MeV-scale reheating temperature and cosmological production of light sterile neutrinos

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

We investigate how sterile neutrinos with a range of masses influence cosmology in MeV-scale reheating temperature scenarios. By computing the production of sterile neutrinos through the combination of mixing and scattering in the early Universe, we find that light sterile neutrinos, with masses and mixings as inferred from short-baseline neutrino oscillation experiments, are consistent with big-bang nucleosynthesis (BBN) and cosmic microwave background (CMB) radiation for the reheating temperature of O(1) MeV if the parent particle responsible for reheating decays into electromagnetic components (radiative decay). In contrast, if the parent particle mainly decays into hadrons (hadronic decay), the bound from BBN becomes more stringent. In this case, the existence of the light sterile neutrinos can be cosmologically excluded, depending on the mass and the hadronic branching ratio of the parent particle.

OriginalsprogEngelsk
Artikelnummer015
TidsskriftJournal of Cosmology and Astroparticle Physics
Vol/bind2020
Udgave nummer8
Antal sider26
ISSN1475-7516
DOI
StatusUdgivet - aug. 2020

ID: 247334632