A possible universal role for mRNA secondary structure in bacterial translation revealed using a synthetic operon

Research output: Contribution to journalJournal articlepeer-review

Documents

In bacteria, translation re-initiation is crucial for synthesizing proteins encoded by genes that are organized into operons. The mechanisms regulating translation re-initiation remain, however, poorly understood. We now describe the ribosome termination structure (RTS), a conserved and stable mRNA secondary structure localized immediately downstream of stop codons, and provide experimental evidence for its role in governing re-initiation efficiency in a synthetic Escherichia coli operon. We further report that RTSs are abundant, being associated with 18%-65% of genes in 128 analyzed bacterial genomes representing all phyla, and are selectively depleted when translation re-initiation is advantageous yet selectively enriched so as to insulate translation when re-initiation is deleterious. Our results support a potentially universal role for the RTS in controlling translation termination-insulation and re-initiation across bacteria. The mechanisms for regulating translation re-initiation in bacteria remain poorly understood. Here, the authors screened a library of synthetic operons and identified a ribosome termination structure that modulates re-initiation efficiency and which is conserved across bacteria.

Original languageEnglish
Article number4827
JournalNature Communications
Volume11
Issue number1
Number of pages11
ISSN2041-1723
DOIs
Publication statusPublished - 24 Sep 2020

    Research areas

  • INITIATION, REINITIATION, ABUNDANCE, DATABASE

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 249903552