discrepancy between the values is not the electron-phonon
interaction, but rather the electron-electron interaction which we shaH discuss
in Section 4.3.2.

1.3.3 Electrical resistivity or copper

Our final example involves the measurement of the electrical resistivity of cop­
per with a small amount ofmagnesium impurities. The temperature dependent
resistivity of a normal metal usually3 decreases with decreasing temperature.
Provided the metal does not become a superconductor belowa certain critical
temperature, the resistivity tends to a finite value, which depends on the num­
ber of impurities. This value is called the residual resistivity and denoted by Po.
For Cu with 1 per cent of magnesium impurities one finds that Po = 0.6 . 10- 6

Q cm. For a sample of length L and cross-sectional area A the total resistance
R is given by

R= pL.
A

(1.22)

We mention in passing that the generalization af (1.22) to two dimensions is

(1.23)

for a rectangle with sidelengths LI and L 2 . The resistivity P2d must therefore
carry the same unit as that of R, namely ohm (in the SI-system). Note that
the combination h/e2 af the fundamental constants h and e has the same
dimension as the two-dimensional resistivity.

3 An exception to this rule is found in metals containing magnetic impurities.
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Let us return to the three-dimensional case and again consider the value
of the residual resistivity. It is convenient tirst to convert the resistivity into a
characteristic rate l/r by using the Drude-formula (1.10). Since n =8.47.1028

m-S for eu, the rate obtained experimentally corresponding to the value Po =
0.6 . 10-6 n cm is

.! - ne
2

_ 1 4 . 1013 -1- po-. s.
r m

(1.24)

If this scattering rate is multiplied by the Planck constant we obtain the energy

n -2- = 0.9·10 eVa
T

(1.25)

Comparing this energy to the Fermi energy, which is 7 eV in Cu, we note that
n/T ~ fF. Since the mean free path is l = VFT ~ nr/ma and f F ~ n2/ma 2 ,

with a ~ kp1 being the distance between neighboring atoms, this inequality is
equivalent to l ~ a (or kFl ~ 1).

In Chapter 11 we shaH use diagrammatic methods to calculate the resis­
tivity of a simple metal in the limit kFl ~ 1. This will allow us to compare
the calculated value of the residual resistivity for Cu with Mg impurities with
that measured experimentally, as well as with that obtained by solving the
Boltzmann equation.
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2 Second quantization

9

In many-body physics it is very useful to express the Hamiltonian in terms
of creation and annihilation operators for excitations, defined by some basis
of one-electron states. Since the one-electron states satisfy the Schrodinger
equation for the motion of a single particle, this procedure has traditionally
been named 'second quantization'.

2.1 Creation and annihilation operators

For a single harmonic oscillator with force constant ]< and mass M it is well­
known from elementary quantum mechanics that the Hamiltonian may be writ­
ten in the form

(2.1 )

where the operators bt and b create and annihilate, respectively, a quantum of
energy nw. For the case of lattice vibrations described in the harmonic approx­
imation one may show, as demonstrated in Chapter 5, that the Hamiltonian
can bewritten as a sum of independent harmonic oscillators according to

(2.2)

Here W q ). is the frequency of the normal mode with wavevector q and polar­
ization index A. If the Hamiltonian function for the lattice contains terms of
higher order than two in the deviations of the atoms from their ideal lattice
positions, the Hamiltonian contains additional terms involving three or more
creation and annihilation operators.

Since we are mainly concerned with fermion operators in the fol1owing, we
shaH describe in detail how the Hamiltonian of interacting Fermi particles may
be expressed in terms of creation and annihilation operators. As a basis for the
description of a system of identical fermions we shaH use Slater determinants,
which are antisymmetrized produets of single-particle states.

To gain familiarity with the field operators and their comn1utation pro­
perties we first consider the occupation of a single quantum state, in analogy
with the single harmonic oscillator. While in the case af the harmonic oscillator
the number af vibrational quanta could be anywhere in the range from zero
to infinity, the antisymmetry requirement restricts the occupation af a given
quantum state to be one or zero.

Let us denote by IO) the vacuum state in which no particle occupies the
quantum state in question, and by 11) the occupied state. The fermion creation
operator ct is then introduced by the definition

(2.3)
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Since et is seen to be given by
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et : (~ ~)

in the basis IO}, Il}, we deduce that

and hence

(2.4)

(2.5)

elO} = O; e/l} = IO}. (2.6)

By combining (2.3) and (2.6) we obtain the commutation rules

etet=ee=O; ete+eet =l (2.7)

for the operators et and c.
The next step is to examine how operators belonging to different single­

partiele states commute. The simplest case is that of two particles. Consider
a state obtained by adding particles in the two single-particle states and ac­
cording to the rule of correspondence

(2.8)

where Xl(X2) denote the coordinates ofparticle 1(2). When the single-particle
states are filled in reverse order, corresponding to ele!IO}, we must obtain the
same state. Since

the operators et and cl must anticomrnute:

{eI,el} =ejel + etel = o.

(2.9)

(2.10)

It is similarly seen that ei and ek satisfy the same relations as (2.10). The ar­
gument may readily be extended to an arbitrary number of particles. Together
with (2.7) these relations lead to the Fermi commutation rules

(2.11)

with i labelling a set of single-particle states.
Having introduced the creation and annihilation operators for fermions and

noted the difference between their commutationrules (2.11) and those ofboson
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operators, we next show how one- and two-body operators may be expressed
in terms of c and et operators.

Since a one-body operator is a sum of operators, each acting on functions
of the coordinates of a single particle, it must have an expansion of the form

A = 2: A(ij)cI ej.
ij

(2.12)

(2.13)

Note that the validity of this equation does not depend on the state of the
system being a Slater determinant. Since an arbitrary state may be expanded
in terms of the complete set of Slater determinants, (2.12) holds generally, as
an operator identity. The simplest way to determine the coefficients A( ij) of
the expansion (2.12) is to form matrix elements of A between single-particle

states ej IO} = <Pi and ellO) = <Pk. Then

A(ij) = (iIAlj) = JdxØ;(x)AØj(x),

where for simplicity we have suppressed the spin degrees af freedom. If spin
is taken into account explicitly, the wave functions become spinors, and the
integration over x should be supplemented by a summation over spin variables.
The one-body operator A consequently has the form

A = 2:(iIAlj)cIcj.
ij

(2.14)

A two-body operator B may be treated in an analogous fashion. Since
a two-body operator is a sum of operators, each acting on functions of the
coordinates of two partieles, it may be expanded according to

B = E B(ijkI)cI C}CICk.

ijkl(i>j,k>l)

(2.15 )

In writing (2.15) we have adopted a defini te ordering of the single-particle
states, written symbolically as i > j. The reason is that when we take matrix
elen1ents of (2.15) between states

and

lij) = c! cJ IO) (2.16)

IkJ) =etel IO) (2.17)

we have adopted a definite order in which these states are filled, corresponding
to i > j and k > l. We conclude that

B(ijkl) = (ijIBlkI), (2.18)



12 Introduetion to Many-particle Physics

(2.19)

in analogy with (2.13). Note that the matrix (2.18) is antisymmetric with
respeet to interehange of i and j, as well as k and l. It is often eonvenient
to abandon the restrietion i > j, k > l and to introduee the non-symmetrized
matrix elements (ijIBlkl)n.s. given by

(ijIBlkl)n.s. =JJdXldx24>;(Xt}4>j(X2)B4>k(Xl)(p,(X2)

Thus we have

B = ~ LWIBlkl)c!CJC1Ck = ~ LWIBlkl)n.s.C!CJC1Cko
ijkl ijkl

2.2 Hamiltonians

(2.20)

We now introduee the three Hamiltonians whieh we shaH use in our effort to·
explain each of the three experiments discussed in Section 1.3 of the previous
ehapter. The three Hamiltonians involve electrons interacting with themselves
(Section 2.2.1), electrons interaeting with phonons (Seetion 2.2.2), and elee­
trons interacting with impurities (Section 2.2.3).

2.2.1 Electron-electron interaction

The Hamiltonian of a homogeneous electron gas is

H = Ho+ H'

where

Ho = L tk CL,O'Ck,C1

k,O'

(2.21)

(2.22)

represents the kinetic energy, while the interaction between the electrons is
described by

(2.23)

since the matrix-element (k + q k' - qle5/rlk k') is equal to 47re5/q2V, as
shown in App. Al. The restriction on the q sum is due to the faet that the
electrons are immersed in a positive background of charge due to the lattice

1 We use the form e~ / r with e~ = e2 /41t"€o, appropriate to the SI system of units, for
the Coulomb potential deseribing the interaetion between two electrons separated by the
distance r. The transition to the egs system is then easily aehieved by replaeing everywhere
e~ by e2 • Note that most of the literature on many-body physics still uses the egs system of
units.
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ions. This positive charge is assumed to be spread uniformly throughout the
volume V under consideration. The q = °term left out in (2.23) preciseIy
cancels the contribution from the interaction between the ions of the positive
background and the interaction between the eIectrons and the positive back­
ground. This may be seen by considering the q = O term left out of (2.23),
which is proportional to the operator 6 given by

By using the fermion commutation relations

{ck,a,cL',a'} = bk,k,ba,a'

and
{Ck,a,Ck',a'} = 0,

(2.24)

(2.25)

(2.26)

the operator 6 is seen to be given by the operator il for the total number af
particles,

according to
" " 2 ~

O=N -N.

(2.27)

(2.28)

(2.29)

Since we are working with states corresponding to a definite number of par­
ticles, N, we may therefore replace il and 6 by their eigenvalues N and
N (N - 1) ~ N 2 , respectiveIy. It follows that the q = O term represents the
energy Eel-el of a uniform charge distribution of density no = N IV due to the
mutual repulsion of the negative charges, since Eel- el may be written as2

Eel-el =JdrJdr' 21re~ r'l n6

which apart from the constant factor n5 equals the q = OFourier-component af
the electron-electron interaction. This electrostatic energy of the uniform elec­
tron charge distribution is, however, precisely cancelled by the sum of Eel-ion,

the energy due the interaction between the uniform electron charge density
with the positive backkground, and Eion-ion, the energy due the interactian of
the positive background with itself, as may be seen explicitly by writing out
their contribution in the manner af (2.29). This results in Eion-ion = Eel-el =
-Eel -ion/2, leading to Eion-ion + Eel-el + Eel-ion = o.

2Stricly speaking the energy is infinite, corresponding to the divergence in V(q) =
41ie6 I q2 V as q tends to zero. The divergence may be handled by introducing a finite range
of the Coulomb interaction by multiplying it by exp -Ir - r'lla and letting a go to infinitY
at the end. A detailed discussion of this procedure may be found in A. L. Fetter and J. D.
Walecka 'Quantum Theory of Many-Particle Systems', McGrawHill 1971, p. 21.
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2.2.2 Electron-phonon interaction

The Hamiltonian describing electrons interacting with phonons is

Hel-ph = L g(k, k', q, a)cL"q'Ck,q(bqa + b~qa)
kk'qqq'a

(2.30)

It will be derived in Chapter 9 with a simple model-form for the coupling
function g(k, k', q, a). In a real metal the coupling function g depends on the
two separate wave vectors (Bloch vectors) k and k'. In Chapter g we shaH
discuss the simpier case of a gas of free electrons described by the Hamiltonian
(2.22) coupled to the phonons via the interaction (2.30). In this case g only
depends on the wave-vector difference q =k' - k.

Note that the form of (2.30) is similar to that of a one-body operator,
cf. (2.14), as far as the electrons are concerned, but unlike potential scattering'
associates the transition between two different electron states with the emission
and absorption of a phonon. In a real metal the phonons interact not only with
the electrons but also with themselves due to the presence of anharmonic terms
(ofthe form btbb and btbtb, etc.) in the lattice Hamiltonian. AIso the phonons
may interact with impurities and other defects. If these effects are important,
one has to add such terms explicitly to the Hamiltonian.

2.2.3 Electron-impurity interaction

The Hamitonian for a single electron interacting with impurities which occupy
fixed positions in a lattice is

(2.31 )

Here the sum extends over the position vectors Ri af the impurities.
The Hamiltonian for an electron gas which interacts with fixed impurities

may be written in the second-quantized form

H=Ho+H I

where Ho is given by (2.22), while

Hl = LPimp(q)V(-q)p(q).
q

Here p(q) is the Fourier component of the density operator, given by

p(q) =L ct,qCk+q,q ,
k,q

(2.32)

(2.33)

(2.34)
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while

()
~ iq·R

Pimp q = L-t e i ,
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(2.35)

(2.36)

and V(q) is the Fourier-transform of V(r) divided by the volume. When this
Hamiltonian is used in Chapter 11 to evaluate the d. e. resistivity of a metal, we
shaH also need to average over the positions of the impurities. This allows us
to relate the phenomenologieal Drude relaxation time r introdueed in Section
1.2 to the number density of impurities and the matrix-element V(q) of the
impurity potential, as well as the number density of the eleetrons and the
electron mass. We shaH evaluate the resistivity for a simple model-potential
and eompare the outeorne with the value of robtained experimentally, er.
(1.24).

2.3 Pietures

Let us consider a general physical system deseribed by the time-independent
"II amiltonian H. The Schrodinger equation has the form

'h åws - H'l!
'l at - s,

where 'l! 5 denotes the Sehrodinger wave function. In the Schrodinger pieture
operators are independent af time, while the state vectors develop in time ac­
cording to (2.36). It is sometimes eonvenient to work in an alternative pieture,
which is equivalent to the Schrodinger picture. In this Heisenberg pieture the
state vectors are independent of time, while the operators develop in time. It
is also useful to employ an interaction pieture, whieh in a certain sense is in­
termediate between the Heisenberg and Schrodinger pietures. Below we shaH
exhibit the unitary transformations that conneet these different pietures and
introduce the time-development operator in the interaction pieture, lJ, which
will be used extensively in the following.

2.3.1 The Heisenberg pieture

The transition to the Heisenberg pieture is aeeomplished by the unitary trans­
formation

'l! H = eiHt/Ti\J! s

while the operator As in the Schrodinger pieture becomes

AH = eiHt / Ti Ase-iHt/Ti.

(2.37)

(2.38)

This transformation of the operator ensures that any matrix element of an op­
erator As in the Sehrodinger pieture equals the corresponding matrix element
in the Heisenberg picture, since

< \li' A 'l! >-< 'li' eiHt/TiA e-iHt/nlTI >5' 5 5 - H' S 'l' H . (2.39)
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Evidently AH satisfies the equation of motion

(2.40)

provided As has no explicit dependence on time, as may be seen by differen­
tiating AH given by (2.38) with respect to time.

2.3.2 The interaction pieture

One often cleals with a time-independent Hamiltonian H, which may be sep­
arated in a part Ho with known eigenvalues and eigenvectors, and a part H l

(which cloes not commute with H o) with unknown eigenvalues and eigenvec­
tors. Typical1y, Ho is the energy operator for independent partieles, while Hl
describes the interaction. In the examples studied in the following, Ho de­
scribes indepenclent electrons, while Hl may represent the mutual interaction
between the electrons or the interaction between electrons and phonons. In
order to do infinite-order perturbation theory it is convenient to introduce a
'mixed' picture, the interaction pieture, in which state vectors develop accord­
ing to

(2.41)

(2.42)

In the absence of any interaction, corresponding to Hl = O, the interaction
picture becomes identical to the Heisenberg pieture, implying that the states
are time-independent. In the presence of the interaction, described by the
Hamiltonian Hl, the states develop in time in a manner determined by the
interaction.

By taking the time derivative of the state WI and using the Schrodinger
equation (2.36) one sees that

ili IN! I = eiHot/1i(_ Ho + H)e-iHot/1iw I
Bt

or

(2.43)

where
H 1(t) = eiHot/1i Hle-iHot/1i. (2.44)

Since an arbitrary matrix element in the Schrodinger picture may be written
as

(2.45)

the operator AI in the interaction pieture is given by

(2.46)



Second quantization 17

The developrnent in time of the state vectors in the interaction pieture is
described by the time-development operator U(t, to), which is defined by

Clearly Usatisfies the condition

U(to, to) = 1.

By combining (2.37) and (2.41) one sees that

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

It follows from (2.49) that U is unitary, Ut(t, to) = U-1(t, to), and that
U(to, t) = U-1(t, to) = ut(t, to). Furthermore, one sees from the combina­
tion of (2.43) with (2.47) that U(t, to) satisfies the differential equation

ih ~~ =Hl (t)U.

For convenience we now set to = O. With the boundary condition U(O, O) = 1,
the integrated form of the differential equation (2.50) becomes

U(t,O) = 1 + i~ l t

dt'H1(t')U(t', O)

The integral equation (2.51) may be iterated. Since H1(t ' ) and H1(t") do
not necessarily commute when ti differs from til it is important to maintain
the proper ordering of the operators,

t t t'

U(t, O) =1+ i~1dt' H1(t') + (i~)21 dt'H1(t')1 dt" H1(t") + ... (2.52)

This may be achieved by introducing the time-ordering operator T, which in
the present context is defined by

(2.53)

where C is an operator which orders the operators Hl(tl)Hl(t")Hl(t'I)·.·
chronologically with earlier times to the right. As an example we have

where 8(x) is the Heaviside step-function, defined by

1
8(x) = 1forx > 0, 8(x) = Oforx < 0, 8(x) = -forx = O.

2
(2.55)
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With the use of (2.54) we see that
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+

t ti1dt'1 dt"Hl(t')Hl (t") =
t ti!i dt'i dt"H1{t')H1(t")

2 o o
t til

+ ! f dt" f dt' Hl (t")Hl (t')
2 Jo Jo
! t dt' t dt"Hl (t')Hl(t")e(t' - t")
2 Jo Jo
! i

t

dt'i
t

dt"Hl (t")Hl(t')e(t" - t')
2 o o

~ l t

dt' l t

dt"T{Hl(t')Hl (t")}, (2.56)

where the first equality is obtained by splitting the left hand side into two
identical terms and interchanging the names of the integration variables in the
second term.

By generalizing this procedure to all orders one finds the following expan­
sion for U(t, O)

which may equivalently be written as

1 i t

U(t, O) =T{exp [i1i o dt'Hl (t')]). (2.58)

The result (2.58) will be used in Chapter 6 for the purpose of expanding
the time-ordered Green function in an infinite-order perturbation series. The
individual terms in the series are associated with Feynman diagrams, which
help visualizing the structure of the expansion and suggest how one may sum
certain classes of diagrams (containing an infinite number of terms). The
folIowing chapters contain examples of the application of this technique and
the specific evaluation of simple, but important diagrams.
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3 Perturbation theory and the electron gas
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The electron gas is a very important many-body system, which forms the
starting point for the discussion of the properties of metals. The conduction
electrons in a metal are immersed in the medium constituted by the positively
charged ions. In this chapter we consider the homogeneous electron gas and
treat the ions as a uniform, immobile background of positive charge, which
compensates the total charge of the conduction electrons. Such a model is
often referred to as je//ium.

In the folIowing we investigate the effect of treating the interaction between
the electrons as a perturbation. As we shaH see, the density of the electron
gas must be high in order that the perturbative treatment of the interaction is
valid. This may seem surprising at first sight. From classical gases we are used
to think of ideal gases as being very dilute. The explanation of this paradox
is the following: Although the contribution of the Coulomb repulsion to the
energy of the electron gas increases for increasing density, the kinetic energy
also increases, in fact more rapidly with the density. Measured relative to the
kineticenergy the importance of the Coulomb repulsion therefore becomes less,
when the density of the electron gas is increased.

While the tirst-order correction to the unperturbed ground-state energy
is finite and small in the high-density limit, we shall discover an unpleasant
surprise when going to second order: the second-order correction to the ground­
state energy is infinite, thus signalling the break-dawn af ordinary perturbation
theory. How this difficulty may be overcome is descrihed in Chapters 6 and 8.

Before proceeding to do perturbation theory, we recall (Section 2.2.1) that
the Hamiltonian af a homogeneolls electron gas is

H = Ho+H'

where

Ha == L fkct,O'Ck,O'

k,O'

represents the kinetic energy while

is the interaction between the electrons.

(3.1)

(3.2)

(3.3)

3.1 First-order perturbation theory

Let us first determine the ground-state energy for the system of non-interacting
electrons, described by the Hamiltonian Ha. This may be found by calculating
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the expectation value Eo =< Ho > in the ground state IO) of the unperturbed
system. We have

Eo= (OIHoIO) = 2Lfke(kF - k)
k

Since the total number of particles is

N = (Ol L ct,uck,o-IO) = 2L e(kF - k),
k,o- k

the ground-state energy per particle, Eo/ N, becomes

(3.4)

(3.5)

(3.6)

(3.7)

(3.9)

Next, we use tirst order perturbation theory to determine the change E(l)
of the ground state energy due to H'. We exploit that Ck,o- acting on the
unperturbed ground state IO) yields zero, unless an electron occupies the single-
particle state labelled by (k,O'). Then E(l) may be written as

( ) 1 ~ 411"efi
E 1 =- 2V L.J 7 e (kF -Ik + ql)e(kF - k).

q~O,k,u

As usual, we convert the summations over the wave-vectors (k, q) to inte­
grations. It is convenient to carry out the integral over q at the last stage.
According to (3.7) we need to determine the volume of intersection in k-space
for two spheres with radius kF , their centers being separated by the distance
q.

We shaH express (Eo+E(1»/N in terms of the dimensionless parameter rs
defined by

411" 3 V
3(rs ao) = N' (3.8)

where ao is the Bohr radius, ao = li? / mefi. The parameter r s is a convenient
dimensionless measure of the density of the electron gas. Small values of rs
evidently imply high electron densities. The Fermi wave-vector kF is inversely
proportional to r s. Using k~ = 311"2 N/V we obtain the relation

1
r s = (911"/4)1/3_-.

kFao

The values of r s for the gas of conduction electrons in metals varies from about
2 to 6, with most metals having densities corresponding to rs-values between
2 and 3.
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In order to determine the volume common to the two intersecting spheres
and to complete the integration over q, we need to carry out the folIowing two
integrals (x =q/ kF ):

1 11 3 1f(x) = --21r dy(l - y2) = 1 - -x + -x3

41r/3 x/2 4 16

12 3
. dxf(x) = -
o 4

Collecting these results ,ve then get the final answer

Eo+E(l) 3h2k~ 3 2---- = --- - -eokp.
N 5 2m 41r

(3.10)

(3.11 )

(3.12)

By introducing the parameter T s defined in (3.8) and utilizing (3.9) we may
write the result in the equivalent form

(3.13)

The result (3.13) shows that the kinetic energy per particle (proportional
to r;2) dominates the ground-state energy in the high~density limit rs ---10 O.
The first-order contribution due to the Coulomb repulsion is proportional to
r;-l. It is negative and may be thought of as an exchange effect, arising from
the tendency of parallel-spin electrons to stay apart in accordance with the
exclusion principle.

3.2 Second-order perturbation theory

According to the standard result of second-order perturbation theory the con­
tribution E(2) to the energy of the ground state due to the perturbation HI is
given by

E(2) =" (OIH'ln}(njH'IO) ,
.I...-t Eo-E
n;to n

(3.14)

where n labels the eigenstates of the unperturbed Hamiltonian H o. To eluci­
date the structure of the problem involved in calculating the sum in (3.14) let
us write HI in the symbolic form

HI = E U(1 - 4)cl C~C3C4
1,2,3,4

(3.15)
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with 1,2,3,4 being short-hand notation for the momentum and spin variables
in (3.3). By writing the interaction as a function ofthe variable 1-4 we indicate
that it depends on the momentum transfer q = (k + q) - k corresponding to
1 - 4. The conservation of momentum and spin implies with our symbolic
notation that 1 + 2 = 3 + 4. We now have

E(2) =

E
(Ol LI 2 34 U(l - 4)cI C~c3c4In}(nlLI' 2' 3' 4' U(l' - 4')cI,c~'C3/C4/10)

, l , ',' , (.3.16)
Eo-En#O n

We must have either of the four possibilities

l' =3,2' =4,3' =1,4' = 2
l' = 4, 2' =3, 3' =2,4' = 1
l' =4,2' =3,3' = 1,4' =2
l' = 3, 2' = 4, 3' = 2,4' = 1 (3.17)

(3.18)

The first two involve U(l - 4)U(4 - 1) ex: 1/q4 while the last two involve
U(l - 4)U(4 - 2) ex: 1/q2 1k' - k - q12. For this reason, the contribution of the
first two terms is called 'direct' while that of the last two is called 'exchange'.

Let us examine the contribution E~;;ect due to the first two terms. In

calculating E~;;ect we shaH postpone the integration over q to the last stage.
If this integral is to be well-defined, the 1/q4-singularity from the interaction
matrix-elements must be compensated by the volume af the effective phase­
space going to zero as q goes to zero at least as qS with s greater than 1. If
s were to be equal to 1, the integral would diverge logaritmically, since the
volume element in q space is given by 47rq2dq. In order to investigate this, we
shall divide all wave-vector variables by kF . Then

(2) _ 1 3 me61°O dq
Edireet - -""4VkF-2- I(q)2

7r h o q

where the weight-function I(q) is exhibited in the box below. Now, the energy
denominator Eo- En is equal to fk' +fk -flk+ql-flk'-ql. We name the variable
k' by -p and obtain the more symmetric form for the energy denominator

where x equals cosine of the angle between k and q, while y equals cosine of
the angle between p and q.

We are now ready to write down the four-dimensional integral determining
the weight-function I(q) and evaluate it in the limit when q~ 1, corresponding
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to q being much less than the Fermi wave vector kF:

l(q) =11

dx11

dy t dkk2 [1 dpp2
-1 -1 lo lo

0(k2 + q2 + 2kqx - 1)0(p2 + q2 + 2pqy - 1)

q2 + qkx + qpy

23

(3.20)

The theta-functions arise from the requirement that the single-particle state
with wave-vector k + q is unoccupied, resulting in Ik + ql > kF or

k2 + q2 + 2kqx - 1 > O (3.21)

and similarly for the state with wave-vector p + q. Since x is less than ar equal
to 1, (3.21) implies that

1- q < k < 1.

We assume in the following that

q ~ 1,

and introduce the new variable

- 1 - k -
k = --, O< k < l.

q

(3.22)

(3.23)

(3.24)

(3.25)

Since q ~ 1 the inequality (3.22) implies that k2dk may be replaced by dk.
Then

I(q) ~ q [1 dx t dy r dk [1 di> 1 .
li: lp Jo Jo q+ x+ y

Since we are interested in the small-q limit, we set q = Oin the denominator.
Then the integrals are all elementary. First we calculate

11 11 1Il = . dx. dy-- = 21n2 - (1 + k)ln(l + k)
k p x + y

-(1 + p) In(l + p) + (p + k) ln(p + k) (3.26)

and then carry out the two remaining integrations over k and pwith the
result

2
I(q) =3(1 - In 2)q. (3.27)
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(3.28)

(3.29)

So we get a logarithmic divergence, when (3.27) is inserted into (3.18).
Ordinary perturbation theory does not work, not even in principle. If the
integration is cut ofr at q = ks we get a term proportional to In ks • Later on
(Chapter 8) we shaH see that this is the result of the RPA-approximation with

k~ = 4kF.
?rao

Since kF ex r;l we get ln(ks / kF ) = (1/2) In r s + const. and therefore

E(2) 1 me4

-N = 2" (1 - In2)~ In r s·
1r h

We shaH obtain this result in Chapter 8 by summing the most divergent terms
in the perturbation series.
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In atomic physics the Hartree-Fock approximation is often used to describe
in an approximate manner the infiuence of the electron-electron interaction
on the energy levels of the atom. But the use of Hartree-Fock theory is by
no means limited to atoms. In this chapter we shaH first discuss the general
features of the Hartree-Fock approximation. Subsequently we apply it to the
homogeneous electron gas considered in the preceding chapter. It turns out
that the Hartree-Fock approximation in this case gives the same result for
the ground state energyas the use of first order perturbation theory. This is a
special feature ofthe homogeneous electron gas and does not hold, for instance,
for the electrons in an atom. As an example of the use of the Hartree-Fock
approximation for a gas of interacting fermions we calculate the density of
states at the Fermi surface and the (spin) susceptibility for a simple model
interaction.

4.1 The Hartree-Fock approximation

In order to discuss the general nature of the Hartree-Fock approximation we
consider a system of fermions interacting via two-body potentiais, described
by the Hamiltonian

H =Ho+H' ,
where

Ho =E ckcL,O'Ck,O'
k,O'

represents the kinetic energy, while

H I = ~ ~ TI t t2 .l.-t vqck+q,O'ck'_q,O',Ck',O"Ck,O'

q,k,k',O',O"

(4.1)

(4.2)

(4.3)

is the interaction.
Let us consider the Heisenberg equation of motion for the creation operator

t
ck,O' ,

ihct,O' = [ct,a' H], (4.4)

where the dot denotes a derivative with respect to time. If we replace H by
H o, thus neglecting the interaction entirely, we get the trivial result

(4.5)

Let IO) denote the ground state for a non-interacting gas of fermions, with
ground-state energy Eo ( = 3cF /5 per partiele). If we continue to neglect the
interaction, the state

(4.6)
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is an eigenstate for a N + 1-particle system with energy flc = ;,,2 k 212m relative
to the ground-state energy of the N -particle system, since

(4.7)

Next we shaH include H' in the equation of n10tion for cL (J' With use of
the identities '

and

we obtain

[A, BC] = [A, B]C - B[C, A]

[A, BC] = {A, B}C - B{C, A},

(4.8)

(4.9)

(4.10)

This equation is exact but useless, as we must know the development in time
of et et c in order to solve it. The equation of motion for ct ctc will introduce
et ct cct c and so on. In the Hartree-Fock approximation this infinite chain of
equations is truncated by the approximation

t t
~ ck+q,O' < ck' _q,O',Ck' ,O" >

< ct+q,O'Ck' ,(J' > ct, -q,O" (4.11)

The minus sign in front of the second term is the result of interchanging the
two creation operators. Now we identify the averages < clclc > with their
value nk in the non-interacting system, which is O if k > kF and 1 if k < kF .

This results in

ct,(J nlc' bq,o

nk+q,O' bk' ,k+qb(J,(J' et, -q,(J" (4.12)

With this approximation the equation of motion becomes

ilict,(J = -({k + VHF(k) )ct,(J'

where VHF(k) is

VHF(k) = L VOnk' - L Vk-k,nk',
k',O" k'

(4.13)

(4.14)

In the tirst term we may carry out the k/-sum immediately, since the Vo is a
constant, independent of k'. This introduces the number N of the electrons
and the Hartree-Fock approximation thus results in

VHF(k) = VoN - L Vk-k,nk'.
k'

(4.15)



Hartree-Fock theory 27

Note that the Hartree-Fock term for symmetry reasons ean be a function only
of k, the magnitude of the wave vector, but not of its direction.

The new energy spectrum is consequently given by

(4.16)

The first af the terms in VHF(k), the so-called Hartree term, is absent in the
homogeneous electron gas due to the restrietion q =f. O. Physically, the reason
for the cancel1ation is that the Hartree term describes the effect of the mean
electrostatic field associated with the homogeneous charge distribution of the
electrons, which is precisely cancelled by the uniform positive background due
to the ions.

4.1.1 The variational method

The Hartree-Fock approximation may be carried out directly from the SchrO­
dinger equation, without the use of second quantization, for a many-body
system consisting of N electrons with spin O' with Hamiltonian

N 2 1 N

H = L J!L + - L V(lri - rjl)·
. 2m 2 ..
~=1 't,} =1

(4.17)

For an electron gas the interaction is described by the potential V( Ir\) = e6/lrl.
The Hartree-Fock method is based on the use of a ,variational trial func­

tion 'ØHF, which is an antisymmetrized product of single-particle wave func­
tions (a Slater determinant), and the minimization of the total energy E =
('ØHF IH I""HF). For a homogeneous electron gas the single-particle wave func­
tions 'Ø(r) may be labelled with the quantum numbers k, 0', where k is a wave
vector. As aresult of the variational procedure ane finds that each of the wave
functions 1/Jk,(J should satisfy the equations

(4.18)

where
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= -(å2/2m)'l21/Jk,u(r)

f dr' Ek/(kl<kF).UI l1/Jk/,u, (r')1 2V(lr - r' I)1/Jk,u (r)

f dr' Ek/(k'<kF) 1/Jk/,u(r')1/Jk',u(r)V(lr - r'l)1/Jk,u(r'). (4.19)

Here kp = (31r2 N jV)1/3 is the length of the Fermi wave vector for N non­
interacting electrons in the volume V.

The tirst term on the right hand side of (4.19) represents the kinetic energy
of a single electron, while the second one, the Hartree term, may be interpreted
as the mean electrostatic potential due to all other electrons. The third term
may be written symbolically as

(4.20)

but it should be noted that Vp is a non-Iocal integral operator, cf. (4.19). Note
that the summation in (4.19) only involves the occupied states and that the
summation in the third term (the Fock term) is limited to states which have
the same spin er as the one under consideration.

4.2 The electron gas

For the homogeneous electron gas it is possibie to determine an exact solution
to the Hartree-Fock equations, which must normally be solved with the help
of numerical methods. We shaH show that (4.18) is satisfied by plane waves,

III. __l_eik.r
o/k - y'V . (4.21)

Since we assume that the electrons move in a uniform positive charge distri­
bution due to the positive ions, the Hartree term is cancelled by the positive
background. The third term in (4.19) becomes

2 1 J ' ""'"-ea V3/2 dr L..J
k'(k'<kF)

Ok' , ok' 1 ok '
-~ ·r z ·r I '1- z·re e r-r e (4.22)

upon insertion of (4.21) and V(r) = e5/r. By multiplying this expression by

we observe that it assumes the form

Vl (k)_l_eikor
py'V

(4.23)

(4.24)
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with

where

VF(k) = - L V(k' - k)
k'(k'<kF)

- l j .V(q) = V drV(r)e- zq
.
r
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(4.25)

(4.26)

is the Fourier-transform of the interaction1. In the case of the Coulonlb inter­
action we have

V(q) = 4:e6
q V

as shawn in Appendix A.
The eigenvalues (k,o are then seen to be

(4.27)

(4.28)

We shaH first determine the energy eigenvalues (4.28) in a few lirniting cases
and then proceed to evaluate them for general k.

Let us consider the case when k ~ kF. Then we may approximate V(k' - k)
by V(k) and carry out the sum over k', resulting in

(4.29)

For large k, the interaction effects become small. Note that the kinetic energy
rises as k 2 .

Next we consider the limit k == O. In this case we get from (4.25)

(4.30)

Note that the energy is decreased by an amount given by e5kF except for a
numerical constant .

Finally, we explore what happens at k == kF . By changing the integration
variable to q == k' - k we may write VF( k) as

(4.31 )

1 It is common in the literature to distinguish a function and its Fourier-transform by
their arguments only, hence leaving out the tilde.
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When k = kF , the constraint on Ik + q\ that it should be less than the Fermi
wave-vector becomes

(4.32)

or
cos () < _--.!L (4.33)

2kF '

which puts the upper limit 2kF on the integration over q, since cos () cannot
be less than -1. As the integrand does not depend on () the integration over
cos f) simply introduces the additional factor (1 - q/2kF ) in the integral over
q, because of the constraint (4.33). We thus get

1 [2kF 2 q 47re5 1 2
VF(kF) =- (211")3 Jo dq211"q (1- 2k

F
)7 = -;eOkFo (4.34)

By comparing (4.30) and (4.34) we note that the energy separation between
the highest and the lowest occupied state (the 'bandwidth') in the Hartree­
Fock approximation is changed by e5kF/7r (in practice a few eV) compared
to the free-electron value. This is in strong disagreement with what is known
experimentally about the bandwidth in metals. Another unphysical feature of
the Hartree-Fock approximation has to do with the form of the density of states
near the Fermi surface. This may be seen by carrying out the integration in
general, for arbitrary values of k/kF, starting from (4.25). By first integrating
over the angle between k' and k and subsequently carrying out the integration
over k' one gets

Vl(k)=_e5kF [1 ki- k2
1 Ik+kF 1]

F 7r + 2kkF n Ik - kFI . (4.35)

From this general expression the previous special cases mayeasily be recovered.
Thus (4.30) and ( 4.29) are obtained by expanding the logarithm for small and
large k, respectively, while (4.34) may be read off from (4.35) directly. Since
the derivative of (4.35) with respect to k diverges as -In I(k - kF)/kFI for
k -+ kF , the density of states vanishes in this limit, yielding a specific heat
which is proportional to T / In T, in disagreement with experiment.

We emphasize that the ground-state energy of the electron gas may not
be obtained simply by summing the single-particle energies in (4.28) over the
occupied states. To illustrate this point, let us sum VF(k) over the occupied
states, thereby obtaining

V(k' - k). (4.36)
k,O',k'(k,k'<kF)

By comparison with (3.7) we see that (4.36) is exactly twice the former, which
is the contribution (to first order) to the total energy from the interaction. In
general there is no simple connection between the single-particle energies in an
interacting many-body system and its ground state energy.
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4.3 Effective mass and spin susceptibility

In this coneluding section we illustrate the use of the Hartree-Fock approxima­
tion for an interacting system of fermions, with a general interaction potential
given by the Fourier-transform Vq . The Hartree-Fock energy spectrum is ac­
cording to (4.15-4.16)

Ek = fk + VoN - L: Vqnk+q.
q

(4.37)

(4.38)

We shaH calculate the effective mass, which determines the density of states
at the Fermi surface, and the spin susceptibility on the basis of (4.37) and a
specific choice of Vq , corresponding to a screened Coulomb interaction. 2 For
convenience, we consider in the fol1owing a unit volume and thus set V equal
to unity.

4.3.1 The effective mass

The effective mass enters, when the integration over k is transfornled into an
integration over the energy Ek. Let us therefore define the effective mass m*
by

m _ m k aEk
m* - h2 k2 . ak Ik=kF·

F

When interactions are neglected, the effective mass is seen to be equal to the
bare mass m. Since the Hartree-term is independent of'k, only the Fock-term
contributes to the effective mass. Since nk+q = 6(kF - Ik + qj), we get

8r;:k+q =-8(k' - kF )k' ,

where k' =k' jk' and k' = k + q. Then

(4.39)

(4.40)

Since the effective mass is defined at k = kF , the expression (4.40) may be
written as an average involving the angle Obetween k and k'

.!!!:.- = 1 mkF 11
d(cos Ø) cos øv(Ø)

m* + 21f2 f1? -1 2
(4.41 )

2 It should be noted that we have aIready gone beyond Hartree-Fock theoryas applied to
the interacting electron gas by using a screened instead of a bare interaction. As we shall see
later on, the screening enters when we do the sO-called random-phase approximation. The
expression (4.37) for the single-particle energies is the result of doing Hartree-Fock theory
starting from a screened as opposed to a bare interaction.
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where V(B) = Vq with q = 2kF sinB/2 being the length of q = k' - k. To
evaluate m/m* we need to specify Vq • If we take Vq to have the form of a
screened Coulomb interaction,

(4.42)

then the integration over () (or q) may be carried out analytically with the
result

m 1 a+ 1
- = 1 + a( - + a) In-- - a (4.43)
m* 2 a

where a = (k s /2kF)2 ~ 0.166r", when k; = 4kF/7rao, cl. (3.28). For a = 1/2
we obtain from (4.43) the value m/m* = 1.05. When r s varies from 2 to
5, m/m* varies between 1.05 and 1.04. In all cases we obtain a very small
decrease of the effective mass relative to the free electron value.

4.3.2 The spin susceptibility

We may use the Hartree-Fock expression for the energy to determine the spin
susceptibility of a degenerate Fermi gas. The presence of an external magnetic
field B, which we take to be in the z-direction, changes the relative number
of spin-up and spin-down partieles. Since the exchange contribution to the
Hartree-Fock energy only involves particles with the same spin as the state
under consideration, one therefore expects the exchange term to infiuence the
susceptibility, which is defined as M = XB/Jlo, where M is the magnitude of
the resulting magnetization. For electrons ,vith gyromagnetic ratio g = 2 the
magnetization is M = gJlBfJN = 2j-tB fJN, with fJN being the change per unit
volume in the number of down-spin electrons (which equals minus the change
per unit volume in the number of up-spin electrons) while JlB = en/2m is the
Bohr magneton. It is convenient to express the result in terms of the density
of states for the non-interacting system, N(O), per spin at the Fermi energy,
which is given by N(O) =mkF /27r21i2 •

The presence of the magnetic field causes the Fermi wavevector of the spin­
up electrons to differ in magnitude from the Fermi wavevector of the spin-down
electrons. The associated energy change of a spin-up electron at the Fermi
surfaee is

1 aE
fJEkF-bkF,j = 9JlB"2 B - ak fJkF + fJN < V > . (4.44)

Here the terms on the right hand side have the folIowing origin: The first
one is the energy change due to the interaction between the magnetic moment
of the electron and the external fieid, while the second is due to the explicit
wavevector dependence of Ek. Finally < V > is the average of the potential
V(B) over angle,

1 j1< V >="2 -1 d(cosO)V(O), (4.45)
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which is the change in energy originating from the exchange term. The average
involves the undistorted Fermi surface, since we are only considering small
changes fJkF .

For spin-down electrons we get correspondingly

(4.46)

In equilibrium these two changes in energy must be equal to each other, since
the chemicaI potential for each of the two spin species must be the same. Since

we get

and

2fJN = 9J.LB B
m/m* N(O)- < V >

(4.47)

(4.48)

M m*/m
X = B/J-to = Xo 1 _ N(O) < V > m*/m' (4.49)

where XO = J.LO(9J.LB)2 N(O)/2 is the Pauli susceptibility.
Let us use the screened Coulumb potential (4.42) to calculate the angular

average < V > according to

11d(cos O) 11
< V >= 2 V(O) = d(q/2kp)(q/kp)Vq •

-1 o

The resnl t is seen to be

a a+ 1
N(O) < V >== i ln -a-'

(4.50)

(4.51)

For large a the dimensionless quantity N(O) < V > approaches 1/2. For a =
1/2 we obtain N(O) < V >= 0.275. Thus we find considerable enhancement
of the susceptibility. The ratio X/Xo is 1.22, 1.28 and 1.34 for rs equal to 2, 3
and 4, respectively, while experimentally (cf. Section 1.3.2) the enhancement
factor for Na (r s == 4) is found to be 1.7.
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5 Canonical transformations

It is sometimes fruitful to simplify a many-particie Hamiltonian to a degree
that its eigenvalues may be obtained by doing a canonical transformation of
the operators in the simplified Hamiltonian. In this case one no longer has
a true many-body problem, since the Hamiltonian is reduced to a form that
describes non-interacting elementary excitations. l

In this chapter we first iIIustrate the use of a particular canonical trans­
formation, the Bogoliubov transformation, by considering aHamiltonian of a
simple, bilinear form. Subsequently we discuss some examples of the use of
canonical transformations involving phonons in crystal lattices and in super­
fluid helium, quasiparticies in superconductors and spin waves in magnets.

5.1 The Bogoliubov transformation

We consider a bilinear Hamiltonian of the general form

(5.1)

where a, b (a t, bt) denote annihilation (creation) operators, while Ea and El are
constants. By a suitable canonical transformation to a new set of operators
o- and {3 it is possibie to determine the eigenvalues of the Hamiltonian by
expressing it in a form involving only o-t o- and {3t{3. In the folIowing we shall
treat the boson and the fermion case separately.

5.1.1 Bosons

In the boson case the operators obey the commutation rules

We introduce new operators o- and {3 by the transformation

a =uo- - v{3t, b =u{3 - vo- t ,

and require that they satisfy the same boson commutation rules,

(5.2)

(5.3)

(5.4)

By inserting (5.3) into (5.2) and using (5.4) one sees that u and v must satisfy
the condition

(5.5)
lIn real systems, the terms left out of the original Hamiltonian will modify the energy of

these elementary excitations and cause them to have a finite lifetime.
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We now insert (5.3) into (5.1) and obtain the result

35

H=2v2Eo -2uvEl + (Eo(u2+v2)-2uvEl)(ata+f3t(3)

+ (E1(U 2+ v 2
) - 2uvEo)(af3 + f3t at). (5.6)

It is evidently possibie to choose u and v in such a manner that the term
proportional to (af3 + f3t a t) vanishes, by setting the coefficient in front equal
to zero,

E l (U
2 + v2

) - 2uvEo =O. (5.7)

The condition (5.5) is satisfied by adopting the folIowing parametrization of u
and v,

u = cosh t, v = sinh t,

which in turn in1plies that the condition (5.7) may be written as

El (cosh 2 t + sinh 2 t) - 2Eosinh t cosh t = O

or
El

tanh 2t = E
o

'

(5.8)

(5.9)

(5.10)

It is now a simple matter to express u2 + v2 and 2uv in terms of the ratio
EliEo and insert these expressions into (5.6). The result is

H = A(Q' t Q' + øt (3) + const.,

where A is given in terms of Eo and El as

(5.11)

(5.12)

We have chosen the positive sign, since we define A as the energy needed to
create an elementary excitation. Note that the magnitude of Eo must. exceed
that of IEll in order for this result to make sense.

5.1.2 Fermions

The fermion case is very similar to the boson case treated above. The operators
now obey the fermion commutation rules

As before we introduce new operators a and f3 by the transformation

a = ua + vf3t, b = uf3 - vat,

(5.13)

(5.14)
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and demand that they satisfy fermion commutation rules,

(5.15)

When (5.14) is inserted into (5.13) one obtains the condition

(5.16)

corresponding to (5.5). As in the boson case we proceed by inserting (5.14)
into (5.1). The result is

H=2v2Eo+2uvEl + (Eo(u2_v2)-2uvEl)(ata+{3t{3)

(El (U2 - v2) + 2uvEo)(a{3 + {3t at). (5.17)

Again, it is possibie to choose u and v in such a manner that the term propor­
tional to (a{3 + {3t a t) vanishes by requiring

The condition (5.16) is satisfied by parametrizing u and v according to

u = cos t, v =sin t,

which implies that (5.18) becomes

or
El

tan2t =--o
Eo

(5.18)

(5.19)

(5.20)

(5.21 )

When the resulting expressions for u2+ v2 and 2uv are inserted into (5.17) we
obtain

H =A(at a + {3t {3) + const.,

where A is given by Eo and El as

(5.22)

(5.23)

In the case of superconductivity (which is treated in Section 5.4 below) it is
sometimes convenient to choose A to have the same sign as Eo (which is neg­
ative for states below the Fermi surface), thereby facilitating the comparison
to the normally conducting state.
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5.2 Pll0nons in a crystal lattice

Each of the atoms in a crystalline solid carries out vibrations around its equi­
librium position, but these vibrations are not independent, sinee the vibrations
of a given atom will infiuence those of its neighbors. A crystalline solid is there­
fore a large system of eoupled oscillators, in faet as many as the number of
atoms times three.

Our diseussion of lattiee vibrations proceeds in two steps, the first one
involving only classical mechanics and the seeond quantum mechanics. First,
we seek to turn the problem of cOllpled oscillators into a simpIer one, for
which the oscillations are independent of each other. Such a transformation is
achieved by a transition to normal eoordinates, and the resulting oscillations
are called normal modes. As a simple example we shall see how the normal
modes are determined for the simplest possibIe 'erystal' consisting of a linear
ehain of atoms.

5.2.1 Normal modes

In this subseetion we treat the ela.~sieal equations of motion for a linear chain
of identical atoms which are connected by springs with the same force constant
]<. The mass of an atom is ealled M. By U n we denote the deviation of the n 'th
atom from its equilibrium position. The atoms are only allowed to move along
the direction of the chain. Later on we shaH see how the model is generalized
to the case when the atoms occupy positions in a three-dimensionallattice and
are allowed to move in different directions.

According to Newton 's second law the acceleration un of the n 'th atom is
given by

MU n = -J«un - Un-l) - J«un - Un +l)'

For a chain of N atoms we shaH use the periodic boundary conditions

(5.24)

(5.25)

on the solutions to (5.24). The distance between two neighboring atoms in
equilibrium is a, which means that the totallength L of the chain is L = N a.
The boundary conditions (5.25) evidently correspond to joining together the
two ends of the linear chain.

In solving the equations af motion it is convenient to regard U n as the real
part af a complex quantity. We note that (5.24) is satisfied by

U n = uoeiqna-iwt

provided w and q are related by the condition

(5.26)

(5.27)
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The solution (5.26) has the form of a plane wave

(5.28)

where the position coordinate x assumes the discrete values x = na with
n = 1, .. " N. The wave number is evidently q/27r, while the angular frequency
is w. The actual deviation U n is of course real, and (5.26) should strictly
speaking be written as

Un = Reuoeiqna-iwt = Uo cos(qna - wt), (5.29)

where Uo is chosen to be real. The symbol Re denotes that the real part is
taken, but it is usually suppressed with the understanding that the real part is
taken at the end. By inserting (5.29) in (5.24) we obtain again the condition
(5.27), which may be written as

(5.30)

the sign of w being chosen to be positive. An equation such as (5.30), which
connects the wave vector with the frequency, is called a dispersion relation.
The particular pattern of oscilIations U n associated with a definite value of q
(and hence w), is called a normal mode. Note that the connection between w
and q is linear for small values of q. In this limit the mode corresponds to a
sound wave, with dispersion relation

w = sq,

where the sound velocity s is given by

(5.31 )

(5.32)

The reason why the frequency w becomes small for small values of q is that
neighboring atoms oscillate very nearly in phase and therefore only move slight­
ly with respect to each other. However, if q assumes the value 7r/ a, neighboring
atoms oscillate in opposite phase (un = -Un-l), giving rise to the maximum
frequency equal to 2J!</M.

The boundary conditions (5.25) determine the allowed values of q. This is
of course a purely classical consideration. The condition (5.25) requires that

eiqNa = 1,

which implies that q may assume the values

m 27r
q=--,

N a

(5.33)

(5.34)
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where m is an integer (positive, negative or zero).
Besides (5.34) the allowed wave vectors must satisfy another condition,

whieh is a eonsequence of the faet that the only physical1y signifieant values of
the plane wave (5.26) are those associated with the lattice points x = nu. If
we replaee in (5.26) the wave vector q by q + 2'Ir / u, the mode U n remains the
same. The two different values of q thus correspond to exactly the same mode
pattern. We therefore limit q to the interval

'Ir 'Ir
-~<q::;-,

a u
(5.35)

which is also known as the first Bril/ouin zone. Note that q may then assume
precisely N different values.

In summary, we have shown that the oscillations of the atoms in the crystal
may be desc.ribed in terms of normal modes such as (5.26), provided w and q
are related by the dispersion relation (5.30). There exist N different modes,
namely as many as the allowed values of q in the interval -1r / a < q ::; 'Ir/a.

5.2.2 Quantization

Having solved the classical linear-chain problem of the motion of N atoms,
each with mass M, interacting via harmonic forces, we shaH now prove that
the Hamiltonian il for the linear chain is a sum over q of terms having the
same form as for a single oscillator,

(5.36)

In the following we prove (5.36) starting from the Hamiltonian

where
[Um,Pn] = ihfJmn .

The operators un og Pn are expressed in terms of Qq and ?q through

and
1 L'" .P,.. - -- p e-1qnan-VN q .

q

(5.37)

(5.38)

(5.39)

(5.40)
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The periodic boundary conditions are satisfied provided that q satisfies the
condition eiqNa = 1. The allowed values of q are thus

(5.41)

where we have assumed for definiteness that N is even.
After inserting (5.39) and (5.40) in the Hamiltonian we carry out the sum­

mation over n, using
N

Eei(q-q')na = Nbqq,.

n=1

The inverse relation
""" ei(n-n')qa - N~L...J - Unni,

q

is also valid, since q according to (5.41) assumes N different values.
As aresult the Hamiltonian (5.37) becomes

iI = E(2~PqP-q + K(l - cosqa)Qqf;J_q).
q

From the inverse relations of (5.39) and (5.40)

and

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)
N

PÅ _ 1 """" Å iqna
q- ~~Pne ,

which follow from (5.39) and (5.40) together with (5.43), we find the following
commutation relations satisfied by Q and ?,

N

[ ~ A] _ 1 '"'" ~ ~ Å Å . i(q'n'-qn)a _ .Qq,Pql - N L...J (unPnl - Pn1un)e - znoqql .
n,n/=1

We introduce creation and annihilation operators by the definition

(5.47)

(5.48)
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(5.49)
and

" 1 A A

bq = i (P_ q - iMwqQq).
V2Mhwq

This turns il into the form (5.36), with wq being the classical oscillation fre­
quency given by (5.30). Note that the creation and annihilation operators
satisfy the commutation relations

(5.50)

as a consequence of (5.47).
We have thus shown that the Hamiltonian il for the linear chain is

(5.51)

The Hamiltonian for a linear chain has thus a very simple form, since it is a sum
of operators associated with each independent harmonic oscillator that belongs
to one of the N possibie values of q. The different possibie energy eigenvalues
are obtained in a way analogous to the single harmonic oscillator by specifying
the number of quanta nq associated with each normal mode. The resulting
contribution to the energy is thus hwq( nq + 1/2), and the total energy in the
state under consideration is therefore the sum over q of all these energies. The
state is labelled by the values of the quantum numbersnqi , where the index i
runs through N different values 1 to N,

(5.52)

The energy quanta in a normal mode are called phonons. In the long wave­
length limit (qa << 1) the normal modes have linear dispersion just like sound,
cf. (5.30). Instead of considering the different energy eigenvalues of the total
energyas a sum of energies associated with each normal mode specified by the
quantum nun1bers n q , one may just as well denote the eigenstate by giving the
number of phonons, nq , associated with each normal mode. The lattice has
thus been transformed from a system of N atoms that are mutually interact­
ing to a non-interacting gas of phonons. The phonon gas is non-interacting,
because the Hamiltonian only contains terms that are quadratic in the devi­
ations U n of the atoms from their equilibrium position. If higher-order terms
are retained in the Hamiltonian, it is possibie to describe these to a first ap­
proximation as perturbations. This gives the phonons a finite lifetime. A given
phonon may for instance decay into two other phonons. Such processes play
an important role in the thermal conduction in insulators. In the absence of
interaction between the phonons and neglecting any effects of boundaries such
an insulator would have infinite thermal conductivity.

The number of phonons is not a conserved quantity, unlike the number of
molecules in ordinary gases sueh as air in a closed container. The number of
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phonons depends on the temperature. In the ground state of the lattice the
number of phonons is zero, since nqi = Ofor all i.

A linear chain of atoms is not a satisfactory model for a solid. In a real
three-dimensional crystal each atom has typically six, eight or twelve near­
est neighbors, depending on the crystal structure. The determination of the
classical lattice vibrations must take the crystal structure into account and
consider the coupling between an atom and its nearest neighbors - and pos­
sibly its lllore distant neighbors as well. This complicates the calculation of
the frequencies of the normal modes, but involves no conceptual changes. In
the three-dimensional case a normal mode is characterized by a wave vector q
with an associated angular frequency wq , corresponding to the replacement of
(5.26) by

u =Uo exp(iq . R - iwt), (5.53)

where R is a lattice vector. Since the atoms may vibrate in three directions,
there are three normal modes associated with each value of q. The lattice
vibrations are therefore characterized not only by the wave vector q, but also
by polarization vectors, which may be chosen to be orthogonal to each other.
If the direction of q is along a symmetry axis in the crystal, it becomes possibIe
to choose the polarization vectors to be parallel with or perpendicular to q,
and the phonons are called longitudinal and transverse, respectively. Many
crystals have a unit cell containing more than one atom. In this case one has
not only branches that are acoustic as in the one-dimensional' case (meaning
that the frequency goes to zero when q goes to zero), but there are also optical
branches, in which the frequency tends towards a non-zero value as q goes to
zero.

The quantization ofthe lattice vibrations proceeds as in the one-dimensional
case. The Hamiltonian is given by (5.51), provided q is interpreted as (q,a),
where a is a polarization index. According to the discussion given above a
may assume three different values (a = 1,2,3), which label the three unit
vectors el, e2 and e3 giving the polarization directions for the normal modes
associated with a given q. This enables us to write down the different possibIe
energy eigenvalues Ei for the crystal as a whole,

(5.54)

where i is an index labelling the set of quantum numbers n qa .

5.3 Phonons in a Bose gas

From elementary statisticaI mechanics it is known that the non-interacting
Bose gas undergoes a phase transition in three dimensions at a temperature
equal to ;,,2(NjV)2/3jmk, except for a numerical constant. Here N is the
total number of bosons, V is the volume, m the mass of a boson and k the
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(5.55)

Boltzmann constant. At T = O K the lowest single-particle quantum state
is macroscopically occupied, the occupation number No being equal to N. In
generalone uses the term macroscopie occupation when the occupation number
No divided by N has a limiting value differing from zero, when N tends towards
infinity.

In this section we shaH treat the interaction between the bosons as a per­
turbation. We assume that in the interacting system the lowest-Iying single­
partiele state is macroscopically occupied, ensuring that NolN tends toward­
s a finite value when N goes to infinity, and approximate the correspond-
ing operators ao and ab by c-numbers. In the unperturbed system we have

ablNo} = VNo + 11No + 1) and aolNo} = ~INo - 1). We shaH therefore
approximate both operators by ~.

The Hamiltonian af a system of interacting bosons is

"" t 1 ~ t tH = L-J {kakak + '2 L-J Vqak+qak'_qak,ak ,
k k,k',q

where (k = h2k2 12m. The operators satisfy Bose commutation relations

[ak, a~,] =8k ,k" [ak, ak'] = O, [at, at,] =O. (5.56)

We have furthermore assumed that the interaction potential V(r, r') only de­
pends on the length Ir - r'l, implying that the matrix element - its Fourier
transform Vq - only depends on the length q of the vector q.

The simplest possibie model for the interaction is the delta function poten­
tial

V(r,r /)=U8(r-r/), (5.57)

where U(> O) is a constant. The associated matrix element is given by the
Fourier transform of the delta function,

u
Vq =­

V
(5.58)

and is therefore independent of q. We now replace ao and ab by ~ in
accordance with the assumption that the lowest quantum state is macroscopi­
cally occupied and discard in the interaction all terms which are not (at least)
proportional to No. This results in the Hamiltonian

U NJ ~ t U No ~ t t 1 t t 1
H ~ 2V + L..J {kakak + V L.-J (akak + a_ka-k + '2aka-k + 2"aka-k ).

k k(k;tO)

(5.59)
Next we introduce the total particle number

1
N = No +"2 L (aLak + a~ka-k)

k(k;tO)

(5.60)
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in the Hamiltonian, which becomes
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U N
2 1" NU t t NU t t

H ~ 2V" +"2 Li [(fk + V)(akak + a_ka-k) + V(aka-k + aka-k)],
k(k;tO)

(5.61 )
when we neglect terms in the potential energy, which are not (at least) pro­
portional to N.

The structure of the Hamiltonian is now very simple, since each of the
terms in the k-sum has the form

(5.62)

where [a, at] = [b, bt] = 1, while a and at commute with bt as well as b.
We may now use the result (5.12) to bring the Hamiltonian (5.61) into

diagonal form,

with

H =E Ek(atak + ØLØk) + const.
k

(5.63)

(5.64)

Note that Ek for small k is a linear function of k, Ek ~ snk. The velocity s is
seen to be

s = JUN/Vm. (5.65)

The repulsive interaction has thus turned the energy spectrum, which is quad­
ratic in the non-interacting case, into a linear one, in agreement with what is
observed experimentally in liquid 4He. The measured slope of the dispersion
curve at q = Ocorresponds to a velocity s which is 240 m/s at a ternperature
of 1 K.

5.4 Quasiparticles in a superconductor

The BCS-theory of superconductivity will be discussed in alater chapter. Here
we shaH demonstrate how the method of canonical transformations allows one
to derive the energy spectrum of a superconductor starting from a simplified
Hamiltonian of the form (5.1). The starting point is an effective electron­
electron interaction, which keeps only part of the complete Hamiltonian

H = EfkCL,oCk,o + 2~ E V(k, k', q)ct+q,oCt/_q,oICk/,oICk,o ,
k,O' q;tO,k,k' ,0',0"

(5.66)
namely the part that connects pairs with total momentum equal to zero. An
important feature of the BCS-Hamiltonian is that the term J.lN, where N is the
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particle number operator, is subtracted from the original Hamiltonian in order
to able to describe a state of broken (gauge) symmetry. The procedure is anal­
ogous to the transition to a grand canonical ensemble in statisticai mechanics
and allows one to consider anomalous averages of the form < c-k,lck,i >.

The simplified BCS-Hamiltonian 1< =H - flN is thus given by

1< =L(fk - fl)(cL,ICk,j + C~k,l C-k,l) - L V(k, k')cL',iC~k/JC-k,!Ck,j,
k k,k J

(5.67)
where the interaction matrix elements V(k, k') are taken to be constant with­
in a shell of thickness 2nwD around the Fermi surface, WD being the Debye
frequency (which is roughly equal to the maximum phonon frequency),

V(k, k') V for Ifk - fll, Ifk J - fll ::; hWD

O otherwise. (5.68)

The constant V is positive, corresponding to an attractive interaction in the
BCS-Hamiltonian (5.67). In order to obtain the energy spectrum ane makes a
Hartree-like approximation to the BCS-Hamiltonian with the result

H =L(fk - Jl)(CL,jCk,j + C~k,lC-k,l) - L(~kCL,ic~k,l + ~kC-k,lCk,i)'
k k

(5.69)
where the real quantity ~k is

~k =L V(k, k') < CL/,jC~k',l > .
k'

(5.70)

We ean now use the result of (5.23) and write down the tliagonalizetl Hamil­
tonian in the form

H =const. +L Ek(at,jak,j + a~k,la-k,l)
k

where

with the tlefinition

(5.71)

(5.72)

~k = fk - fl· (5.73)

The gap parameter ~k, which in the present motlel is intlepentlent of k, is
obtained by solving the selfconsistency equation (5.70), as we shaH see in a
later chapter. It turns out to be a non-analytic function of the strength V
af the attractive interaction, indicating that the superconducting grountl state
cannot be obtainetl by simple perturbation theory starting from the normal
state.
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5.5 Spin waves in a magnet

In Section 5.2 above we have characterized the possible states of a crystalline
lattice by the number of phonons associated with each normal mode. We shall
now see how ferromagnets at low temperatures may be described in terms
of spin waves, the so-called magnons. Like phonons the magnons represent
excited states of the system, i. e. states with higher energy than the ground
state.

5.5.1 Ferromagnet

A simple modelof a ferromagnet is a linear chain of atoms interacting with
their nearest neighbors.2 The Hamiltonian of the magnetic chain is

il = -J L Sn .Sn+l = -J L(Sn.zSn+l.z + ~(S;; S;+l +s; S;;+l»' (5.74)
n n

where J is a positive constant. The Hamiltonian is thus a sum of terms
which describe the exchange interaction between neighboring atoms. As usual
S+ == Sx + iSy and S- == Sx - iSy. For convenience we have made the eigen­
values of the spin operators dimensionless by dividing them by n. This gives
J the dimension of energy. The positions of the atoms in the chain have been
numbered by n == 1, 2, 3, .. " N, where N is the number of atoms. As in the
phonon case we use periodic boundary conditions. By using the properties of
the operators of angular momentum one finds that the state IO) given by

(5.75)

is an eigenstate of il,
(5.76)

with Si == s denoting the maximum value of the z-component of the spin of the
i'th atom (s == 1/2 for a single electron, but in general s may be larger than
this value, since the atomic spin is the result of the addition of the angular
momenta of the atomic electrons). The state IO) is thus characterized by the
eigenvalue of each Sn,z being s. It is not difficult to show that the eigenvalue
in (5.76) is the lowest one possible, corresponding to the ground state, but we
leave out the proof. From a classical point af view it is plausible that the lowest
energy is obtained when the spins all line up in the same direction, since J is
taken to be positive.

2We discuss the one-dimensional case because of its transparency, but it should be re­
membered that one-dimensional systems with finite-range interactions do not order at any
finite temperature. The methods described in the fol1owing are however easily generalized
to the three-dimensional case, in which the magnetic order occurs at a temperature roughly
equal to the exchange constant J divided by k.
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Let us now try to find excited states of the system, i. e. eigenstates of the
Hamiltonian with energies larger than the ground-state energy -JN s2. We
consider a (normalized) state In) given by

1 "
In) = .m:. S;; IO).

y2s
(5.77)

It is readily seen that the state is not an eigenstate for iI, since one obtains

Hin) = -Js(ln + 1) + In - 1)) - J(N - 2)s2In) - s(s - 1)2Jln) (5.78)

by using the properties of the angular momentum operators. Let us, however,
attempt to build an eigenstate by forming the linear combination

(5.79)

where a is the distance between neighboring atoms. We find that (5.79) is
indeed an eigenstate, since

iIlq) = (-J N s2 + 2Js(l - cos qa))lq).

Evidently Iq) is an energy eigenstate with energy

liwq == 2Js(1 - cosqa) = 4Jssin2 qa/2

(5.80)

(5.81)

relative to the ground state. Note that this state is also an eigenstate of the
z-component of the total spin with eigenvalue N s-l (in units of li), since
it is a superposition of states such as (5.77) which are eigenstates af the z-
component of the total spin with eigenvalue N s-l, the operator S;; reducing
the eigenvalue by 1 relative to the ground state.

The deterInination of the magnon energies in the three-dimensional case
proceeds just as for one dimension. For simplicity we assume that the magnetic
material is ordered in a simple cubic lattice. In three dimensions the magnon
energy thus becomes

(5.82)

since the magnon state is characterized by a three-dimensional wave vector q
as in the case of phonons. The dispersion relation (5.82) has cubic symmetry,
since the magnon energy does not change by interchange of the axes in q-space.
It is anisotropic in the sense that the energy depends not only on the length
of q, but also on its direction.
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5.5.2 The Holstein-Primakoff transformation

There exists a transformation, known as the Holstein-Primakoff transforma­
tion, which allows one to write a spin-Hamiltonian like (5.74) in terms ofboson
creation and annihilation operators. It is

(5.83)

which implies that

The operators a and at satisfy the commutation rule

[am, a~] =bmn ,

(5.84)

(5.85)

where we have restored the site index. The boson commutation rules ensure
that the spin operators given by these expressions satisfy the usual angular­
momentum commutation relations.

The transition to collective coordinates proceeds in analogy with (5.39),

1 L .a - -- b e,qnan-VN
q

q • (5.86)

At low temperatures the number of spin waves (which depends on temper­
ature) is small. It is therefore possibIe to negleet the interaction between the
spin waves and approximate S+ and S- by

S+ ~ (2s)1/2a ; S- ~ (2s)1/2a t ,

while Sz is given by the positive root of (5.84),

(5.87)

(5.88)

The Hamiltonian (5.74) is then approximated to be bilinear in a, at, with
quartic terms being neglected, and is thus readily solvable. To obtain the
energy spectrum one must carry out sums of the type

and

""' t _ '" t_l '" btb i(q-q')na - '" btbL....tanan-L...-Jan+lan+l- N L...-J q q,e -L...-J q q
n n n,q,q' q

(5.89)

L a~an+l = L e-iqab:bq;
n q

Lana~+l = Leiqab~bq,
n q

(5.90)
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which is seen to result in the energy dispersion relation (5.81).
In the antiferromagnetic case, J is negative. If one assumes that the ground

state is ane in which the spins are aligned in opposite directions on each af the
two sublattices (corresponding to Sn,z = s, Sn+l,z = -s), then we must treat
each sublattice separately by making the transformations

and

(5.91)

S -s + ctc Sn-+l -- (2s)1/2 c ,n+l,z - - , (5.92)

Here we have introduced boson operators c and et associated with those sites,
in which the z-component af the spin has the value -8 in the ground state. As
shown in Problem 33, one then obtains aHamiltonian ofthe form (5.1), which
may readily be diagonalized, resulting in spin waves with a linear dispersion.
It should be noted that our initial assumption about the nature af the ground
state is actually incorrect in the antiferromagnetic case, cf. Problem 34.
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6 Green functions at zero telllperature

Green functions in many-particle physics come in many different forms, de­
pending on the particular problem that is being considered. In this chapter we
shaH introduce time-ordered, single-particle Green functions at zero tempera­
ture, and discuss the properties of jree-particle Green functions which form the
basic building blocks needed for carrying out perturbation theory to infinite
order.

Not all Green functions are time-ordered. One frequently needs to consider
retarded or advanced functions as well. The use of time-ordered Green functions
allows a perturbation series to be written in a convenient form. Retarded and
advanced functions arise naturally when one considers the linear response of a
system to an external disturbance. While a physical quantity like the ground­
state energy of an interacting many-body system may be obtained from the
time-ordered, single-particle Green function, other physical quantities, such as
the electrical or thermal conductivity, requires the knowledge of two-particle
Green functions for their determination1. In practice, two-particle Green func­
tions are determined by infinite-order perturbation series in which one-particle
Green functions form the building blocks. Many-body theory therefore starts
with the study of the Green function, or propagator, for noninteracting parti­
cles.

For a general interacting system the single-particle Green function G is
defined by

GOq' (x, t; x', ti) =-i < T{ 1/Jo(x, t)1/J!, (x', ti)} > . (6.1)

Here 1/J1(x, t) and 1/Jq(x, t) are operators in the Ileisenberg picture, which add
and remove, respectively, a particle in a spin-state u (= ± 1) to the interacting
system at the space-time point (x, t). We shaH here treat the case when the
particles are fermions. The time-ordering operator T is in the fermion case
defined by

where C is an operator which orders the fermion operators A(t1)B(t2 )C(t3) ...
chronologically with earlier times to the right, while p is the number of inter­
changes needed to achieve this chronological ordering. Thus

(6.3)

while
(6.4)

1 The definition of an N-particle Green function involves N creation and N annihilation
operators.
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The average < ... > in (6.1) is the quantum-mechanical expectation value
involving the exact Heisenberg ground state of the interacting system. Nat­
urally, this state is not known for a general many-body system, and (6.1) is
therefore not a practical starting point for the calculation of C. l/ the Green
function C is known, one may obtain from (6.1) physical quantities such as the
particle density or the total energy of the system, as we shaH see in Section
6.2 below.

6.1 Translational invariance

As we shaH be dealing with systems that are translationally invariant (in both
space and time) it is convenient to introduce operators Ck,O' and ct,O' that
remove and add, respectively, a particle in a definite rnomentum and spin
state k, 0". This is accomplished by the transformation

( ) 1 ""' ik.x ( ,'!/Ja x, t = v'V L...J e Ck,a t)
k

and the corresponding expression for the Hermitian conjugate

'l/J (t) 1 ~ -ik·x t (t)"PO' x, = v'V L...J e ck,O"

k

Then

C ( .' ') - i ""' "'"" -ik'·x' ik·x { ( ) t (')}
0'0" X, t, x ,t - - V L....J L....J e e < T Ck l (1 t ck',O" t >.

k k'

(6.5)

(6.6)

(6.7)

(6.8)

Since the system is translationally invariant, GO'(J" (x, t; x', t') is a function of
only the relative coordinate x-x' , implying that the terms in the sum with k' :f
k are zero. Similarly, if the Hamiltonian is time-independent, the invariance
with respect to displacement in time implies that G(1(J" (x, t; x', t') only depends
an the difference t - t' af the time-arguments. We thus obtain

G ( t · , t') - l ""' ik.(x-x')C (k t t')
0'0" X, , X , - - .L...t e 0'0" , -

V k

where
GO'O', (k, t) = -i < T{Ck,O'(t)cL,(J"(O)} > . (6.9)

In the problems we shaH consider , the Green function is proportional to the
unit matrix in spin-space2

(6.10)

2 Whenever the Hamiltonian and its ground state is invariant under spatial rotation and
reflection, the Green function is proportional to the unit matrix I = 80-0-' in spin space.
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We shaH frequently need to work with the Fourier-transform of G with respect
to time. This is given by

G(k,w) = JdteiwtG(k, t),

together with the inverse

G(k, t) =J~~ e-iwtG(k, w).

(6.11)

(6.12)

We shaH generally follow the commonly used convention of distinguishing be­
tween a function and its Fourier-transform by their explicit argument only,
except in special cases such as the example treated in Section 6.5.1 below,
where an additional 'tilde' is introduced to prevent misunderstanding. The
integrations always extend from minus infinity to plus infinity unless the limits
are explicitly indicated.

6.2 Physical observables

We shaH now show how the Green function in a translationally invariant sys­
tem yields information on the occupation of the single-particle states k. The
occupation number nk of the state k is seen to be given by

nk =< Ct,,AO)Ck,,,(O) >= -i limt_o-G(k, t) = -iJ~~ eiW'lG(k, w). (6.13)

Here TI denotes a positive infinitesimal, TI = 0+.
The total number of particles N therefore equals

(6.14)

In general, an arbitrary single-particle operator (such as the spin density or the
current density) may be related to the single-particle Green function, because
the latter involves one creation and one annihilation operator.

It is also possibIe to express the total energy in terms of the single-particle
Green function. One might expect that this would require knowledge of a two­
particle Green function, but since the field operators 1/J satisfy the Heisenberg
equation of motion involving the Hamiltonian of the system, ane may relate

The proof of that is obtained by expanding G in terms of the unit matrix and the three
Pauli matrices, which together form a complete basis in spin space. Since G by assumption
is a scalar under spatial rotation, G must be a linear combination of I and T • k, with T

denoting the three Pauli-matrices. The invariance under refiection implies, however, that
the coefficient of the term involving T • k is zero.
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the expectation value of the total energy to the single-particle Green function.
This is shown as follows:

For definiteness we shaH assume aHamiltonian of the form

H=Ho+H'

where

H o =L (kC~,O'Ck,O'
k,O'

represents the kinetic energy, while

(6.15)

(6.16)

(6.17)

(6.18)

is the interaction energy. The Fourier-transform of the (spin-independent)
interaction potential is denoted by Vq .

The Heisenberg equation of motion is

ih~c (t) = eiHt / n[c H]e- iHt / nat k k, ,

where H is the Hamiltonian given in (6.15).
In calculating the time derivative of an annihilation operator Cl In the

Heisenberg-picture we encounter a commutator of the form

(6.19)

When working out such expressions it is convenient to exploit the identities
(4.8) and (4.9). Using (4.8) we get

while the use of (4.g) yields

[Cl, C~C1C4C5] = 81 ,2C1c 4C5 - 8l,3C~C4C5'

Note that (6.21) implies that

(6.20)

(6.21)

(6.22)

The time derivative of < ctO'(O)CkO' (t) > is determined by working out the
commutators with the help of (6.21),

ih~ L < CL(O)Cko(t) >= L tk < CL(O)Cko(t) >
kO' kO'
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1 "" t t+2V L..J Vq(6p+q,k6O'O'I < CkO'Cp/_qO'II(t)Cp/O'II(t)CPO'(t) >
kO'pO'/p/O'I'q

-6p/_q,k6O'O'II < ctO'C~+qO'I(t)Cp/O'II(t)CpO'I(t) », (6.23)

which implies that

-i limt->o- L iti gi G(k, i) =-i 1imt->o- L fkG(k, i) + 2 < H' >
kO' kO'

on using (6.22). By means of (6.12) we then obtain from (6.24)

iV J J .< H' >= - (211")4 dk dwe'W'I(-fk + tiw)G(k,w),

which yields the final result for the ground-state energy

(6.24)

(6.25)

iV J J .E =< H >=< Ho+ H' >= - (211")4 dk dwe'W'I(fk + tiw)G(k, w). (6.26)

Knowledge of the single-particle Green-function G(k, w) thus allows one to
determine the ground-state energy E, by carrying out the integrations in (6.26)
over k and w.

It is sometimes convenient to separate the ground-state energy in two terms,
E = Ea+El , where Ea is the ground-state energy of the noninteracting system,
while El is that due to the interaction. This is achieved by introducing a
variable coupling constant A defined as follows: Let H = Ha + H' be the
Hamiltonian of the system, with H' being the interaction. The operator H(A)
defined by

H(A) =Ha + AH' (6.27)

then has the properties that H(O) = Ha, while H(l) = H. We let A vary
between O and 1, and imagine that we have calculated the total energy E(A)
associated with the Hamiltonian H(>"). Denoting the ground-state wavefunc­
tion by '1t(A) we thus have

E(>..) = ('1t(>")IH(>")I'1t(>")}.

By differentiating with respect to >.. we obtain

d~i).) =E()') d~ ('11().)1'11()')} + ('11()') IH' I'11().)}·

(6.28)

(6.29)

Since ('1t(>")I'1t(>")) = 1, the first term on the right-hand side of (6.29) equals
zero. By integrating with respect to A we finally obtain the identity

E - Eo =11 d).), ('11()') I)'H' 1'11()')}. (6.30)
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(6.31)

In order to evaluate (6.30) we must calculate (\l1(A)I'\H'lw('\)) for each A. This
is accomplished with the help of (6.25), resulting in

V rl
d'\ j J 'E-Eo =-i(27r)4jo T· dk dwe"W'I(-fk+hw)GA(k,w),

where the superscript ,\ indicates that the Green function belongs to the Hamil­
tonian H('\) == Ha + AH',

6.3 Green functions for free fermions

The Green function G(k, t) for free fermions is

Gaal (k, t) == -i < T{ Cka (t)CtO'I (O)} >a, (6.32)

where the expectation value involves the ground state of the free-particle
Hamiltonian Ha given by

H o == L tkCtO'Cka,
k,O'

(6.33)

(6.34)

where tk = 1I? k212m.
The use of the Heisenberg equations of motion and the Hamiltonian (6.33)

results in the equation of motion

ih %t Ck = fkCk(t)

with the solution
Ck ( t) = e- i f Ic t / Ti Ck ( O). (6.35)

This allows us to determine the free-particle Green function G(k, t). By con­
sidering first t > O and subsequently t < O, we obtain the result

(6.36)

(6.37)

where 6(t) == 1 if t > O and 6(t) == O if t < O. Here nk = 1 if k < kF, while
nk = Oif k > kF. Thus nk are the occupation numbers in the ground state of
the non-interacting system.

In later applications of many-body theory we shaH find that the poles of the
single particle Green function G(k, w) in the complex w-plane yields informa­
tion about the energy and lifetime of the quasiparticles, which is the commonly
used name for the elementary excitations of the system. In order to see how
this works for free fermions we use the identity

Jdw e- iwt

6(±t) == =f -2'-±',
'Ir'l W 'lTJ
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where TJ as usual is a positive infinitesimal, to prove that

(6.38)

where the superseript on G indieates that it is the Green funetion for non­
interaeting partieles. Note the different loeation of the pole in the eomplex
w-plane for k < kF and for k > kF .

The Green functions for free electrons do not by themselves eontain any
information whieh may not be obtained by using elementary quantum meehan­
ies. By doing infinite-order perturbation theory in the presenee of interaetions
we shaH find that the poles of the Green funetions are shifted in the eomplex
frequeney plane.Provided the poles remain suflieiently elose to the real axis,
their real and imaginary parts represent, respeetively, the energy and (n times)
the inverse lifetime of the elementary exeitations.

6.4 Infinite-order perturbation theory

In using perturbation theory to evaluate the Green funetion we shaH employ
the method of adiabatic turning-on of the interaetion: we imagine that at
some time in the distant past the interaetion between the partieles is absent,
while for inereasing times it is gradually being turned on in sueh a way that
it assumes its full value at a definite instant of time t = O. This eould be
deseribed by the Hamiltonian

(6.39)

where f is an infinitesimal positive quantity. Aeeording to (6.39) the interaetion
vanishes for t --+ ±oo, while the Hamiltonian equals its full value H = Ha +
H' at t = O. The limit (, --+ O eorresponds to turning on the interaetion
adiabatieally, i. e. infinitely slowly.

In the interaction pieture the wave function 'It j(t) develops in time accord­
ing to

(6.40)

where we have indicated by the subscript (, that the time-development operator
depends on this parameter. It is given by expression (2.57) or (2.58), with
H1(t') = e-€lt'IH'(t'). If the time to approaches -00, then the Schrodinger
wave function 'lis(to) must be given by

(6.41)

where <Po is a stationary eigenstate for Ho,

(6.42)
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The wave function in the interaction pieture at time t = to = -00 is therefore

(6.43)

At time t = °all three pietures coincide as before. We thus have

(6.44)

Strictly speaking \lIo = Uf (O, -00)~o does not exist in the limit f --+ 0, since it
acquires a phase which increases in proportion to l/f. In stating the Gell-Mann
Low theorem it is therefore necessary to consider instead the quantity

. IUf(O, -00)~o)

hm,....o (<1>0 IU,(O, -00)<1>0) (6.45)

The theorem due to Gell-Mann and Low3 says the folIowing: If (6.45) exists
to all orders in perturbation theory, then it is an eigenstate of H,

(6.46)

We shaH not give the proof of the theorem here. 4 It should be noted that the
state which develops adiabatically from the ground-state of the non-interacting
system is ordinarily, but not necessarily, the ground-state of the interacting
system. If - as in a superconductor - the ground-state energy does not possess
a perturbation series in the coupling constant, then the eigenvalue E is not the
ground-state energy.

The theorem of Gell-Mann and Low shows how an eigenstate (usually the
ground state) of the Hamiltonian H is generated by adiabatical1y turning on
the interaction. We shal1 make use of the theorem in evaluating the single­
partiele Green function, which involves a time-ordered expectation value of
two Heisenberg operators in the ground state of the interacting system. As we
shaH see below, this expectation value may in turn be expressed in terms of
expectation values of operators given in the interaction pieture, evaluated in
the ground-state ~o of the non-interacting system.

First we calculate the norm of the state vector entering the eigenvalue
equation (6.46). We observe that the state given by (6.45) mayequally well
be obtained by letting the system develop backwards in time from t =+00 to
zero. Thus we have

Iwo) . IUf(O, 00)<1>0)
(<1>0 Iwo) = hm.....o(<1>0 IU,(O, 00)<1>0) . (6.47)

3M. Gell-Mann and F. Low, Phys. Rev. 84,350,1951
4 A detailed discussion may be found in A. L. Fetter and J. D. Walecka, Quantum Theory

oJ Many-particle Systems, fvlcGraw-Hill 1971.
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By using U(O, oo)t =U-1(0, 00) =U(oo, O) we obtain

('1101'110) (~oIU(oo, O)U(O, -(0)1~0)
(q,ol~o)(4>olwo) - 1(<1>01'110)1 2

(<1>oIU(00, -00)I~o)

1{~0Iwo)12
(6.48)

Let us consider the quantity 1(t, t') defined by in terms of the operators
AH and BH

(6.49)

First we treat the case t > t' and obtain

I(t, t')I(<po/Wo)/2 = (woIU(O, t)A](t)U(t, O)U(O, t')B](t')U€(t', 0)1'110).
(6.50)

Using the property U(t, O) = U(O, t)-1 of the time-development operator, we
get

1(t, t' )I{<I>0Iwo)1 2 = {WoIUf(O, t)A](t)U€(t, O)Uf(O, t')B](t')U€(t', O)lwo}
=(~oIT{Uf(OO, -oo)A](t)B](t')}I~o). (6.51)

The opposite case t < t' may be treated in a similar fashion.
In the folIowing 1 stands for (Xl, tI, Ul) and f dl ... for I:Ul f dX1 Jdt! . · ..

The Green function G(l, 2) may therefore with the help of (2.58) be expressed
as

iG(1,2) 00 . 1 100 100

L(_':t, dt~... dt~
O li n. -00 -00

n=

< T{H'(t~) ... H'(t~)7P(1)7Pt(2)}>0
< S >0

(6.52)

Here the operators are written in the interaction pieture. The average < .. >0
involves the ground state of the non-interacting system. The denominator
< S >0 is given by the expression

00 • 1
< S >0= ""(_~)n~

LJ li n!
n=O

100 100I I , I I I

-00 dt l ... -00 dtn < T{H (t1)···H (tn)) >0 . (6.53)

The result (6.52) forms the starting point for the diagrammatie perturba­
tion theory described in the folIowing subsection.
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6.5 Diagrams

In general, the Green function cannot be determined exactly. Instead, one does
perturbation theory and sums selected terms to infinite order by expanding
the numerator and denonlinator of (6.52) in powers of H'. This procedure
generates time-ordered products of strings of field-operators, corresponding to
n-particle Green functions for the non-interacting system. We shaH therefore
need to consider many-particle Green functions G~O) for the non-interacting
system,

G~O)(I .. ·n; n'·· ·1') = (-i)n(~oIT{'Ø(I)·· ''Ø(n)'Øt(n') .. ''Øt(l/)}l~o).
(6.54)

For short we have written n for the argument (xn , t n , (1n).

First we derive a differential equation for ClO
), the one-particle Green func­

tion for the non-interacting system with Hamiltonian H given by

We have

H =L JdXl1/Jt, (xI)Ho(xI)'l/!", (xI).
al

(6.55)

Since

G10)(1, l') -i(~oIT{'Ø(I)'Øt(I')}I~o)

-i(<I>ol'Ø(I)'Øt(I/)I~o)e(tl- t 1,)

+ i(~ol~t(I')~(1)I~o)e(t11 - tl). (6.56)

we get

[~)(l), H]

[v'(l), L JdX21/Jt(2)Ho(2)1/J(2)]
0'2

Ho(l)~(l), (6.57)

Ho(1)G10)(I, l')

+ hb(t 1 - t~)(~ol~(I)'Øt(I/) + 'Øt(I')~(I)I~o)

Ho(l)GlO)(I, l') + tib(tl - t~)b(Xl - Xl')' (6.58)

In operator form we thus have

(6.59)
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We now proceed to consider the equation of motion satisfied by the two­
particle Green function G~O)(l, 2; 2', l'). In this case we must consider sepa­
rately5 the intervals tI < t~ and tI > t~ together with tI < t~ and tI > t~. We
therefore get

(ili~ - H (l))G(O)(1 2· 2' l')
Btl ° 2'"

-tn.6(tl - t~)(~ol{1/J(I), 1/Jt (l')}T{ 1/J(2)1/Jt (2')}I~o)

+ilib(t l - t~)(~ol{1/J(l), 1/Jt(2')}T{1/J(2)1/Jt(I')}I~o}

h6(1 - l')G~O)(2, 2') - h6(1 - 2')G~O)(2, l').

On using (6.59) we see that

C(O)(1 2' 2' l') - C(O)(l l')C(O)(2 2') - C(O)(l 2')C(O)(2 l')
2 '" - 1 , l' l' 1 , ,

which may be written as a determinant

G(O)(1 l') G(lO)(I, 2')G(O)(1 2· 2' l') = 1 ,
2 '" G10)(2, l') G10)(2, 2').

(6.60)

(6.61 )

(6.62)

It is left as an exercise for the reader to show that the corresponding result
for a three-particle Green function may be written as

C~O)(l, 2,3; 3', 2', l') =
GiO)(l, l') GiO)(1,2') GiO)(l, 3')
C~O)(2, l') G~O)(2, 2') G~O)(2, 3')
G~O)(3, l') G~O)(3, 2') G~O)(3, 3')

(6.63)

These results are readily generalized to a n-particle Green function, which
is given by

G~O)(l, ... n; n' ... 1') =
G~O)(l, l')
G10)(2, l')

G(O)(I, 2')

G~O)(21 2')
G~O)(I, n')
G10)(2, n')

G10)(n, n')

(6.64)

The result (6.64) is Wick's theorem. It forms the basis for the diagrammatic
expansion of the Green function given by (6.52).

As an example of the use of diagrams we derive in the folIowing subsection
the results of Hartree-Fock theory discussed in Chapter 4.

5Note that we do not have to consider the intervals tI < t2 and tI > t2 separately,
since the anticommutator {1/J(1), 1/J(2)} is zero and therefore gives a vanishing contribution
to S(tl - t2).
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i + O~ 1-
I I 1. '

Figure 6.1: Contributions to < S >0 to first order in V.

6.5.1 Hartree-Fock theory with diagrams

Let us consider a system of identical spin-I/2 fermions with Hamiltonian H =
Ho + V, where the interaction V is given in the Schrodinger picture by

V = ~ L JdXl JdX21/Jt1 (xd1/Jt 2 (X2)V(Xl - X2)1/Jo 2 (X2)1/Jo 1(xI). (6.65)
0'10'2

For simplicity we have assumed that the potential V(Xl - X2) is spin­
independent and only depends on the relative coordinates Xl - X2. It is con­
venient to introduce time explicitly by the definition

(6.66)

When we expand the Green function, we must remember to take into ac­
count that the creation operators appear before the annihilation operators in
the interaction (6.65). It is therefore convenient to shift the time argument in
the creation operators appearing in V(t) by a positive infinitesimal 0+. When
we subsequently use Wick's theorem on (6.53), we shaH encounter Green func-
tions ofthe type C(O)(l', l'), where the two time arguments are tI' and tI' +0+,
while the spatial arguments are Xl' and Xl',

0 (0)(1' l') - 0(0) ( . 0+). ., - O' IO" XI',tl',Xl',tl' + .
l l

(6.67)

Carrespandingly there appear Green functians af the type CCO)(l', 2'), where
the two time arguments are tI' and tI' + 0+, respectively, while the spatial
arguments are XI' and X2'. In this case we have

G(0)(l',2/) = G~O),O' ,(Xl"tl';X2"tl' +0+).
l 2

To first order in the interaction < S >0 becomes

(6.68)

< S >0
'lJ ' }1 - h dt l < T{V(t 1 )} >0

l - 2
i
h Jdl'Jd2'U(I', 2')

< T {1/,t (I')1/' t (2 /)1/'(2/)1/'( I')} >0, (6.69)
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O~O
Il L'

l.

e
( , l I

Figure 6.2: Unlinked diagrams to first order in V.

where f dl ... stands for L<1 f dXl f dtl .... We now use
l .

< T{1f't(1')1f't(2')1f'(2')1f'(1')} >0
< T{1jJ(l')1jJt(l')} >0< T{1f'(2')1f't(2')} >0

< T { 1jJ(1')1jJ t (2')} >o< T { 1f'(2')1f't (1')}>o, (6.70)

cf. (6.62). Diagrarnrnatically, (6.69) and (6.70) may be illustrated as in Fig.
6.1.

By expanding in similar fashion the numerator in (6.52) to first order it
is seen to contain terms in which the space-time point 1 is connected directly
to 2, while l' and 2' are connected as in the denominator (6.69). Symboli­
cally we may combine these terms as shown in Fig. 6.2, and we observe that
their contribution to first order is cancelled by those of the denominator. A
sirnilar cancellation appears in all higher orders, and we therefore only need
to to consider the linked diagrams in the numerator, provided we replace the
denominator < S >0 by 1.

The tirst-order contribution iC(l)(l, 2) to the Green function is thus seen
to be

iG(1)(1,2) = -*~Jdl'Jd2'U(I', 2')

< T{1f't(I')1f't (2')1jJ(2')1jJ(I')1f'(I)1f't (2)} >0, (6.71)

where it is understood that only the linked diagrams are included. The cor­
responding diagrams are illustrated in Fig. 6.3 (a) and (b). Note that these
diagrams have the same topological structure. They only differ by having the
names of the internal variables interchanged, and they give therefore exactly
the same contribution to C( 1). The diagrams (c) and (d) likewise yield the
same contribution, which means that the expression for C(l)(l, 2) becornes

G(l)( l, 2) =*Jdl'Jd2'[-C<°)(I, 2')U(I', 2')G(O)(I', 1')G(O)(2', 2) +

C(O)(I, 1')U(I', 2')C(0)(1', 2')C(0)(2', 2)].(6.72)
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Figure 6.3: Contributions to G(l).
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Note that the factor 1/2 appearing in the original interaction (6.65) is cancelled
in the expression (6.72), since the diagrams (a) and (b) (as ,veIl as (c) and (d))
yield precisely the same contribution.

For a system which is translationally invariant in space and time it is con­
venient to Fourier-transform from the (x, t)-variables to (k, w)-variables,

G(1 2) = _1_Jdk Jdweik,(xl-x2)e-iw(tl-t2)G(k w)8, (27l'')4 . , 0'10"2·

The Fourier-transformation yields

G(1)(k,w) = *(G(Ol(k,w»2 (2~)4Jdk' f dw'

[-2U(O)C(O)(k', w')eiw'O+

+ lJ(k - k', w - w')C(O)(k', w')eiw'O+],

(6.73)

(6.74)

which may be shown as follows: In order to Fourier-transform an expression
of the form

we insert

A(x) =~Jdkeikx A(k)
27r

etc. This results in

F(Xl' X2) = (27r)-4 JdXa JdX4 f dk l Jdk2f dka Jdk4

A(kl )B(k2 )C(k3 )D(k4 )

exp i[(Xl - xa)k l + (X3 - x4)k2+ (X3 - x4)k3 + (X4 - x2)k4]
='(27r)-2 f dk l f dk2 f dk3 f dk4exp i(xlkl - X2 k4)

(6.76)
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6(k1 - k2 - k3 )6(k2+ ks - k4)A(kl)B(k2)C(ks)D(k4) ,
=(21r)-2 f dkl f dk2ei(zol-zo2)klA(kl)B(k2)C(kl - k2 )D(k1 ), (6.77)

which shows that the Fourier-transform of F is

F(k) = 2~Jdk'A(k)B(k')C(k - k')D(k).

In a similar fashion we obtain from an expression of the form

(6.78)

G(Xl, X2) =JdX3 JdX4A(Xl - x4)B(X3 - X4)C(X3 - x3)D(X4 - X2) (6.79)

that

G(k) = 2~Jdk'.A(k)B(O)C(k')D(k), (6.80)

since the integration over X3 and X4 introduces 6(k2 ) and 6(k l + k2 - k4 ),

respectively. Note that it is necessary to take into account the infinitesimal
difference 0+ between the time arguments of the Green function, resulting in
the multiplication of the function corresponding to C in the two expression­
s above by exp(iw'O+). This guarantees the convergence of the subsequent
contour integration in the w'-plane.

We have thus verified (6.74), which yields the first-order correction to the
Green function in terms of a product of two zero-order Green functions. In
arder ta obtain the Hartree-Fock approximation treated in Chapter 4 we need
to shift the paies af the Green function, and it is therefore necessary to sum
an infinity af diagrams. Symbolically, we may write (6.74) as

(6.81)

where :E is a function of k and w. If we now include terms like G(O):EG(O):EG(O)
etc. we get a geometric series for G,

(6.82)

which mayeasily be summed. It is convenient to write the result in terms of
the inverse of O:

(0)-1 = (0(0)-1 - :E.

The expression for :E is according to (6.74) given by

E(k,w) = -* (2~)4 Jdk' Jdw'[2U(O)G(O)(k',w')e iw
'o+ ­

U(k - k', w - w')C(O)(k', w')eiw'o+.

(6.83)

(6.84)
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(6.85)

(6.86)

(6.87)

By carrying out the integration over w' and using (6.13) we obtain

liE(k) = Vo (2~)3 Jdk'nkl - (2~)3 Jdk'nk,vk-k /.

Since 1: is a real quantity and a function of k) only, it shifts the pole of the
Green function along the real axis from fk to Ek = fk + 1i~(k). The shifted
energies are seen to be identical to the resul t (4.15), thus demonstrating the
equivalence of the summmation of selected diagrams with the Hartree-Fock
approximation in a translationally invariant system.6

6.6 Feynman rules

We shaH now discuss the Feynman rules for the contribution to the Green
function to a given order in the interaction. Note that the content of the
Feynman rules in general depends an the particular physical problem being
considered. In a later chapter we discuss the Feynman rules that apply to the
electron-phonon problem. In the present section we deal with a Fermi system
of interacting particles. A particular example is an electron gas, in \vhich the
interaction between the particles is given by the Coulomb law, but the rules
apply equally well to other types of interaction.

In performing the expansion of (6.52) and (6.53) we must remember that
the operators appearing in these expressions are understood to be given in the
interaction picture. It is convenient to write the interaction in the form

V(tt} = ~ L JdXl JdX2 Jdt2'Øl, (Xl,t 1 )'Ø12 (x2,t2)
0'10'2

V(Xl' X2)<5(tl - t2)'Ø0'2(X2, t2)'Ø0'1 (Xl, t 1 )

by introducing a delta-function in time. This allows us to write the subsequent
expansion in a form where space and time variables occur in a symmetric
fashion. For brevity we introduce Jdl ... = 2:0'1 Jdx1dt 1 .•. and thus have

Jdi 1V (td = ~ Jdl Jd2'Ø t (l )'Øt (2)V (l, 2)'Ø(2)'Ø( l).

Here V( 1,2) denotes V(Xl' X2)<5(tl - t2), and we have suppressed the spin­
dependence of the interaction.

6This simple equivalence only holds for translationally invariant systems. For atoms,
the diagrams yielding the Hartree-Fock approximation must be calculated selfconsistently,
leading to equations of the form (4.18-19).

7 The most general form of the interaction invalves an interaction matrix-element
VO"l/10"2 /1 <72,0"1 depending on four spin-variables. In the absence of external fieids the Harnil­
tonian must be invariant under rotations in spin space, implying that the interaction has the
fonn

VO"l/lCl21 ,Cl2 ,0'1 = V0 80"11 ,0'180"2/,0'2 + VI T 0'1 / ,0'1 • T <72 /,0'2 (6.88)
where T denotes the three Pauli-matrices, while Vo and VI are scalars in spin-space.
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Figure 6.4: Closed fermion loop.

Now we start the expansion through second order in the interaction. First
we work out < S >0:

< S >0= l + i~ ~Jdl'Jd2'V(I', 2') < T{ ,pt (l'),pt (2'),p(2'),p(I')} >0

1 1 1 J 'J 'Jd ' Jd' (' ') (' ')+(iIi)2 222! dl d2 3 4 V 1,2 V 3,4

< T { 1/Jt (1')11' t (2')11'(2')11'( 1')11't (3')11't (4')11'(4')11'(3')} >0 (6.89)

A similar expansion of the numerator may be carried out to second order in
the interaction. In Problem 42 we examine the terms generated in the process.
We have aiready mentioned the cancellation of the terms in the denominator
against the unlinked diagrams in the numerator. This persists in all orders of
perturbation theory, thereby allowing a considerable simplification in col1ecting
the n-th order terms. Furthermore, the factor 1/2n arisingfrom the interaction
raised to the n-th power disappears, since each interaction line may be 'flipped'.
The fiipping simply corresponds to interchanging the names of two integration
variables. The factor of l/n! also disappears, since theinteraction lines may
be ordered in n! different ways, giving rise to diagrams that yield the same
contribution, since their only difference comes from the names of the internal
variables.

In a translationally invariant system it is advantageous to Fourier-transform
the Green function according to

(6.90)

This implies that we must conserve four-momentum at each vertex, the reason
being that the integration over internal variables yields

JdXl Jdtlei(kt-k2+k3),xte-i(wt-w2+w3)tt =

(27r)4c5(k1 - k 2 + k3 )c5(Wl - W2 + W3). (6.91)

Finally, the sign of the contribution must be discussed: Each power of
the interaction yields (l/ih), corresponding to the factor (l/ih)n. When the
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Feynman rules are formulated in terms of non-interacting Green functions Go,
of which there are 2n + 1 in a n-th order diagram, one obtains from each
a factor of i or altogether i2n+1 . The n-th order contribution to the Green
function therefore has the factor

(6.92)

In addition it is necessary to consider separately those diagrams that con­
tain a closed fermion line. Since such a diagram arises from the pairing illus­
trated on Fig. 6.4, it gives rise to an odd number of interchanges of the fermion
operators. A given contribution to the n-th order diagram must therefore be
multiplied by (-l)F where F is the number of closed fermion loops.

We are now in a position to formulate the Feynman rules in momentum­
frequency space for the n-th order contribution to the Green function G:

• Draw all topologically different diagrams with n interaction lines and
2n + 1 oriented fermion lines, i. e. free-particle Green functions C(O).

• Associate an oriented four-momentum with each interaction line and
fermion line and conserve four-momentum at each vertex.

• Associate with each fernlion line the factor

(O) 1G (k,w) = . 6UO I,
W - Wk + zTJsgn(k - kp)

where hWk = h2 k 212m is the free-particle (kinetic) energy.

• Associate V( q) with each interaction line.

(6.93)

• Sum over the internal spin variables and integrate over the internal mo­
mentum and frequency variables.

• Multiply by

• Interpret

~

k w
J D

(6.94)
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( b)

Figure 6.5: Second order contributions to the reducible self-energy.

6.7 Dyson equations

It is evident from the previous discussion that the Green function may be
written in the form

(6.95)

The quantity Ered(k, w) is called the reducible self-energy. Its diagrammatic
expansion is identical with that of G, except for the absence of the zero'th order
term G(O) and the removal of the two externallines on the remaining diagrams.

In Fig. 6.5 we illustrate two second order contributions to Ered (k, w). They
are characterized by an important difference. The diagram (a) may be cut into
two pieces by the cutting of a single fermion line. Such a diagram is called
reducible. The diagram (b) does not, however, fall into two separate pieces by
the cutting of a single fermion line. This property· is named irreducibility. We
shaH define the irreducible self-energy E(k, w) as the sum of all those contri-
butions to Ered(k,w), which cannot be cut into two pieces by the cutting of a
single line. One therefore has

G(k,w) =G(O)(k,w) + G(O)(k,w)E(k,w)G(k,·w), (6.96)

as may be verified by iteration. The equation (6.96) is called the Dyson equa­
tion. By determining E(k, w) in some approximation one therefore sums up
infiniteIy many diagrams in the expansion of G(k, wr It is evidently necessary
to consider E(k, w) rather than Ered (k, w) in order to obtain a shift in the
position of the poIes of the Green function. This may be seen by writing (6.96)
in the form

(G(k,W))-l = (G(O)(k,w))-l - E(k,w). (6.97)

In Section 6.5.1 we demonstrated this explicitly in carrying out the Hartree­
Fock approximation.
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7 Green functions at finite teDlperature
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The operator exp(-iHi/h) that describes the development in time of the
Schrodinger states clearly resembles the operator exp(- H / kT), which enters
the statisticai average of a physical quantity belonging to a many-particle sys­
tem at temperature T. This simple observation forms the basis for the in­
troduction of temperature Green functions. Since temperature corresponds to
imaginary time, ane is led to define creation and annihilation operators that
depend on the variable T according to

(7.1)

and
(7.2)

Here ]< equals the Hamiltonian H minus the chemical potential Jl times the
number operator N,

1< = H - JlN, (7.3)

since we shaH perform the statisticai averaging in the grand canonical ensemble
in which the particle number is varying. The variable T has thus dimension
of time. It should be noted that 1{;t(x, T) is not the Hermitian conjugate of
1{;a (x, T), because T is taken to be a real variable. For a general interacting
system, the single-particle temperature Green function G is defined by

Ga(JJ(x, T;X', r') =- < T, {1/'a(x, T)1/'~/(X/, T')} > . (7.4)

Here < ... > denotes a statisticai average over the grand-canonical ensemble,

Tr(e-,BK A)
< A >= = e,B°Tr(e-/3K A),

Tre-/3K

with n being the grand thermodynamic potential defined by

(7.5)

(7.6)

We shaH only treat the case when the particles are fermions. The tau-ordering
operator Ti is in the fermion case defined by

where C is an operator which orders the fermion operators A( r1 )B( r2 )C(r3) ...
chronologically with earlier 'times' to the right, while p is the number of in­
terchanges needed to achieve this chronological ardering. In the boson case,
the tau-ordering operator is given by the same expression as (7.7) except the
factor of (-1 )P .
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7.1 Translational invariance

Since we shaH be dealing with systems that are translationally invariant in
both space and time, it is convenient to introduce operators CIt,oo and cL,oo that
remove and add, respectively, a particle in a definite momentum and spin state
k,O'. This is accomplished by the transformation

Then

G ( ") 1~~ -ik'-x' ik-x { () t (')}(J(JI X, T; X ,T =- V L...i L...i e e < TT Ck,(J T CIt/,oo' T >.
k It'

(7.8)

(7.9)

Since the system is translationally invariant in space and time, GOOOOI(X, T; x', T')
is a function of only the relative coordinate x - x', and of T - T', implying that
the terms in the sum with k' =I k are zero. We thus obtain

where

G ( . I ') - l ~ ik-(x-x')G (k ')OOU' X, T, X ,T - V L...J e uu' ,T - T
k

(7.10)

GU(JI(k, T) = - < TT{Ck,u(T)Ct,ul(O)} > . (7.11)

In the absence of spin-dependent forces G is proportional to the unit-matrix
in spin-space,

Goooo,(k, T) =6uu,G(k, T). (7.12)

Each T-variable ranges from O to hØ, and since the Green function G only
depends on the difference between its two T-variables, it is sufficient to consider
the Green function in the interval

-hØ :5 T < hØ or (7.13)

The Green function may therefore be expanded in a Fourier-series with Fourier­
coefficients given by

(7.14)

In the fermion case the Green function has an important symmetry property
with respect to finite translations in T-space,

G(k, T+ hØ) = -G(k, T). (7.15)
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In order to prove (7.15) we shall assume for definiteness that O > r > -hf3.
Then

exp( -f3n)G(k, r) =Tr(c~(O)eKT/1ick(O)e-KT/1ie-ØK).

Likewise we have

(7.16)

- exp( -f3n)G(k, r + hf3) = Tr(e- ØK eK(T+1iØ)/1ick(O)e-K(T+1iØ)/1ic~(O)).

(7.17)
Using the cyclic invariance of the trace, the right hand side of (7.16) is seen to
be equal to the right hand side of (7.17), resulting in (7.15).

For bosons the minus-sign in (7.15) is replaced by a plus sign. In both cases
we therefore have

G(k, r - hf3) = G(k, r + hf3).

The Fourier-expansion in the ferm ion case is thus

G(k,r) = ;11 Le-iwnTG(k,wn),
n

where the Matsubara frequencies W n are given by

1r
W n = (2n+ 1) f3h' n = 0,±1,±2,±3···.

(7.18)

(7.19)

(7.20)

The symmetry property (7.15) together with the relation exp(-iwn hf3) = -1
allows one to write the Fourier-coefficients G(k, w n ) as

(7.21)

The corresponding expansion in the case of bosons is identical to (7.14) and
(7.19), while (7.20) is replaced by the even-numbered frequencies

1r
w n =2n

f3h
, n=O,±I,±2,±3···.

7.2 Physical observables

(7.22)

In close analogy with the zero-temperature case discussed in Chapter 6, we
may verify that the Green function in a translationally invariant system yields
information on the mean (thermal) occupation of the single-particle states k.
The mean occupation number nk of the state k is given by

nk =< {,,(O)Ck,a(O) >= G(k,T ---+ 0-) = f31
h
LeiWn'1G(k,wn).

n

(7.23)
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Here TJ denotes a positive infinitesimal, TJ = 0+ .
The total numher of particles N is therefore

(7.24)

In general, the thermal average of an arbitrary single-particle quantity (such
as the spin density or the current density) may be related to the single-particle
temperature Green function, because the latter involves one creation and one
annihilation operator.

In analogy with the zero-temperature case it is also possibie to express the
internal energy in terms of the single-particle temperature Green function, as
we shaH now demonstrate. For definiteness we assume that the Hamiltonian
has the form

H =Ho+H'

where

Ho = I: lkct,O'Ck,O'

k,O'

represents the kinetic energy, while

(7.25)

(7.26)

(7.27)

is the interaction energy. The Fourier-transform of the (spin-independent)
interaction potential is denoted by Vq .

By working out the T-derivative of the operator Ck ( T) given hy

(7.28)

we obtain its equation of motion

(7.29)

In working out the equation of motion we may thus tirst determine the com­
mutator fCk, 1<], where the operators are both Schrodinger operators.

The internal energy U, which is the thermal average of the Hamiltonian, is
obtained from

U =< H >=< K > +p < N > . (7.30)

Here we may use the equation of motion for the field operators to determine.<
1< >, in precisely the same manner as we obtained < H > at zero temperature,
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with {k being replaced by fk - p" while w is replaced by iwn . The result is seen
to be

u = (21l"~,8h Jdk L e
iWn

'1(j.L + (k + ihwn)G(k, wn).
n

(7.31)

The knowledge of the single-particle Green-function G(k, wn ) thus allows one
to determine the internal energy U, by carrying out the integrations over wave
vector and the sum over i\1atsubara frequencies in (7.31).

7.3 Green functions for free fermions

The Green function G(k, I) for free fermions is

(7.32)

where the thermal average < ... >0 involves the free-particle Hamiltonian H o
given by

Ho == L fkCLaCkO' ,

k,a

where fk = 1i2k212m. The operator Ii == lio is thus

I{o =L(tk- P,)cta cka ,
k,a

The use of the equation of motion (7.29) with (7.34) results in

with the solution

(7.33)

(7.34)

(7.35)

(7.36)

This allows us to determine the free-particle Green function G(k, I). By con­
sidering first 1 > Oand subsequently 1 < 0, we obtain the result

(7.37)

where 8(/) = l if 1 > O and 8(/) = Oif 1 < O. Here nk are mean occupation
numbers for the non-interacting system, given by the well-known expression
from equilibrium statisticaI mechanics

(7.38)
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The Fourier-coefficients are found by inserting (7.37) into (7.21) and inte­
grating over r,

The Fourier-transform G(k,wn ) thus becomes

l
G(k,wn ) = . ( )/n'

ZWn - {le - Jl

(7.39)

(7.40)

In the folIowing l stands for (Xl, rI, 0'1) and f dl ... for 2:<71 JdXl Jdrl · · ..
We shaH introduce an interaction pieture in which operators develop according
to

AI(r) =eKOT/1iAse-KoT/1i. (7.41)

The Heisenberg operator AH (r) is then related to the operator in the interac­
tion pieture by

AH(r) = eKT/1ie-KoT/1i AI(r)eKoT/Tie-KT/Ti.

By introducing the operator U(ri, r2) by the definition

we may write (7.42) in the form

AH(r) = U(O, r)AI(r)U(r, O).

The operator Usatisfies the condition

U(O, O) = 1.

and we have

(7.42)

(7.43)

(7.44)

(7.45)

U(r) == U(r, O) = eKOT/1ie-KT/1i. (7.46)

It follows from (7.43) and (7.46) that U(O, r) =U-l(r,O). By differentiating
(7.46) one finds that U(r) satisfies the differential equation

where

au-n ar = K 1(r)U(r), (7.47)

(7.48)



Green functions at finite temperature 75

with /<1 = /< - Ko being the interaction part of the Hamiltonian. This corre­
sponds to (2.50) in the zero-temperature case. With the boundary condition
U(O) = 1, the integrated form of the differential equation (7.47) becomes

1 [T
U(r) = 1- h Jo dr' K 1(r')U(r') (7.49)

The integral equation (7.49) may be iterated, just as in the zero temperature
case, and the subsequent development closely parallels that of chapter 6. Note
that the statisticaI operator exp( -{3/{) is given by

e-(3K = e-(3Ko U(n(3, O). (7.50)

We may therefore take over the final result, which is an -expression for the
Green function as an infinite series in the interaction part of the Hamiltonian,
provided we integrate over T from O to h{3. The Green function G(l, 2) thus
beconles

G(1,2) =

(7.51 )

The operators are written in the interactio~/picture, and' < ... >0 is the
usual thermaI average for the non-interacting system. The operator S is S =

, U(h{3, O), and the denominator < S >0 is given by the expansion

< S >0

(7.52)

The result (7.51) forms the starting point for the diagrammatie perturba­
tion theory.

7.4 Diagrams

In general, the Green function cannot be determined exactly. Instead, one does
perturbation theory and sums selected terms to infinite order by expanding
the numerator and denominator of (7.51) in powers of [{l. This procedure
generates time-ordered products of strings of field-operators, corresponding to
n-particle Green functions for the non-interacting system. In analogy with the



76 Introduetion to Many-particle Physics

zero-temperature case we shaH therefore need to consider many-particle Green
functions G~O) for the non-interacting system,

G~O)(l .. -n; n'·· ·1') = (_l)n < Tr{,p(l)·· .,p(n),pt(n') .. . ,pt(l')} >0 .
(7.53)

For short we have written n for the argument (xn , Tn ).

First we may derive a differential equation for G~O), the one-particle Green
function for the non-interacting system. In analogy with the zero-temperature
case we obtain

(7.54)

The equation of motion for the two-particle Green function G~O)(l, 2; 2', l')
Ieads to

G(O)(l 2' 2' l') = I G~O)(l, l') G~O)(l,2')
2 '" G~O)(2, l') G~0)(2,2'),

(7.55)

just as in chapter 6.
These results are readily generaIized to a n-particle Green function, which

is given by

G~O)(l, ... n; n' ... 1') =

G(O)(l, 2')

G~O)(2, 2')
G10)(1, n')
G~O)(2, n')

G10)(n, n')

(7.56)

The result (7.56) is Wick's theorem at finite temperature. It forms the basis
for the diagrammatie expansion of the Green function given by (7.51).

7.4.1 Feynman rules

The Feynman rules for the contribution to the Green function to a given order
in the interaction are obtained in the same manner as the zero-temperature
rules of chapter 6. The conservation of frequency at each vertex follows from
the expansion in Fourier series and subsequent integration over T. In analogy
to (6.88) we obtain

(7.57)

• Draw all topologically different diagrams with n interaction lines and
2n + 1 oriented free-particle Green functions a(O).
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• Associate an oriented 'four-momentum' (k, wn ) with each interaction line
and conserve four-momentum at each vertex.

• Associate the factor

(O) 1
G (k,wn ) = . e1'/)17'171

ZW n - k
(7.58)

with each particle line, ~k = h2 k212m - Il being the. free-particle (kinetic)
energy minus the chemical potential Il.

• Associate Vq with each interaction line.

• Sum over spin and frequency and integrate over momentum variables.

• Multiply by

• Interpret

(7.59)

as eiwnl1 G(O)(k, wn ).

We define the irreducible self-energy E(k, wn ) as the' sum of all those con­
tributions to the self-energy which cannot be cut into two pieces by the cutting
af a single line. One therefore has

(7.60)

as may be seen by iteration. The equation (7.60) is the Dyson equation. It
mayaiso be written in the form

(7.61)

as in the case of zero temperature.

7.5 Retarded and advanced Green functions

It is often useful to consider retarded or advanced Green functions rather than
time-ordered ones such as (7.11). The retarded Green function corresponding
to (7.11) is (we suppress spin labels)

(7.62)
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where the field operators now depend on real time t according to the Heisenberg
equation of motion,

Ck{t) =eiKt/1ick{O)e-iKt/1i. (7.63)

As usual e{t) is 1 if t > O, and zero if t < O. The thermal average involves
as before the grand canonical ensemble, cf. (7.5). The advanced function is
similarly defined by

(7.64)

The connection between these different Green functions may be elucidated by
introducing a spectral representation. This is achieved by inserting into the
expression for G a unit operator i defined by

i =L: Im)(ml·
m

(7.65)

Here 1m) denotes a complete set of statesi, which are eigenstates for 1<,

Since

we obtain

Kim) =Emlm).

(nICk(t)lm) =ei(En -Ern )t/1i(nICk(O)lm)

n,m

l(nlck{0)lm)1 2 + e- i (En -Ern )t/1i l(mlck{O)ln) 12).

(7.66)

(7.67)

(7.68)

By interchanging the summation variables n and m in the second term we
obtain

n,m

with the Fourier-transform

aret(k,w) = -iePo L: rX) dtei(E..-Em)t/1i+iwt-"t

n,m 1o
(e-ØEn + e-ØErn )l(nlck(0)lm)12

= eøn L:(e-ØEn + e-ØErn )
n,m

2 1
l(nlck(O)lm)1 (E E )fh ..

W + n - m + IT]
(7.70)

1 Note that the set includes states with differing total number ol partieles, as is necessary
for a quantity such as (m(ck(O)ln) to be non-zero.



Green functions at finite temperature 79

In defining the Fourier-transform we have multiplied the integrand by exp( -7]t),
where 7] is a positive infinitesimal in order to ensure convergence at large times.
The result of this is that the Fourier-transform becomes an analytic function of
w in the upper half of the complex w-plane. This analyticity in the upper half
plane is the characteristic of retarded functions, which are used for describing
the causal response to external disturbances. Similarly, the advanced functions
are analytic in the lower half of the complex w-plane.

Now let us compare the expression (7.70) with the corresponding one for
the tau-ordered Green function

(7.71)

By inserting the unit operator in the same fashion as before we obtain for T > O
that

(7.72)
n,m

The Fourier-coefficient in the Fourier-series expansion is

G(k, wn )

n,m

(7.73)

From this we conclude that the expression for the retarded Green function
may be obtained from the tau-ordered one by replacing iWn with w + i7]. This
procedure is called ana/ytic continuation. It implies that the retarded Green
function may be obtained as a function of the continuous, real frequency vari­
able w from the knowledge of the Matsubara Green function on the discrete set
of points iWn on the imaginary axis in the complex frequency plane. Similarly,
the advanced Green funetion is obtained by replacing iWn with w - i7]. From
this it follows that the imaginary part of Gret is equal to minus the imaginary
part of the advanced one Gadv, while their real parts are equal to each other.
One defines the so-called spectral density A(k, w) as

A(k,w) = ~(Gadv(k,w) - cret(k,w)).
Z

(7.74)

By taking the imaginary parts of the retarded and advanced Green functions
with the help of the identity

1 P--.- = - - i1ro(x),
X + 17] X

(7.75)
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we obtain the explicit expression for the spectral density

n,m

By integrating the spectral density (7.76) over frequency one obtains that

Joo dw
-00 211" A(k, w) eøn L(e-ØEn + e-ØEm )l(nlck(O)lm)12

n,m

n,m

(nlct(O)lm){mlck(O)ln) ). (7.77)

The use of the commutation rule ctCk + Ckct = 1 then leads to the sum-rule

JOO dw
-2 A(k,w) = 1.

-00 1r

The spectral density has another important property, namely that

Joo dw 1
-2A(k,w) {31iw 1 =< etck >= nk·

-00 1r e +

(7.78)

(7.79)

This is demonstrated by writing out the expression for the mean occupation
number, nk,

nk = eønTr(e-ØKctck)

eøn L{mle-/3Kct(O)ln){nlck(O)lm)
n,m

n,m

The use of the identity

(e-ØEn +e-/3Em )6(liw + En - Em) =e-/3Em (eø1iw + 1)6(liw +En - Em) (7.81)

in (7.76) then proves the property (7.79). For non-interacting partieles, A(k, w)
is given by the delta-function

A(k, w) =21r6(w - (ik - p.)/li). (7.82)

When this is inserted into the sum-rule (7.79), nk becomes equal to the Fermi­
function,

(7.83)

as one would expect.
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c

(7.85)

(7.86)

Figure 7.1: Contour for the evaluation of Matsubara sum.

7.6 Matsubara sums

In this last subsection we shaH discuss the technique involved in summing over
the discrete Matsubara frequencies. The Hartree-Fock contribution to the self­
energy is

Since the Fourier-transform of the interaction is frequency-independent, the
summation over Matsubara frequencies reduees to the ealculation af the sum
F(a) given by

~ . 1F(a) = L...t e~wnTJ • ,
n 'lWn - a

where a depends on the momentum variables but not on n. Sueh a sum may
be carried out by converting it to a contour integral involving a funetion f(z),
which is defined sueh that it has simple, first-order poles (with unit residue)
at the Matsubara-frequencies W n :

13h
fez) =- (JTi •

e z + 1

The funetion f is clearly infinite when z = iWn = i1r(2n + 1)/{3h and has unit
residue.

We thus consider the contour integral

I - 1 1d ZTJ l {3hc---2 · ze -- {31i 1·1rZ C Z - a e z + (7.87)

If we choose the contour C as indicated in Fig. 7.1, the contour-integral Ic
is zero, sinee the contributions from the ares vanish for Rez < O because of
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(7.88)

exp(1]z) and for Rez > O because of (exp(,8nz) + l)-l.The two parts of the
contour named Cl and C2 together yieId the sum F(a). Therefore the integral
around the poIe at z = a along the part of the contour named C3 must yield
-F(a). Thus we have

F(a) = _1_ f dzezrJ_1_ Øn == Øh .
21ri lC

3
z - a e/31iz + l e/31ia + l

Now, since a = ik - JJ we recover the Fermi distribution function nk and
the Hartree-Fock expression for the self-energy becomes

(7.89)

At T = Othis reduces to our previous result from Chapter 6.
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The electron gas has played a very important role in the development of many­
hody theoryl. In the present chapter we employ the random-phase approxi­
mation (RPA) to ohtain the dielectric function and the ground state energy af
the electron gas. The random-phase approximation is valid for a high-density
electron gas. By means of diagrammatie perturbation theory it is possibie to
go beyond RPA and include more terms in the perturbation series. One should
note, however, that it has not proved fruitful to extend RPA by simply going
to higher arder in the parameter rs , as defined in (3.8), and In rs . Such an ex­
pansion only converges when r s < 1, while in metals r s ranges between 2 and
6. It has therefore been necessary to devise approximation schemes that do
not represent an expansion in a small parameter but which nevertheless serve
as a liseful basis for the description of the properties of conduction electrons
in the range of metallic densities.

Our starting point is the Hamiltonian of a homogeneous electron gas,

H = Ha + H'

where

Ha =L tkct,O'Ck)O'

k,O'

represents the kinetic energy, while

is the interaction between the electrons with

V( )
_ 41refi

q - 2'
q

(8.1 )

(8.2)

(8.3)

(8.4)

The restrietion on the q-sum arises because the electrons are immersed in a
positive background of charge due to the lattice ions, as explained in Chapter
2.

8.1 The random-phase approximation

In Section 6.5.1 we have obtained G in the Hartree-Fock approximation by de­
termining the irreducible self-energy E(k, w) in the approximation where only
the diagram shown in Fig. 8.1 (a) is included, the Hartree-term being absent

1 A collection of reprints covering the important developments in the fifties may be found
in D. Pines: The Many Body Problem, Benjamin 1962.
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D
( c ) Crt)

Figure 8.1: Terms in the irreducible self-energy

due to the existence of the positive background. It is natural to proceed by
considering second-order contributions to E(k, w) such as the diagram shown
in Fig. 8.1 (b). Due to the occurrence of two interaction lines carrying the
same momentum, this term gives a divergent contribution to the ground-state
energy for the same reason that the use of second-order perturbation theory
led to a divergence, as demonstrated in Chapter 3. Moreover, third-order
and fourth-order terms such as those exhibited in Fi~. 8.1 c) and d) yield in­
creasingly strong divergences, since they contain l/q and 1/q8, respectively.
The solution to the problem is to sum all such divergent terms, which results
in a finite answer. This constitutes the random-phase approximation.

Let us define an effective interaction ~ff(q, w), which is equal to the sum
of V (q) and the infinity of terms obtained by inserting the polarization bubble
n(O)(q, w) in the manner illustrated in Fig. 8.1 (b-d). Thus ~ff(q, w) represents
a geometric series,

Veff(q,W) = V(q) + V(q)II(O)V(q) + V(q)n(O)V(q)U(O)V(q).... (8.5)

This infinite series is readily summed with the result

V(q)
Veff(q,W) =1- V(q)JI{O)(q, w) , (8.6)

where rr(O)(q, w) is the polarization bubble indicated in the diagram of Fig. 8.1
(b). According to the Feynman rules, the polarization bubble is

(O) i J dk Jdko (O) (O)II (q,qo)=-2,; (211")3 -;;;;G (k,ko)G (q+k,qo+ko). (8.7)

The factor of 2 is due to the summation over spin, while the minus-sign comes
from the presence of the closed fermion loop. The factor of i/h originates in the
faet that we have separated out V(q) in the definition ofII(O), cf. (6.94) and the
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denominator of (8.6). As we shaH see, this polarization bubble determines the
dielectric function of the electron gas within the RPA, and we shaH therefore
need to know it as a function of q and qo.

We now use the expression (8.7) together with the free-particle Green func-
tion C(O) to determine n(O) as a function of wave-vector q and frequency qo.
The free-particle propagator a(O)(k, w) is given by

(8.8)

where

(8.9)

Thus we obtain

2 i J dk Jdko
- h (211")3 2;

( l - nk n k )

k . + k .o - Wk + 'lf} o - Wk - 'lf}

( . 1 - nk+q . + nk+q . ). (8.10)
ko + qo - Wk+q + 'tf} ko + qo - Wk+q - 'tf}

It is a simple matter to carry out the integration over frequency, using the
theorem of residues. The result is

+

~ J~( nk(l - nk+q)
h (211")3 Wk - Wk+q + qo + iT}

nk+q(l - nk) . ).
Wk+q - wk - qo + '/,1]'

(8.11)

Note that rr(O) only depends on the length of q for reasons of symmetry. There­
fore one has

(8.12)

Befare we consider the general dependence of (8.11) an q and qo, we shaH
exhibit its static limit qo = O. In this limit the two terms in (8.11) may
combined as follows

(8.13)

To obtain this expression we have introduced the new variable k' = k + q/2
and subsequently replaced k' by k.
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Next we take the long-wavelength limit q ~ Oof (8.13).. By expanding the
differences in the numerator and the denominator in powers of q one obtains
in the limit q ~ O

(O) - J dk {)nk_
II (O, O) - 2 (271")3 Ofk - -2N(0), (8.14)

where 2N(O) = mkF/7r2 n? equals the density of states per unit energy and
volume at the Fermi energy. The long-wavelength limit yields (minus) the
density of states at the Fermi energy, because the derivative of nk with respect
to energy equals (minus) a delta-function situated at the Fermi energy.

In the static, long-wavelength limit we thus obtain from (8.6) a screened
interaction Veff given by

(8.15)

where k; = 8N(O)1re5 = 4kF/7raO, ao being the Bohr radius. The Fourier­
transform of this interaction is the screened Coulomb-interaction

e2
Veff( r) = --!!e- ksr . . (8.16)

. r

Note that this interaction has the same form as the Yukawa-potential used
in nuclear physics. The range a of the interaction is a = k;l. In metals kF

and aD 1 are comparable, and a is therefore approximately equal to the mean
interelectronic distance.

8.2 The dieleetric function

The difference between Vand Veff is that the latter is screened,

V(q)
Veff(q,W) =-(-),

f. q,w
(8.17)

where the dielectric function { is

_ 41re6 (O){(q, qo) - 1 - -2II (q, qo), (8.18)
q

in terms of the function rr(O)(q, qo) given by (8.11). Since there is no preferred
direction in momentum space, rr(O) only depends on the length of q and on qo.

By carrying out the integration over k and the angle betweenk and q we
may determine the real and imaginary part of the dielectric function. The
result is conveniently expressed in the dimensionless variables

q nqo
x=- , xo=-.

2kF 4{F
(8.19)
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In order to determine the dieleetric function we must carry out the integrals
over k in the expression (8.11). Before doing that we write the expression in
the form

2j dk . 1
n(O)('q, qo) = -. --nk(l - nk+ )(-------n (27r)3 q Wk - Wk+q + qo + iTj

1
+ . ), (8.20)

Wk - Wk+q - qo + 17]

which is obtained by exchanging the variables k and k + q in the second term
of (8.11) while making use of (8.12). We note from (8.20) that rr(O) is an even
function of the frequency variable qo. The real part of n(O) is seen to be given
by

(8.21)(O) _ ~ j~ ._ . 2(Wk - Wk+q)
ReII (q, qo) - i: (2)3 nk(l nk+q) ( )2 2 .

/I, 7r wk - Wk+q' - qo

The terln in (8.21) containing the produet nknk+q yields a vanishing contribu­
tion, since it changes sign upon the interchange of k and k + q. Consequently
we have

(8.22)+

2 j dk 2(Wk - Wk+q)- --nk
li (27r)3 (Wk - Wk+q)2 - q5
2j dk ( l
h (27r)3 nk Wk - Wk+q + qo

l
---).
Wk - Wk+q - qo

It is convenient to introduce the dimensionless variables given in (8.19)
together with

k
y=-.kp (8.23)
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The imaginary part becomes
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(S.28)

_N(O)1Tj1 d(cosO) [1 dyy2

-1 2 Jo
1

8(x2 + xy cos O- 4(1 _ y2))

(6(xo - x 2
- yxcosO) + 6(xo + x 2 + yxcosO)).(S.26)

This integral is readily worked out by considering separately the regions x > 1
and x < 1. Since the imaginary part is even in xo, it is sufficient to con­
sider it for Xo > O. In this case the argument of the second delta-function,
6(xo + x 2 + yx cos O), is never equal to zero, because of the constraint (ex­
pressed by the 8-function) that Ik + ql > k F . Consequently we may leave it out
and focus on the contribution of the tirst delta-function, 6(xo - x 2 - yx cos O).

First we treat the region x :> 1. In this case the argument of the 8-function
is always fositive, since O< y < 1. We distinguish two cases, a) Xo < x2 and
b) Xo > x . In case a) the lower limit Ymin of the y-integration is obtained by
setting cos O= -1 in the delta-function, and is therefore Ymin = (x 2 - xo)/x.
Since Ymin must be less than 1 in order to get a non-zero contribution, we
deduce that (x 2

- xo)/x < 1 or xo > x 2 - x. In case b) the lower limit Ymin of
the y-integration is obtained by setting cos O= +1 in the delta-function, and
is therefore Ymin = (xo - x2 )/x. Since Ymin must be less than 1, we obtain the
condition Xo < x 2 + x.

Provided x > 1, the imaginary part thus becomes

ImII(O)(q, qo) = -N(O)~{1- (xo - x)2} for x2 - x < Xo < x2 + x. (S.27)
4x x

The other region, x < 1, may be treated in a similar fashion. The results
are exhibited in the expression (S.30) below.

The resulting dielectric function i then becomes (qO ~ O)

k2

i(q, qo) =1 + -tF(x, xo),
q

where

while

RF - l 1 [{l (xo )2}llx-xo +x21
e --+- - --x· n +

2 8x x Ix+xo-x 2
1

{1 _ (xo + x)2}ln Ix + Xo + x21 ],
x Ix-xo-x21

(8.29)

ImF 1T Xo 2 2 2
-S{l-(--x)} for lx-x I<xo<x+x

x x
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= ?rXo for Xo < x - x 2

2x
O otherwise. (8.30)

Note that the real part of the dielectric function in the static limit (qo = O)
has a singular slope at q = 2kF. This is reflected experimental1y in metals in
the Kohn anomaly of their phonon spectra or in the Friedel oscillations of the
conduction electron density surrounding a charged irnpurity. In the static long­
wavelength limit ReF -+ 1, and one recovers the Thomas-Fermi approximation
for the screening.

Now let us consider the limit of high frequencies w, with q tending to zero,
while w relnains fi;nite. In this case we find frorn(8.29) the familiar result

where wp is the plasma frequency given by

2 47rne5 ne 2

w =--
p ~ ~{o

(8.31)

(8.32)

When f(q, w) vanishes it becornes possibiefor longitudinal electromagnetic
waves to propagate, with waveve..ctor parallel to the electric field (cf. Transport
Phenomena Section 1.15.3). These are the plasma oscilIations or plasmons.
Their dispersion is found by calculating the real part of F from (8.29) to
fourth order in q, with the result

This vanishes for

(8.33)

(8.34)

where VF = hkF 1m is the Fermi velocity. As long as the curve given by (8.34)
does not enter the particle-hole continuum, where the imaginary part of the
dielectric function f is non-zero, cf. (8.30), the plasmon is undamped. At finite
temperature the plasmon is damped at any non-zerp value of q. In the fol1owing
subsection we investigate the dielectric function at finite temperatures.

8.2.1 Finite temperatures

At finite temperatures the polarization bubble n(O) is given by

n(O)(q,Wn ) = h;/3~J(~3G(O)(k,wnl)G(O)(q + k,wn +wnl).
n

(8.35)
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We insert the appropriate expressions for the Green functions and obtain

n(O)( ) - ~L J~ 1 l
q,wn - r,,2ø n' (211')3iwnl-(Ck-Il)/Tii(wn+wn/)-(Cq+k-Il)/Ti

(8.36)
The integrand is seen to vary as lWnll- 2 for large IWnll. This implies that any
contribution from the ares in a subsequent contour integration vanishes, and
we are therefore allowed to insert the factor exp(iT}wn/) at will. Thereby it
becomes possibie to exploit the result (7.87) directly, using

1 1------------------ =
iWnl - (f/r, - Il)/h i(wn +wnl) -'(fq+k - p,)/h

l ) l (8 37)
i(wn + wnl) - (fq+k - J-l)/h iWn - (fq+k - fk)/h .iWnl - (fk - Il)/h

( l

(8.38)

The final result is thus

(O) - J~ nk - nk+q
II (q,wn ) - 2 (2)3 'h .

1r Z wn - fq+k + f/r,

This is the temperature-dependent result for the polarization bubble in the
random-phase approximation. After analytic continuation iWn ---+ w + iT}, its
long-wavelength limit (q ---+ O) yields the same dieleetric function, which we
previously obtained from the Boltzmann equation, cf. Transport Phenomena.

8.2.2 Lower dimensions

The RPA-result for the screening mayaiso be generalized to other dimensions:
In the static limit we get

(8.39)

where j(f.) denotes the equilibrium Fernli function, and

(8.40)

It is convenient to write the difference of the Fermi functions as a definite
integral over a variable "\,

(8.41)
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Figure 8.2: n(O)(q, O) in 1,2 and 3 dimensions as function of qj2kF
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since this allows one to write (8.39) in terms of the derivative with respect to
Ak . q according to

(8.42)

By introducing the variable k' = k + )..q/2 we obtain

(8.43)

where /' is the derivative of the Fermi function. At zero temperature we have

/' = -6(t - tF). (8.44)

The density of states g( f.) for both spin directions in d dimensions is given
by

(8.45)

where g(cF) is the density of states for both spin directions at the Fermi energy.
At zero temperature we therefore have

(8.46)
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where we have introduced the natura) dimensionless variable x = q/2kF, while
Amin is °for x < I and VI - x- 2 for x > 1. The remaining steps are elemen­
tary. Note that -II(O)(q,O)/g(fF) in two dimensions equals 1- Amin, because
the density of states is independent of energy.

In Fig. 8.2 we sketch the q-dependence ofll(O)(q, O) in 1,2 and 3 dimensions.
In a later problem we shaH see how the divergence at 2kF in one dimension is
reflected in the Peierls instability occurring in one-dimensional conductors.

8.3 The ground-state energy

In Chapter 6 we showed that the total energy in the ground state could be
obtained from the expectation value

where

E - Eo =11 d>.>' ('1f(>')I>'H'I'1f(>')}. (8.47)

H' = ~ L JdX1JdX2tP~1 (xdtP~2(X2)V(X1 - X2)tPU2(X2)tPU l (xI). (8.48)
0'10'2

We shaH now use this formula to calculate the correlation energy Ecorr ,
which is defined as the total energy E minus ~the sum of the kinetic energy
E~in of the noninteracting system and Hartree-Fock contribution EHF,

(8.49)

By definition, then, the correlation energy vanishes in the Hartree-Fock ap­
proximation. We shaH show how the correlation energy is determined within
the RPA, where we keep only the most divergent diagrams. It is convenient
to formulate the calculation in terms of density-fluctuation propagators, which
we introduce in the fol1owing subsection.

8.3.1 The density-fluctuation propagator

The density operator is

Here the field operators 'lj; and 'lj; t are given by

12/' ~ ik·x
0/0 = L...J e Ck,o

k

(8.50)

(8.51)
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and its hermitian conjugate. For simplicity we consider a unit volume, cor­
responding to L q ... = f dq/(21r)3 . ... In Fourier-components the density
operator thus becomes

where

p(x) = L: eiq-xp(q); p(q) = Jdxe-iq-xp(x),
q

p(q) = L: ct,o-Ck+q,o-.

k,o-

(8.52)

(8.53)

It is readily seen from (2.23) by moving Ck,O' next to cL+q,O' that the interaction
energy H' may be written as

H' = ~ E V(q)(p(q)p(-q) - N) (8.54)
q( ;CO)

where N is the number of partieles. Since [p( q), p( -q)] = O it follows that
p(q) commutes with the interaction energy.

In the folIowing we consider only spatiaIly homogeneous systems, where the
ground-state expectation value < p(x) > of the density is a constant, n, equal
to the number of particles per unit volume,

< p(x) >= n.

The density fiuctuation operator jJ is defined as

jJ(x) =p(x) - n

(8.55)

(8.56)

and has consequently its ground-state expectation value equal to zero. The cor­
responding Heisenberg operator is denoted by jJ(x, t). The density-fluctuation
propagator D(x, t; x', t') is a time-ordered correlation function, which is defined
in analogy with the single-particle Green function (6.1),

D(x, t; x', t') = -i < T{p(x, t)jJ(x/, t')} > (8.57)

in terms of a time-ordered product of density-fluctuation operators in the
Heisenberg pieture. In a translationally invariant system, the density fluc­
tuation operator only depends on the difference variables x - x' and t - t'.

By using the commutation rules for the operators 'l/J and 'l/Jt we see that the
expectation value < H' > of the interaction energy in general may be written
as

< H' > = ~JdXl Jdx2V(Xl - X2)« p(xI}p(X2) > -nb(xl - X2»

~JdXl j dX2V(Xl - X2)

« jJ(Xl)jJ(X2) > +n2
- n<5(xl - X2)' (8.58)
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ntO )

(a.. \ ( b )
Figure 8.3: Density-fluctuation propagators

The result of the Hartree-Fock approximation is recovered from (8.58) by
taking the expectation value in the ground state of the non-interacting system,
since we have shown in Chapter 4 that the ground-state energy of a homoge­
neous electron gas in the Hartree-Fock approximation may be obtained by
treating the interaction energy as a perturbation to first order. Consequently
the correlation energy is given in terms of the difference between < H' > and
< H' >0, the latter denoting the expectation value of H' in the ground state of
the noninteracting system. It is convenient to introduce the Fourier-transform
of the density-fluctuation propagator, ,

D(q, w) =Jd(x - x')Jd(t - t')e-iqo(X-X')eiw(t-t') D(x - x', t - t'). (8.59)

Then we get the final formula for the correlation energy, expressed in terms of
the Fourier-transform of the density-fluctuation propagator,

i f 1
dA J dq Jdw A O.

Ecorr = 2 Jo T (271")3 271"AV(q)(D (q,w)- D (q,w». (8.60)

This formula is exact. A knowledge of the density-fluctuation propagator
D(q, w) thus allows one to determine the ground-state energy of the homo­
geneous electron gas.

8.3.2 The correlation energy

In order to calculate the correlation energy one is forced to make approxima­
tions to D. Let us first consider D(O), the density-fluctuation propagator of
the noninteracting system. As wc have seen in Problem 41, D(O)(q,w) is given
by

(8.61)
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This is diagrammatieally il1ustrated in Fig. 8.3 (a). In the RPA, we approx­
imate D by the sum illustrated in Fig. 8.3 (b), whieh is a geometric series. We
note that D(O) = hn(O) and obtain

- ! .11
d), J~Jdw [ (O) 2 1

Ecorr - 2 1h Jo'\ (211")3 211"'\V(q)n (q, w)] 1 _ ,\V(q)n(O)(q, w) .
(8.62)

We shaH now earry out the integrations over q, w and ,\ and use the previously
found weight funetion (3.27) to show that this expression in the limit of small
r, reproduces the result (3.29) for the eorrelation energy. Since the leading
In rs-contribution arises from the region of small wave-vectors and frequencies
we may approximate the denominator as 1 - V(q)II(O) ~ 1 + k;/q2, which
effeetively sereens one of the two interaetion matrix elements V (q). Carrying
out the integration over frequencies by means of the residue theorem we obtain

rI d), J dq J dk J dp
Ecorr = -4 Jo T (211")3 (211")3 (211")3

·(1 - nk)nk+q(l - np+q)np ('\V(q)2
1 1

tp - tk - tp+q + tk+q 1 + k;/q2'
(8.63)

(8.64)

Evidently, we obtain the same weight funetion I( q) as in (3.27) when the
integrals over k and p are earried out, sinee the integrand (apart from its
additional q-dependenee) is the same in the two cases. With q = q/kF we
therefore get

me
4

k
3 il i oo

1Ecorr =--f ~ 2 d,\,\ dijI( ii) -2 ,\k2/ k2 .
h 1r o o q + s F

The dominant eontribution from the lower limit in (8.64) is obtained by using
th,e result (3.27), I(ij) = 2(1-ln 2)q/31r2

. With k~ = 31r2 N (we are eonsidering
a unit volume) and utilizing k; / k~ <X r s together with

11 dU100

dijI(ij)ij2+:k;/ki -:::-6~2(1-ln2)lnr.,

we finally get that
1 me4

Ecorr = N 2"(1 - In 2)--f In r s
11" h

in agreement with (3.29).

(8.65)

(8.66)
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9 Electron-phonon interaction

The interaction between electrons and phonons determines many of the most
important properties of solids. The temperature-dependence of the electrical
resistivity of metals is largely due to electron-phonon scattering, while the
transition to the superconducting state (in conventional superconductors) is
due to the attractive interaction between electrons, mediated by their mutu­
al exchange of phonons. From the point of view of many-body theory, the
electron-phonon interaction is in some ways simpIer than the Coulomb re­
pulsion between the electrons, due to the smallness of the ratio between the
maximum phonon energy and the Fermi energy. This allows one to neglect
diagrams containing vertex corrections, as shown first by Migdal (1958).

When an ion moves, the bulk ofthe electrons follow its motion adiabatically,
because there are no available states into which an electron deep inside the
Fermi sea may scatter. This tends to maintain local charge neutrality and
results in a screening of the long-range electron-phonon interaction. The few
electrons that may undergo scattering due to the electron-phonon interaction
lie within an energy sheIl of the order of (h times) a typical phonon frequency.

In the present chapter we first determine the characteristic magnitude of
phonon energies from the sound velocity in metals and show that they are
of order (m/M)1/2 times the Fermi energy, m being the electron mass and
M the ion mass. Then we discuss the electron-phonon coupling and obtain
its dependence on momentum transfer within a simple model. The folIowing
sections deal with the influence of the phonons on the effective mass and life­
time of electron states near the Fermi energy. For simplicity, we first treat the
electron-phonon coupling within ordinary second-order perturbation theory.
Subsequently we introduce phonon propagators and discuss the Feynman mIes.
The mass enhancement is obtained by calculating the electron self-energy to
lowest order in the electron-phonon coupling.

9.1 Sound in metals

First let us review the calculation of sound velocities in classical gases on the
basis of ordinary hydrodynamics. The conservation of mass is expressed by
the continuity equation

op T'7' O
ot+ v . J = , (9.1)

where p is the mass density and j = pv is the mass current density. We have
introduced a velocity field v = v(r, t), which specifies the local drift velocity.
According to Newton's second law the time derivative of j is determined by
the pressure gradient 'lp,

oj
- = -'lp.at (9.2)
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We have negleeted frietion, which leads to damping of the sound, as well as
nonlinear terms in the equation of motion. By taking the derivative of (9.1)
with respect to time we obtain

å2 P .2
åt2 =V' p. (9.3)

Since the equation (9.3) involves both pressure and density, we must now relate
small changes dp in the pressure p to small changes D..p in the mass density p.
Let us first assume that the propagation of sound occurs isothermally, thereby
allowing us to use the equation of state

(9.4)

where Al is the (average) mass of an air molecule. Since D..p = (åp/ap)T~p,

it follows from (9.3) and (9.4) that the sound velocity s is given by

2 _ (åp ) _ kT
s - åp T - M' (9.5)

Under usual circumstances the propagation ofsound does not take place isother­
mally (at constant temperature), but adiabatical1y (at constant entropy). As
aresult (9.5) should be multiplied by the ratio Cp/Cv between the heat ca­
pacity at constant pressure and at constant volume. The resulting expression
for the sound velocity, s = (CpkTjCv M)1/2, is in very good agreement with
measured sound velocities in gases.

Let us now turn to the determination of sound velocities in metals. At
the relatively low frequencies and long wavelengths characterizing sound it is
possibie to regard the metal as a continuum and use the equations (9.1) and
(9.2) leading to (9.3). The connection between pressure and volume is not,
however, given by (9.4), which holds for an ideal classical gas. In order to
determine the pressure as a function of volume we identify the ground-state
energy Ea in our simple model with the internal energy U at T = OK. Thus

3
U = -NfF oc V- 2/ 3 .

5
(9.6)

As a consequence the pressure becomes proportional to V- 5 / 3 , since it is given
by

åU 2U 2
p = - av = 3V = "5 nkTF ' (9.7)

which shows that the equation of state at T = O is obtained by replacing the
temperature in (9.4) with the Fermi temperature TF, apart from a numerical
factor.
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The mass density p is given to a good approximation by

p = nionM , (9.8)

(9.9)

where M is the mass of an ion in the crystallattice, while nion is the ion density.
We asssume that there are z conduction electrons per ion, which implies that
nion is equal to n/z. Consequently the sound velocity is given by

2 8p z m 2

s = 8p = '3 M VF '

where VF = nkF/m is the Fermi velocity.
This result is in qualitative agreement with measurements of sound veloci­

ties in simple metals such as Al, Na and eu. One finds for these three metals
that the value calculated according to (9.9) is 9.1, 3.0 and 2.7 km/s, respec­
tively, while the measured longitudinal sound velocities are 6.8, 3.1 and 4.7
km/s.

Note that it is the compressibility of the electron gas which enters the sound
velocity in this simple model. The physical reason for this is that the motion of
the ions and the electrons is not independent. The electrons follow the motion
of the ions in order to neutralize their charges locaHy. As a consequence the
electrons are compressed and expanded, resulting in pressure osciliations which
are determined locally by changes in the '"energy of the electron gas due to
changes in its density.

The expression (9.9) for the sound velocity may be used to estimate the
maximum phonon frequency wmax • Negleeting dispersion and using that the
phonon wave-vector is about l/a at the Brillouin-zqne boundary, where a is
the interatomic distance (cf. (5.35)), we obtain

-1 r::::!i:i/M -1
Wmax ~ sa ~ Vm/lvlVFa . (9.10)

In most metals the interatomic. distance a is comparable to the wavelength
for an electron at the Fermi surface, a-l ~ kF . Consequently we have

nWmax ~ Jm/MtF, (9.11)

which shows that typical phonon energies in metals are about one hundredth
of the Fermi energy, m/M being about 10-4 or less.

9.2 The electron-phonon coupling

We shaH show that the electron-phonon interaction has the general form

Hel-ph = L g(k, k', q, a )ct',qck,q(bqa + b~qa)'
kk'qqa

(9.12)
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and determine g in a simple model.
The potential energy, due to the ions of the lattice, of an electron at position

r is given by

Hel-ion = L U(r - R;), (9.13)

(9.14)

where R; denotes the position of the ith ion. It is assumed that the unit cell
of the crystal contains only one atom. The potential U(r) is taken to be a
Coulomb potential given by

ze 2

U(r) =---,
41l'(OT

corresponding to an ion of charge ze. The electron-phonon interaction is caused
by the ions oscillating aroul'ld their equilibrium position. We therefore expand
the potential energy (9.13) to tirst order in the difference oR; between the
actual position R; and the equilibrium position R?,

according to

L U(r - Rd ~ ~ U(r - R?) - L oR; . :rU(r - R?).
• • •

(9.15)

(9.16)

(9.17)

The phonon operators are introduced as in Section 5.2.2 by a straightforward
generalization to three dimensions. Thus we write

''0. l ~Q A ;q·RO
U""i = f>T L..J qaeqae • ,

vN qa

where N is the total number of atoms, and express Q in terms of creation and
annihilation operators, b and bt by inverting the equations corresponding to
(5.48-49),

(9.18)

Since the electron-ion interaction is a one-body operator as regards the
electrons, the e1ectron-phonon Hamiltonian must have the general form

Hel-ph = L ct',u,ck,u(k'u'16Iku),
kuk'u'

where the operator 6 is

A ~ a o
0= - L..J oR; . ?)U(r - R;).

. ur
•

(9.19)

(9.20)
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Since the electron-ion interaction does not change the spin quantum number
u of the electron, we have that u' = u.

Now we evaluate the matrix-element in (9.19) for the case when the elec-
trons are described by plane waves exp ik . r /V1/ 2 . We multiply and divide by
exp i(k' - k) . R? in order to introduce r - R? in the exponent. Furthermore
we use that the gradient of -l/ris r/r3 , which according to Appendix A has
a Fourier-transform given by -41riqjq2. We sum over lattice points i, utilizing
that

"'" i(k'-k-q)·RC? N ~L..J e • = Ok' ,k+q+G , (9.21)

(9.22)

where G is a reciprocal lattice vector1 .

We shaH assume that G, = O is the only reciprocal lattice vector, which
satisfies (9.21). In a real metal, processes with G l- O (thesocalled Umklapp
processes) are in faet important, but here we negleet them along with band­
structure effects.

When these results are put together , we obtain the folIowing expression
for the coupling function g~ (the superscript Omeans that we have not taken
screening into account),

o ie2z v'iih "
gq= --2- ~q·eq.

foq V y2MWq .

For simplicity we assume that the polarization vectors eq are either parallel
or perpendicular to q. Then (9.22) implies that the electrons only couple to
longitudinal phonons, and we may therefore leave out the sum over polarization
vectors labelled by the index a. This assumption is' not true in real metals,
since the phonons in general are neither longitudinal nor transverse, except
along symmetry ~irections. We shall also assume that the phonon spectrum is
isotropic, wq = w q • ,.

It should be noted that (9.22) diverges when q tends to zero. This is due
to our neglect of the screening properties of the electron gas. In the Iong­
wavelength limit (q -+ O) the dielectric function according to (8.14) is given by
€ = 1 + k; /q2. If we assume the validity of this expression for the dieleetric
function at larger q as well (which of course constitutes an approximation) we
get gq = g~/{. After taking the square of the modulus of gq = g~/f and letting
q tend to zero we obtain the long-wavelength limit of the coupling function
g(k, k', Q') = gk'-k,

,
1
2 liWq ( )gq = Å 2N(O)V for q -+ O. 9.23

Here A is a constant of order unity, while wq = sq is the longitudinal phonon
frequency. As usual we have denoted by N(O) the density of states at the Fermi

1The set of reciprocallattice vectors satisfy the condition G . R? = 21l"p, where p is an
integer.
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surface per unit volume and per spin. In the calculations that follow we shaH
consider a unit volume, and the normalization volume V appearing in (9.23)
may therefore be replaced by unity.

Since Nz/V = n = k~/31T2, the dimensionless parameter A occurring in
(9.23) is

Z h2k 2

A = "6 mM:2' (9.24)

when the phonon frequencies are given by the long-wavelength limit w q = sg.
If the sound velocity s given by (9.9) is inserted into (9.24), the result is seen
to be A=1/2.

In the following we shall use the simple long-wavelength form (9.23), even
though it is not quantitatixely accurate, but we shaH also show how the
electron-phonon self-energy is obtained without making specific assumptions
of the form of the electron-phonon coupling.

9.3 Perturbation treatment

As an introduction to the use of the Green function method we shaH first
employ ordinary second-order perturbation theory to determine the effect of
the electron-phonon interaction on the single-electron energies. The validity
of second-order perturbation theory depends on the electron-phonon coupling
being weak in the sense A ~ 1. In subsequent sections we shaH see how the
use of Green functions aHows one to generalize these results to the case where
the electron-phonon interaction is strong.

Let us determine the energy Ep of a state with non-zero momentum hp by
adding a tartic1e with momentum hp. First we determine the ground-state
energy Ea of a system with N electrons, to second order in the interaction
(9.12). It is

(9.25)

Here nk" = 1 for k < kF , while nk" = Ofor k > kF . There is no contribution
to first order in the interaction, since the coupling function gk'-k is zero for
k' = k. In order to determine the energy of an excited state of the (N + 1)­
partic1e system; we imagine adding a partic1e to the system in such a manner
that the momentum is hp. Then the energy difference Ep = E;r+l - Er:
between the two states is

(9.26)

The second term in (9.26) arises because the sum over the occupied states (the
k/-sum in (9.25)) must inc1ude p, while the last term in (9.26) enters because
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the sum over the empty states (the k-sum in (9.25») must exclude p. Note
that the last term in (9.26) arises because there is a term in Er which is not
in F::+1 , since the state p is filled in the unperturbed (N + l)-particle state.

'!'he eifective mass may be calculated by taking the derivative of El: with
respect to k (we relabel the variable p in (9.26) as k). Since the matrix-element
gk'-k only depends weakly on k, it is sufficient to consider the k-dependence
arising from the occurrence of ik in the denominator. One gets

(9.27)

where
(9.28)

and

(9.29)

with dO =21f'd(cos 8kk'), where 8kk' denotes the angle between k' and k. Note
that we have changed the integration variable eJe' in the second term into -eJe"
The integral may be carried out by noting that the same terms are generated
by taking derivatives with respect to eJe' and then taking the limit ek --+ O.
The result is

- JdO 2100

I a ( 1, l)A = N(O)V -lgk-k,1 dek- - ,
41f' o aek' -ek' - nWk'-k ek' + nwk'-k

(9.30)
which results in the simple expression

(9.31)

The effective mass m* is defined by the equation

and we consequently obtain that

m ~- = l-A.
m*

(9.32)

(9.33)

We have implicitly assumed that X'.~ 1. In the folIowing subsections we
shaH demonstrate how the use of Green function methods allows us to extend
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this result of perturbation theory to higher orders in X. As we shaH see, the
result (9.27) will be changed into

(9.34)

with X given by (9.31), corresponding to m* = m(l + X). By contrast, the
perturbation theory result (9.33) yields m* = m/{l - ~), provided 5t ~ 1.

A specific calculation of X for a given metal requires one to know the for­
m of the electron-phonon eoupling funetion 9q. The use af the simpIe long-
wavelength expression (9.23) evidently results in ~ = A.

9.4 Phonon Green functions

Phonon propagators are defined in close analogy with fermion propagators. For
the single harmonic oscillator, the operator b+ bt is proportional to the position
operator x. The transition to collective coordinates introduces (bqa + b~qa),
cf. (9.18) and Section 5.2.2. We thus define the field operators

(9.35)

with H being the Hamiltonian (for convenience we have suppressed the polar­
ization index Q').

The phonoh Green function D is defined by

D(q, r) = - < Tr{ø(q,r)ø(-q,O)} >. (9.36)

Since øis a Bose fieid, the operator Tr is defined as in (7.7) without the factor of
(-1)P. The Green funetion possesses the following symmetry property within
the domain -n{3 < r < nØ,

D(q, r) =D(q, T + h{3).

In order to prove (9.37) we assume that O> T > -np. Then

Likewise we have

(9.37)

(9.38)

exp( -,8fl)D(q, T + li,8) = - Tr (e HT
/

1i ef3H </J (q, O)e- f3H e-HT /Ii </J ( -q, O)e- f3H ) •

(9.39)
Using the cyelic invariance of the trace, the right hand side of (9.38) is seen to
be equal to the right hand side of (9.39), resulting in (9.37).
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The Fourier-expansion is thus

1 '" .D(q, r) = Øh LJ e- 1W
..

T D(q,wn),
n

(9.40)

(9.41)

where the Matsubara frequencies W n are given by

1(

W n = 2n Øh' n = 0,±1,±2,±3···.

The symmetry property (9.37) together with the relation exp( -iwnØ"') = 1
allows one to write the Fourier-coefficients D(q, wn ) as

fliP
D(q, Wn ) = Jo dreiw

..
T D(q, r).

9.4.1 Green functions for free phonons

The Hamiltonian for free phonons is

(9.42)

(9.43)

cf. (5.51) (we suppress the polarixation index et). Since bq ( T) satisfies the
equation of motion

(9.44)

it develops in time according to

Likewise

(9.45)

(9.46)

which yields
b~(r) = eWqT

b~(O).

The Green function is therefore given for r > O as

D(O)(q, r) =- < (bqe-WqT + b~qeWqT)(b_q + b~) >0,

provided that W_q == wq . Now we have

< bqb~ >0= l + Nq

(9.47)

(9.48)

(9.49)
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Figure 9.1: Electron-phonon vertex

and
< b~bq >0= Nq ,

where Nq is the Planck function

l
Nq = n 13 .e W q - 1

The Fourier-transform is seen to be

where the Matsubara frequencies W n assume the values given by (9.41).
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(9.50)

(9.51)

(9.52)

9.5 Feynman rules

The derivation of the Feynman rules proceeds in analogy with Chapter 6. The
main difference is that the Coulomb interaction lines are replaced by phonon
propagators.

The following rules apply to the calculation of the self-energy.

• Draw all topologically different diagrams containing electron and p phonon
lines, with vertices as illustrated in Fig. 9.1.

• Associate an oriented 'four-momentum' (k, wn ) with each interaction line
and conserve four-momentum at each vertex.

• Associate the factor

(O) 1
G (k,wn ) = . ~ Ih 60 ,0

1

'lW n - k
(9.53)

with each electron line, ~k = 1i2k2 /2m-Jl being the free-particle (kinetic)
energy minus the chemical potential Jl.
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Figure 9.2: Electron self-energy diagram

• Associate with each phonon line

Igk-k'12n(O)(q, wn ),

where the phonon propagator is given by

1 l. +. ,
ZWn + wq ZWn - wq

while g is the electron-phonon coupling function.

• Sum over spin, frequen~y and momentum variables.

• Multiply by
1 (l)F

(-(3h 2)P - ,

where F is the number of closed fermion loops.

(9.54)

(9.55)

(9.56)

9.6 The electron self-energy

We shaH now calculate the electron self-energy given by the lowest-order dia­
gram exhibited in Fig. 9.2. According to the Feynman rules it is

nE(k,wn ) = -f3~2 J(2d~3 L IgqI2G(O)(k + q,wn +wm)D(O)(q,wm). (9.57)
m

First we carry out the summation over the Matsubara frequency W m with
the result

(9.58)
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Figure 9.3: Contour in the complex plane

Here f denotes the Fermi distribution.
The sum is calculated as follows. Consider the expression

Now we have the identity

f dz ' 1
O= le 271:J(z) ez"fJ - 1

with

(9.59)

(9.60)

(9.61)f(z) = 2wq 1 ,
z2 - w~ iWn + z - ~kJ jn

since the integration contour is chosen as shawn in Fig. 9.3. The sum is de­
termined by noting that it is given by (minus) the sum af the residues at
z = 21rimjnj3 and hence may be identified "rith the sun1 af the other residues
at z = ±wq and z = ~kJ jh- iwn . Note that the latter residue involves the factor
exp( -iwnn(J), which is equal to -1 and hence introduces the Fermi-function
1/(1 + exp f3~kl).

After analytic continuation to the real axis, ihwn ~ E + i1], the self-energy
then becomes

J dk'
nE(k, E in) ::: V (271: )3 lgkf -k 1

2

(
NkJ-k + 1 - fk J Nk/-k + fk l )

E - ~kJ - nWkJ-k + i1] + E - ~kJ + nWkJ_k + i1] .
(9.62)

We set k ~ kF , since we are interested in the effect af the electron-phonon
interaction on states near the Fermi-surface. In doing the integration over k'
we may set the density af states equal to its value at the Fermi surface. The
reason is that only states k' with k' ~ kF cantribute, due to the smallness of
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the maximum phonon energy compared to the Fermi energy. Setting k' - k
equal to q, we write the integration over k' as

J dk'
(271-)3 . .. =

where
N(O) = mkF

2712h2

is the density of states at the Fermi energy.
We define

1
2kF qdq

0'2 F(w) = N(O)V 2hP Igq l26(w - wq )
o F

and separate E in real and imaginary parts according to

(9.63)

(9.64)

(9.65)

(9.66)

Since

(9.67)

and
I 1 f3hw f3e

N(w q ) + f(~ ) = 2(coth T - tanh""2)' (9.68)

the dependence of Elon the frequency variable E Ih is given by

EI(E) = 100

dw0'2 F(w)

1100
I f3e 1 12 -00 d~(tanh""2{E_f_hw- E-~I+hw}

f3hw 1 1
+ coth -2-{ E - f - hw + E - ~' + hw})

{OO 1100
l- Jo dw0'2 F(W)2 -00 dE' E' + hw

(tanh (E+
2
E' )f3 +tanh (E-

2
E' )f3). (9.69)

The second equality is obtained by exploiting that the coth-term yields zero
when integrated over f, as may be seen by introducing the integration variable
E' = E - e and noting that the integrand is an odd function of E'.
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Figure 9.4: Real part hEl of the self-energy
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(9.70 )

It is seen from (9.69) that the real part af the self~energy is odd in E,
E1(E) = -E1(-E). At T = O K we get

~l(E) = - r'" dwa 2 F(w) fE dE' E' 1 nJo -E' + w

[00 2 . \ilw + El
- Jo dwa F(w) In \hw..".EI'

In the fol1owing we assU111e that the phonon frequencies wq are given as
wq = sq for w < wD, where wD = 2skF is a characteristic frequency af the
arder of the Debye frequency. Furthermore, we shaH use the model form (9.23)
for all wavevectors corresponding to O < w q < WD. When (9.23) is inserted
into (9.65), ane therefore obtains that

and
a 2 F(w) = O for w > WD.

(9.71)

(9.72)

As we shaH see below, the mass-renormalization is generally given by a definite
frequency moment af the function 0'2 F(w) defined in (9.65), regardless of its
specific form. For the simple model form given by (9.%) and (9.72) the result
is 11

and

100 2
hE1(E) = -E dwo? F(w)- = -AE

o w
for (9.73)

The real part af the self-energy is sketched as a function of E an Fig. 9.4.
When we use the low-energy limit of El given by (9.73) in the electron

Green function, its denominator is seen to be E - hE1(E) - ~ ~ E(l + A) -~,
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and the poIe is therefore given by E = e/(l + '\). The effective mass thus
becomes

m* =m(l + '\). (9.75)

If we use a more general form for the electron-phonon coupling than (9.23)
we obtain (9.75) with Å replaced by eX given by

100 2
eX = dw0:2F(w)-,

o w
(9.76)

as may be seen from the low-energy expansion (9.73). The function 0:2F(w)
is here given by (9.65). By tunneling experiments it is possibie to measure
directly the frequency dependence of 0:2F, which in metals has much more
structure as a function of frequency than the sinlple model form given by (9.6)
and (9.72).

The electron-phonon interaction is thus seen to have a significant effect
on electron states lying near the Fermi surface. The mass-renormalization
results in an increase by the factor (1 + eX) of the low~temperature specific
heat, in agreement with what is observed in metals. In Section 1.3.1 we saw
that the observed enhancement factor was 1.38 in aluminium. If we calculate
,\ from (9.24), using the measured sound velocity of aluminium, we find that
,\ =0.9, corresponding to an.enhancement factor of 1.9. This result, however,
is based on the assumption that the electron-phonon coupling function g may
be identified with its long-wavelength limit (9.23). In reality the electron-ion
pseudopotential (which we implicitly have taken to be independent of q) is
reduced relative to its long-wavelength limit, w:hen q becomes comparable to
kF. If this effect is taken into account in (9.65), one finds from (9.76) that the
enhancement factor (1 +.x) is 1.4 for aluminium, in agreement with experiment.

The spin susceptibility, however, is essentially unaffected by the interaction
between electrons and phonons, because the electron-phonon interaction (un­
like the Coulornb interaction) effectively only involves states near the Fermi
surface within an energy shell of a thickness equal to the Debye energy. When
the interaction between the electrons is screened in the Thomas-Fermi approx­
imation (the long-wavelength limit of the random phase approximation), one
obtains as we have seen in Section 4.3.2 an increase of the spin susceptibility
by 34%. The corresponding effect due to the phonons is reduced by the ratio
af the Debye energy to the Fermi energy and is therefore entirely negligible.
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The phenomenon of superconductivity was discovered experimentally early in
this century, but it took more than 40 years before the theory was developed.
The basic elue to the understanding of superconductivity was given in 1956 by
eooper, who showed that the Fermi sea of electrons is unstable with regard
to the formation of bound pairs with zero total momentum and spin, provided
there exists an attractive interaction between electrons near the Fermi surface.
These Cooper pairs formed the starting point for the theory of superconductiv­
itY due to Bardeen, Cooper and Schrieffer (1957). The BCS-model keeps only
that part of the many-body interaction Hamiltonian, which connects pairs of
electrons with total momentum and total spin equal to zero. This simplified
Hamiltonian may. be diagonalized by means of a eanonicaI transformation, as
described in Section 5.4. The resulting energy spectrum exhibits a gap, which
depends on temperature. The BCS theory was astonishingly successful in
explaining essential all the important features of superconductivity that had
been observed prior to 1957. Furthermore, it provided a general frarnework
for the further development af the theory of superconductivity, including the
prediction and subsequent observation of the Josephson eifeets, which involve
tunneling of eooper pairs (Josephson 1962).

In the present chapter we shaH derive the basic equations of superconduc­
tivity by use of temperature Green functions. The resulting Gorkov equations
(Gorkov 1958) are more general than the original BeS-model in that they may
be applied to spatiaIly inhomogeneous situations, where boundaries or exter­
nal magnetic fieids playan important role. The Gorkov equations mayaiso be
generalized to take into account the retarded nature of the ~ttractive interac­
tion between elec.trons due to the exchange of phonons, leading to a description
of $trong-eoupling superconductivity.

10.1 The Gorkov equations

The Gorkov formulation of the theory of superconductivity starts with the
follo\ving model Hamiltonian

J h2 g JH = . dx L 1{>~(X)( - 2m \72)1{>,,(x) + 2 dx L 1{>~(X)1{>~/(X)1{>,,/(X)1{>,,(X),
, (J (J (J I

(10.1)
where it has been assumed that the interaction V(x, x') has zero range,

V(x, x') = g8(x - x'), (10.2)

and therefore involves opposite-spin particles (0'" = -O") only. The constant g
is negative for attractive interaction, positive for repulsive interaction.
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In the Schrodinger pieture the operators 1/J(x) satisfy the usual anticom­
mutation rules

(10.3)

and
(10.4)

The grand-canonical Hamiltonian is K = H - p.N, where N is the particle
number operator. The BCS-model is equivalent to replacing K by the effective
grand-canonical Hamiltonian I<eff, where

Keff Jdx L 1/>~(x)(- :~ \72 - Jl)1/>,,(x)
q

+ gJdx(< 1/>1 (x)1/>+ (x) > 1/>t(x)1/>!(x)

+ 1/JI (X)1/J+(x) < 1/Jr(x)1/J! (x) ». (10.5)

Bere the thermal average involves the effective grand-canonical Hamiltonian,

(10.6)

Since the number operator N cloes not commute with the Hamiltonian Keff,
this average is nonvanishing.

The equations of motion for the Heisenberg operators

(10.7)

and
(10.8)

are

8 li?
h aT 1/>t(X, T) =-(- 2m \72 - Jl )1/>t(X, T) + g < 1/>t(x)1/>! (x) > 1/>1 (x, T) (10.9)

and

With the help of these equations one finds that the Green function G defined
by

G(x, T; x', r') = - < Tr {1/Jr(x, T)1/J+(X', r')} > (10.11)
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h :rG(x, r;x', r') -hc5(x - x')6(r - r') - (- :~ \72 - J.l)G(x, r; x', r')

- g < 11'1 (x)lPl (x) >< TT {1/JI(x, r)lP+(x/, r')} > (10.12)

We note that the equation of motion for the Green function involves a new
type of anomalous Green function, defined by

(10.13)

In addition we introduce the function Ft by

(10.14)

The function Ft is not the Hermitian conjugate af F.
An important role is played by the gap parameter ~, which is defined by

The equation of motion satisfied by G may then be written as

(-håB +~\72+J.l)G(x,r;x',rl)+Ll(x)Ft(x,r;xl,rl)=
r 2n1 '

h6(x - x i )6( r - r')

Correspondingly we find

4)

(
1=. å li'" 2 ). ") (' ,-It-

å
+-2\7 +/-lF(x,r;x,r -~(x)Gx,r;x,r)=Or m .

and

( 1=. å li? 2 ) t ( .' ') * ( ) . I ')_It-å +-2 \7 +/-lF X,r,X~T -~ xG(x,r,x,r -O,
T m'

(10.15)

(10.16)

(10.17)

(10.18)

which are the Gorkov equations. In the presence af a magnetic field described
by the vector potential A the equations (10.16) and (10.17) are Inodified ac­
cording to

h li
-:- \7 ~ -:- \7 + eA
z 1,

(10.19)

where e is the magnitude af the electron charge, while in (10.18) one has

li li
-\7 ~ -\7 - eAi i . (10.20)
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These changes are due to the corresponding change in the tirst term of (10.1),
which becomes

(10.21)

In the presence of a vector potential, with the proper boundary conditions
added, the Gorkov equations are in general difficult to solve. A considerable
simplification may be achieved for slow spatial variations (on the scale of the
Fermi \vavelength) by integrating out the magnitude of the momentum, i. e.
integrating out the normal-state energy variable ek defined by

(10.22)

This results in the so-called quasi-classical approximation, which has been
used to solve a great variety of important problems, including ones involv­
ing nonequilibrium phenomena, but we shaH not develop this approximation
scheme here.

In the folIowing we consider the Gorkov equations under the simplifying
condition that the system is spatiaIly uniform. This implies that the gap
paran1eter Ll(x) is a constant in space, Ll(x) = Ll. First we shaH recover the
results of the BCS-theory. Since the Hamiltonian is time-independent and the
system is assumed to be spatiaIly uniform, we may expand the Green functions
in the Fourier-series

and

1 J dk E 'k ( ') , ( ')G(x r· X' r') = - -- e~' x-x e- twn T-T G(k W )
, " TiØ (271")3 ' n

n

(10.23)

Ft(x r· x' r') = _1J~.~ eik.(x-x')e-iwn(T-T')Ft(k w) (10.24)
, " h{3 (211")3 L...J ' n·

n

Then (10.16) becomes

(iTiwn - ek )G(k, wn ) + LlFt (k, wn ) = Ti,

while (10.18) is

The gap parameter Ll is given by the self-consistency equation

A * - 1 J dk " -iw n '1 t(k )
u - -9"'{3 (211')3 LJe F ,Wn ·

n

(10.25)

(10.26)

(10.27)
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Figure 10.1: The temperature-dependent energy gap neT)

The solution to the equations (10.25) and (10.26) are seen to be

and

(10.28)

(10.29)

where ~k is defined in (10.22). \Vhen the magnetic field is zero, we may choose
~ to be real, ilnplying that

(10.30)

The coherence factors u and v occurring in the BCS-theory (cf. Section 5.4)
may be used to write the Green functions in the form

(10.31)

together with

(10.32)

where

Furthermore we have

and

u~+v~=l,

(10.33)

(10.34)

(10.35)
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We need to determine ~ from the self-consistency equation (10.27). When
Ft is inserted, it becomes

(10.36)

(10.37)

We may carry out the frequency sum, in the manner of Chapter 7, by
inserting (10.32) into the expression for ~ and use uv = ~/2E. The result is
the BCS gap-equation

J dk ~
~ = -g (21r)3 2Ek tanh(,BEkj2).

Note that tanh(,BEk/2) tends to 1 in the limitofzero temperature. In this limit
(10.37) is identical to (5.70). since the ground-state average < ct/,ic~k/,! > is
seen to be equal to ~/2Ek as a consequence of the Bogoliubov-transformation
(5.14) and (10.35).

The solution to the gap equation may be expressed in terms of the dimen­
sionless coupling constant A, which we define by

A = -gN(O).

Then the gap equation (10.37) may be written as

(10.38)

(10.39)

At zero temperature we obtain from carrying out the integral over ethat

(10.40)

provided liWD ~ ~(O). The transition temperature Te is determined as the
highest temperature for which (10.39) has a solution. It must therefore satisfy

(10.41 )

which yields
_ 2e; -liA

kTe - -nWDe , (10.42)
1r

provided liWD ~ kTe . Here 1 = 0.577 ... is the Euler constant.
According to (10.40) and (10.42) the ratio between the zero-temperature

gap and kTe is a universal constant,

~(O)
kT

e
= 1.76. (10.43)
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This important result of the BCS-theory is in good agreement with experiment
for many different superconducting materiais, with widely different values of
.6.(0) and Te. The deviations observed in strong-coupJing superconductors such
as Pb or Hg may be explained by taking into account the retarded nature of
the interaction responsibie for superconductivity.

Near the transition temperat,ure Te one finds from (10.36) that

(10.44)

This temperature dependence is in agreement with that obtained from Lan­
dau 's theory of second-order phase transitions, as we shaH see below.

10.2 Ginzburg-Landau theory

Near the transition temperature Te it is possibIe to perform an expansion in
the paran1eter ~/kTe , since .6. goes continuously to zero in the manner char­
acteristic of a second-order transition. In addition an expansion in gradients
or "slowness af variation" is carried out. This allows one to reduce the Gorkov
equations for superconductors to the Ginzburg-Landau equations, which are
coupled equations for the Ginzburg-Landau 'wavefunction' W(x) and the vec­
tor potential A(x). One finds that \}I(x) is related to the gap-parameter ~(x)
by

(
7(3)n ) 1/2

1l'(x) = 87r2 (kT
c

)2 ~(x) (10.45)

with n being the number density of electrons in the normal state. The resulting
equation for \li obtained by the expansion of the Gorkov equations is reminis­
cent af the Schrodinger equation, with the addition of a non-linear (cubic)
term,

1 h
-2-(-; \7 - e* A)2\l1(x) + a'll(x) + b\l1(x)I'1f(x)1 2 = O.

m* 'Z

Here, the effective mass m* is

m*=2m

while the effective charge e* is

e* == -2e,

(10.46)

(10.47)

(10.48)

refiecting the presence of Cooper pairs in the condensed state. The constants
a and b are found to be

(10.49)
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(10.50)

We have introduced the Fermi energy f F = h2k~/2m. It is related to the
density of states N(O) through N(O) = 3n/4fF. Under spatiaIly homogeneous
conditions ane finds from (10.46) that

2 a Tl'lfl = -- = n(l- -).
b Te

When W is expressed in terms of Ll this becomes

(10.51 )

(10.52)

The other Ginzburg-Landau equation besides (10.46) relates the supercur­
rent density j to the vector potential and the gradient of '\li according to

(10.53)

The two Ginzburg-Landau equations must be supplemented by boundary con­
ditions an W and the vector potential. These boundary conditions will be
discussed below, where we indicate how the Ginzburg-Landau equations are
derived phenomenologically within the context of the general theory of second­
arder phase transitions.

10.2.1 Second-order phase transitions

The Ginzburg-Landau equations (10.46) and (10.53) were derived by Ginzburg
and Landau 1 well before the advent of the microscopic theory due to Bardeen,
Cooper and Schrieffer. The parameters occurring in the equations therefore
had to be fixed by comparison to experiment. The starting point was Landau's
general theory of second-order phase transitions. According to this theory2,

the difference in free energy between the normal state and the 'condensed' state
(here the superconducting state) may be written as a series expansion in the
magnitude af an order parameter. In the present case the order parameter is the
quantity W, which was introduced above on the basis of the microscopic theory.
While the assumption af the existence of such a series expansion may seem
natural, it does in faet imply that the system is well described by a mean fieid.
The mean-field assumption is generally an excellent ane for superconductors
but it breaks dawn for many other physical systems, yielding critical exponents

l V. L. Ginzburg and L. D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064, 1950.
2Landau and Lifshitz: StatisticaI Physics, vol I.
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Figure 10.2: The free energy difference /).G = G. - Gn as a function of jlll12
under spatiaIly homogeneous conditions

that differ from the mean-field values mentioned below. Spatial variatIOns
are taken into account by a gradient expansion, which limits the validity of
Ginzburg-Landau theory to slow spatial variations.

According to the Ginzburg-Landau theory, the difference in the Gibbs free­
energy density G. in the superconducting state and the corresponding free­
energy density in the normal state, Gn , may be written as

2 b 4 1 h" 212G.-Gn = alllll +-11lI1 +-I(-:-V'-e A)llIj +-B -B·Hext . (10.54)
22m" z 2/10

The absence of terms linear and cubic in III follows from the fact that G. must
be unchanged under a change of phase of the order parameter. Such changes
are associated with gauge transformations. The order parameter III itself is
not invariant under gauge transformations. This is the broken symmetry of
the superconducting state. Its analogue in the case of ferromagnetism is the
breaking of the rotational symmetry associated with the magnetic moment
of the ordered state pointing in a definite direction. The gradient term was
written in a form reminiscent of the kinetic energy of quantum mechanics.
When comparing their theory to experiment Ginzburg and Landau took m"
to be equal to the electron mass. The last terms in (10.54) are due to the
magnetic induction, B = V' x A, with H ext being the externally controlled
field strength. In Fig. 10.2 we illustrate the dependence of the free energy
difference on 11,&1 2 in two cases, a) T > Te and b) T < Te under spatiaIly
homogeneous conditions.

The Ginzburg-Landau equations result from varying (10.54) with respect
to w" and A, with the folIowing boundary condition at the surface,

il· (~V' - e" A)w =O,
z

il being the surface normal, and

(10.55)

(10.56)
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These boundary conditions ensure the vanishing of the surfaee terms arising
from the variation of the functional (10.54) with respeet to W and A. Phys­
ically, (10.55) ensures that no current is leaving the sample at the boundary,
while (10.56) expresses that the tangential eomponent of the magnetic field is
continuous across the metal surfaee.

In the folIowing we shaH give a few examples of simple solutions to the
Ginzburg-Landau equations. These examples introduee the two important
characteristic lengths, the coherence length e(T) and the penetration depth .
'x(1').

10.2.2 Characteristic lengths

Let us first eonsider a situation without an magnetic fieId, and furthermore
assume that the order parameter only varies in the x-direetion. Then (10.46)
beeomes

(10.57)

In order to study solutions of this equation one may introduee the dimensionless
Iength variable x by

(10.58)

where

(10.59)

The length e(T) is the temperature-dependent eoherenee length. It follows
from (10.49) and (10.59) that e(T) is proportional to (1- T/Tc )-1/2 and thus
beeomes larger as the critical temperature is approaehed from below. This is
the general behavior ofthe coherenee length within Landau's theory ofseeond­
order phase transitions. The temperature dependenee is due to the faet that a
is proportional to (1 - T/Tc ), whieh is also responsibie for the (1- T/Tc )1/2­
dependence of 1'111 or Idl in the homogeneous case, er. (10.44) and (10.52). In
the theory of critical phenomena such exponents eharacterizing the tempera­
ture dependence of the coherenee length and the order parameter are called
critical exponents. In generalone writes

(10.60)

and
eex (Te - T)-II. (10.61)

The faet that (3 and v both are 1/2 reflects that the BCS-theory is a mean­
field theory. In the case of superconductivity the mean-field deseription yields
excellent results except in a very small temperature region in the immediate
vicinity of the transition temperature.
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The penetration depth of a magnetic field may be obtained by combining
the Ginzburg-Landau equation without the gradient-term,

(10.62)

with the Maxwell equation ~byr x B =j. By taking the rotation of (10.62),
assuming W to be spatiaIly uniform, we obtain

where the characteristic length A is given by

m* m*b
,\2 = Jlo(e*)2lwj2 - Jlo(e*)2iai'

(10.63)

(10.64)

We shaH now determine the critical magnetic field for the nucleation of
the superconducting state in terms of the parameters of the Ginzburg-Landau
theory.

Let us assunle that the magnetic field in the normal state is given by the
vector potential

A = B(O, x, O). (10.65)

Since we shaH determine the critical value of B for the nucleation of the
superconducting state we may use the vector potential (10.65) in the first
Ginzburg-Landau equation (10.46) and neglect the non-linear term. The equa­
tion then becomes identical to the eigenvalue equation for a particle moving in
a harmonic-oscillator potential,

_l_(~\7 - e* A)2 W(X) = -aW(x),
2m* z

(10.66)

If we assume that \li only depends on x, the operator on the Ieft-hand side of
(10.66) is

(10.67)

which is the Hamiltonian for a harmonic oscillator with the smallest eigenvalue
equal to hle* IB12m*. The nucleation of the superconducting state sets in,
when this eigenvalue is equal to lal. The upper critical field Bc2 (commonly
called H c2) is thus given by the equation

hle*IBc2 = lal.
2m*

(10.68)
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When the values of the parameters are inserted in (10.68), the upper critical
field becomes

(10.69)

The quantity

c _ 1ivF (10.70)
'o - kT

c

is a characteristic length, of magnitude 100 to 10000 Å for typical supercon­
ductors. Apart from a numerical constant, the magnetic field Bc2 is seen to be
equal to h/ee5 times the temperature dependent factor 1 - T/Te .

10.2.3 The Josephson effects

Finally, we shaH briefiy mention the special effects associated with the weak
coupling between two superconductors that are spatiaIly separated. The effects
were predicted theoretically by Josephson, and subsequently verified in great
detail by experiments. The Josephson effect is the most direct demonstration
of the existence of two conjugate variables, the phase of the order parameter
and the number of Cooper pairs.

Josephson considered two superconductors separated by a thin insulating
barrier and found, on the basis of a Green function calculation, that a super­
current I could flow across the barrier in the absence of any voltage difference.
When the order parameters in the two superconductors are written in terms
of their rriagnitude f and phase </J

and
'1t 2 =f 2 ei c/>2,

the supercurrent was given by the simple expression

I = Io sin </J,

with </J being the phase difference between the two superconductors,

The zero-temperature value of Io was found to be

Io = 1r0'0~.
2e

(10.71 )

(10.72)

(10.73)

(10.74)

(10.75)

Here 0'0 is the normal-state tunnel conductance, which in the normal state of
the metal determines the current In across the junction to be

In =O'oV, (10.76)
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with V being the applied voltage. The Josephson effect implies that a super­
current may flow even when V = O. At finite voltages the phase difference ø
acquires a time dependence according to

åø
h7fi = 2eV. (10.77)

Like (10.73) this equation reflects the conjugate relation between the number
of Cooper pairs and the phase, as may be seen from the simple Hamiltonian
description based on

H = -Ea cos ø- 2enV

together with the Hamilton equations of motion

. åH
hø =-- = 2eV, ån

and
t' åH E'
nl1 = åø = oSIn <p.

(10.78)

(10.79)

(10.80)

(10.81)

The Josephson tunneling current may be calculated as a function of temper­
ature by the Green function method, starting from the BeS Hamiltonian for
two superconducting metals with the addition of a tunneling Hamiltonian de­
scribing the effect of the tunneling barrier . The result is

1rO'oLl
Io =~ tanh(Ll/2kT),

where Ll is the temperature-dependent gap shown in Fig. 10.1. Near the tran­
sition temperature, the Josephson current therefore vanishes as Te - 'T, since
the gap itself is proportional to (Te - T)1/2.
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11 Electrical conductivity
In this final chapter we show how the methods of diagrammatic perturbation
theory may be applied to the determination of transport coefficients such as
electrical conductjvity. We shall derive the Drude formula for the frequency­
dependent conductivity and show how the summation of a particular class of
diagrams describes the effect of weak iocaiization, which is observed in the
magnetoresistance of two-dimensional electron systems.

The chapter is organized as follows: First we derive the general formulae
of linear response theory. Subsequently the current operator is identified and
used for expressing the conductivity in terms of a retarded current-current
correlation function. The latter is calculated by diagrammatic perturbation
theory, taking into account the infiuence of impurity scattering on the electron
Green function. We determine the electron self-energy by using the Born
approximation and averaging over the positions of randomly located impurities.
Fol!owing that, the Drude formula for the frequency-dependent conductivity
is derived. The concluding section treats the effects of weak localization by
summing up the contribution to the conductivity due to the class of maximally
crossed diagrams.

11.1 Linear response

Many physical problems involve a linear response to an external disturbance.
Perhaps the best known example is Ohm's law, which states that the current
density j is linear in the applied electric field E, or j = aB. Another example
is the spin magnetization of an electron gas in the presence of an external
fieid. In the following we derive a general expression for the change in a
physical quantity due to an external disturbance, treating separately the zero­
temperature and finite-temperature case.

11.1.1 Zero temperature

Let us consider a general physical system described by the time-independent
Hamiltonian H. The Schrodinger equation has the form

·to åIltS _ H'T.
Ut åt - 'Il S ,

where 1/;5 denotes the Schrodinger wave function. The transition to the Heisen­
berg picture is accomplished by the unitary transformation

while the operator As in the Schrodinger picture becomes

AH = eiHt / 1i Ase-iHt/1i.

(11.2)

(11.3)
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The operator AH satisfies the equation of motion
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(11.4)

provided As has no explicit dependence on time.
We now consider an external disturbance characterized by an additional

time-dependent term H'(t) in the Hamiltonian. The disturbance is switched
on at a definite time t = to. From this moment on, the system develops
according to the Schrodinger equation

. all!s ( I ( ))'lftT = H +H t \lis· (11.5)

It is convenient to describe the time development of the wave function in
terms of the operator U(t), which is defined according to

'11 s(t) = e-iHt/nU(t)'I!5(0). (11.6)

In the absence of the external disturhance, corresponding to H' = 0, the
operator U equals 1 at all times. We shaH now solve for U to lowest order in H',
with the boundary condition thatU(t) = 1 for t < to. By differentiating (11.6)
with respect to time we find that the operator U must satisfy the equation

ih au = eiHt/li H'(i)e-iHt/liU = H'nU, (11.7)
åt

where we have introduced the Heisenberg operator HH' The equation (11.7)
may now be solved by iteration,

U(i) = l + i~ l: di' H'n(i') + .... (11.8)

Since we only want to consider terms linear in H', there is no need to carry
the expansion in (11.8) any further.

Having obtained the operator U to tirst order in H' we now proceed to
consider the linear response of the ground-state expectation value af an op­
erator O. If we consider changes in density due to an external fieid, we take
O to be the density operator. Alternatively, O is the current operator if we
are interested in the change in current due to an external fieId. We seek to
determine the change b < O > in the expectation value < O > given by

b < O >=< O >H' - < O >0, (11.9)

where the subscript Oindicates that the expectation value is deterrnined in the
absence of the external disturbance. Since

\li' s(i) = e-iHt/li(l + i~ 1: di' H'n(i'))\lI' 5(0) (11.10)
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to first order in H', we obtain
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< O >= (01(1 + !..lt dt'HH(t'»eiHt/liOse-iHt/li(l - !..lt dt'HH(t'»IO),
n to n to

(11.11)
where IO) = Iw5(0») denotes the ground state of the system with Hamiltonian
H.

Consequently we have

{) < O >= ~ lt dt'{OI[HH(t'),OH(t)]IO}.
to

Let us consider an example where H' is given by

HH =Jdx(-e )PH(X, t)4>ext(x, t),

(11.12)

(11.13)

where <Pext(x, t) is an external scalar potential, which couples to the charge
-e of the particles, while PH(X, t) is the Heisenberg operator for the particle
density introduced in (8.49). In this case (11.12) shows that the linear response
involves a retarded density-density correlation function.

Similarly, the spin magnetization induced by an external magnetic field
introduces the generalized spin susceptibility as a retarded spin density-spin
density correlation function.

11.1.2 Finite temperature

The linear response theory discussed in the preceding section is readily ex­
tended to finite temperatures. The expression (11.12) for the change in the
ground-state expectation value may be generalized to any matrix element
involving the exact eigenstates of the operator ]< = H - JlN introduced
in Chapter 7. Consequently it also applies to the diagonal matrix elements
(ml J/o dt'[Hk(t'), OH(t)]\m), which enter the statisticai average. Thus we ob­
tain the fini te-temperature generalization of (11.12),

{) < O >= ~ lt dt'Tr(e-ØK[HH(t'), OH(t)])eøn ,
to

where
e-f3n = Tre- f3K .

Let us assume that the Hamiltonian H' has the form

H' =Jdx O(x, t)4>ext(x, t).

(11.14)

(11.15)

(11.16)
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Then

6 < °>= -*Jdx' 1: dt' < [On(x,t),On(x',t')] > l/Jext(X', t'). (11.17)

We now let to tend to minus infinity. Introducing the retarded correiation
function Dret(l, l') by the definition

iDret (1, 1') ==< [OH( 1), OH(l /)] > 8(t - t'), (11.18)

where 1 and l' refer to the space-time points x, t and x', t', respectively, we
are able to write the final result in the simple form

6 < 0(1) >= kJdl' Dret (l, l')I/Jext(1'), (11.19)

(11.20)

where the integration over the time variable ti extends from minus infinity to
plus infinity.

The quantity of physical interest is thus a retarded correlation function.
In the case where an external probe couples to the density or the current
density, the operator OH is bilinear in the field operators. To obtain the
correlation function at finite temperatures within the Matsubara approach
one must therefore consider a two-particle Green function, which is calculated
by diagrammatic perturbation theory, using free-particle Green functions as
building blocks. When the Fourier coefiicients of the appropriate two-particle
Green function have been obtained as function of the Matsubara frequencies,
the method of analytic continuation is employed for determining the retarded
correlation function, in precise analogy to the way in which the retarded (one­
particle) Green function is obtained from the tau-ordered one, as demonstrated
in Section 7.5, cf. (7.73) and (7.70). An example af the use af this procedure
is given in Section 11.4 below, where the frequency-dependent conductivity is
related to a particular case of a two-particle Matsubara Green function.

11.2 The current operator

The quantum mechanical expression for the electric current density j associated
with a particle af charge -e and mass m moving in a magnetic field described
by the vector potential A, is

. ( ) h ( * >te) e
2

I I~J == -e -. \li \7\l1 - '1I\7\lf - - A \lf -.
2mz m

Note that this current expression is gauge-invariant, since the gauge trans­
formation obtained by adding the term \7X to the vector potential A changes
the wavefunction \li to \li exp( -eix/n), where X is an arbitrary function af the
coordinates.
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(11.21)

The expression (11.20) is the mean value of the current in the state 'Ii for
a single particle. We shaH now write down the current-density operator for a
system of N particles, each with charge -e and mass m.

The electric current density may be obtained from the quantum mechani­
cal expression (11.20) after replacing the wavefunction 'li by the annihilation
operator 'Ø (and 'l'* by its hermitian conjugate 'Øt ). This results in the second­
quantized form of the current-density operator jop

n e2

jop = (-e)-2. ('Øtv'Ø - 'Øv'Øt) - -A"pt 'Ø.
mt m

The expectation value j of this operator may then be written in terms of the
Green function

G(1(1I(X, T; x', T') =G(x, r; x', r' )fJ(1(J1

according to

. ( ) n ( å a ) ( " ne
2

J = -e -. -a - -aI G x, r; x , T )x/-+x 1"-+7 +'7 - -A,
ml x x ' m

(11.22)

(11.23)

where 1] denotes a positive infinitesimaf.
It is aften useful to write the current operator in terms of operators. that

add and remove a particle in a definite momentum state nk. Thus we introduce

"p(1(x) = l: eik-xCk,(J

k

into (11.21) and obtain the Fourier-expansion

• () ~ iq-x· ( )Jop x = L..-t e Jop q
q

where jop(q) is given by

jop(q) = (-e) ~ l:(k+ i){qCk+q,q,
k,(J

(11.24)

(11.25)

(11.26)

(11.28)

In the presence of an external vector potential A the perturbing Hamilt0­
nian H' is

H' =- Jdxj , A. (11.27)

In the remainder of this chapter we consider the uniform case where the elec­
trical field is homogeneous in space. The electric field E is described in terms
of a time-dependent vector potential A according to

E=_aA.
åt
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For a vector potential, which oscillates in time according to

A = Aoe- iwt

we thus get
l

A = -:-E.
lW
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(11.29)

(11.30)

The final expression for the conductivity within linear response then becomes

(11.31)

where we sum over repeated indices, with the conductivity tensor U a {3 being
given by

l;t I iw t-t' . . I ne
2

U a{3 = - dt e ( ) < [Ja(t), Jp(t )] > --o (ja(3.
w -00 mlW '

(11.32)

(11.33)

Here the current-density operator is obtained by setting q = O in (11.26) and
dividing by the volume V,

ja =(-e)~ "" kac~ oCk o·mV L..J , '
k,o

Before we proceed to the evaluation of (11.32) we shall consider the electron
Green function in the presence of ran dom ly located impurities,

11.3 Electron-impurity interaction

The Hamitonian for a single electron interacting with impurities, which occupy
fixed positions in a lattice, is

(11.34)

Here the sum extends over the position vectors Ri of the Nimp impurities.
In the language of second quantization the two terms of this Hamiltonian

are written in the form

and

Ha =L tkC~,oCk,O'
k,o

Hl = L (k'u/IUlku)c~"o'Ck,o
ko,k/a'

(11.35)

(11.36)
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where the matrix element of the electron-impurity interaction is given by

(k'u'IUlku) = ~Jdre- ik/
.r L V(r - ~)eik.r.

V .
3

(11.37)

The integral in (11.37) is calculated by shifting the integration variable to
r - lti as aresult of which one gets

1
Hl = V L Pi ffiP (q)V(-q)p(q).

q

Here p(q) is the Fourier component of the density operator, given by

p(q) = L ct,qCk+q,O' ,

k,O'

while

and V(q) is the Fourier-transform of V(r),

V(q) =Jdre-iq-rV(r).

(11.38)

(11.39)

(11.40)

(11.41)

11.3.1 Tlle electron self-energy

The electron-impurity interaction may beo treated by diagrammatie perturba­
tion theory just like the electron-electron or the electron-phonon interaction.
We shaH only consider the self-energy to second order in the interaction matrix
element V(q). 'Vhen expanding the S-matrix one generates terms containing
produets Pimp (ql )Pimp (q2) . ... Since we do not know the location of the im­
purities, we assume that they are randomly located in space and average each
term in the self-energy over the positions of the impurities. The total number
of impurities is called Nimp, and their density is thus

The average <>imp of the first order term yields

( ) '""' iq·R·< Pimp q >imp=< L..J e • >imp .

(11.42)

(11.43)
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Figure 11.1: Second-order contribution to the self-energy

Since the impurities are randomly located, we only get a contribution when
q = O, in which case each of the Nimp terms equals unity,

< '" eiq-R • >- - N- c~ Imp- 1mpUq,O·

In second order we obtain

(11.44)

< Leiq,R;eiq1-Rj >imp= Nimp Oql+q2,O+Nimp(Nimp -1)oq"oOq2,O, (11.45)
ij

which is seen by separating the sum over i, j into two, the first of which having
i = j, the second i -:f j.

Let us consider the contributions I;(n) to the self-energy to order n in the
interaction matrix element V (q). First we treat the case n = l. The self-energy
is then given by

",,(l) _ Nimp", , V(-) _ Nimp V(O)
/I ~ - V ~ uq,o q - V .

q

(11.46)

This lowest-order term is evidently real, since V(O) according to (11.41) is the
integral over all space of V(r). It contributes just a constant, which shifts the
single-particle energies by the same amount (alternatively we may absorb the
shift in the chemical potential).

In second order we get the term which is illustrated diagrammatically in
Fig. 11.1. In order to ease the analytic continuation later on, we write the
Fourier coefficients as functions of the (purely imaginary) variable iwn ,

N~~p L Oqdq2,oV(-qdV(-q2)C(O)(k+ql,iwn)
q,q1

N~7 L V( -ql )V(ql)C(O)(k + ql, iwn ).

q,

(11.47)
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(11.48)

(11.49)

After insertion of the electron (temperature) Green function this becomes

(2)( . ) _ Nimp J dk' ( ') (' ) 1
hL. k, tWn - ----v- (271")3 V k - k V k - k ihw

n
_ 6,1 '

which is analytically continued to the real axis according to iWn ~ w + iTJ. By
carrying out the integration over ~kl we then find that the imaginary part of
E for k ~ kF is independent of w and given by

ImL. = inimpN(O) 11 d(cos O) W(OW.
-1 2

Here N(O) = mkF /27r 2 h2 is the density of states per spin at the Fermi energy,
while V(O) is the matrix element V(k' - k) evaluated for k = k' = kF, as a
function of the angle Obetween k and k'. Apart from a constant shift, which
we absorb in the chemical potential, the retarded electron Green function may
accordingly be written as

where T is given by

aret _ 1
- w - ~k/h + i/2r'

(11.50)

(11.51)

(11.52)

If V is a constant, independent of O, this result is equivalent to (2.1.14) in
Transport Phenomena, which may be obtained from (2.1.9), where the term
involving cos O integrates to zero. In this case l/r becomes

1 27r 2-;. = -,;-nimpN(O)IV(O)1 .

Note that this expression has the correct dimension of inverse time, since the
number density of impurities nimp and the density of states N(O) both are
inversely proportional to the volume, while V(O) has the dimension of energy
times volume. If V(O) is set equal to 1/2N(O), which is the long wavelength
limit of the (Thomas-Fermi) screened Coulomb interaction, we recover from
(11.52) the result (2.1.14) given in Transport Phenomena. In the folIowing
subsection we shaH determine the frequency-dependent conductivity (J' in an
approximation, which yjelds (J' = ne2 r /(1 - iwr). While this looks similar to
the result of solving the Boltzmann equation, there is an important difference:
the time r given by (11.51) is not the transport time, since the factor (l-cosO)
is missing from the integrand. As we mention below, it is possibie to identify
the class of diagrams which produces the cos () term, but we shaH not consider
i t in any detail.
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11.4 The Drude formula
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In the previous section we obtained the electron Green function, with the self­
energy evaluated in the lowest Born approximation. Now we proceed to cal­
culate the current-current correlation function, using finite-temperature Green
functions. Thus we consider the r-ordered quantity IIaø (r), which is defined
as

(11.53)

where <> as usual means the thermal average defined in (7.5). According
to (11.32) the conductivity O"O'/3(w) associated with a definite frequency w is
obtained frorn II O' ,f3 ( iwn ) as

. 2
'l Il (' .. ne ~crO' /3 =- 0'/3 'lWn --+ W + 'l1]) - -.-UO'/3'
w zwm

The conductivity: tensor O"af3 is diagonal,

(11.54)

(11.55)

and we may therefore obtain 0"(w) by taking the trace of (11.54) and dividing
by the dimension d,

• 2

cr{w) = ~dIIQO'(iWn --+ W + i1]) _ ~e ..
w 'lwm

(11.56)

We evaluate IlaO' ( r) by inserting the q = O limit of the current operator given
in (11.33), resulting in

(11.57)
The terms in (11.57) which involve pairing of the two operators carrying the
same wave vector k vanish by symmetry, due to the integration over k and k'.
After carrying out the Fourier-transformation and the summation over spin we
therefore get

2 2

IIaa(iwn) = -2 ~2~2 L L k . kl < G(k, k l, iWn + iwn,)G(k/, iwn,) >imp .

n' k,k'

(11.58)
Note that the Green functions depend on two momenta, due to the absence of
translational invariance. We have indicated explicitly the average < ... >imp

over the positions of the impurities.
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Figure 11.2: Cuts in the complex z-plane

The sum over Matsubara frequencies is carried out as usual by introducing
the Fermi function n(z) given by

1
n(z) = e{31iz+l' (11.59)

(11.60)

The analytic structure of G(k', k, z) == Gklk(Z) and Gkkl(Z + iwn ) occurring in
(11.58) is such that they possess a cut along the lines z =wand z =w- iwn ,

respectively. Here w is real and varies between -00 and 00 (see Fig. 11.2).
When deforming the contour as indicated in Fig. 11.2 we therefore integrate
just above and just below these two lines. Let us consider the quantity Q
defined by

Q( iwn) = ølnL G(k, k', iWn + iwn, )G(k', k, iwn,).
ni

After introducing the Fermi function and deforming the contour we see that
Q may be written as

-100

2dw.n(w)[(G~~t(w+ i7]) - Gr,k(w - i7]))Gkkl(W + iwn)
-00 1r'l

+ (Gki:,(w + i7]) - Gki~(w - i7]»Gklk(W - iwn )]. (11.61)

Now we carry out the analytic continuation iWn -+ w + i7], obtaining the
appropriate retarded and advanced Green functions,

Q(w)

+
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Figure 11.3: Vertex corrections
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In the static limit we expect to recover the elementary formula Cl =ne 2 r 1m.
However, the right hand side of (11.56) contains a term which diverges as
w-l in the limit w ---1- O. This divergence is cancelled against a similar term
arising from the produets of retarded (cretcret) and advanced (Cadv C adv )

Green functions in (11.62). The cancellation is verified by using the Green
functions for the noninteracting system in these two terms, while the higher­
order diagrams yield a vanishing contribution. Thus the final conductivity
formula bec.omes

u(W) 2e
2

/i2 """ k . k' JOO dw
m 2dV2 L...J 271'"

kk' -00

[ ( -) C adv ( - . )cret (- . )nw'< k ' k W - Z1J kk,w+w+ZTj>imp

(- ) c ret (- . )Cadv (-, ') ]n w + w <kk' W + W + ZTj k'k W - Z1J >imp, (11.63)

which may be written as

O'(W)
2e 2

/i2 )kokljOO dwn(w)-n(w+w)
m 2d"l2 .L-t 27r w

kk' -00

C ad v ( - ')C ret ( - . )< k'k W - Z1J kk' W + W + ZTj >imp· (11.64)

The formula (11.64) forms the starting point for our calculation of the conduc­
tivity.

The Drude fOrlTIula for the frequency-dependent conductivity is obtained
by using

and

C adv ( _) l $:

k'k W + W = - + c Ih '/2 Uk,k'w w - ~k - 'l r
(11.65)

Gret ( - ) 1 fy ( )
H' W =W _ 6/li + i/2T k,k', 11.66

where T is given by (11.51). Since we consider the limit in which hw is much less
than the Ferlni energy tF, the main contribution to the momentum integration
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Figure 11.4: Maximally crossed diagram

in (11.64) comes from the region near the Fermi surface. By first performing
the momentum integration and then the frequency integration we get

0'0
O' = ,

1- iWT

where the static conductivity 0'0 is given by

(11.67)

(11.68)

The time T occurring in our result for the frequency-dependent conductivity
is not the same as the transport relaxation time obtained from solving the
Boltzmann equation. The reason is that we have negleeted vertex corrections
of the kind illustrated diagrammatieally in Fig. 11.3. When the contribution
from such vertex corrections is taken into account, one obtains the complete
expression for T given in (2.1.9) of Transport Phenomena. We leave it as a
problem for the reader to calculate the magnitude of the static conductivity
both with and without the cos B-term for a screened Coulomb-interaction, and
compare the result to the measured resistivity for magnesium impurities in Cu,
cf. (1.24) in Section 1.3.3.

There are of course many other diagrams than the ones discussed so far.
In three dimensions one may show that these are negligibIe in the limit when
the mean free path l =VFT, where VF =hkF/m is the Fermi velocity, is much
greater than l/kF . In two dimensions, however, the situation is different, as
we shaH see in the folIowing section.

11.5 Weak localization

There exists a certain class of diagrams, the so-called maximally crossed di­
agrams, which give the dominant contribution to the conductivity in two di­
mensions, leading to the phenomenon of weak localization, which has been
confirmed in many experiments. Weak localization (in the context of elec­
tronie eonduction) was discovered by Abrahams, Anderson, Licciardello and
Ramakrishnan (1979) on the basis of a sealing analysis. The phenomenon was
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Figure 11.5: Diagrammatie illustration of the integral equation for the partiele­
hole ladder

subsequently explored by Gorkov, Larkin and Khrnel'nitskii (1979), who cal­
culated the frequency-dependent conductivity in the manner described below.

In the following we shaH show how the summation of aseleet class of dia­
grams gives rise to weak localization in two dimensions. It is evident from Fig.
11.4 that a maximally crossed diagram in the particle-hole channel becornes
a ladder-type diagram in the particle-particle channel, when the hole line is
twisted. The particle-particle impurity ladder is called the Cooperon, because
of the importance of electron states with opposite momenta. The properties
of the Cooperon are hest appreciated by considering the diffusive behavior of
the particle-hole impurity ladder at low frequencies and long wavelengths. We
shaH only treat the case where the electron-impurity matrix element V( q) is a
(real) constant, V(O), independent of (J.

The particle-hole ladder satisfies the integral equation illustrated in Fig.
11.5. The integral equation is solved with the aid of the function ((q, w),
which in d dimensions is given by the expression (for convenience, we consider
a unit volume and set li equal to 1)

(11.69)

(11.70)

Using the expressions (11.66) and (11.65) for G and carrying out the integral
over k, we see that the result for q ~ kF is given hy

( _ ~ l ql + wr + i
- n ,

2ql -ql +wr + i

when d =3. In general, for the dimension d.= 1,2 ar 3 and in the limit ql ~ l
and wr ~ 1, we get that

( ~ 1 + iWT - D Tq 2

in tern1S of the diffusion coefficient

(11.71)

(11.72)
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Figure 11.6: A particle-particle channel diagram
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Figure 11.7: The diagram of Fig. 11.6, with time-reversed lower line

The particle-hole ladder is proportional to the geometric series (1 _ ()-l,
which in the limit of low frequencies and long wavelengths becomes

l 1
1 - ( ~ r( -iw + D q2)'

From this it is evident that the particle-hole propagator has a pole at

w = -iDq2.

(11.73)

(11.74)

This diffusive poIe is a direct consequence of the conservation of the number
of partieles. It is thus a general property of the system at low frequencies and
Iong wavelengths.

Figure 11.8: Quantum correction to the conductivity
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Now we proceed to consider the form of the particle-particle impurity ladder
for small total momentum. By comparing Fig. 11.6 and Fig. 11.7 we see
that the time-reversal of the lower line in Fig. 11.6 brings us to Fig. 11.7, the
hole line having reversed momentum. If time-reversal invariance applies, these
diagrams therefore give identical contributions. The form of the Cooperon
for sn1all total momentum, Ik+k/ll ~ 1 and small energy transfer w is therefore

V(O)2
C ~ (' (k k 2) for Ik + k/Il ~ 1 and wr ~ 1.

T -'lW + D + ')
(11.75)

We therefore have the following contribution from the diagram shown in Fig.
11.8

In (11.76) we have performed the integration over w, since the momentum
integrations yield a w-independent result, and furthermore used that WT ~ 1.
The important contribution to Du comes from regions of integration where
k + k' ~ O. We therefore introduce Q = k + k' and replace k . k' by -k~.

Similarly we replace k' in the Green functions c ret and C adv by -k. Then
we may turn the integral over k into an integral over ~, and use the peaked
character of the integrand at the Fermi surface to carry out the ~-integration.

The resul t for D(J' is

(11.77)

where Nd(O) is the density of states per spin in d dimensions. In two dimensions
(d =2) the integral is evaluated by cutting off the Q-integral at the upper limit
l-l. The resul t is (ja

bO"(w) = JrkFllnwr. (11.78)

Evidently this tends to minus infinity when w goes to zero, indicating the
occurrence of localization. The role of time-reversal invariance is seen to be
crucial. If the latter is violated by the presence of a magnetic field or magnetic
impurities, then the particle-particle and particle-hole diagrams are not equal,
and the weak localization is correspondingly suppressed. The effects of weak
localization are sensitive to variations in a magnetic field an a scale which
is much smaller than that which determines the classical magnetoresistance
effects described in Transport Phenomena.
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12 Problems

Problems 1-27 refer to Transport Phenomena, while the remaining Problems
28-55 refer to the present text.

PROBLEM 1 We consider a two-dimensional conductor with a density of
conduction electrons given by n = NIA. Here N is the total number of elec­
trons, while A is the area of the conductor. The dispersion relation for the
electrons, that is the connection between the energy f: and the wave vector
k = (kr, ky ) characterizing a given single-particle state, is given by

k = kO(f:), (12.1)

where ko (f:) is a monotonically increasing function of (. For free electrons we
have kO(f:) = J2mf:lh.

Express the length of the Fermi wave vector, kF, in terms of n. Show that
the Fermi energy f:F and the Fermi velocity VF are given by

(12.2)

and
l

hk~(f:F) = VF, (12.3)

where 'denotes the derivative with respect to f:. Find an expression for the
density of states at the Fermi energy and determine the ~ntropy to lowest order
in TITF.

Calculate the Fermi energy and the associated Fermi temperature for the
case where the electron dispersion relation is quadratic, f: = h2 k212m* with
m* = 0.067me , appropriate to the two-dimensional gas in a GaAsIAIGaAs
heterostructure. Here m e is the electron mass, while the number density n is
assumed to be n = 1011 cm- 2 .

PROBLEM 2 The derivation of the Boltzmann equation is discussed in gen­
eral terms in Transport Phenomena (see, in particular, Sections 1.1 and 2.3).
In this problem we shall derive the Boltzmann equation for the special case
of a two-dimensional electron gas, but the general procedure is very similar.
In the present case the Boltzmann equation becomes a continuity equation
with source terms in the four-dimensional phase space of a single particle. The
one-particle distribution function f(x, y, kr, ky, t) is defined in such a manner
that f(x, y, kr, ky, t)dxdydkr dkyl(21r)2 is the mean number of particles at time
t in the phase-space element dxdydkxdky. If collision terms are neglected, the
conservation of particle number is expressed by

åf å
at + åXIJ (vlJ/) = O, (12.4)
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(12.5)

Trans-

åf å åf
7jt + åXIJ (vlJ!) = (7jt)COll.

Since åvlJ/åx!, = O the Boltzmann equation assumes the form (ef.
port Phenomena, Sections 1.1 and 2.3)

analogous to the \Isual continuity equation, where VIJ = (x, il, k." ky ) is a four­
dimensional velocity, while å/åxlJ = (å/åx, å/åy, å/åk." å/åky ). It states
that the rate of increase of f in a given phase-space volume element is equal
to the net number of particles which stream from outside to inside this phase­
space volume element. The effect of col1isions is not included in (12.4). Since
col1isions move particles from one region of phase space to another, we describe
their effect by adding a source term (åf / åt)coll to the right hand side of (12.4),
resulting in

(12.6)

where

(12.7)

and
hk =-e(E +v x B). (12.8)

It is assumed that the electric field is within the plane, while the magnetic field
is perpendicular to the plane.

The col1ision integral is given by

(~~ )coll =J(~~;2[W(k,k')f(k')(l- f(k)) - w(k',k)f(k)(I- f(k')))

=- J(~;2 w(k, k ')(J(k) - f(k ')),(12.9)

since we assume that the electrons are scattered against fixed impurities (ef.
Transport Phenomena Section 2.1.1).

Show that (12.9) may be written as

(12.10)

where f o is the Fermi function

o 1
f = eC'-IJ)/kT + 1' (12.11)

provided 1) that the angular dependence of the distribution function is deter­
mined by k· e, where e is a unit vector along the direction of the external field
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or temperature gradient, and 2) that w(k, k') only depends on (cosine of) the
angle 8 between k og k'. Find an expression for T in terms of w(k, k').

In the folIowing Problems 3 and 4 we treat T as a constant and furtherrnore
assume that the temperature T is much less than the Fermi temperature TF.

PROBLEM 3 Consider the two-dimensional conductor described in Problems
1 and 2. Find the frequency dependent conductivity associated with an electric
field proportional to exp(-iwt) from (12.6) and (12.10), in the case B = O.
Discuss the result in the limit WT ~ 1. Compare to the result of the Drude
model.

PROBLEM 4 Determine for the two-dimensional conductor described in
Problems 1 and 2 the components lTij of the conductivity tensor in a per­
pendicular magnetic field together with the resistivity tensor Pij, where i and
j each nlay be x or y. Discuss the significance of the result for the observation
of the Hall effect.

PROBLEM 5 We consider a two-dimensional electron gas with an energy
dispersion relation given by

(12.12)

where a and b are positive constants. The group velocity v = (vx , Vy) is given
by the usual expression

1 ai
v == h ak . (12.13)

We let the electric field E be directed along the x-axis, while the magnetic field
points along the z-direction, perpendicular to the plane in which the electrons
move.

The linearized Boltzmann equation is given (in the relaxation-time approx­
imation) by

8f ° eB 8g 8g g
-eEvx a[ - T(vy ak

x
- V x ak

y
) = --;., (12.14)

where g == f - f °.
Show that the solution to the Boltzmann equation in the limit of high mag-

netic fields, where the collision term on the right hand side may be neglected,
has the form g == kyF(t) and determine the function F. Use this solution
to find the current density jy in the y-direction (help: use partial integration
with respect to the variable ky ) and show that the electric field and the current
density are related by E == Pxyjy, where

B
Pxy ==-,

ne
(12.15)
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n being the nllmber density of the electrons.
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PROBLEM 6 The present problem concerns the same physical system as
in Problem 5. We shaIl, however, furthermore assume that the electrons in
equilibrium are described by the classical distribution function

(12.16)

with J-L being a negative constant. In the present problem we consider the
Hall-effect in low magnetic fieids and compare our result to that obtained in
the high-field limit of Problem 5.

a. Determine 9 =90 and calculate the associated conductivity O"xx,o in zero
magnetic field, to first order in the constant b. (Help: in doing integrals it is
permissibIe to use the approximation

(12.17)

(12.18)

for 1<1.)
b. Show that to first order in magnetic field the solution to the Boltzmann

equation (12.14) is given by g = go + gl, where

eB ågo ågo
91 = rT(vyok

r
- Vr ok)'

c. Calculate O"yx(= jylE) from (12.18), to first order in b. Find the off­
diagonal element of the resistivity tensor Pxy ~ O"yxIO";x,o and show that the
result is identical to (12.15). Do you expect this identity to hold to higher
order in b?

PROBLEM 7 The Hamiltonian operator describing the motion of an electron
(with charge -e) in a homogeneous magnetic field is obtained from the classi­
cal Hamiltonian by replacing the generalized momentum p with the operator
liV' li. This results in aHamiltonian which resembles that of a particle in a
harmonic oscillator potential.

The Hamiltonian for an electron moving in a magnetic field is given by

A 1
H = -(p + eA)2.

2m
(12.19)

We shaH assume that the magnetic field is homogeneous and points in the z­
direction, B = (0,0, B). It is often convenient to choose the vector potential
as

A : B(O, x, O), (12.20)
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which is called the Landau gauge. The gauge

A' : ~(-y,X,O) (12.21 )

is called the symmetric gauge.

Exercise. Verify that (12.20) and (12.21) both yield the same magnetic field
directed along the z-axis,

B : (0,0, B). (12.22)

In the Landau gauge the components of the velocity operator v == (p +
eA)/m are thus given by

" _ li 8.
V x - -.---,

lm8x
A li 8 eB
v =--+-X;

y im 8y m
A li 8
V z =--.

im8z
(12.23)

In the folIowing we neglect the motion in the z-direction, since we consider
a two-dimensional electron gas. The result we obtain for the energy eigenvalues
may be easily generalized to three dimensions by multiplying the wavefunction
by L -1/2 exp ikzz and adding li 2 k;/2m to the energy, since the motion in the
z-direction is unaffected by the magnetic fieid.

It may be seen from (12.23) that the x- and y-components of the velocity
do not commute because af the presence of the magnetic fieid, since

where

[
A A] liwc
vx,vy =-.-,

zm

eB
W c =­

m

(12.24)

(12.25)

is the classical cyclotron frequency for the electron.
In analogy with the harrnonie oscillator it is convenient to introduce ope­

rators by the definition
(12.26)

and
(12.27)

These operators satisfy commutation relations similar to those of the creation
and annihilatian operators (a t and a) for the harmonic oscillator.

Exercise. Verify that
A A liwc

[v_, v+J =2- (12.28)
m

and compare with the commutation relations for the creation and annihilation
operators (a t and a) of the one-dimensional harmonic oscillator.
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When V z is negleeted, the Hamiltonian (12.19) ean be written as

We define the nurnber operator il by

N
~ m A ~

=2hw
c

v+ V_,

which allows the Hamiltonian (12.29) to be expressed in the form

A A 1
H = hwc(N + - ).

2
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(12.29)

(12.30)

(12.31)

The Hamiltonian has thus the same appearance as that of the harmonic os­
cillator, since the commutation relations for .N and the operators v_, v+ cor­
respond precisely to those of the harrnonie oscillator. The energy eigenvalues
are therefore

(12.32)

where n =0,1,2 .. '. These are the Landau levels characterizing the quantum­
mechanical motion of an electron in a magnetic field.

Unlike that ofthe one-dimensional harmonic oscillator, the spectrum (12.32)
is strongly degenerate, in the sense that there are many linearly-independent
eigenstates belonging to a particular value of n. The reason for this degeneracy
is that there exists another operator, which commutes with the Hamiltonian
and therefore corresponds to a classical constant of the motion. "'hen the
vector potential is chosen as the Landau gauge (12.20), this operator is py . We
may therefore label these eigenstates with the eigenvalue ky for Py jli,

(12.33)

but it should be noted, that the eigenvalues ky do not enter the energy eigen­
values. They determine however the degree of degeneracy, which we now turn
to consider .

An alternative method of deriving the energy spectrum (12.32) is to solve
the Schrodinger equation for the wave function 1/Jn,k y , which depends on x and
y. As we shaH see, this also aIlows the degree of degeneracy of the It'~;els to be
determined. Since the operator Py commutes with the Hamiltonian, we seek a
solution in the form

1fJn,k y(X, y) = eikyy f(x),

which is an eigenfunction of Py'

(12.34)
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Exercise. Show, by inserting (12.34) into the Schrodinger equation, that the
function f must satisfy

(12.35)

The equation (12.35) has the same form as the Schrodinger equation for a
harmanie oscillator with its minimum displaced by the amount Xo along the
x-axis, where

nkg ( )Xo = --o 12.36
eB

It is thus readily seen from the Schrodinger equation (12.35), that the effective
force constant is (eB)2/ m and the eigenvalues those given by (12.32).

The degree of degeneracy of a level with a given n is determined by the
requirement that the minimum of the oscillator (12.36) lies within the area
considered. The number of states belonging to the interval ilky is given by
L~ky /27r, and the condition O< Xo < L implies that

ilk _ eBL
y - n · (12.37)

The number Nu of linearly-independent state vectors belonging to the label
n, ky is therefore given byl

eBL2

Nu = -h-o (12.38)

The result (12.38) for the degree af degeneracy Nu may be interpreted picto­
rial1y by considering h/e to be a quantum of flux. The degree of degeneracy is
thus the number of flux quanta corresponding to the flux BL2 of the magnetic
field through the area L2.

PROBLEM 8 In the present problem we consider the motion of a single elec­
tron in a magnetic fieid, by using the symmetric gauge (12.21). It is convenient
to express energies in units of nwc and lengths in units of (n/eB)1/2, which is
often referred to as the magnetic length. Correspondingly, we express angular
momentum in units of n.

a) Show that the Hamiltonian for an electron moving in two dimensions,
with the choice of gauge (12.21), may be written as

(12.39)

1 The existence of the electron spin is negleeted here.
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Here z = x + iy and z* = x - iy, while
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(12.40)

whereas L is the operator for angular momentum (perpendicular to the xy­
plane),

L=~~.
i oø

The angle ø is the usual azimuthal angle, defined by

x = rcosø, y =rsinø.

b) Verify that the states

I ) - 1 ( *)m -zz· /4
m - (2m +11rm!)1/2 z e

(12.41)

(12.42)

(12.43)

are normalized eigenstates of H and L, \\"ith eigenvalues given by 1/2 and -m,
respectively. Find {mlr2 Jm} and compare to the motion in the classical limit.

PROBLEM 9 The previous problem dealt with a single electron moving in a
magnetic fieId. We shaH now discuss the motion af two electrons in a magnetic
field and take into account their Coulomb repulsion. 'Ve use the same notation
as in Problem 8.

It is convenient to introduce center-of-mass and relative coordinates by the
transformation

(12.44)

The relative coordinate Za is expressed in polar coordinates according to

(12.45)

The potential energy describing the Coulomb-interaction is thus

(12.46)

where tr is the relative permittivity and r = (x~ +y~)1/2. Note the appearance
of the factor y'2 in the potential energy, which originates in the transformation
(12.44).

For the two-dimensional electron systems in GaAs/AIGaAs heterostruc­
tures, the relative permittivity may be taken to be tr = 13, while the effective
mass entering the cyclotron frequency Wc is 0.067 times the bare electron mass.
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a) Calculate and compare the two characteristic energies e2 /41rfr f OI and
nwc , where I is the magnetic length, for a magnetic field B = 10 T, with the
values of the effective mass and relative permittivity given above.

b) We shaH describe the relative motion of the two electrons in the absence
of interactions by a state-vector of the form

I ) - 1 ( *)m -z4 z:/4
m - (2m+11rm!)1/2 Za e . (12.47)

(12.48)

Explain why this is an eigenstate of the Hamiltonian of the relative motion
in the absen.ce of the Coulomb interaction, and determine the corresponding
eigenvalue by transforming the original Hamiltonian by means of (12.44). We
shaH refer to the energy associated with the relative motion as the internal
energy. Show that 1m) is an eigenstate of the relative angular momentum
with eigenvalue -m. Which values of m are permitted by the requirement of
antisymmetry (the spin degree-of-freedom is neglected throughout)?

c) Use first-order perturbation theory to calculate the contribution of the
Coulomb interaction to the internal energy, as a function of m. Employ the
value B = 10 T in giving specific results for the two cases m = 3 and m = 5,
appropriate to GaAs/AIGaAs heterostructures.

cl) Show that

I ) - 1 r
2 /4( )m( )n -r

2 /2
m, n - (2n+m+11rm!n!)1/2e p_ p+ e . .

is a normalized eigenstate of the Hamiltonian for a single electron, with the
eigenvalue (n + 1/2) (we use the notation bf Problem 8). Note: it is sufficient
to show this for the case n = 1, since we shaH use only the states belonging to
n = 1 to calculate higher-order corrections to the energy obtained in c).

e) Show that 1m + 1,1) is an eigenstate of angular momentum with eigen­
value -m. Explain why it is sufficient to use the basis 1m, O} and 1m + 1, l)
for calculating corrections to the energy, as long as we neglect states belonging
to the higher-Iying energies 5/2,7/2···, and determine the correction to the
first-order result found under c) for the case m =5.

PROBLEM 10 Collective modes like sound exist in both three- and two­
dimensional systems. In the folIowing we shaH determine the velocity and
attenuation of sound in a two-dimensional monatomic gas of 3He-atoms. Ex­
cept for question 6) below, we consider the classicallimit where the Maxwell­
Boltzmann distribution applies in equilibrium. The number density of atoms
is n and the mass of an atom is denoted by m. The gas occupies an area A,
the pressure (dimensionally a force per unit length) is denoted by p, while T
is the temperature. In making estimates, the number density of atoms may be
taken to be n = 1010 cm- 2 •
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1) Determine the (equilibrium) equation of state. Find the specific heat
per particle at constant area and at constant pressure.

2) Write down (in analogy with Section 1.10 in Transport Phenomena)
the hydrodynamical equations that describe the propagation of sound under
adiabatic conditions. Determine the corresponding sound velocity and find its
value at T = 10 K.

3) Use the results obtained in Section 1.7 to estimate the temperature­
dependent viscosity of the two-dimensional gas~ assuming an interatomic po­
tential corresponding to that of hard disks with radius R = 10 Å. Estimate
the size of the mean free path.

4) Estimate the attenuation length of sound at the frequency w = 103 s-l

and the temperature T = 10 K. (The attenuation length may be defined as
the length over which the amplitude of the sound '''ave decreases by t he factor
l/e ).

5) Show how the sound attenuation and the sound velocity may be obtained
from the Boltzmann equation, in analogy with Section 1.14.

6) Estimate the magnitude of the sound velocity at T =O K.

PROBLEM 11 We shaH in the fol1owing discuss the screening properties of
an electron gas, which is constricted to move in two dimensions. In order to
generalize the result (1.15.13) in Transport Pheno1nena to two dimensions we
first express it in terms of the Fourier-transfofITI of theCoulomb-interaction,
thereby anticipating the result of the RPA-approximation, which is illustrated
diagrammatieally in Fig. 1.12.

a) Show that the Fourier transform in three dimensions of the screened
Coulomb interaction

(12.49)

(12.50)

where e5 = e2/41rfo, is given by

... 41re6
V(q) = 2 k~'

q + ;

Here ks is a constant, which has the dimension of an Inverse length. The
Fourier- transform is defined by

V(q) =JJJdxdydze-iqrV(r). (12.51)

(Help: In arder to evaluate V( q) it is convenient to introduce polar coordi­
nates with a polar axis along q. From symmetry considerations it is clear that
V(q) ean only depend on the magnitude of q.)
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b) Show that (1.15.13) may be written as

f = 1 + V(q)X(q,w), (12.52)

with V(q) = 41re5/q2. Determine X(q,w) in the limit where q tends to zero in
i) the high-frequency regime and ii) the statie limit.

e) Show that the Fourier transform in two dimensions of the Coulomb
interaetion

e2

V(r) = ...Q,
r

where r 2 = x 2 + y2 , is given by

V(q) = 21re~.
q

The Fourier-transform is defined by

(12.53)

(12.54)

(12.55)

(12.56)

cl) Generalize (12.52) to two dimensions and show that the dieleetric func­
tion in the statie, long-wavelength limit becomes

f(q)=1+
q
,

q

and determine q,. Caleulate the magnitude of q's for GaAs/AIGaAs het­
erostruetures (ef. Problem 9).

e) Show from these results that the two-dimensional analog of the plasma
oscillation has a frequency w proportional to ql/2 in the long-wavelength limit,
and determine the eonstant of proportionality.

PROBLEM 12 A gas of atoms with number density n moves in two dimen­
sions at a temperature T which is suffic.iently high that the atoms in equilibrium
are described by the Maxwell-Boltzmann distribution. The mass of an atom
is denoted by m.

a) Show that the enthalpy per particle, h, is equal to 2kT.
b) Use the relaxation-time approximation to calculate the thermal conduc­

tivity of the gas in terms of the relaxation time T.

c) Calculate the viscosity in the same approximation and determine the
Prandtl number.

PROBLEM 13 Consider a gas of eleetrons of density n moving in two dimen­
sions (the xy-plane) at temperatures much less than the Fermi temperature.
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The electrons move under the infiuence of a constant electric field E along the
x-axis. The col1isions are treated in the relaxation-time approximation with a
constant, temperature-independent relaxation time T.

a) Determine the change EJ! = J - JO of the distribution function and plot
it as a function of the angle <P between the electron momentum and the electric
fieid.

b) Calculate the current density j obtained from the distribution function
and show explicitly that the associated change in number density is zero. What
is the value of the momentum current density IIxy ?

c) Calculate the ratio of the drift velocity u = j / ne and the Fermi velocity
for an electric field E = 1 V jm, with T = 10- 12 s and n = 1011 cm- 2 .

PROBLEM 14 In the present problem we shaH consider the thermal conduc­
tivity of a two-dimensional gas of electrons, with dispersion relation ( = p2 j2m,
at a temperature T much less than the Fermi temperature. The number den­
sity of the electron gas is denoted by n, and the effect of collisions is treated in
the relaxation-tin1e approximation, with a constant, temperature-independent
relaxation time T. The thermal conductivity K, relates the temperature gradient
to the heat current jth according to jth = -K,VT, where

(12.57)

Here Il is the chemical potential.
a) Show that the left hand side of the Boltzmann equation becomes

åJO e - JJ
--v·\7T--

åe T '

when linearized in the temperature gradient, and use this to obtain an expres­
sion for K.

b) Calculate the ratio KjuT, where u is the electrical conductivity and
compare to the three-dimensional case discussed in Section 2.2.4 ofTransport
Phenomena.

PROBLEM 15 Use the model investigated in the previous problem to cal­
culate a) the heat current associated with an electric field in the absence of
a temperature gradient and b) the electric current associated with a temper­
ature gradient in the absence of an electric fieid. Compare the results to the
three-dimensional case discussed in Section 2.2.5 of Transport Phenomena.

PROBLEM 16 We shaH determine the thermodynamic potential n of a two­
dimensional electron gas in a uniform magnetic field of strength B in the limit
where the temperature is much bigger than the Fermi temperature.
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1. Explain, why n is given (for arbitrary temperatures) by

n = _kT
eBL2

h
E In(l + e(JA-fn)/kT)

n=O,1,2,.··

(12.58)

where (n = (n + 1/2)/iwc • The electron gas is contained within a square of
sidelength L (we have neglected the spin of the electron).

2. Determine n as a function of the ratio hwc/kT, starting from (12.58).
Hint: use that elJ / kT ~ 1.

3. Find an approximate expression for n in the limit, where hwc/kT ~ 1,
and use this to determine the diamagnetic susceptibility, which involves the
second derivative of n with respect to the magnitude of the magnetic fieid.
What is the value of the susceptibility in the classical limit, li --+- O?

PROBLEM 17 In this problem we consider the thermodynamic potential of
a two-dimensional gas in a magnetic fieId, in the limit that the temperature is
much less than the Fermi temperature f F / k.

1. Use (12.58) to prove that n oscillates as a function of 1/B and determine
the period.

2. Find how the amplitude of the magnetisation oscilIations depends on
the ratio liwc/ kT.

Help: In carrying out a sum of the type En=O,1,2 ... F(n) one may use the
Poisson summation formula

1 100 100E F(n) = 2F (O) + dxF(x) + 2Re L dxF(x)ei21rmz
n=O,1,2... o m=1,2... o

(12.59)
where Re denotes the real part. In calculating the last term (which contains
the oscillations) one uses partial integration together with the integral

We consider a two-dimensional electron gas described by thePROBLEM 18
Hamiltonian

where

H =.Ho+ H'

Ho =L fkct,qCk,q
k,q

(12.60)

(12.61)

(12.62)
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represents the kinetic energy while
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2A L.J -q-ck+q,O'Ck'_q,O',Ck',a'Ck,a.

q;iO,k,k' ,0',0"
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(12.63)

is the electron-electron interaction. The two-dimensional gas is enclosed in a
region of area A.

1) Determine the ground-state energy of the system when the interaction
between the electrons is ignored. Calculate the corresponding pressure p and
the compressibility -(åAjåp)jA.

2) Use first-order perturbation theory to calculate the ground-state energy
in the presence of the electron-electron interaction. Compare your result to
that obtained for the three-dimensional case in Chapter 3 of !ntroduction to
Many-particle Phy.sics.

3) Use the result obtained in 2) to calculate the compressibility of the
electron gas and discuss your result.

4) Compare your calculated compressibility to that measured experimen­
tally by Eisenstein et. al., Phys. Rev. Lett. 68,674 (1992).

PROBLEM 19 Consider a system given by the Hamiltonian

(12.64)

where Ea, E b and ~ are real constants. The field operators satisfy the Fermi
commutation rules

and
{b,b} ={bt,bt } = O; {b,bt } = 1,

while the a- and the b-operators anticommute with each other,

a) Write down the Heisenberg equations of motion for a and b.
b) Show that the equations of motion have solutions of the form

a = a(O)e- iEt / li , b = b(O)e- iEt / Ji

(12.6.5)

(12.66)

(12.67)

(12.68)

and determine E in terms of Ea, E b and ~.

c) Let (12.64) be the Harnil tonian of a single electron. Use the time­
independent Schrodinger equation HI1/;) = El1/;) to determine the energy eigen­
values (help: Write l1/;) as a linear combination of state vectors Ila, Ob) and
IDa, Ib) with the properties ataila, Ob) = Ila, Ob) and bt blOa, Ib) = IDa, Ib))'
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(12.69)

PROBLEM 20 In this problem we shaH determine the electrical and thermal
resistivity of Al with 1 ppm of Na impurities (in its normally conducting state),
using the results of the model calculations described in ·'Transport Phenomena'.

a) Determine the residual resistivity (in units of ohm cm).
b) Calculate the resistivity due to electron-phonon scattering at T = 10 K

(negleeting the contribution of impurity scattering) and compare your answer
to that obtained in a).

c) Calculate the thermal resistivity of Al (in units of mK/W) at T = 10 K
for each of the scattering mechanisms discussed in a) and b).

PROBLEM 21 The transport properties of layered cuprate materials such
as La2-xSrxCu04 have been investigated intensively, due to the occurrence
of high-temperature superconductivity (with a transition temperature of 35
K) when x is n,ear 0.15. These materials also exhibit a linear dependence of
theresistivity on temperature from the transition temperature up to 1000 K.
When x exceeds 0.2 one finds (see H. Taka~i et al., Phys. Rev. Lett. 69, 2975,
1992) a different power law, p = Po + TI. , which also extends up to about
1000 K.

The solution to the present homework problem will not explain these ob­
servations but will allow one to compare them to resultsobtained using coD­

ventional models of transport in two-dimensional systems. y/e shaH negleet
the periodic potential and assume that the charge carriers of mass m occupy
a 'Fermi disk' of radius kF. The phonons will be treated in a two-dimensional
Debye-model, with linear dispersion wq = cq.

a) Show that the in-plane resistivity Pab within the relaxation time approx­
imation is given by

h d
Pab = e2 kFi'

where d is the distance between two parallel neighboring planes, while i =VFT

is the mean free I?ath, with VF being the Fermi velocity. For the materials in
question d =6.4 A. What is the value of kFi, when Pab = lO-30 hm cm?

b) We shaH use a model electron-phonon matrix element given by

1
2 nWq

lu = A2N(O)A' (12.70)

where A is the area and 2N(0) the density of states (per unit area) at the
Fermi energy, corresponding to (2.6.21) in Transport Phenomena. Ifow does
the quantity corresponding to 0'2 F in (2.7.2) depend on frequency w at small
frequencies? Determine the energy- and temperature-dependence of the relax­
ation rate l/T and the electrical resistivity, at temperatures much less than
the Debye-temperature. How does the resistivity depend on T, when T is
comparable to or larger than the Debye-temperature?
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(12.71)

(12.72)

PROBLEM 22 We consider the specific heat of a two-dimensional crystal of
hexagonal symmetry and treat the phonons in the Debye-approximation. The
crystal consists of N identical atoms which form a triangular lattice in such
a way that each atom has 6 nearest neighbors. The distance between nearest
neighbors is denoted by a, and the transverse and longitudinal sound velocity
is called et and Cl, respectively.

a) Express the Debye wave vector qn in terms of a.
b) Determine the specific heat C as a function of temperature.
c) Write down approximate expressions for C at low and high temperatures.

Compare your result at high temperatures to the law of Dulong and Petit.

PROBLEM 23 Use the transformation to phonon coordinates given in (2.6.14­
15) of Transport Phenomena to show that the thermal average < (8Ri )2 > is
given by

h 1
< (8Ri )2 >= MN L -(21VO(wq ) + 1),

2 wqq

where NO is the Planck function (the sum over polarization directions is in­
cluded in the q-sum). Use this result to prove that one- and two-dimensional
crystals are unstable (help: consider the Iong wavelength limit q ---1- O).

PROBLEM 24 'The elastic (free) energy F of a two-dimensional cubic crystal
may be written in the general form

F =Fo+ ~Al(f;x + f;y) + A2 f xx f yy + A3(f;y + f;x)'

Here Al, A2, and A3 are three independent elastic constants, consistent with
cubic symmetry.

The components of the stress tensor (J'ik are obtained froln this by differ­
entiating,

The equation af rnotion is

BF
(J'ik = -B .

tik
(12.73)

(12.75)

B2Ui B(J'ik

P Bt 2 = BXk ' (12.74)

in the absence of volume forces. The deformation tensor tik is defined by

1 BUi BUk
tik = -2 (-B + -B ),

Xk Xi

where Ui with i = x, y are the two components of the displacement vector.
a) Show that the (J'xy component of the stress tensor is given by (J'xy =

2A3ixy and determine sinlilarly (J'xx and (J'yy'
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b) Find the condition that a plane-wave solution of the form

u =uoeiq.r-iwt (12.76)

satisfies the equation of motion (12.74). Determine the sound velocity as a
function of the angle (J defined by q = q(cos (J, sin (J).

c) Plot the sound velocity as a function of (J for Al = A2 = A3 = A. How
do YOll expect a corresponding plot to look for a two-dimensional crystal with
hexagonal symmetry?

PROBLEM 25 In this problem we consider the thermal conductivity of a two­
dimensional crystal within the relaxation-time approximation, at temperatures
much lower than the Debye temperature. The relaxation time T is assumed to
be a constant, independent of energy and temperature.

a) First we consider the situation where the phonon frequencies are pro­
portional to the wave number, with isotropie velocities Cl and Ct for the lon­
gitudinal and transverse modes, respectively. Find the thernlal conductivity
and compare its temperature dependence to the corresponding case in three
dimensions.

b) Indicate how the calculation of the thermal conductivity is changed, if
the velocities depend on the direction of propagation (compare Problem 24).

PROBLEM 26 In three dimensions isotopic impurity scattering gives rise to
an infinite thermal conductivity (cf. Transport Phenomena, Section 4.2.2), ifno
other scattering mechanisms are present. Is this also true in two dimensions?

PROBLEM 27 We consider a two-dimensional Fermi liquid of interacting
particles with mass m and number density n = N/A, A beihg the area with­
in which the particles are confined. For particles moving in two dimensions, we
may introduce Fermi-liquid parameters Fl by replacing the Legendre-polynomia
Pi by the functions cos Rø, where øis the angle between p and p'.

a) Express the compressibility in terms of Få and Fi. Find the hydrody­
namie sound veloeity Cl.

b) Write down the Boltzmann equation in analogy with Seetion 6.3.1 of
Transport Phenomena with a collision integral eorresponding to eq. (6.3.1).
Determine the veloeity of zero sound in the case where all other Landau pa­
rameters than Få are set equal to zero, while Få ~ 1. Compare your result to
the hydrodynamic sound veloeity.

c) Calculate how the sound veloeity depends on WT, where w is the frequen­
ey of the sound wave and T a suitably defined relaxation time. It is assumed
that Få ~ 1 and that Landau parameters eorresponding to R greater than
or equal to 3 may be negleeted. Find the relative change in sound velocity
and the damping eoefficient as a funetion of WT and the Landau parameters.
Diseuss the temperature dependence of the attenuation in the hydrodynamic
and in the col1isionless regime.
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PROBLEM 28 Consider a particle moving in one dimension with the Hamil-
tonian given by

(12.77)

where the operators at and a satsify the commutation rule [a, at] = 1, while
the frequencies w and Wo are positive constants.

a) Write down the Heisenberg equations of motion for at and a.
b) Solve the Heisenberg equations of motion by introducing the operator

a = a + wo/w and its hermitian conjugate.
c) Express H in terms of Q' and Q' t and determine its eigenvalues.
d) What might be the physical origin of the second term in the Hamiltonian

(12.77)? Compare your result to that obtained by solving the appropriate
Schrodinger equation.

PROBLEM 29 In this problem we shaH discuss the tight-binding Hamilt0­
nian of an electron which moves in a periodic lattice. For simplicity we start
out by treating the motion in one dimension, and subsequently generalize the
discussion to two and three dimensions.

Consider the one-dimensional nearest-neighbor hopping Hamiltonian

H = -t E CJCj+6

jo

(12.78)

where the index j labels the N aton1ic si tes of the one-dimensional chain (j =
1,2· . " N), while the suni over {) = ±l ensures that only nearest-neighbor sites,
separated by the lattice constant a, are coupled. The constant t is assumed to
be positive. The operators et and c obey the anticommutation rules

(12.79)

a) Use the transformation

(12.80)

to diagonalize the Hamiltonian and plot the eigenvalues tk as a function of k.
b) Generalize your treatment to a two-dimensional square lattice and draw

contours of constant energy in the kr - ky plane. How does the corresponding
dispersion relation look in the three-dimensional case for a simple cubic lattice?

PROBLEM 30 It is often convenient to transform particle operators into spin
operators or vice versa. As an example we consider a lattice gas with a fixed
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(12.81)

chemical potential p. The operator k =iI - pH is given by

1
K = '2 U L njnj+6 - Jl Lnj

j~ j

where U is a constant, while nj = eJej is the number operator belonging to
site j. The sum over 6 denotes as usual a sum over nearest-neighbor sites.

a) Use the transformation to spin-1/2 operators given by nj = SJ +
1/2, ej = Sj, ej = sj to prove that the lattice gas model is equivalent
to an Ising model in an external magnetic fieid.

b) Show by adding the hopping term from Problem 29 that the resulting
quantum lattice-gas Hamiltonian is equivalent to a Heisenberg model with
anisotropic interactions in an external magnetic fieid.

PROBLEM 31 Use (3.13) to determine the zero-temperature pressure p =
-aE/aV and compressibility K. = -(aV/åp)/V ofthe electron gas. Plot your
results as functions of the parameter rs , and compare them to the case when
the electron-electron interaction is negleeted. Indicate how your results are
modified, when the term given by (3.29) is added to (3.13).

PROBLEM 32 In this problem we consider a spin-polarized electron gas,
in which the number of spin-up electrons Nt differs from the number Nt of
spin-down electrons.

a) First we consider the non-interacting case, in which the electron-electron
interaction is negleeted entirely. Determine the ground-state energy per par­
ticle, E/N, as a function of the dimensionless ratio a = (Nt - Nt)/N, where
N =Nt + Nt, and find the minimum value of E/N as a function of a.

b) Next we include the electron-electron interaction to first order in per­
turbation theory. Find how (3.13) is modified in the spin-polarized case by
determining the energy per particle as a function of a and r s •

c) Determine the value of rs for which the ferromagnetic state (a = 1)
has lower energy than the non-magnetic state (a = O). Sketch the energy per
particle as a function of a for this particular value of r s.

PROBLEM 33 The elementary excitations of an antiferromagnet are spin
waves. Here we shaH calculate the spin wave dispersion relation for a linear
chain, using the method described in Section 5.5.2.

a) Determine the dispersion relation for the linear chain with nearest­
neighbor coupling and calculate the spin-wave velocity.

c) Generalize your results to a two-dimensional square lattice and draw
contours of constant energy.

PROBLEM 34 We consider a one-dimensional chain of atoms, which are
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coupled by nearest neighbor antiferromagnetic interactions, corresponding to
the Hamiltonian (5.74) with J < O. The spin-operators associated with the
sites of each of the two sublattices a and c are denoted by S~a) and S~). The
z-component of the total sublattice magnetization is given by

and

s}a) = Ns -Ea~an
n

s(c) = -Ns+~ctcz ~ n n,
n

(12.82)

(12.83)

where the a- and c-operators refer to sites in each sublattice. Note that there
are N atoms on sublattice a and N atoms on sublattice 'c.

a) Use the transformation (5.86) to prove that S}a) and S~c) are given by

and

s(a)=Ns-~btbz ~ q q
q

S}c) = -Ns + E d~dq.
q

(12.84)

(12.85)

b) Find, using the Bogoliubov transformation employed in Problem 33,

b = UG' - v{3t, d = u{3 - vat, (12.86)

an expression for the zero-temperature sublattice magnetization in terms of the
coefficients vq • Show that the ground state of the antiferromagnet cloes not
correspond to the sublattice magnetization being N s and -NB, respectively.

c) Demonstrate that the sublattice magnetization diverges in one dimen­
sion. Does the divergence persist in two and three dimensions?

PROBLEM 35 Use the results obtained in Section 5.3 to calculate the ex­
pectation value of the particle number operator aLak in the ground state of
the system of interacting bosons. Plot your result as a function of k.

PROBLEM 36 The elementary excitations of a dilute, three-dimensional
Bose gas are phonons. Determine the specific heat at low temperatures and
compare with the result obtained at low temperatures in the ideal bose gas.

PROBLEM 37 The spin waves for aHeisenberg ferromagnet are gapless, in
the sense that their energy fiw q vanishes (as q2) in the limit when q tends to
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zero. Show that the spin waves develop a gap, when the interactions become
anisotropic, corresponding to the Hamiltonian

1
H = - 2: JUSn,zSn+l,Z + 2h (S;t" S;+l + S; S;t"+l)'

n

(12.87)

where JIt > J1., and find the magnitude of the gap. What happens in the
presence of an external magnetic fieId?

PROBLEM 38 As an example of the use of diagrammatic methods we in­
vestigate in this and several subsequent problems a neutral fermion system
described by the Hamiltonian

where

H=Ho+H' ,

Ho = E fkCL,oCk,O'

k,O'

(12.88)

(12.89)

(12.90)

represents the kinetic energy, with (le = "?k-2 /2m, while the interaction be­
tween the fermions is given by the operator

'_ U '" t tH - 2V L....t ck+q,O'ck'_q,O',Ck',o'Ck,o.
q,k,k' ,0',0"

As an example we might think of the quantum liquid 3He, but one should note
the basic difference fron1 real 3He: the Fourier-transform of the interaction is
taken to be a positive constant, U, corresponding to arepulsive delta-function
interaction in real space,

V(r - r') = U6(r - r'). (12.91)

The number of fermions is denoted by N. In evaluating physical quantities
we shaH identify m with the mass of a 3He-atom, while the density n = NIV
is given by the molar volume being 36.8 cm3 (corresponding to liquid 3He
at saturated vapor pressure). Unless otherwise indicated, U/k is given the
(somewhat arbitrary) value of 300 KA3, k beiIl:g the Boltzmann constant.

a) Determine the ground-state energy per particle in the absence of the
interaction. Evaluate the corresponding Fermi energy and Fermi temperature.

b) Show that
a = N(O)U' (12.92)

is a dimensionless parameter and express it in terms of the parameters given
above. Here N(O) is the density of states at the Fermi energy in the non­
interacting system (per spin and per unit volume). Find the value of Q' in
terms of the parameters given above.
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c) Calculate the magnitude ofthe compressibility I\, = -(åVjåp)jV for the
non-interacting system and determine the magnitude of the sound velocity 8

from the relation 8 2 = ljmnl\,.

PROBLEM 39 We shaH now use the model described in Problem 38 to
calculate some physical properties within the Hartree-Fock approximation.

a) Determine the single-particle Green function and indicate the position
of its poles in the complex-frequency plane. Draw the relevant diagrams that
are being summed.

b) Calculate the single particle energies and determine the shift in the
chemical potential (at T = O K) compared to the noninteracting system. Eva­
luate the magnitude of the shift for the parameters given above. How does the
chemical potential depend on N?

c) Use the result of question b) to determine the total energy of the system
(hint: use the thermodynamic definition of the chemical potential).

d) Calculate the inverse compressibility to tirst order in 0'. Determine the
magnitude of the sound velocity and compare it to the answer obtained in
Problem 38 above.

PROBLEM 40 Use the first-order perturbation theory described in Chapter
3 to calculate the ground state energy of the system described in Problem 38,
to first order in 0'. Compare your result to the answer obtained in Problem 39
c).

PROBLEM 41 We shaH later make use of the socalled density-fluctuation
propagator for spin-lj2 fermions. It is a special case of a two-particle Green
function. The density operator in the Heisenberg picture is

p(x, t) =L 1f~ (x, t)1fq(X, t), (12.93)

where the field operators 1f and 1ft are given by (6.5) and (6.6). In the folIow­
ing we consider only spatiaIly homogeneous systems, where the ground-state
expectation value < p(x) > ofthe density is a constant, n, equal to the number
of particles per unit volume,

< p(x) >= n.

The density fluctuation operator p is defined as

p(x, t) = p(x, t) - n.

(12.94)

(12.95)

The density fluctuation propagator D(x, t; x', t') is a time-ordered correlation
function, which is defined in analogy with the single-particle Green function
(6.1),

D(x,t;x',t') = -i < T{p(x,t)p(x', t')} > (12.96)
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in terms of a time-ordered produet of density-fluctuation operators in the
Heisenberg pieture.

a) Use (6.62) to prove that the density fiuctuation propagator D(O) of the
non-interacting system is given by

n(O)(x t· x' t') - -2iC(O)(xt· x' tl)C(O)(x' t'· x t)" ,- " , , , , . (12.97)

b) In a translationally invariant system, the density fiuctuation propagator
only depends on the differences x - x' and t - t'. The Fourier-transform is

D(q,w) = Jd(x - x/)d(t - t')e-iqo(x-x')eiw(t-t') D(x - x', t - t'). (12.98)

Show that the Fourier-transform D(O)(q, w) is given in terms of the Fourier­
transform of the free-particle Green functions by

(12.99)

Use (6.38) to carry out the integration over the internal frequency variable ko
by means of the residue theorem.

We shall later on carry out the integration over the internal momentum
variable k and relate the resulting function of q and w to the wavevector- and
frequency-dependent dieleetric function of the electron gas.

PROBLEM 42 Identify all second order diagrams in the expansion of the
single-particle Green function, including linked and unlinked diagrams as well
as those of the denominator given by (6.89). Verify the Feynman rules up to
and including second order and demonstrate explicitly the cancellation of the
unlinked diagrams in the numerator against the corresponding terms in the
denominator.

PROBLEM 43 Verify the expression (8.29) for the imaginary part of the
function F introduced in (8.27). Plot the result as a function of Xo for fixed
values of x, for instance x =0.2, x = 1 and x =2.

PROBLEM 44 We consider a noninteracting system of fermions described
by the Hamiltonian H o given in Problem 38. Use the expressions (7.24) for
the particle number N and (7.31) for the internal energy U to determine U at
temperatures that are high compared to the Fermi temperature. Calculate the
lowest order correction to the classical internal energy and the specific heat
per particle and determine the relative size of the correction terms at T = 10
K.
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PROBLEM 45 Repeat Problem 44 with the interaction term (A.89) included.
The Green function appearing in Eq. (7.24) for the particle number N and in
Eq. (7.31) for the internal energy il is taken to be the one obtained in the
Hartree-Fock approximation. Determine the leading correction to the classical
internal energy coming from the interaction and evaluate its relative size at
T = 10 K for the parameters given in Problem 38.

PROBLEM 46 Use the expression (8.37), after analytic continuation, for
calculating the dispersion of longitudinal plasma waves in the classical limit
where the temperature is much larger than the Fermi temperature. Compare
your result to (8.33), which is valid at temperatures much less than the Fermi
temperature. Indicate how the (Landau) damping of the plasma wave may be
determined.

PROBLEM 47 In the present problem we consider a classical plasma in the
ultra-relativistic limit, where kT ~ mc2

. Use the result (8.37) for determining
the dispersion of longitudinal plasma waves in this limit and compare your
result to (8.33) (it is permissibIe to approximate the energy dispersion relation
by f. ~ ep, where p is the momentum).

PROBLEM 48 Use (8.45) for determining n(O)( q, O) as a function of the
variable x = qj2kF in the cases where the dimension d is 1,2 and 3. Compare
your results to the sketch given in Fig. 8.2. For the case d = 3 plot the
derivative dII(O)(q, O)/dq as a function of q in the vicinity of q = 2kF . Compare
the resulting static dielectric function to that obtained within the Thomas­
Fermi approximation.

PROBLEM 49 We shaH determine the temperature dependence of n(O) in a
tight-binding modelof a one-dimensional crystal. The length of the crystal is
L = N a, where N is the number of atoms. The energy dispersion relation is

fk = -Eo cos ka. (12.100)

We assume that the band is half-filled at T = O K, implying that kp = 7r j2a.
Find II(O)(2kF) as a function of Eo/ kT for large values of this parameter

(hint: introduce the density of states and utilize that

f p+nq/2 = -fp- nq /2

and

f~+nq/2 = 1 - f~-nq/2
for q = 2kp . One needs the integral

100 dxlnx-- = -ln(4e1' /7r),
o cosh 2

X

(12.101)

(12.102)

(12.103)
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where l = 0.577· · .). There is a close relation between this logarithmic sin­
gularity and the so-called Peierls instability in one-dimensional conductors, as
we shaH see in Problem 51.

PROBLEM 50 We consider a (degenerate) three-dimensional gas of free elec­
trons, coupled to Debye-phonons by the interaction (9.12) with g given by the
model form (9.23), for all q less than the Debye cut-off. Use the polarization
bubble n(O) and the diagrammatie approximation

1f l~}

~":~+~~
~

to determine (at zero temperature) the change in the frequency of the phonons
as well as their damping, due to the coupling to the electrons. For numerical
values, use A = 0.2 and an unperturbed sound velocity c equal to 1/100 times
the Fermi velocity.

a) Find the relative magnitude ~c/c of the change ~c in sound velocity.
b) Find the magnitudeofthe relative shift ~Wq/Wq ofthe phonon frequency

at q = 2kF (we assume that 2kF is less than the Debye cut-off). What is the
value of the derivative of the relative shift with respect to q at q = 2kF?

c) Calculate the magnitude of the ratio rq/wq, where rq is the phonon
width (inverse lifetime). Compare your result. to (1.14.13) and (2.11.30) in
Transport Phenomena.

Help: For the calculation of the shift in phonon frequency one may use the
static limit of n(O) (why?). The damping is determined by the imaginary part
of rr(O).

PROBLEM 51 When n(O) is used for calculating phonon frequencies in a
one-dimensional conductor, one finds that the phonon with wavevector 2kF
"softens" in the sense that its frequency decreases with decreasing temperature
and eventually goes to zero at a "transition temperature" Te. This Peierls
transition marks the transition from a conducting to an insulating state (note,
however, the general arguments against occurrence of phase transitions in one­
dimensional systems, cf. Landau and Lifshitz, Statisticai Physics, vol. I).

Use the method of Problem 50 to find the transition temperature Te as well
as the temperature dependence of the phonon frequency just above Te for the
system treated in Problem 49. The results should be given in terms of A and
the Fermi temperature TF = Eo/k.

PROBLEM 52 Determine Im~(k,ek) from (9.62) and compare with (2.7.1)
in Transport Phenomena. Consider the T = O limit as well as Im~(k,O) at
low and at high temperatures compared to the Debye temperature. Discuss
the relation of these results to the transport times that enter the electrical and
thermal conductivity.
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PROBLEM 53 The conduetion electrons in a spin-1j2 three-dimensional fer­
romagnet interact with the local spins Si, where i labels the position in the
lattice (assumed to be simple cubic). The interaction Hamiltonian is

Hel-spin =A E 6(r - ~)s . Si, (12.104)

where i is the conduction electron spin.
Introduce magnon propagators and write the interaction Hamiltonian in

terms of electron (and magnon) creation and annihilation operators. Discuss
differences and similarities between the electron-phonon and electron-magnon
many-body problenl.

PROBLEM 54 The phonon density-of-states in real materials is usually
rather different from the quadratic frequency dependence characteristic of the
Debye-model, except at low frequencies. In this problem we consider the op­
posite extreme, an Einstein model with a 2 F(w) given by

a 2F(w) =Cwo6(w -wo), (12.105)

where C is a dimensionless constant, which we take to be C = 0.25.
1) Determine the real and the imaginary part of the self-energy at T = O

K, as well as the spectral density A(k, w).
2) Determine the relaxation rate 1/r(~ ,T) as a function of ~ ={- Il and

T, in terms of the characteristic temperature To = Iiwo/k.

PROBLEM 55 In this problem we consider the interacting Fermi gas intro-
ducedin Problem 38 at zero temperature.

1) Determine the dependence af the relaxation rate (the inverse life- time)
on ~k = {k - J.1 for states near the Fermi surface, by considering the imaginary
part of the self-energy to second order in the parameter a (cf. Problem 38).

2) Calculate (or estimate) the magnitude of the relaxation rate for ~j J.l =
0.01.

Help: Since we only go to second order in a, the chemical potential Il
may be set equal to its value in the ground state of the noninteracting sys­
tem. The calculation of the lifetime may be carried out by use of either the
zero-temperature formalism or the Matsubara technique, with T ---? O at an
appropriate stage. The relevant diagrams for the single-particle Green func­
tion (from which the self-energy may be extracted) are drawn below. Consider
(a) tirst and convince yourself (without doing a specific calculation) that the
contribution from (b) is the same except for a numerical factor.
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(A.l)

(A.4)

(A.3)

Appendix A: Fourier-transforms
The Fourier-transform F(q) of a function F(r) is given by the relations

1 J - -F(r) =-- dqe,q-rF(q)
(21r)3

where

F(q) =Jdre-iq-rF(r). (A.2)

One often distinguishes a function and its Fourier-transform by their argument
only, thus writing F(q) instead of F(q).

We shaH need the Fourier-transform of a Coulomb-potential and its deriva­
tive, which enters the electron-phonon interaction. In order to include the
case of a screened Coulompotential we first study the Fourier-transform of the
function

1
V(r) = _e- k • r

r
where ljk 3 is the screening length. It is convenient to introduce a polar axis
along q. From symmetry considerations it is clear that V(q) can only depend
on the magnitude of q. Thus

V(q) = 21r11
d(cosO) fX) r2dre-iqrc088 !e-k•r

-1 Jo . r
21r100

- . L-:- dr(e,qr - e-Iqr)e-~·r

'/,q o

~1r ( __• _1_ + . 1 )
'/,q '/,q - k3 -'tq - k 3

41r
q2 + k;·

For k3 =O we get
- 41r
V(q) = 2". (A.5)

q

We also need the Fourier transform of the gradient of l/r. Since

! - J~eiq-r41r (A.6)
r - (21r)3 q2 '

we obtain, by letting the gradient "V = (8j8x, 8/8y, 8/8z) act on both sides
of (A.6), that

-~ -J~eiq-r41riq
r 3 - (21r)3 q2'

Thus the Fourier-transform of r j r 3 is -41riqjq2 .

(A.7)
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