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This text is intended for use in a graduate-level one-semester course on
many-particle physics. An effort has therefore been made to keep the number
of pages below 150. There exist several comprehensive texts on many-body
theory, starting with the classic treatise Methods of Quantum Field Theory in
Statistical Physics by A. A. Abrikosov, L. P. Gorkov and I. E. Dzyaloshinski.

The challenge of teaching many-body theory is to avoid spending too much
time on the formalism, but still provide a solid foundation which can be of
later use. The general understanding of the structure of the theory must be
combined with the insight obtained from calculating low-order diagrams. The
present text attempts to meet these rather different goals by severely limiting
the number of topics for which explicit calculations are carried out. Some of
the topics left out of the main text are introduced in the homework problems,
which are collected in the last chapter.

It is important that the student does not come away from an introductory
course on many-body theory with the belief of being equipped to tackle any
problem involving many particles. The Green function methods described in
the present text complement a host of other important methods, including
semiclassical transport theory, renormalization group analysis and bosoniza-
tion techniques. The aim of the present course is to give the student sufficient
understanding of the use of field-theoretical methods to be able to read the
literature and to evaluate simple diagrams. It is important that the student
learns to see the methods as alternatives to other methods. The derivation of
the Drude-formula for the frequency-dependent electrical conductivity (Chap-
ter 11) serves as an illustration. Here the use of elementary kinetic theory
yields the answer in a few lines, as shown in Chapter 1. The advantage of the
Green function method, on the other hand, is that it allows one to consider
more general situations such as those involving weak localization.

The many-body course was given as a sequel to a course on semiclassical
transport theory, based on Transport Phenomena by H. Smith and H. Hgjgaard
Jensen. The first half of the problems in Chapter 12 of the present text (Prob-
lems 1-27) were used in the course on transport theory. In order to complement
the lectures these homework problems deal exclusively with two-dimensional
systems. The remaining homework problems (Problems 28-55) refer to the
present text.

Orsted Laboratory, May 2, 1994
Henrik Smith
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Introduction 1

1 Introduction

A many-body problem, in the usual sense of the word, is a problem involving
many particles. Not 3 or 11, but N, where N — oo, while the volume V of the
system also tends to infinity in such a manner that the density N/V remains
finite. This is the thermodynamic limit, in which statistical mechanics applies.

Even though the motion of, say, the conduction electrons in 1 cm? of alu-
minum constitutes a many-body problem, it is possible for some purposes to
treat it as an effective one-body problem. One of the first applications of quan-
tum mechanics to metals was the free-electron model of Sommerfeld (1928).
This model was remarkably successful in explaining the thermodynamic and
transport properties of simple metals. The free-electron model reduced the
many-body problem involving approximately 1023 electrons, which repel each
other by Coulomb forces, to the motion of a single electron in a constant po-
tential. A deeper understanding of the reasons for this success - as well as the
limitations of the model - was obtained in the following decades by considering
the effects of the periodic potential, the repulsion between the electrons and
their interaction with the phonons.

In the following chapters we shall often use the electron gas to illustrate
the use of the methods of many-body physics. This is not only due to the
historical importance of the electron gas. It also reflects the fact that an
understanding of its properties is the starting point for the understanding of
the metals, semiconductors and superconductors that are being investigated
in today’s laboratories.

1.1 Specific heat and susceptibility

According to elementary statistical mechanics the heat capacity per unit vol-
ume {at constant volume) for a gas of non-interacting electrons is given at low
temperatures by

2
C= ?szg(ep), (1.1)

where k is the Boltzmann constant, and g(er) is the density of states per unit
volume at the Fermi energy. For a gas of free electrons the Fermi energy is
er = h%kE/2m, where kr = (372n)/3, with n = N/V being the electron
density and m the electron mass. The density of states at the Fermi energy is
proportional to the electron mass, since

g(e)de = 4—71&-47rk2dk (1.2)

together with € = h%k%/2m implies that

1 m
gle) = i 2me, (1.3)
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yielding
mkF
w2h?
Within the free-electron model, the electronic heat capacity (per unit vol-
ume) only depends on the number density n and the electron mass m apart
from the temperature. This is no longer true, when the existence of a peri-
odic potential and interaction effects are taken into account. For the purpose
of comparing with the free-electron model it is often convenient to write the
heat capacity in the form given by (1.1) and (1.4), but with m replaced by an
effective mass m* defined by

gler) = (1.4)

m*kp
g(fF) = ‘;:Z—h—i (15)

When the periodic potential of the lattice as well as the effects of interactions
are ignored, one thus has m* = m.

The free-electron model may also be used to calculate the paramagnetic
(spin) susceptibility x of a degenerate electron gas. The result is

X = B?pog(er), (1.6)

where # = eh/2m is the (spin) magnetic moment of the electron, while uo is
the permeability of empty space. Note that the susceptibility is an intensive
quantity, proportional to the density of states per unit volume, g(er).

In Section 1.3 below we shall compare the predictions of the free-electron
model with experiment. The discrepancies will provide a motivation for the
use of the methods of many-body physics. We stress, however, that the meth-
ods themselves are far more general. They may be applied to any interacting
system of fermions and/or bosons, to spin systems, to a single magnetic impu-
rity coupled to a non-interacting electron gas and to a host of other important
problems. The experiments chosen are thus only meant to provide examples
that illustrate the relation between quantities measured in the laboratory and
results obtained by the methods of many-body theory.

1.2 Conduction of electricity and heat

In 1900 the German physicist Paul Drude introduced a statistical model de-
scribing the conduction of electricity and heat in a metal. He assumed that the
electric current was carried by electrons in a steady state resulting from the
balance of the acceleration due to the electric field and the deceleration due
to collisions!. Drude used a statistical description, by taking the average time

1 Drude imagined that these collisions were caused by the electrons bumping into the ions
of the metal. Though the quantum theory of motion in a periodic potential showed this
picture to be wrong, the Drude model has remained useful to this day, because the physical
origin of the collisions played no explicit role in his theory.
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interval between two successive collisions to be a material-dependent constant
7, and assuming that the direction of the velocity of the electron immediately
after a collison is random with respect to the electric field. During the time
interval 7 the electron therefore obtains an increase v4 in velocity given by

Vg = —eE—T, (17)
m
the charge of the electron being —e. Because of the assumption that the
velocity of the electron is random immediately after a collision, the velocity
increase vy may be identified with the drift velocity of the entire system of
electrons. Now, since the current density j is given by the conduction electron
density n and the drift velocity v, according to

Jj = —nevy, (1.8)

we obtain the desired relation between the electric field and the current density
E

j = oE, (1.9)
where the conductivity o is given by
ne’r
°=— (1.10)
The resistivity p = o~} is thus
m

The Drude model would be of limited interest if it were only applied to
the d. c¢. conductivity of a metal, since 7 is an undetermined parameter. It
is, however, straightforward to extend the model to the case of a time-varying
electric field E = Eg exp(—iwt). In this case the drift velocity is obtained from

Vg= ——E - 4 (1.12)
m T
resulting in j = o(w)E, where
ne’r 1

o(w) =

The frequency dependence of the Drude conductivity (1.13) is compared with
experiment in Transport Phenomena, Section 2.2.

As a final example of the use of the Drude model we quote the result for
the thermal conductivity &, which is defined as the coefficient relating the
temperature gradient V7' to the heat current density juy,

Joh = —kVT. (1.14)

(1.13)

m 1—iwr
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According to the Drude model the thermal conductivity is
1.2
K= -§Cv T. (1.15)

Here v is an average particle velocity (not the drift velocity), while C is the heat
capacity per unit volume (at constant volume). In a classical gas, v is related
to the thermal velocity \/kT/m, but in a highly degenerate gas such as the
conduction electrons in a metal the average velocity v should be identified with
v, since only states with energies close to the Fermi energy yield a significant
contribution to the heat current.

1.2.1 Transport in a magnetic field

The classical Hall effect was first observed by E. H. Hall in 1880. When a
current-carrying wire is placed in a magnetic field perpendicular to the direc-
tion of the current, one observes a potential difference across the wire, perpen-
dicular to the direction of the current and to the magnetic field. This implies
that the electric field and the current density in the wire are not parallel to
each other. If the magnetic field is sufficiently strong, the electric field may be
nearly perpendicular to the direction of the current.

The explanation for this effect is the following. When a current is passed
through a wire in a magnetic field perpendicular to the direction of the current,
the magnetic field acts to deflect the electrons in a direction perpendicular
to itself and the velocity of the electrons. Since the drift velocity v4 points
along the direction of the wire, a component of the electric field must exist
perpendicular to the current direction. The perpendicular field component has
a magnitude which is just sufficient to ensure that the electrons move along
the direction of the wire. The perpendicular field component is named the Hall
field and denoted by Fy. Its magnitude is determined by the requirement that
the two forces perpendicular to the direction of the current, the Lorentz force
due to the magnetic field and the force due to the perpendicular component
of the electric field, cancel each other,

0 = —eEy + evyB. (1.16)

The Hall field is thus proportional to both the drift velocity and the magnetic
field. The current density j and the drift velocity v4 are connected by the
relation j = —nevy, where n is the number density of the conduction electrons.
This allows the Hall field to be written as

Ey = RyjB, (1.17)
where

Ry =—— (1.18)

ne
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is called the Hall constant. Within the simple treatment given here, the Hall
constant is seen to depend solely on the charge of the electrons and their
density.

If the magnetic field differs from zero, the conductivity thus becomes a
tensor, since the application of an electric field in a direction perpendicular to
the magnetic field gives rise to components of the current density both parallel
and perpendicular to the electric field.

1.3 Three experiments

Let us now consider the results of three different types of experiment involving
i) the specific heat, ii) the spin susceptibility and iii) the electrical resistivity
of metals such as Al, Na and Cu. These results will be used in subsequent
chapters for comparing theory with experiment.

1.3.1 Specific heat of aluminum

The low-temperature specific heat of metals is found experimentally to be lin-
early dependent on T, due to the contribution of the conduction electrons. In
addition, the lattice vibrations at low temperatures contribute a term propor-
tional to T3, and the measured specific heat of aluminum may therefore be
fitted by an expression of the form

C =+T + BT® (1.19)

at sufficiently low temperatures®. For aluminum one finds from such a fit that
the molar specific heat Cpol 18 Ymo1T, Where ymor = 3.0 - 10~% cal/(mol K?).

Let us now compare this experimental observation with the results of the
free-electron model. Since aluminum is trivalent, each atom in the metal con-
tributes three electrons to the conduction electron gas. As the molar mass is
Mmal = 26.982 g/mol and the mass density is p = 2.698 g/cma, the conduc-
tion electron density is n = 3Nap/Mpo = 1.8 - 102° m~3, which allows us to
determine kp from kp = (372n)!/3, resulting in

kp = 1.75 - 10%cm™". (1.20)

Note that values of kr for different metals are generally of this order of magni-
tude, roughly equal to the inverse of the distance between neighboring atoms
in the metal. In the alkali metals kr ranges from 1.12 - 108cm~? for Li to
0.65 - 108cm™! for Cs, reflecting the increase in ionic radius with increasing

2The temperature must be much less than the Debye temperature, which is a few hundred
K for AL. Due to the existence of low-lying transverse phonon modes, the (frequency) density
of phonon modes may deviate considerably from being proportional to w? even at fairly low
frequencies, thus further shrinking the temperature region in which a T3-term in the specific
heat may be observed.
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atomic number. Using ¥ = Ymo1p/Mmol We may now express the experimen-
tally measured value of ¥ in terms of an effective mass m* according to

2

nt ,m*kp

=5k = (1.21)
and determine m*. By inserting in (1.21) the experimentally measured value
of v together with the fundamental constants and kg from (1.20) one obtains
that m* is equal to 1.38 times the electron mass m.

The Sommerfeld theory explains why the heat capacity of the electrons is
reduced drastically compared to its classical value, which would be temperature
independent, equal to C = 3nk/2. The fact that the measured low-temperature
specific heat is linear in T" and that the calculated and observed values agree
within 50 per cent constitutes a definite success of the free-electron model.
From the point of view of many-body physics, the remaining discrepancy is
however highly significant. One might think that the difference between the-
ory and experiment is due to the fact that the electrons move in a periodic,
rather than a constant potential. This effect turns out to be of negligible im-
portance for aluminum though it plays a significant role in a number of other
elements, notably the transition metals. As we shall see in Chapter 9, the
interaction between the electrons and the phonons is responsible for the differ-
ence between the observed value of m* and the free electron mass m. This is
a real many-body effect. It implies that the electrons involved in a measure-
ment of specific heat carry a ‘cloud’ of phonons with them in their motion,
thereby obtaining a greater effective mass. Such a picture must, however, be
used with great care. If we measure instead the spin susceptibility of the elec-
trons, which in the free electron model is given by (1.6), we shall find that the
electron-phonon interaction has no effect on the result. The density of states
in (1.6) thus involves an effective mass which is different from the effective
mass m* appropriate to the specific heat. Likewise one may show that the
Drude formula (1.10) is unaffected by the electron-phonon interaction, while
the frequency-dependent generalization (1.13) is modified by it. These exam-
ples illustrate some of the subtleties involved in the description of many-body
effects in metals. It is not in general possible to express many-body effects in
terms of a single parameter m* /m characterizing different physical quantities.

1.3.2 Spin susceptibility of sodium

As our second example of a physical quantity which may be measured ex-
perimentally, we shall now consider the electron spin susceptibility. Since
the total magnetic moment of a metal in an external magnetic field contains
both diamagnetic and paramagnetic contributions, it is not a simple matter
to extract the paramagnetic part due to the spin of the conduction electron-
s. One method involves measuring a shift in the nuclear magnetic resonance
(NMR) arising from the splitting of the nuclear energy levels in a magnetic
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field. Since the conduction electrons are coupled via their magnetic dipole
moments to the nuclear magnetic moments, the nuclear magnetic resonance
is shifted in frequency as the conduction electrons are polarized by the exter-
nal field. This shift, known as the Knight shift, also depends on the value of
the conduction-electron wave function at the site of the nucleus. Since the
magnitude of the spin-polarization is proportional to the conduction-electron
spin susceptibility, Knight shift measurements may therefore be used to de-
duce the conduction-electron spin susceptibility, provided something is known
about the conduction-electron wave function at the site of the nucleus. A more
direct method involves measurement of susceptibility by conduction-electron
spin resonance. The method involves a measurement of the absolute intensity
of the conduction-electron spin resonance signal by comparing it to the nuclear
magnetic resonance signal in the same sample.

For sodium one finds experimentally that Y = 1.4 107% In order to
compare with the results of the free-electron model we evaluate (1.6) for the
appropriate density of conduction electrons, n = 2.65 - 1028 m~3, resulting in
kp = 0.92 - 10® cm™!, which yields x = 0.83 - 107°. Thus Xexp/Xtheory = 1.7.
The origin of the discrepancy between the values is not the electron-phonon
interaction, but rather the electron-electron interaction which we shall discuss
in Section 4.3.2.

1.3.3 Electrical resistivity of copper

Our final example involves the measurement of the electrical resistivity of cop-
per with a small amount of magnesium impurities. The temperature dependent
resistivity of a normal metal usually® decreases with decreasing temperature.
Provided the metal does not become a superconductor below a certain critical
temperature, the resistivity tends to a finite value, which depends on the num-
ber of impurities. This value is called the residual resistivity and denoted by po.
For Cu with 1 per cent of magnesium impurities one finds that py = 0.6 .10~
2 cm. For a sample of length L and cross-sectional area A the total resistance
R is given by

pL
R="—. .22
: (1.22)
We mention in passing that the generalization of (1.22) to two dimensions is
L
R=£2 (1.23)
Loy

for a rectangle with sidelengths L; and L,. The resistivity psyq must therefore
carry the same unit as that of R, namely ohm (in the SI-system). Note that
the combination h/e? of the fundamental constants A and e has the same
dimension as the two-dimensional resistivity.

3 An exception to this rule is found in metals containing magnetic impurities.
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Let us return to the three-dimensional case and again consider the value
of the residual resistivity. It is convenient first to convert the resistivity into a
characteristic rate 1/7 by using the Drude-formula (1.10). Since n = 8.47-10%8
m~3 for Cu, the rate obtained experimentally corresponding to the value po =
0.6-107* Q cm is
L ne 14100 (1.24)
- = ™ po = L. s . .

If this scattering rate is multiplied by the Planck constant we obtain the energy

g =0.9-10"2eV. (1.25)
Comparing this energy to the Fermi energy, which is 7 eV in Cu, we note that
h/T < ep. Since the mean free path is | = vpr ~ hr/ma and ep ~ h?/ma?,
with a > kg ! being the distance between neighboring atoms, this inequality is
equivalent to [ 3> a (or kgl > 1).

In Chapter 11 we shall use diagrammatic methods to calculate the resis-
tivity of a simple metal in the limit kpl > 1. This will allow us to compare
the calculated value of the residual resistivity for Cu with Mg impurities with
that measured experimentally, as well as with that obtained by solving the
Boltzmann equation.
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2 Second quantization

In many-body physics it is very useful to express the Hamiltonian in terms
of creation and annihilation operators for excitations, defined by some basis
of one-electron states. Since the one-electron states satisfy the Schrodinger
equation for the motion of a single particle, this procedure has traditionally
been named ‘second quantization’.

2.1 Creation and annihilation operators

For a single harmonic oscillator with force constant K and mass M it is well-
known from elementary quantum mechanics that the Hamiltonian may be writ-
ten in the form ]

H = ho(bTb + 3 w= VE/M, (2.1)

where the operators b! and b create and annihilate, respectively, a quantum of
energy hw. For the case of lattice vibrations described in the harmonic approx-
imation one may show, as demonstrated in Chapter 5, that the Hamiltonian
can be written as a sum of independent harmonic oscillators according to

1
H =Y hwga(blsbar + 5) (2.2)
qA

Here w,) is the frequency of the normal mode with wavevector q and polar-
ization index A. If the Hamiltonian function for the lattice contains terms of
higher order than two in the deviations of the atoms from their ideal lattice
positions, the Hamiltonian contains additional terms involving three or more
creation and annihilation operators.

Since we are mainly concerned with fermion operators in the following, we
shall describe in detail how the Hamiltonian of interacting Fermi particles may
be expressed in terms of creation and annthilation operators. As a basis for the
description of a system of identical fermions we shall use Slater determinants,
which are antisymmetrized products of single-particle states.

To gain familiarity with the field operators and their commutation pro-
perties we first consider the occupation of a single quantum state, in analogy
with the single harmonic oscillator. While in the case of the harmonic oscillator
the number of vibrational quanta could be anywhere in the range from zero
to infinity, the antisymmetry requirement restricts the occupation of a given
quantum state to be one or zero.

Let us denote by |0) the vacuum state in which no particle occupies the
quantum state in question, and by |1} the occupied state. The fermion creation
operator ¢! is then introduced by the definition

oy = 1); cf1y=0. (2.3)
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Since ¢! is seen to be given by

cf:((l’ 8) (2.4)

in the basis |0}, |1), we deduce that
01
c: < 0 0 ) (2.5)

cl0) =0; |1} =]0). (2.6)

By combining (2.3) and (2.6) we obtain the commutation rules

and hence

et =cc=0; cletect =1 (2.7

for the operators ¢! and c.

The next step is to examine how operators belonging to different single-
particle states commute. The simplest case is that of two particles. Consider
a state obtained by adding particles in the two single-particle states and ac-
cording to the rule of correspondence

clel]o) & %(d’s(xl)m(wz) — ¢r(z1)9i(22)) (2.8)

where z;(z2) denote the coordinates of particle 1(2). When the single-particle
states are filled in reverse order, corresponding to chIlO), we must obtain the
same state. Since
1
cpel|0) « ﬁ(m(m)dn(rz) — ¢i(z1)Pe(22)) (2.9)

the operators ¢} and ¢l must anticommute:
{cdel} =clel +clel = 0. (2.10)

It is similarly seen that ¢; and c¢; satisfy the same relations as (2.10). The ar-
gument may readily be extended to an arbitrary number of particles. Together
with (2.7) these relations lead to the Fermi commutation rules

{eiyer} = {el,el} =0; {eiyel} = 6, (2.11)

with ¢ labelling a set of single-particle states.
Having introduced the creation and annihilation operators for fermions and
noted the difference between their commutation rules (2.11) and those of boson
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operators, we next show how one- and two-body operators may be expressed
in terms of ¢ and ¢! operators.

Since a one-body operator is a sum of operators, each acting on functions
of the coordinates of a single particle, it must have an expansion of the form

A= ZA(ij)c}cj. (2.12)

Note that the validity of this equation does not depend on the state of the
system being a Slater determinant. Since an arbitrary state may be expanded
in terms of the complete set of Slater determinants, (2.12) holds generally, as
an operator identity. The simplest way to determine the coefficients A(7j) of
the expansion (2.12) is to form matrix elements of A between single-particle

states c] [0) = ¢; and cL|0) = ¢;. Then

Aif) = (i]Alj) = / 426} (2) Ad; (2), (2.13)

where for simplicity we have suppressed the spin degrees of freedom. If spin
is taken into account explicitly, the wave functions become spinors, and the
integration over x should be supplemented by a summation over spin variables.
The one-body operator A consequently has the form

A= (ilAljele;. (2.14)
ij

A two-body operator B may be treated in an analogous fashion. Since
a two-body operator is a sum of operators, each acting on functions of the
coordinates of two particles, it may be expanded according to

B= ) B(ijklclclecs. (2.15)
ijkl(i>],k>1)

In writing (2.15) we have adopted a definite ordering of the single-particle
states, written symbolically as 7 > j. The reason is that when we take matrix
elements of (2.15) between states

|ij) = clcl|0) (2.16)

and
k1) = cLel|o) (2.17)

we have adopted a definite order in which these states are filled, corresponding
to i > j and k& > 1. We conclude that

B(ijkl) = (ij| Blkl), (2.18)
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in analogy with (2.13). Note that the matrix (2.18) is antisymmetric with
respect to interchange of i and j, as well as k and I. It is often convenient
to abandon the restriction i > j,k > [ and to introduce the non-symmetrized
matrix elements (ij|B|kl), s given by

(i71BlkD)ns. = / / dz1dz267 (21)8] (22) Bée (1)1 (2) (2.19)
Thus we have
1 .. 1 ..
B = 1 Z’;(zﬂB[kl)cIc}clck =3 Zk:’(zﬂBlkl)n,s,cIc}czck. (2.20)
i 3

2.2 Hamiltonians

We now introduce the three Hamiltonians which we shall use in our effort to
explain each of the three experiments discussed in Section 1.3 of the previous
chapter. The three Hamiltonians involve electrons interacting with themselves
(Section 2.2.1), electrons interacting with phonons (Section 2.2.2), and elec-
trons interacting with impurities (Section 2.2.3).

2.2.1 Electron-electron interaction

The Hamiltonian of a homogeneous electron gas is

H=Hy+H' (2.21)
where
Ho=Y excl o (2.22)
k,0

represents the kinetic energy, while the interaction between the electrons is
described by

1 47el

4 0

H =55 Z 2 c;f(-{'-q,ac;{’—q,o"ck',d'ck,o7 (2.23)
q#0,k.k’,0,0’ 1

since the matrix-element (k +q k' — qje2/r[k k') is equal to 4me2/q?V, as
shown in App. Al. The restriction on the q sum is due to the fact that the
electrons are immersed in a positive background of charge due to the lattice

I'We use the form e%/r with eg = ¢2 [4meg, appropriate to the SI system of units, for
the Coulomb potential describing the interaction between two electrons separated by the
distance r. The transition to the cgs system is then easily achieved by replacing everywhere
eg by 2. Note that most of the literature on many-body physics still uses the cgs system of

units.
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ions. This positive charge is assumed to be spread uniformly throughout the
volume V under consideration. The q = 0 term left out in (2.23) precisely
cancels the contribution from the interaction between the ions of the positive
background and the interaction between the electrons and the positive back-
ground. This may be seen by considering the q = 0 term left out of (2.23),

which is proportional to the operator O given by
O = Z cl,oclfc',a’ck',a’ck,m (224)
k. k', 0,0’

By using the fermion commutation relations
{Ck'a, C;r('yal} = 6k,k'5o,a’ (225)

and
{exos k0 } =0, (2.26)

the operator O is seen to be given by the operator N for the total number of
particles,

N = Z clT(yacklg (2.27)
k,o
according to
O=N?-N. (2.28)

Since we are working with states corresponding to a definite number of par-
ticles, N, we may therefore replace N and O by their eigenvalues N and
N(N — 1) ~ N2, respectively. It follows that the q = 0 term represents the
energy Eel_e of a uniform charge distribution of density ng = N/V due to the
mutual repulsion of the negative charges, since E¢_o may be written as?

2
Eelce = /dr/dr'ﬁﬁﬂng (2.29)

which apart from the constant factor n2 equals the q = 0 Fourier-component of
the electron-electron interaction. This electrostatic energy of the uniform elec-
tron charge distribution is, however, precisely cancelled by the sum of E¢_jon,
the energy due the interaction between the uniform electron charge density
with the positive backkground, and E\o,_ion, the energy due the interaction of
the positive background with itself, as may be seen explicitly by writing out
their contribution in the manner of (2.29). This results in Eign_ion = Fei—el =
- el—ion/2) leading to Eion—ion + Fel—el + Fel—ion = 0.

2Stricly speaking the energy is infinite, corresponding to the divergence in Vig) =
47reg /9%V as ¢ tends to zero. The divergence may be handled by introducing a finite range
of the Coulomb interaction by multiplying it by exp —|r — r’|/a and letting a go to infinity
at the end. A detailed discussion of this procedure may be found in A. L. Fetter and J. D.
Walecka ‘Quantum Theory of Many-Particle Systems’, McGrawHill 1971, p. 21.



14 Introduction to Many-particle Physics

2.2.2 Electron-phonon interaction

The Hamiltonian describing electrons interacting with phonons is

Hapn= Y gk, qa)c cxo(baa +blq0) (2.30)

kk‘qoo’a

It will be derived in Chapter 9 with a simple model-form for the coupling
function g(k, k’, q,«). In a real metal the coupling function ¢ depends on the
two separate wave vectors (Bloch vectors) k and k’. In Chapter 9 we shall
discuss the simpler case of a gas of free electrons described by the Hamiltonian
(2.22) coupled to the phonons via the interaction (2.30). In this case g only
depends on the wave-vector difference q = k’ — k.

Note that the form of (2.30) is similar to that of a one-body operator,
cf. (2.14), as far as the electrons are concerned, but unlike potential scattering
associates the transition between two different electron states with the emission
and absorption of a phonon. In a real metal the phonons interact not only with
the electrons but also with themselves due to the presence of anharmonic terms
(of the form bbb and b1b1h, etc.) in the lattice Hamiltonian. Also the phonons
may interact with impurities and other defects. If these effects are important,
one has to add such terms explicitly to the Hamiltonian.

2.2.3 Electron-impurity interaction

The Hamitonian for a single electron interacting with impurities which occupy
fixed positions in a lattice is

H——p—2+ZV(r-R~) (2.31)
T 9m _ e )

Here the sum extends over the position vectors R; of the impurities.
The Hamiltonian for an electron gas which interacts with fixed impurities
may be written in the second-quantized form

H =Hy+ H; (232)
where Hy is given by (2.22), while

Hi=) pimp(@)V(-a)r(a). (2.33)
q

Here p(q) is the Fourier component of the density operator, given by

pl@) =) el extqo (2.34)
k,o
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while

Pimp(q) = Zeiq‘R', (2.35)

and V(q) is the Fourier-transform of V(r) divided by the volume. When this
Hamiltonian is used in Chapter 11 to evaluate the d. c. resistivity of a metal, we
shall also need to average over the positions of the impurities. This allows us
to relate the phenomenological Drude relaxation time 7 introduced in Section
1.2 to the number density of impurities and the matrix-element V' (q) of the
impurity potential, as well as the number density of the electrons and the
electron mass. We shall evaluate the resistivity for a simple model-potential

and compare the outcome with the value of 7 obtained experimentally, cf.
(1.24).

2.3 Pictures

Let us consider a general physical system described by the time-independent
Hamiltonian H. The Schrodinger equation has the form

L 0¥
ik ot

where U denotes the Schrodinger wave function. In the Schrodinger picture
operators are independent of time, while the state vectors develop in time ac-
cording to (2.36). It is sometimes convenient to work in an alternative picture,
which is equivalent to the Schrodinger picture. In this Heisenberg picture the
state vectors are independent of time, while the operators develop in time. It
is also useful to employ an interaction picture, which in a certain sense is in-
termediate between the Heisenberg and Schrodinger pictures. Below we shall
exhibit the unitary transformations that connect these different pictures and
introduce the time-development operator in the interaction picture, U/, which
will be used extensively in the following.

= Hs, (2.36)

2.3.1 The Heisenberg picture

The transition to the Heisenberg picture is accomplished by the unitary trans-
formation

Uy = Hhy (2.37)
while the operator Ag in the Schrédinger picture becomes
Ap = HYR fgemtHUN (2.38)

This transformation of the operator ensures that any matrix element of an op-
erator Ag in the Schrodinger picture equals the corresponding matrix element
in the Heisenberg picture, since

< W, AsWs >=< Wy TP Age  HUM Y (2.39)
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Evidently Ay satisfies the equation of motion

d
in% = [As, H], (2.40)

provided As has no explicit dependence on time, as may be seen by differen-
tiating Ay given by (2.38) with respect to time.

2.3.2 The interaction picture

One often deals with a time-independent Hamiltonian H, which may be sep-
arated in a part Ho with known eigenvalues and eigenvectors, and a part H,
{which does not commute with Hp) with unknown eigenvalues and eigenvec-
tors. Typically, Hy is the energy operator for independent particles, while H;
describes the interaction. In the examples studied in the following, Hy de-
scribes independent electrons, while H; may represent the mutual interaction
between the electrons or the interaction between electrons and phonons. In
order to do infinite-order perturbation theory it is convenient to introduce a
‘mixed’ picture, the interaction picture, in which state vectors develop accord-
ing to

Uy = eHot/hy g, (2.41)

In the absence of any interaction, corresponding to H; = 0, the interaction
picture becomes identical to the Heisenberg picture, implying that the states
are time-independent. In the presence of the interaction, described by the
Hamiltonian H,, the states develop in time in a manner determined by the
interaction.

By taking the time derivative of the state ¥; and using the Schrédinger
equation (2.36) one sees that

ih% = eiHot/M(_f 4 H)emiHot/hy, (2.42)
or 8\1’
ih—L = Hy(t)¥,, (2.43)
ot
where ) )
Hy(t) = etHot/h [ g~ iHot/h (2.44)

Since an arbitrary matrix element in the Schrodinger picture may be written
as
< W, AsUs >=< U, e Hot/P pge=iHot/Ay > (2.45)

the operator Ay in the interaction picture is given by

Ap = etHot/h ggeiHlot/h, (2.46)
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The development in time of the state vectors in the interaction picture is
described by the time-development operator U(t, o), which is defined by
Ur(t) = U(t, to)¥r(to). (2.47)
Clearly U satisfies the condition
U(to,to) =1. (2.48)
By combining (2.37) and (2.41) one sees that
U(t) — eiHot/ﬁe—th/hetho/ﬁe—iHoto/h. (249)
It follows from (2.49) that U is unitary, U'(t,t5) = U~1(¢,10), and that

Ulto,t) = U™Y(t, to) = U'(t,to). Furthermore, one sees from the combina-
tion of (2.43) with (2.47) that U(t, ;) satisfies the differential equation

U
ih—— = Hy(1)U. (2.50)

For convenience we now set tg = 0. With the boundary condition U(0,0) = 1,
the integrated form of the differential equation (2.50) becomes

Ut,0)=1+ lh/t dtH,(t"U(t', 0) (2.51)
 Jy

The integral equation (2.51) may be iterated. Since H;(t'} and H;(t") do
not necessarily commute when t’ differs from ¢” it i1s important to maintain
the proper ordering of the operators,

U{t,0) _1+—/dtHlt)+ /dtH1 /dt”H Y+ (2.52)

This may be achieved by introducing the time-ordering operator T, which in
the present context is defined by

T{H@"YHL\ (") HL(t") -} = C{H (') H1 (¢")H1 (") - -}, (2.53)

where C is an operator which orders the operators Hy(t')Hi(t")H . (t"")---
chronologically with earlier times to the right. As an example we have

T{H:({")H:(t")} = 0@’ = t"YH (¢ YH . (t") + O@" — t"YH:({"YH,(t"), (2.54)
where ©(z) is the Heaviside step-function, defined by

O(z) = 1forz > 0, ©(z) = 0forz < 0, O(z) = %fora: =0. (2.55)
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With the use of (2.54) we see that

t t
/ dt’ / dt"H,(t"YH1(t") t”Hl(t YH1 (")
0 0

dt' H(t")H, (")

\.\.
\\.

N N = B e

/ / dt" Hy(¢) Hy(£")O(t' — 1")
+ / dt’ / dt"H,(t"YH,(¢)Yo(t" —t')
- / dt’ / dT{H, () H:(¢")},  (2.56)

where the first equality is obtained by splitting the left hand side into two
identical terms and interchanging the names of the integration variables in the
second term.

By generalizing this procedure to all orders one finds the following expan-
sion for U(t,0)

U(t,()) = i ( h)" / dtl/ dty-- / dtnT{Hl(tl)Hl(tz) Hl(tn)}

(2.57)
which may equivalently be written as

U(t,0) = T{expl / dt' By (@)} (2.58)

The result (2.58) will be used in Chapter 6 for the purpose of expanding
the time-ordered Green function in an infinite-order perturbation series. The
individual terms in the series are associated with Feynman diagrams, which
help visualizing the structure of the expansion and suggest how one may sum
certain classes of diagrams (containing an infinite number of terms). The
following chapters contain examples of the application of this technique and
the specific evaluation of simple, but important diagrams.
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3 Perturbation theory and the electron gas

The electron gas is a very important many-body system, which forms the
starting point for the discussion of the properties of metals. The conduction
electrons in a metal are immersed in the medium constituted by the positively
charged ions. In this chapter we consider the homogeneous electron gas and
treat the ions as a uniform, immobile background of positive charge, which
compensates the total charge of the conduction electrons. Such a model is
often referred to as jellium.

In the following we investigate the effect of treating the interaction between
the electrons as a perturbation. As we shall see, the density of the electron
gas must be high in order that the perturbative treatment of the interaction is
valid. This may seem surprising at first sight. From classical gases we are used
to think of ideal gases as being very dilute. The explanation of this paradox
is the following: Although the contribution of the Coulomb repulsion to the
energy of the electron gas increases for increasing density, the kinetic energy
also increases, in fact more rapidly with the density. Measured relative to the
kinetic energy the importance of the Coulomb repulsion therefore becomes less,
when the density of the electron gas is increased.

While the first-order correction to the unperturbed ground-state energy
is finite and small in the high-density limit, we shall discover an unpleasant
surprise when going to second order: the second-order correction to the ground-
state energy is infinite, thus signalling the break-down of ordinary perturbation
theory. How this difficulty may be overcome is described in Chapters 6 and 8.

Before proceeding to do perturbation theory, we recall (Section 2.2.1) that
the Hamiltonian of a homogeneous electron gas is

H=Hy+ H' (3.1)
where
Hy = kaci,vck,f/’ ) (32)
k,o

represents the kinetic energy while
1 4mel
H'= 55 30 3 ChiqeChioqe .ot (3.3)
a0k 0,00

is the interaction between the electrons.

3.1 First-order perturbation theory

Let us first determine the ground-state energy for the system of non-interacting
electrons, described by the Hamiltonian Hy. This may be found by calculating
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the expectation value Eo =< Hp > in the ground state |0) of the unperturbed
system. We have

Ey = (OlH()lO) =2 E Ck@(kp - k) (34)
k
Since the total number of particles is

N=(01> ek exol0) =2 O(kr — k), (3.5)
k,o k

the ground-state energy per particle, Ey/N, becomes

By _ B [yT dkk?
Lo M Jo
N 2m fo " dkk?

_ 3h%kE
752

(3.6)

m .

Next, we use first order perturbation theory to determine the change E(1)
of the ground state energy due to H’. We exploit that ¢y , acting on the
unperturbed ground state |0} yields zero, unless an electron occupies the single-

particle state labelled by (k,o). Then E(!) may be written as

) 1 4me?
B =—L S e wrapete-b. ()
q#0.k,0

As usual, we convert the summations over the wave-vectors (k,q) to inte-
grations. It is convenient to carry out the integral over ¢ at the last stage.
According to (3.7) we need to determine the volume of intersection in k-space
for two spheres with radius kp, their centers being separated by the distance
q.
We shall express (Eg+ E())/N in terms of the dimensionless parameter r,

defined by

4r |4

(a0 = 3. (3.8)
where ag is the Bohr radius, ag = hz/meg. The parameter r; is a convenient
dimensionless measure of the density of the electron gas. Small values of r,
evidently imply high electron densities. The Fermi wave-vector kg is inversely
proportional to r,. Using k2 = 372 N/V we obtain the relation

1
—_ 1/3
rs = (97w/4) Trae (3.9)

The values of r, for the gas of conduction electrons in metals varies from about
2 to 6, with most metals having densities corresponding to r,-values between
2 and 3.
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In order to determine the volume common to the two intersecting spheres
and to complete the integration over ¢, we need to carry out the following two
integrals (z = ¢/kr):

1 ! 3 1
f(z) = 4—7”5277/:;/2@(1—!/2): l—za:+-igza (3.10)
2 3
/0 dzf(z) = 7 (3.11)

Collecting these results we then get the final answer

Eo+E®D  3n%E 3
=2 22k 3.12
N 5 2m  4n O°F (3.12)

By introducing the parameter r, defined in (3.8) and utilizing (3.9) we may
write the result in the equivalent form

Eo+E® €2 221 0916

N " 2a0° 72 Ty ):

(3.13)

The result (3.13) shows that the kinetic energy per particle (proportional
to r72) dominates the ground-state energy in the high-density limit r, — 0.
The first-order contribution due to the Coulomb repulsion is proportional to
r71. It is negative and may be thought of as an exchange effect, arising from
the tendency of parallel-spin electrons to stay apart in accordance with the
exclusion principle.

3.2 Second-order perturbation theory

According to the standard result of second-order perturbation theory the con-
tribution E(?) to the energy of the ground state due to the perturbation H’ is
given by

@) _ (O|H'|n)(n|H'|0)
E _n; o a— (3.14)

where n labels the eigenstates of the unperturbed Hamiltonian Hy. To eluci-
date the structure of the problem involved in calculating the sum in (3.14) let
us write H' in the symbolic form

H' = )" U(l - 4)c]cleseq (3.15)
1,2,3,4
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with 1,2, 3,4 being short-hand notation for the momentum and spin variables
in (3.3). By writing the interaction as a function of the variable 1—4 we indicate
that it depends on the momentum transfer q = (k + q) — k corresponding to
1 — 4. The conservation of momentum and spin implies with our symbolic
notation that 1 + 2 =3 + 4. We now have

E(2) =
(] 21,2,3,4 Ul- 4)c{c;c;304|n)(n| 21',2',3',4' Ut - 4')"'{'3;33’04’ |0),
> (3.16)
Ey-E,
n#0
We must have either of the four possibilities
1'=3,2=43=1,4=2
1'=4,2=3,3=24=1
'=4,2=33=1,4=2
'=3,2=43=24=1 (3.17)

The first two involve U(1 — 4)U(4 — 1) « 1/¢* while the last two involve
U(l1-4)U(4-2) x 1/¢*|k’ — k — q|2. For this reason, the contribution of the
first two terms is called ‘direct’ while that of the last two is called ‘exchange’.

Let us examine the contribution E(®) , due to the first two terms. In

direct
calculating E'c(ﬁzl_)ect we shall postpone the integration over g to the last stage.
If this integral is to be well-defined, the 1/¢*-singularity from the interaction
matrix-elements must be compensated by the volume of the effective phase-
space going to zero as ¢ goes to zero at least as ¢°® with s greater than 1. If
s were to be equal to 1, the integral would diverge logaritmically, since the
volume element in ¢ space is given by 4m¢?dg. In order to investigate this, we

shall divide all wave-vector variables by kg. Then

4 o0
@ _ 1 3 meg dq
Eirect = _FV]‘:F?‘/O I(Q)q—z (3.18)
where the weight-function I(q) is exhibited in the box below. Now, the energy
denominator Eo— E, is equal to €/ +€x — €[kt q| —€|k'~q|- We name the variable
k’ by —p and obtain the more symmetric form for the energy denominator

2

h2k2
o (20° + 2gkz + 2pgy),  (3.19)

Eo— En =€ + €k — €lktq| ~ €lptal =

where z equals cosine of the angle between k and q, while y equals cosine of
the angle between p and q.

We are now ready to write down the four-dimensional integral determining
the weight-function I(q) and evaluate it in the limit when ¢ < 1, corresponding
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to ¢ being much less than the Fermi wave vector ky:

‘ 1 1 1 1
I(q) :/ dx/ dy/ dkkz/ dpp?
-1 -1 o 0

O(k% + g% + 2kqz — 1)O(p® + ¢* + 2pqy — 1)

3.20
9% + gkz + qpy (3:20)

The theta-functions arise from the requirement that the single-particle state
with wave-vector k + q is unoccupied, resulting in |k + q| > kf or

k% +¢% +2kqz —1>0 (3.21)

and similarly for the state with wave-vector p + q. Since z is less than or equal
to 1, (3.21) implies that
l—-g¢g<k< 1. (3.22)

We assume in the following that
¢ <1, (3.23)

and introduce the new variable
1-k% -

ie:-q—, 0<k<l (3.24)

Since ¢ < 1 the inequality (3.22) implies that k?dk may be replaced by dk.

Then
1 1 1 gl 1 (3.25)
Iq:q/dx/dy/dk/dﬁ————————. 3.
@ k 5 0 o gtzty

Since we are interested in the small-¢q limit, we set ¢ = 0 in the denominator.
Then the integrals are all elementary. First we calculate

1 1 1 - .
11_/12 dw/}3 dyx—+—y_2]n2—(1+k)ln(l+lc)
—(14+p)In(1 +p) + (5 + k) In(p + k) (3.26)

and then carry out the two remaining integrations over k and § with the
result

1(q) = §(1 —1n2)q. (3.27)
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So we get a logarithmic divergence, when (3.27) is inserted into (3.18).
Ordinary perturbation theory does not work, not even in principle. If the
integration is cut off at ¢ = k; we get a term proportional to In k,. Later on
(Chapter 8) we shall see that this is the result of the RPA-approximation with

4ky
2 _
k= o (3.28)
Since kp o< r;! we get In(ks/kr) = (1/2)Inr, + const. and therefore
E® 1 meg
— ==~ ln2)—h2—olnr,. (3.29)

We shall obtain this result in Chapter 8 by summing the most divergent terms
in the perturbation series.
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4 Hartree-Fock theory

In atomic physics the Hartree-Fock approximation is often used to describe
in an approximate manner the influence of the electron-electron interaction
on the energy levels of the atom. But the use of Hartree-Fock theory is by
no means limited to atoms. In this chapter we shall first discuss the general
features of the Hartree-Fock approximation. Subsequently we apply it to the
homogeneous electron gas considered in the preceding chapter. It turns out
that the Hartree-Fock approximation in this case gives the same result for
the ground state energy as the use of first order perturbation theory. This is a
special feature of the homogeneous electron gas and does not hold, for instance,
for the electrons in an atom. As an example of the use of the Hartree-Fock
approximation for a gas of interacting fermions we calculate the density of
states at the Fermi surface and the (spin) susceptibility for a simple model
interaction.

4.1 The Hartree-Fock approximation

In order to discuss the general nature of the Hartree-Fock approximation we
consider a system of fermions interacting via two-body potentials, described
by the Hamiltonian

H=Ho+ H’, (4.1)
where
Ho =3 exc) ,0x0 (4.2)
k,o
represents the kinetic energy, while
1
H’ = § Z chlT(ﬁ'q,OcI(’-—q,o’ck',a’ck,a (43)
q,k k!, 0,0’

is the interaction.

Let us consider the Heisenberg equation of motion for the creation operator

i
ck,a’

ihél , = [ck ,, H), (4.4)

where the dot denotes a derivative with respect to time. If we replace H by
Hy, thus neglecting the interaction entirely, we get the trivial result

[CL’G,HO] = _kaL,,,- (45)

Let |0} denote the ground state for a non-interacting gas of fermions, with
ground-state energy Fp ( = 3er /b per particle). If we continue to neglect the
interaction, the state

cf 10y (k> kp) (4.6)
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is an eigenstate for a N + 1-particle system with energy ¢; = h2k? /2m relative
to the ground-state energy of the N-particle system, since

Hocl ,|0) = (Eo + ex)cf ,10). (4.7)

Next we shall include H’ in the equation of motion for cL, o+ With use of

the identities :
[A, BC] = [A, B]C - B[C, 4] (4.8)

and
[A, BC] = {A,B}C - B{C, A}, (4.9)
we obtain
ihé , = —erck, = Y Valliqothi—qotor (4.10)
q,kl,al

This equation is exact but useless, as we must know the development in time
of ctete in order to solve it. The equation of motion for cfefe will introduce
ctefectc and so on. In the Hartree-Fock approximation this infinite chain of
equations is truncated by the approximation

1 t ~ o t
ck+q’ack,_q,a,ck:,0, o~ Ck+q,0 < ckl_q’a,CkIyol >

— < ChpqoCier > (4.11)

-q,0'
The minus sign in front of the second term is the result of interchanging the
two creation operators. Now we identify the averages < clck > with their

value n; in the non-interacting system, which is 0 if £ > kp and 1 if k < kp.
This results in
CI:-{-q,ac;rt’—q,a’ck':o" ~ c;("onkféq,o

- "k+q,0‘5k’,k+q60,v’ cI{’—q,o’ . (4 12)

With this approximation the equation of motion becomes
ihé , = ~(ex + Var(k))el ., (4.13)

where VHF(k) 18
Var(k) = Y Vorer — 3 Vieernir. (4.14)
k' o’ K’

In the first term we may carry out the k’-sum immediately, since the Vp is a
constant, independent of k/. This introduces the number N of the electrons
and the Hartree-Fock approximation thus results in

Var(k) = VoN = Y Vi (4.15)
kl
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Note that the Hartree-Fock term for symmetry reasons can be a function only
of k, the magnitude of the wave vector, but not of its direction.
The new energy spectrum is consequently given by

Ey =€ + VHF(IC). (4.16)

The first of the terms in Vyr(k), the so-called Hartree term, is absent in the
homogeneous electron gas due to the restriction q # 0. Physically, the reason
for the cancellation is that the Hartree term describes the effect of the mean
electrostatic field associated with the homogeneous charge distribution of the
electrons, which is precisely cancelled by the uniform positive background due
to the ions.

4.1.1 The variational method

The Hartree-Fock approximation may be carried out directly from the Schro-
dinger equation, without the use of second quantization, for a many-body
system consisting of N electrons with spin o with Hamiltonian

H:Z;?—;n-y§ > V(i —r5)). (4.17)

i,j=1

For an electron gas the interaction is described by the potential V(|r|) = €3/|r|.

The Hartree-Fock method is based on the use of a variational trial func-
tion ¥ur, which is an antisymmetrized product of single-particle wave func-
tions (a Slater determinant), and the minimization of the total energy E =
(Yur|H |Yur). For a homogeneous electron gas the single-particle wave func-
tions ¥(r) may be labelled with the quantum numbers k, ¢, where k is a wave
vector. As a result of the variational procedure one finds that each of the wave
functions ¥k , should satisfy the equations

Hegk o = €x, 0%k 0, (4.18)

where
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Hesrti o (r) = ~(h*/2m)V 24y o (r)
+ LAY T crey,on [Pr,00(0) PV (Ir = 2 )0 (x)
— LA Chicke) Yior o () 0 ()Y (I0 — 2N o (7). (4.19)

Here kp = (372N/V)!/3 is the length of the Fermi wave vector for N non-
interacting electrons in the volume V.

The first term on the right hand side of (4.19) represents the kinetic energy
of a single electron, while the second one, the Hartree term, may be interpreted
as the mean electrostatic potential due to all other electrons. The third term
may be written symbolically as

Vrdk,o(r), (4.20)

but it should be noted that V# is a non-local integral operator, cf. (4.19). Note
that the summation in (4.19) only involves the occupied states and that the
summation in the third term (the Fock term) is limited to states which have
the same spin ¢ as the one under consideration.

4.2 The electron gas

For the homogeneous electron gas it is possible to determine an exact solution
to the Hartree-Fock equations, which must normally be solved with the help
of numerical methods. We shall show that (4.18) is satisfied by plane waves,

Y = %e“”. (4.21)

Since we assume that the electrons move in a uniform positive charge distri-
bution due to the positive ions, the Hartree term is cancelled by the positive
background. The third term in (4.19) becomes

——eg%—/—g / dr’ Z e“ikl"leikl"lr — r']“leik"l (4.22)
k'(k'<kr)
upon insertion of (4.21) and V(r) = e2/r. By multiplying this expression by
1 = g7ikTeikr (4.23)
we observe that it assumes the form

vF(k)-\;_Ve*'r (4.24)
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with
ky=- > V(K -k) (4.25)
k'(k'<kr)
where
Viq) = %/drV(r)e“iq'” (4.26)

is the Fourier-transform of the interaction®. In the case of the Coulomb inter-
action we have

~ 4mel
Viq) = —5> 4.27
as shown in Appendix A.
The eigenvalues €y , are then seen to be
h2k2
= Ve (k). 4.28
€k om + F( ) ( )

We shall first determine the energy eigenvalues (4.28) in a few limiting cases
and then proceed to evaluate them for general k.

Let us consider the case when £ > kp. Then we may approximate f/(k’ —-k)
by V(k) and carry out the sum over k’, resulting in

1 4m s dmed 2

VF(k) jad —W?kpr = —gﬂ—'eak}?‘

kf
= (4.29)

For large k, the interaction effects become small. Note that the kinetic energy
rises as k2.
Next we consider the limit &£ = 0. In this case we get from (4.25)

1 ke 4rme? 2
VF(O) = —(2—7‘_)3/; dk’47rk'2 leO = —;egk}‘. (430)

Note that the energy is decreased by an amount given by e2kp except for a
numerical constant.

Finally, we explore what happens at k¥ = kr. By changing the integration
variable to q = k’ — k we may write Vr(k) as

NOEEEY dreg. (4.31)

7y
a(lk+al<ke) 1

11t is common in the literature to distinguish a function and its Fourier-transform by
their arguments only, hence leaving out the tilde.
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When k = kr, the constraint on |k + q| that it should be less than the Fermi
wave-vector becomes

k% + 2kpgcosf + ¢ < kE. (4.32)
or
cosf < ——5{—;, (4.33)

which puts the upper limit 2kr on the integration over ¢, since cos @ cannot
be less than —1. As the integrand does not depend on # the integration over
cos f simply introduces the additional factor {1 — ¢/2kr) in the integral over
q, because of the constraint (4.33). We thus get

1 s 4mel
Velke) =~ [ da2eet(1 - 5050 =

By comparing (4.30) and (4.34) we note that the energy separation between
the highest and the lowest occupied state (the ‘bandwidth’) in the Hartree-
Fock approximation is changed by e 2kp /7 (in practice a few eV) compared
to the free-electron value. This is in strong disagreement with what is known
experimentally about the bandwidth in metals. Another unphysical feature of
the Hartree-Fock approximation has to do with the form of the density of states
near the Fermi surface. This may be seen by carrying out the integration in
general, for arbitrary values of k/kp, starting from (4.25). By first integrating
over the angle between k' and k and subsequently carrying out the integration
over k' one gets

12
——egk 4.34
7r0F (3)

e2kp [0+ k% — k2 |k+ kr|
DT A

From this general expression the previous special cases may easily be recovered.
Thus (4.30) and ( 4.29) are obtained by expanding the logarithm for small and
large k, respectively, while (4.34) may be read off from (4.35) directly. Since
the derivative of (4.35) with respect to k diverges as —In|(k — kg)/kp| for
k — kp, the density of states vanishes in this limit, yielding a specific heat
which is proportional to 7'/ InT, in disagreement with experiment.

We emphasize that the ground-state energy of the electron gas may not
be obtained simply by summing the single-particle energies in (4.28) over the
occupied states. To illustrate this point, let us sum Vg(k) over the occupied
states, thereby obtaining

Vi(k) = —

1. (4.35)

- ) VEK-k. (4.36)

k,ok!(k, k' <kF)

By comparison with (3.7) we see that (4.36) is exactly twice the former, which
is the contribution (to first order) to the total energy from the interaction. In
general there is no simple connection between the single-particle energies in an
interacting many-body system and its ground state energy.
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4.3 Effective mass and spin susceptibility

In this concluding section we illustrate the use of the Hartree-Fock approxima-
tion for an interacting system of fermions, with a general interaction potential
given by the Fourier-transform V. The Hartree-Fock energy spectrum is ac-
cording to (4.15-4.16)

Ex =€+ VoN = Y Vanksq. (4.37)

We shall calculate the effective mass, which determines the density of states
at the Fermi surface, and the spin susceptibility on the basis of (4.37) and a
specific choice of Vj, corresponding to a screened Coulomb interaction.? For
convenience, we consider in the following a unit volume and thus set V equal
to unity.

4.3.1 The effective mass

The effective mass enters, when the integration over k is transformed into an
integration over the energy Ej. Let us therefore define the effective mass m”
by

m m 6Ek

— = ——k- 4.38

m* h2k% 61( Ik =kp- ( )
When interactions are neglected, the effective mass is seen to be equal to the
bare mass m. Since the Hartree-term is independent of k, only the Fock-term
contributes to the effective mass. Since nx1q = O(kr — |k + q|), we get

6nk+q
dk

where k/ = k’/k’ and k' = k + q. Then

= —8(k' — kp)K’, (4.39)

m m dk’
=1 sk KK — kp) Vi k. 4.40
e = g ) o KO T e (4.40)

Since the effective mass is defined at k& = kp, the expression (4.40) may be
written as an average involving the angle 6 between k and k’

m mkp d(cos 9)
— 27r2h2/ 0s 8V (6) (4.41)

21t should be noted that we have already gone beyond Hartree-Fock theory as applied to
the interacting electron gas by using a screened instead of a bare interaction. As we shall see
later on, the screening enters when we do the so-called random-phase approximation. The
expression (4.37) for the single-particle energies is the result of doing Hartree-Fock theory
starting from a screened as opposed to a bare interaction.
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where V(8) = V, with ¢ = 2krsinf/2 being the length of q = k' —k. To
evaluate m/m* we need to specify V,. If we take V; to have the form of a
screened Coulomb interaction,

dmed
then the integration over # (or ¢) may be carried out analytically with the

result

m a+1

1
o 1+a(§+a)ln
where a = (k,/2kp)? ~ 0.166r,, when k? = 4kp/maq, cf. (3.28). For a = 1/2
we obtain from (4.43) the value m/m* = 1.05. When r, varies from 2 to

5, m/m* varies between 1.05 and 1.04. In all cases we obtain a very small
decrease of the effective mass relative to the free electron value.

—a (4.43)

4.3.2 The spin susceptibility

We may use the Hartree-Fock expression for the energy to determine the spin
susceptibility of a degenerate Fermi gas. The presence of an external magnetic
field B, which we take to be in the z-direction, changes the relative number
of spin-up and spin-down particles. Since the exchange contribution to the
Hartree-Fock energy only involves particles with the same spin as the state
under consideration, one therefore expects the exchange term to influence the
susceptibility, which is defined as M = x B/, where M is the magnitude of
the resulting magnetization. For electrons with gyromagnetic ratio g = 2 the
magnetization is M = gupébN = 2ugéN, with § N being the change per unit
volume in the number of down-spin electrons (which equals minus the change
per unit volume in the number of up-spin electrons) while up = eh/2m is the
Bohr magneton. It is convenient to express the result in terms of the density
of states for the non-interacting system, N(0), per spin at the Fermi energy,
which is given by N(0) = mkg /27%h%,

The presence of the magnetic field causes the Fermi wavevector of the spin-
up electrons to differ in magnitude from the Fermi wavevector of the spin-down
electrons. The associated energy change of a spin-up electron at the Fermi
surface is

1 oF
6EkF—‘5kF,T = guBEB - —a—k—(skp +IN <V >. (4.44)
Here the terms on the right hand side have the following origin: The first
one 1s the energy change due to the interaction between the magnetic moment
of the electron and the external field, while the second is due to the explicit
wavevector dependence of E}. Finally < V > is the average of the potential
V(8) over angle,

<V o>= %/_11 d(cos )V (8), (4.45)
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which is the change in energy originating from the exchange term. The average
involves the undistorted Fermi surface, since we are only considering small
changes 6ky.

For spin-down electrons we get correspondingly

1 OF
6Ekl-‘+6kl’-‘,l = —WBEB -+ 5—,;5]61:* - 6N <V >. (4.46)

In equilibrium these two changes in energy must be equal to each other, since
the chemical potential for each of the two spin species must be the same. Since

OF k BE 5k‘p m

we get
gupB
26N = 4.4
m/m*N0)— <V > (4.48)
and M .
m’/m (4.49)

X= Bluw XT-NO) <V >m/m’

where xo = po(gpp)?N(0)/2 is the Pauli susceptibility.
Let us use the screened Coulumb potential (4.42) to calculate the angular
average < V > according to

1 1
<vs= | 1 Ay ey = [tk @50

The result is seen to be

N(0)<V>:%lna+1.

(4.51)

For large a the dimensionless quantity N(0) < V > approaches 1/2. For a =
1/2 we obtain N(0) < V >= 0.275. Thus we find considerable enhancement
of the susceptibility. The ratio x/xo is 1.22, 1.28 and 1.34 for r, equal to 2, 3
and 4, respectively, while experimentally (cf. Section 1.3.2) the enhancement
factor for Na (r, = 4) is found to be 1.7.
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We now insert (5.3) into (5.1) and obtain the result

H =2%E; - 2uvE, + (Eo(u? + v?) — 2uwvEy)(ala+ 518)
+ (Ei(u® 4 v?) — 2uvEg)(af + flal).  (5.6)

It is evidently possible to choose u and v in such a manner that the term
proportional to (af + B'al) vanishes, by setting the coefficient in front equal
to zero,

Er(u? 4+ v?) — 2uvEp = 0. (5.7)

The condition (5.5) is satisfied by adopting the following parametrization of u
and v,

u = cosht, v =sinht, (5.8)
which in turn implies that the condition (5.7) may be written as
E;(cosh?t + sinh®t) — 2Egsinht cosht = 0 (5.9)
* E
tanh 2t = Fi (5.10)

It is now a simple matter to express u? + v? and 2uv in terms of the ratio
E1/FEy, and insert these expressions into (5.6). The result is

H = Mala + 818) + const., (5.11)

where A is given in terms of Fy and E; as

A=+/E:- E}. (5.12)

We have chosen the positive sign, since we define A as the energy needed to
create an elementary excitation. Note that the magnitude of Fy must exceed
that of |E;| in order for this result to make sense.

5.1.2 Fermions

The fermion case is very similar to the boson case treated above. The operators
now obey the fermion commutation rules

{a,a'} = {b,b1} =1, {a,b'} = {b,al} =0. (5.13)
As before we introduce new operators a and 3 by the transformation

a=uax+0v8", b=uf—val, (5.14)
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and demand that they satisfy fermion commutation rules,
fo,a'}={8,8'} =1, {a,8'}={B,a'}=0. (5.15)
When (5.14) is inserted into (5.13) one obtains the condition
wi4vi=1 (5.16)

corresponding to (5.5). As in the boson case we proceed by inserting (5.14)
into (5.1). The result is

H =2v2Eq 4+ 2uvE, + (Eo(u? - v?)— 2qu1)(afoz + ﬂ’ﬂ)
- (E1(u? = v?) + 2uvEp)(aB + Btat). (5.17)

Again, it is possible to choose u and v in such a manner that the term propor-
tional to (a8 + Blat) vanishes by requiring

Ei(u? —v®) + 2uvEp = 0. (5.18)
The condition (5.16) is satisfied by parametrizing © and v according to
u =cost, v=sint, (5.19)
which implies that (5.18) becomes
Ei(cos®t —sin?t) + 2Esint cost = 0 (5.20)

or

tan2t = ——. (5.21)
0

When the resulting expressions for u? 4+ v? and 2uv are inserted into (5.17) we
obtain

H = Mc'a + 81 8) + const., (5.22)
where X is given by Fy and E; as

A=+/E2+E2, (5.23)

In the case of superconductivity (which is treated in Section 5.4 below) it is
sometimes convenient to choose A to have the same sign as Ey (which is neg-
ative for states below the Fermi surface), thereby facilitating the comparison
to the normally conducting state.
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5.2 Phonons in a crystal lattice

Each of the atoms in a crystalline solid carries out vibrations around its equi-
librium position, but these vibrations are not independent, since the vibrations
of a given atom will influence those of its neighbors. A crystalline solid is there-
fore a large system of coupled oscillators, in fact as many as the number of
atoms times three.

Our discussion of lattice vibrations proceeds in two steps, the first one
involving only classical mechanics and the second quantum mechanics. First,
we seek to turn the problem of coupled oscillators into a simpler one, for
which the oscillations are independent of each other. Such a transformation is
achieved by a transition to normal coordinates, and the resulting oscillations
are called normal modes. As a simple example we shall see how the normal
modes are determined for the simplest possible ‘crystal’ consisting of a linear
chain of atoms.

5.2.1 Normal modes

In this subsection we treat the classical equations of motion for a linear chain
of identical atoms which are connected by springs with the same force constant
K. The mass of an atom is called M. By u,, we denote the deviation of the n’th
atom from its equilibrium position. The atoms are only allowed to move along
the direction of the chain. Later on we shall see how the model is generalized
to the case when the atoms occupy positions in a three-dimensional lattice and
are allowed to move in different directions.
According to Newton’s second law the acceleration u, of the n’th atom is
given by
Mi, = —K(up — un_1) — K{up — tn41). (5.24)

For a chain of N atoms we shall use the periodic boundary conditions
UN = Up; UN41 = U (5.25)

on the solutions to (5.24). The distance between two neighboring atoms in
equilibrium is @, which means that the total length L of the chain is L = Na.
The boundary conditions (5.25) evidently correspond to joining together the
two ends of the linear chain.

In solving the equations of motion it is convenient to regard u, as the real
part of a complex quantity. We note that (5.24) is satisfied by

Up = uge'dnoTiwt (5.26)
provided w and ¢ are related by the condition

Mw? = 4K sin® % (5.27)
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The solution (5.26) has the form of a plane wave

eiq:c—-:'wt’ (528)
where the position coordinate z assumes the discrete values z = na with
n=1,---, N. The wave number is evidently ¢/2=, while the angular frequency

is w. The actual deviation u, is of course real, and (5.26) should strictly
speaking be written as

Up = Reuoezqna—zut

= ug cos(gna — wt), (5.29)
where ug is chosen to be real. The symbol Re denotes that the real part is
taken, but it is usually suppressed with the understanding that the real part is
taken at the end. By inserting (5.29) in (5.24) we obtain again the condition
(5.27), which may be written as

w:2\/%|sinq—2a , (5.30)

the sign of w being chosen to be positive. An equation such as (5.30), which
connects the wave vector with the frequency, is called a dispersion relation.
The particular pattern of oscillations u, associated with a definite value of ¢
(and hence w), is called a normal mode. Note that the connection between w
and ¢ is linear for small values of ¢. In this limit the mode corresponds to a
sound wave, with dispersion relation

w = sq, (5.31)

where the sound velocity s is given by

= —. 5.32
s =a\[ 57 ( )
The reason why the frequency w becomes small for small values of ¢ is that
neighboring atoms oscillate very nearly in phase and therefore only move slight-
ly with respect to each other. However, if ¢ assumes the value 7/a, neighboring
atoms oscillate in opposite phase (4, = —up_1), giving rise to the maximum

frequency equal to 2/K/M.

The boundary conditions {5.25) determine the allowed values of ¢q. This is

of course a purely classical consideration. The condition (5.25) requires that

efalVe — (5.33)
which implies that ¢ may assume the values
g= 2t (5.34)

“Na’
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where m is an integer (positive, negative or zero).

Besides (5.34) the allowed wave vectors must satisfy another condition,
which is a consequence of the fact that the only physically significant values of
the plane wave (5.26) are those associated with the lattice points = na. If
we replace in (5.26) the wave vector ¢ by ¢ + 27/a, the mode u, remains the
same. The two different values of ¢ thus correspond to exactly the same mode
pattern. We therefore limit ¢ to the interval

m
——<g<
a

: (5.35)

S

which is also known as the first Brillouin zone. Note that ¢ may then assume
precisely N different values.

In summary, we have shown that the oscillations of the atoms in the crystal
may be described in terms of normal modes such as (5.26), provided w and ¢
are related by the dispersion relation (5.30). There exist N different modes,
namely as many as the allowed values of ¢ in the interval —7/a < ¢ < 7/a.

5.2.2 Quantization

Having solved the classical linear-chain problem of the motion of N atoms,
each with mass M, interacting via harmonic forces, we shall now prove that
the Hamiltonian H for the linear chain is a sum over ¢ of terms having the
same form as for a single oscillator,

. oys 1
H =Y huw,(blb, + 3)- (5.36)
g
In the following we prove (5.36) starting from the Hamiltonian
N P2 K
H= 4 (uy — tUn_1)?), .
;(W+ 5 (n = un_1)?) (5.37)
where
['&-m»f)n] = ihémn . (538)

The operators 4, og p, are expressed in terms of Qq and ]Sq through
1 N
Un = — e'in? 5.39
n \/N ; Qq ( )

and

1 . .
Pn = —= ) P "%, 5.40
ﬁiqj ) (5.40)
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The periodic boundary conditions are satisfied provided that ¢ satisfies the
condition e*9V¢ = 1. The allowed values of ¢ are thus

SR TR R

where we have assumed for definiteness that N is even.
After inserting (5.39) and (5.40) in the Hamiltonian we carry out the sum-
mation over n, using

N ) ,
S eiamima = N, (5.42)
n=1

The inverse relation
Zei(n—n')qa = Nénps, (543)
q

is also valid, since ¢ according to (5.41) assumes N different values.
As a result the Hamiltonian (5.37) becomes

H= Z(é-lﬁﬁqﬁ_q + K(1 - cos ga)Q,Q-,). (5.44)
q

From the inverse relations of (5.39) and (5.40)

N .
Y e (5.45)

and
1 &
P,=— pp i, 5.46
q \/N Z p ( )
which follow from (5.39) and (5.40) together with (5.43), we find the following

commutation relations satisfied by @ and P,

N
. 1 o e e —emta
(Qq, Pyl = N z: (Gnpnr — Pnriin)e (g'n'=gn)e — thégy. (5.47)

n,n'=1

We introduce creation and annihilation operators by the definition

bl = —i (P, + iMw,Q_,) (5.48)

1
/2Mhu,
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and ]
by = i———=(P_y — iMw,Q,). (5.49)

1= JaMha,

This turns A into the form (5.36), with w, being the classical oscillation fre-
quency given by (5.30). Note that the creation and annihilation operators
satisfy the commutation relations

[bg, b1 = g (5.50)

as a consequence of (5.47). )
We have thus shown that the Hamiltonian H for the linear chain is

. e 1
H=Y hw,(blb, + 3)- (5.51)
q

The Hamiltonian for a linear chain has thus a very simple form, since it is a sum
of operators associated with each independent harmonic oscillator that belongs
to one of the N possible values of q. The different possible energy eigenvalues
are obtained in a way analogous to the single harmonic oscillator by specifying
the number of quanta n, associated with each normal mode. The resulting
contribution to the energy is thus hw,(n, + 1/2), and the total energy in the
state under consideration is therefore the sum over ¢ of all these energies. The
state is labelled by the values of the quantum numbers n,,, where the index i
runs through N different values 1 to NV,

[Pgys Ngys s Mg )- (5.52)

The energy quanta in a normal mode are called phonons. In the long wave-
length limit (ga << 1) the normal modes have linear dispersion just like sound,
cf. (5.30). Instead of considering the different energy eigenvalues of the total
energy as a sum of energies associated with each normal mode specified by the
quantum numbers n,, one may just as well denote the eigenstate by giving the
number of phonons, n,, associated with each normal mode. The lattice has
thus been transformed from a system of N atoms that are mutually interact-
ing to a non-interacting gas of phonons. The phonon gas is non-interacting,
because the Hamiltonian only contains terms that are quadratic in the devi-
ations un, of the atoms from their equilibrium position. If higher-order terms
are retained in the Hamiltonian, it is possible to describe these to a first ap-
proximation as perturbations. This gives the phonons a finite lifetime. A given
phonon may for instance decay into two other phonons. Such processes play
an important role in the thermal conduction in insulators. In the absence of
interaction between the phonons and neglecting any effects of boundaries such
an insulator would have infinite thermal conductivity.

The number of phonons is not a conserved quantity, unlike the number of
molecules in ordinary gases such as air in a closed container. The number of
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phonons depends on the temperature. In the ground state of the lattice the
number of phonons is zero, since n,, = 0 for all 4.

A linear chain of atoms is not a satisfactory model for a solid. In a real
three-dimensional crystal each atom has typically six, eight or twelve near-
est neighbors, depending on the crystal structure. The determination of the
classical lattice vibrations must take the crystal structure into account and
consider the coupling between an atom and its nearest neighbors - and pos-
sibly its more distant neighbors as well. This complicates the calculation of
the frequencies of the normal modes, but involves no conceptual changes. In
the three-dimensional case a normal mode is characterized by a wave vector q
with an associated angular frequency wq, corresponding to the replacement of
(5.26) by

u = ugexp(iq - R — iwt), (5.53)

where R is a lattice vector. Since the atoms may vibrate in three directions,
there are three normal modes associated with each value of q. The lattice
vibrations are therefore characterized not only by the wave vector q, but also
by polarization vectors, which may be chosen to be orthogonal to each other.
If the direction of q is along a symmetry axis in the crystal, it becomes possible
to choose the polarization vectors to be parallel with or perpendicular to q,
and the phonons are called longitudinal and transverse, respectively. Many
crystals have a unit cell containing more than one atom. In this case one has
not only branches that are acoustic as in the one-dimensional case (meaning
that the frequency goes to zero when ¢ goes to zero), but there are also optical
branches, in which the frequency tends towards a non-zero value as ¢ goes to
zero.

The quantization of the lattice vibrations proceeds as in the one-dimensional
case. The Hamiltonian is given by (5.51), provided ¢ is interpreted as (q, @),
where « is a polarization index. According to the discussion given above «
may assume three different values (o = 1,2,3), which label the three unit
vectors e;, e and e3 giving the polarization directions for the normal modes
associated with a given q. This enables us to write down the different possible
energy eigenvalues E; for the crystal as a whole,

1 ,
Ei =) hwga(nqa + 3) (5.54)
q,x

where i is an index labelling the set of quantum numbers ng,.

5.3 Phonons in a Bose gas

From elementary statistical mechanics it is known that the non-interacting
Bose gas undergoes a phase transition in three dimensions at a temperature
equal to h?(N/V)*3/mk, except for a numerical constant. Here N is the
total number of bosons, V is the volume, m the mass of a boson and k the
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Boltzmann constant. At T = 0 K the lowest single-particle quantum state
is macroscopically occupied, the occupation number Ny being equal to N. In
general one uses the term macroscopic occupation when the occupation number
Ng divided by N has a limiting value differing from zero, when N tends towards
infinity.

In this section we shall treat the interaction between the bosons as a per-
turbation. We assume that in the interacting system the lowest-lying single-
particle state is macroscopically occupied, ensuring that Ny/N tends toward-
s a finite value when N goes to infinity, and approximate the correspond-

ing operators ag and a;{) by c-numbers. In the unperturbed system we have

al|No) = /No +1|No + 1) and aq|No) = /Ng|No — 1). We shall therefore
approximate both operators by +/Np.
The Hamiltonian of a system of interacting bosons is

1 )
H= Zekaiak + 3 Z anL+qaL,_qak/ak , (5.55)
k Kk ,q

where €, = h2k2/2m. The operators satisfy Bose commutation relations
lax,al] = bk,  [ax.aw] =0, [a},al] =0. (5.56)

We have furthermore assumed that the interaction potential V(r,r’) only de-
pends on the length |r — r’|, implying that the matrix element - its Fourier
transform Vg - only depends on the length ¢ of the vector q.
The simplest possible model for the interaction is the delta function poten-
tial
V(r,') = Us(r - 1'), (5.57)
where U(> 0) is a constant. The associated matrix element is given by the
Fourier transform of the delta function,
U
V, = = 5.58
q 1% ( )
and is therefore independent of q. We now replace ag and a(T, by /Ny in
accordance with the assumption that the lowest quantum state is macroscopi-
cally occupied and discard in the interaction all terms which are not (at least)
proportional to Ny. This results in the Hamiltonian

UN¢ UN 1 1
H~ QVO + Z ckaiak + 0 Z (alak + af_ka_k + §aLaT_k + §aka_k).
k k(k3#0)
(5.59)
Next we introduce the total particle number
1
N =Ny + 5 Z (aLak -+ aT_ka_k) (560)

k(k#0)
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in the Hamiltonian, which becomes

UN? 1 NU NU
Hx=r 45 k(kz;m[(ek + ) afax +alyai) + - (akaly + axa_y)),

5.61)
when we neglect terms in the potential energy, which are not (at leastg pro-
portional to N.

The structure of the Hamiltonian is now very simple, since each of the
terms in the k-sum has the form

Eo(a'a + b8) + Ey(atd! + ba), (5.62)
where [a, al] = [b,bT] = 1, while a and a' commute with b! as well as b.

We may now use the result (5.12) to bring the Hamiltonian (5.61) into
diagonal form,

H= Z E’k(a{(ak + ﬂ{ﬂk) + const. (5.63)
k

with

Ey = /(ex + NU/V)2 — (NU/V)? (5.64)

Note that Ey for small k 1s a linear function of k, Ey ~ shk. The velocity s is

seen to be
s=+/UN/Vm. (5.65)

The repulsive interaction has thus turned the energy spectrum, which is quad-
ratic in the non-interacting case, into a linear one, in agreement with what is
observed experimentally in liquid *He. The measured slope of the dispersion
curve at ¢ = 0 corresponds to a velocity s which is 240 m/s at a temperature
of 1 K.

5.4 Quasiparticles in a superconductor

The BCS-theory of superconductivity will be discussed in a later chapter. Here
we shall demonstrate how the method of canonical transformations allows one
to derive the energy spectrum of a superconductor starting from a simplified
Hamiltonian of the form (5.1). The starting point is an effective electron-
electron interaction, which keeps only part of the complete Hamiltonian

1
H= Z fkclfc,ock,ﬂ + W Z V(k, kl: q)cL.;.q’aCLl_q’alCk',o’ck,a ’
k,o q#0,k k! 0,0/
(5.66)

namely the part that connects pairs with total momentum equal to zero. An
important feature of the BCS-Hamiltonian is that the term u/N, where N is the
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particle number operator, is subtracted from the original Hamiltonian in order
to able to describe a state of broken (gauge) symmetry. The procedure is anal-
ogous to the transition to a grand canonical ensemble in statistical mechanics
and allows one to consider anomalous averages of the form < c_i jcx 1 >.

The simplified BCS-Hamiltonian K = H — uN is thus given by

K = Z(ek - N)(CL,TCR.T + cT_lec_k,l) - Z V(k,k')cL,'Tc‘_k,,lc_.k,lck,T,
k k k'

(5.67)
where the interaction matrix elements V (k, k') are taken to be constant with-
in a shell of thickness 2hwp around the Fermi surface, wp being the Debye
frequency (which is roughly equal to the maximum phonon frequency},

Vikk) = V for | — pl | — p < hwp
= 0 otherwise. (5.68)

The constant V is positive, corresponding to an attractive interaction in the
BCS-Hamiltonian (5.67). In order to obtain the energy spectrum one makes a
Hartree-like approximation to the BCS-Hamiltonian with the result

H = (e = p)ek pour +cly jeony) = D (Archqely | + Apeijexr),

k k
(5.69)
where the real quantity Ay is

A=) V(kKk)<ch el >, (5.70)
kl

We can now use the result of (5.23) and write down the diagonalized Hamil-
tonian in the form

H = const. + Z Ek(aL,Tak,T + O‘T_k,la—k,l) (5.71)
k

where

B} = AL+€ (5.72)
with the definition

ék =€ — M. (573)

The gap parameter Ag, which in the present model is independent of k, is
obtained by solving the selfconsistency equation (5.70), as we shall see in a
later chapter. It turns out to be a non-analytic function of the strength V
of the attractive interaction, indicating that the superconducting ground state
cannot be obtained by simple perturbation theory starting from the normal
state.
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5.5 Spin waves in a magnet

In Section 5.2 above we have characterized the possible states of a crystalline
lattice by the number of phonons associated with each normal mode. We shall
now see how ferromagnets at low temperatures may be described in terms
of spin waves, the so-called magnons. Like phonons the magnons represent
excited states of the system, i. e. states with higher energy than the ground
state.

5.5.1 Ferromagnet

A simple model of a ferromagnet is a linear chain of atoms interacting with
their nearest neighbors.? The Hamiltonian of the magnetic chain is

N N ~ ~ N 1 ~, = PN
H=-738:-8n41=-7 D (Sn:Sns1:+ 58T San +5755,1)), (5.79)

where J is a positive constant. The Hamiltonian is thus a sum of terms
which describe the exchange interaction between neighboring atoms. As usual
St=5+ zS and S- =S, — zS For convenience we have made the eigen-
values of the spin operators dxmensmnless by dividing them by k. This gives
J the dimension of energy. The positions of the atoms in the chain have been
numbered by n = 1,2,3,..-, N, where N is the number of atoms. As in the
phonon case we use periodic boundary conditions. By using the properties of
the operators of angular momentum one finds that the state |0) given by

0) = |s1, 52, -sN) (5.75)

is an eigenstate of H

H|0) = —JNs?|0), (5.76)

with s; = s denoting the maximum value of the z-component of the spin of the
¢’th atom (s = 1/2 for a single electron, but in general s may be larger than
this value, since the atomic spin is the result of the addition of the angular
momenta of the atomic electrons). The state |0} is thus characterized by the

eigenvalue of each Sy, , being s. It is not difficult to show that the eigenvalue
in (5.76) is the lowest one possible, corresponding to the ground state, but we
leave out the proof. From a classical point of view it is plausible that the lowest
energy is obtained when the spins all line up in the same direction, since J is
taken to be positive.

2We discuss the one-dimensional case because of its transparency, but it should be re-
membered that one-dimensional systems with finite-range interactions do not order at any
finite temperature. The methods described in the following are however easily generalized
to the three-dimensional case, in which the magnetic order occurs at a temperature roughly
equal to the exchange constant J divided by k.
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Let us now try to find excited states of the system, i. e. eigenstates of the
Hamiltonian with energies larger than the ground-state energy —JNs?. We
consider a (normalized) state |n) given by

1,
75710 (5.77)

It is readily seen that the state is not an eigenstate for H, since one obtains

In) =

Hin) = —Js(ln+ 1) + |n — 1)) = J(N = 2)s%|n) — s(s — 1)2J|n)  (5.78)

by using the properties of the angular momentum operators. Let us, however,
attempt to build an eigenstate by forming the linear combination

1 igna
)= 7 Zn:e 4 |n), (5.79)

where a is the distance between neighboring atoms. We find that (5.79) is
indeed an eigenstate, since

Hlg) = (=JNs? +2Js(1 — cos qa))lq). (5.80)
Evidently |q) is an energy eigenstate with energy
hw, = 2Js(1 — cos ga) = 4J s sin® ga /2 (5.81)

relative to the ground state. Note that this state is also an eigenstate of the
z-component of the total spin with eigenvalue Ns — 1 (in units of k), since
it is a superposition of states such as (5.77) which are eigenstates of the z-

component of the total spin with eigenvalue Ns— 1, the operator 5',’{ reducing
the eigenvalue by 1 relative to the ground state.

The determination of the magnon energies in the three-dimensional case
proceeds just as for one dimension. For simplicity we assume that the magnetic
material is ordered in a simple cubic lattice. In three dimensions the magnon
energy thus becomes

hwq = 4Js(sin?(g.a/2) + sin?(gya/2) + sin®(q.a/2)), (5.82)

since the magnon state is characterized by a three-dimensional wave vector q
as in the case of phonons. The dispersion relation (5.82) has cubic symmetry,
since the magnon energy does not change by interchange of the axes in g-space.
It is anisotropic in the sense that the energy depends not only on the length
of q, but also on its direction.
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5.5.2 The Holstein-Primakoff transformation

There exists a transformation, known as the Holstein- Primakoff transforma-
tion, which allows one to write a spin-Hamiltonian like (5.74) in terms of boson
creation and annihilation operators. It is

St = (25)Y2(1 — ata/2s)/%a; S~ = (25)Y/%a'(1 — ata/25)}/%,  (5.83)

which implies that
52 =s(s+1)— %(5+5- +578%) = (s —ala)%. (5.84)

The operators a and a! satisfy the commutation rule
[amv al] = 6mny (585)

where we have restored the site index. The boson commutation rules ensure
that the spin operators given by these expressions satisfy the usual angular-
momentum commutation relations.

The transition to collective coordinates proceeds in analogy with (5.39),

1 .
G = —= D _byeitne, (5.86)
VN 4

At low temperatures the number of spin waves (which depends on temper-
ature) is small. It is therefore possible to neglect the interaction between the
spin waves and approximate ST and S~ by

St~ (25)/%a; S™ ~ (25)Y/2al, (5.87)
while S, is given by the positive root of (5.84),
S, =s—ala. (5.88)

The Hamiltonian (5.74) is then approximated to be bilinear in a,a’, with
quartic terms being neglected, and is thus readily solvable. To obtain the
energy spectrum one must carry out sums of the type

1 o
S alan = alan4 = = 3 Blbgeia=90me = 3" b, (5.89)
n n n,q,q9’ q

and

alaspr =) e '%0b,; anal ;=Y e'19blb,, (5.90)
q + q
n q n q
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which is seen to result in the energy dispersion relation (5.81).

In the antiferromagnetic case, J is negative. If one assumes that the ground
state is one in which the spins are aligned in opposite directions on each of the
two sublattices (corresponding to S, , = s, Sn41,; = —s), then we must treat
each sublattice separately by making the transformations

Sp.=s—ala, S = (25)/%a!, ST = (25)!/2a, (5.91)
and

Sns1:, = —s+cle, Sip=(25)%c, St =(28)"%" (5.92)
Here we have introduced boson operators ¢ and ¢! associated with those sites,
in which the z-component of the spin has the value —s in the ground state. As
shown in Problem 33, one then obtains a Hamiltonian of the form (5.1), which
may readily be diagonalized, resulting in spin waves with a linear dispersion.
It should be noted that our initial assumption about the nature of the ground
state is actually incorrect in the antiferromagnetic case, cf. Problem 34.
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6 Green functions at zero temperature

Green functions in many-particle physics come in many different forms, de-
pending on the particular problem that is being considered. In this chapter we
shall introduce time-ordered, single-particle Green functions at zero tempera-
ture, and discuss the properties of free-particle Green functions which form the
basic building blocks needed for carrying out perturbation theory to infinite
order.

Not all Green functions are time-ordered. One frequently needs to consider
retarded or advanced functions as well. The use of time-ordered Green functions
allows a perturbation series to be written in a convenient form. Retarded and
advanced functions arise naturally when one considers the linear response of a
system to an external disturbance. While a physical quantity like the ground-
state energy of an interacting many-body system may be obtained from the
time-ordered, single-particle Green function, other physical quantities, such as
the electrical or thermal conductivity, requires the knowledge of two-particle
Green functions for their determination!. In practice, two-particle Green func-
tions are determined by infinite-order perturbation series in which one-particle
Green functions form the building blocks. Many-body theory therefore starts
with the study of the Green function, or propagator, for noninteracting parti-
cles.

For a general interacting system the single-particle Green function G is
defined by

Goor(x,1; xlatl) =-i< T{qp,,(x,t)i/)l,(x',t')} > (6-1)

Here v} (x,t) and ¥,(x,t) are operators in the Heisenberg picture, which add
and remove, respectively, a particle in a spin-state ¢ (= 1) to the interacting
system at the space-time point (x,t). We shall here treat the case when the
particles are fermions. The time-ordering operator T is in the fermion case

defined by
T{A(t1)B(t2)C(t3) - -} = (=1)PC{A(t1) B(t2)C(t3) - - -}, (6.2)

where C'is an operator which orders the fermion operators A(t)B(t2)C(t3) - - -
chronologically with earlier times to the right, while p is the number of inter-
changes needed to achieve this chronological ordering. Thus

T{p(t1)¥'(t2)} = w(t1)9'(t2) if t1 > ta, (6.3)

while

T{w(tl)wT(t2)} = —"/)T(tZ)l/)(tl) if t, <. (64)

! The definition of an N-particle Green function involves N creation and N annihilation
operators.
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The average < --- > in (6.1) is the quantum-mechanical expectation value
involving the exact Heisenberg ground state of the interacting system. Nat-
urally, this state is not known for a general many-body system, and (6.1) is
therefore not a practical starting point for the calculation of G. If the Green
function G is known, one may obtain from (6.1) physical quantities such as the
particle density or the total energy of the system, as we shall see in Section
6.2 below.

6.1 Translational invariance

As we shall be dealing with systems that are translationally invariant (in both
space and time) it is convenient to introduce operators ck, and clv that

remove and add, respectively, a particle in a definite momentum and spin
state k, 0. This is accomplished by the transformation

ol 1) = <= 3 o o1 (6.5)
k

and the corresponding expression for the Hermitian conjugate

1 .
Tx,t) = — e=kxel (3, 6.6
vh(x,1) Wﬁkj ko) (6-6)
Then
Gooi(x,4; %', 1) = —% ZZe’ikI‘xleik'x < T{ck)a(t)ci,yg,(t’)} >. (6.7)
k k'

Since the system is translationally invariant, G,/ (x,¢;x’,t') is a function of
only the relative coordinate x—x’, implyingthat the terms in the sum with k’ #
k are zero. Similarly, if the Hamiltonian is time-independent, the invariance
with respect to displacement in time implies that G,,(x,¢;x’,#) only depends
on the difference t — t/ of the time-arguments. We thus obtain

. — 1 ik (x—~x")
Goor(x,1: %" 1) = v Zk:e Goor(k,t —t') (6.8)
where
Goor(k,t) = =i < T{ew,o(t)ck . (0)} > . (6.9)

In the problems we shall consider, the Green function is proportional to the
unit matrix in spin-space?

Goor(k,t) = 8,4:G(k, 1). (6.10)

2Whenever the Hamiltonian and its ground state is invariant under spatial rotation and
reflection, the Green function is proportional to the unit matrix I = §,,/ in spin space.
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We shall frequently need to work with the Fourier-transform of G with respect
to time. This is given by

G(k,w):/dte‘wfc(k,t), (6.11)
together with the inverse
G(k,t):/i;-‘;e-‘w‘c:(k,w). (6.12)

We shall generally follow the commonly used convention of distinguishing be-
tween a function and its Fourier-transform by their explicit argument only,
except in special cases such as the example treated in Section 6.5.1 below,
where an additional ‘tilde’ is introduced to prevent misunderstanding. The
integrations always extend from minus infinity to plus infinity unless the limits
are explicitly indicated.

6.2 Physical observables

We shall now show how the Green function in a translationally invariant sys-
tem yields information on the occupation of the single-particle states k. The
occupation number ny of the state k is seen to be given by

e =< cf ,(0)ck,0(0) >= —i lim,_o-G(k, 1) = —i / g%e“”"G(k,w). (6.13)

Here 1 denotes a positive infinitesimal, 5 = 0%.
The total number of particles N therefore equals

) dw ;, :
N = 2Zk:nk = -szk:/ 5-¢"G(k,w). (6.14)

In general, an arbitrary single-particle operator (such as the spin density or the
current density) may be related to the single-particle Green function, because
the latter involves one creation and one annihilation operator.

It is also possible to express the total energy in terms of the single-particle
Green function. One might expect that this would require knowledge of a two-
particle Green function, but since the field operators v satisfy the Heisenberg
equation of motion involving the Hamiltonian of the system, one may relate

The proof of that is obtained by expanding G in terms of the unit matrix and the th‘ree
Pauli matrices, which together form a complete basis in spin space. Since G by assumption
is a scalar under spatial rotation, G must be a linear combination of I and 7 - k, with 7
denoting the three Pauli-matrices. The invariance under reflection implies, however, that
the coeflicient of the term involving 7 - k is zero.
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the expectation value of the total energy to the single-particle Green function.
This is shown as follows:
For definiteness we shall assume a Hamiltonian of the form

H=H,+ H (6.15)
where
Hy = Z ekc{(yack,a (6.16)
k,o

represents the kinetic energy, while

1
= W Z ch}c-}-q,oc;rc’—q,g’ck’,o’Ck,a (6.17)
q.k k', 0,0

Hl

is the interaction energy. The Fourier-transform of the (spin-independent)
interaction potential is denoted by V.
The Heisenberg equation of motion is

ih;%ck(t) = etHt/h ey H]emHUR (6.18)

where H is the Hamiltonian given in (6.15).
In calculating the time derivative of an annihilation operator ¢; in the
Heisenberg-picture we encounter a commutator of the form

[01,02626465]. (619)

When working out such expressions it is convenient to exploit the identities
{4.8) and (4.9). Using (4.8) we get

[cl,cj_,cgqcs] = [e1, c{,cg]qcs — c%c;[c;;cs,cl] = [e1, cgcg]qcs, (6.20)

while the use of (4.9) yields
[Cl, Cgc;C:;Cs] = 51)QC£C465 — 6173026465. (621)
Note that (6.21) implies that
Z c{ [cl,cgcgc‘,cﬂ =2 Z cgc;cl;cs. (6.22)
12345 2345

The time derivative of < CLU(O)C]‘U (t) > is determined by working out the
commutators with the help of (6.21),

8
i ; <el,(0)ao(t) >= D e < cl,(0)exo (1) >

ko
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1
+50 > ValSpraxboor < e chi_qon(t)epion(t)eps(t) >
kapa’p’a”q

—bpi—qibaon < cLacL+qa,(t)cp:,u (Depar (1) >),  (6.23)

which implies that

—i limy o~ Zm%G(k,t) = —ilimo- Y Gk, ) +2< H' > (6.24)
ko ko

on using (6.22). By means of (6.12) we then obtain from (6.24)

< H >=- (2 K / /dwe“"”( ex + hw)G(k,w), (6.25)

which yields the final result for the ground-state energy

1% i
W/dk/dwe'“"’(ek—{—ﬁw)G(k,w). (6.26)
Knowledge of the single-particle Green-function G(k,w) thus allows one to
determine the ground-state energy E, by carrying out the integrations in (6.26)
over k and w.

It is sometimes convenient to separate the ground-state energy in two terms,
E = Ey+E,, where Ej is the ground-state energy of the noninteracting system,
while Fy is that due to the interaction. This is achieved by introducing a
variable coupling constant A defined as follows: Let H = Hy + H' be the
Hamiltonian of the system, with H’ being the interaction. The operator H(A)
defined by

E=<H>=< Hy+ H >= -

H()\) = Ho+ AH' (6.27)

then has the properties that H(0) = Ho, while H(1) = H. We let A vary
between 0 and 1, and imagine that we have calculated the total energy E())
associated with the Hamiltonian H(A). Denoting the ground-state wavefunc-
tion by ¥(A) we thus have

E(X) = (T(N)|H(M)|¥(X)). (6.28)
By differentiating with respect to A we obtain
dE(A) d ,
S = B OO + EO)HEO). (6.29)

Since {(¥(M)|¥(A)) = 1, the first term on the right-hand side of (6.29) equals
zero. By integrating with respect to A we finally obtain the identity

E—FEo= /0 A ) AH ¥ (). (6.30)
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In order to evaluate (6.30) we must calculate (¥(A)|AH'|¥(A)) for each A. This
is accomplished with the help of (6.25), resulting in

E“E—n'—z—/lﬂfdk/d Wn(_ep + )G (k,w),  (6.31)
b = 1(27r)4 Y we € + hw W), .

where the superscript A indicates that the Green function belongs to the Hamil-
tonian H(A) = Ho + AH'.

6.3 Green functions for free fermions

The Green function G(k,t) for free fermions is
Goor(k,t) = —i < T{exo(t)el,.(0)} >0, (6.32)

where the expectation value involves the ground state of the free-particle
Hamiltonian Hy given by

Ho=) ercl,cxo, (6.33)
k,o

where €; = h%k2/2m.
The use of the Heisenberg equations of motion and the Hamiltonian (6.33)
results in the equation of motion

ih%ck = erek(t) (6.34)
with the solution '
() = e~/ Ry (0). (6.35)

This allows us to determine the free-particle Green function G(k,t). By con-
sidering first t > 0 and subsequently ¢ < 0, we obtain the result

Gk, t) = —i[(1 — ny)O(t) — nxO(—t))e~ et/ (6.36)

where ©(t) = 1ift > 0 and ©(t) = 0if t < 0. Here nx = 1 if £ < kp, while
ng = 0 if k > kr. Thus nx are the occupation numbers in the ground state of
the non-interacting system.

In later applications of many-body theory we shall find that the poles of the
single particle Green function G(k,w) in the complex w-plane yields informa-
tion about the energy and lifetime of the quasiparticles, which is the commonly
used name for the elementary excitations of the system. In order to see how
this works for free fermions we use the identity

dw et

%w:&:in’
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where 7 as usual is a positive infinitesimal, to prove that

1—nk Nk

O) (k. w) =
COew) = T v T o/

(6.38)

where the superscript on G indicates that it is the Green function for non-
interacting particles. Note the different location of the pole in the complex
w-plane for k < kg and for k > kp.

The Green functions for free electrons do not by themselves contain any
information which may not be obtained by using elementary quantum mechan-
ics. By doing infinite-order perturbation theory in the presence of interactions
we shall find that the poles of the Green functions are shifted in the complex
frequency plane. Provided the poles remain sufficiently close to the real axis,
their real and imaginary parts represent, respectively, the energy and (h times)
the inverse lifetime of the elementary excitations.

6.4 Infinite-order perturbation theory

In using perturbation theory to evaluate the Green function we shall employ
the method of adiabatic turning-on of the interaction: we imagine that at
some time in the distant past the interaction between the particles is absent,
while for increasing times it is gradually being turned on in such a way that
it assumes its full value at a definite instant of time ¢ = 0. This could be
described by the Hamiltonian

H=Hy+e g (6.39)

where € is an infinitesimal positive quantity. According to (6.39) the interaction
vanishes for ¢ — +oo, while the Hamiltonian equals its full value H = Hy +
H" at t = 0. The limit ¢ — 0 corresponds to turning on the interaction
adiabatically, 1. e. infinitely slowly.
In the interaction picture the wave function ¥;(¢) develops in time accord-
ing to
‘I’[(t) = Uf(t,t())\p](t()), (640)

where we have indicated by the subscript ¢ that the time-development operator
depends on this parameter. It is given by expression (2.57) or (2.58), with

H (") = e"“llH’(t'). If the time ty approaches —oo, then the Schrodinger
wave function Wg(tg) must be given by

W (tg) = e Hoto/hg, (6.41)
where @, is a stationary eigenstate for Hy,

Ho®o = Eo®q. (6.42)
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The wave function in the interaction picture at time t = tg = —oo is therefore
Uy (ty) = efote/ Mg (1) = @. (6.43)

At time ¢t = 0 all three pictures coincide as before. We thus have
Ts(0) = ¥y (0) = ¥7(0) = U (0, —00)Pg. (6.44)
Strictly speaking ¥y = U.(0, —00)® does not exist in the limit € — 0, since it
acquires a phase which increases in proportion to 1/e. In stating the Gell-Mann

Low theorem it is therefore necessary to consider instead the quantity

U0, —00)®0) _ _[¥o)
(®o|Ue(0, —00)®o)  (Po|¥o)

(6.45)

1imf._,o

The theorem due to Gell-Mann and Low? says the following: If (6.45) exists
to all orders in perturbation theory, then it is an eigenstate of H,

Wo) _ p_[%0)

Haawey = Flaolwn)

(6.46)

We shall not give the proof of the theorem here.* It should be noted that the
state which develops adiabatically from the ground-state of the non-interacting
system is ordinarily, but not necessarily, the ground-state of the interacting
system. If - as in a superconductor - the ground-state energy does not possess
a perturbation series in the coupling constant, then the eigenvalue £ is not the
ground-state energy.

The theorem of Gell-Mann and Low shows how an eigenstate (usually the
ground state) of the Hamiltonian H is generated by adiabatically turning on
the interaction. We shall make use of the theorem in evaluating the single-
particle Green function, which involves a time-ordered expectation value of
two Heisenberg operators in the ground state of the interacting system. As we
shall see below, this expectation value may in turn be expressed in terms of
expectation values of operators given in the interaction picture, evaluated in
the ground-state ®g of the non-interacting system.

First we calculate the norm of the state vector entering the eigenvalue
equation (6.46). We observe that the state given by (6.45) may equally well
be obtained by letting the system develop backwards in time from t = 400 to
zero. Thus we have

%) _ . {Ud0,00)®0)
(®o]Wo) “(@o|U(0, 20) o)

3M. Gell-Mann and F. Low, Phys. Rev. 84, 350, 1951

4 A detailed discussion may be found in A. L. Fetter and J. D. Walecka, Quantum Theory
of Many-particle Systems, McGraw-Hill 1971.

(6.47)
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By using U(0, c0)! = U~1(0, 00) = U(00,0) we obtain

(Wo]Wo) (@)U (00,0)U(0, —00)|®g) _ (Po|U (00, —00)|®0)

(Wo|®o) (Po|Wo) [{®o|¥o)|? B [{®o|¥o}|?

(6.48)

Let us consider the quantity I(¢,t') defined by in terms of the operators
AH and BH

(Wo|T{Au()Bu(t')}|¥o)

I(t,t’) = |<(D0|\IIO>]2

(6.49)

First we treat the case t > t' and obtain

I(t, ) (@0 ¥o) | = (Wo|Uc(0, ) Ar(£)Uc(t,0)U(0,t") By (t')U(t', 0)|¥o).
(6.50)
Using the property U(¢,0) = U(0,%)~! of the time-development operator, we
get

I(t, 1) [(®@o|¥o) |* = (ColUe(0,8) A1 (1)Uc(t, 0)U(0, ") Br (t')U(t', 0)|¥o)
= (0| T{U(00, —00) A1 (t) Br(t')}|®o). (6.51)

The opposite case t < t/ may be treated in a similar fashion.
In the following 1 stands for (x1,1,01) and [ d1--- for Zal fdxy [dty---.

The Green function G(1,2) may therefore with the help of (2.58) be expressed
as

: i, [ e
=0 N (o]

n= - 00

< T{H'(t)) - H'(t)y(L)YH (2} >0
<S> '

(6.52)

Here the operators are written in the interaction picture. The average < .. >¢
involves the ground state of the non-interacting system. The denominator
< § >¢ is given by the expression

o0

i1
< 8 >¢= r;)(—ﬁ) -
/ dt;.../ di, < T{H'(,) - H'(1L)} >0 . (6.53)

The result (6.52) forms the starting point for the diagrammatic perturba-
tion theory described in the following subsection.
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6.5 Diagrams

In general, the Green function cannot be determined exactly. Instead, one does
perturbation theory and sums selected terms to infinite order by expanding
the numerator and denominator of (6.52) in powers of H'. This procedure
generates time-ordered products of strings of field-operators, corresponding to
n-particle Green functions for the non-interacting system. We shall therefore

need to consider many-particle Green functions Gﬁf’) for the non-interacting
system,

Gy 1) = (=) (@] T{Y(1) - w(n)y" (') - -w*(1’>}i<1>o(>.
6.54)
For short we have written n for the argument (X,,t,,0n).
First we derive a differential equation for G(lo), the one-particle Green func-
tion for the non-interacting system with Hamiltonian H given by

H :Z/dxlwll(xl)Ho(xl)w'gl(xl). (6.55)
We have
GO 1) = —i(®@|T{w(1)¥(1')}|®o)
= —i(®o|(1)y!(1")|®e)O(t; — t1)
+ i@y (1)9(1)|®0)O(t1r — t1). (6.56)
Since
Lov)
ihg— = (1), H]
= ), ¥ / dxa 0 (2) Ho(2)9(2)]
= Ho(1)y(1), (6.57)
we get
ihc%aﬁ")(l,l') = Ho(1)G"(1,1)
1

+ ho(t ~ 1)(@olp (1! (1) + ¥T(1)%(1)[®o)
= Ho(DG(1, 1) + hb(t; — t,)8(x1 — x1/).  (6.58)

In operator form we thus have

GV, 1) = (ih(% — Ho(1))"'hé(1 = 1'). (6.59)
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We now proceed to consider the equation of motion satisfied by the two-

particle Green function G(QO)(I,2;2’, 1'). In this case we must consider sepa-
rately® the intervals ¢; < t{ and ¢; > | together with ¢; < t} and t; > t;. We
therefore get

(ih - — Ho(1)GS(1,2:2, 1)

= —ihé(t; — 11 )(®ol{v(1), ¥T(1")}T{¥(2)%!(2')}|®0)
+ihé(ty —t5)(Dol{1(1), ¥1(2)IT{¥(2)¥' (1)} o)
= hs(1-1VG{V(2,2) — hs(1 - 2)GV(2,1'). (6.60)
On using (6.59) we see that
c(1,2:2,1) = 191,162, 2) - 611,267 (2, 1), (6.61)

which may be written as a determinant

61,1 691,2)

¢(1,2;2,1) =
2 ( ) e, 1) 69@2,2).

(6.62)

It is left as an exercise for the reader to show that the corresponding result
for a three-particle Green function may be written as

G001y 60,2 691,3)
G(1,2,33,2,1) = | 02 1) ¢0r2) ¢0e3) | (663
31y ¢76,2) ¢V6,9)

These results are readily generalized to a n-particle Green function, which
is given by

¢V, ¢Va,2) - G,
GO, -nin’ 1) = V1) V22) - V@) (6.64)
GO, 1) On,2) - O, n)

The result (6.64) is Wick’s theorem. It forms the basis for the diagrammatic
expansion of the Green function given by (6.52).

As an example of the use of diagrams we derive in the following subsection
the results of Hartree-Fock theory discussed in Chapter 4.

5Note that we do not have to consider the intervals t; < t; and t; > t; separately,
since the anticommutator {4(1),4(2)} is zero and therefore gives a vanishing contribution
to § (tl — t2).
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Figure 6.1: Contributions to < S >¢ to first order in V.

6.5.1 Hartree-Fock theory with diagrams

Let us consider a system of identical spin-1/2 fermions with Hamiltonian H =
Ho + V, where the interaction V is given in the Schrodinger picture by

V= % Z /dx1/dxzd)f,l(xl)lﬁl?(xQ)V(xl — X2) %o, (X2)¥s, (x1). (6.65)

G102

For simplicity we have assumed that the potential V(x; — x2) is spin-
independent and only depends on the relative coordinates x; — x2. It is con-
venient to introduce time explicitly by the definition

U(1,2) = V(x1 — x2)6(t; — t3). (6.66)

When we expand the Green function, we must remember to take into ac-
count that the creation operators appear before the annihilation operators in
the interaction (6.65). It is therefore convenient to shift the time argument in
the creation operators appearing in V () by a positive infinitesimal 0*. When
we subsequently use Wick’s theorem on (6.53), we shall encounter Green func-
tions of the type G(9(1’,1'), where the two time arguments are ¢;. and ¢, 407,
while the spatial arguments are x1/ and xy,,

GO, 1) =GP, (xyr s xy 1+ 0F). (6.67)
Correspondingly there appear Green functions of the type G(O)(l’,Q’), where
the two time arguments are ty, and t;, + 01, respectively, while the spatial
arguments are xy+ and xy/. In this case we have

GO, 2 =GO, (x1r,t1; %, 1y + 0F). (6.68)

VT

To first order in the interaction < .S >y becomes

<S>y =~ 1—%/dt’l<T{V(t’l)}>o

I

____i_ ’ /[ ! 14
-5 d1/d2c(1,2)

< T{ (1)1 (2)9(2 ) (1)} >o, (6.69)
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. (( 1! 7 ! Y

Figure 6.2: Unlinked diagrams to first order in V.

where [dl.--stands for 3_, [dx; [dt;---. We now use

<T{¥' (1)1 (2)(2 ) (1)} >0 =
< T{p(1)9' (1)} >o< T{(2)¥'(2)} >0 —
< T{H(1)9H(2)} >o< T{¥(2)¥! (1)} >o, (6.70)

of. (6.62). Diagrammatically, (6.69) and (6.70) may be illustrated as in Fig.
6.1.

By expanding in similar fashion the numerator in (6.52) to first order it
is seen to contain terms in which the space-time point 1 is connected directly
to 2, while 1’ and 2’ are connected as in the denominator (6.69). Symboli-
cally we may combine these terms as shown in Fig. 6.2, and we observe that
their contribution to first order is cancelled by those of the denominator. A
similar cancellation appears in all higher orders, and we therefore only need
to to consider the linked diagrams in the numerator, provided we replace the
denominator < § >¢ by 1.

The first-order contribution iG{1)(1,2) to the Green function is thus seen
to be

1
iG1M(1,2) = —%-Q—/dl’/d?’U(l’,T)
<T{p () @)V (2)} >0, (6.71)
where it is understood that only the linked diagrams are included. The cor-
responding diagrams are illustrated in Fig. 6.3 (a) and (b). Note that these
diagrams have the same topological structure. They only differ by having the
names of the internal variables interchanged, and they give therefore exactly

the same contribution to G(). The diagrams (c) and (d) likewise yield the
same contribution, which means that the expression for G(l)(l, 2) becomes

G¢1(1,2) = % / d1’ / d2' -G, 2)U 1, 2Y¢O 1, 1)G® (2, 2) +
GO1,1YU 1, 2)GO (17, 2)GO(2,2)].(6.72)
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Figure 6.3: Contributions to G}).

Note that the factor 1/2 appearing in the original interaction (6.65) is cancelled
in the expression (6.72), since the diagrams (a) and (b) (as well as (¢) and (d))
yield precisely the same contribution.

For a system which is translationally invariant in space and time it is con-
venient to Fourier-transform from the (x,t)-variables to (k,w)-variables,

1
(7r

The Fourier-transformation yields

G(1,2) = /dk/dwe“‘ 1=x2) g=iw(ti =) Gk, w)b,, o, (6.73)

GYk,w) = h(G(O)(k

/
Vo [ @€ [ 4
[—20(0)G O (K, w')eiv
+ Uk =~k w-u)GOK, o)e 0, (6.74)

which may be shown as follows: In order to Fourier-transform an expression
of the form

F(.’El, 2,‘2) = /dlg/dx4/4($1 - .’63)3(1'3 el $4)C(.’L‘3 — IL‘4)D(14 e 1!2) (675)

we 1nsert .
o / dke'*® A(k) (6.76)
tc. This results in

F(Jtl,l‘g) = (QW)—4fd13fdl'4fdk1 fdszdk3fdk4
A(k1) B(k)C (k3) D(ks)
exp 7[(11 - 1’3)k1 -+ (1,‘3 — J?4)k2 + (1:3 - :L‘4)k‘3 + (.’84 — Ig)k‘4]
:'(?W)—zfdkl fdkgfdk;;fdk&;e}(p i(:ﬂlkl - $2k4)
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§(ky — kg — k3)6(ky + ka — ka)A(k1)B(k3)C(k3)D(ks) .
= (27)"2 [ dk; [ dkze’®1==2%1 f(k) B(k2)C (k1 — k2)D(k1),  (6.77)

which shows that the Fourier-transform of F is
Fk) = 51; / k' A(k)B( YO (k — ¥)D(k). (6.78)
In a similar fashion we obtain from an expression of the form
G(zy,22) = /dz;;/duA(xl — z4)B(z3 — z4)C(23 — x3)D(z4 — z2) (6.79)

that
G(k) = 2_17r / dk' (k) B(O)C(k') D(k), (6.80)

since the integration over z3 and z4 introduces 6(k;) and é(k; + k2 — ky),
respectively. Note that it is necessary to take into account the infinitesimal
difference 0% between the time arguments of the Green function, resulting in
the multiplication of the function corresponding to C in the two expression-
s above by exp(iw’0%). This guarantees the convergence of the subsequent
contour integration in the w’-plane.

We have thus verified (6.74), which yields the first-order correction to the
Green function in terms of a product of two zero-order Green functions. In
order to obtain the Hartree-Fock approximation treated in Chapter 4 we need
to shift the poles of the Green function, and it is therefore necessary to sum
an infinity of diagrams. Symbolically, we may write (6.74) as

GV = GOTGO), (6.81)

where ¥ is a function of k and w. If we now include terms like GO EG@TG®)
etc. we get a geometric series for G,

G = GO 4 GOTEO 4 GOLEOREO 4 ..., (6.82)

which may easily be summed. It is convenient to write the result in terms of
the inverse of G:

(G) ' = (G —x. (6.83)
The expression for ¥ is according to (6.74) given by
_ i 1 ’ 11017 A(0)(1! 1) piw 0
Sk,w) = R @) /dk /dw [2U0)G'"V (X' ,w')e

Uk — K, w—w)GOK, w')e " (6.84)
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By carrying out the integration over w’ and using (6.13) we obtain

hE(k) (22) /dk'?’lkl - #/dk’nk%_k:. (685)

Since ¥ is a real quantity and a function of k) only, it shifts the pole of the
Green function along the real axis from ¢; to Er = ¢ + hX(k). The shifted
energies are seen to be identical to the result (4.15), thus demonstrating the
equivalence of the summmation of selected diagrams with the Hartree-Fock
approximation in a translationally invariant system.®

6.6 Feynman rules

We shall now discuss the Feynman rules for the contribution to the Green
function to a given order in the interaction. Note that the content of the
Feynman rules in general depends on the particular physical problem being
considered. In a later chapter we discuss the Feynman rules that apply to the
electron-phonon problem. In the present section we deal with a Fermi system
of interacting particles. A particular example s an electron gas, in which the
interaction between the particles is given by the Coulomb law, but the rules
apply equally well to other types of interaction.

In performing the expansion of (6.52) and (6.53) we must remember that
the operators appearing in these expressions are understood to be given in the
interaction picture. It is convenient to write the interaction in the form

Z /dxl/dXo/dt2¢ (X1,t1)1/) (Xz,t:z)

V(x1,%2)6(t) — 12)%0, (X2, 12)00, (X1, 11) (6.86)

by introducing a delta-function in time. This allows us to write the subsequent
expansion in a form where space and time variables occur in a symmetric
fashion. For brevity we introduce fdl o= Zol fdxldtl -+ . and thus have

/dm(zl) = /dl/dwT T2V (1, 2)¢(2)%(1). (6.87)

Here V(1, _) denotes V(xy,x2)8(t; — t2), and we have suppressed the spin-
dependence’ of the interaction.

¢This simple equivalence only holds for translationally invariant systems. For atoms,
the diagrams yielding the Hartree-Fock approximation must be calculated selfconsistently,
leading to equations of the form (4.18-19).

"The most general form of the interaction involves an interaction matrix-element
Vo .1,0,1,02,0, depending on four spin-variables. In the absence of external fields the Hamil-

tonian must be invariant under rotations in spin space, implying that the interaction has the
form

Vall,oy op,01 = V06011,0'} 502,'02 + Vlv'c,-l,ygl “Tan,ag (6.88)
where 7 denotes the three Pauli-matrices, while V5 and Vi are scalars in spin-space.
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Figure 6.4: Closed fermion loop.

Now we start the expansion through second order in the interaction. First
we work out < S >p:

< S >o= 1+———/d1’/d2’ V(1,2) < T{pT (")W1 (2)(2)9(1)} >0

(zh )2 22 2! /dll/d?/dy/d‘yv(l' )V (3, 4)
< T{t (1)t (2% (2) ()%t (3)0T (4 )%(4')(3')} >0 (6.89)

A similar expansion of the numerator may be carried out to second order in
the interaction. In Problem 42 we examine the terms generated in the process.
We have already mentioned the cancellation of the terms in the denominator
against the unlinked diagrams in the numerator. This persists in all orders of
perturbation theory, thereby allowing a considerable simplification in collecting
the n-th order terms. Furthermore, the factor 1/2" arising from the interaction
raised to the n-th power disappears, since each interaction line may be ‘flipped’.
The flipping simply corresponds to interchanging the names of two integration
variables. The factor of 1/n! also disappears, since the interaction lines may
be ordered in n! different ways, giving rise to diagrams that yield the same
contribution, since their only difference comes from the names of the internal
variables.

In a translationally invariant system it is advantageous to Fourier-transform
the Green function according to

dkdw
(2m)*

This implies that we must conserve four-momentum at each vertex, the reason
being that the integration over internal variables yields

/dxl/dtlei(kx—k2+ka)'x1e—i(wl-w2+w3)11 =

(271')46(1(1 — ko + k3)6(w1 —wo + w3). (691)

G(1,2)=G(1-2) = | ——G(k,w)ek(x1—x2)gmiwlti=ta), (6.90)

Finally, the sign of the contribution must be discussed: Each power of
the interaction yields (1/¢h), corresponding to the factor (1/ih)". When the
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Feynman rules are formulated in terms of non-interacting Green functions Gy,
of which there are 2n + 1 in a n-th order diagram, one obtains from each
a factor of i or altogether i?"*!. The n-th order contribution to the Green
function therefore has the factor
Ll 2 (6.92)
(ih)" n"

In addition it is necessary to consider separately those diagrams that con-
tain a closed fermion line. Since such a diagram arises from the pairing illus-
trated on Fig. 6.4, it gives rise to an odd number of interchanges of the fermion
operators. A given contribution to the n-th order diagram must therefore be
multiplied by (—1)F where F is the number of closed fermion loops.

We are now in a position to formulate the Feynman rules in momentum-
frequency space for the n-th order contribution to the Green function G:

e Draw all topologically different diagrams with n interaction lines and
2n + 1 oriented fermion lines, i. e. free-particle Green functions G(¥.

e Associate an oriented four-momentum with each Interaction line and
fermion line and conserve four-momentum at each vertex.

¢ Associate with each fermion line the factor

1
[
w —wg + insgn{k — kg) °7’

GOk, w) = (6.93)

where hwy = h%k?/2m is the free-particle (kinetic) energy.
e Associate V(q) with each interaction line.

e Sum over the internal spin variables and integrate over the internal mo-
mentum and frequency variables.

e Multiply by
Poogyw 1
h"( D (2m)an”

(6.94)

o Interpret

)
¢

-
/\MAO l()f-—d

as e“7GO)(k,w).
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Figure 6.5: Second order contributions to the reducible self-energy.

6.7 Dyson equations

It is evident from the previous discussion that the Green function may be
written in the form

G(k,w) = GOk, w) + GOk, w)T 4 (k, w) GO (k,w). (6.95)

The quantity X4 (k,w) is called the reducible self-energy. Its diagrammatic
expansion is identical with that of G, except for the absence of the zero’th order
term G(°) and the removal of the two external lines on the remaining diagrams.

In Fig. 6.5 we illustrate two second order contributions to £**4(k,w). They
are characterized by an important difference. The diagram (2) may be cut into
two pieces by the cutting of a single fermion line. Such a diagram is called
reducible. The diagram (b) does not, however, fall into two separate pieces by
the cutting of a single fermion line. This property is named irreducibility. We
shall define the irreducible self-energy X(k,w) as the sum of all those contri-
butions to L¢(k,w), which cannot be cut into two pieces by the cutting of a
single line. One therefore has

G(k,w) = GOk, w) + GO(k,w)Z(k,w)G(k,w), (6.96)

as may be verified by iteration. The equation (6.96) is called the Dyson equa-
tion. By determining £(k,w) in some approximation one therefore sums up
infinitely many diagrams in the expansion of G(k,w). It is evidently necessary
to consider L(k,w) rather than $'¢(k,w) in order to obtain a shift in the
position of the poles of the Green function. This may be seen by writing (6.96)
in the form

(Gk,w))™! = (GOV(k,w))™! — =(k,w). (6.97)

In Section 6.5.1 we demonstrated this explicitly in carrying out the Hartree-
Fock approximation.
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7 Green functions at finite temperature

The operator exp(—iHt/h) that describes the development in time of the
Schrédinger states clearly resembles the operator exp(—H/kT), which enters
the statistical average of a physical quantity belonging to a many-particle sys-
tem at temperature 7. This simple observation forms the basis for the in-
troduction of temperature Green functions. Since temperature corresponds to
imaginary time, one is led to define creation and annihilation operators that
depend on the variable 7 according to

Yo(x,7) = eKT/r‘1,&6,()‘:)6'1(7/"1 (7.1)

and
wl(x,r) = eKT/th,(x)e"KT/h. (7.2)

Here K equals the Hamiltonian H minus the chemical potential p times the

number operator N,
K =H - uN, (7.3)

since we shall perform the statistical averaging in the grand canonical ensemble
in which the particle number is varying. The variable 7 has thus dimension
of time. It should be noted that ¥} (x,7) is not the Hermitian conjugate of
¥s(x,7), because 7 is taken to be a real variable. For a general interacting
system, the single-particle temperature Green function G is defined by

Gool(x, ;%' 7') = — < Tr {0 (x, 7)1, (X', 7))} > . (7.4)

Here < --- > denotes a statistical average over the grand-canonical ensemble,
Tr(e'/’KA) 8 —BK

<A>= TTre-BR T e’ Tr(e A), (7.5)

with €2 being the grand thermodynamic potential defined by
e P = Tre—FK (7.6)

We shall only treat the case when the particles are fermions. The tau-ordering
operator 7% 1s in the fermion case defined by

TAA(n)B(12)C(73) - -} = (-1 C{A(n) B(2)C(7s) .-}, (T.7)

where C is an operator which orders the fermion operators A(m)B(m2)C(73) - -
chronologically with earlier ‘times’ to the right, while p is the number of in-
terchanges needed to achieve this chronological ordering. In the boson case,
the tau-ordering operator is given by the same expression as (7.7) ezcept the
factor of (—1)P.
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7.1 Translational invariance

Since we shall be dealing with systems that are translationally invariant in
both space and time, it is convenient to introduce operators cx,, and cL , that

remove and add, respectively, a particle in a definite momentum and spin state
k, 0. This is accomplished by the transformation

Yo(x,T) \/_ Z X %ey (7). (7.8)
Then
Goor(x,7;%',7') = ZE —ikx kX T ey, (r)ck, A7)} >. (7.9)
k K

Since the system is translationally invariant in space and time, G4, (x, 7; %', 7')
is a function of only the relative coordinate x — x’, and of = — 7/, implying that
the terms in the sum with k’ # k are zero. We thus obtain

1 ik-{x—x'
Goor(x, 3%, 7') = 7 ; =G, ik, 7 — 1) (7.10)

where

Goo(k, 7) = = < Tr{ex,o(T)ck ,(0)} > . (7.11)

In the absence of spin-dependent forces G is proportional to the unit-matrix
in spin-space,

Gooi(k,T) = 6,0:G(k, T). (7.12)

Each 7-variable ranges from 0 to k3, and since the Green function G only
depends on the difference between its two 7-variables, it is sufficient to consider
the Green function in the interval

h h
—-hB<T<HhB or ~%T S <7< T (7.13)

The Green function may therefore be expanded in a Fourier-series with Fourier-
coeflicients given by

R .
Gk, wn) = % / |, 4G n) (7.14)

In the fermion case the Green function has an important symmetry property
with respect to finite translations in 7-space,

G(k, 7+ hB) = —G(k, 7). (7.15)
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Here 7 denotes a positive infinitesimal, n = 0.
The total number of particles N is therefore

N:2;nk o )sﬂh/dkz Gk, wn). (7.24)

In general, the thermal average of an arbitrary single-particle quantity (such
as the spin density or the current density) may be related to the single-particle
temperature Green function, because the latter involves one creation and one
annihilation operator.

In analogy with the zero-temperature case it is also possible to express the
internal energy in terms of the single-particle temperature Green function, as
we shall now demonstrate. For definiteness we assume that the Hamiltonian
has the form

H=Hy+ H (7.25)
where
Ho = chcl’ack,, (7.26)
k,o

represents the kinetic energy, while

1

H' = W Z chL+q,oCLl_q,OICk"glck'g (727)
q,k . k’,0,0’

is the interaction energy. The Fourier-transform of the (spin-independent)
interaction potential is denoted by V4.
By working out the r-derivative of the operator cx(7) given by

ex(r) = X/ R ey (0)e=KT/B (7.28)

we obtain its equation of motion
-h-a%_ck(r) = [ex(7), K] = eKT/h[ck(O), K]e—K’/h. (7.29)

In working out the equation of motion we may thus first determine the com-
mutator [cy, K], where the operators are both Schrédinger operators.
The internal energy U, which is the thermal average of the Hamiltonian, is
obtained from
U=<H>=<K>+p< N>. (7.30)

Here we may use the equation of motion for the field operators to determine <
K >, in precisely the same manner as we obtained < H > at zero temperature,
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with ¢; being replaced by ¢ — u, while w is replaced by iw,. The result is seen
to be

__V - Wy .
U= (7 )0h /dk;e MNu + € + thw,)Glk,wy). (7.31)

The knowledge of the single-particle Green-function G(k,wy) thus allows one
to determine the internal energy U, by carrying out the integrations over wave
vector and the sum over Matsubara frequencies in (7.31).

7.3 Green functions for free fermions
The Green function G(k, 7) for free fermions is
Goor(k,7) = — < Ty {cko(T)cl . (0)} >o, (7.32)

where the thermal average < -+ >¢ involves the free-particle Hamiltonian Hyg
given by

Ho=)_ el ek, (7.33)
k,o
where ¢ = h2k2/2m. The operator K = Ky is thus

Ko = (ex — m)ef, o, (7.34)
k,o

The use of the equation of motion (7.29) with (7.34) results in

0
—ﬁg;ck = (ex — p)ex(T) (7.35)
with the solution
k(1) = e~ (x=mT/R e (), {7.36)

This allows us to determine the free-particle Green function G(k, 7). By con-
sidering first 7 > 0 and subsequently 7 < 0, we obtain the result

G(k, 1) = =[(1 = n)O(7) — nk®(—1)Je~(*=#7/M, (7.37)

where O(7) = 1if 7 > 0 and ©(r) = 0 if » < 0. Here ny are mean occupation
numbers for the non-interacting system, given by the well-known expression
from equilibrium statistical mechanics

1

T (7.38)

ng =< chk >0=
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The Fourier-coefficients are found by inserting (7.37) into (7.21) and inte-
grating over T,

Bh .
G(k,wn) = — / dr(1 — ny)e~(ex—mT/Bgiwar (7.39)
(¢}

The Fourier-transform G(k,w,) thus becomes

1
iwn — (ex — )[R

In the following 1 stands for (x1,71,01) and [ d1---for Zol Jdxi fdr -
We shall introduce an interaction picture in which operators develop according
to

G(k,wn) =

(7.40)

Ar(r) = efoT/h pge= Ko/, (7.41)

The Heisenberg operator Ay (7) is then related to the operator in the interac-
tion picture by

Ap(r) = eX7/he=KoTih g (r)eKor/he=KT/h, (7.42)
By introducing the operator U(r1, 72) by the definition

U(ry, 1) = efom/Me=Kmi/heKra/ho=Kora/h (7.43)
we may write (7.42) in the form
Ag(r) =U(0,7)Ar(r)U(,0). (7.44)
The operator U satisfies the condition
U(0,0) = 1. (7.45)

and we have

U(r) = U(r,0) = eKe/he=K7/h, (7.46)
It follows from (7.43) and (7.46) that U(0,7) = U~1(r,0). By differentiating
(7.46) one finds that U(r) satisfies the differential equation

—h%—g = Ky(r)U(r), (7.47)

where
Ky(r) = eFor/R K e Kor/?, (7.48)
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with K; = K — Kj being the interaction part of the Hamiltonian. This corre-
sponds to {2.50) in the zero-temperature case. With the boundary condition
U(0) = 1, the integrated form of the differential equation (7.47) becomes

U(r)=1- %/: dr' Ky(7"U(7") (7.49)

. The integral equation (7.49) may be iterated, just as in the zero temperature
case, and the subsequent development closely parallels that of chapter 6. Note
that the statistical operator exp(—3K) is given by

e PE = e=PEoly(np,0). (7.50)
We may therefore take over the final result, which is an expression for the
Green function as an infinite series in the interaction part of the Hamiltonian,

provided we integrate over 7 from 0 to i3. The Green function G(1,2) thus
becomes

1.1 [P, L
G(1,2) = “Z(‘E)n?/o dry /0 dr,
n=0 ’

< TAK (7)) - K (r)e (191 (2)} >0
< S >0 '

(7.51)

The operators are written in the interaction picture, and < --- >y is the
usual thermal average for the non-interacting system. The operator S is § =
~U(hf3,0), and the denominator < S > is given by the expansion

>, 11 P o
<S> = Z('ﬁ)nﬁ/o d1'1~-'/0 dr,

n=0

< T{Ki(r) - Ki(1;)} >0 . (7.52)

The result (7.51) forms the starting point for the diagrammatic perturba-
tion theory.

7.4 Diagrams

In general, the Green function cannot be determined exactly. Instead, one does
perturbation theory and sums selected terms to infinite order by expanding
the numerator and denominator of (7.51) in powers of K;. This procedure
generates time-ordered products of strings of field-operators, corresponding to
n-particle Green functions for the non-interacting system. In analogy with the
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zero-temperature case we shall therefore need to consider many-particle Green
functions GS,O) for the non-interacting system,

GO(1---min’ - 1) = (=1)" < Tr{(1) - d(n)p! (v) - - - 91 (1)} >rE7-

53)
For short we have written n for the argument (x,,7,).

First we may derive a differential equation for G§°), the one-particle Green
function for the non-interacting system. In analogy with the zero-temperature
case we obtain

91,1 = (_néfj— — Ko(1))716(1 = 1'). (7.54)
1
The equation of motion for the two-particle Green function G(go)(l,2;2’, 1)

leads to

GP(1,1) G(1,2)

G9(1,2,2,1) =
ol =1 @y ¢®a),

(7.55)

just as in chapter 6.
These results are readily generalized to a n-particle Green function, which
is given by

90,1y 620,2) - 61,
G934, nyn - 1) = GIO)(2r1l) GIO)(2’2,) G§0)(2’nl) (7.56)
P 1) 6P(n2) - G(n,n)

The result (7.56) is Wick’s theorem at finite temperature. It forms the basis
for the diagrammatic expansion of the Green function given by (7.51).

7.4.1 Feynman rules

The Feynman rules for the contribution to the Green function to a given order
in the interaction are obtained in the same manner as the zero-temperature
rules of chapter 6. The conservation of frequency at each vertex follows from
the expansion in Fourier series and subsequent integration over 7. In analogy
to (6.88) we obtain

Bh

drie=i@n—wnytwns)n — g6 (7.57)

ny Wng=Wng "
0

e Draw all topologically different diagrams with n interaction lines and
2n + 1 oriented free-particle Green functions G(9).



Green functions at finite temperature 77

¢ Associate an oriented ‘four-momentum’ (k, wy,) with each interaction line
and conserve four-momentum at each vertex.

e Associate the factor

1

GO(k,w,) = méo,o’

(7.58)

with each particle line, £, = h?k?/2m — p being the free-particle (kinetic)
energy minus the chemical potential p.

o Associate Vg with each interaction line.
e Sum over spin and frequency and integrate over momentum variables.

e Multiply by
1
——(-DF

(—BR*)"

~) -
/\./\/\/O (( (%% | <
) n J A

We define the irreducible self-energy X(k,w,) as the sum of all those con-
tributions to the self-energy which cannot be cut into two pieces by the cutting
of a single line. One therefore has

1

o Interpret

as e“n1GO(k, wy,).

G(k,wn) = GOk, w,) + GOk, w,)E(k, wn )Gk, wn), (7.60)

as may be seen by iteration. The equation (7.60) is the Dyson equation. It
may also be written in the form

G(k,wn) ' = GOk, w,)™t — T(k,wp), (7.61)

as in the case of zero temperature.

7.5 Retarded and advanced Green functions

It is often useful to consider retarded or advanced Green functions rather than
time-ordered ones such as (7.11). The retarded Green function corresponding
to (7.11) is (we suppress spin labels)

G™(k, 1) = —iO(t) < (cx(t)el(0) + ck(0)ex(t)) >, (7.62)
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where the field operators now depend on real time ¢ according to the Heisenberg
equation of motion,

cx(t) = Kt/ e (0)e KH/A, (7.63)
As usual O(t) is 1 if t > 0, and zero if ¢ < 0. The thermal average involves
as before the grand canonical ensemble, cf. (7.5). The advanced function is
similarly defined by

G*¥ (K, t) = iO(—t) < (ex(t)el(0) + cL(0)ex (1)) > . (7.64)

The connection between these different Green functions may be elucidated by
introducing a spectral representation. This is achieved by inserting into the

expression for G a unit operator 1 defined by

1=3"|m){ml. (7.65)
m
Here |m) denotes a complete set of states’, which are eigenstates for K,
K|m) = Ep|m). (7.66)
Since ]
(nlex(t)|lm) = eEn=En)/M(n|cy (0)|m) (7.67)
we obtain

G™(k,t) = —iO(t)e’? D e PEn (¢ En—Emi/R

|{nlex(0)lm)[? + e~ *Fn=Em)/P (micy (0)|n) |?). (7.68)

By interchanging the summation variables n and m in the second term we
obtain

Gk, t) = —iO(t)eP? Z(e‘ﬁE"+e’ﬁE"‘ )i (Bn=Em)t/B|(n)c) (0)|m)|? (7.69)

n,m

with the Fourier-transform

0o
Gret k,w _ _ieﬂﬂ / d.tei(E,.—E'm)t/h-{-iwt-—rpt
(k,w) nzm i

(e7PF~ + e=#Em)|(n|ex(0)|m) |?
= % Z(e’ﬁE" + e~ PEm)

n,m

|(nlex(0)|m)[? L

w+(En — En)/h+in

1Note that the set includes states with differing total number of particles, as is necessary
for a quantity such as {m|cy(0)|n) to be non-zero.

(7.70)
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we obtain the explicit expression for the spectral density
A(k,w) = 27ePY Z(e‘ﬂE" + e PEm)|(n|cx(0)|m)|26(hw + En — Ern). (7.76)
n,m
By integrating the spectral density (7.76) over frequency one obtains that
d
[ Rae) = 0T+ e (nle(Olm)?
-~ 00

n.m

= ") e PEn ((nlex(0)|m) (mlck(0)|n) +

n,m
(nle (0)|m)(mlci(0)|n)). (7.77)
The use of the commutation rule chk + ckc;“ = 1 then leads to the sum-rule
/ d T Alk,w) = 1. (7.78)

The spectral density has another important property, namely that
/_ ) ;wA(k )7’%@11_1 =< clox >= my. (7.79)

This is demonstrated by writing out the expression for the mean occupation
number, ng,

ng = e‘mTr(e"ﬁK Tck)

1Y (mlePX el (0) ) nlex (O}

= 0 Ze‘ﬁE"‘ (mle} (0)|n)(n|ck(0)|m). (7.80)

n,m
The use of the identity
(e=PE» 4 e PEm\§(hw + Ep — Em) = €™ 7Em (P% 4 1)6(hw + E,, — E) (7.81)

in (7.76) then proves the property (7.79). For non-interacting particles, A(k,w)
is given by the delta-function

Alk,w) = 27x8(w — (ex — p)/h). (7.82)

When this is inserted into the sum-rule (7.79), ny becomes equal to the Fermi-
function,

1

= m, (7-83)

Nk

as one would expect.
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Figure 7.1: Contour for the evaluation of Matsubara sum.

7.6 Matsubara sums

In this last subsection we shall discuss the technique involved in summing over
the discrete Matsubara frequencies. The Hartree-Fock contribution to the self-
energy is

Eor(k,wn) = / ‘“"Z(?Vo—ka KGO war)e . (7.84)

28 ,3 27r)3

Since the Fourier-transform of the interaction is frequency-independent, the
summation over Matsubara frequencies reduces to the calculation of the sum
F(a) given by

: 1
Fla)="_ e F—t (7.85)

where a depends on the momentum variables but not on n. Such a sum may
be carried out by converting it to a contour integral involving a function f(z),
which is defined such that it has simple, first-order poles (with unit residue)
at the Matsubara-frequencies wy,:

Bh

fz) = TR 1 (7.86)

The function f is clearly infinite when z = iw, = ir(2n + 1)/6k and has unit
residue.
We thus consider the contour integral
1 1 Bh

zn

Ic = —— d —_—— .
¢ 2mi Jo z¢ z—aefhz 41 (7.87)

If we choose the contour C as indicated in Fig. 7.1, the contour-integral I¢
is zero, since the contributions from the arcs vanish for Rez < 0 because of
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exp(nz) and for Rez > 0 because of (exp(Bhz) + 1)~1. The two parts of the
contour named C; and C; together yield the sum F(a). Therefore the integral
around the pole at z = a along the part of the contour named C3 must yield
—F(a). Thus we have

1 Bh Bh

F dze®" 7.88

(a) = 271 Je, T —aePr 1 eﬁ”“ +1 (7.88)

Now, since a = ¢ — p we recover the Fermi distribution function nx and
the Hartree-Fock expression for the self-energy becomes

hEH_F(k) /dk'(?Vo - Vi )nie. . (7.89)

2)3

At T = 0 this reduces to our previous result from Chapter 6.
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8 Electron-electron interaction

The electron gas has played a very important role in the development of many-
body theory!. In the present chapter we employ the random-phase approzi-
mation (RPA} to obtain the dielectric function and the ground state energy of
the electron gas. The random-phase approximation is valid for a high-density
electron gas. By means of diagrammatic perturbation theory it is possible to
go beyond RPA and include more terms in the perturbation series. One should
note, however, that it has not proved fruitful to extend RPA by simply going
to higher order in the parameter r,, as defined in (3.8), and Inr,. Such an ex-
pansion only converges when r, < 1, while in metals r, ranges between 2 and
6. It has therefore been necessary to devise approximation schemes that do
not represent an expansion in a small parameter but which nevertheless serve
as a useful basis for the description of the properties of conduction electrons
in the range of metallic densities.
Our starting point is the Hamiltonian of a homogeneous electron gas,

H=H,+ H (8.1)
where
Hy = Z kaI(’UCk,a (8.2)
k,o

represents the kinetic energy, while

1
H' = 2V Z V(Q)CI&-‘}‘q,acL’—q,a’ck’,o’ck,a (8.3)
q#0,k.k’,0,0'

1s the Interaction between the electrons with

2
V() = 4;’50. (8.4)

The restriction on the q-sum arises because the electrons are immersed in a

positive background of charge due to the lattice ions, as explained in Chapter
2.

8.1 The random-phase approximation

In Section 6.5.1 we have obtained GG in the Hartree-Fock approximation by de-
termining the irreducible self-energy Y(k,w) in the approximation where only
the diagram shown in Fig. 8.1 (a) is included, the Hartree-term being absent

LA collection of reprints covering the important developments in the fifties may be found
in D. Pines: The Many Body Problem, Benjamin 1962.
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Figure 8.1: Terms in the irreducible self-energy

due to the existence of the positive background. It is natural to proceed by
considering second-order contributions to L(k,w) such as the diagram shown
in Fig. 8.1 (b). Due to the occurrence of two interaction lines carrying the
same momentum, this term gives a divergent contribution to the ground-state
energy for the same reason that the use of second-order perturbation theory
led to a divergence, as demonstrated in Chapter 3. Moreover, third-order
and fourth-order terms such as those exhibited in Fig. 8.1 ¢) and d) yield in-
creasingly strong divergences, since they contain 1/¢® and 1/¢8, respectively.
The solution to the problem is to sum all such divergent terms, which results
in a finite answer. This constitutes the random-phase approximation.

Let us define an effective interaction Veg(q,w), which is equal to the sum
of V(q) and the infinity of terms obtained by inserting the polarization bubble
T1(9)(q,w) in the manner illustrated in Fig. 8.1 (b-d). Thus Veg(q,w) represents
a geometric series,

Ver(a,w) = V(9) + V(@IOV(g) + V(QIOV(@QUOV(g) . (8.5)
This infinite series is readily summed with the result

4C))
1-V(g)I®(q,w)’

Verr(q,w) = (8.6)

where 11(°)(q,w) is the polarization bubble indicated in the diagram of Fig. 8.1
(b). According to the Feynman rules, the polarization bubble is

©) _ ot [ _dk / dko ~(0) ©
19,00 = =27 [ G55 [ GREOK BN a+ kit ko). (87

The factor of 2 is due to the summation over spin, while the minus-sign comes
from the presence of the closed fermion loop. The factor of i/h originates in the

fact that we have separated out V(g) in the definition of II(®), cf. (6.94) and the
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denominator of (8.6). As we shall see, this polarization bubble determines the
dielectric function of the electron gas within the RPA, and we shall therefore
need to know it as a function of g and go.

We now use the expression (8.7) together with the free-particle Green func-
tion G(® to determine I1(®) as a function of wave-vector q and frequency go.
The free-particle propagator G(®)(k,w) is given by

1 —ny ny

GOk, w) = : —, (8.8)
W—wx+1im w—wkg—1
where .
hk
Wk = 2—m (89)
Thus we obtain
) _ gl [ _dk / dko
7(a, 0) 3 / 2ry | on
1- Nk Nk
— + ;
ko —wk + iy ko—wk—zr))
1~ Mkiq Tktq ). (8.10)
ko +go — wktq + 1 ko+ go — wkiq — N

It is a simple matter to carry out the integration over frequency, using the
theorem of residues. The result is

2 dk nk(l — Nk )
H(O) = - / 4
(4, 90) hJ (27)3 (wk ~ Wk4q + g0 + 17
N Nitq(l — ni) (8.11)

Wiktq — Wk — Qo+
Note that TI(®) only depends on the length of q for reasons of symmetry. There-

fore one has
%(q, go) = M (~q, 0). (8.12)

Before we consider the general dependence of (8.11) on ¢ and ¢g, we shall
exhibit its static limit ¢o = 0. In this limit the two terms in (8.11) may
combined as follows

dk Nkyq/2 — Pk-q/2

n®(q,0) =2 i
(0.0 (27)3 €xtq/2 — €x—q/2

(8.13)

To obtain this expression we have introduced the new variable k' = k + q/2
and subsequently replaced k’ by k.
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Next we take the long-wavelength limit ¢ — 0 of (8.13). By expanding the
differences in the numerator and the denominator in powers of ¢ one obtains
in the limit ¢ — 0

dk Ony

n®(0,0) =2 @ e~ —2N(0), (8.14)

where 2N (0) = mkp/ﬂ'z?‘z2 equals the density of states per unit energy and
volume at the Fermi energy. The long-wavelength limit yields (minus) the
density of states at the Fermi energy, because the derivative of ny with respect
to energy equals (minus) a delta-function situated at the Fermi energy.

In the static, long-wavelength limit we thus obtain from (8.6) a screened
interaction Veg given by

V() _ A4me}
14+k2/q2  ¢* + k2’

where k? = 8N (0)me2 = 4kp/mag, ao being the Bohr radius. The Fourier-
transform of this interaction is the screened Coulomb-interaction

Ve (q) = (8.15)

6‘8 —ker
Ver(r) = e (8.16)

Note that this interaction has the same form as the Yukawa-potential used
in nuclear physics. The range a of the interaction is ¢ = k;!. In metals kg

and ag ! are comparable, and a is therefore approximately equal to the mean
interelectronic distance.

8.2 The dielectric function

The difference between V and V.g is that the latter is screened,

V(g)
Verr(gq,w) = , 8.17
ff(q ) C(q,OJ) ( )
where the dielectric function ¢ is
47e2
€(¢,q0) =1 - q;’H‘“)(q,qo), (8.18)

in terms of the function T(®)(¢, ¢o) given by (8.11). Since there is no preferred
direction in momentum space, II(®) only depends on the length of q and on go.

By carrying out the integration over k and the angle between k and q we
may determine the real and imaginary part of the dielectric function. The
result is conveniently expressed in the dimensionless variables

-4 )
= 2k’F y, ¥p = 4CF' (819)
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In order to determine the dielectric function we must carry out the integrals
over k in the expression (8.11). Before doing that we write the expression in
the form

2 dk 1
(0) y = 2 /= —
(4, 0) hJ (2m)3 (1 nk+Q)(wk — Wki+q+ Qo+ i

1
+ — ), 8.20
wk-wk+q—qo+m) ( )
which is obtained by exchanging the variables k and k + q in the second term
of (8.11) while making use of (8.12). We note from (8.20) that I1(®) is an even
function of the frequency variable go. The real part of TI(°) is seen to be given
by

2(wk — Wk+q)
(wx — Wk+q)2 - (Ig
The term in (8.21) containing the product nyni,q yields a vanishing contribu-

tion, since it changes sign upon the interchange of k and k + q. Consequently
we have

Rell®(a,00) = 7 [ Gz mell = mira) (8:21)

Rell”(q,q0) = 2/(‘“‘ 2wk — Wk+q)

n
RJ @rP ™ ox - vk - 62
2 / dk 1
= —_ n
. hJ (2m)3 k Wk — Wktq + 0
1
+ — ). (8.22)

Wk — Wk+q — G0

It is convenient to introduce the dimensionless variables given in (8.19)
together with

k
Then we obtain
. 1 1
Rell®(q,g0) = N(0) / . / dyy?
-1 2 0
1 1
), (8.24)

zg — 2 — yrcosl - zo+ 22 + yx cosf

where we have used that h(go + wkt+q — wk) = 4er(z0 + 22 + yz cos ). Now
the remaining integrals are elementary and yield

1 1 o |z — zo + 22|

Rell(® = =2N(0)(z + —[{1 - (= - 2)*}In —————

ell'®(q, 90) 05 + g {1 -3 w)}1n|z+x0_le

|z 4+ zo + z?|

{1—(3;3+:c)2}1n o]

. (8.25)
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The imaginary part becomes

1 1
Imll®)(q,q) = -N(O)x / d(c;s@) / dyy®
-1 0

O(z® + zycosf — %(1 - y2))

(6(zo — 22 — yz cos B) + 6(x0 + 22 + yz cos §)).(8.26)

This integral is readily worked out by considering separately the regions z > 1
and ¢ < 1. Since the imaginary part is even in zg, it is sufficient to con-
sider it for £o > 0. In this case the argument of the second delta-function,
8(zo + 22 + yz cos ), is never equal to zero, because of the constraint (ex-
pressed by the @-function) that [k + q| > kr. Consequently we may leave it out
and focus on the contribution of the first delta-function, §(zg — 2% — yz cos 8).

First we treat the region £ > 1. In this case the argument of the ©- funct.lon
is always Eosmlve since 0 < y < 1. We distinguish two cases, a) zg < z? and
b) zo > z*. In case a) the lower limit ymi, of the y—mtegratlon is obtained by
setting cos@ = —1 in the delta-function, and is therefore ymin = (22 — z0)/z.
Since Ymin must be less than 1 in order to get a non-zero contribution, we
deduce that (22 — z¢)/z < 1 or g > z? — z. In case b) the lower limit ymin of
the y-integration is obtained by setting cosf = +1 in the delta-function, and
is therefore ymin = (29 — .1:2)/:0. Since ymin must be less than 1, we obtain the
condition zg < z% + z.

Provided z > 1, the imaginary part thus becomes

ImII‘%(q, o) = —N(O)—{l - (— —z)%} for 22—z < zo < z? +z.(8.27)
The other region, z < 1, may be treated in a similar fashion. The results

are exhibited in the expression (8.30) below.
The resulting dielectric function e then becomes (go > 0)

k2
€(¢,90) =1+ ;I%F(z,zo), (8.28)
where
11 zo | :c0+a:2|
T+ xo+2
1-(2 42 :———O——xg{] (8.29)
while

ImF = —{ —(————x)2} for |z —2z?%| < zo < z + 2?
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Ty
— for 2o <z —z°
2z

= 0 otherwise. (8.30)

Note that the real part of the dielectric function in the static limit (go = 0)
has a singular slope at ¢ = 2kp. This is reflected experimentally in metals in
the Kohn anomaly of their phonon spectra or in the Friedel oscillations of the
conduction electron density surrounding a charged impurity. In the static long-
wavelength limit ReF' — 1, and one recovers the Thomas-Fermi approximation
for the screening.

Now let us consider the limit of hlgh frequencies w, with ¢ tending to zero,
while w remains finite. In this case we find from (8.29) the familiar result

w2
e(qw)~1- ;% (8.31)
where wp, is the plasma frequency given by

2 2
w2 = ATneg _ ne” (8.32)
» m meg

When ¢{g,w) vanishes it becomes possible for longitudinal electromagnetic
waves to propagate, with wavevector parallel to the electric field (cf. Transport
Phenomena Section 1.15.3). These are the plasma oscillations or plasmons.
Their dispersion is found by calculating the real part of F from (8.29) to
fourth order in ¢, with the result

w? 3v2q?
~ P Fq
This vanishes for 3
w? > w;‘: + =viq?, (8.34)

5

where vrp = hkp/m is the Fermi velocity. As long as the curve given by (8.34)
does not enter the particle-hole continuum, where the imaginary part of the
dielectric function € is non-zero, cf. (8.30), the plasmon is undamped. At finite
temperature the plasmon is damped at any non-zero value of ¢. In the following
subsection we investigate the dielectric function at finite temperatures.

8.2.1 Finite temperatures

At finite temperatures the polarization bubble II(®) is given by

0 — 2 dk 0 0
i )(q,wn)—p—ﬂ-; a0 (e wn) GO+ Ky wn +wa). (8.35)
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We insert the appropriate expressions for the Green functions and obtain

2 dk 1 1
H(o) yWn) = —5— / ” 7
(o) = 525 ; (27)3 dwns — (€& — p)/R i(wn + wnr) = (eqtx — p)/h
(8.36)
The integrand is seen to vary as |wy:|~2 for large |wy|. This implies that any
contribution from the arcs in a subsequent contour integration vanishes, and
we are therefore allowed to insert the factor exp(inwy+) at will. Thereby it
becomes possible to exploit the result (7.87) directly, using
1 1 _
iwn' — (€5 — u)/hi(wn +wnr) ~ (€qex — p)/h -
( 1 1 ) 1
o — (& —JF {n + @nr) — (cark — W)/ wm — (cark — x)/
The final result is thus

dk nE — Nk
IO(q,w,) =2 / i 8.38
(9,wn) (27)3 thwn — €q4k + €& ( )

(8.37)

This is the temperature-dependent result for the polarization bubble in the
random-phase approximation. After analytic continuation iw,, — w + i, its
long-wavelength limit (g — 0) yields the same dielectric function, which we
previously obtained from the Boltzmann equation, cf. Transport Phenomena.

8.2.2 Lower dimensions

The RPA-result for the screening may also be generalized to other dimensions:
In the static limit we get

d% firq/z — fx—q/2

(2m)¢ ex—q/2 — €kta/2

% flers) = fle-)

-2

1°(q,0)

= 2 8.39
@ Wk a/m (8:39)
where f(¢) denotes the equilibrium Fermi function, and
K (k*+k-q+¢°/4
€p+ = ( + q+q / ) (840)

2m

It is convenient to write the difference of the Fermi functions as a definite
integral over a variable A,

1 2012 ) 2
fleen) — fla-) = [ anIOLEL T AT T U
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Figure 8.2: H(O)(q, 0) in 1, 2 and 3 dimensions as function of ¢/2kp

since this allows one to write (8.39) in terms of the derivative with respect to
Ak - q according to

0) dik ' BF(R*(K + Ak - q+ ¢ /4)/2m)
( = _
1™(q,0) = / (27r)vl/_1dA A(h*k - qr/2m) '

(8.42)

By introducing the variable k' = k + Aq/2 we obtain

1®(q,0) = /% /1 drf'(R2(E? + ¢%(1 — A%)/4)/2m), (8.43)

-1

where f’ is the derivative of the Fermi function. At zero temperature we have

[ = —68(c —¢r). : (8.44)
The density of states g{e¢) for both spin directions in d dimensions is given
by
9(e) = gler)(=)*D/2, (8.45)
F

where g(¢r) is the density of states for both spin directions at the Fermi energy.
At zero temperature we therefore have

L ' h7g%(1 = A2
H(O)(q, 0) = —5/0 dfg(f)/ dXé(e + _q_(grz___) — €F)
-1

= _g(ep)[ dA(1 — (1 = A)z?)d-2/2 (8.46)

min
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where we have introduced the natural dimensionless variable z = ¢/2kg, while
Amin 18 0 for 2 < 1 and V1 — 22 for z > 1. The remaining steps are elemen-
tary. Note that —H(O)(q,O)/g(cp) in two dimensions equals 1 — Anin, because
the density of states is independent of energy.

In Fig. 8.2 we sketch the g-dependence of I1{%)(¢,0) in 1, 2 and 3 dimensions.
In a later problem we shall see how the divergence at 2kr in one dimension is
reflected in the Peierls instability occurring in one-dimensional conductors.

8.3 The ground-state energy

In Chapter 6 we showed that the total energy in the ground state could be
obtained from the expectation value

p-r= [ D@onaieo) (847
where
H = —é Z /d)q / dxa9p} (x1)9 (x2)V (X1 — X2)¥o, (X2)¥o, (x1). (8.48)

o102

We shall now use this formula to calculate the correlation energy FEcorr,
which is defined as the total energy F minus ‘the sum of the kinetic energy
EQ. of the noninteracting system and Hartree-Fock contribution Eyr,

Eeorr = E ~ E}?jn — Eyr. (849)

By definition, then, the correlation energy vanishes in the Hartree-Fock ap-
proximation. We shall show how the correlation energy is determined within
the RPA, where we keep only the most divergent diagrams. It is convenient
to formulate the calculation in terms of density-fluctuation propagators, which
we introduce in the following subsection.

8.3.1 The density-fluctuation propagator

The density operator is

p(x) = 3 LX) (x). (8.50)

L4

Here the field operators 1 and ! are given by

Yo =) e e, (8.51)
k
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and its hermitian conjugate. For simplicity we consider a unit volume, cor-

responding to 35 - = J dq/(2n)3---. In Fourier-components the density
operator thus becomes
p) = 3 pla)i @)= [ dxemp(x), (8.52)
q
where
p(@) =)} ,cxrqo- (8.53)
k,o

It is readily seen from (2.23) by moving cx , next to cL+q’a that the interaction
energy H' may be written as

H'=3 Y Vo) p(@p(-a) - N) (8.59)
a(#0)

where N is the number of particles. Since [p(q), p(—q)] = 0 it follows that
p(q) commutes with the interaction energy.

In the following we consider only spatially homogeneous systems, where the
ground-state expectation value < p(x) > of the density is a constant, n, equal
to the number of particles per unit volume,

< p(x) >=n. (8.55)
The density fluctuation operator j is defined as
F(x) = p(x) = n (8.56)

and has consequently its ground-state expectation value equal to zero. The cor-
responding Heisenberg operator is denoted by g(x,t). The density-fluctuation
propagator D(x,t;x’,t') is a time-ordered correlation function, which is defined
in analogy with the single-particle Green function (6.1),

D(x,t;x',t") = —i < T{p(x,t)p(x',t)} > (8.57)

in terms of a time-ordered product of density-fluctuation operators in the
Heisenberg picture. In a translationally invariant system, the density fluc-
tuation operator only depends on the difference variables x — x’ and ¢ — t'.

By using the commutation rules for the operators ¢ and ¥! we see that the
expectation value < H' > of the interaction energy in general may be written
as

<H' > = %/dxl / dX2V(X1 - Xz)(< p(xl)p(x2) > —né(xl - Xg))

= -;—/dxlfdeV(xl — X32)

(< p(x1)p(x2) > +n? — né(x; — x3)). (8.58)
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Figure 8.3: Density-fluctuation propagators

The result of the Hartree-Fock approximation is recovered from (8.58) by
taking the expectation value in the ground state of the non-interacting system,
since we have shown in Chapter 4 that the ground-state energy of a homoge-
neous electron gas in the Hartree-Fock approximation may be obtained by
treating the interaction energy as a perturbation to first order. Consequently
the correlation energy is given in terms of the difference between < H’ > and
< H’ >q, the latter denoting the expectation value of H’ in the ground state of
the noninteracting system. It is convenient to introduce the Fourier-transform
of the density-fluctuation propagator,

D(q,w) = / d(x — x') / d(t — t")e A G=X) (=) x _ %/ t — ). (8.59)

Then we get the final formula for the correlation energy, expressed in terms of
the Fourier-transform of the density-fluctuation propagator,

dA dw
Ecore = / / 27(’)3 / /\V(q)(D’\(q,w) - Do(q,w)) (860)

This formula is exact. A knowledge of the density-fluctuation propagator
D(q,w) thus allows one to determine the ground-state energy of the homo-
geneous electron gas.

8.3.2 The correlation energy

In order to calculate the correlation energy one is forced to make approxima-
tions to D. Let us first consider D(®), the density-fluctuation propagator of

the noninteracting system. As we have seen in Problem 41, D(®)(q,w) is given
by

dk
(@n?

DO(q,w) = ~2i / %o GO + 4, ko + )Gk, ko). (8.61)
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This is diagrammatically illustrated in Fig. 8.3 (a). In the RPA, we approx-
imate D by the sum illustrated in Fig. 8.3 (b), which is a geometric series. We
note that D(®) = AII(®) and obtain

| dA !
Eeorr = / / 27(')3 / V(q)H(O)(Q:U)]z ,\V( )H(O)(q)w) .
(8.62)

We shall now carry out the integrations over q,w and A and use the previously
found weight function (3.27) to show that this expression in the limit of small
r, reproduces the result (3.29) for the correlation energy. Since the leading
In r,-contribution arises from the region of small wave-vectors and frequencies
we may approximate the denominator as 1 — V(g)[I(®) ~ 1 4 k2/¢%, which
effectively screens one of the two interaction matrix elements V{¢q). Carrying
out the integration over frequencies by means of the residue theorem we obtain

/ d dq dk / dp
Beorr = (2m)2 J (2m)® J (27)°
(1 = n)nk4q(l — "p+q)”p(’\v(‘1))2

1 1
.fp_fk—fp+q+fk+q 1+kZ/q%

(8.63)

Evidently, we obtain the same weight function I(g) as in (3.27) when the
integrals over k and p are carried out, since the integrand (apart from its
additional ¢-dependence) is the same in the two cases. With § = ¢/kr we
therefore get

med k3

1
Feore = ~20 589 [ [ dgl(§)o—rs- .
c 12 / / Ul veyye: (8.64)

The dominant contribution from the lower limit in (8.64) is obtained by using
the result (3.27), 1(§) = 2(1—1In2)§/3x2. With k% = 372N (we are considering
a unit volume) and utilizing kZ/k2 o r, together with

1 <] 1 i
dAA 1(§) e~ —— (1 — .
/0 A /0 dql(q)‘j2 T ARIR 6#2(1 In2)Inr,, (8.65)
we finally get that
1 4
Ecorr=N=(1-1n 2)’—’;% Inr, (8.66)

in agreement with (3.29).
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We have neglected friction, which leads to damping of the sound, as well as
nonlinear terms in the equation of motion. By taking the derivative of (9.1)
with respect to time we obtain

2%
at?

Since the equation (9.3) involves both pressure and density, we must now relate
small changes Ap in the pressure p to small changes Ap in the mass density p.
Let us first assume that the propagation of sound occurs isothermally, thereby
allowing us to use the equation of state

= Vip. (9.3)

P

=Lt 9.4
P=7 (9.4)
where M is the (average) mass of an air molecule. Since Ap = (9p/dp)r Ap,
it follows from (9.3) and (9.4) that the sound velocity s is given by

dp kT
2 _ —

Under usual circumstances the propagation of sound does not take place isother-
mally (at constant temperature), but adiabatically (at constant entropy). As
a result (9.5) should be multiplied by the ratio Cy/Cy between the heat ca-
pacity at constant pressure and at constant volume. The resulting expression
for the sound velocity, s = (CokT/Cy M)!/2 | is in very good agreement with
measured sound velocities in gases.

Let us now turn to the determination of sound velocities in metals. At
the relatively low frequencies and long wavelengths characterizing sound it is
possible to regard the metal as a continuum and use the equations (9.1) and
(9.2) leading to (9.3). The connection between pressure and volume is not,
however, given by (9.4), which holds for an ideal classical gas. In order to
determine the pressure as a function of volume we identify the ground-state
energy Fg in our simple model with the internal energy U at T'= 0 K. Thus

U= —z—pr X V—-2/3. (96)

As a consequence the pressure becomes proportional to V' =3/3

by

, since it is given

ou 20 2
= ——— = — = —nkTy, T
P=rv T T T (07)
which shows that the equation of state at 7' = 0 is obtained by replacing the
temperature in (9.4) with the Fermi temperature TF, apart from a numerical
factor.
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The mass density p is given to a good approximation by
p = NionM, (9.8)

where M is the mass of an ion in the crystal lattice, while n;,, is the ion density.
We asssume that there are z conduction electrons per ion, which implies that
Nion is equal to n/z. Consequently the sound velocity is given by

2 _Op zm ,
% =3 T (9.9)
where vp = hkp/m is the Fermi velocity.

This result is in qualitative agreement with measurements of sound veloci-
ties in simple metals such as Al, Na and Cu. One finds for these three metals
that the value calculated according to (9.9) is 9.1, 3.0 and 2.7 km/s, respec-
tively, while the measured longitudinal sound velocities are 6.8, 3.1 and 4.7
km/s.

Note that it is the compressibility of the electron gas which enters the sound
velocity in this simple model. The physical reason for this is that the motion of
the ions and the electrons is not independent. The electrons follow the motion
of the ions in order to neutralize their charges locally. As a consequence the
electrons are compressed and expanded, resulting in pressure oscillations which
are determined locally by changes in the -energy of the electron gas due to
changes in its density.

The expression (9.9) for the sound velocity may be used to estimate the
maximum phonon frequency wmayx. Neglecting dispersion and using that the
phonon wave-vector is about 1/a at the Brillouin-zone boundary, where a is
the interatomic distance (cf. (5.35)), we obtain

Wmax =~ sa” !~ \/m/MvFa_l. (9.10)

In most metals the interatomic distance a is comparable to the wavelength
for an electron at the Fermi surface, a~! ~ kp. Consequently we have

hwmax ~ vVm/Mep, (9.11)

which shows that typical phonon energies in metals are about one hundredth
of the Fermi energy, m/M being about 10~ or less.

9.2 The electron-phonon coupling

We shall show that the electron-phonon interaction has the general form

Ha_ph = Y g(k,X q,0)ck ,cuo(bga + bl q). (9.12)
kk'oqa
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Since the electron-ion interaction does not change the spin quantum number
o of the electron, we have that ¢/ = 0.

Now we evaluate the matrix-element in (9.19) for the case when the elec-
trons are described by plane waves exp ik - r/V1/2. We multiply and divide by
exp i(k’ — k) - R{ in order to introduce r — R} in the exponent. Furthermore
we use that the gradlent of ~1/ris r/r which according to Appendix A has
a Fourier-transform given by —4wiq/q?. We sum over lattice points #, utilizing

that Lon it [
Z e‘(k ~k-q)-R; = N(Sk’,k+q+G , (9.21)

where G is a reciprocal lattice vector!.

We shall assume that G = 0 is the only reciprocal lattice vector, which
satisfies (9.21). In a real metal, processes with G # 0 (the socalled Umklapp
processes) are in fact important, but here we neglect them along w1th band-
structure effects.

When these results are put together, we obtain the followmg expression
for the coupling function gg (the superscript 0 means that we have not taken

screening into account),

2, ./
o _ ez Nh (9.22)

997 GV foMag ‘a:

For simplicity we assume that the polarization vectors éq are either parallel
or perpendicular to q. Then (9.22) implies that the electrons only couple to
longitudinal phonons, and we may therefore leave out the sum over polarization
vectors labelled by the index a. This assumption is not true in real metals,
since the phonons in general are neither longitudinal nor transverse, except
along symmetry directions. We shall also assume that the phonon spectrum is
isotropic, wq = wy

It should be noted that (9.22) diverges when g tends to zero. This is due
to our neglect of the screening properties of the electron gas. In the long-
wavelength hmlt (¢ — 0) the dielectric function according to (8.14) is given by
€ = 1+ k2/q?%. If we assume the validity of this expression for the dielectric
function at larger ¢ as well (which of course constitutes an approx1mat10n) we
get g, = g9/¢. After taking the square of the modulus of g, = g9 /€ and letting
¢ tend to zero we obtain the long-wavelength limit of the couphng function

(k k' a) = 9x'—k; b
- — 3

Here X is a constant of order unity, while w, = sq is the longitudinal phonon
frequency. As usual we have denoted by N(0) the density of states at the Fermi

for ¢ — 0. (9.23)

1The set of reciprocal lattice vectors satisfy the condition G - R? = 27p, where p is an
integer. .






102 Introduction to Many-particle Physics

the sum over the empty states (the k-sum in (9.25)) must exclude p. Note
that the last term in (9.26) arises because there is a term in E}’ which is not
in EN+! since the state p is filled in the unperturbed (N + 1)-particle state.

The effective mass may be calculated by taking the derivative of Ex with
respect to k (we relabel the variable p in (9.26) as k). Since the matrix-element
gx'—k only depends weakly on k, it is sufficient to consider the k-dependence
arising from the occurrence of ¢; in the denominator. One gets

Ey —p=6&(1-)) (9.27)
where
S =€ —p (9.28)
and
< dQ o
A = -N(O)V/ '4_'|9k—k'|2/ /3%
L 0

0 1 1
€ - - (9.29
65’6 (Ek - fk' — hwir—k {k + ek’ + hwk'-—k) Ifk 0 ( )

with dQ = 2nd(cos Oz ), where 0;+ denotes the angle between k’ and k. Note
that we have changed the integration variable £x+ in the second term into —&g/.
The integral may be carried out by noting that the same terms are generated
by taking derivatives with respect to &+ and then taking the limit & -~ 0.
The result is

- dQ2 e a 1 1
A:NOV/— _,2/ d¢; ( - )
© 4r -] 0 ﬁkafk' =& — hwpox €+ hwkr—k
(9.30)
which results in the simple expression
1 dQ Jgx 1 [?
A= 2N(0)V/ ir Py (9.31)
The effective mass m* is defined by the equation
1 1 0F;
5 = m—ak |k=kp, (9'32)
and we consequently obtain that
m —
=1-A .
— (9.33)

We have implicitly assumed that A < 1. In the following subsections we
shall demonstrate how the use of Green function methods allows us to extend
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this result of perturbation theory to higher orders in A. As we shall see, the
result (9.27) will be changed into

Er—p=&01+ )1 (9.34)

with X given by (9.31), corresponding to m* = m(1 + A). By contrast, the
perturbation theory result (9.33) yields m* = m/{1 — X), provided A < 1.

A specific calculation of A for a given metal requires one to know the for-
m of the electron-phonon coupling function gq. The use of the simple long-

wavelength expression (9.23) evidently results in A=A

9.4 Phonon Green functions

Phonon propagators are defined in close analogy with fermion propagators. For

the single harmonic oscillator, the operator b+-b! is proportional to the position
t

operator . The transition to collective coordinates introduces (bqe + b_q4),
cf. (9.18) and Section 5.2.2. We thus define the field operators
#(a,7) = e/ (bq + bLq)e /", (9:35)

with H being the Hamiltonian (for convenience we have suppressed the polar-
ization index «).
The phonon Green function D is defined by

D(q,7) = — < T-{8(q, T)é(~q.0)} > . (9.36)
Since ¢ is a Bose field, the operator T; is defined as in (7.7) without the factor of

(=1)P. The Green function possesses the following symmetry property within
the domain —hf8 < 7 < hf,

D(q,7) = D(q, 7 + h3). (9.37)
In order to prove (9.37) we assume that 0 > 7 > —h3. Then
exp(—BQ)D{q,7) = - Tr ((b(—q,O)eHT/hqﬁ(q, O)e‘HT/he"ﬂH) . (9.38)
Likewise we have

exp(—BQ)D(q, T+ hﬁ) =-Tr (eHT/heﬂHd)(‘L O)e_ﬁHe—HT/h¢(_QV O)eb—ﬂH) .

(9.39)
Using the cyclic invariance of the trace, the right hand side of (9.38) is seen to
be equal to the right hand side of (9.39), resulting in (9.37).
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The Fourier-expansion is thus

1 —{waT
D(g,7) = 75 > e D(q,wn), (9.40)
n
where the Matsubara frequencies w,, are given by
T
=2n— = s 41
Wy Qnﬂh, n=0,%1+£2,+3 (9.41)

The symmetry property (9.37) together with the relation exp(—iw,8h) = 1
allows one to write the Fourier-coefficients D(q,w,) as

LV
D(q,w,,):/o dre*~" D(q, 7). (9.42)

9.4.1 Green functions for free phonons

The Hamiltonian for free phonons is
1
H =" hwq(blbq + ) (9-43)
a

cf. (5.51) (we suppress the polarixation index a). Since bq(7) satisfies the
equation of motion

~h by = [ba(r), H) = hugba(r), (9.44)
it develops in time according to
ba(T) = €7“97bq(0). (9.45)
Likewise 5
—hobl, = (7). H] = —huqbl(r), (9.46)

which yields '
bl (7) = e“<7b1(0). (9.47)

The Green function is therefore given for 7 > 0 as
D(q,7) = — < (bge™“™ + bl je*a)(b_q + bl) >0, (9.48)
provided that w_q = wq. Now we have

< bgbl >0=1+ Nq : (9.49)
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}r

Figure 9.1: Electron-phonon vertex

and v
< blibq >0= Nq, (9.50)
where Nq is the Planck function
Nq — m. (9.5 )
The Fourier-transform is seen to be
(0) Mo (0) 1 1
— fWaT - _ 592
D™ (q,wn) /0 dre D\%{q, 1) L — (9.52)

where the Matsubara frequencies w,, assume the values given by (9.41).

9.5 Feynman rules

The derivation of the Feynman rules proceeds in analogy with Chapter 6. The
main difference is that the Coulomb interaction lines are replaced by phonon
propagators.

The following rules apply to the calculation of the self-energy.

e Draw all topologically different diagrams containing electron and p phonon
lines, with vertices as illustrated in Fig. 9.1.

e Associate an oriented ‘four-momentum’ (k,w,) with each interaction line
and conserve four-momentum at each vertex.

e Associate the factor

1

G(O)(k, wn) = m&y,o'

(9.53)

with each electron line, £ = h?k?/2m—pu being the free-particle (kinetic)
energy minus the chemical potential p.
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Figure 9.2: Electron self-energy diagram

o Associate with each phonon line

lgx-k[>D(q,wn), (9.54)
where the phonon propagator is given by
1 1
+

DO — .
(@,wn) iwn +wq  wn — wq’ (9.55)
while g is the electron-phonon coupling function.
® Sum over spin, frequency and momentumn variables.
o Multiply by
1
——(-1)F, 9.56

where F' is the number of closed fermion loops.

9.6 The electron self-energy

We shall now calculate the electron self-energy given by the lowest-order dia-
gram exhibited in Fig. 9.2. According to the Feynman rules it is

d
. / —"—(2,?)3 > l9ql*’GO(k + @, wn+wm) D (q,wm). (9.57)

AY(K,wn) = -5

First we carry out the summation over the Matsubara frequency w,, with
the result
1
Ty G(O)(k +q,wn + Wm)D(O)(Qawm) =
ph* <~
Nq+1_fk+q Nq+fk+q
iﬁwn - €k+q - ﬁwq ihwn bt £k+q + hwq

(9.58)
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Figure 9.3: Contour in the complex plane

Here f denotes the Fermi distribution.
The sum is calculated as follows. Consider the expression

_ l 2w, 1
Q=3 Zn: (9.59)

o . . .
Wi, +w? i, + iwm — & /R

Now we have the identity

dz 1
— 2 — 9.60
/C 27i /) e?hd — 1 (9-60)
with
2w, 1

1) =

, 9.61
z:’—wgiwn+z—§k//h ( )

since the integration contour is chosen as shown in Fig. 9.3. The sum is de-
termined by noting that it is given by (minus) the sum of the residues at
z = 2wim/hf and hence may be identified with the sum of the other residues
at z = tw, and z = £/ /h—iw,. Note that the latter residue involves the factor
exp{—iwn, hF), which is equal to —1 and hence introduces the Fermi-function
1/(1 + exp Bx).

After analytic continuation to the real axis, thw, — F + i1, the self-energy
then becomes

nS(k, B/0) =V [ Sl
, (2m)3
( Ne-x+1- fir N -k + fio >  (9.62)
E—& —hwp-x+in E— &+ hww-x +1in

We set k ~ kp, since we are interested in the effect of the electron-phonon
interaction on states near the Fermi-surface. In doing the integration over k'
we may set the density of states equal to its value at the Fermi surface. The
reason is that only states k’ with k¥’ ~ kr contribute, due to the smallness of






Electron-phonon interaction 109

i\/
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Figure 9.4: Real part AX; of the self-energy

It is seen from (9.69) that the real part of the self-energy is odd in E,
Si(B)=-Zi(—F). At T =0 K we get

3] E
1
2 '
/0 dwo F(w)/_EdE B he

o fiw + E|
- dwa®F w)]n'————.
/ =T

L1(E)

(9.70)

In the following we assume that the phonon frequencies w, are given as
wg = sq for w < wp, where wp = 2skr Is a characteristic frequency of the
order of the Debye frequency. Furthermore, we shall use the model form (9.23)
for all wavevectors corresponding to 0 < wy < wp. When (9.23) is inserted
into (9.65), one therefore obtains that

w?

a?Flw)= for w<wp (9.71)

wh
and
a*F(w)=0 for w>wp. (9.72)

As we shall see below, the mass-renormalization is generally given by a definite
frequency moment of the function a?F(w) defined in (9.65), regardless of its
specific form. For the simple model form given by (9.6) and (9.72) the result
is Z1

o 2
hEy(E) = —E/ dwo’F(w)= = =AE for E < huwp (9.73)
]

and

2

o 2h hwp)?
R (F) = —/ dwo’ F(w) Y= —/\( wp) for E>»hwp (9.74)
0 E 2F
The real part of the self-energy is sketched as a function of E on Fig. 9.4.
When we use the low-energy limit of £; given by (9.73) in the electron
Green function, its denominator is seen to be £ — hE(E) — € ~ F(1+ ) — ¢,
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and the pole is therefore given by E = £/(1 + A). The effective mass thus
becomes
m* =m(l+ ). (9.75)

If we use a more general form for the electron-phonon coupling than (9.23)
we obtain (9.75) with A replaced by A given by

:\:/ dwazF(w)z, (9.76)
0 w

as may be seen from the low-energy expansion (9.73). The function a?F(w)
is here given by (9.65). By tunneling experiments it is possible to measure
directly the frequency dependence of a?F, which in metals has much more
structure as a function of frequency than the simple model form given by (9.6)
and (9.72).

The electron-phonon interaction is thus seen to have a significant effect
on electron states lying near the Fermi surface. The mass-renormalization
results in an increase by the factor (1 + A) of the low-temperature specific
heat, in agreement with what is observed in metals. In Section 1.3.1 we saw
that the observed enhancement factor was 1.38 in aluminium. If we calculate
A from (9.24), using the measured sound velocity of aluminium, we find that
A = 0.9, corresponding to an enhancement factor of 1.9. This result, however,
is based on the assumption that the electron-phonon coupling function ¢ may
be identified with its long-wavelength limit (9.23). In reality the electron-ion
pseudopotential (which we implicitly have taken to be independent of g¢) is
reduced relative to its long-wavelength limit, when ¢ becomes comparable to
kp. If this effect is taken into account in (9.65), one finds from (9.76) that the
enhancement factor (1+A) is 1.4 for aluminium, in agreement with experiment.

The spin susceptibility, however, is essentially unaffected by the interaction
between electrons and phonons, because the electron-phonon interaction (un-
like the Coulomb interaction) effectively only involves states near the Fermi
surface within an energy shell of a thickness equal to the Debye energy. When
the interaction between the electrons is screened in the Thomas-Fermi approx-
imation (the long-wavelength limit of the random phase approximation}, one
obtains as we have seen in Section 4.3.2 an increase of the spin susceptibility
by 34%. The corresponding effect due to the phonons is reduced by the ratio
of the Debye energy to the Fermi energy and is therefore entirely negligible.
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10 Superconductivity

The phenomenon of superconductivity was discovered experimentally early in
this century, but it took more than 40 years before the theory was developed.
The basic clue to the understanding of superconductivity was given in 1956 by
Cooper, who showed that the Fermi sea of electrons is unstable with regard
to the formation of bound pairs with zero total momentum and spin, provided
there exists an attractive interaction between electrons near the Fermi surface.
These Cooper pairs formed the starting point for the theory of superconductiv-
ity due to Bardeen, Cooper and Schrieffer (1957). The BCS-model keeps only
that part of the many-body interaction Hamiltonian, which connects pairs of
electrons with total momentum and total spin equal to zero. This simplified
Hamiltonian may be diagonalized by means of a canonical transformation, as
described in Section 5.4. The resulting energy spectrum exhibits a gap, which
depends on temperature. The BCS theory was astonishingly successful in
explaining essential all the important features of superconductivity that had
been observed prior to 1957. Furthermore, it provided a general framework
for the further development of the theory of superconductivity, including the
prediction and subsequent observation of the Josephson effects, which involve
tunneling of Cooper pairs (Josephson 1962).

In the present chapter we shall derive the basic equations of superconduc-
tivity by use of temperature Green functions. The resulting Gorkov equations
(Gorkov 1958) are more general than the original BCS-model in that they may
be applied to spatially inhomogeneous situations, where boundaries or exter-
nal magnetic fields play an important role. The Gorkov equations may also be
generalized to take into account the retarded nature of the attractive interac-
tion between electrons due to the exchange of phonons, leading to a description
of strong-coupling superconductivity.

10.1 The Gorkov equations

The Gorkov formulation of the theory of superconductivity starts with the
following model Hamiltonian

2
1 =[x g+ 5 [ ax 3 uL00u) (0% (x0va (6),

oo’
(10.1)
where it has been assumed that the interaction V(x,x’) has zero range,

Vi(x,x") = gé(x — x'), (10.2)

and therefore involves opposite-spin particles (6’ = —¢) only. The constant g
is negative for attractive interaction, positive for repulsive interaction.
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In the Schrodinger picture the operators (x) satisfy the usual anticom-

mutation rules
{wd(x)’ ¢ll(xl)} = 600'6(’( - xl) (103)

and
{¥o(x), %o (x)} = {9} (x), ¥}, (x')} = 0. (10.4)

The grand-canonical Hamiltonian is K = H — uN, where N is the particle
number operator. The BCS-model is equivalent to replacing K by the effective
grand-canonical Hamiltonian K.g, where

2
Keg = /dez/;f,(x)(-—%Vz — m)s(x)

+ o [ ax(< weul0 > 1w ()
+ BlPHx) < er(PL(x) >). (10.5)
Here the thermal average involves the effective grand-canonical Hamiltonian,

Tr(e~PKeu gl (x)3p] (x))
Tre=FKen '

< lE)pl(x) >= (10.6)

Since the number operator N does not commute with the Hamiltonian Keg,
this average is nonvanishing.
The equations of motion for the Heisenberg operators

¢(x’ 7_) — CK"“T/ﬁl,b(x)e—Ke"T/h (107)

and

¥t (x, 1) = eK,,,r/h¢1(x)e—Ke;¢r/h (10.8)
are

2

e, 7) = ~(= 9V = U (x,7) 4 9 < () > wl(x,7) (109)

and

2
ﬁa%«ﬁl(x,r) = (~—;—m—v2 — )l (x,7) + g < Y] ()] (x) > ¥1(x, 7). (10.10)

With the help of these equations one finds that the Green function G defined
by
G(x,r;x', )= - < T,-{i/)T(x,r)t/)}(x', ™)} > (10.11)
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satisfies

2
h-g—G(x, X, 7)) = —hé(x-x")o(r—1") - (—-;—TZVQ - w)G(x, 7, x', 1)

or
— g <Pr(Py(x) >< T (] (x, r)wl(x’, ')} > (10.12)

We note that the equation of motion for the Green function involves a new
type of anomalous Green function, defined by

F(x,m;x",7") = = < To {1 (x, ")y (X', 7))} > . (10.13)
In addition we introduce the function F! by

Fl(x,r;x',7') = — < T {gl(x, 1)pl(x’, 7")} > . (10.14)

The function F! is not the Hermitian conjugate of F.
An important role is played by the gap parameter A, which is defined by

A(x)= —gF(x, 7+ 0%x,7) = g < ¥1(x)¥ (x) > . (10.15)
The equation of motion satisfied by G may then be written as

32
(—fl'a—-l— V24 wG(x, mx )+ AX)FI(x, 7%, 7') =
T 2 ,

or ' 2m »
hé(x —x"é(r— ')  (10.16)

Correspondingly we find

h2
H’% + 5=V W F(x, 7%, ) = AX)G(K, 7%, ) =0 (10.17)
and
0 52 2 t r ot * '
(h*a—r =+ Q_Tn-v +/1)F (X,T;x , T ) - A (x)G(x, X, T ) = 01 (1018)

which are the Gorkov equations. In the presence of a magnetic field described
by the vector potential A the equations (10.16) and (10.17) are modified ac-
cording to

h h
where e is the magnitude of the electron charge, while in (10.18) one has

h h
SV - =V —eA. (10.20)
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These changes are due to the corresponding change in the first term of (10.1),
which becomes

%/dx2¢;(x)(gv+ eA)?9, (). (10.21)

In the presence of a vector potential, with the proper boundary conditions
added, the Gorkov equations are in general difficult to solve. A considerable
simplification may be achieved for slow spatial variations (on the scale of the
Fermi wavelength) by integrating out the magnitude of the momentum, i. e.
integrating out the normal-state energy variable £; defined by

_ A?k?

& = — (10.22)

2m

This results in the so-called quasi-classical approximation, which has been
used to solve a great variety of important problems, including ones involv-
ing nonequilibrium phenomena, but we shall not develop this approximation
scheme here.

In the following we consider the Gorkov equations under the simplifying
condition that the system is spatially uniform. This implies that the gap
parameter A(x) is a constant in space, A(x) = A. First we shall recover the
results of the BCS-theory. Since the Hamiltonian is time-independent and the
system is assumed to be spatially uniform, we may expand the Green functions
in the Fourier-series

G(x,m;x', ') = 1 dk

R J (27)3

Z eik(x—x')e—iwn(T—T/)G(k,wn) (10.23)

and

1 dk . N '
t . — ik-(x— —iwn(T—T t
Flix,rix,r) = hﬂ/ 27y Z,, e eI F (e, wn). (10.24)

Then (10.16) becomes
(ihw, — £)G(k,w,) + AF (k,w,) = R, (10.25)
while (10.18) is
(—ihw, — &) Fl(k,wp) — A*G(k,w,) = 0. (10.26)

The gap parameter A is given by the self-consistency equation

* = i ﬁ —fwy t \
& =035 | G 26 F ). (10.27)
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Figure 10.1: The temperature-dependent energy gap A(T)
The solution to the equations (10.25) and (10.26) are seen to be
thw, + fk 4
k =-h 10.28
G( )wﬂ) (hwn)2+£z+|Al2 ( )
and
A*
Flk,w,) =h (10.29)

(hwn)? + €2 + |A]Y

where £ is defined in (10.22). When the magnetic field is zero, we may choose
A to be real, implying that

Flk,w,) = F(k,wy). _ (10.30)

The coherence factors v and v occurring in the BCS-theory (cf. Section 5.4)
may be used to write the Green functions in the form

u? v?
Gk,wp) = k k 10.31
(kown) = o —ETm) T Ton T (B (10.31)
together with
Filk,w,)= F n) = — Uk Uk hidds .
(eywn) = Flown) = == p i ¥ on s (Ba /) (10.32)
where
E? = A?4 &2 (10.33)
Furthermore we have
ul 40? =1, (10.34)
and
UpVg = (10.35)

2B
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We need to determine A from the self-consistency equation (10.27). When
F1 is inserted, it becomes

__9 [ _dk A
= p / (2m)? zn: (hwn)? + €2 + A2 (10.36)

We may carry out the frequency sum, in the manner of Chapter 7, by
inserting (10.32) into the expression for A and use uv = A/2E. The result is
the BCS gap-equation

A=—g / (_;Wk_)ﬁ% tanh(BE: /2). (10.37)

Note that tanh(SE}% /2) tends to 1 in the limit of zero temperature. In this limit
(10.37) is identical to (5.70). since the ground-state average < c;“,,TcT_k,'l > is

seen to be equal to A/2E} as a consequence of the Bogoliubov-transformation
(5.14) and (10.35).

The solution to the gap equation may be expressed in terms of the dimen-
sionless coupling constant A, which we define by

A= —gN(0). (10.38)
Then the gap equation {10.37) may be written as

A:/\/(;MDdfk(

A
XIS tanh(BE} /2). (10.39)

At zero temperature we obtain from carrying out the integral over € that
A = A(0) = 2hwpe™ (10.40)

provided hwp > A(0). The transition temperature T, is determined as the
highest temperature for which (10.39) has a solution. It must therefore satisfy

hwp
1= /\/ dfk—l— tanh(&x /2kT), (10.41)
0 3

which yields ,
kT, = %hwl)e"l”, (10.42)

provided hwp > kT,. Here v = 0.577 - - - is the Euler constant.
According to (10.40) and (10.42) the ratio between the zero-temperature
gap and kT, is a universal constant,

)

T = L6 (10.43)
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This important result of the BCS-theory is in good agreement with experiment
for many different superconducting materials, with widely different values of
A(0) and T,. The deviations observed in strong-coupling superconductors such
as Pb or Hg may be explained by taking into account the retarded nature of
the interaction responsible for superconductivity.

Near the transition temperature T, one finds from (10.36) that

A~ 3.06kT.(1 — T/T.)"/2 (10.44)

This temperature dependence is in agreement with that obtained from Lan-
dau’s theory of second-order phase transitions, as we shall see below.

10.2 Ginzburg-Landau theory

Near the transition temperature 7, it is possible to perform an expansion in
the parameter A/kTe, since A goes continuously to zero in the manner char-
acteristic of a second-order transition. In addition an expansion in gradients
or "slowness of variation” is carried out. This allows one to reduce the Gorkov
equations for superconductors to the Ginzburg-Landau equations, which are
coupled equations for the Ginzburg-Landau ‘wavefunction’ ¥(x) and the vec-
tor potential A(x). One finds that ¥(x) is related to the gap-parameter A(x)

by
n 1/2

with n being the number density of electrons in the normal state. The resulting
equation for ¥ obtained by the expansion of the Gorkov equations is reminis-
cent of the Schrodinger equation, with the addition of a non-linear (cubic)
term,

2111* (-:fv — €AY U(x) + a¥(x) + b¥(x)|¥(x)|* = 0. (10.46)

Here, the effective mass m* is

m* = 2m (10.47)
while the effective charge e* is

e" = —2e, (10.48)

reflecting the presence of Cooper pairs in the condensed state. The constants
a and b are found to be

_ 6w (kT,)? T

7(3)er (1- i) (10.49)
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while
_ 6m2(kTe)?

b= .
7¢(3)ern
We have introduced the Fermi energy er = h%k}/2m. It is related to the

density of states N(0) through N(0) = 3n/4er. Under spatially homogeneous
conditions one finds from (10.46) that

(10.50)

a

9 =% = n(1 - —7%). (10.51)

When V¥ is expressed in terms of A this becomes

8n2(kT.)2 = T
@ -7 (10.52)

The other Ginzburg-Landau equation besides (10.46) relates the supercur-
rent density j to the vector potential and the gradient of ¥ according to

|A? =

h

2m*i

*\2
j=e* (¥*VE - ¥V - %_LNIFA. (10.53)
The two Ginzburg-Landau equations must be supplemented by boundary con-
ditions on ¥ and the vector potential. These boundary conditions will be
discussed below, where we indicate how the Ginzburg-Landau equations are
derived phenomenologically within the context of the general theory of second-
order phase transitions.

10.2.1 Second-order phase transitions

The Ginzburg-Landau equations (10.46) and {10.53) were derived by Ginzburg
and Landau® well before the advent of the microscopic theory due to Bardeen,
Cooper and Schrieffer. The parameters occurring in the equations therefore
had to be fixed by comparison to experiment. The starting point was Landau’s
general theory of second-order phase transitions. According to this theory?,
the difference in free energy between the normal state and the ‘condensed’ state
(here the superconducting state) may be written as a series expansion in the
magnitude of an order parameter. In the present case the order parameter is the
quantity ¥, which was introduced above on the basis of the microscopic theory.
While the assumption of the existence of such a series expansion may seem
natural, it does in fact imply that the system is well described by a mean field.
The mean-field assumption is generally an excellent one for superconductors
but it breaks down for many other physical systems, yielding critical exponents

1V. L. Ginzburg and L. D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064, 1950.
2Landau and Lifshitz: Statistical Physics, vol L.
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These boundary conditions ensure the vanishing of the surface terms arising
from the variation of the functional (10.54) with respect to ¥ and A. Phys-
ically, (10.55) ensures that no current is leaving the sample at the boundary,
while (10.56) expresses that the tangential component of the magnetic field is
continuous across the metal surface.

In the following we shall give a few examples of simple solutions to the
Ginzburg-Landau equations. These examples introduce the two important
characteristic lengths, the coherence length £(T) and the penetration depth
AT,

10.2.2 Characteristic lengths

Let us first consider a situation without an magnetic field, and furthermore
assume that the order parameter only varies in the z-direction. Then (10.46)
becomes
h? d?
T 2m* da?
In order to study solutions of this equation one may introduce the dimensionless
length variable Z by

¥(z) + a¥(z) + b¥(z)|¥(z)|> = 0. (10.57)

i= % (10.58)

where

T=EXT i 10.59
The length £(T) is the temperature-dependent coherence length. It follows
from (10.49) and (10.59) that £(T') is proportional to (1 — T/T.)~!/? and thus
becomes larger as the critical temperature is approached from below. This is
the general behavior of the coherence length within Landau’s theory of second-
order phase transitions. The temperature dependence is due to the fact that a
is proportional to (1 — T/T.), which is also responsible for the (1 — T/T.)'/2-
dependence of |¥| or |A[ in the homogeneous case, cf. (10.44) and (10.52). In
the theory of critical phenomena such exponents characterizing the tempera-
ture dependence of the coherence length and the order parameter are called
critical exponents. In general one writes

|¥| o (T, — T)? (10.60)
and
Eoxc (T.-T)™". (10.61)

The fact that § and v both are 1/2 reflects that the BCS-theory is a mean-
field theory. In the case of superconductivity the mean-field description yields
excellent results except in a very small temperature region in the immediate
vicinity of the transition temperature.
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The penetration depth of a magnetic field may be obtained by combining
the Ginzburg-Landau equation without the gradient-term,

j= —(—:n:Z—z|W|2A, (10.62)

with the Maxwell equation ;I:)V x B = j. By taking the rotation of (10.62),
assuming ¥ to be spatially uniform, we obtain

1
VB = No(e) |\Il|2

B = 5B, (10.63)

where the characteristic length A is given by

2 m* m*b
= = . 1 .
A po(e*)?|¥[2  po(e)?|al (10.64)

We shall now determine the critical magnetic field for the nucleation of
the superconducting state in terms of the parameters of the Ginzburg-Landau
theory.

Let us assume that the magnetic field in the normal state is given by the
vector potential

A = B(0,z,0). (10.65)

Since we shall determine the critical value of B for the nucleation of the
superconducting state we may use the vector potential (10.65) in the first
Ginzburg-Landau equation (10.46) and neglect the non-linear term. The equa-
tion then becomes identical to the eigenvalue equation for a particle moving in
a harmonic-oscillator potential,

! (?v —e*A)¥(x) = —a¥(x). (10.66)

2m*

If we assume that ¥ only depends on z, the operator on the left-hand side of
(10.66) is

1

2m*

(- h2 d + (e"B)?z?), (10.67)

which is the Hamiltonian for a harmonic oscillator with the smallest eigenvalue
equal to hie*|B/2m*. The nucleation of the superconducting state sets in,
when this eigenvalue is equal to |a|. The upper critical field B.» (commonly
called H.s) is thus given by the equation

hle*chz

2m*

= |a|. (10.68)
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When the values of the parameters are inserted in (10.68), the upper critical

field becomes
127%(kT,)*m ) T

Bes = - =). 10.69

2 7¢(3)ereh Tc) ( )
The quantity "
v

& = “f‘ (10.70)

is a characteristic length, of magnitude 100 to 10000 A for typical supercon-
ductors. Apart from a numerical constant, the magnetic field B, is seen to be
equal to h/ef? times the temperature dependent factor 1 — T'/T,.

10.2.3 The Josephson effects

Finally, we shall briefly mention the special effects associated with the weak
coupling between two superconductors that are spatially separated. The effects
were predicted theoretically by Josephson, and subsequently verified in great
detail by experiments. The Josephson effect is the most direct demonstration
of the existence of two conjugate variables, the phase of the order parameter
and the number of Cooper pairs.

Josephson considered two superconductors separated by a thin insulating
barrier and found, on the basis of a Green function calculation, that a super-
current I could flow across the barrier in the absence of any voltage difference.
When the order parameters in the two superconductors are written in terms
of their magnitude f and phase ¢

¥y = fie'? (10.71)
and )

¥y = fre'?? (10.72)
the supercurrent was given by the simple expression

I = Iysin ¢, (10.73)

with ¢ being the phase difference between the two superconductors,
¢ = ¢1 — ¢o. (10.74)
The zero-temperature value of Iy was found to be

_ Tog
Iy = 90" (10.75)

Here o i1s the normal-state tunnel conductance, which in the normal state of
the metal determines the current I, across the junction to be

I, = ooV, (10.76)




Superconductivity 123

with V being the applied voltage. The Josephson effect implies that a super-
current may flow even when V = 0. At finite voltages the phase difference ¢
acquires a time dependence according to

o¢
h—e =
ot
Like (10.73) this equation reflects the conjugate relation between the number

of Cooper pairs and the phase, as may be seen from the simple Hamiltonian
description based on

2eV. (10.77)

H = —Fycos¢ — 2enV (10.78)
together with the Hamilton equations of motion
: OH
hg = —— = .
o o 2eV (10.79)
and aH
hn = e = Eysin ¢. (10.80)

The Josephson tunneling current may be calculated as a function of temper-
ature by the Green function method, starting from the BCS Hamiltonian for
two superconducting metals with the addition of a tunneling Hamiltonian de-
scribing the effect of the tunneling barrier. The result is

Io = ”‘;iA tanh(A/2kT), (10.81)

where A is the temperature-dependent gap shown in Fig. 10.1. Near the tran-
sition temperature, the Josephson current therefore vanishes as T, — 7", since
the gap itself is proportional to (T, — T)!/2.
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The operator Ay satisfies the equation of motion

mi%fi = [An, H], (11.4)

provided Ags has no explicit dependence on time.

We now consider an external disturbance characterized by an additional
time-dependent term H’(t) in the Hamiltonian. The disturbance is switched
on at a definite time ¢ = {5. From this moment on, the system develops
according to the Schrodinger equation

., O¥
”‘a—ts = (H + H'())¥s. (11.5)

It is convenient to describe the time development of the wave function in

terms of the operator U(t), which is defined according to

S Ws(t) = e YR ()W 5(0). (11.6)

In the absence of the external disturbance, corresponding to H' = 0, the
operator U equals 1 at all times. We shall now solve for U to lowest order in H’,
with the boundary condition that U(t) = 1 for ¢ < ty. By differentiating (11.6)
with respect to time we find that the operator U/ must satisfy the equation

S OU  sHuh gy —iHU R _ g

zhﬁ_e H(i)e U—HHU, (117)
where we have introduced the Heisenberg operator Hy. The equation (11.7)
may now be solved by iteration,

t
() = 1+%/ 4t Hyg(U) + - - -. (11.8)
to

Since we only want to consider terms linear in H’, there is no need to carry
the expansion in (11.8) any further.

Having obtained the operator U to first order in H’ we now proceed to
consider the linear response of the ground-state expectation value of an op-
erator O. If we consider changes in density due to an external field, we take
O to be the density operator. Alternatively, O is the current operator if we
are interested in the change in current due to an external field. We seek to
determine the change ¢ < O > in the expectation value < O > given by

6 <O >=< 0> — < 0 >y, (11.9)

where the subscript 0 indicates that the expectation value is determined in the
absence of the external disturbance. Since

Uo(t) = e tHYR(] 4 1—15/ dt’ Hy (1)) ¥ 5(0) (11.10)
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to first order in H’, we obtain

i

t ; t
: / ' Hy ()P 0se 101 - & / dt' Hig (¢)]0),
to to

(11.11)
where |0) = |¥5(0)) denotes the ground state of the system with Hamiltonian
H.

<O0>={0j(1+

Consequently we have

§<0>= %/tt dt' (O|[Hy (), Ox (2)]]0). (11.12)

Let us consider an example where H' is given by
HY = / dx(—e)ps (%, ) bext (X, 1), (11.13)

where ¢ext(x,t) is an external scalar potential, which couples to the charge
—e of the particles, while py(x,t) is the Heisenberg operator for the particle
density introduced in (8.49). In this case (11.12) shows that the linear response
involves a retarded density-density correlation function.

Similarly, the spin magnetization induced by an external magnetic field
introduces the generalized spin susceptibility as a retarded spin density-spin
density correlation function.

11.1.2 Finite temperature

The linear response theory discussed in the preceding section is readily ex-
tended to finite temperatures. The expression (11.12) for the change in the
ground-state expectation value may be generalized to any matrix element
involving the exact eigenstates of the operator K = H — uN introduced
in Chapter 7. Consequently it also applies to the diagonal matrix elements
{m| ftto dt'[Hy(t'), O (1)]|lm), which enter the statistical average. Thus we ob-

tain the finite-temperature generalization of (11.12),

-t
§<0>= % dt'Tr(e=PK [Hi ('), On (£)])eP2, (11.14)
to

where
e P = Tre PK (11.15)

Let us assume that the Hamiltonian H’ has the form

H' = /de(x,t)d)ext(x,t). (11.16)
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Then
. 1
6< 0 >= —% /dx’/ dt’ < [OH(X,t),OH(x’,t’)] > dnext(x',t’). (11.17)
to

We now let tg tend to minus infinity. Introducing the retarded correlation
function D™*(1,1’) by the definition

iD™(1,1) =< [0n(1), 0 (1')] > Ot ~ 1), (11.18)

where 1 and 1’ refer to the space-time points x,¢ and x’,t/, respectively, we
are able to write the final result in the simple form

§<0(1) >= %/dl’D’e‘(l, 1) exe (1), (11.19)

where the integration over the time variable ¢’ extends from minus infinity to
plus infinity.

The quantity of physical interest is thus a retarded correlation function.
In the case where an external probe couples to the density or the current
density, the operator Oy is bilinear in the field operators. To obtain the
correlation function at finite temperatures within the Matsubara approach
one must therefore consider a two-particle Green function, which is calculated
by diagrammatic perturbation theory, using free-particle Green functions as
building blocks. When the Fourier coefficients of the appropriate two-particle
Green function have been obtained as function of the Matsubara frequencies,
the method of analytic continuation is employed for determining the retarded
correlation function, in precise analogy to the way in which the retarded (one-
particle) Green function is obtained from the tau-ordered one, as demonstrated
in Section 7.5, cf. (7.73) and (7.70). An example of the use of this procedure
is given in Section 11.4 below, where the frequency-dependent conductivity is
related to a particular case of a two-particle Matsubara Green function.

11.2 The current operator

The quantum mechanical expression for the electric current density j associated
with a particle of charge —e and mass m moving in a magnetic field described
by the vector potential A, is

. h 2
_]:(—e)—,(\II*V\II—\IIV\I'*)—e—ANl{?. (11.20)
2mi m

Note that this current expression is gauge-invariant, since the gauge trans-
formation obtained by adding the term Vx to the vector potential A changes

the wavefunction ¥ to Wexp(—eix/h), where x is an arbitrary function of the
coordinates.
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The expression (11.20) is the mean value of the current in the state ¥ for
a single particle. We shall now write down the current-density operator for a
system of N particles, each with charge —e and mass m.

The electric current density may be obtained from the quantum mechani-
cal expression (11.20) after replacing the wavefunction ¥ by the annihilation
operator ¥ (and ¥* by its hermitian conjugate ). This results in the second-
quantized form of the current-density operator jop

. B 2
op = (~)5—=(¥'VY — yV!) - ZAyly. (11.21)

The expectation value j of this operator may then be written in terms of the
Green function

Goo' (%, 7;%, 1) = G(x, 7; %', 7')6 501 (11.22)
according to
. L 0 7] . ne?
J= (—-6);—”;(& - EP)G(X, X,T )x’—»x,‘r’-—»r+n - Tn—A, (1123)

where 7 denotes a positive infinitesimal.
It is often useful to write the current operator in terms of operators that
add and remove a particle in a definite momentum state hk. Thus we introduce

Yo(x) =) ™oy, (11.24)
k
into (11.21) and obtain the Fourier-expansion
Jop(x) = Z eiq'xjop(Q) (11.25)
a
where jop(q) is given by
Jop(@) = (=€) — D J(k+ 5)ci o Cktao- (11.26)
k,o

In the presence of an external vector potential A the perturbing Hamilto-
nian H’ is
H = —/dxj-A. (11.27)

In the remainder of this chapter we consider the uniform case where the elec-
trical field is homogeneous in space. The electric field E is described in terms
of a time-dependent vector potential A according to

0A

E=-—. (11.28)
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where the matrix element of the electron-impurity interaction is given by

(K'o'|Ulko) = % / dre-"k"*z V(r — Ry)e'*T. (11.37)

The integral in (11.37) is calculated by shifting the integration variable to
r — R; as a result of which one gets

Hy= 23 pimp(0)V (~a)p(a) (1138)

Here p(q) is the Fourier component of the density operator, given by

p@) =) cl ,cxtqo (11.39)
k,o
while
pmp(@) = D _ R, (11.40)

and V(q) is the Fourier-transform of V(r),
V(q) = / dre=" TV (x). (11.41)

11.3.1 The electron self-energy

The electron-impurity interaction may be treated by diagrammatic perturba-
tion theory just like the electron-electron or the electron-phonon interaction.
We shall only consider the self-energy to second order in the interaction matrix
element V' (q). When expanding the S-matrix one generates terms containing
products pimp(q1)pimp(Q2) - - - Since we do not know the location of the im-
purities, we assume that they are randomly located in space and average each
term in the self-energy over the positions of the impurities. The total number
of impurities is called Nimp, and their density is thus

N.
Mimp = —77 (11.42)

The average <>imp of the first order term yields

< Pimp(Q) Simp=< P_ VR > (11.43)
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After insertion of the electron (temperature) Green function this becomes

N; dk’ 1
2 . _ Vimp
hE( )(k, zw,,) =y (2‘”)3 V(k —_ k')V(k’ — k)m,

(11.48)

which is analytically continued to the real axis according to iw, — w +in. By
carrying out the integration over &+ we then find that the imaginary part of
X for k£ ~ ky 1s independent of w and given by

s

ImY¥ =
me=3

1
nmp¥(0) [ LD oy (11.49)

Here N(0) = mkp/272h? is the density of states per spin at the Fermi energy,
while V(0) is the matrix element V(k' — k) evaluated for k = &' = kp, as a
function of the angle # between k and k’. Apart from a constant shift, which
we absorb in the chemical potential, the retarded electron Green function may
accordingly be written as

1
ret __
O = T (11.50)
where 7 is given by
1
% - Zh’inimpzv(()) / d(cgsg)w(%p sin8/2)[2. (11.51)
-1

If V is a constant, independent of @, this result is equivalent to (2.1.14) in
Transport Phenomena, which may be obtained from (2.1.9), where the term
involving cos @ integrates to zero. In this case 1/7 becomes

1 EnimpN(OHV(O)IZ. (11.52)

T h
Note that this expression has the correct dimension of inverse time, since the
number density of impurities n;m, and the density of states N(0) both are
inversely proportional to the volume, while V(0) has the dimension of energy
times volume. If V(0) is set equal to 1/2N(0), which is the long wavelength
limit of the (Thomas-Fermi) screened Coulomb interaction, we recover from
(11.52) the result (2.1.14) given in Transport Phenomena. In the following
subsection we shall determine the frequency-dependent conductivity ¢ in an
approximation, which yields ¢ = ne?r/(1 — iwr). While this looks similar to
the result of solving the Boltzmann equation, there is an important difference:
the time 7 given by (11.51) is not the transport time, since the factor {1—cos 8)
is missing from the integrand. As we mention below, it is possible to identify
the class of diagrams which produces the cos 8 term, but we shall not consider
it in any detail.
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11.4 The Drude formula

In the previous section we obtained the electron Green function, with the self-
energy evaluated in the lowest Born approximation. Now we proceed to cal-
culate the current-current correlation function, using finite-temperature Green
functions. Thus we consider the r-ordered quantity Il,5(7), which is defined
as

Map(T) = — < T7(jal7)s(0)) >, (11.53)

where <> as usual means the thermal average defined in (7.5). According
to (11.32) the conductivity o,5(w) associated with a definite frequency w is
obtained from Hup(iw,) as

2

! . ) ne
Oop = ;Hag(zwn—»w+m)—ﬁéa[3. (11.54)

The conductivity tensor oup is diagonal,
vap(w) = o(w)éag, (11.55)

and we may therefore obtain ¢(w) by taking the trace of (11.54) and dividing
by the dimension d,

y 2
o(w) = —lag(iwn — w +in) = =—. (11.56)

We evaluate Il,,(7) by inserting the q = 0 limit of the current operator given

in (11.33), resulting in

e2h?
Hao(7) = ——3 Y kK <To(ef ,(Teko(T)eh 5 (0)eiror(0)) > .
k,ok’, 0!

11.57
The terms in (11.57) which involve pairing of the two operators carryi(ng thg
same wave vector k vanish by symmetry, due to the integration over k and k'.
After carrying out the Fourier-transformation and the summation over spin we
therefore get

eZh*

Haa(iwn) = —Qm—2v—2

DD kK < Gk, K, iwn + iwn)G(K K, iwnr) >imp -
n’ kk’

(11.58)
Note that the Green functions depend on two momenta, due to the absence of
translational invariance. We have indicated explicitly the average < -+ >imp

over the positions of the impurities.
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Figure 11.2: Cuts in the complex z-plane

The sum over Matsubara frequencies is carried out as usual by introducing
the Fermi function n(z) given by

1

n(z) = W

The analytic structure of G(k’, k, z) = Gr/x(2) and Gris(z + iwp) occurring in
(11.58) is such that they possess a cut along the lines z =& and z = & — iw,,
respectively. Here & is real and varies between —oo and oo (see Fig. 11.2).
When deforming the contour as indicated in Fig. 11.2 we therefore integrate

just above and just below these two lines. Let us consider the quantity @
defined by

(11.59)

Q(iwn) = ﬁ—lh ; Gk, X', iw, + iwn)G(K, K, dwnr). (11.60)

After introducing the Fermi function and deforming the contour we see that
 may be written as

Qisn) = = [ @G + i) - G @ = in))Gun (& + i)
+ (GEL(@ + i) — G2 (& — i) G (& — wy)). (11.61)

Now we carry out the analytic continuation iw, — w + in, obtaining the
appropriate retarded and advanced Green functions,

© do ret (-~ . v
Q) = - [ SER@IGCEE +in) - G (@ - im)GEH (@ +w -+ in
—00

+ (GEH(@ +in) - GIY (@ — im))GEN (& — w — in)]. (11.62)
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A@M

Figure 11.3: Vertex corrections

In the static limit we expect to recover the elementary formula ¢ = ne?r/m.
However, the right hand side of (11.56) contains a term which diverges as
w™! in the limit w — 0. This divergence is cancelled against a similar term
arising from the products of retarded (G™'G™') and advanced (G?3'G?*dY)
Green functions in (11.62). The cancellation is verified by using the Green
functions for the noninteracting system in these two terms, while the higher-
order diagrams yield a vanishing contribution. Thus the final conductivity
formula becomes

2e?h? do
o) = m2dV? Zk /
[n(@) < Gz(’il:(“’ —in)) ;cekt’(‘-"’ +w +1in) >imp
- (@ +w) < GELE +w + iGN ~ in) >imp), (11.63)

which may be written as

2 h? , [ don(@) - n(@ +w)
Py -0
< G;ii,:(w — )G (@ + w + in) >imp - (11.64)

The formula (11.64) forms the starting point for our calculation of the conduc-
tivity.

The Drude formula for the frequency-dependent conductivity is obtained
by using
1

5
G+w—Ce/h—ij2r ok

G (@O +w) = (11.65)

and .
ret (~N __ ,
k(@) = S_&jhtier i/27_6k,k , (11.66)

where 7 is given by (11.51). Since we consider the limit in which Aw is much less
than the Fermi energy ¢, the main contribution to the momentum integration
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Figure 11.4: Maximally crossed diagram

in (11.64) comes from the region near the Fermi surface. By first performing
the momentum integration and then the frequency integration we get
a0

o= (11.67)

1—iwr’

where the static conductivity op is given by

(11.68)

The time 7 occurring in our result for the frequency-dependent conductivity
is not the same as the transport relaxation time obtained from solving the
Boltzmann equation. The reason is that we have neglected vertex corrections
of the kind illustrated diagrammatically in Fig. 11.3. When the contribution
from such vertex corrections is taken into account, one obtains the complete
expression for 7 given in (2.1.9) of Transpori Phenomena. We leave it as a
problem for the reader to calculate the magnitude of the static conductivity
both with and without the cos #-term for a screened Coulomb-interaction, and
compare the result to the measured resistivity for magnesium impurities in Cu,
cf. (1.24) in Section 1.3.3.

There are of course many other diagrams than the ones discussed so far.
In three dimensions one may show that these are negligible in the limit when
the mean free path | = vp7, where vp = hkp/m is the Fermi velocity, is much
greater than 1/kp. In two dimensions, however, the situation is different, as
we shall see in the following section.

11.5 Weak localization

There exists a certain class of diagrams, the so-called maximally crossed di-
agrams, which give the dominant contribution to the conductivity in two di-
mensions, leading to the phenomenon of weak localization, which has been
confirmed in many experiments. Weak localization (in the context of elec-
tronic conduction) was discovered by Abrahams, Anderson, Licciardello and
Ramakrishnan (1979) on the basis of a scaling analysis. The phenomenon was
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Figure 11.5: Diagrammatic illustration of the integral equation for the particle-
hole ladder

subsequently explored by Gorkov, Larkin and Khmel’nitskii {1979), who cal-
culated the frequency-dependent conductivity in the manner described below.

In the following we shall show how the summation of a select class of dia-
grams gives rise to weak localization in two dimensions. It is evident from Fig.
11.4 that a maximally crossed diagram in the particle-hole channel becomes
a ladder-type diagram in the particle-particle channel, when the hole line is
twisted. The particle-particle impurity ladder is called the Cooperon, because
of the importance of electron states with opposite momenta. The properties
of the Cooperon are best appreciated by considering the diffusive behavior of
the particle-hole impurity ladder at low frequencies and long wavelengths. We
shall only treat the case where the electron-impurity matrix element V'(q) is a
(real) constant, V(0), independent of 6.

The particle-hole ladder satisfies the integral equation illustrated in Fig.
11.5.  The integral equation is solved with the aid of the function {(q,w),
which in d dimensions is given by the expression (for convenience, we consider
a unit volume and set h equal to 1)

¢{q,w) = V(0)* %Gm(k,@)am(k -q,0—w). (11.69)

Using the expressions (11.66) and (11.65) for G and carrying out the integral
over k, we see that the result for ¢ « kp is given by

) | gl+wr+i

C:2_ql n—q1+w‘r+i’

(11.70)

when d = 3. In general, for the dimension d = 1,2 or 3 and in the limit ¢/ <« 1
and wt € 1, we get that
¢ ~14iwr — Drg* (11.71)
in terms of the diffusion coefficient
1

D= —évfw—. (11.72)
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Figure 11.7: The diagram of Fig. 11.6, with time-reversed lower line

The particle-hole ladder is proportional to the geometric series (1 — ¢)7!,
which in the limit of low frequencies and long wavelengths becomes

1 1
1-¢ 7 7(—iw+ Dg?)’ (11.73)

From this it 1s evident that the particle-hole propagator has a pole at

w = —iDq?. (11.74)
This diffusive pole is a direct consequence of the conservation of the number

of particles. It is thus a general property of the system at low frequencies and
long wavelengths.

>

Figure 11.8: Quantum correction to the conductivity
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Now we proceed to consider the form of the particle-particle impurity ladder
for small total momentum. By comparing Fig. 11.6 and Fig. 11.7 we see
that the time-reversal of the lower line in Fig. 11.6 brings us to Fig. 11.7, the
hole line having reversed momentum. If time-reversal invariance applies, these
diagrams therefore give identical contributions.  The form of the Cooperon
for small total momentum, k+k’|l < 1 and small energy transfer w is therefore

V(0)>

for k+k I <1 and wr <l (1L75
7(—iw + D(k + k’)?) or k+k|l <1 and wr K ( )

We therefore have the following contribution from the diagram shown in Fig.
11.8

bo(w) =

NGV (k)G (K)C, (k + k). (11.76)
kk’

In (11.76) we have performed the integration over &, since the momentum
integrations yield a @-independent result, and furthermore used that wr < 1.
The important contribution to éo comes from regions of integration where
k + k' ~ 0. We therefore introduce Q = k + k’ and replace k - k’ by —k2.
Similarly we replace k’/ in the Green functions G™* and G4V by —k. Then
we may turn the integral over k into an integral over £, and use the peaked
character of the integrand at the Fermi surface to carry out the £-integration.
The result for 6o is

bo
e nNd(O)/ (27)d —iw + DQz’

(11.77)

where N4(0) is the density of states per spin in d dimensions. In two dimensions
(d = 2) the integral is evaluated by cutting off the Q-integral at the upper limit
[=1. The result is

bo(w) = 70 jnwr. (11.78)

Evidently this tends to minus infinity when w goes to zero, indicating the
occurrence of localization. The role of time-reversal invariance is seen to be
crucial. If the latter is violated by the presence of a magnetic field or magnetic
impurities, then the particle-particle and particle-hole diagrams are not equal,
and the weak localization is correspondingly suppressed. The effects of weak
localization are sensitive to variations in a magnetic field on a scale which
is much smaller than that which determines the classical magnetoresistance
effects described in Transport Phenomena.
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or temperature gradient, and 2) that w(k,k’) only depends on (cosine of) the
angle 6 between k og k’. Find an expression for 7 in terms of w(k,k’).

In the following Problems 3 and 4 we treat 7 as a constant and furthermore
assume that the temperature T is much less than the Fermi temperature Tf.

ProBLEM 3  Consider the two-dimensional conductor described in Problems
1 and 2. Find the frequency dependent conductivity associated with an electric
field proportional to exp{—iwt) from (12.6) and (12.10), in the case B = 0.
Discuss the result in the limit wr > 1. Compare to the result of the Drude
model.

PrOBLEM 4 Determine for the two-dimensional conductor described in
Problems 1 and 2 the components oy; of the conductivity tensor in a per-
pendicular magnetic field together with the resistivity tensor p;;, where 7 and
J each may be z or y. Discuss the significance of the result for the observation
of the Hall effect.

PROBLEM & We consider a two-dimensional electron gas with an energy
dispersion relation given by

e(k) = a(kZ + kJ) + b(k; + ky), (12.12)

where a and b are positive constants. The group velocity v = (v, vy) is given
by the usual expression
1 B¢
V=,
h 0k
We let the electric field E be directed along the z-axis, while the magnetic field
points along the z-direction, perpendicular to the plane in which the electrons
move,
The linearized Boltzmann equation is given (in the relaxation-time approx-
imation) by

(12.13)

of° eB, 0y dg g
eFv, D 3 (vy Bk, Uy 6ky) =-7 (12.14)
where g = f — f°.

Show that the solution to the Boltzmann equation in the limit of high mag-
netic fields, where the collision term on the right hand side may be neglected,
has the form ¢ = kyF(¢) and determine the function F. Use this solution
to find the current density j, in the y-direction (help: use partial integration
with respect to the variable k,) and show that the electric field and the current
density are related by E = pgy j,, where

B
ey = —, 12.1
Pry ne ( 5)



Problems 143

n being the number density of the electrons.

PROBLEM 6 The present problem concerns the same physical system as
in Problem 5. We shall, however, furthermore assume that the electrons in
equilibrium are described by the classical distribution function

fO = ep/ KT ome/kT (12.16)

with g being a negative constant. In the present problem we consider the
Hall-effect in low magnetic fields and compare our result to that obtained in
the high-field limit of Problem 5.

a. Determine g = gg and calculate the associated conductivity o5, ¢ in zero
magnetic field, to first order in the constant . (Help: in doing integrals it is
permissible to use the approximation

o0 o0
/ dze= 77" ~ / dze=*"(1 - yz*) (12.17)
0 0 '

for vy « 1))
b. Show that to first order in magnetic field the solution to the Boltzmann
equation (12.14) is given by ¢ = go + g1, where

=B, 000 ., 9%
=75 (vy ok, Uy C,,Icy). (12.18)

c. Calculate oy (= jy/E) from (12.18), to first order in b. Find the off-
diagonal element of the resistivity tensor p.y = oy /02, ; and show that the

result is identical to (12.15). Do you expect this identity to hold to higher
order in b7

PrROBLEM 7  The Hamiltonian operator describing the motion of an electron
(with charge —e) in a homogeneous magnetic field is obtained from the classi-
cal Hamiltonian by replacing the generalized momentum p with the operator
hV/i. This results in a Hamiltonian which resembles that of a particle in a
harmonic oscillator potential.

The Hamiltonian for an electron moving in a magnetic field is given by

. 1 . .
H = 5—(p+eA)”. (12.19)

We shall assume that the magnetic field is homogeneous and points in the z-
direction, B = (0,0, B). It is often convenient to choose the vector potential
as

A : B(0,z,0), (12.20)
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which is called the Landau gauge. The gauge
A —?(—y,z,O) (12.21)

is called the symmetric gauge.

Ezercise. Verify that (12.20) and (12.21) both yield the same magnetic field
directed along the z-axis,
B: (0,0, B). (12.22)

In the Landau gauge the components of the velocity operator v = (p +
eA)/m are thus given by

ho.

im Oz’

Vp =

Uy =

z; v, =

Ko B, 0
imly m im 8z’

(12.23)

In the following we neglect the motion in the z-direction, since we consider
a two-dimensional electron gas. The result we obtain for the energy eigenvalues
may be easily generalized to three dimensions by multiplying the wavefunction
by L=Y/?exp ik,z and adding h%k2/2m to the energy, since the motion in the
z-direction is unaffected by the magnetic field.

It may be seen from (12.23) that the z- and y-components of the velocity
do not commute because of the presence of the magnetic field, since

hw,

[0z, 0y] = i (12.24)

where B
we = = (12.25)

m

is the classical cyclotron frequency for the electron.
In analogy with the harmonic oscillator it is convenient to introduce ope-
rators by the definition
Uy = Up + i1y (12.26)

and

Vo = by — 1y. (12.27)
These operators satisfy commutation relations similar to those of the creation
and annihilation operators (a' and a) for the harmonic oscillator.

FEzercise. Verify that
hw.

[6-,04]) =2 (12.28)

m

and compare with the commutation relations for the creation and annihilation
operators (a! and @) of the one-dimensional harmonic oscillator.
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When v, is neglected, the Hamiltonian (12.19) can be written as
. 1.
H= oMV’ = omiy i + §zm[vz,vy]. (12.29)

We define the number operator N by

m

= vy b_ 12.
2hw, Y- (12.30)
which allows the Hamiltonian (12.29) to be expressed in the form
- ~ 1
H = hw.(N + 5) (12.31)

The Hamiltonian has thus the same appearance as that of the harmonic os-
cillator, since the commutation relations for N and the operators 9_, 94 cor-
respond precisely to those of the harmonic oscillator. The energy eigenvalues
are therefore

1
E, = hw.(n+ 5), {12.32)
where n =0,1,2.- .. These are the Landau levels characterizing the quantum-

mechanical motion of an electron in a magnetic field.

Unlike that of the one-dimensional harmonic oscillator, the spectrum (12.32)
is strongly degenerate, in the sense that there are many linearly-independent
eigenstates belonging to a particular value of n. The reason for this degeneracy
is that there exists another operator, which commutes with the Hamiltonian
and therefore corresponds to a classical constant of the motion. When the
vector potential is chosen as the Landau gauge (12.20), this operator is p,. We
may therefore label these eigenstates with the eigenvalue k, for p,/h,

In, k), (12.33)

but it should be noted, that the eigenvalues k; do not enter the energy eigen-
values. They determine however the degree of degeneracy, which we now turn
to consider.

An alternative method of deriving the energy spectrum (12.32) is to solve
the Schrodinger equation for the wave function 9, ¢, which depends on z and
y. As we shall see, this also allows the degree of degeneracy of the l+vels to be
determined. Since the operator p, commutes with the Hamiltonian, we seek a
solution in the form

Yk, (2,y) = €9 f(2), (12.34)

which is an eigenfunction of p,.
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Ezercise. Show, by inserting (12.34) into the Schrodinger equation, that the
function f must satisfy

R d2f 1 )

The equation (12.35) has the same form as the Schrédinger equation for a
harmonic oscillator with its minimum displaced by the amount zo along the
z-axis, where

(12.36)

g = B .
It is thus readily seen from the Schrédinger equation (12.35), that the effective
force constant is (eB)?/m and the eigenvalues those given by (12.32).

The degree of degeneracy of a level with a given n is determined by the
requirement that the minimum of the oscillator (12.36) lies within the area
considered. The number of states belonging to the interval Ak, is given by
LAky /27, and the condition 0 < z¢ < L implies that

Ak, = %L-. (12.37)

The number N, of linearly-independent state vectors belonging to the label
n, ky is therefore given by?

2
N, = B (12.38)
h
The result {12.38) for the degree of degeneracy N, may be interpreted picto-
rially by considering h/e to be a quantum of flux. The degree of degeneracy is
thus the number of flux quanta corresponding to the flux BL? of the magnetic
field through the area L2.

PrROBLEM 8  In the present problem we consider the motion of a single elec-
tron in a magnetic field, by using the symmetric gauge (12.21). It is convenient
to express energies in units of hw, and lengths in units of (k/eB)!/2, which is
often referred to as the magnetic length. Correspondingly, we express angular
momentum in units of A.

a) Show that the Hamiltonian for an electron moving in two dimensions,
with the choice of gauge (12.21), may be written as

1 1, 1
H= —5P+P- + 3= + §L. (12.39)

1The existence of the electron spin is neglected here.



Problems 147

Here z = z + iy and z* = z — iy, while

o 9 o
P+ = 5o+ 1_;) P-= a‘ zayaa (1240)

whereas L is the operator for angular momentum (perpendicular to the zy-
plane),
18
L —

= 12.41
i 99 (1241)
The angle ¢ is the usual azimuthal angle, defined by
T=rcos¢, y=rsmao. (12.42)
b) Verify that the states
Im) = ! (z*)yme=#2"/4 (12.43)

(2m+1rm!)1/2

are normalized eigenstates of H and L, with eigenvalues given by 1/2 and —m,
respectively. Find (m[r?|m) and compare to the motion in the classical limit.

ProBLEM 9  The previous problem dealt with a single electron moving in a
magnetic field. We shall now discuss the motion of {wo electrons in a magnetic
field and take into account their Coulomb repulsion. We use the same notation
as in Problem 8.

It is convenient to introduce center-of-mass and relative coordinates by the
transformation

1 1
Z = =(21 + 22), = ——(21 — 29). 12.44
z 2( 1+ 22), Za \/2-(21 2) ( )
The relative coordinate z, is expressed in polar coordinates according to
Za = Tg + Ty, = 7€, (12.45)

The potential energy describing the Coulomb-interaction is thus

62

Vir)= ————.
(") 47rf,60\/§r

(12.46)

where ¢, is the relative permittivity and r = (22 +4y2)!/2. Note the appearance
of the factor v/2 in the potential energy, which originates in the transformation
(12.44).

For the two-dimensional electron systems in GaAs/AlGaAs heterostruc-
tures, the relative permittivity may be taken to be ¢, = 13, while the effective
mass entering the cyclotron frequency w, is 0.067 times the bare electron mass.
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a) Calculate and compare the two characteristic energies e2/4we €0l and
hw., where ! is the magnetic length, for a magnetic field B = 10 T, with the
values of the effective mass and relative permittivity given above.

b) We shall describe the relative motion of the two electrons in the absence
of interactions by a state-vector of the form

1 * —2za22/4
m(z‘,)me z‘/ . (1247)

lm) =

Explain why this is an eigenstate of the Hamiltonian of the relative motion
in the absence of the Coulomb interaction, and determine the corresponding
eigenvalue by transforming the original Hamiltonian by means of (12.44). We
shall refer to the energy associated with the relative motion as the internal
energy. Show that |m) is an eigenstate of the relative angular momentum
with eigenvalue —m. Which values of m are permitted by the requirement of
antisymmetry (the spin degree-of-freedom is neglected throughout)?

¢) Use first-order perturbation theory to calculate the contribution of the
Coulomb interaction to the internal energy, as a function of m. Employ the
value B = 10 T in giving specific results for the two cases m = 3 and m = 5,
appropriate to GaAs/AlGaAs heterostructures.

d) Show that

1
(2n+m+17rmlnt)1/2

lm, n) = e 4 (p_ )™ (py)e" /2. (12.48)

is a normalized eigenstate of the Hamiltonian for a single electron, with the
eigenvalue (n + 1/2) (we use the notation of Problem 8). Note: it is sufficient
to show this for the case n = 1, since we shall use only the states belonging to
n = 1 to calculate higher-order corrections to the energy obtained in c).

e) Show that |m + 1,1) is an eigenstate of angular momentum with eigen-
value —m. Explain why it is sufficient to use the basis |m,0) and |m + 1,1)
for calculating corrections to the energy, as long as we neglect states belonging
to the higher-lying energies 5/2,7/2- -, and determine the correction to the
first-order result found under c¢) for the case m = 5.

PRrROBLEM 10 Collective modes like sound exist in both three- and two-
dimensional systems. In the following we shall determine the velocity and
attenuation of sound in a two-dimensional monatomic gas of 3He-atoms. Ex-
cept for question 6) below, we consider the classical limit where the Maxwell-
Boltzmann distribution applies in equilibrium. The number density of atoms
is n and the mass of an atom is denoted by m. The gas occupies an area A,
the pressure (dimensionally a force per unit length) is denoted by p, while T
is the temperature. In maklng estimates, the number density of atoms may be
taken to be n = 10! ¢cm~2,



Problems 149

1) Determine the (equilibrium) equation of state. Find the specific heat
per particle at constant area and at constant pressure.

2) Write down (in analogy with Section 1.10 in Transport Phenomena)
the hydrodynamical equations that describe the propagation of sound under
adiabatic conditions. Determine the corresponding sound velocity and find its
value at T'= 10 K.

3) Use the results obtained in Section 1.7 to estimate the temperature-
dependent viscosity of the two-dimensional gas, assuming an interatomic po-
tential corresponding to that of hard disks with radius R = 10 A. Estimate
the size of the mean free path.

4) Estimate the attenuation length of sound at the frequency w = 10% s7!
and the temperature 7" = 10 K. (The attenuation length may be defined as
the length over which the amplitude of the scund wave decreases by the factor

1/e).
5) Show how the sound attenuation and the sound velocity may be obtained
from the Boltzmann equation, in analogy with Section 1.14.

6) Estimate the magnitude of the sound velocity at T = 0 K.

PrROBLEM 11 We shall in the following discuss the screening properties of
an electron gas, which is constricted to move in two dimensions. In order to
generalize the result (1.15.13) in Transport Phenomena to two dimensions we
first express it in terms of the Fourier-transform of the Coulomb-interaction,
thereby anticipating the result of the RPA-approximation, which is illustrated
diagrammatically in Fig. 1.12.

a) Show that the Fourier transform in three dimensions of the screened
Coulomb interaction

V(r) = e—:e'k", (12.49)
where e2 = e?/4meg, is given by
~ 4med
Vig) = 2. (12.
(9) 2k (12.50)

Here k, is a constant, which has the dimension of an inverse length. The
Fourier-transform is defined by

f/(q):///dxdydze-iqfv(r). (12.51)

(Help: In order to evaluate f/(q) 1t 1s convenient to introduce polar coordi-
nates with a polar axis along q. From symmetry considerations it is clear that
V(a) can only depend on the magnitude of q.)
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b) Show that (1.15.13) may be written as

e =1+ V(g)x(q,w), (12.52)

with V(q) = 4me2/q%. Determine x(¢,w) in the limit where ¢ tends to zero in
1) the high-frequency regime and ii) the static limit.
¢) Show that the Fourier transform in two dimensions of the Coulomb

interaction )

Vi) ==L, (12.53)
where 7% = 22 + 42, is given by
_ 2
V(g) = 2’;‘30. (12.54)

The Fourier-transform is defined by
Viq) = / / dzdye 0=+ 00y (r), (12.55)

d) Generalize (12.52) to two dimensions and show that the dielectric func-
tion in the static, long-wavelength limit becomes

(g =1+ "; (12.56)

and determine ¢,. Calculate the magnitude of ¢, for GaAs/AlGaAs het-
erostructures (cf. Problem 9).

e) Show from these results that the two-dimensional analog of the plasma
oscillation has a frequency w proportional to ¢!/2 in the long-wavelength limit,
and determine the constant of proportionality.

PrROBLEM 12 A gas of atoms with number density » moves in two dimen-
sions at a temperature 7" which is sufficiently high that the atoms in equilibrium
are described by the Maxwell-Boltzmann distribution. The mass of an atom
is denoted by m.

a) Show that the enthalpy per particle, h, is equal to 2kT".

b) Use the relaxation-time approximation to calculate the thermal conduc-
tivity of the gas in terms of the relaxation time 7.

¢) Calculate the viscosity in the same approximation and determine the
Prandtl number.

ProBLEM 13  Consider a gas of electrons of density n moving in two dimen-
sions (the zy-plane) at temperatures much less than the Fermi temperature.
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The electrons move under the influence of a constant electric field £ along the
z-axis. The collisions are treated in the relaxation-time approximation with a
constant, temperature-independent relaxation time 7.

a) Determine the change 6f = f — f° of the distribution function and plot
it as a function of the angle ¢ between the electron momentum and the electric
field.

b) Calculate the current density j obtained from the distribution function
and show explicitly that the associated change in number density is zero. What
is the value of the momentum current density Il7

c) Calculate the ratio of the drift velocity u = j/ne and the Fermi velocity
for an electric field £ =1 V/m, with 7 = 1072 s and n = 10!! em™2.

PrROBLEM 14  In the present problem we shall consider the thermal conduc-
tivity of a two-dimensional gas of electrons, with dispersion relation ¢ = p?/2m,
at a temperature 7" much less than the Fermi temperature. The number den-
sity of the electron gas is denoted by n, and the effect of collisions is treated in
the relaxation-time approximation, with a constant, temperature-independent
relaxation time 7. The thermal conductivity x relates the temperature gradient
to the heat current jy, according to jon = —kV T, where

2
Jth = 2/ (;r—ff):,v(c - u)f. (12.57)

Here p is the chemical potential. ‘
a) Show that the left hand side of the Boltzmann equation becomes

af° €—p
B 66V‘VT T '

when linearized in the temperature gradient, and use this to obtain an expres-
sion for .

b) Calculate the ratio k/oT, where ¢ is the electrical conductivity and
compare to the three-dimensional case discussed in Section 2.2.4 of Transport
Phenomena.

PROBLEM 15 Use the model investigated in the previous problem to cal-
culate a) the heat current associated with an electric field in the absence of
a temperature gradient and b) the electric current associated with a temper-
ature gradient in the absence of an electric field. Compare the resuits to the
three-dimensional case discussed in Section 2.2.5 of Transport Phenomena.

PrROBLEM 16  We shall determine the thermodynamic potential Q of a two-
dimensional electron gas in a uniform magnetic field of strength B in the limit
where the temperature is much bigger than the Fermi temperature.
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1. Explain, why Q is given (for arbitrary temperatures) by

2
Q:-kTeBhL > In(1 4 elumen)/*T) (12.58)
n=0,1,2,

where ¢, = (n + 1/2)hw,. The electron gas is contained within a square of
sidelength L (we have neglected the spin of the electron).

2. Determine 2 as a function of the ratio hw./kT, starting from (12.58).
Hint: use that e#/*T < 1.

3. Find an approximate expression for € in the limit, where hw./kT < 1,
and use this to determine the diamagnetic susceptibility, which involves the
second derivative of Q with respect to the magnitude of the magnetic field.
What is the value of the susceptibility in the classical limit, h — 07

PROBLEM 17  In this problem we consider the thermodynamic potential of
a two-dimensional gas in a magnetic field, in the limit that the temperature is
much less than the Fermi temperature ep/k.

1. Use (12.58) to prove that 2 oscillates as a function of 1/B and determine
the period.

2. Find how the amplitude of the magnetisation oscillations depends on
the ratio hw./kT.

Help: In carrying out a sum of the type 3_ _,, , . F(n) one may use the
Poisson summation formula

_1 e r z e e :L‘ xei?rm:c
> F(n)_zF(O)+/0 dzF(z)+ 2R \;A/O dzF(z)

n=0,1,2--- m=1,2--
(12.59)
where Re denotes the real part. In calculating the last term (which contains
the oscillations) one uses partial integration together with the integral

o0
[ e = R (12.60)

T et = — .
—eo  4cosh®(z/2) sinh To

ProBLEM 18  We consider a two-dimensional electron gas described by the
Hamiltonian

H=Hy+ H (12.61)
where

Ho =) exc) ,euo (12.62)
k,o
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represents the kinetic energy while

1 el
H' = .2_ Z OcL-}-q,acIc’—q,a'ck'#"ckyﬂ‘ (1263)

q#0,k,k',0,0!

is the electron-electron interaction. The two-dimensional gas is enclosed in a
region of area A.

1) Determine the ground-state energy of the system when the interaction
between the electrons is ignored. Calculate the corresponding pressure p and
the compressibility —(0A/0p)/A.

2) Use first-order perturbation theory to calculate the ground-state energy
in the presence of the electron-electron interaction. Compare your result to
that obtained for the three-dimensional case in Chapter 3 of Introduction to
Many-particle Physics.

3) Use the result obtained in 2) to calculate the compressibility of the
electron gas and discuss. your result.

4) Compare your calculated compressibility to that measured experimen-
tally by Eisenstein et. al., Phys. Rev. Lett. 68, 674 (1992).

ProBLEM 19  Consider a system given by the Hamiltonian
H = E,ala+ Ewb'b+ A(a’d + bla), (12.64)

where E,, Fy and A are real constants. The field operators satisfy the Fermi
comrmutation rules

{a,a} = {a',a'} =0; {a,a'} =1, (12.65)
and
{b,6} = {61, 81} = 0; {b,b'} =1, (12.66)
while the a- and the b-operators anticommute with each other,
{a,8} = {a!, b1} = 0; {a,b'} = {al,b} =0. (12.67)

a) Write down the Heisenberg equations of motion for a and b.
b) Show that the equations of motion have solutions of the form

a=a(0)e  BYR = p(0)e YR (12.68)

and determine F in terms of E,, £ and A.

¢) Let (12.64) be the Hamiltonian of a single electron. Use the time-
independent Schrédinger equation H|y) = E|y) to determine the energy eigen-
values (help: Write |) as a linear combination of state vectors |14,0;) and
|04, 1,) with the properties ala|l4,0s) = |14,05) and 15|04, 1) = |04, 13)).
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PROBLEM 20  In this problem we shall determine the electrical and thermal
resistivity of Al with 1 ppm of Na impurities (in its normally conducting state),
using the results of the model calculations described in “Transport Phenomena’.

a) Determine the residual resistivity (in units of ohm cm).

b) Calculate the resistivity due to electron-phonon scattering at T = 10 K
(neglecting the contribution of impurity scattering) and compare your answer
to that obtained in a).

¢) Calculate the thermal resistivity of Al (in units of mK/W)at T =10 K
for each of the scattering mechanisms discussed in a) and b).

PrOBLEM 21 The transport properties of layered cuprate materials such
as Laj._,Sr,CuQ4 have been investigated intensively, due to the occurrence
of high-temperature superconductivity (with a transition temperature of 35
K) when z is near 0.15. These materials also exhibit a linear dependence of
the resistivity on temperature from the transition temperature up to 1000 K.
When z exceeds 0.2 one finds (see H. Taka,%i et al., Phys. Rev. Lett. 69, 2975,
1992) a different power law, p = po + T1°, which also extends up to about
1600 K.

The solution to the present homework problem will not explain these ob-
servations but will allow one to compare them to results obtained using con-
ventional models of transport in two-dimensional systems. We shall neglect
the periodic potential and assume that the charge carriers of mass m occupy
a ‘Fermi disk’ of radius kr. The phonons will be treated in a two-dimensional
Debye-model, with linear dispersion w, = cq.

a) Show that the in-plane resistivity ps; within the relaxation time approx-
imation is given by

h d
Pab = o2 kFZy

where d is the distance between two parallel neighboring planes, while £ = vpr
is the mean free path, with vr being the Fermi velocity. For the materials in
question d = 6.4 A. What is the value of kpf, when pap = 10~30hm cm?

b) We shall use a model electron-phonon matrix element given by

(12.69)

hw,g

TN (12.70)

lg1? = A

where A is the area and 2N(0) the density of states (per unit area) at the
Fermi energy, corresponding to g2.6.21) in Transport Phenomena. How does -
the quantity corresponding to a*F in (2.7.2) depend on frequency w at small
frequencies? Determine the energy- and temperature-dependence of the relax-
ation rate 1/7 and the electrical resistivity, at temperatures much less than
the Debye-temperature. How does the resistivity depend on T', when T is
comparable to or larger than the Debye-temperature?
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PROBLEM 22 We consider the specific heat of a two-dimensional crystal of
hexagonal symmetry and treat the phonons in the Debye-approximation. The
crystal consists of N identical atoms which form a triangular lattice in such
a way that each atom has 6 nearest neighbors. The distance between nearest
neighbors is denoted by a, and the transverse and longitudinal sound velocity
is called ¢; and ¢;, respectively.

a) Express the Debye wave vector ¢p in terms of a.

b) Determine the specific heat C as a function of temperature.

¢) Write down approximate expressions for C at low and high temperatures.
Compare your result at high temperatures to the law of Dulong and Petit.

PrROBLEM 23  Use the transformation to phonon coordinates given in (2.6.14-
15) of Transport Phenomena to show that the thermal average < (§R;)? > is
given by

h 1
N> E —(92N©
< (6R;)* >= SN - (2] (wq) + 1), (12.71)

where N9 is the Planck function (the sum over polarization directions is in-
cluded in the g-sum). Use this result to prove that one- and two-dimensional
crystals are unstable (help: consider the long wavelength limit ¢ — 0).

PrROBLEM 24  The elastic (free) energy F of a two-dimensional cubic crystal
may be written in the general form

1
F=Fo+ §A1(cix +€0,) + Arerreyy + Aa(e2, +€2,). (12.72)

Here Aj, A2, and A3 are three independent elastic constants, consistent with
cubic symmetry.

The components of the stress tensor o are obtained from this by differ-
entiating,

oOF
ik = . 12.
Oik Ber (12.73)
The equation of motion is
82’&5 6(7,'15
P o = T (12.74)
in the absence of volume forces. The deformation tensor ¢;; is defined by
1, 0u; Ouy
€ix = 5(8—3”c + -5;), (12.75)

where u; with { = z,y are the two components of the displacement vector.
a) Show that the o, component of the stress tensor is given by o,y =
2A3¢5y and determine similarly 0, and oy,.
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b) Find the condition that a plane-wave solution of the form
u = uge! T (12.76)

satisfies the equation of motion (12.74). Determine the sound velocity as a
function of the angle 8 defined by q = ¢(cos 8, sin 8).

¢) Plot the sound velocity as a function of 8 for A; = Ay = A3 = A, How
do you expect a corresponding plot to look for a two-dimensional crystal with
hexagonal symmetry?

PrOBLEM 25  In this problem we consider the thermal conductivity of a two-
dimensional crystal within the relaxation-time approximation, at temperatures
much lower than the Debye temperature. The relaxation time 7 is assumed to
be a constant, independent of energy and temperature.

a) First we consider the situation where the phonon frequencies are pro-
portional to the wave number, with isotropic velocities ¢; and ¢; for the lon-
gitudinal and transverse modes, respectively. Find the thermal conductivity
and compare its temperature dependence to the corresponding case in three
dimensions.

b) Indicate how the calculation of the thermal conductivity is changed, if
the velocities depend on the direction of propagation (compare Problem 24).

PrROBLEM 26  In three dimensions isotopic impurity scattering gives rise to
an infinite thermal conductivity (cf. Transport Phenomena, Section 4.2.2), if no
other scattering mechanisms are present. Is this also true in two dimensions?

PrROBLEM 27 We consider a two-dimensional Fermi liquid of interacting
particles with mass m and number density n = N/A, A being the area with-
in which the particles are confined. For particles moving in two dimensions, we
may introduce Fermi-liquid parameters Fy by replacing the Legendre-polynomia
P, by the functions cos ¢, where ¢ is the angle between p and p’.

a) Express the compressibility in terms of F§ and F}. Find the hydrody-
namic sound velocity c;.

b) Write down the Boltzmann equation in analogy with Section 6.3.1 of
Transport Phenomena with a collision integral corresponding to eq. (6.3.1).
Determine the velocity of zero sound in the case where all other Landau pa-
rameters than F§ are set equal to zero, while F§ > 1. Compare your result to
the hydrodynamic sound velocity.

¢) Calculate how the sound velocity depends on wr, where w is the frequen-
cy of the sound wave and 7 a suitably defined relaxation time. It is assumed
that F§ > 1 and that Landau parameters corresponding to £ greater than
or equal to 3 may be neglected. Find the relative change in sound velocity
and the damping coefficient as a function of wr and the Landau parameters.
Discuss the temperature dependence of the attenuation in the hydrodynamic
and in the collisionless regime.



Problems 157

ProBLEM 28  Consider a particle moving in one dimension with the Hamil-
tonian given by

1
H = hw(ala + —2-) + hwola' + a), (12.77)

where the operators a! and a satsify the commutation rule [a,al] = 1, while
the frequencies w and wqg are positive constants.

a) Write down the Heisenberg equations of motion for a! and a.

b) Solve the Heisenberg equations of motion by introducing the operator
« = a + wp/w and its hermitian conjugate.

c¢) Express H in terms of o and o and determine its eigenvalues.

d) What might be the physical origin of the second term in the Hamiltonian
(12.77)7 Compare your result to that obtained by solving the appropriate
Schrédinger equation.

PrOBLEM 29 In this problem we shall discuss the tight-binding Hamilto-
nian of an electron which moves in a periodic lattice. For simplicity we start
out by treating the motion in one dimension, and subsequently generalize the
discussion to two and three dimensions.

Consider the one-dimensional nearest-neighbor hopping Hamiltonian

H=—1) clejps (12.78)
IT;

where the index j labels the N atomic sites of the one-dimensional chain (j =
1,2---, N), while the sum over § = +1 ensures that only nearest-neighbor sites,
separated by the lattice constant a, are coupled. The constant ¢ is assumed to
be positive. The operators ¢! and ¢ obey the anticommutation rules

{cj,el} = 6. (12.79)

a) Use the transformation
1 "y
G =—= e*i%, (12.80)
VN 5

to diagonalize the Hamiltonian and plot the eigenvalues €, as a function of k.

b) Generalize your treatment to a two-dimensional square lattice and draw
contours of constant energy in the k; — k, plane. How does the corresponding
dispersion relation look in the three-dimensional case for a simple cubic lattice?

PrRoOBLEM 30 It is often convenient to transform particle operators into spin
operators or vice versa. As an example we consider a lattice gas with a fixed
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chemical potential u. The operator K = H — puN is given by
1
K= §U2njnj+5 - [lzn" (1281)
js j

where U is a constant, while n; = c}c,- is the number operator belonging to

site j. The sum over § denotes as usual a sum over nearest-neighbor sites.
a) Use the transformation to spin-1/2 operators given by n; = S} +

1/2, ¢; = S5 s c} = SJT" to prove that the lattice gas model is equivalent
to an Ising model in an external magnetic field.

b) Show by adding the hopping term from Problem 29 that the resulting
quantum lattice-gas Hamiltonian is equivalent to a Heisenberg model with

anisotropic interactions in an external magnetic field.

ProBLEM 31  Use (3.13) to determine the zero-temperature pressure p =
—3E/8V and compressibility £ = —(8V/0p)/V of the electron gas. Plot your
results as functions of the parameter r,, and compare them to the case when
the electron-electron interaction is neglected. Indicate how your results are
modified, when the term given by (3.29) is added to (3.13).

PrOBLEM 32 In this problem we consider a spin-polarized electron gas,
in which the number of spin-up electrons N; differs from the number N| of
spin-down electrons.

a) First we consider the non-interacting case, in which the electron-electron
interaction is neglected entirely. Determine the ground-state energy per par-
ticle, E/N, as a function of the dimensionless ratio a = (N — N)/N, where
N = N; + Ny, and find the minimum value of E/N as a function of a.

b) Next we include the electron-electron interaction to first order in per-
turbation theory. Find how (3.13) is modified in the spin-polarized case by
determining the energy per particle as a function of a and r,.

¢) Determine the value of r, for which the ferromagnetic state (o = 1)
has lower energy than the non-magnetic state (o = 0). Sketch the energy per
particle as a function of « for this particular value of r,.

PrOBLEM 33 The elementary excitations of an antiferromagnet are spin
waves. Here we shall calculate the spin wave dispersion relation for a linear
chain, using the method described in Section 5.5.2.

a) Determine the dispersion relation for the linear chain with nearest-
neighbor coupling and calculate the spin-wave velocity.

¢) Generalize your results to a two-dimensional square lattice and draw
contours of constant energy.

PrOBLEM 34 We consider a one-dimensional chain of atoms, which are
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coupled by nearest neighbor antiferromagnetic interactions, corresponding to
the Hamiltonian (5.74) with J < 0. The spin-operators associated with the

sites of each of the two sublattices @ and ¢ are denoted by SS,“) and Sﬁrc,). The
z-component of the total sublattice magnetization is given by

S = Ns- ala, (12.82)

and
S = —Ns-}-Zchn, (12.83)

where the a- and c-operators refer to sites in each sublattice. Note that there
are N atoms on sublattice a and N atoms on sublattice c.
a) Use the transformation (5.86) to prove that 5{*) and S are given by

S = Ns—> blb, (12.84)
q

and
S =-Ns+Y dld,. (12.85)
q

b) Find, using the Bogoliubov transformation employed in Problem 33,
b=ua—v8, d=uf—-val, (12.86)

an expression for the zero-temperature sublattice magnetization in terms of the
coefficients vy. Show that the ground state of the antiferromagnet does not
correspond to the sublattice magnetization being Ns and —Ns, respectively.

¢) Demonstrate that the sublattice magnetization diverges in one dimen-
sion. Does the divergence persist in two and three dimensions?

ProBLEM 35 Use the results obtained in Section 5.3 to calculate the ex-
pectation value of the particle number operator alT‘ak in the ground state of
the system of interacting bosons. Plot your result as a function of k.

ProBLEM 36 The elementary excitations of a dilute, three-dimensional
Bose gas are phonons. Determine the specific heat at low temperatures and
compare with the result obtained at low temperatures in the ideal bose gas.

ProBLEM 37  The spin waves for a Heisenberg ferromagnet are gapless, in
the sense that their energy Aw, vanishes (as ¢°) in the limit when ¢ tends to
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zero. Show that the spin waves develop a gap, when the interactions become
anisotropic, corresponding to the Hamiltonian

1
H==> J15n:Sn41, + §JJ_(S,TS;+1 + S7S%0), (12.87)

where J) > Ji, and find the magnitude of the gap. What happens in the
presence of an external magnetic field?

PrROBLEM 38  As an example of the use of diagrammatic methods we in-
vestigate in this and several subsequent problems a neutral fermion system
described by the Hamiltonian

H=Ho+H', (12.88)
where
Ho=) el o0 (12.89)
k,o

represents the kinetic energy, with ¢ = h2k2/2m, while the interaction be-
tween the fermions is given by the operator

U

H’ = 5—‘7 Z cI"l“qyocI‘I-qaﬂ'ckl:alckra' (12'90)
q.k,k’,a,0'

As an example we might think of the quantum liquid 3He, but one should note
the basic difference from real 3He: the Fourier-transform of the interaction is
taken to be a positive constant, U, corresponding to a repulsive delta-function
Interaction in real space,

Ve-r)=Ué(r-r). (12.91)

The number of fermions is denoted by N. In evaluating physical quantities
we shall identify m with the mass of a *He-atom, while the density n = N/V
is given by the molar volume being 36.8 cm3 (corresponding to liquid 3He
at saturated vapor pressure). Unless otherwise indicated, U/k is given the
(somewhat arbitrary) value of 300 KA3, k being the Boltzmann constant.

a) Determine the ground-state energy per particle in the absence of the
interaction. Evaluate the corresponding Fermi energy and Fermi temperature.

b) Show that

a=NO)U (12.92)

is a dimensionless parameter and express it in terms of the parameters given
above. Here N(0) is the density of states at the Fermi energy in the non-
interacting system (per spin and per unit volume). Find the value of « in
terms of the parameters given above.
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¢) Calculate the magnitude of the compressibility xk = —(8V/3dp)/V for the
non-interacting system and determine the magnitude of the sound velocity s
from the relation s? = 1/mnk.

PrOBLEM 39 We shall now use the model described in Problem 38 to
calculate some physical properties within the Hartree-Fock approximation.

a) Determine the single-particle Green function and indicate the position
of its poles in the complex-frequency plane. Draw the relevant diagrams that
are being summed.

b) Calculate the single particle energies and determine the shift in the
chemical potential (at T = 0 K) compared to the noninteracting system. Eva-
luate the magnitude of the shift for the parameters given above. How does the
chemical potential depend on N7

¢) Use the result of question b) to determine the total energy of the system
(hint: use the thermodynamic definition of the chemical potential).

d) Calculate the inverse compressibility to first order in a. Determine the
magnitude of the sound velocity and compare it to the answer obtained in
Problem 38 above.

ProBLEM 40 Use the first-order perturbation theory described in Chapter
3 to calculate the ground state energy of the system described in Problem 38,
to first order in a. Compare your result to the answer obtained in Problem 39

¢).

ProBLEM 41 We shall later make use of the socalled density-fluctuation
propagator for spin-1/2 fermions. It is a special case of a two-particle Green
function. The density operator in the Heisenberg picture is

p(x,1) = Y v (x, ) (x,1), (12.93)

where the field operators ¢ and ¢! are given by (6.5) and (6.6). In the follow-
ing we consider only spatially homogeneous systems, where the ground-state
expectation value < p(x) > of the density is a constant, n, equal to the number
of particles per unit volume,

< p(x) >=n. (12.94)
The density fluctuation operator j is defined as
p(x,t) = p(x,t) — n. (12.95)

The density fluctuation propagator D(x,t;x’,¢’) is a time-ordered correlation
function, which is defined in analogy with the single-particle Green function
(6.1),

D(x,t;x',t") = —i < T{p(x,t)p(x', 1)} > (12.96)
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in terms of a time-ordered product of density-fluctuation operators in the
Heisenberg picture.

a) Use (6.62) to prove that the density fluctuation propagator D(®) of the
non-interacting system is given by

DO(x,t;x',t') = —2iG O (x, t;x', t")\GO(X, t'; %, 1). (12.97)

b) In a translationally invariant system, the density fluctuation propagator
only depends on the differences x — x’ and t — t’. The Fourier-transform is

D(q,w) = / d(x — x')d(t — t')e~ TNt D(x ¥ 1 —t'). (12.98)

Show that the Fourier-transform D(®)(q,w) is given in terms of the Fourier-
transform of the free-particle Green functions by

dk dk
(0) =-9i | — | Z20¢® (0)
DV (q,w) = 21/ PE / 77 Gk + q, kg +w)G " (k, ko).  (12.99)

Use (6.38) to carry out the integration over the internal frequency variable kg
by means of the residue theorem.

We shall later on carry out the integration over the internal momentum
variable k and relate the resulting function of q and w to the wavevector- and
frequency-dependent dielectric function of the electron gas.

PROBLEM 42 Identify all second order diagrams in the expansion of the
single-particle Green function, including linked and unlinked diagrams as well
as those of the denominator given by (6.89). Verify the Feynman rules up to
and including second order and demonstrate explicitly the cancellation of the
unlinked diagrams in the numerator against the corresponding terms in the
denominator.

PROBLEM 43 Verify the expression (8.29) for the imaginary part of the
function F introduced in (8.27). Plot the result as a function of z¢ for fixed
values of z, for instance £ = 0.2,z =1 and z = 2.

PROBLEM 44 We consider a noninteracting system of fermions described
by the Hamiltonian Ho given in Problem 38. Use the expressions (7.24) for
the particle number N and (7.31) for the internal energy U to determine U at
temperatures that are high compared to the Fermi temperature. Calculate the
lowest order correction to the classical internal energy and the specific heat
per particle and determine the relative size of the correction terms at 7' = 10
K.
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PROBLEM 45  Repeat Problem 44 with the interaction term {A.89) included.
The Green function appearing in Eq. (7.24) for the particle number N and in
Eq. (7.31) for the internal energy U is taken to be the one obtained in the
Hartree-Fock approximation. Determine the leading correction to the classical
internal energy coming from the interaction and evaluate its relative size at
T = 10 K for the parameters given in Problem 38.

PROBLEM 46 Use the expression (8.37), after analytic continuation, for
calculating the dispersion of longitudinal plasma waves in the classical limit
where the temperature is much larger than the Fermi temperature. Compare
your result to (8.33), which is valid at temperatures much less than the Fermi
temperature. Indicate how the (Landau) damping of the plasma wave may be
determined.

PROBLEM 47 In the present problem we consider a classical plasma in the
ultra-relativistic limit, where kT >> mc?. Use the result (8.37) for determining
the dispersion of longitudinal plasma waves in this limit and compare your
result to (8.33) (it is permissible to approximate the energy dispersion relation
by € =~ ¢p, where p is the momentum}).

PROBLEM 48 Use (8.45) for determining I1(%)(¢,0) as a function of the
variable £ = ¢/2kr in the cases where the dimension d is 1,2 and 3. Compare
your results to the sketch given in Fig. 8.2. For the case d = 3 plot the
derivative dIi{®)(q, 0)/dq as a function of ¢ in the vicinity of ¢ = 2kp. Compare
the resulting static dielectric function to that obtained within the Thomas-
Fermi approximation.

PROBLEM 49  We shall determine the temperature dependence of I1(®) in a
tight-binding model of a one-dimensional crystal. The length of the crystal is
L = Na, where N is the number of atoms. The energy dispersion relation is

€y = —FEgcos ka. (12.100)

We assume that the band is half-filled at T' = 0 K, implying that kr = 7/2a.

Find M(®)(2kp) as a function of Eo/kT for large values of this parameter
{(hint: introduce the density of states and utilize that

€p+hq/2 = —Ep_hq/g (12101)

and , .
Sosng2 = 1= Fongp2 (12.102)
for ¢ = 2kp. One needs the integral

® dzlnz
/ 2 = —In(der/m), (12.103)
o cosh’z
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where ¥ = 0.577---). There is a close relation between this logarithmic sin-
gularity and the so-called Peierls instability in one-dimensional conductors, as
we shall see in Problem 51.

PrOBLEM 50  We consider a (degenerate) three-dimensional gas of free elec-
trons, coupled to Debye-phonons by the interaction (9.12) with g given by the
model form (9.23), for all ¢ less than the Debye cut-off. Use the polarization
bubble II(°) and the diagrammatic approximation
rie)
A~ - A + """O:-':

to determine (at zero temperature) the change in the frequency of the phonons
as well as their damping, due to the coupling to the electrons. For numerical
values, use A = 0.2 and an unperturbed sound velocity ¢ equal to 1/100 times
the Fermi velocity.

a) Find the relative magnitude Ac/c of the change Ac in sound velocity.

b) Find the magnitude of the relative shift Awy/w, of the phonon frequency
at ¢ = 2kp (we assume that 2kp is less than the Debye cut-off). What is the
value of the derivative of the relative shift with respect to ¢ at ¢ = 2kp?

¢) Calculate the magnitude of the ratio I';/w,, where Iy is the phonon
width (inverse lifetime). Compare your result to (1.14.13) and (2.11.30) in
Transport Phenomena.

Help: For the calculation of the shift in phonon frequency one may use the
static limit of 1{®) (why?). The damping is determined by the imaginary part
of TI(9),

PrROBLEM 51 When II(®) is used for calculating phonon frequencies in a
one-dimensional conductor, one finds that the phonon with wavevector 2kp
”softens” in the sense that its frequency decreases with decreasing temperature
and eventually goes to zero at a ”transition temperature” T,. This Peterls
transition marks the transition from a conducting to an insulating state (note,
however, the general arguments against occurrence of phase transitions in one-
dimensional systems, cf. Landau and Lifshitz, Statistical Physics, vol. I).

Use the method of Problem 50 to find the transition temperature 7, as well
as the temperature dependence of the phonon frequency just above T, for the
system treated in Problem 49. The results should be given in terms of A and
the Fermi temperature Ty = Eg/k.

ProOBLEM 52  Determine ImX(k, {;) from (9.62) and compare with (2.7.1)
in Transport Phenomena. Consider the T = 0 limit as well as ImX(k, 0) at
low and at high temperatures compared to the Debye temperature. Discuss
the relation of these results to the transport times that enter the electrical and
thermal conductivity.
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ProBLEM 53  The conduction electrons in a spin-1/2 three-dimensional fer-
romagnet interact with the local spins S;, where ¢ labels the position in the
lattice (assumed to be simple cubic). The interaction Hamiltonian is

Heiospin =AY 8(r —Ri)s - S, (12.104)

where ¢ is the conduction electron spin.

Introduce magnon propagators and write the interaction Hamiltonian in
terms of electron (and magnon) creation and annihilation operators. Discuss
differences and similarities between the electron-phonon and electron-magnon
many-body problem.

PROBLEM 54 The phonon density-of-states in real materials is usually
rather different from the quadratic frequency dependence characteristic of the
Debye-model, except at low frequencies. In this problem we consider the op-
posite extreme, an Einstein model with a? F(w) given by

a?F(w) = Cwob(w ~ wo), (12.105)

where C is a dimensionless constant, which we take to be C = 0.25.

1) Determine the real and the imaginary part of the self-energy at 7' = 0
K, as well as the spectral density A(k,w).

2) Determine the relaxation rate 1/7(£,T) as a function of £ = ¢ — p and
T, in terms of the characteristic temperature Ty = hwg/k.

PROBLEM 55 In this problem we consider the interacting Fermi gas intro-
duced in Problem 38 at zero temperature.

1) Determine the dependence of the relaxation rate (the inverse life-time)
on & = € — p for states near the Fermi surface, by considering the imaginary
part of the self-energy to second order in the parameter o (cf. Problem 38).

2) Calculate (or estimate) the magnitude of the relaxation rate for £/u =
0.01.

Help: Since we only go to second order in «, the chemical potential u
may be set equal to its value in the ground state of the noninteracting sys-
tem. The calculation of the lifetime may be carried out by use of either the
zero-temperature formalism or the Matsubara technique, with T — 0 at an
appropriate stage. The relevant diagrams for the single-particle Green func-
tion (from which the self-energy may be extracted) are drawn below. Consider
(a) first and convince yourself (without doing a specific calculation) that the
contribution from (b) is the same except for a numerical factor.
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Appendix A: Fourier-transforms

The Fourier-transform F(q) of a function F(r) is given by the relations

F(r) = ﬁ / dqe ™ (q) (A.1)
where
F(q) = /dre"'q"F(r). (A.2)

One often distinguishes a function and its Fourier-transform by their argument
only, thus writing F'(q) instead of F(q).

We shall need the Fourier-transform of a Coulomb-potential and its deriva-
tive, which enters the electron-phonon interaction. In order to include the
case of a screened Coulompotential we first study the Fourier-transform of the
function

V(r) = %e'k" (A.3)

where 1/k, is the screening length. It is convenient to introduce a polar axis

along q. From symmetry considerations it is clear that f/(q) can only depend
on the magnitude of q. Thus

. 1 o0 . 1
Vig) = 27r/ d(cos 0)/ rzdre'""mso-;e_k"
-1 0

o
= 2_1r/' dr(eiq'—e'i"')e_""
¢ Jo

_ o 1
- 1q( ig—k —iq—k,)
4n
= . A4
For k&, = 0 we get
~ 4r
We also need the Fourier transform of the gradient of 1/r. Since
1 _ dq ,-q,,.47r
-= @ (4.9

we obtain, by letting the gradient V = (8/8z,8/0y, 8/0z) act on both sides
of (A.6), that
ro_ dq  q.r4miq
BT @Rt & (A.7)

Thus the Fourier-transform of r/r3 is —4wiq/¢?.
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