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A B S T R A C T

Over the last decades quantum effects have become more and more
controllable, leading to the implementations of various quantum infor-
mation protocols. These protocols are all based on utilizing quantum
correlation. In this thesis we consider how states of an atomic ensem-
ble with such correlations can be created and characterized.

First we consider a spin-squeezed state. This state is generated by
performing quantum-nondemolition measurements of the atomic pop-
ulation difference. We show a spectroscopically relevant noise reduc-
tion of −1.7 dB, showing that the ensemble is in a many-body entan-
gled state. Furthermore, the nonclassical properties of the created state
is inferred through the use of atomic quadrature quasi-probability dis-
tributions.

The second generated state is a collective-single-excitation state —
the atomic equivalent of a single photon. This state is created by the
detection of a heralding photon and characterized using atomic homo-
dyne tomography. Using this hybrid continues-discrete method we
show a significant increase in the variance of the measurements condi-
tioned on a click. A clear signature of the collective-single-excitation
state.

Last we consider a new experimental venture — a nanofiber based
light-atom interface. Using a dual-frequency probing method we mea-
sure and prepare an ensemble with a sub-Poissonian atom number
distribution. This is a first step towards the implementation of more
exotic quantum states.
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R E S U M É

Igennem de seneste årtier er flere og flere kvantemekaniske fænome-
ner blevet kontrollerbare. Dette har gjort det muligt i kvanteinforma-
tionen at implementere forskellige protokoller der alle er baseret på at
udnytte kvantemekaniske korrelationer i systemet. I denne afhandling
betragtes hvorledes et atomart ensemble kan bringes i tilstande med
sådanne korrelationer.

Først gennemgås en klemt spintilstand. Denne skabes via ikke de-
struktive målinger af den atomare populations forskel. Vi viser at den
skabte tilstand har en målingsrelevant støjreduktion på −1.7 dB og at
ensemblet dermed er i en mange-legeme sammenfiltret tilstand. Des-
uden vises de ikke klassiske egenskaber af tilstanden ved brug af ato-
mare kvasi-kvadratur sandsynlighedsfordelinger.

Den anden tilstand vi betragter er en kollektiv enkelteksitation til-
stand — den atomare udgave af en enkelt foton. Skabelsen af en sådan
tilstand varsles ved detektion af en enkelt foton og karakteriseres via
atomare homodyn tomografi. Ved hjælp af denne hybrid kontinuere-
diskrete metode finder vi en signifikant forøgelse af variansen hvis en
foton blev detekteret i forhold til ingen detekteret foton. Dette er en
klar signatur af en kollektiv enkelteksitation tilstand.

Sidst beskrives et nyt igangværende eksperiment baseret på en så-
kaldt optisk nanofiber. Ved hjælp af en to frekvens metode kan vi måle
og lave et ensemble hvor antallet af atomer følger en sub-Poisson sand-
synlighedsfordeling. Dette er et første skridt imod skabelsen af mere
eksotiske kvantemekaniske tilstande.
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If you want my eyes, take my eyes, they’re always true.
If you want my heart, take my heart, it’s right here for you.

It’s been so long, been so long, but I made it through.

— [The Walkmen 2012]

A C K N O W L E D G M E N T S

This account sums up work done in QUANTOP over the last four years.
However, my working relationship with the group is almost twice as
old. In the spring of 2007, I, as an unknowing undergraduate, opted for
an experimental project co-supervised by Jörg H. Müller. As neither I
nor the senior staff at QUANTOP were scared away by the experience,
it made sense to stick around the basement at Blegdamsvej for my
Bachelors project. Here I had the pleasure of working on a squeezed
light source — my first encounter with nonclassicality. During a small
detour to London from 2009-2010, my appreciation for the work of
QUANTOP deepened, and in the late summer of 2010 I returned to start
a PhD on the so-called “clock-experiment” under the supervision of
Eugene Polzik. Over the last four years, countless hours have been
spent in the lab in the hope of pushing our understanding further.
Whether this has been successful or not is for others to decide; what I
am certain of, however, is that I would never have made it through on
my own, and I learned so much from others along the way.

First and foremost, I am indebted to Eugene Polzik for giving me
the opportunity to carry out the work described here. His guidance,
encouragement, and high standards set an admirable example for any
scientist, young or old.

Starting out as part of a two-person team on the experiment, I could
not have asked for a better teacher than Jürgen Appel – one of the most
knowledgeable physicists I have met. He always (and I mean always)
had a solution to whatever problem we were facing. In addition, he
always kept an open door, making for an all-too-unusually supportive
atmosphere for PhD students.

I also owe great thanks to Jörg H. Müller. I can not count the num-
ber of hours I have spent at his desk (piled up with papers) getting
individual tuition. His knowledge and patience are immense and in-
spiring.

vii



With Jürgen quickly progressing through the ranks, it was clear that
more hands were needed in the lab. These came with Heidi Lundgaard
Sørensen and Jean-Baptiste Béguin (JB) joining the team. Working
closely with JB on the MZI setup, we shared all of its joys and sor-
rows. His persistent – and at times, magic – ways of increasing the
atom number led to several key improvements and modifications of
the setup. My collaboration with Heidi developed rapidly, and she is
now my go-to person, whether this is to test out a new idea or simply
share a morning coffee. The nanofiber experiments were also pushed
forward by the addition of Eva Bookjans to the lab team.

It is also a pleasure to thank Vladan Vuletić for welcoming me into
his group during my time at MIT. Here I joined Wenlan Chen and Kristi
Beck working on a cavity-based light-atom interface. With a lot to
learn, it was a privilege to work with such open-minded and dedicated
physicists. While in Cambridge I also had countless discussions with
Hao Zhang about implementing a similar scheme to the one presented
here in their cavity experiment.

In addition to my closest collaborators mentioned above, QUANTOP

has been filled with great people for as long as I can remember. Special
thanks go to Nir Kampel and William H. P. Nielsen. In my early years,
Nir always took the time to lend a hand or answer questions, no matter
how simple. Having done my Bachelors project with William, it was a
pleasure to have him “come back home” and even better having him as
an office mate. My countless questions on optomechanics, LaTeX and
Python, combined with William’s willingness to answer them, have
meant that not a week has gone by without a major discussion.

Last (I promise) we come to the non-physicists – friends and family.
Thanks for dealing with strange working hours, and for listening to
complaints about such things as lasers not lasing, and atoms being
there and then not. Without you I would never have made it to this
stage.
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. . . quantum phenomena do not occur in a Hilbert space,
they occur in a laboratory

— [Peres 1995]

1
I N T R O D U C T I O N

Since the birth of quantum mechanics in the beginning of the last cen-
tury a central aspect of the theory has been the interactions between
light and matter. As photons only interacts weakly with their envi-
ronment these interactions were initially limited — the observation of
any quantum effect was a success. However, with the development of
new technologies, such as laser cooling and nanofabrication, quantum
effects are now routinely observed. With the possibility to observe and
study these effects a natural next step is to control and utilize them.
This is the essence of quantum state engineering, the central topic of
this thesis — more specific we will consider how states with distinct
quantum correlations can be created and used.

“Exotic” quantum states are interesting for two reasons. First, in-
creasing the size of the systems in which they are created and the
“degree of quantumness” new insight into the fundamental aspects
of quantum mechanics is gained. Second, the states have applica-
tions within quantum assisted metrology and quantum information
processing. These exotic quantum states have been created in a wide
range of systems ranging from photonic [Wu et al. 1986] to mechanical
[O’Connell et al. 2010]. In this work our system of choice is a cold
atomic ensemble coupled to light — a light-atom interface. To under-
stand how we create, manipulate and characterize these states, we will
touch on many of the central features of quantum mechanics such as
Heisenbergs uncertainty relation, quantum measurements, superposi-
tion states, and entanglement.

Within the field of light-atom interfaces two methods using either
discrete or continuous variables, have been pursued successfully. The
discrete method [Kimble 2008] is based on the probabilistic generation
of collective atomic excitations through photon counting. This has al-
lowed for the creation of highly non-Gaussian and nonclassical states
(negative Wigner function) [Simon et al. 2007; Bimbard et al. 2014],
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introduction

quantum memories [Choi et al. 2008] and small quantum networks
[Choi et al. 2010]. However, the discrete method has two drawbacks.
First, the “low” characterization efficiency due to the loss in conver-
sion from atomic to optical states. Second, the heralded (probabilistic)
nature of the generation methods.

The continuous-variable method [Hammerer et al. 2010] on the other
hand allow for high characterization efficiency and deterministic state
generation. This has led to the creation of spin-squeezed states (SSSs)
[Appel, Windpassinger, et al. 2009; Schleier-Smith et al. 2010] and their
use in quantum-assisted metrology [Louchet-Chauvet et al. 2010; Ler-
oux et al. 2010]. However, due to the linear and Gaussian nature of
the method the nonclassical character of the created states has been
limited.

So far the discrete and continuous variable methods have only been
realized separately. Utilizing a hybrid discrete-continuous approach
— as for photonic systems [Babichev et al. 2004; Neergaard-Nielsen et
al. 2006; Ourjoumtsev et al. 2007] — we want to combine the discrete
state generation method with the atomic tomography method of the
continuous variables. With the atomic tomography done directly in the
ensemble this method do not suffer from the loss in converting atomic
to optical states. Furthermore, with the created state stored within
the atomic ensemble (a quantum memory) it is readily available for
further manipulation and on-demand readout using well-developed
techniques.

theses and structure

With this we are ready to state the main subjects that will be presented:

• Projection noise limited measurements on an ensemble of 105

atoms using a dual-color probing method.

• Creation and characterization of a SSS and its nonclassical prop-
erties through atomic quadrature quasi-probability (AQQP) distri-
butions.

• Creation and characterization of a collective-single-excitation state
using atomic tomography.

• Measurement and preparation of a nanofiber coupled ensemble
with a sub-Poissonian atom number distribution.

2



introduction

The thesis is structured into three parts. In part one we develop
the theoretical background required to understand and describe the
experimental work. The two systems of interest, light (chap. 2) and
atoms (chap. 3), are introduced and described using pseudo-spin and
quadrature operators. This is followed by a discussion of their interac-
tions (chap. 4). To bridge the theoretical descriptions to the experimen-
tal implementation we consider the methods used to create the two
atomic states of interest (chap. 5). The main result shown is that by an
appropriate parameter choice the light-atom interactions are described
by the canonical quantum-nondemolition (QND) Hamiltonian. It can
therefore be used for the creation and characterization of exotic atomic
states.

Part two deals with the experimental work. We consider the gen-
eral experimental techniques used for atom trapping, state manipu-
lations and state characterization (chap. 6). The focus is especially
on the implemented dual-color probing technique. We then describe
three different experiments. First, we show the creation and charac-
terization of a SSS with a spectroscopically relevant noise reduction
of −1.7 dB (chap. 7). The nonclassical features of the state are un-
ambiguously infered using the concept of AQQP distributions. With
this introduction to the method of atomic homodyne tomography we
then consider the generation and characterization of a collective-single-
excitation state (chap. 8). Following the protocol by Duan, Lukin, Cirac
and Zoller (DLCZ), the state is created by the detection of a heralding
photon. We show a statistically significant increase in the variance of
the measured population difference conditioned on a click — a signa-
ture of the collective-single-excitation state. The last chapter of this
part deals with our newest experimental setup — a nanofiber trapped
atomic ensemble (chap. 9). We present a fast and robust way of deter-
mining the atom number and the preparation of an ensemble with a
sub-Poissonian atom number distribution.

In part three we give concluding remarks on the work (chap. 10)
and consider possible future directions (chap. 11). Finally, a review of
related work (chap. 12) is presented.

my contribution

Joining the group in 2010, I took over a setup operating at the pro-
jection noise level and capable of creating SSSs. Most relevant for the
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introduction

work here is the creation and characterization of a SSS [Appel, Wind-
passinger, et al. 2009] and its use for quantum enhanced measurements
[Louchet-Chauvet et al. 2010]. The work presented here, naturally
builds upon these results. Especially the theoretical descriptions of
light, atoms and their interactions given in the first part of the thesis
build on the PhD theses by Windpassinger [2008] and Oblak [2010].
Furthermore, working in a collaborative environment helping hands
were always close by. The presented results surely would not have
been reached without the help from especially Jürgen Appel (JA), Jörg
H. Müller (JHM), and Jean-Baptiste Béguin (JB) and the supervision of
Eugene Polzik.

During my PhD I have had the main responsibility for our experi-
ment using a dipole trapped atomic ensemble. In the following, my
main contributions are detailed:

Setup: With a power cut at the institute in the spring of 2011 our ion
pump and vacuum broke. Taking a positive attitude to this un-
fortunate situation we decided to exchange the old dispensers.
The vacuum setup was therefore completely rebuild and pumped
down in collaboration with JB.

With another stroke of bad luck the fiber amplifier used for the
far-off-resonant dipole trap (FORT) broke. This meant a complete
realignment of the trapping beam when the new unit arrived.

Modifications of the Mach-Zehnder interferometer (MZI) were
done towards the end of 2011 as a frequency dependent noise
source was observed. After months of investigation the problem
was solved by moving the glass cell a few mm. We now believe
this was due to a small area of the cell having its anti-reflection
coating burnt.

Furthermore the magneto-optical trap (MOT) control software was
rebuild from scratch due to incompatibilities with Windows 7.

spin-squeezed state: When we were approached by Prof. W. Vogel
and Dr. T. Kiesel in the fall of 2011 the timing was perfect. They
had developed a test for nonclassicality and needed real data to
test their criterion whereas JB and me had just done a long ex-
perimental run. Our joint work — they developed the theoretical
framework and we supplied the data — was published in [Kiesel
et al. 2012]. The data analysis and observation of squeezing in
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the single-point measurements were done in collaboration with
JA.

Proposal: When I joined the group in 2010 several ideas on how the
collective-single-excitation state could be created had been inves-
tigated. At the time the favorite scheme was based on the λ-
system formed by the levels |F = 3, mF = 0〉 , |F = 4, mF = 1〉 and
|F′ = 4, mF′ = 0〉. Experimental investigation of this idea with
JA showed that due to optical pumping effects the setup was not
projection noise limited. It was therefore back to the drawing
board.

In collaboration with JA and JHM the currently used scheme was
developed and published in [Christensen et al. 2013]. This is
based on the λ-system |F = 3, mF = 0〉 , |F = 4, mF = 0〉 and |F′ =
4, mF′ = 1〉. Taking the probes and excitation beams to contain
both linear and circular polarized light as well as a high mag-
netic field (details in sec. 8.1) allowed us to detect the heralding
photons while at the same time being projection noise limited.

Filter cavities: To implement this proposal we needed a setup capa-
ble of filtering on both the frequency and polarization. Most cru-
cial is the frequency filtering done by two cavities. These were
needed to reject the excitation beam (co-propagating with the
heralding single photon) and decays to other hyperfine ground
states. The design of these cavities as well as control electronics
and programs. This was done together with JA and is mainly
presented in my progress report [Christensen 2012].

Collective-single-excitation state: To create this state several ad-
ditions to the setup creating SSS were required. Most notable was
the operation at a magnetic bias field of |B| = 20 G together with
implementing the excitation beam and the described filtering cav-
ities. The data presented in [Christensen et al. 2014] and chap. 8
were mainly acquired by myself. The data analysis — n-point
pulses (app. D.2) and the comparison of the click and no-click
cases (creation of a collective single excitation state or a coherent
spin state (CSS), see sec. 8.3.1) — was performed together with JA.
The modeling of the observed variance (sec. 8.4) was done with
JA and JHM. Last, the (unsuccessful) tests for non-Gaussianity
and nonclassicality were made with JA.

5
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Besides the mentioned things our group has also been working to-
wards performing similar experiments with a nanofiber trapped en-
semble. The main work on this has been done by JB and will be pre-
sented in his PhD thesis [Béguin n.d.]. My contributions are as follows:

Experimental work: Assembling vacuum components, building coils
and optics for the MOT — all done together with JB.

Atom number: Development of the method and model to measure
the atom number in collaboration with JHM. The data presented
in [Béguin et al. 2014] and sec. 9.3 was acquired together with JB

and Eva Bookjans. Furthermore, in collaboration with JA a model
(not presented here) taking into account the full level structure
of the atoms was developed.

Bayesian inference: The idea to use Bayesian inference was first put
forward by JA, whereas I made the first implementation on the
actual data. The data presented in [Béguin et al. 2014] and sec. 9.4
was acquired by JB and Eva Bookjans.

Fiber thermal expansion: The strong beams required for trapping
atoms around the nanofiber gives rise to the fiber expanding.
This effect was observed and investigated, together with JB. As
we could not develop a model in agreement with the observation
and the publication by Wuttke et al. [2013] this was not investi-
gated further and the results are not presented in this thesis.

6



Part I

T H E O RY

In this part we consider the theoretical background for the
performed experiments. We first describe light and atoms
individually and afterwards their interactions. We show
how these interactions can be used to characterize the atomic
spin-states through atomic homodyne tomography. Fur-
thermore, we show that a suitable parameter choice leads to
the interactions being of the QND type allowing for the cre-
ation of SSS. Last we consider a Raman process, and show
that the detection of a single photon heralds the creation of
the collective-single-excitation state.





2
L I G H T

With the large variety of quantum systems available the particular
choice of using light might seem arbitrary, but the reasons are many.
Light generated from lasers is stable and pure, and well-known tech-
niques exist to precisely control its properties. Combined with an
almost perfect detection efficiency, it is a marvelous system for de-
signing controlled quantum-mechanical interactions. Before a detailed
description of this can be made it is crucial that each individual part,
light and atoms, is well-understood and described on its own. In this
chapter we will focus on the quantum-mechanical description of light.
Starting from the quantized field we describe its properties, its states
and their description using quasi-probability distributions (QPDs). We
then use Schwinger, or light pseudo-spin, operators to describe light
propagating in a MZI — first for the simple case where losses are ne-
glected followed by the experimentally relevant case where losses and
non-perfect mode matching are taken into account. We will especially
focus on the limit set by the shot noise of light and how this affects the
achievable signal-to-noise ratio (SNR) — which will set the limit on any
atomic-state characterization we will perform. The material in the first
part of the chapter can be found in any quantum-optics textbook, for
example [Steck 2012, chap. 8; Garrison et al. 2008, chap. 2-5; Mandel
et al. 1995, chap. 10]; the second more specialized part is based on
[Yurke et al. 1986; Oblak 2010, chap. 2].

2.1 quantum description

The electromagnetic vector potential is given by [Mandel et al. 1995, eq.
10.4-38]

Â(r, t) =
1√
V

∑
k,s

√
h̄

2ωε0

[
âk,sεk,sei(k·r−ωt) + â†

k,sε
∗
k,se
−i(k·r−ωt)

]
. (2.1)

Here â†
k,s (âk,s) is the creation (annihilation) operator for a photon of

frequency ω, k is the wavevector, εk,s is the polarization vector, V is the

9



light

quantization volume, and ε0 denotes the vacuum permittivity. The two
summations are over all allowed wavevectors, k and the orthogonal
polarizations s = 1, 2. The creation and annihilation operators obey
the commutation relation

[âk,s, â†
k′,s′ ] = 1̂δ(k− k′)δ(s− s′). (2.2)

From the vector potential we find the electric field as

Ê(r, t) = − ∂

∂t
Â(r, t), (2.3a)

= i

√
h̄ω

2Vε0

[
âk,sεk,sei(k·r−ωt) − â†

k,sε
∗
k,se
−i(k·r−ωt)

]
. (2.3b)

Summing up the energy in the electric and corresponding magnetic
field for a single plane-wave mode gives the expected harmonic oscil-
lator Hamiltonian

Ĥlight ≡ h̄ω

(
â†

k,s âk,s +
1
2

)
. (2.4)

Identifying h̄ω as the energy of a single photon it is suggestive to
define

N̂ph,k,s ≡ â†
k,s âk,s (2.5)

as the photon-number operator. For notational ease we will suppress
the subscripts and write this as N̂ph. To describe the pulsed Gaussian
beams used in the experiment, it is convenient to use a complete set of
time-independent transverse mode functions1 uk⊥,s(r⊥) such that

âk,s(r, t) = uk⊥,s(r⊥)âk,sεk,sei(kzz−ωt). (2.6)

Writing out the explicit time dependence of the creation and annihila-
tion operators and introducing the quadrature operators

X̂L ≡
1√
2
(â + â†), (2.7a)

P̂L ≡
1√
2i
(â − â†). (2.7b)

1 The mode functions will play an important role in atomic-state tomography. The
atomic states of interest will have a spatial profile, i.e., an associated mode function.
Characterizing the atomic state via light, we measure the overlap between the atomic
and light mode functions (sec. 8.4).
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2.2 light states

We get

Ê(r, t) = E0uk⊥,s(r⊥)eikzz [X̂L sin(ωt)− P̂L cos(ωt)
]

, (2.8)

where we have introduced the electric-field amplitude E0 ≡
√

h̄ω
Vε0

. The

two operators X̂L and P̂L are the sine and cosine components of the
oscillating electromagnetic field and follow the commutation relation[

X̂L, P̂L
]
= i. (2.9)

They are the optical analog of the position and momentum of a me-
chanical oscillator. A natural extension is to introduce the generalized
quadrature operator

X̂L(θ) = X̂L cos(θ) + P̂L sin(θ). (2.10)

With this description of the quantized electromagnetic field in terms
of the quadrature operators, we now describe its associated states.

2.2 light states

We consider two distinct set of states, the Fock, |n〉L and coherent
states, |α〉L. The Fock states have a sharp photon number and are
also referred to as number states. From the standard description of a
harmonic oscillator we define them via

â† |n〉L =
√

n + 1 |n + 1〉L , (2.11a)

â |n〉L =
√

n |n− 1〉L . (2.11b)

Allowing us to identify them as energy eigenstates

Ĥlight |n〉L = En |n〉L , (2.12a)

where

En = h̄ω

(
n +

1
2

)
. (2.12b)

With their intuitive interpretation, the Fock states are the most natural
basis. They do however, have two drawbacks: first, they do not have a
well-defined phase, and second, they are far from what a laser actually
outputs.

11
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The coherent states, on the other hand, have a well-defined phase
and are close to the output of a laser. They can be defined as eigen-
states of the creation and annihilation operators

â |α〉L = α |α〉L . (2.13)

Here α is the coherent-state amplitude. Their average photon number
is n̄ = |α|2 with a variance

var
(

N̂ph
)
|α〉L

= n̄. (2.14)

The photon number in a coherent state is therefore, in contrast to the
Fock states, not well-defined and the associated fluctuations are ref-
ered to as light shot noise. Using coherent states to measure the atomic
ensemble, these fluctuations set the lower limit for our measurement
precision. In terms of the quadrature operators (eq. (2.7)) their expec-
tation values are 〈

X̂L
〉
|α〉L

=
√

2Re (α) , (2.15a)〈
P̂L
〉
|α〉L

=
√

2Im (α) . (2.15b)

and more interestingly their variance

var
(
X̂L
)
|α〉L

= var
(

P̂L
)
|α〉L

=
1
2

. (2.16)

Recall Heisenberg’s uncertainty relation for two operators ô and û,

var (ô) var (û) ≥ 1
4
|〈[ô, û]〉|2 , (2.17)

Considering the case of coherent states it is easily verified that they
minimize the Heisenberg uncertainty relation — we refer to them as
minimum uncertainty states. A second and equivalent way of defining
the coherent states is as displaced vacuum states

|a〉L = D̂α |0〉L , (2.18)

where the displacement operator is defined as

D̂α ≡ exp
(

αâ†
L − α∗ âL

)
. (2.19)

As the coherent states are eigenstates of the creation and annihilation
operators, have a well-defined phase and minimize Heisenberg’s un-
certainty relation, they are interpreted as the most classical quantum
states [Mandel et al. 1995, chap. 11]. One way of studying and dis-
tinguishing between classical and nonclassical states is through quasi-
probability distributions (QPDs).
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2.2 light states

2.2.1 Quasi-probability distributions

The QPDs are the quantum mechanical analogue of the phase space
description for a classical system. There exists a whole range of QPDs

all contained in the s-parameterized QPD W(s; XL, PL) introduced by
Cahill et al. [1969]. Following [Leonhardt 1997, chap. 3]

W(s; XL, PL) ≡
1

4π2

∞∫
−∞

dv
∞∫
−∞

du W̃(s; u, v) exp (iuXL + ivPL) . (2.20)

Here XL and PL are the expectation values of the respective operators
and W̃(s; u, v) is the characteristic function of a state ρ̂ given by

W̃(s; u, v) ≡ Tr
(

ρ̂e−iuX̂L−ivP̂L
)

exp
[ s

4
(
u2 + v2)] (2.21a)

=
〈
−iuX̂L − ivP̂L

〉
exp

[ s
4
(
u2 + v2)] . (2.21b)

This is the “quantum Fourier transform” of the density operator ρ̂, and
u, v denotes the transformation variables.2 The s-parameter has so far
not been specified and the above definitions are valid for all s ∈ R.
To get a feel for these functions we consider the values of s giving the
standard QPDs

s =


+1 : P-function

0 : Wigner function

−1 : Q-function

(2.22)

To understand the reason for introducing not one but a whole range
of QPDs we consider W(s; XL, PL) with s = −1, 0, 1 for a single photon
state, |1〉L. Starting with the P-function (s = 1), we find that W(s =

1; XL, PL) is highly singular, containing derivatives of δ-functions [Leon-
hardt 1997, eq. (3.76)] which we ascribe to the nonclassicality of the
single-photon state.3 This example shows the main features of the P-
function; it has “abrupt” features for nonclassical states, making it a
prime candidate for identifying them. However, its highly singular
nature makes it impossible to reconstruct from experimental data.

2 They are “time-variables”.
3 The term nonclassical is here used without a proper definition. In sec. 7.4 we define

it and elaborate on what it actually means.
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Figure 2.1.: Wigner function W(s = 0, XL, PL) for a single-photon state.
On each plane the respective contours are shown. We
clearly see that the Wigner function takes on negative val-
ues, a unambiguous sign of nonclassical features.

The Wigner function (s = 0), on the other hand, has no singulari-
ties and can be visualized fig. 2.1. We see that W(s = 0; XL, PL) has
negative values. As this is not allowed for a classical probability distri-
bution, we take it as a sign of nonclassical properties. In comparison to
the P-function, the Wigner function can actually be reconstructed from
an experiment. This makes it an ideal tool for certifying nonclassical
properties.

Last we have the Q-function (s = −1) which is shown in fig. 2.2. As
the Q-function is always positive (this is true for all states), it can be in-
terpreted as a “classical” probability distribution, showing no distinct
signs of nonclassicality.4 On the other hand, the Q-function is directly
measurable since it can be written as W(s = −1, XL, PL) = 〈α|ρ̂|α〉.

From this example we see a hierarchy between the QPDs; the smaller
the s-parameter the fewer features due to nonclassical properties,5 but
at the same time the easier it is to infer from experiments. This makes
it clear that which QPD to use depends on the actual task at hand. With

4 The nonclassical features of the Q-function are actually “only” exponentially damped.
This makes it practically impossible to directly detect nonclassicality via the Q-
function. An example would be the difference between a Schrödinger cat-state and
a classical statistical mixture of two coherent states; the nonclassical interference fea-
tures of the Q-function are damped by exp(−α), with α the coherent state amplitude,
and therefore for all practical purposes negligible [Leonhardt 1997, sec. 3.3].

5 It can be shown that the s-parameter corresponds to a “smoothing” of W(s; XL, PL)
and its marginal distributions; the smaller the smoother [Leonhardt 1997, sec. 3.3.2].
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2.3 light propagation in an mzi

Figure 2.2.: Q-function W(s = −1, XL, PL) for a single-photon state.
On each plane the respective contours are shown. The
Q-function is positive and has no distinct features from
which we can identify the nonclassical properties of the
single-photon state.

the description of light either in terms of their state vectors or their QPD,
we now turn to the topic of light propagation in an interferometer and
how this directly relates to the atomic state tomography.

2.3 light propagation in an mzi

To measure the atomic ensemble we consider the state-dependent phase
shift imprinted on light passing through the atomic cloud. To measure
such a phase shift we will use a Mach-Zehnder interferometer (MZI),
which we describe through the Schwinger operators. The Schwinger
operators can be used to describe any bosonic two mode-system and
are defined as [Schwinger 1952]

Ŝx ≡
1
2

(
â†b̂ + b̂† â

)
, (2.23a)

Ŝy ≡ −
i
2

(
â†b̂ − b̂† â

)
, (2.23b)

Ŝz ≡
1
2

(
â† â − b̂†b̂

)
. (2.23c)

The most well-known example of such a two-mode system is the po-
larization of light, leading to the Stokes operators [Garrison et al. 2008,
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sec. 2.4]. In the MZI the two modes are spatially separated and propa-
gating in each arm of the interferometer (see fig. 2.3). The Schwinger
operators have an angular-momentum-like commutation relation[

Ŝx, Ŝy
]
= iŜz (2.24)

and are refered to as pseudo-spin operators for light. We form the
pseudo-spin vector

Ŝ =

Ŝx

Ŝy

Ŝz

 , (2.25)

which together with the total photon number operator N̂ph,tot ≡ N̂ph,a +

N̂ph,b, (corresponding to
∣∣Ŝ∣∣) completely defines the two-mode system.

The connection to the Bloch-vector description of a spin-1/2 system
(see sec. 3.3) is clear. We therefore expect that the propagation in the
MZI can be described as rotations of Ŝ. Before this is done we consider
how the light shot noise gives rise to fluctuations of Ŝ. Considering the
coherent states, the shot noise of light will carry over to the Schwinger
operators. Focusing on Ŝz (what we shall measure) we have

〈
Ŝz
〉
|αa,βb〉L

=
n̄a − n̄b

2
, (2.26a)

var
(
Ŝz
)
|αa,βb〉L

=
Nph,tot

4
. (2.26b)

Here |α〉L and |β〉L are the coherent states in the modes â and b̂ and
Nph,tot =

〈
N̂ph,tot

〉
. With the Schwinger operators at hand we now

consider the case of light propagating in a lossless MZI, and describe
this as rotations of Ŝ.

The MZI is shown in fig. 2.3. The first element is a beam splitter with
transmission and reflection coefficients for the electric field t, r,∈ C,
such that |t|2 + |r|2 = 1 and tr∗ + rt∗ = 0 to ensure a unitary trans-
formation. Using the standard beam-splitter relation we can write the
output modes ĉ1 and ĉ2 (fig. 2.3) as

(
ĉ1

ĉ2

)
=

(
t r
r t

)(
â1

â2

)
. (2.27)
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â1

â2
ĉ1

d̂2

ê2

ê1

r, t

r, t

î−

ĉ2

d̂1

Figure 2.3.: A lossless MZI. The two inputs each split at the first beam
splitter, then travel through the MZI and accumulate a
phase shift difference. Then they are recombined and we
detect the photocurrent output.

Converting this into a rotation of the light pseudo-spin vector using
eq. (2.23) we get

Ŝ(c) = MΘŜ(a) (2.28a)

=

1 0 0
0 cos Θ sin Θ
0 − sin Θ cos Θ


Ŝ(a)

x

Ŝ(a)
y

Ŝ(a)
z

 , (2.28b)

where the rotation angle Θ is given by

Θ = arctan
(

2rt
r2 − t2

)
. (2.29)

Taking the typical case of a 50/50 beam-splitter this corresponds to
π/2 rotation around the x-axis (see fig. 2.4(a)).

Next the two modes propagate and accumulate a phase (see fig. 2.3).
We will especially be interested in the differential phase shift between
the two arms φ = |k|∆l, where ∆l is the path-length difference be-
tween the two arms. The annihilation operators change as(

d̂1

d̂2

)
=

(
eiφ/2 0

0 e−iφ/2

)(
ĉ1

ĉ2

)
, (2.30a)
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(a) (b)

Figure 2.4.: Rotations of the pseudo-spin vector. (a) With all photons
entering in one mode, the pseudo-spin vector points to the
south pole and the 50/50 beam-splitter rotates it by an an-
gle of π/2. (b) The free propagation in the MZI corresponds
to a rotation of Ŝ around the z-axis.

which in terms of the Schwinger operators becomes

Ŝ(d) = MφŜ(c) (2.31a)

=

 cos φ sin φ 0
− sin φ cos φ 0

0 1


Ŝ(c)

x

Ŝ(c)
y

Ŝ(c)
z

 . (2.31b)

In our pictorial representation this corresponds to a rotation around
the z-axis, which due to the first beam splitter is a rotation in the
equatorial plane (see fig. 2.4(b)).

The two modes are then combined on a beam splitter and the num-
ber of photons in each mode is measured and subtracted from one
another, allowing us to infer Ŝz. With the description of how the in-
dividual components in the MZI affect the light, we can now write the
total evolution as

Ŝ(out) = MΘ2 Mφ MΘ1 Ŝ(in). (2.32)

Taking a coherent light state in the mode â1 and vacuum in the mode
â2 as the input at the first beam splitter (fig. 2.3) which we for simplic-
ity take to be a 50/50, Ŝ will be rotated into the equatorial plane. Here
it rotates around the z-axes by an angle φ due to the path-length differ-
ence between the two interferometer arms. At the second beam-splitter
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2.3 light propagation in an mzi

it is again rotated by π/2, effectively mapping cos φ onto Ŝz of the out-
put pseudo-vector. The photocurrent difference at the output is then
î− = −2ε cos(φ)Ŝ(in)

z , where ε is a conversion factor between photon
numbers and photoelectrons. Scanning the phase difference between
the two arms, using for example a piezo, the output oscillates and
we observe an interference fringe. In the experiment We will detect
small deviations δφ around a mean φ0 and write the phase shift as
φ = φ0 + δφ, which is then related to the photocurrent as

δφ = arcsin

( 〈
î−
〉

ε
〈

N̂ph
〉) , (2.33a)

≈
〈
î−
〉

εNph
. (2.33b)

Here we have taken φ0 = π/2, leading to a linear relation between
the phase shift and the detected photo-current difference as well as
the highest phase sensitivity. To quantify how well we can measure
the phase shift, we consider its variance due to the light shot noise
affecting the photocurrent as

var
(
î−
)

SN = 4ε2var
(

Ŝ(out)
z

)
SN

, (2.34a)

= ε2Nph,tot. (2.34b)

This leads to a variance in the detected phase given by

var (δφ)SN =
var

(
î−
)

SN

ε2N2
ph,tot

, (2.35a)

=
1

Nph,tot
. (2.35b)

The SNR of the measurement is then

SNR =

〈
δφ2〉

var (δφ)SN
(2.36a)

=
〈
δφ2〉Nph,tot, (2.36b)

increasing linearly with the number of probe photons, as expected.
In the experiment the upper limit for Nph will depend on the type
of experiment performed. For squeezing it is set by the reduction of
Ramsey fringe contrast, whereas for atomic state-tomography it can
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be much larger,6 leading to a negligible contribution of the light shot
noise to var (δφ).

2.3.1 Real-life MZI

To push our description further than the textbook examples and closer
to the actual experimental implementation, we first introduce the dual-
color MZI, and second consider the effect of losses in the MZI.

In the experimental implementation we are using not one but two
lasers to measure δφ. An elaborate discussion of the reasons for this
is given in sec. 6.3.3 and [Saffman et al. 2009]. The two lasers (refered
to as orange and purple) are separated by 9 GHz. This allows us to
propagate them individually through the MZI and sum them at the
output:7

Ŝ(out)
z = − cos φ

(
Ŝ(in,o)

z + Ŝ(in,p)
z

)
. (2.37)

We can thus reuse all the above formulas regarding phase sensitivity
and SNR as long as we use

Nph,tot = N(o)
ph,tot + N(p)

ph,tot. (2.38)

The other thing to include in the description is inefficiencies of the
MZI — we consider probe arm transmission and the finite mode over-
lap at the output. Modeling each loss mechanism as a beam splitter
and knowing how this affects Ŝ, the propagation in eq. (2.32) can be
modified accordingly.

With the main derivation of the real-life MZI done before my time
and as the result is a set of rather messy equations we refer to [Oblak
2010, chap. 2, appen. A] for the full description. The reason for the
complication is that each beam-splitter adds an extra vacuum mode to
the problem. This require us to introduce new Schwinger operators to
describe the system. Doing this and keeping track of all modes leads
to the end result [Oblak 2010, eq. (2.31)]

SNR =
T 4τ2 sin2 (φ0) sin2 (Θ1)

1− ρ2t2
1

Nph
〈
δφ2〉 (2.39)

6 We need to stay in the range where the detector and electronics are operating linearly.
7 For now we neglect that the two lasers have a different wavevector and therefore trav-

els a different optical path-length. This will become important later and is described
in sec. 5.1.

20
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Table 2.1.: Parameters that are used in eq. (2.39) taken, from [Oblak
2010, Appen. A].

symbol meaning

T Mode overlap, fields
τ Probe arm transmission
Θ1 Angle for first beam splitter
φ0 Mean phase shift
δφ Deviations from the mean shift
ρ Probe arm reflection
t1 Transmission first splitter

where the relevant parameters are given in table 2.1. We again see that
the SNR is highest for φ0 = π/2, and as the 1− ρ2t2

1 term describes the
photon loss it increases linearly with the detected number of photon.
Furthermore, the SNR is maximized with Θ1 = π/2, corresponding to
a 50/50 beam splitter which gives the maximum fringe contrast. As
discussed the upper limit on the used photon number depends on the
type of experiment performed. To have the detected photon number as
high as possible it is favorable to take the first beam-splitter to be un-
balanced. In this case we can have a strong beam in the reference arm
whereas the photon number in the probe arm can be chosen accord-
ingly. As a sanity check we see that the lossless MZI (where ρ = t1 = 0
and T = τ = 1) with a 50/50 beam splitter reproduces eq. (2.36).

2.4 summary

In this chapter we have introduced the quantum-mechanical descrip-
tion of the electromagnetic field. Starting from the harmonic-oscillator
Hamiltonian, we introduced two types of states, the Fock and coherent
states. The concept of QPDs were described with a special focus on how
these are used to infer nonclassical properties of the states. These con-
siderations will be directly applicable when we infer the nonclassical
properties of the states in chap. 7. We then considered the description
of the MZI via the Schwinger, or light pseudo-spin, operators, and how
this allows for phase measurements. This led to several key insights:
first the path-length difference between the arms should be φ0 = π/2
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(corresponding to measuring around a zero-crossing of the fringe). Sec-
ond, to overcome the light shot noise we should use as many photons
as possible. With the atoms limiting the used number of photons (scat-
tering events reduces the Ramsey fringe contrast see sec. 7.2) it is de-
sirable to have an unbalanced first beam-splitter effectively using the
reference arm as a strong local oscillator (LO).
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3
AT O M S

With the quantum-mechanical description of light we will in this chap-
ter consider the second main player of the experiment, the atomic en-
semble. More specifically we are interested in describing a dipole-
trapped ensemble of approximately 105 cesium (Cs) atoms. As we later
will be looking at the interactions between light and atoms, it is con-
venient to have comparable descriptions of the two systems. We will
thus throughout this chapter emphasize the similarities between the
descriptions of light and atoms in terms of pseudo-spin operators and
harmonic oscillators. The chapter is organized as follows. Starting
from the complex multilevel structure of a single Cs atoms we intro-
duce the two-level system of interest and describe it using angular-
momentum operators. This is then generalized to treat all the atoms
in the ensemble. In connection to the previous chapter we introduce
atomic quadrature operators, using the Holstein-Primakoff approxima-
tion. We then consider the three types of states that we will create in
the experiment; the CSSs, spin-squeezed states (SSSs) and atomic Fock
states (AFSs). These states will be characterized by measuring the pop-
ulation difference ∆N and we conclude the chapter by deriving proba-
bility distributions for the measurement statistics.

3.1 cesium atoms

Our atom of choice is the only natural isotope of Cs, with 133 nucleons
in its core. Cs has a single electron in the outermost shell, the s-shell,
making it an alkali atom. In the used wavelength range, the ground
state 6S1/2 is coupled to the excited 6P1/2 and 6P3/2 states (see fig. 3.1).
We will exclusively be dealing with the 6S1/2 → 6P3/2 transition also
known as the D2-line, with a transition wavelength of 852 nm. Each of
these states is split due to different possible alignments of the electron
and nuclear spins, and we distinguish these by the quantum number F.
To add further to the complexity, an external magnetic field B lifts the
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Figure 3.1.: Atomic level structure, showing the ground state 6S1/2 and
the two excited states 6P1/2 and 6P3/2. The two-level sys-
tem we will be using is formed by the hyperfine ground
states, |↓〉A and |↑〉A, and is highlighted.

degeneracy of the mF states via the linear Zeeman shift (of the ground
states) given by [Steck 2010]

∆ωZeeman =
µB

h̄
gFmF |B| , (3.1a)

= 2πmF |B| · 350 kHz G−1. (3.1b)

Here µB is the Bohr magneton, gF is the Landé factor for the cor-
responding hyperfine level and we have taken the quantization axis
along B. The atomic states can then be written as |F, mF〉A, and we
will use a prime to denote the excited states.

We are interested in the clock levels,1 i.e., the two hyperfine ground
levels (mF = 0) of the 6S1/2 manifold which we write as

|↓〉A ≡ |F = 3, mF = 0〉A , (3.2a)

|↑〉A ≡ |F = 4, mF = 0〉A . (3.2b)

1 Termed so since the definition of the second, and thus time, is based on the energy
difference between these levels.
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3.2 atomic operators

Their are two reasons for this choice. First they are to first order in-
sensitive2 to magnetic-field fluctuations. Second, they are meta-stable,
meaning they have long coherence times, which will allow for long
lifetimes of the created states. Having introduced the two-level system
of interest we now consider the operators required to describe it.

3.2 atomic operators

To describe the two level system we, in analogy to a spin-1/2 system
and the Pauli spin operators, introduce angular-momentum operators
for the lth atom. These are defined as

ĵ(l)x ≡
1
2
(|↓〉l〈↑ |+ |↑〉l〈↓ |) , (3.3a)

ĵ(l)y ≡ −
i
2
(|↓〉l〈↑ | − |↑〉l〈↓ |) , (3.3b)

ĵ(l)z ≡
1
2
(|↑〉l〈↑ | − |↓〉l〈↓ |) (3.3c)

we have the commutation relation[
ĵ(l)x , ĵ(l

′)
y

]
= i ĵ(l)z δl,l′ , (3.4)

with cyclic permutation. To complete the description of the single
atom, we write the angular-momentum as a spin-vector

ĵ(l) ≡

 ĵ(l)x

ĵ(l)y

ĵ(l)z

 , (3.5)

with a length of 1/2.
In the experiment we will be using an ensemble of atoms, and there-

fore need to extend the single-atom description. This is done by sum-
ming up the single-atom spin vectors and introducing collective oper-
ators

Ĵ ≡
Nat

∑
l=1

ĵ(l), (3.6)

2 To second order the clock levels do experience a quadratic Zeeman shift of
427.45 Hz G−2 [Steck 2010].

25



atoms

with a magnitude Nat/2. From eq. (3.4) it follows that[
Ĵx, Ĵy

]
= i Ĵz, (3.7)

with cyclic permutation. A central feature of the collective operators
are their symmetry under particle exchange. This feature will be of par-
ticular importance when we consider the atomic Fock states in sec. 3.5.
Forming the collective operators (eq. (3.6)), each atom is weighted
equally. If required the definition could be expanded by introducing a
spatial mode function, similar to the case of light, weighing each atom
according to its position — see for example [Hammerer et al. 2010, sec.
II.3; Oblak 2010, chap. 3].

3.2.1 Atomic quadrature operators

For many ensemble states of interest Ĵ is aligned along a specific axis,
which allows to simplify the description substantially as the Holstein-
Primakoff approximation [Holstein et al. 1940; Kuzmich et al. 2000] can
be made. We take the pseudo-spin vector to be aligned along the x-axis,
i.e.,

〈
Ĵx
〉
≈ J = Nat/2, where J is the length of the collective-spin vector.

For a large atomic ensemble J � 1 we can substitute the operator Ĵx

with its expectation value [Hammerer et al. 2010], i.e., taking Ĵx to be
a classical quantity. Rescaling the two remaining collective-angular-
momentum operators as

X̂A ≡
Ĵy√〈

Ĵx
〉 , (3.8a)

P̂A ≡
Ĵz√〈
Ĵx
〉 , (3.8b)

their commutation relation becomes[
X̂A, P̂A

]
= i. (3.9)

This is the canonical commutation relation and analogous to the case of
the quadrature operators for light (eq. (2.7)). In the Holstein-Primakoff
approximation we therefore have a harmonic-oscillator-like descrip-
tion of the collective-angular-momentum operators. With this we have
introduced a description of the atomic system identical to the case of
a photonic system (see sec. 2.1).
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3.3 coherent spin states

.

φ

θ Figure 3.2.: Representation of the CSS |θ, φ〉A on
the collective Bloch sphere. The an-
gles φ and θ are given by eq. (3.12)
and related to the single atom state
through eq. (3.11).

3.3 coherent spin states

Having introduced the relevant operators to describe the atomic en-
semble, we consider the coherent spin states (CSSs). These states are
product states of single-atom states3

|φ, θ〉A =
Nat⊗
l=1

|ψ〉l . (3.10)

Here each atom is in the state

|ψ〉l = cos
(

θ

2

)
|↑〉l + sin

(
θ

2

)
eiφ |↓〉l , (3.11)

parameterized by the angles θ ∈ [0, π] and φ ∈ [0, 2π]. We calculate
the expectation value for each of the collective spin operators〈

Ĵx
〉
=

Nat

2
sin(θ) cos(φ), (3.12a)〈

Ĵy
〉
=

Nat

2
sin(θ) sin(φ), (3.12b)〈

Ĵz
〉
=

Nat

2
cos(θ). (3.12c)

This is exactly the description of a vector of length Nat/2 in spherical
coordinates, with the polar angle θ and azimuthal angle φ. It is thus
natural to use the picture of the generalized Bloch sphere [Dowling
et al. 1994] to represent the pseudo-spin vector Ĵ (see fig. 3.2).

An arbitrary CSS can be generated from the ground state

|0〉A ≡ |θ = π, φ〉A (3.13a)

=
Nat⊗
l=1

eiφ |↓〉l , (3.13b)

3 This is not true in general, as the CSS can also be formed by lower cooperativity Dicke
states, [Mandel et al. 1995, sec. 16.7].
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by a rotation. How such a rotation is implemented depends on the
actual system of interest and in our experiment a low phase-noise mi-
crowave source is used, discussed in more detail in sec. 4.3. The CSS

lives on the two dimensional surface of a sphere where rotations are
the equivalent to displacement in the plane. This, once again, gives
a clear analogy to the coherent states of light, namely as displaced
vacuum states [Mandel et al. 1995, sec. 16.7].

To take the analogy to the coherent states of light a step further we
consider the quantum fluctuations of the CSS, known as atomic shot
noise or projection noise. The variance of each of the components for
Ĵ is for a CSS

var
(

Ĵx
)
=

Nat

4
[
1− sin2 (θ) cos2 (φ)

]
, (3.14a)

var
(

Ĵy
)
=

Nat

4
[
1− sin2 (θ) sin2 (φ)

]
, (3.14b)

var
(

Ĵz
)
=

Nat

4
[
1− cos2 (θ)

]
. (3.14c)

For the collective-angular-momentum operators Heisenberg’s uncer-
tainty relation (eq. (2.17)), is given by

var
(

Ĵy
)

var
(

Ĵz
)
≥ 1

4
〈

Ĵx
〉2 . (3.15)

Using eq. (3.14) it is seen that the CSS minimize Heisenberg’s uncer-
tainty relation, and we refer to them as minimum-uncertainty states,4

again similar to the coherent states of light. Due to the associated
uncertainty the initial picture of describing the ensemble as a point
on the Bloch sphere is misleading, and we have to ascribe a corre-
sponding uncertainty to the Bloch vector. Considering states in the
Holstein-Primakoff approximation5 we can directly extend the con-
cept of a quasi-probability distribution (QPD) — see sec. 2.2.1 — to
atomic states.6 To depict this we will at the tip of the Bloch vector plot

4 Naively considering eqs. (3.12), (3.14) and (3.14), one can find values of φ and θ for
which this is not the case. The reason for this is that Heisenbergs uncertainty rela-
tion only holds for the directions orthogonal to the mean spin. Therefore, an extra
rotation would have to be performed after which sanity is restored and Heisenberg’s
uncertainty relation holds.

5 This is equivalent to neglecting the curvature of the Bloch sphere and simply using
the two-dimensional tangential plane (fig. 3.3(b)).

6 The concept of Wigner function can also be used beyond the Holstein-Primakoff ap-
proximation; for the theoretical description see [Bizarro 1994; Dowling et al. 1994] and
[Schmied et al. 2011] for an experimental reconstruction.
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3.3 coherent spin states

(a) (b)

Figure 3.3.: The pseudo-spin vector Ĵ describing the atomic ensemble
can be visualized on the collective Bloch sphere. (a) The
CSS pointing along the x-axis, |θ = π/2, φ = 0〉A with its
associated error disk plotted as the Wigner function. (b)
Same as (a) but with the tangential plane illustrating that
for large spins, i.e., in the Holstein Primakoff approxima-
tion, we can neglect the curvature of the Bloch sphere and
take Ĵ to be constrained to the tangential plane.

the Wigner function for the corresponding state;7 an example for the
|θ = π/2, φ = 0〉A state is shown in fig. 3.3(a).

We consider the interactions between a classical (external) field and
an ensemble in the ground state. Taking the field to be uniform over
the ensemble, it rotates all the individual pseudo-spins in an identical
fashion. The ensemble is therefore still in a product state, i.e., a CSS. A
full-blown derivation can be found in [Mandel et al. 1995, sec. 16.7.3].
This and the above properties allow us to identify the CSSs as the “most
classical quantum states” [Arecchi et al. 1972; Combescure et al. 2012].
The CSS will play a crucial part in the remainder of this thesis. It will
be our benchmark state to which we will always compare other states
and we will use it in our definition and discussion of non-classicality
in sec. 7.4.

7 The shape will be correct, but we will for visual clarity use a scale factor.
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3.4 spin-squeezed states

Having introduced the CSSs, a natural extension is the spin-squeezed
states (SSSs). Considering Heisenberg’s uncertainty relation for the col-
lective spin operators (eq. (3.15)), the thing to note is that only the
product of the variance is limited. The variance of one spin compo-
nent can be reduced if the variance of the other component increases
accordingly, i.e., the area of the QPD is kept constant. This reduced
variance is exactly what drives the intuition behind the SSSs. To de-
fine a SSS more rigorously and quantify the amount of squeezing, we
consider two8 different squeezing criteria.

kitagawa criterion To specify the squeezing requirement, we
follow [Kitagawa et al. 1993]. The error disk associated with a state is
orthogonal to the direction of the mean spin Ĵ⊥ with magnitude

∣∣〈 Ĵ
〉∣∣

(see fig. 3.4). The standard quantum limit (SQL) found from Heisen-
berg’s uncertainty relation is then

var
(

Ĵ⊥
)

SQL =

∣∣〈 Ĵ
〉∣∣

2
. (3.16)

Introducing a squeezing parameter

ξKitagawa =
var

(
Ĵ⊥
)

var
(

Ĵ⊥
)

SQL

(3.17a)

=
2∣∣〈 Ĵ
〉∣∣var

(
Ĵ⊥
)

, (3.17b)

a state is squeezed if ξKitagawa < 1. If only pure states are considered,
this criterion ensures that there are correlations between the atoms.
Expanding the class of considered states to also include mixed states,
this is no longer the case and a second more stringent definition is
required.

wineland criterion The most striking application of SSSs is their
capability to increase measurement precision. In metrology applica-
tions, the parameter of interest is the phase associated with a state [Gio-
vannetti et al. 2011]. Considering the example of Ramsey spectroscopy,

8 Many more can be found in [Ma et al. 2011, tab. 1].
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φ

Ĵ⊥
Ĵ

Figure 3.4.: In spectroscopy the parameter
of interest is the atomic phase
φ. Which can be related to the
mean spin Ĵ and the fluctuations
in the orthogonal directions Ĵ⊥.

the variance of the “atomic” phase can be related to the pseudo-spin
components (fig. 3.4) as

φ = arctan

( 〈
Ĵ⊥
〉∣∣〈 Ĵ
〉∣∣
)

, (3.18a)

Nat�1≈
〈

Ĵ⊥
〉∣∣〈 Ĵ
〉∣∣ . (3.18b)

Using eqs. (3.12) and (3.14) the SQL is found to be9

var (φ)SQL =
1

Nat
, (3.19)

allowing us to introduce the Wineland squeezing parameter [Wineland
et al. 1994]

ξWineland =
var (φ)

var (φ)SQL
, (3.20a)

= Nat
var

(
Ĵ⊥
)∣∣〈 Ĵ

〉∣∣2 , (3.20b)

and we term a state squeezed if ξWineland < 1. If a quantum state allows
for a sensitivity beyond the SQL, it must have nonclassical correlations,
i.e., entanglement. That this is the case was shown in [Sørensen et al.
2001].

9 This result can also be directly derived using the Fisher information and the Cramér-
Rao bound [Giovannetti et al. 2011].
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3.5 atomic fock states

The last type of states we consider is the atomic Fock states (AFSs),
which are the atomic equivalent of the photon number states. In anal-
ogy to the case of light, the vacuum state has no excitations:

|0〉A ≡
Nat⊗
l=1

|↓〉l , (3.21a)

= |θ = π, φ〉A . (3.21b)

To create a higher-excited AFS we define the atomic creation operator
[Hammerer et al. 2010] as

â†
A ≡

X̂A + iP̂A√
2

, (3.22a)

=
1√
Nat

Nat

∑
l=1
|↑〉l〈↓ |. (3.22b)

As expected in the limit of large ensembles, we obtain similar commu-
tation relations to the creation and annihilation operators for light[

âA, â†
A

]
= 1, (3.23)

fitting with the harmonic-oscillator description. The collective-single-
excitation state10 can then be defined as

|1〉A ≡ â†
A |0〉A , (3.24a)

=
1√
Nat

Nat

∑
l=1
|↓↓ . . . ↓ ↑︷ ︸︸ ︷

l-th atom

↓ . . . ↓↓〉A . (3.24b)

Subsequent application of â†
A then allows us to define higher order AFS

as

|n〉A ≡
(

â†
A

)n
|0〉A (3.25a)

=
1√
(Nat

n )
∑
π

|↑↑ . . . ↑↓↑ . . . ↑↓↑ . . . ↑〉A︸ ︷︷ ︸
Total of n atoms up

, (3.25b)

10 Which we will also refer to as the first excited AFS or first excited Dicke state.
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3.5 atomic fock states

where the summation index π denotes a sum over all permutations
and the normalization is given by the binomial coefficient (Nat

n ). The
important thing to realize is that it is not a single atom in the ensemble
that is excited — the excitation is shared among all the atoms. It is this
point which will give rise to the many strange and peculiar properties
that we will study throughout this thesis. To strengthen the connec-
tion to the case of optical number states we consider the action of the
creation operator on the AFS

â†
A |n〉A =

1√
(Nat

n )Nat

Nat

∑
l=1
|↑〉l〈↓ |∑

π

|↑↑ . . . ↑↓↑ . . . ↑↓↑ . . . ↑〉A︸ ︷︷ ︸
Total of n atoms up

, (3.26a)

=
1√

(Nat
n )Nat

(n + 1)∑
π

|↑↑ . . . ↑↓↑ . . . ↑↓↑ . . . ↑〉A︸ ︷︷ ︸
Total of n + 1 atoms up

, (3.26b)

=

√√√√ ( Nat
n+1)

(Nat
n )Nat

(n + 1) |n + 1〉A , (3.26c)

= (n + 1)

√
Nat − 1

Nat(n + 1)
|n + 1〉A , (3.26d)

Nat�n≈
√

n + 1 |n + 1〉A . (3.26e)

In the limiting case this is identical to the case of photonic Fock states
— see eq. (2.11).

The reader familiar with the work of Dicke [1954] will have noted
the connection to the so-called Dicke states. The angular-momentum
states can also be described by the quantum numbers J and mJ such
that

Ĵz |J, mJ〉A = mJ |J, mJ〉A , (3.27a)

Ĵ2 |J, mJ〉A = J(J + 1) |J, mJ〉A , (3.27b)

where the states |J, mJ〉A are refered to as Dicke states [Mandel et al.
1995, sec. 16.5]. The value of mJ is related to the number of excita-
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tions,11 and J is the pseudo-spin vector length vector proportional to
the atom number. As for any angular momentum,

|mJ | ≤ J ≤ Nat

2
. (3.28)

Thus for an ensemble with Nat atoms the, nth AFS is related to the Dicke
state by

|n〉A =

∣∣∣∣Nat

2
,−Nat

2
+ n

〉
A

. (3.29)

To better understand the AFS we first look at the variance of the
vacuum state |0〉A. Using the angular-momentum properties of the
Dicke states, we calculate the variance of this state and show the con-
sistency with the calculations in sec. 3.3. From the eigenvalue relation
(eq. (3.27)) we have

〈
Ĵ2〉 = Nat

2

(
Nat

2
+ 1
)

, (3.30a)

〈
Ĵ2
z
〉
=

N2
at

4
. (3.30b)

As Ĵx and Ĵy are symmetric and
〈

Ĵx
〉
=
〈

Ĵy
〉
= 0 we directly find

var
(

Ĵx
)
=

〈
Ĵ2 − Ĵ2

z
〉

2
, (3.31a)

=
Nat

4
− 1

2
(3.31b)

Nat�1≈ Nat

4
, (3.31c)

in agreement with eq. (3.14). We now consider the case where the pro-
jection onto the z-axis has changed by one leading, to

∣∣∣J,−Nat
2 + 1

〉
A

.
The possible values of J are

J =
Nat

2
(3.32a)

or

J =
Nat

2
− 1. (3.32b)

11 In his original work, Dicke referred to J as the cooperation number, since it plays a key
role in determining the radiation properties of the atomic ensemble [Dicke 1954].
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The first value corresponds to a coherent flip. Again using the sym-
metry between Ĵx and Ĵy and the eigenvalue equations, we find for the
incoherent flip

var
(

Ĵx
) Nat�1≈ Nat

4
. (3.33)

In comparison, the variance of Ĵx increases by a factor of three for the
coherent flip:

var
(

Ĵx
) Nat�1≈ 3Nat

4
. (3.34)

The difference comes from knowing or not knowing which atom was
flipped, i.e., whether the excitation is shared or not. This increase
in the variance will in chap. 8 be used to distinguish between a CSS

and the created collective-single-excitation state. Continuing along the
same lines, we now proceed with a calculation of the full probability
distribution.

3.6 measurement outcomes

As will be explained in detail in chap. 4, the observable of interest is
the population difference, ∆N = N↑ − N↓ = 2

〈
Ĵz
〉
. From the above we

can easily find the corresponding mean value and variances. However
to describe the actual measurements we will be interested in the full
probability distributions of the outcomes, which we will derive in this
section. Knowing the total number of atoms Nat, we can infer ∆N by
measuring the number of atoms in the upper state. This is done by a
projective measurement described by

P̂(n) ≡∑
π

|n〉A〈n|, (3.35a)

= ∑
π

|↑↑ . . . ↑︸ ︷︷ ︸
n
↓↓ . . . ↓︸ ︷︷ ︸
Nat − n

〉 〈↑↑ . . . ↑︸ ︷︷ ︸
n
↓↓ . . . ↓︸ ︷︷ ︸
Nat − n

|. (3.35b)

With this we can consider each type of state and compare the variance
of the derived distributions to eqs. (3.31) and (3.34).
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3.6.1 Coherent spin state

We start by considering the CSS aligned along the x-axis of the Bloch
sphere12

|θ = π/2, φ = 0〉A = |←← . . .←〉A , (3.36)

where we have introduced the equal superposition state

|�〉l ≡
|↑〉l ± |↓〉l√

2
. (3.37)

The probability to detect n atoms in the upper state is

p̃0(n) ≡ 〈θ = π/2, φ = 0|P̂(n)|θ = π/2, φ = 0〉 (3.38a)

= ∑
π

|〈←← . . . |↑↑ . . . ↑︸ ︷︷ ︸
n
↓↓ . . . ↓︸ ︷︷ ︸
Nat − n

〉|2 (3.38b)

= ∑
π

1
2Nat

(3.38c)

=
1

2Nat

(
Nat

n

)
(3.38d)

=

(
Nat

n

)(
1
2

)n (
1− 1

2

)Nat−n

. (3.38e)

Thus p̃0(n) is a binomial distribution with an equal probability of the
two outcomes, corresponding to an atom being in either the upper or
lower state. The physical interpretation is straightforward: perform-
ing the measurement on the state |θ = π/2, φ = 0〉A, each atom is pro-
jected into either the upper or lower state with equal probability (see
fig. 3.5). Since we are working with large ensembles, Nat � 1, we can
approximate the binomial distribution with a normal distribution,13

allowing us to write

p̃0(n)
Nat�1≈

√
2

πNa
exp

[
− 2

Na

(
n− Na

2

)2
]

. (3.39)

This is a normal distribution with a mean of Nat/2 and a variance of
Nat/4. The last step is to recall that we will be measuring the popu-

12 We consider a state with a pseudo-spin vector living in the equatorial plane, as it is
such states we will be creating and characterizing in the remainder of this thesis.

13 This correspondence can be found via Stirling’s formula: ln(x)! = x ln(x)− x.
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Measurement

Figure 3.5.: Performing a projective measurement of ∆N on an atomic
ensemble prepared in the CSS |θ = π/2, φ = 0〉A, each
atom is projected onto |↑〉 or |↓〉 with equal probabilities.
The distribution of measurement outcomes then follows a
binomial distribution, which in the limit of Nat � 1 is well
approximated by a Gaussian with a mean of zero and a
variance of Nat.

lation difference ∆N. Assuming that Nat is fixed, this corresponds to
changing the domain of p̃0(n) as follows:

n = 0→ ∆N = −Nat

n = 1→ ∆N = −Nat + 2
...

n = Nat → ∆N = Nat.

Performing these substitutions, one finds

p0(∆N) =
1√

2πNat
exp

(
−∆N2

2Nat

)
. (3.40)

This is a normal distribution with a mean of zero and a variance14 of
Nat, which is plotted in fig. 3.6. Using eqs. (3.12) and (3.14) and the
fact that ∆N = 2 Ĵz, we see that this is in agreement with the previous
calculation. A different derivation, based on expanding the coherent

14 The corresponding full width half maximum (FWHM) is 2
√

2 ln 2σ
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−Nat/2 −Nat/4 0 Nat/4 Nat/2
0

0.02

0.04

0.06

0.08

Population difference: ∆N

p(
∆

N
)

p0(∆N)
pζ(∆N)
p1(∆N)

Figure 3.6.: Measurement outcomes for CSS (blue), SSS (orange) and
collective-single-excitation stat (red) calculated for Nat =

100. The variance of the SSS is reduced by a factor of ξ = 0.4
in comparison to that of a CSS. The three states give rise to
vastly different distributions of the measurement outcomes
p(∆N).

state |θ = π/2, φ = 0〉A onto the basis formed by the Dicke states with
a given cooperativity number (as done in [Itano et al. 1993] and [Man-
del et al. 1995, sec. 16.7]) gives an identical result.

3.6.2 Spin-squeezed state

With the above calculation and the definition of squeezing (see sec. 3.4),
one easily generalizes the result of eq. (3.40) to the squeezed state
|φ = π/2, φ = 0, ξ〉A, by decreasing the variance by a factor of ζ. This
yields

pξ(∆N) =
1√

2πξNat
exp

(
− ∆N2

2ξNat

)
, (3.41)

which is shown in fig. 3.6. Here we have taken the squeezed spin
component to be Ĵz ∝ P̂A.

38
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3.6.3 Collective-single-excitation state

We now consider the collective-single-excited state |1〉A (eq. (3.24)) and
are again interested in the distribution of the measurement outcomes.
We first rotate the state |1〉A into the equatorial plane:

∣∣1′〉A =
1√
Nat

Nat

∑
l=1
|←← . . .←→︷ ︸︸ ︷

l-th atom

← . . .←←〉 . (3.42)

Using the projector (eq. (3.35)), the probability to find n atoms in the
upper state is

p̃1(n) = 〈1′|P̂(n)|1′〉. (3.43)

Reexpressing the lth atom in the standard spin basis as

∣∣1′〉A =
1√
Nat

Nat

∑
l=1

1√
2

[
|←← . . .← ↓︷ ︸︸ ︷

l-th atom

← . . .←←〉

− |←← . . .← ↑︷ ︸︸ ︷
l-th atom

← . . .←←〉
]

(3.44)

and inserting this into eq. (3.43), we find

p̃1(n) = ∑
π

∣∣∣∣ Nat

∑
l=1

1√
2Nat

(
〈↑↑ . . . ↑︸ ︷︷ ︸

n
↓↓ . . . ↓︸ ︷︷ ︸
Nat − n

| ←← . . .← ↑︷ ︸︸ ︷
l-th atom

← . . .←←〉

−〈↑↑ . . . ↑︸ ︷︷ ︸
n
↓↓ . . . ↓︸ ︷︷ ︸
Nat − n

| ←← . . .← ↓︷ ︸︸ ︷
l-th atom

← . . .←←〉
)∣∣∣∣2.

(3.45)

The two inner products give Kronecker deltas dependent on the per-
mutation

p̃1(n) = ∑
π

∣∣∣∣∣Nat

∑
l=1

1√
2Nat

[
1

2Nat/2

(
δπ

l,↑ − δπ
l,↓
)]∣∣∣∣∣

2

(3.46a)

=
1

2Nat

1
Nat

∑
π

|n− Nat + n|2 (3.46b)

=
1

2Nat

1
Nat

(
Nat

n

)
(2n− Nat)

2 . (3.46c)

Using the same arguments as for the CSS (approximating the binomial
by a Gaussian and then changing its domain) we find

p1(∆N) =
1√

2πNat
exp

(
−∆N2

2Nat

)
∆N2

Nat
, (3.47)
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which is plotted in fig. 3.6. Calculating the variance of p1(∆N) we find
3Nat, in agreement with eq. (3.34). Moreover p1(∆N) is a non-Gaussian
function.

A different derivation of the results for p̃0 and p̃1 could be made in
the following way. Taking the energy of the lower state to be zero, we
find that the system is described by the harmonic-oscillator Hamilto-
nian

Ĥatom = h̄ω0

(
Ĵz +

1
2

Nat

)
. (3.48)

The AFS therefore have harmonic-oscillator wave-functions, which if
squared gives the measurement outcomes, i.e., p̃0 and p̃1.

3.7 summary

Starting from a presentation of the complex multilevel structure of Cs

atoms focusing on two hyperfine ground states allowed us to treat
the ensemble as being composed of spin-1/2 particles. We introduced
angular-momentum operators and considered several states of inter-
est. Starting from the CSS, we considered SSS and AFS. All of these are
states that we will be dealing with extensively in the remaining parts
of this thesis. We introduced a projector allowing us to calculate the
expected probability density for measurement outcomes of the popu-
lation difference, ∆N. It was shown that the collective single excitation
state, |1〉A, has a fundamentally different distribution in comparison to
the squeezed and coherent state. We have throughout this chapter em-
phasized the connection between the description of light and atoms.
In the limit of large ensembles, Nat � 1, where the Holstein-Primakoff
approximation is valid, the two descriptions become identical. The
reason for this is that the Holstein-Primakoff approximation allows us
to treat only the tangential plane of the Bloch sphere, neglecting the
curvature.
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4
L I G H T- AT O M I N T E R A C T I O N

Having described both the light and atomic system we are finally ready
to consider one of the central parts of this thesis, their interactions. We
will focus on two things: first, how the interaction gives rise to an
attenuation and a phase shift of the light field and especially how this
can be used to measure the atomic population difference. Second, we
recast the interaction in terms of the pseudo-spin operators for light
and atoms, connecting it to the description of the individual systems
in chap. 2 and 3. We proceed as follows. Starting from the dipole
interaction, we derive Maxwell-Bloch equations for the time evolution
of the atomic and light operators. This leads to a reformulation of the
interaction Hamiltonian in terms of atomic populations and photon
numbers, both directly measurable quantities. We then consider the
evolution of the light field in more detail and find expressions for the
absorption and phase shift it experiences doing the interaction. All
results are then generalized to the case of an atomic ensemble and
the multilevel structure of Cs. This allows us to recast the effective
Hamiltonian in terms of the pseudo-spin operators for light and atoms,
a result that in sec. 5.1 will be used to show the QND character of the
interaction.

4.1 maxwell-bloch equations

We consider the interaction between a light field âL and an atomic
ensemble. Taking the field to be uniform, it interacts with all atoms in
the same manner. We can therefore consider the interaction between
the field and a single atom, from which the total interaction can be
found by summing up each independent contribution (fig. 4.1(a)). We
describe a three-level atom with two long lived ground states |↑〉 and
|↓〉 interacting with a single mode electromagnetic field âL (fig. 4.1(b)).
The total Hamiltonian describing the combined system is

Ĥ = Ĥlight + Ĥatom + Ĥint. (4.1)
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r↑γe ω

â(in)
L (t) â(out)

L (t)

ω↑e

∆↑e
|e〉

|↓〉
ω↓↑ r↓γe

|↑〉

σ(t, z)(a)

(b)

Figure 4.1.: Light-atom interaction: (a) Interaction between a light field
âL and an ensemble of three-level atoms. Considering a
uniform light field, we split the ensemble up into cross-
sections σ(z, t) for which we derive equations for the out-
put field. The full interaction can then be found by sum-
ming up the individual contributions. (b) A single three-
level atom with an excited state |e〉 which can decay to the
long lived ground states with branching ratios r↑ and r↓.

We consider a dipole interaction, make the dipole1 and rotating-wave2

approximations and set the energy zero point at the lower state, lead-
ing to

Ĥlight = h̄ωâ†
L âL, (4.2a)

Ĥatom = h̄
(
ω↑σ̂↑↑ + ωeσ̂ee

)
, (4.2b)

Ĥint = h̄
(

g∗↑e â†
Lσ̂↑e + g↑e âLσ̂e↑

)
. (4.2c)

1 This means we neglect the spatial dependence of the oscillating field over the size of
an atom. This is valid since the oscillating light field only changes on a length scale
∼ 500 nm, much larger then the size of an atom ∼ 0.1 nm.

2 We only consider energy-preserving terms.
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4.1 maxwell-bloch equations

Here σ̂ij ≡ |i〉〈j| and the allowed values of i and j are ↑, ↓ and e. The
transition frequency to the excited state is ωe ≡ ω↓↑ + ω↑e, and gij is
the coupling between light and the levels |i〉 and |j〉, given by

gij = i
ωij√

2h̄Vωε0
ε · d̂ij (4.3)

in units of frequency. To calculate gij we therefore need the coupling
dipole matrix-elements for a multilevel atom. Writing out these in
terms of reduced dipole-matrix elements takes a fair amount of algebra
and familiarity with addition of angular momenta,3 which we will
refrain from here. A derivation can be found in for example [Loudon
2000; Sobelman 2006].

To derive Maxwell-Bloch equations we first use the Heisenberg equa-
tion of motion, giving the time derivative of an operator ô as

˙̂o ≡ dô
dt

= − i
h̄
[
ô, Ĥ

]
. (4.4)

From this we find the following set of equations:

〈 ˙̂a(out)
L 〉 = −iω〈â(out)

L 〉 − ig∗↑e
〈
σ̂↑e
〉

, (4.5a)〈 ˙̂σ↓↓
〉
= r↓γe 〈σ̂ee〉, (4.5b)〈 ˙̂σ↑↑
〉
= r↑γe 〈σ̂ee〉+ ig↑e〈âL〉

〈
σ̂e↑
〉
− ig∗↑e〈â†

L〉
〈
σ̂↑e
〉

, (4.5c)〈 ˙̂σee
〉
= ig∗↑e〈â†

L〉
〈
σ̂↑e
〉
− ig↑e 〈âL〉

〈
σ̂e↑
〉
−γe 〈σ̂ee〉, (4.5d)〈 ˙̂σ↑e

〉
= −γe/2

〈
σ̂↑e
〉
− iω↑e

〈
σ̂↑e
〉
− ig↑e 〈âL〉

(〈
σ̂↑↑
〉
− 〈σ̂ee〉

)
. (4.5e)

Here we have introduced the inverse lifetime of the excited state γe and
the branching ratios r↑ and r↓, with r↑+ r↓ = 1. The decay between the
two ground states have been neglected since it is slow compared to all
other time scales in the problem. The excited state decay terms in red
have been added by physical considerations. Formally this leads to
eq. (4.5) only being valid for the mean values of the operators, which
besides explaining the cumbersome notation means we cannot calcu-
late correlations such at 〈âL(t)âL(t + τ)〉 from eq. (4.5). This would
require a derivation in terms of master equations and jump operators,
which we withhold from here as the considered model will contain the
relevant physics. For notional simplicity we will suppress the expecta-
tion values, as well as the explicit reference to the input or output part

3 The problem arises due to the fact that the “good” quantum number is given by the
sum of electron spin, orbital angular momentum, and nuclear spin.
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of the light field which should be clear from the context. We simplify
the description by introducing slowly varying operators

ãL = âLeiωt, (4.6a)

σ̃↑e = σ̂↑eeiωt, (4.6b)

corresponding to a coordinate frame rotating at the laser frequency ω.
Taking the time derivatives of the slowly varying operators and us-

ing eq. (4.5) we get a set of coupled differential equations

˙̃aL = −ig∗↑eσ̃↑e, (4.7a)
˙̃σ↑e = −

(
γe/2− i∆↑e

)
σ̃↑e − ig↑e

(
σ̂↑↑ − σ̂ee

)
ãL. (4.7b)

Here ∆↑e ≡ ω − ω↑e is the detuning. Solving for the steady-state case,
˙̃σ↑e = 0, and assuming that σ̂ee � 1, we get

σ̃↑e =
g↑e ãL

∆↑e + iγe/2
(
σ̂↑↑ − σ̂ee

)
. (4.8)

Inserting this back into eq. (4.2c) allows us to rewrite Ĥint as an effec-
tive Hamiltonian

Ĥeff = 2h̄
â†

L âL
∣∣g↑e∣∣2 ∆↑e

∆2
↑e + (γe/2)2

(
σ̂↑↑ − σ̂ee

)
. (4.9)

The term originating from the commutator of âL and â†
L has been ne-

glected, since it is small compared to the photon number â†
L âL � 1.

The effective Hamiltonian (eq. (4.9)), only depends on the photon num-
ber and the population difference, both quantities that can be directly
measured. Furthermore, the effective Hamiltonian only contains the
light intensity â†

L âL and not the fields, which leads to two things. First,
only the scalar polarizability is considered. Second, as the light polar-
ization does not change the model does not include coherent transfer
between different mF states. With the effective description of the light
atom interaction at our disposal, we now consider how the light field
evolves as it passes through the atomic cloud.

4.1.1 Absorption and phase shift

We expect that the ensemble will act like a “piece of glass”, i.e., it will
attenuate (absorb) and imprint a phase shift on the light. To derive the
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Figure 4.2.: As the light interacts with an atom, it is absorbed and
shifted in phase. Both the absorption (blue) and phase shift
(red) is plotted as a function of detuning. The absorption
falls off as ∆−2 while as the phase shift goes as ∆−1.

corresponding equations we insert eq. (4.8) into eq. (4.7a), which gives
the differential equation

˙̃aL = −i

∣∣g↑e∣∣2 (σ̂↑↑ − σ̂ee
)

∆↑e + iγe/2
ãL. (4.10)

Taking the population difference to be constant, we find

â(out)
L (t) = â(in)

L (t) exp

[
−i
∣∣g↑e∣∣2 ∆↑e − iγe/2

∆2
↑e + (γe/2)2

(
σ̂↑↑ − σ̂ee

) la

c

]
, (4.11a)

= â(in)
L (t) exp [−iφ− α̃] , (4.11b)

Here we have split the exponential into a real and imaginary part and
introduced

φ ≡
∣∣g↑e∣∣2 ∆↑e

∆2
↑e + (γe/2)2

(
σ̂↑↑ − σ̂ee

) la

c
, (4.12a)

α̃ ≡
∣∣g↑e∣∣2 γe/2

∆2
↑e + (γe/2)2

(
σ̂↑↑ − σ̂ee

) la

c
, (4.12b)

45



light-atom interaction

together with the propagation time la/c. The interpretation of eq. (4.11)
is as expected; light passes through the atomic cloud and experiences
a phase shift of φ, while its intensity is decreased by e−α = e−2α̃. Both
absorption and phase shift is dependent on the atomic populations. In
the limit of large detuning the absorption falls off with ∆−2, whereas
the phase shift falls off with ∆−1 (fig. 4.2). The main insight of this
is as follows. Consider the experimental relevant case where the total
number of scattering events (Ramsey fringe reduction) is fixed. By
detuning twice as much we can invest four times as many photons
allowing to resolve phase shifts that are half as big (δφ ∝ N−1/2

ph ). As
the phase shift imprinted by the atoms also drops by a factor of two no
gain or loss in SNR is achieved. This shows that we can always detune
our probe further and make the ensemble transparent such that the
light will interact homogeneously with the atoms without loss of SNR.

4.2 state characterization

Having described the interaction between light and a single atom, we
consider how the effective Hamiltonian in eq. (4.9) can be used to char-
acterize the spin state of an atomic ensemble. To stay close to the ex-
perimental setting, three complications needs to be taken into account.
First, the full level structure of the Cs atoms should be considered. Sec-
ond, we need to extend the description from a single atom to the whole
ensemble. Third, we want to describe the interaction in terms of the
pseudo-spin operators for light and atoms.

To extend the description to the multilevel structure of Cs, we note
that which ground state the probe interacts with depends on the de-
tuning ∆. Including interactions with the |↓〉 state can then be done
by adding an extra term to the Hamiltonian with the detuning ∆↓e.
Furthermore, there are many excited states, which we include by an
appropriate summation. This leads to

Ĥeff = −h̄
↓
∑
g=↑

5

∑
e=2

â†
L âLKge

(
σ̂gg − σ̂ee

)
, (4.13a)

where we have introduced the state-dependent coupling

Kge = 2
∣∣gge

∣∣2 ∆ge

∆2
ge + (γe/2)2 . (4.13b)
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4.2 state characterization

Having addressed the multilevel structure of the atom, we now ex-
pand the description to the whole ensemble. Taking the case of no
atom-atom interactions and assuming that all atoms couple equally to
the uniform light mode, corresponding to α̃ � 1, we can simply sum
up the single atom contributions, which gives

Ĥeff = −h̄
Nat

∑
l=1

↓
∑
g=↑

5

∑
e=2

â†
L âLKge

(
σ̂
(l)
gg − σ̂

(l)
ee

)
. (4.14)

The first summation is over the number of atoms, second over the two
ground levels (for Cs F = 3, 4), and the third over all excited states.
Generalizing the analysis in sec. 4.1.1 to take into account the multi-
level structure and the whole ensemble we find the absorption and
phase shift

φ =
Nat

∑
l=1

↓
∑
g=↑

5

∑
e=2

∣∣gge
∣∣2 ∆ge

∆2
ge + (γe/2)2

(
σ
(l)
gg − σ̂

(l)
ee

) la

c
, (4.15a)

α̃ =
Nat

∑
l=1

↓
∑
g=↑

5

∑
e=2

∣∣gge
∣∣2 γe/2

∆2
ge + (γe/2)2

(
σ
(l)
gg − σ̂

(l)
ee

) la

c
. (4.15b)

To connect the interaction Hamiltonian to the pseudo-spin opera-
tors, we introduce an extra optical mode b̂L carrying half of the probe
photons. From eqs. (2.23) and (3.3) we get the relations

Nat

∑
l=1

σ̂
(l)
↑↑ =

N̂at,

2
+ Ĵz, (4.16a)

Nat

∑
l=1

σ̂
(l)
↓↓ =

N̂at,

2
− Ĵz, (4.16b)

â†
L âL =

N̂ph,tot

2
+ Ŝz, (4.16c)

where

N̂ph,tot ≡ N̂ph,a + N̂ph,b (4.16d)

N̂at, ≡ N̂at,↓ + N̂at,↑ (4.16e)
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is the total photon and atom number operators. Inserting this in
eq. (4.14) and writing out the summation over the ground states we
get

Ĥeff = −h̄

(
N̂ph,tot

2
+ Ŝz

)
5

∑
e=2

[
K↓e

(
N̂at,

2
− Ĵz

)
+K↑e

(
N̂at,

2
+ Ĵz

)]
.

(4.17)

Here we have neglected the excited state population (σ̂ee ≈ 0), which
we had already assumed to be small. This corresponds to the experi-
mentally relevant regime of large detunings where the saturation pa-
rameter s = I/Isat(∆)� 1. The effective interaction has now been cast
in a form depending on the number of photons, the number of atoms,
and the z-component of the pseudo-spin vectors for light and atoms.
As described in detail in chap. 3, the state of the atomic ensemble can
be characterized by measuring Ĵz or equivalently ∆N. Furthermore, we
can measure Ŝz using the MZI described in sec. 2.3. We can thus use the
described light-atom interaction to infer the state of the atomic ensem-
ble. Having a method to characterize the state of the atomic ensemble
we now consider its interaction with a microwave source allowing for
direct coherent manipulations of the pseudo-spin vector.

4.3 microwave interaction

To directly address our two-level system of interest we use a microwave
source, allowing us to perform arbitrary rotations of the Bloch vector
Ĵ. The coherent interaction between the atoms and an oscillating mag-
netic field B is given by

Ĥint = −µ̂ · B̂, (4.18)

where µ̂ describes the magnetic dipole moment. To derive appropriate
equations of motion one could perform a calculation similar to sec. 4.1.
Instead of this, we start by simplifying the description substantially.
The used microwave source has an output power on the order of 10 W
and a frequency of ωµW ≈ ωclock ≈ 9 GHz. We can thus neglect all its
quantum features and treat it as a completely classical quantity. Fur-
thermore, we apply a static magnetic field along the z-axis and choose
this as the quantization axis. Taking a linearly polarized microwave
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4.3 microwave interaction

field4 the interaction becomes −µ0B0 and, as expected, we only drive
∆mF = 0 transitions. Solving for the time evolution of the pseudo-spin
vector we find [Mandel et al. 1995, sec. 15.3]

d
dt

Ĵ = Ĵ ×Ω, (4.19a)

where

Ω =

Re (ΩR)
Im (ΩR)

∆

 . (4.19b)

The Rabi frequency is given by ΩR = 2 〈µ0B0〉 /h̄ and ∆ is the detuning.
The interaction therefore leads to a rotation of the pseudo-spin vector,
which we can be described by a rotation matrix MµW(Ωt, ϑR). The axis
of rotation is defined by the phase between the microwave and the
atoms, ϑR. The angle of rotation is set by the product of the interaction
time t and the magnitude of the generalized Rabi frequency

Ω = |Ω| =
√

∆2 + |ΩR|2. (4.20)

As the phase and duration of the applied field are easy to tune5 we
can perform arbitrary rotations of Ĵ, giving the concept of π and π/2
pulses. To show the usefulness of this we consider the example of
Ramsey spectroscopy.

The standard Ramsey sequence and corresponding Bloch spheres
are shown in fig. 4.3. Starting with Ĵ pointing towards the south pole
of the Bloch sphere a π/2 pulse rotates Ĵ into the equatorial plane,
such that it points along the y-axis. We then let the atoms evolve for a
time τ during which Ĵ is rotated by an angle φ = ∆τ. Since the rota-
tion angle directly dependent on the detuning, it can be used to mea-
sure the atomic-transition frequency. To convert it into the measurable
population difference, a second π/2 pulse rotates Ĵ around the x-axis.
Going through the relevant equations for the rotations we find6 that〈

Ĵz
〉

∝ cos(∆τ). In the experiment we will often use a slightly different
sequence, which gives the same information. Starting with the Bloch

4 In the experiment we do not control the microwave polarization.
5 The main challenge is to make these pulses as reproducible and low-noise as possible,

such that they do not wash away the atomic projection noise.
6 We have neglected the reduction of

∣∣ Ĵ∣∣ due to dephasing, which could simply be
incorporated as exp(−τ/T2) where T2 is the relevant dephasing time.
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Figure 4.3.: Ramsey-spectroscopy sequence. A π/2 pulse rotates Ĵ into
the equatorial plane. Letting the system evolve freely the
Bloch vector precesses and rotates by an angle φ = τ∆. To
measure this rotation angle, a second π/2 pulse is made
and a measurement of Ĵz ∝ ∆N is performed. Inset: popu-
lation difference as a function of waiting time τ.

vector Ĵ(in) aligned along the south pole the following pulse sequence
is used

Ĵ(out)
= MµW

(π

2
, ϑR

)
MµW (0, ϑ) MµW

(π

2
, 0
)

Ĵ(in), (4.21)

where MµW (0, ϑ) corresponds to a free evolution. Comparing the mea-
surement of Ĵ(out)

z for ϑR = π/2 and ϑR = 3π/2 we should for ∆ = 0
have as many atoms in the upper as the lower state, i.e., Ĵ(out)

z = 0. In
this way we can optimize the detuning, and from this find the transi-
tion frequency. The Ramsey sequence underpins almost all precision
measurement made with atomic ensembles and has resulted in the
most precise measurements ever made [Hinkley et al. 2013], but will
in this work mainly be used for calibration purposes.
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4.4 summary

Starting from the interaction of a single atom with an optical field, we
derived Maxwell-Bloch equations for the light and atomic operators.
This led to a description of the interactions in terms of an effective
Hamiltonian only dependent on measurable quantities. Taking the
field to interact uniformly with all atoms, the description could be
extended to the whole ensemble by summing up the single-atom con-
tributions. This allowed us to cast the interaction in terms of pseudo-
spin operators. From the explicit coupling between the z-components
of these we discussed how the interaction allows for the characteriza-
tion of atomic spin states (sec. 3.6). Last, we introduced a method to
directly manipulate the atoms within the two hyperfine ground states,
using a microwave source.
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5
E X P E R I M E N TA L C O N S I D E R AT I O N S

In the last chapters we studied light, atoms and their interactions. With
Ĵz entering directly in the effective Hamiltonian, we showed how the in-
teraction allows for the characterization of atomic states by measuring
the population difference. In this chapter we take the description one
step further and consider how interactions between the systems allow
us to create the atomic states discussed in chap. 3. We first consider the
measurement-based generation of a SSS. Using input-output relations
we show that a QND interaction leads to a conditioned noise reduction,
i.e., squeezing. To relate this to the experiment, we find that with a
carefully chosen set of parameters we realize such a QND interaction.
After this we consider the other state of interest, the collective-single-
excitation state. Using the first step of the DLCZ protocol [Duan et al.
2001] this state can be probabilistically generated through the detection
of a heralding photon. To show this we introduce the parametric-gain
Hamiltonian and consider several of its key properties.

5.1 spin-squeezed state

The SSS are defined as states with a variance below the SQL in a direc-
tion orthogonal to the mean spin direction (sec. 3.4). In the original
proposal by Kitagawa et al. [1993] these states were generated through
nonlinear interaction of the form Ĥint ∝ Ĵ2

z . We will take a different
approach based on a QND measurement. The idea is simple: if we per-
form a measurement on a system, without destroying it, we can predict
the outcome of a subsequent measurement with improved precision.
To understand how this works we first need to grasp the concept and
idea behind QND measurements.

5.1.1 Quantum-nondemolition measurement

We start by considering a general description of a quantum mechanical
measurement. In a measurement a system, S, and a meter,M, interact
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Sin
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Sout

Mout

Ĥint

Figure 5.1.: A quantum measurement can be described by a system, S,
and a meter,M, interaction through Ĥint. During the inter-
action they become entangled, and by projective measure-
ment of the meter we obtain information about the system.

via Ĥint and become entangled (fig. 5.1). A projective measurement on
the meter then gives information about the state of the system. In
general such an interaction changes the system. As the name suggests
a QND measurement is the opposite: if an observable ô is measured at
times t and t′ and the outcomes are identical, ô is a QND observable.
The simplest example of such an observable is a constant of motion

d
dt

ô(t) = − i
h
[
ô(t), Ĥ(t)

]
= 0. (5.1)

This condition can be relaxed [Poizat et al. 1994] to be[
ô(t), Ĥint(t)

]
= 0. (5.2)

Having determined if an observable is of the QND type or not, we
now consider how a corresponding measurement can be quantified.
Following [Walls et al. 2008, chap. 14] we introduce three measures:1

Efficiency: Correlation between the meter after the interaction (Mout)
and system before the interaction (Sin). This criterion gives the
measurement efficiency, and is directly related to the state char-
acterization as described in sec. 4.2.

Non-destruction: Correlations between the system before (Sin) and
after (Sout) the interaction. It is related to the commutator in
eq. (5.2). For the SSS this loss of correlation, corresponds to a
reduction of the Bloch-vector length (loss of Ramsey fringe con-
trast) due to the interaction.

1 A comparable description of quantum measurements of spin systems based on the
concept of transfer coefficients can be found in [Mitchell et al. 2012; Sewell et al. 2013].
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5.1 spin-squeezed state

State preparation: Correlations between meter (Mout) and system
after the interaction (Sout). This is the central criterion for squeez-
ing as it is directly linked to the conditioned noise reduction (in-
formation gain), and thus the amount of squeezing.

Considering the case of spectroscopically relevant squeezing, a combi-
nation of the last two criteria sets the limit on the amount of squeezing.
A large noise reduction requires a high degree of state preparation, i.e.,
a strong measurement. On the other hand, using a strong measure-
ment leads to a large degree of state destruction. Therefore, a trade-off
will have to be made between the information gain and the state de-
struction. This is the essence of measurement-based squeezing and to
quantify it we start by considering a generic QND interaction.

5.1.2 QND measurements and squeezing

To show how QND measurements allow for the creation of SSSs we
consider the canonical QND interaction Hamiltonian

ĤQND = h̄KŜz Ĵz, (5.3)

where K denotes the coupling between the two systems. Using Heisen-
berg’s equation of motion — see eq. (4.4) — we construct input-output
relations for the light and atomic pseudo-spin vectors:

Ŝ(out)
x = Ŝ(in)

x −KŜ(in)
y Ĵ(in)

z , Ĵ(out)
x = Ĵ(in)

x −K Ĵ(in)
y Ŝ(in)

z , (5.4a)

Ŝ(out)
y = Ŝ(in)

y +KŜ(in)
x Ĵ(in)

z , Ĵ(out)
y = Ĵ(in)

y +K Ĵ(in)
x Ŝ(in)

z , (5.4b)

Ŝ(out)
z = Ŝ(in)

z , Ĵ(out)
z = Ĵ(in)

z . (5.4c)

As expected, since [ Ĵz, ĤQND] = [Ŝz, ĤQND] = 0, the two z-components
are not changed by the interaction — they are QND observables. Taking
the atomic and light pseudo-spin vectors to be aligned along the x-axis,
we consider the fluctuations in the two orthogonal directions. To gain
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information about the atomic system we measure2
〈

Ŝ(out)
y

〉
= ys, and

conditioned on this outcome we get [Hammerer et al. 2010, sec. IV. A.]

〈
Ĵ(out)
z

〉 ∣∣∣∣
ys

=
〈

Ĵ(out)
z

〉
−

〈
Ĵ(out)
z Ŝ(out)

y

〉
〈(

Ŝ(out)
y

)2
〉 ys, (5.5a)

var
(

Ĵ(out)
z

) ∣∣∣∣
ys

= var
(

Ĵ(out)
z

)
−

〈
Ĵ(out)
z Ŝ(out)

y

〉2〈(
Ŝ(out)

y

)2
〉 . (5.5b)

Here we have taken Ĵz and Ŝy to be Gaussian-distributed random vari-
ables. This is valid as Ŝ(in)

y and Ĵ(in)
z are both Gaussian noise processes

(shot noise and projection noise), and that Ĥint is linear. Taking the
limit where Ĵ(out)

y and Ŝ(out)
y are uncorrelated we see that a measure-

ment of Ŝ(out)
y do not affect Ĵ(out)

y , as expected from eq. (5.4b). From
eqs. (2.23) and (5.4) we find that〈(

Ŝ(out)
y

)2
〉

= (1 + κ2)
Nph

4
, (5.6)

where κ2 = K2NphNat/4. Inserting this back into eq. (5.5) gives

〈
Ĵ(out)
z

〉 ∣∣∣∣
ys

=
〈

Ĵ(in)
z

〉
− κ

1 + κ2

√
Nat

Nph
ys (5.7a)

var
(

Ĵ(out)
z

) ∣∣∣∣
ys

=
1

1 + κ2 var
(

Ĵ(in)
z

)
. (5.7b)

This eq. shows that the noise of Ĵz has been reduced by a factor (1 +

κ2)−1. As we are starting from a CSS which minimizes Heisenbergs
uncertainty relation the variance var

(
Ĵ(out)
z

)
is reduced below the SQL,

i.e., the ensemble is in a SSS.
To quantify the amount of squeezing, we relate the coupling con-

stant K to the resonant optical depth and use the Wineland criterion
(eq. (3.20a)) and find

ξWineland =
1

exp
(
−ηNph

) 1
1 + α0ηNph/4

, (5.8)

2 Recall that the last beam-splitter in the MZI maps the phase in the equatorial plane
(Ŝy) onto Ŝz (sec. 2.3).
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5.1 spin-squeezed state

see app. E.2 for the full derivation. Here α0 is the on-resonant optical
depth, and η is the number of scattering events per photon, such that
exp(−ηNph) gives the coherence. From eq. (5.8) it is clear that it is
desirable to have a high optical depth and at the same time a low
decoherence η. The photon number enters both in the loss of coherence
(the more photons the worse) and in the noise reduction (the more
photons the better). Therefore, the used photon number has to be
carefully chosen to give enough information while at the same time
not destroying the coherence.

Having seen that a QND measurement allows for the creation of SSSs

we now want to relate the studied ĤQND to the interactions described
in sec. 4.2. Recalling the effective Hamiltonian given in eq. (4.17), we
modify it to take into account the free propagation in the MZI (sec. 2.3)
and find

Ĥeff = −h̄

(
N̂ph

2
+ Ŝzeik∆l

)
5

∑
e=2

[
K↓e

(
N̂at,

2
− Ĵz

)
+K↑e

(
N̂at,

2
+ Ĵz

)]
.

(5.9)

In the experiment we will use two lasers, one probing atoms in |↑〉 and
one probing atoms in |↓〉 (referred to as the orange and purple probes
respectively). The frequency difference of the lasers is on the order
of the hyperfine splitting and therefore each probe only interacts with
atoms in one of the two states leading to

Ĥ(o) = −h̄K↑e

 N̂(0)
ph

2
+ Ŝ(o)

z eiko∆l

( N̂at,

2
+ Ĵz

)
, (5.10a)

Ĥ(p) = −h̄K↓e

 N̂(p)
ph

2
+ Ŝ(p)

z eikp∆l

( N̂at,

2
− Ĵz

)
. (5.10b)

Choosing the detuning such that the coupling constants are identical,
K = K↑e = K↓e, and the path-length difference such that the probes
are out of phase, ∆l = π/(ko − kp), we find the total Hamiltonian

Ĥ = −h̄K
[

Ĵz

(
Ŝ(o)

z + Ŝ(p)
z

)
+ Ĵz

(
N̂(o)

ph − N̂(p)
ph

)
+

N̂at,

2

(
Ŝ(o)

z − Ŝ(p)
z

)
+

N̂at,

4

(
N̂(p)

ph + N̂(o)
ph

) ]
. (5.11)
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We identify the first term with the desired QND interaction, coupling
Ĵz to the total light operator Ŝ(tot)

z = Ŝ(o)
z + Ŝ(p)

z . The second term is the
probe-induced ac Stark shift, corresponding to the “back-action” of
light on the atomic system. Taking the probe powers to be equal, this
is on average zero, but will however have non-zero fluctuations due to
the shot noise of the probes. The third term is the mean phase shift
experienced by the probes due to the interaction with half of the atoms
in the ensemble. Considering a CSS in the equatorial plane the average
of this term is zero. The fourth, and last term, is the common-mode
light shift which simply gives an energy offset that does not affect the
dynamics. This leaves us with an interaction Hamiltonian

Ĥint = −h̄K ĴzŜ(tot)
z (5.12)

which is in the form of the canonical QND Hamiltonian (eq. (5.3)). Thus,
with appropriate choices of probe powers and alignment of the MZI the
considered interaction is of the QND type, which should allow for the
creation of SSS. To actually observe a SSS we require a few more things.
First, we should be able to resolve the atomic projection noise which
is on the order of 1/

√
Nat ∼ 1 mrad for Nat ∼ 105. Second, as we

are dealing with variances, a large amount of realizations are required,
meaning that a high degree of experimental stability and repeatability
is needed.

5.2 collective-single-excitation state

To create the collective-single-excitation state, introduced in sec. 3.5 we
follow the first part of the DLCZ protocol [Duan et al. 2001], schemat-
ically shown in fig. 5.2. Neglecting the ac Stark shift of the ground
state, the Hamiltonian describing the interaction is [Hammerer et al.
2010, eq. (33)]

ĤG = χ∗ â†
A â†

L + χâA âL, (5.13a)

where

χ ≡ g(Nat)ΩR

2∆
. (5.13b)

Here ∆ denotes the detuning, ΩR the Rabi frequency, and g(Nat) =√
2πωNat/cε · d the light-atom coupling. This Hamiltonian is known
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|e〉

|↑〉

|↓〉

|0〉A

Pump

Pump

|0〉L
âL

|n〉A

Pump

Pump

|n〉L

∆

ΩR

Figure 5.2.: The driven Raman transition can be described by the two-
mode squeezing Hamiltonian in eq. (5.13a) and is therefore
equivalent to a parametric amplifier. The presence of a
single photon in the mode âL signals that a single unknown
atom has been transfered to the state |↑〉.

as the parametric-gain3 or two-mode-squeezing Hamiltonian. The light
and atomic operators enter symmetrically in the Hamiltonian, which
means that excitations will be created in pairs. To show this we con-
sider the unitary time evolution of this system,

ŜG(ζ) = exp
(

ζ∗ â†
L â†

A + ζ âL âA

)
, (5.14a)

where

ζ = − iχ
h̄

t. (5.14b)

After the interaction the state is

|ζ〉 = ŜG(ζ) |0, 0〉 (5.15)

where the first entry of the ket describes the light mode and the second
the atomic mode. Expanding |ζ〉 onto the Fock basis and using the
transformation rule in eq. (A.3) we find

|ζ〉 = 1
cosh (ζ) ∑

n
(− tanh (ζ))n |n, n〉 , (5.16)

3 Getting its name from the process of spontaneous parametric down conversion.
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Figure 5.3.: The probability pn to have n collective excitations in the
ensemble for ζ = 0.75, corresponding to a mean excitation
number of 0.68.

with the detailed derivation given in app. A.1.1 or [Gerry et al. 2005,
sec. 7.7]. This directly shows that only pair creation is allowed —
a single photon in the mode âL signals that the ensemble carries a
collective spin excitation. To find the probability of having a single
atomic excitation we trace out the light system and obtain the reduced
density matrix

ρ̂A =
∞

∑
n=0

pn |n〉〈n|, (5.17a)

where

pn =
tanh2n (ζ)

cosh2 (ζ)
(5.17b)

is a thermal distribution (fig. 5.3).
We now consider the conditioned generation using a single-photon-

counting module (SPCM). Due to dead time after a click an SPCM can
not distinguish if we detected one or two photons. It is therefore desir-
able to have the excitation probability, ζ small to avoid contributions
from higher order excitations. On the other hand, this gives a low gen-
eration rate. In the experiment we therefore have to make a trade-off
between high purity and high generation rate. Furthermore, consider-
ing the full level structure the excited atom can decay through many
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5.3 summary

different channels. As it is only one particular photon that generates
the desired state, we must filter out photons from other decays. Last,
for the excitation to be collective all atoms should interact equally with
the light. We therefore want the optical depth on the excitation transi-
tion to be smaller than one.

5.3 summary

In this chapter we have outlined how the SSS and the collective-single-
excitation state can be generated. We first considered a generic QND

Hamiltonian and described how this allow for measurement based
squeezing. To link this to the experiment we showed that for a care-
ful choice of parameters, the light-atom interaction reduces to the QND

Hamiltonian. Most notably, by balancing the probe powers we are
first order insensitive to the ac Stark shift corresponding to the mea-
surement back-action. To generate the collective single excitation state,
we considered the parametric-gain Hamiltonian. We showed how this
leads to the pairwise generation of excitations and heralding photons.
This means that the detection of a single photon signals that the en-
semble carries the desired collective excitation.
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Part II

E X P E R I M E N T

In this part we start by considering the experimental im-
plementation of the theoretical ideas presented in the last
part. This is followed by a presentation of the three main
results of the thesis. First, the creation of a spin-squeezed
state (SSS) with a spectroscopically relevant noise reduction
of −1.7 dB. Second, we show the generation of a collective-
single-excitation state characterized using atomic homodyne
tomography. Third, we consider the nanofiber based light-
atom interface and show the detection and creation of an
ensemble with a sub-Poissonian atom distribution.





6
E X P E R I M E N TA L T E C H N I Q U E S

Due to large efforts of the previous generation of experimentalists, I
was fortunate enough to arrive at a (somewhat) working setup. This
means that there, naturally, will be some overlap in this chapter with
[Windpassinger 2008, chap. 3; Oblak 2010, chap. 8 and 9]. However,
having worked with the main experiment for the last four years —
every optical component has been touched, sometimes for the better
and sometimes for the worse, circuits designed, and control systems
optimized to accommodate the constantly changing experimental de-
mands. The experimental setup, and the structure of this chapter, can
be divided into four sections; atom trapping, state preparation, state
characterization, and the control and acquisition system making every-
thing work together. Starting by loading atoms into a MOT they are
transfered into a FORT where the experiments take place. Using op-
tical pumping, microwave, and purification pulses we create a pure
ensemble with all atoms in the |↓〉 ≡ |F = 3, mF = 0〉 state. We then
(try to) create and characterize the quantum states of interest — the
spin-squeezed state (SSS) (chap. 7) and collective-single-excitation state
(chap. 8). This brings us to the central part of the chapter and experi-
ment — the measurement of the atomic population difference ∆N. The
implementation of the two-color probing method (sec. 5.1) is described
and a suppression of classical noise of tens of dB is shown. Finally, the
experimental control and data acquisition are discussed.

6.1 atom trapping

It is clear that before any meaningful interaction or measurement of the
ensemble can be made the atoms needs to be localized in space.1 The
methods for atom trapping and cooling described in this section are
standard techniques and implementations can be found in countless
cold atom laboratories. We will therefore try and keep it short and skip

1 The situation is much the same as if you are to measure the height of a person. Imag-
ine the trouble it would be if the person were running around all over the place.
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Figure 6.1.: Optical layout to lock the master and slave for the MOT

repumper (blue) and cooler (red). The master lasers are
locked via absorption spectroscopy and the slaves via in-
jection locking.

some of the underlying ideas and focus on how they are implemented
in our laboratory.

6.1.1 Magneto-optical trap

The atoms are situated inside a glass cell2 connected to a vacuum sys-
tem, where an ion pump keeps a pressure of ≈ 10−9 mbar. The only
requirement is that we can create a MOT and the precise pressure is
therefore not important.3 For this we use a standard six beam con-
figuration together with a set of anti-Helmholtz coils.4 Three sets of
compensation coils allow to nullify any static background magnetic
field. To generate the cooling (F = 4 → F′ = 4) and re-pumping

2 Starna cell of dimensions 120 mm× 48 mm× 48 mm, with anti-reflection coating on
the outside.

3 The higher the pressure, the more likely trapped atoms are to collide with other atoms,
therefore this could limit the coherence times of the trapped ensemble. Furthermore, it
could give rise to pressure shifts of the atomic lines. Both effects only play a negligible
role in this work.

4 Radius of 5 cm and 38 windings.
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6.1 atom trapping

(F = 3 → F′ = 4) light we use two separate laser systems in a master-
slave configuration.

The two master lasers are home-built external cavity diode lasers
(ECDLs) in a Littrow configuration (see fig. 6.1). We use 100 mW diodes
from Axcel photonics5 and operate with about 20 mW of output power,
and a linewidth of 500 kHz, measured over a few seconds [Windpassinger
2008, sec. 3.1]. To stabilize the laser frequency to the atomic line we
use a Doppler free absorption spectroscopy setup combined with a
Pound–Drever–Hall (PDH)-like method. By directly modulating the
laser current we create sidebands6 on the light. After passing through
the spectroscopy setup the light is detected and demodulated at the
side-band frequency to obtain the required error-signal. The cooler is
locked to the F = 4 → F′ = 3× 4 crossover and the repumper to the
F = 3 → F′ = 2× 3 crossover. A double pass acousto optical modu-
lator (AOM) setup allows us to tune the frequency of the master lasers
before they are injected into the slaves (see fig. 6.1).

The slave lasers are home-built free running diode7 lasers, with an
output of ≈ 100 mW stabilized via injection locking (see fig. 6.1).8 To
have power and switching control we use a single pass AOM in each
beam. The two laser beams are then combined on a polarizing beam-
splitter (PBS) before they are split and coupled into six fibers which
take them to the vacuum setup. The full optical layout is shown in
fig. B.1. At the fiber outputs the beams are expanded to a diameter of
≈ 3 mm and a PBS and a λ/4 waveplate ensures that they are circularly
polarized before they are overlapped with the magnetic gradient field
(see fig. 6.6). To load atoms into the MOT from the vapor pressure,
made by a set of SAES getter sources,9 the cooler and repumper are
detuned by ≈ −2γe from their respective transitions and a gradient
field of ≈ 12 G cm−1 is applied. Atoms are loaded for ≈ 2000 ms which
is followed by a phase of sub-Doppler cooling lasting ≈ 200 ms. This
is done by further detuning the repumping and cooling lasers, while
their powers are decreased. In this way we create an atomic cloud of

5 Type: M9-852-0100-S30.
6 Cooler at 20 MHz and repumper at 4 MHz .
7 Type: Eagleyard EYP-RWE-0850.
8 The slaves stay injected for a scan range of ±6γe of the master lasers.
9 Since [Windpassinger 2008; Oblak 2010] a new pair of getters have been installed as

we anyway had to break the vacuum, due to a power failure at the institute.
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about 108 atoms with a diameter of a few mm and a temperature10

of hundreds of µK. From this dense, cold, and spatially concentrated
cloud we can load the far-off-resonant dipole trap (FORT).

6.1.2 Far-off-resonant trap

A FORT is based on the ac Stark shift atoms experience in a light field.
For a red-detuned trapping beam the ground state is shifted down
in energy by an amount proportional to the light intensity.11 Due to
the Gaussian intensity profile of the beam, atoms are trapped at the
beam center. A detailed description of the theory and experimental
considerations can be found in [Grimm et al. 2000]. During the MOT

loading the strong FORT laser is on, such that when the sub-Doppler
cooling is over and the MOT beams are turned off, the remaning atoms
are trapped in the conservative potential of the FORT.

Since the work of [Windpassinger 2008; Oblak 2010] and half a year
before my arrival, the trap laser was changed from a troublesome Ver-
sadisk laser [Oblak 2010, sec. 9.1.2]. We now use a λtrap = 1064 nm
fiber-coupled butterfly diode from EM412 outputting 200 mW which
is sent to a Nufern fiber amplifier13 with 10 W of output power. The
beam passes through an AOM for on/off switching and is overlapped
with the probe using dichroic mirrors before it is focused down to a
waist of wtrap

0 ≈ 40 µm (see fig. 6.6). The dipole trap half-lifetime is es-
timated daily and found to be τ1/2 ≈ 250 ms, comparable to the results
in [Oblak 2010, sec. 9.2.1]. The calculated trap depth is 280 µK and the
corresponding trap frequencies are ω⊥ ≈ 2π× 800 Hz in the transverse
beam direction and ω‖ ≈ 2× 5 Hz in the axial direction. As we were
able to observe projection noise limited operation of the whole setup
with the new laser; a systematic investigation of the trapped sample
where not performed. We do, however, consider the two most used
diagnostic tools to characterize the atomic sample.

10 We do not know the exact temperature of either the MOT, molasses or the FORT trapped
atomic ensemble.

11 Following chap. 4 this could be derived by diagonalizing the effective interaction
Hamiltonian, finding the new energy eigenstates of the combined light-atom system.
The reason it all works is again that the number of scattering events falls off with ∆−2

whereas the energy shifts scales as ∆−1.
12 Part number: EM509.
13 Part number: PSFA-1064-50-10W. The amplifier broke in the summer of 2011, only a

few weeks after the warranty ran out, giving a few months of experimental downtime.
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Figure 6.2.: Measured atomic-induced phase shift as a function of de-
tuning from the F = 4 → F′ = 5 transition, ∆45, with and
without the FORT. To fit the data, a model taking into ac-
count the full atomic level structure, is used. A shift of
5 MHz is observed when the trap is turned on.

trap light shift To estimate the light shift from the FORT, we
measure the atomic induced phase shift, with and without the FORT,
using a single-color probe on the F = 4 → F′ = 5 transition. Starting
with all atoms isotropically distributed in the F = 4 hyperfine manifold
the phase shift is measured14 as a function of probe detuning ∆45 (see
fig. 6.2). To model the data we take the full atomic level structure into
account (see eq. (4.15a)), with an initial population distributed evenly
in the F = 4 manifold.15 We find that the shift of the transition due to
the dipole trap is 5 MHz.

other shifts The other characterization experiment is a measure-
ment of the transition frequency between |↓〉 → |↑〉 as a function of the
trapping power Ptrap. This is done using Ramsey spectroscopy (sec. 4.3
and inset fig. 6.3). The data are presented in fig. 6.3 and the expected

14 For now please just accept it as a fact that we can measure this phase shift, a descrip-
tion of how is to come.

15 To understand why this is important consider an ensemble pumped into the |↑〉 state.
As the transition |↑〉 → |F′ = 4〉 is forbidden (we use π polarization) light does not
experience the associated dispersion curve which would be pulling the curve up for
negative detunings, as is the case for an ensemble with isotropic populations in F = 4.
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Figure 6.3.: Measured hyperfine transition frequency (using Ramsey
spectroscopy, see inset) as a function of FORT power. For
Ptrap . 2.5 W we do not trap enough atoms to make a
proper measurement of the transition frequency. Extrapo-
lation allows us to infer the magnitude of non-trap induced
shifts to be of 1.2 kHz.

linear dependence is observed. Extrapolating to zero, allows us to infer
any shifts not originating from the FORT. These amount to 1.2 kHz, and
could be due to inhomogeneus magnetic fields or density shifts. Such
shifts would be a major concern if we were to run a state of the art
atomic clock — whereas for the purpose here they do not constitute a
major problem. With the atoms trapped, the next step before the actual
experiments is to prepare them in a pure coherent spin state (CSS).

6.2 state preparation

Having loaded atoms into the FORT, they are distributed in the F = 3
and F = 4 ground states16 (fig. 6.4a). In all our experiments we start
by pumping as many atoms as possible into the |↓〉 state, creating the
ensemble ground state |0〉A ≡ |θ = π, φ〉A. Using the compensation
coils a magnetic bias field of |B| = 1.5 G is applied along the z-axis

16 We expect a larger population in the F = 3, state as the re-pumping efficiency is
decreasing doing the sub-Doppler cooling.
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F = 4
F = 3

F′ = 4
F′ = 5

(a) Isotropic distribution. (b) Atoms pumped to |↑〉.

F = 4
F = 3

F′ = 4
F′ = 5

(c) Atoms in |↑〉 saved via microwave. (d) Remove F = 4 atoms.

Figure 6.4.: The optical pumping method allows us to prepare a pure
state of the ensemble. We transfer around 75 % of the ini-
tially trapped atoms into the |↓〉 state. Atoms in other hy-
perfine states are removed via an on-resonant blow-away
pulse, leaving us with about 1 % of the atoms in other hy-
perfine states.

(fig. 6.6). This lifts the degeneracy of the mF states and sets a natural
choice of quantization axes. The optical pumping beam is picked off
from the MOT cooler. It is shifted down in frequency by a double-pass
AOM, such that it is resonant with the F = 4→ F′ = 4 transition — its
frequency can be tuned via the MOT cooler master. We carefully align
its polarization to be π at the position of the atoms (fig. 6.6). Using
this and the re-pumping beam (F = 3→ F′ = 4), atoms accumulate in
the |↑〉 state since the |↑〉 → |F′ = 4, mF′ = 0〉 transition is forbidden17

(fig. 6.4b). After ≈ 1500 µs around 75 % of the atoms are in the |↑〉 state
and then transfered to the |↓〉 state via a microwave π pulse (fig. 6.4c).

To remove remaining atoms in the F = 4 state we use the MOT beam
propagating along the gravitational axes, the weakest trap axis. It is
tuned to be resonant with the F = 4 → F′ = 5 cycling transition
(fig. 6.4d) and removes atoms from the trap by a combination of heat-
ing and pushing. A π pulse then brings the atoms in |↓〉 to the |↑〉 state

17 This is a ∆F = 0 and ∆mF = 0 transition.
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and the sequence is repeated. This leaves less than 1 % of the atoms
in other hyperfine ground states — we have created the desired pure
ensemble. Having described how we can initially prepare the atomic
ensemble in a given mF state, we now consider how we can measure
the quantity of interest, namely the desired population difference.

6.3 population-difference measurement

In our theoretical discussion of both the atomic states (sec. 3.6) and the
state characterization method (sec. 4.2) the parameter of interest was
the population difference ∆N = N↑ − N↓ = 2

〈
Ĵz
〉

and especially its
fluctuations. We use a dual-color probing method (sec. 5.1) with sev-
eral key advantages in comparison to a “standard” single-color mea-
surement [Saffman et al. 2009]:

ac Stark: With the freedom to independently tune the frequency of
each laser we cancel the probe induced differential ac Stark shift
while having identical probing strengths for atoms in each level
(sec. 5.1).

Acoustic noise: The dual-color probing gives several tens of dB noise
suppression for low frequency (up to a few kHz) acoustic noise
(sec. 6.3.3).

Cross pumping: Probing on the closed F = 3 → F′ = 2 and F = 4 →
F′ = 5 transitions, we do not have cross pumping between the
two ground states.

Having outlined the key advantages we now describe the actual imple-
mentation.

6.3.1 Probes

We use two home build ECDLs. One to probe atoms in the |↑〉 state
(F = 4 → F′ = 5 refered to as the orange probe) and one to probe
atoms in the |↓〉 state (F = 3→ F′ = 2 refered to as the purple probe).
The optical layout is shown in fig. 6.5 and a detailed description of its
operation can be found in [Oblak 2010, sec. 8.1] and will here only
be outlined. The central feature is a digital beat-note lock described
in [Appel, MacRae, et al. 2009] — it changes the frequency (via the
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Figure 6.5.: Optical layout of the probes (orange and purple), locking
(green) and excitation (red) lasers. All lasers are coupled
into the same single mode fiber, taking them to the MZI

setup. The orange probe is locked to the repumper master
(blue), and the orange purple probe is locked to the orange.

current and piezo) of a slave laser such that its beat-note with a master
laser matches an external reference frequency. First the orange probe
is locked to the repump master, stabilizing its frequency and obtaining
an absolute frequency reference.18 The purple probe is then locked
to the orange probe. There are two important features of this locking
chain.

First if the repump master drifts it does not change the frequency
difference of the two probes. Second, the whole system is widely tun-
able, allowing to carefully set the light-atom coupling (eq. (5.10)), by
changing the laser detunings. Having the lasers locked they are sent
through an AOM used to create probe pulses (fig. 6.5). Each probe
passes through a λ/2 waveplate on a motorized mount, which together
with a PBS, allows setting the probe powers. After this, the beams are
overlapped and coupled into a single-mode fiber taking them to the
MZI.

18 How good this frequency references is depends on the saturation lock for the re-
pumper. If there are any pressure shifts etc. in the vapor cell used for locking this
would carry over as a frequency offset.
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Figure 6.6.: Detailed optical layout of the MZI. The probes are split into
the probe and reference arm with a ratio of 1 : 10. In the
probe arm the FORT laser and the probes are overlapped us-
ing dichroic mirrors and are then focused down to tens of
µm. After interacting with the atoms the probes are over-
lapped with the reference arm and a balanced homodyne
detection of the MZI signal is performed.

6.3.2 Mach-Zehnder interferometer

As discussed in sec. 2.3 we use a MZI to measure the atomic induced
phase shift, and thus the atomic populations — the setup is shown
in fig. 6.6. The probes arrive at the MZI through the same single-
mode fiber, making them perfectly mode-matched. After this they pass
through a PBS splitting them into the two arms of the MZI. The split-
ting ratio is 90:10, and the reference arm will therefore act as a strong
local oscillator (LO). In the reference arm of the MZI we have installed
a cat-eye (retro-reflector). Together with a piezo mounted mirror, it
is used to set the path-length difference ∆l between the two arms. In
the probe arm we first split off light for a power reference measure-
ment after which a λ/2 wave plate allows us to set the polarization
of the light interacting with the atomic ensemble. Choosing the quan-
tization axes in the z-direction and with the light propagating in the
y-direction we can address π and x = (σ+ + σ−)/

√
2 polarized light
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Figure 6.7.: The raw scope traces for a single probe pulse as seen on
the QND (left) and reference detector (right), with the ac-
cording integration matrix (black). Using the background
(red) we can correct the pulse value (green) for any offsets.
Note that the full pulse is included in the QND integration
whereas for the power reference it is only the center value
which is used.

and mixtures of the two. The probe beam is then focused down to a
size of wprobe

0 ≈ 30 µm.19 To obtain the highest coupling between light
and atoms, we then carefully align the FORT to obtain as high as signal
as possible. This is a central point in the experiment as the light-atom
coupling strength is directly dependent on this overlap (see eq. (4.3)).
Having passed through the atomic sample the beam is re-collimated
and mode-matched with the other arm of the MZI. With the beams
from the two arms overlapped, we perform a balanced homodyne mea-
surement of the MZI output (Ŝz). As described in sec. 2.3.1 this corre-
sponds to a measurement of the optical phase shift from which we can
deduce the population-difference and therefore the atomic state.

To measure the MZI signal we use a home-built pulsed differential
detector described in [Windpassinger et al. 2009; Windpassinger 2008,
chap. 4]. The main feature of this detector is the low photon number
required for the light noise to exceed the electronic noise. These two

19 The probe beam is therefore smaller than the atomic sample.
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are in a one to one ratio for Nph,3 dB = 8× 104 corresponding to a
power of 0.02 µW at 852 nm [Windpassinger et al. 2009]. The detector
signal is sent to a digital oscilloscope operated in a “segmented” mode.
It stores a predefined number of traces to its memory, each triggered
by an external source. When the last trace is over, a binary file is saved
for further processing. Given the time traces (fig. 6.7) we want to find
the average signal value for each pulse. Considering the signal from
the QND detector (fig. 6.7(a)) we make sure that the whole pulse (green)
is used and we subtract the background (red) to avoid detector offsets.
In contrast for the power reference detector (fig. 6.7(b)) we make the
integration window such that we only get the central pulse value to
avoid transient effects.

6.3.3 Noise sensitivity

To compare the states of interest we not only consider the mean value
of ∆N but also its fluctuations (sec. 3.6). For the experiment to resolve
such fluctuations it is crucial that we understand how different effects
perturbs the detected photocurrent. A detailed discussion is presented
in [Christensen 2012, sec. 6.2.2; Oblak 2010, chap. 6] and we will
here simply outline the general framework used together with the key
points obtained by the full analysis, summarized in table 6.1.

The photocurrent is linearised around its mean value20 writing i− =

〈i−〉+ δi−(t), where by definition 〈δi−〉 = 0. It is helpful to write this
in terms of its Fourier components

δi−(t) =
1

2π

∞∫
−∞

δi−(ω)eiωtdω. (6.1)

The variance of the photocurrent can be measured via the spectral
density

var (i−(t)) =
∞∫
−∞

Wi−(ω)dω. (6.2a)

where

Wi−(ω) =
1

2π

〈
|δi−(ω)|2

〉
(6.2b)

20 Defined classically as
∫ t

0 i−(t′)dt′ and quantum mechanically as the expectation value,〈
î−
〉
.
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6.3 population-difference measurement

With no detection system being able to measure the whole frequency
range we introduce the frequency response21 g(ω) which modifies the
above to

var (i−(t)) =
∞∫
−∞

|g(ω)|2 Wi−(ω)dω. (6.3)

As an example of how this framework is used we consider our most
dreaded enemy, acoustic noise.

acoustic noise : The term acoustic noise will be used for any ef-
fect that change the path-length difference ∆l of the MZI, i.e., mirror
vibrations, people talking and moving in the lab or air flows just to
name a few. The classical photocurrent output from the MZI was in
sec. 2.3 found to be

i− = −2εT 2τ cos(φ)
Nph

tp
. (6.4)

Here T was the field overlap, ε a conversion factor from photon num-
ber to photo-electrons, tp the probe duration and τ is the probe arm
transmission. To model the acoustic noise we split the phase shift, φ

into its mean value, 〈φ〉 and a fluctuating part δφ. With 〈δφ〉 = 0 we
can write

φ = 〈φ〉+ δφ, (6.5a)

=
ω

c
〈∆l〉+ ω

c
δ(∆l), (6.5b)

where we have assumed that the laser frequency ω does not fluctuate.
Inserting this into eq. (6.4) and then in eq. (6.3) we get

var (i−)aco =

(
2εT 2τω

Nph

tp
sin(〈φ〉)

)2 ∞∫
−∞

|g(ω)|2 Wδ(∆l)(ω)dω, (6.6)

where we have expanded the cosine to first order. This depends quadrat-
icly on the probe photon number Nph, in comparison to the shot noise
which scales with Nph (sec. 2.2). This difference in scaling allows us to
distinguish the shot noise and acoustic noise in the detected signal. For

21 From which the detector bandwidth can be found.
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many noise sources we would at this point be able to find a certain pa-
rameter that can be tweaked and tuned to suppress the fluctuations.22

The somewhat disappointing insight is that there is no direct way to
suppress this type of noise for a single-color measurement.

Expanding the description to the used dual-color probing we note
that any changes to ∆l affect each probe identically — the fluctua-
tions are common mode. This means that if we can detect the phase
shift difference of the probes, these fluctuations would cancel out. In
the experiment this is achieve by aligning the MZI such that ∆l ≈
ωclock/2c = 17 mm in the absence of atoms. To experimentally test
that the described noise reduction works we measure the empty MZI

noise spectrum with a single and dual-color probe (fig. 6.8). A noise
reduction of 10 dB to 30 dB for frequencies up to 1.5 kHz is observed.
This reduction of acoustic noise is instrumental for us to resolve the
atomic projection noise. Furthermore, it was the same demand that
was required in sec. 5.1 to reach the desired QND Hamiltonian. The
deliberate misalignment of the path-length difference comes at a price
— the MZI is not operated in the white-light position ∆l = 0. Here the
signal would be insensitive to frequency noise of the lasers. This sup-
pression of frequency noise scales with ∆l/c (table 6.1), meaning that
we still take advantages of it as we are only a “single beat” away from
the optimal position.

other noise sources : As one can imagine the number of things
that make the MZI signal fluctuate is endless. An overview of how
some of these affect the photocurrent and how they can be suppressed
is given in table 6.1. To understand each one a similar noise analysis
to above can be performed [Oblak 2010, chap. 6], from which we get
three key insights. First, we see if and how a given noise source can
be suppressed by a careful choice of experimental parameters. Sec-
ond, classical noise on the MZI signal will scale with N2

ph, allowing us
to distinguish these from the light shot noise scaling as Nph. Third,
fluctuations in the atomic state measurement, i.e., loading noise and
fluctuations in the light atom coupling constant, will scale with N2

at al-
lowing us to distinguish these from the atomic projection noise scaling
as Nat. These seemingly simple facts allow us to distinguish differ-

22 A well-known example is that frequency noise can be suppressed by having ∆l = 0,
the “white-light” alignment.
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Figure 6.8.: A comparison of the empty MZI power spectral density for
a single and dual-color probe (identical powers). A noise
reduction of up to 30 dB is observed. Note that the curves
have been shifted vertically such that the single-color mea-
surement is zero at 2.5 kHz.

ent noise sources from one another and unambiguously show that the
apparatus can resolve the atomic projection noise (sec. 7.3.1 and 8.3.1).

6.3.4 Locking

From table 6.1 it is clear that, to ensure optimal operation of the exper-
iment, several parameters require active stabilization. In the following
we consider the two most crucial feedback loops:

path-length: We actively stabilize the path-length difference of the
MZI using a lock-in detection method. For this we use an auxil-
iary laser, again an ECDL, with a wavelength of λlock = 830 nm.
This is far detuned from any atomic resonance and therefore does
not interact with the atoms. The lock laser is amplitude modu-
lated with 100 kHz by using a single pass AOM. The modulation
depth is 100 % such that the laser is effectively turned on and
off. It is then coupled into the same fiber that takes the probes
to the MZI (fig. 6.5). The advantages of this setup is that the
lock laser traces out the exact path we want to lock — that of
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Table 6.1.: The scaling of the photocurrent variance, var (i−), from dif-
ferent noise sources and how it can be suppressed.

source scaling Nph scaling Nat suppression

Light shot noise Nph n/a n/a
Laser intensity N 2

ph n/a Balanced detection:〈
i(1)
−
〉
=
〈

i(2)
−
〉

Laser freq. or phase N 2
ph n/a White light alignment:

∆ l � ωclock/c
Acoustic N 2

ph n/a Dual-color probing:
∆ l = ωclock/c
N (o)

ph = N (p)
ph

Atomic projection noise n/a Nat n/a
Atom number n/a N 2

at Balanced atom number
N↑ = N↓

Coupling strength n/a N 2
at Balanced atom number

N↑ = N↓

the probes. Demodulating the interferometer output signal at
100 kHz we directly measure the lock laser interference fringe,
which is used as an error signal. As we want to lock the path-
length to ∆l = ωclock/(2c) the PI lock drives the error signal to
an offset value. This, together with the flexibility to change λlock,
allows us to choose a setting where we sit at a zero-crossing
(highest sensitivity φ0 = π/2), and at the same time have the
two probes out of phase. To avoid any influence of the lock laser
on the phase shift measurements the lock is freezed around the
trains of probe pulses.

Probe powers: To suppress the acoustic noise (sec. 6.3.3) and the probe
induced differential ac Stark shift (sec. 5.1) the two probes should
have identical powers. After each experimental run, when the
atoms have been removed, the path-length lock is switched off.
The piezo mirror is “wiggled” while a train of dual-color probe
pulses is sent. If the probe powers (or more precisely their fringe
amplitudes) are equal, the detected signal should not change dur-
ing the wiggling. We can therefore directly use this as an error
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Figure 6.9.: The measurement sequence used to show the shot noise
limited operation. Two pulse trains j and j + 1 spaced by
≈ 100 ms each with 20 pulses is sent. The pulses are then
combined (above showing the case of 4 pulses). The light
noise is now found by taking the variance over the many
realizations.

signal that we feed back to the motorized wave plates changing
the probe powers (fig. 6.5).

These servo loops are combined in one circuit and a detailed descrip-
tion can be found in [Oblak 2010, sec. 8.6]. Having described the
MZI, its operation and its noise sensitivity, the outstanding question
is whether after all the trouble we are limited by some classical noise
source or if we actually resolve the shot noise of light.

6.3.5 Shot noise limited operation

For the atomic state characterization the noise floor will be set by the
inherent noise of the MZI which ideally should be the light shot noise.
To show that this is the case we measure the MZI noise as a function of
photons in the probe arm of the MZI.23 Two pulse-trains separated by
≈ 100 ms each with 20 probe pulses and a repetition rate of 20 µs (see
fig. 6.9) is sent and we measure the MZI output. Repeating this exper-
iment several times allows us to find the light noise in the following
way; Each pulse is integrated to yield a single value (fig. 6.7) which is
converted into a phase using the fringe calibration measurement. The
light noise is then found as the variance over the many realizations.

To vary the photon number we either combine probe pulses within
a single pulse train or between different pulse trains (fig. 6.7). First,

23 The data is actually extracted from the reference measurement in the experiment re-
garding the creation and characterization of the SSS, see chap. 7.

81



experimental techniques

0 0.2 0.4 0.6 0.8 1

×108

0

0.2

0.4

0.6

0.8

1
×108

Photon number: Nph

Li
gh

t
no

is
e:

va
r (

φ
)
·N

2 ph
(r

ad
2 )

Shot noise (theory)
Inside train
Between trains

Figure 6.10.: Light noise as a function of probe photon number. Blue
points show pulses combined within a train and red
points shows pulses combined between subsequent trains.
The full line shows the expected theory prediction, in
good agreement with the data from within a single train
(blue).

looking at the case where we combine pulses within a train we see a
clear linear scaling (blue points fig. 6.10) meaning that the noise within
a train is uncorrelated. Furthermore, we see that the linear scaling fits
the expected shot noise scaling (dashed black fig. 6.10) from which we
conclude that the empty MZI is shot noise limited. Turning to the case
where we combine pulses between subsequent segments, we observe
a quadratic component, a signature of correlated noise. Their are two
reason for this. First, we consider higher probe photon numbers.24

Second, looking on a longer time scale we are more sensitive to other
noise effects, such as acoustic noise.

6.4 acquisition and control

Any experiment should be reproducible and easy to operate. To achieve
at least the first the whole setup is computer controlled. The con-

24 We can combine 20 pulses compared to the 10 pulses if we stay within one pulse train.
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trol and acquisition system consists of two computers, Hedorah25 and
Gamera and a digital oscilloscope, already discussed. Hedorah is
running the two main programs Carlos MOT controller (CAMOT) and
DIO64 pulsing unit (DIO):

CAMOT: Controls three synchronized National Instruments (NI) cards
with analog outputs and a timing resolution of ≈ 1 ms. The ana-
log outputs set magnetic fields, power and frequency of the MOT

lasers. Due to an update to Windows 7 and incompatibility with
old drivers this program was completely rewritten since [Wind-
passinger 2008; Oblak 2010].

DIO: Controls a DIO64 card from Viewpoint systems, with 64 digi-
tal outputs and a timing resolution down to 50 ns. The digital
outputs are connected to the probe AOMs, oscilloscope and every-
thing else requiring precise timing. Before each run the timing
sequence is uploaded to the buffer of the DIO64. The buffer is
played when an external trigger from CAMOT is reviced.

In support of the two main programs, a long list of auxiliary programs
are run from Gamera:

PLL: Sets the frequency of the two probe lasers, via the beat-note lock.

Power balancer: Controls and feeds back to the two motorized wave-
plates, allowing to balance the probe powers (see sec. 6.3.4).

AD9910DDS: Controls the AD9910DDS chip, which is the central part
of the home-built microwave source [Oblak 2010, sec. 10.2]. Not
only does it allow to set the frequency, amplitude, and phase of
the microwave pulses, it can play a programmed pulse sequences
for use in for example Ramsey and echo experiments.

Filter cavity: This program controls the filter cavities and the SPCM,
used for the creation of the collective-single-excitation state (see
chap. 8). The cavities are locked doing the MOT loading by a
digital dither lock (see [Christensen 2012, sec. 9.3] and sec. 8.1.2).

Scope program: Used to control and acquire data from the Agilent
Infiniium 54832D digital oscilloscope. It also sets the lock point
of the MZI such that both in the presence and absence of atoms,

25 The computer formerly known as Godzilla.
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the individual probes are balanced. Furthermore, the program
also performs an initial analysis of the data, mainly used for de-
bugging purposes.

With the control and acquisition system spread over several computers
it is clear that synchronization is required. The program controlling
all of this is the scope program. Before it allows a new experimental
sequence (MOT loading) to start, it queries all other programs to make
sure they are ready. If all programs are “good to go” a new run is
started. The full outline of connections and dependencies is shown in
fig. B.2.

6.5 summary

In this chapter we have described the main experimental techniques
and their implementation. Starting from a description of the atom trap-
ping and optical pumping we turned to the main topic of the chapter
— the dual-color probing method. Special attention was given to how
the dual-color measurement with appropriate alignment of the MZI al-
low for the suppression of acoustic noise, and we showed a reduction
of a few tens of dB. Furthermore, we found that quantum fluctuations
could be distinguished from their classical counterpart by their scaling
with either the atom or photon number. To make the experiment as ro-
bust as possible to external fluctuations, the path-length difference and
the probe powers are actively stabilized. Having described the opera-
tion of the setup we then showed that the MZI resolves the shot noise
of light. This sets the noise floor for the atomic state measurements
discussed in the next chapters.
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7
S P I N S Q U E E Z I N G

In this chapter we present results showing the creation and characteri-
zation of a spin-squeezed state (SSS) and its nonclassical properties. To
put the work into context we note that the setup was capable of produc-
ing a SSS before I joined the group in 2010, see [Appel, Windpassinger,
et al. 2009; Louchet-Chauvet et al. 2010; Windpassinger 2008; Oblak
2010]. My contribution to the presented results has mainly been op-
erating and optimizing the apparatus and the data analysis. Most no-
tably is the observation of squeezing without correcting for the mean
drifts of the experiment.1 The analysis showing nonclassical features
of the created state was done in collaboration with Prof. W. Vogel and
Dr. T. Kiesel.

The chapter is structured as follows. We start by describing the ex-
perimental procedure, highlighting the key points, drawing especially
on the insights of sec. 6.3.3. We then consider the main calibration
experiment. By measuring the reduction of Ramsey fringe contrast
due to a probe pulse, we infer the probe induced decoherence. Af-
ter this the main experiment is discussed. Results showing a spectro-
scopically relevant squeezing of −1.7 dB of the single point variance
is presented. Finally the nonclassical properties of the created state is
verified, through atomic quadrature quasi-probability (AQQP) distribu-
tions. The chapter is based on [Kiesel et al. 2012; Christensen 2012].

7.1 experimental procedure

Before embarking on a long experimental run, we want to make sure
that everything works as expected. We therefore follow this “check
list”:

Visibility: The visibility of the MZI is optimized to be T 2 ≥ 0.95, a
high visibility is crucial as it directly relates to the SNR of the
phase detection (eq. (2.39)).

1 This corresponds to the single- and two-point pulses, which we discuss in a bit.
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Figure 7.1.: The setup used to generate and characterize the SSS. Both
probes arrive at the MZI through the same single mode
fiber. The probes are focused down and overlapped with
the atomic ensemble trapped in the FORT. It is then re-
collimated and overlapped with the LO and a balanced ho-
modyne detection of the interference fringe is made.

Fringe calibration: To establish a conversion between the fringe am-
plitude and the power reference measurement, we perform a
“fringe calibration”. By scanning the piezo, we measure the fringe
amplitude on the QND detector for a given signal on the reference
detector (fig. 7.1) [Oblak 2010, sec. 8.6]. Besides calibration this
also shows how well the two probes are out of phase, as required
for the rejection of acoustic noise (sec. 6.3.3).

FORT loading: Using a single-color probe we measure the phase shift
from atoms trapped in the FORT. This allows us to optimize the
parameters (laser power, detuning, and spatial overlap) of the
MOT loading and subsequent transfer to the FORT.

State preparation: The pumping sequence (sec. 6.2) is fine tuned
(duration and detuning of pumping and blow away pulses). The
goal is to transfer as many atoms as possible into the |↓〉 state
while atoms in all other states are removed from the trap.

Power balancing: We balance the output of the homodyne detection
for both probes individually. This allows us to suppress intensity
noise of the lasers (sec. 6.3.3).
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Lock MZI: The path-length difference of the interferometer is locked.
An appropriate offset is chosen such that, in the absence of atoms,
the individual probes do not experience a phase shift. This cor-
responds to being at a zero-crossing of the corresponding fringe.

π/2 duration: We optimize the duration of the π/2 pulse by compar-
ing the population difference for this and a 3π/2 pulse [Chris-
tensen 2012, sec. 7.2]. Typical durations are on the order of 5 µs,
corresponding to a Rabi frequency of ΩR ≈ 2π × 50 kHz.

Microwave frequency: Using Ramsey spectroscopy (sec. 4.3) we op-
timize the microwave frequency to match that of the |↓〉 ↔ |↑〉
transition.

Ac Stark shift: The detuning of the probes are optimized such that
the differential ac Stark shift of the clock levels are minimized
— again using a Ramsey spectroscopy. This means that the light-
atom coupling strength is similar for the two probes. The optimal
probe detunings found for the data presented in this chapter are
∆32 = −96 MHz and ∆45 = −91 MHz.

Reoptimize: As the parameters optimized above are not independent
we redo the last four steps in an iterative fashion.

With the above checklist we are now ready to consider the decoherence
and squeezing experiments in more detail.

7.2 decoherence

To completely characterize the created SSS it is crucial to know the de-
structiveness introduced by the dual-color probe pulse (sec. 3.4). To
be more specific, given an ensemble of Ñat coherent atoms subject to a
probe pulse how many atoms will remain coherent after the interac-
tion? This loss of coherence is due to scattering events2 and described
by

Nat = Ñate−ηNph , (7.1)

which corresponds to the loss of Ramsey fringe contrast. Here η is
the decoherence parameter, which is the number of scattering events

2 Both Raman and Rayleigh scattering events.

87



spin squeezing

Time
M

O
T

D
ip

ol
e

tr
an

sf
er

Pr
ep

ar
e

|0
〉 A

Nat

R
ep

um
p

R
em

ov
e

at
om

s
C

al
ib

ra
ti

on

×4 ∆N

π
/

2,
ϑ

π
/

2,
0

Figure 7.2.: To measure the probe induced decoherence a Ramsey ex-
periment is performed. Starting with the ensemble in the
state |0〉A, we use a π/2 pulse followed by an optional probe
pulse and a second π/2 pulse with a phase ϑ. Finally, we
measure the population difference ∆N and perform cali-
bration measurements.

per probe photon. To measure the decoherence we use the Ramsey
like sequence shown in fig. 7.2. All atoms are pumped to the |↓〉 state
and a π/2 pulse rotates them into the equatorial plane such that the
Bloch vector is pointing along the x-axis. The ensemble is in the CSS

|θ = π/2, φ = 0〉A. An optional dual-color probe pulse is sent, followed
by a π/2 pulse with a phase ϑ ∈ [0 : 2π] and the population difference
∆N is measured. This is followed by a repumping pulse transfering
all atoms to F = 4 and a measurement of the total atom number Nat is
made. This is repeated four times before the atoms are removed from
the trap and calibration measurements are performed. The normalized
Ramsey fringe is given by ∆N/Nat and is shown in fig. 7.3. Knowing
the number of photons in the probe pulse Nph = 5.25× 106, from
the power reference detector and the fringe reduction we find η =

1× 10−8. Furthermore, as there is no phase shift between the probe on
and probe off (fig. 7.3) the differential ac Stark shift cancellation works.

As an experimental detail this also allows us to measure the number
of atoms lost between the measurement of ∆N and Nat. In the case
where the phase of the second microwave pulse is ϑ = 0, the mea-
surement of ∆N and Nat should be identical3 in the absence of atom
loss. As this is not the case, we find this difference and use it to relate
the measured Nat to the actual atom number at the time the measure-

3 Up to the small error of atoms in different mF states coupling different to the π polar-
ized probe.
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Figure 7.3.: Ramsey fringe contract with and without the probe pulse,
error bars are the size of the points. We observe a decrease
in contrast of 5.2 %, corresponding to a decoherence param-
eter of η = 1.0× 10−8.

ment of ∆N is made. The importance of this is clear, when considering
Wineland’s squeezing criteria (sec. 3.4) where the measured atomic
noise should be related to the noise of a CSS with a corresponding
number of coherent atoms.

7.3 squeezing

Knowing how a dual-color probe pulse affects the ensemble, we pro-
ceed with the main experiment. The experimental sequence is shown
in fig. 7.4. Starting with all atoms in |↓〉, a π/2 pulse prepares the
ensemble in the CSS |θ = π/2, φ = 0〉A, corresponding to the pseudo-
spin vector pointing along the x-axis. A sequence of 20 dual-color
π-polarized probe pulses with a duration of 10 µs each containing
Nph = 5.1× 106, and a repetition rate of 20 µs is sent. Afterwards a
repumping beam transfers the atoms to the F = 4 hyperfine manifold
and a second sequence of probe pulses measures the atom number Nat.
To avoid saturation of the detector the photons per pulse is decreased
for the atom number measurement.4 To vary the number of atoms,

4 All atoms are in the |↑〉 and we therefore expect the light to experience a large phase
shift, meaning a large fringe amplitude, thus a high voltage that will saturate our
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Figure 7.4.: Experimental sequence and Bloch spheres at correspond-
ing points. The sequence is as follows; Starting with
all atoms in |↓〉, i.e., the ensemble is in the CSS |0〉A a
π/2 pulse rotates the Bloch vector into the equatorial plane.
We then use a train of 20 dual-color probe pulses to mea-
sure ∆N. The atoms are then re-pumped to the F = 4 man-
ifold and we measure the total number of atoms Nat, this
is repeated four times. We then use on-resonant light to
remove all atoms and perform calibration measurements.

each FORT loading is reused four times. The atoms are then removed
using light resonant with the F = 4→ F′ = 5 transition and calibration
measurements of the empty MZI are made.5

To acquire enough files for the analysis, the experiment is kept run-
ning for as long as possible, in this case four days. With this we acquire
Nsam = 44 988 files each with four measurements of ∆N for varying
Nat. For each realization, i = 1, 2, . . . , Nsam we get a series of segments
containing {t, VQND, Vref}i, which should be analyzed. The main steps
of this is outlined below, and a detailed description is given in [Oblak
2010, sec. 12.2]:

detector. In practice this is done by changing the amplitude of the radio frequency (RF)
signal sent to the probe AOM.

5 These include MZI baseline, probe powers, and we also re-balance the used probe
powers for the next experimental run.
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Integration: The raw scope traces are integrated to yield a single
point per pulse (sec. 6.3.1).

Two-point pulses: To compensate for long term drifts of mean val-
ues,6 pulses from different MOT cycles are subtracted giving us
what we term “two-point pulses”. This allows to cancel drifts on
a time scale between different realizations (≈ 5 s). Note that this
is done for calibration purpose only. For the final data, showing
reduced noise and nonclassical features, the single point pulses
are used.

Baseline: We subtract the signal measured in the absence of atoms,
i.e., the baseline of the MZI. This again corrects for drifts of the
MZI, now on a time scale within a realization, which is ≈ 100 ms.

Filtering: Using independently measured quantities, probe powers, lock-
ing signals etc. we discard data showing a “non-normal” behav-
ior and are left with 33 741 files. Files are rejected if they deviate
by more than five standard deviations from their local mean. We
dump about 25 % of the data, a large amount but the experiment
is at times (to allow the experimentalist to sleep) running unsu-
pervised, i.e., if a laser falls out of lock we will acquire bad files
until the problem is fixed in the morning.7

Meta pulses: The 20 probe pulses are combined into two meta pulses
— two successive QND measurements of the optical phase shift.
We use 8 pulses for the first measurement φ1 and 10 pulses for
the second measurement φ2. The conversion from photocurrent
to phase, is done by the fringe calibration measurement. We will
refer to the corresponding phase shifts from the two-point pulses
as

ϕ
(i)
j =

1√
2

(
φ
(i)
j − φ

(i+1)
j

)
, (7.2)

where i denotes the sample number and j = 1 or 2.

We are thus left with a data set {φat, φ1, φ2}i. The first question one
might ask is how φat can be converted into an actual atom number.

6 Atom number loading, MZI offsets, power drifts etc.
7 This could be fixed by introducing digital locks, but with an already complicated and

hard to use control system this was not investigated.
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Since all atoms are in the same hyperfine level we can directly use
the relation between the phase shift and the population difference
(eq. (4.15a)). With this we present a simple model in agreement with
the data, allowing us to show that the apparatus resolves the atomic
projection noise and that we have created a SSS.

7.3.1 Projection noise

The measured optical phase shift can be split into three different com-
ponents originating from light, atoms and other sources. Following
[Louchet-Chauvet et al. 2010] we take the coupling between light and
atoms to be identical8 for atoms in |↑〉 and |↓〉 and write the optical
phase shift as

φ =

√
1
2
+

1
2β2

δNph

Nph
+K∆N + δKNat. (7.3)

Here Nph is the dual-color photon number (both colors) in the probe
arm and δNph,tot the corresponding shot noise contribution, β =

√
10

is the power ratio between the two arms9 of the MZI, K is the cou-
pling constant (see app. C.1) and δK denotes its fluctuations due to
balancing errors etc. (table 6.1). As we are interested in the atomic pro-
jection noise, we consider the fluctuations of φ. We note that for the
CSS |θ = π/2, φ = 0〉A we have 〈∆N〉 = 0 and var (∆N) = Nat (sec. 3.3)
allowing us to write

var (φ) =
(

1
2
+

1
2β2

)
1

Nph︸ ︷︷ ︸
light

+K2Nat︸ ︷︷ ︸
atom

+ var (δK) N2
at︸ ︷︷ ︸

technical

. (7.4)

As in sec. 6.3.3 we see that the shot noise of light is independent of
the atom number, the atomic projection noise depends linearly on the
number of atoms and the technical (classical) noise scales quadraticly
with the number of atoms. In this way we can distinguish different
contributions from each other.

8 Due to the fact that we can tune each probe independently this is an excellent approx-
imation.

9 Corresponding to an angle of rotation of the pseudo-spin vector of 0.2π (eq. (2.29)).
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Figure 7.5.: Variance of the optical phase shift, as a function of atom
number, Nat. The predominant linear scaling of var (ϕ2) is
a clear sign that we resolve the atomic projection noise of
the CSS. We see that var (φC) has a reduced noise compared
to a corresponding CSS, dashed black line. We have thus
created and characterized a SSS with a noise reduction of
ξWineland = −1.7 dB. Note that the (statistical) error bars
are comparable to the size of the data points.

In fig. 7.5 we plot var (ϕ2) as a function of Nat (blue points), and
make a parabolic fit to the data.10 We observe a predominantly lin-
ear scaling (full black line), a clear signature of projection noise lim-
ited sensitivity (eq. (7.4)). As the projection noise is on the order of
1/
√

Nat ∼ mrad for Nat ∼ 1× 105, this is not a trivial task. It means
that nothing in the experiment, lasers, magnetic fields etc. gives rise
to fluctuations of the atomic phase11 larger than this on the timescale
of a experimental run ≈ 5 s. The above analysis to estimate the pro-
jection noise level is done using the two-points pulses, where drifts

10 To fit the data we actually do a combined fit to the variances of the first and second
pulse as well as their covariance as a function of Nat, see [Oblak 2010, eqs. 12.8]. For
the data presented in fig. 7.5 it might seem that a linear fit could do as good, but in the
case of more technical noise it is clear that the date follows a quadratic dependence
(see fig. 8.8).

11 Angle φ of the Bloch vector in the equatorial plane.
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of mean values are suppressed. Had the analysis been made on the
single-point pulses, we would have seen a quadratic scaling due to the
classical noise introduced by the experimental drifts over the run time
of 4 days.

Before we consider the SSS, a small digression regarding the atom
number is in order. From eq. (4.15a) we know that the measured phase
shift is φ = K∆N. In the experimental sequence we measure the phase
shift from the CSS |θ = π/2, φ = 0〉A denoted by ϕ2 and with all atoms
in F = 4, denoted by φat. From this we can determine the proportion-
ality constant K as follows

d
dφat

var (ϕ2) = K
d

dNat
var (∆N) (7.5a)

= K. (7.5b)

We can therefore find K and thus the atom number, from the slope of
the projection noise scaling. This method is used to give the x-axis on
fig. 7.5.

7.3.2 Noise reduction

Being able to observe the projection noise of a CSS we now turn the
attention to the creation of a SSS. Following the procedure outlined in
sec. 5.1 we consider two subsequent measurements each with a vari-
ance

var (φ1) =

(
1
2
+

1
2β2

)
1

Nph,1
+K2Nat, (7.6a)

var (φ2) =

(
1
2
+

1
2β2

)
1

Nph,2
+K2Nat. (7.6b)

Here we have assumed that the classical noise is negligible12 in agree-
ment with the data (fig. 7.5). The main thing to note is that the atomic
contribution to the two measurements are equal due to the QND na-
ture of the measurement — it is exactly this which gives rise to the
noise reduction. The number of photons used for the first “squeezing”
measurement is Nph,1 = 4.10× 107 and the second characterization
measurement contains Nph,2 = 5.12× 107.

12 It could be included and would give a term scaling with N2
at. As this term is uncorre-

lated it should cancel out in the variance of the combined measurement.
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To use the first measurement to predict the outcome of the second
measurement we consider

φC ≡ φ2 − ζφ1, (7.7a)

where

ζ ≡ cov (φ1, φ2)

var (φ1)
(7.7b)

=
κ2

1 + κ2 (7.7c)

is the optimal amount of information to use in the absence of any tech-
nical noise13 and κ2 = Nph,1K2Nat. Note that the measurements used
above are the single-point pulses, i.e., where we have not subtracted
data from subsequent MOT cycles. Calculating the variance of the com-
bined measurement we find

var (φC) =
β2 + 1

2β2
1

Nph,2
+

1
1 + κ2K

2Nat. (7.8)

As expected this has a reduced noise in comparison to the individual
measurements. With the initial state being a CSS, which is a mini-
mum uncertainty state, the model predicts a SSS — in agreement with
sec. 5.1. Considering var (φC) as a function of Nat, (fig. 7.5 red points)
we observe a reduced variance in comparison to var (ϕ2). To correct
the projection noise level for the probe induced decoherence we use
the decoherence measurement. Together with eq. (7.1) this gives the
dashed line in fig. 7.5. The amount of squeezing can now be quantified
using the criterion of Wineland and we find

ξWineland = −1.7 dB. (7.9)

This noise reduction is far from the record values reported in [Bohnet
et al. 2014; Lücke et al. 2014]. Here a squeezing of ≈ −10 dB for ensem-
bles of comparable size is shown. The main reason that we compare so
poorly is that the presented data have been optimized for the detection
of nonclassical features, the topic of the following section.14

13 It is clear that there must be a trade-off between the information gained and the probe
induced decoherence. This is directly related to the correlation coefficient between the
two measurements.

14 The change comes from using the single or two-point pulses — using the latter the
squeezing becomes on the order of −3.5 dB comparable to the previous results ob-
tained in our group [Appel, Windpassinger, et al. 2009].
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With the above analysis being rather complicated, it is worth doing
a few consistency checks outlined in app. C.1.1. From the waist of the
probe beams, probe detunings and the maximum detected phase shift
we can compute the expected maximum atom number to be 215× 103.
This is in good agreement with fig. 7.5, where the atom number is
deduced from the projection noise scaling. Furthermore, one can esti-
mate the expected coherence left after the first measurement to be 77 %.
This is comparable with the measured value of exp

(
−ηNph,1

)
= 66 %

— especially considering that we have not taken into account the pho-
ton losses through the glass cell or the spatial profile of the atoms. With
this agreement we concluded that we have created and characterized a
SSS. As the created state is squeezed even by the most stringent require-
ment by Wineland et al. [1994] it can directly improve15 the sensitivity
of a phase estimate, as done in [Louchet-Chauvet et al. 2010].

7.4 nonclassicality

With the atomic ensemble in an entangled state we consider how as-
sociated nonclassical features may be infered. It should be noted that
there are several ways of defining a nonclassical state. We will use the
definition and methods introduced in [Vogel 2000]. The idea behind
this criterion is to compare the created state to the most classical states
— the CSSs.

We expand the density operator describing a spin state in the basis
of the CSSs [Kiesel et al. 2012, eq. (5)]

ρ̂ =
2J + 1

4π

∫ π

0
sin(θ)

∫ 2π

0
P(θ, φ) |θ, φ〉A〈θ, φ|dφ dθ. (7.10)

Here J is the magnitude of the pseudo-spin vector. This expansion
is equivalent to the case of photonic systems and we identify P(θ, φ),
as the atomic equivalent to the Glauber-Sudarshan P-function W(s =

1; XL, PL) (sec. 2.2.1).16 The term nonclassical is used if the expansion
coefficients P(θ, φ) can not be interpreted as a classical well-behaved
probability distribution17 [Titulaer et al. 1965; Mandel 1986]. For a

15 In practice we also need the extra steps (microwave pulses) for a Ramsey sequence to
not add noise to the state.

16 Recalling that both the coherent states of light and atoms (in the Holstein-Primakoff
approximation) are harmonic oscillator states, this connection is not surprising.

17 That P(θ, φ) must be ill-behaved for certain state can be understood in the following
way. Since the CSS are the most classical states, the fact that any quantum state can be
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nonclassical state, P(θ, φ) therefore either takes on negative values or
is more singular than the delta-function [Mandel et al. 1995, sec. 11.8].
A test for nonclassicality therefore seems straight forward — using
quantum-state tomography [Leonhardt 1997, chap. 5; Lvovsky et al.
2009], we reconstruct the P-function from our data. However, as noted
in sec. 2.2.1 due to the highly singular nature of the P-function this is
a practically impossible task. Instead we use the methods of atomic
quadrature quasi-probability (AQQP) distributions [Kiesel et al. 2012].

The idea is to recast the nonclassicality criterion in terms of charac-
teristic functions of P(θ, φ), and then use appropriate filter functions
to search for nonclassical effects. The reasoning behind this procedure
is that the characteristic functions can be estimated directly from the
measurements of the atomic quadratures,

〈
P̂A
〉

∝
〈

Ĵz
〉

∝ ∆N which is
exactly what we measure [Vogel 2000].

The characteristic function of P(θ, φ) is given by the Fourier trans-
form (eq. (2.21)) and is

Φ(ξ) ≡
〈

exp
(

ξ â†
A − ξ∗ âA

)〉
e|ξ|

2/2. (7.11)

To search for nonclassical effects, this is multiplied by a suitable filter
function parameterized by a width w

ΦΩ(ξ) ≡ Ωw(ξ)Φ(ξ). (7.12)

This allows us to introduce the nonclassicality quasi-probability as

PΩ(Jx, Jz) ≡
1

π2

∫
C

ei(Jzξr−Jyξi)ΦΩ(ξ)d2ξ. (7.13)

Here Jy and Jz are the expectation values of the respective operators,
and we have rewritten ξ ≡ ξr + iξi. The AQQP distribution is the
marginal of PΩ along an angle θ

pΩ(Jθ) ≡
1

2π

∫ ∞

−∞
dλ Φ(λeiθ)Ωw(λ) eiλJθ . (7.14)

Here Ĵθ is the generalized quadrature operator (see eq. (2.10)). For this
to be useful the filter function Ωw(ξ) should give a regular pΩ(Jθ) for
all states and it should not introduce any negativities in pΩ(Jθ). If this

expanded into this basis seems misleading. The crux is that the nonclassical features
of a state ρ̂ is “hidden” in the P-function. A beautiful and insightful description (as
with everything else in the book) is given in [Leonhardt 1997].
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is fulfilled the criterion has been recast into finding negativities of the
AQQP instead of the P-function [Vogel 2000]. The last thing is to relate
the AQQP distribution to the actual measurements.

The AQQP can be directly estimated from a data set, { J̃}i as the em-
pirical mean [Kiesel et al. 2011]

pΩ(z) =
1

Nsam

Nsam

∑
i=1

fΩ( J̃i; Jz, w). (7.15)

Here fΩ is a “pattern function” given by

fΩ( J̃; Jθ , w) =
1

2π

∫ ∞

−∞
ek2/2eik( J̃−Jθ)Ωw(k)dk. (7.16)

The task is now clear — given the ith measurement {φC, Nat}i we con-
vert it into an atomic quadrature sample as

J̄i =
φ

(i)
C√

h(ηN(i)
at )

, (7.17)

where h(Nat) is the fitted function corrected for the decoherence (see
the dashed black line in fig. 7.5). From this we can estimate the cor-
responding pattern function (eq. (7.15)), for a suitable filter function
Ωw.

The main problem with this conversion is that the optical phase shift
contains light, technical and atomic noise where we are only interested
in the last. As the added shot noise and technical noise are indepen-
dent and Gaussian, this corresponds to a decrease in the quantum
efficiency, εnoise of our detection18 [Appel et al. 2007]

εnoise =
h(Nat)− h(0)

h(Nat)
. (7.18)

This is the ratio of atomic noise to other noise. In the following we
only consider experiments where εnoise ≥ 77 %, leaving us with Nsam =

4841 for the following analysis.19 As the filter function we use a one-
dimensional auto-correlation filter20

Ωw(k) =
1
N
∫

f (k′) f (k′ + k/w)dk (7.19a)

18 We neglect the small amount of classical noise, scaling quadraticly with Nat (see
fig. 7.5).

19 The selection of data is not done directly on the noise but on the atom number.
20 Other filters might be more suitable for other types of states, we have analyzed the

data using a triangular filter instead, and nonclassical effects are still uncovered.
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Figure 7.6.: Estimated AQQP (see eq. (7.15)), for a filter width of w = 1.3,
note that the error is on the order of the linewidth. The
AQQP for φ takes on negative values, a clear signature of
nonclassical features. The shift of the mean from zero, is
most likely due to a too short microwave π/2 time.

where

f (k) = e−k4
(7.19b)

and

N =
∫

f (k)2dk (7.19c)

is a normalization factor. We can now estimate the AQQP for a given
filter width w, and an example is shown in fig. 7.6. We clearly observe
that the AQQP takes statistical significant negative values — the created
state is nonclassical.

Furthermore, we calculate the significance of the nonclassicality given
by the negativity in units of standard deviation of the estimator

Σ(w) = min
(

pΩ(z)
std (pΩ(z))

)
(7.20)

as a function of the filter width w (see fig. 7.7). We see that the signifi-
cance increases as the width goes to zero and observe a significance of
up to 23 standard deviations. The method of infering nonclassicality
through the AQQP distributions where developed by Prof. W. Vogel
and Dr. T. Kiesel.
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Figure 7.7.: Nonclassical features
are observed with a sig-
nifiance of 23 standard
deviations.

As it was hinted earlier there
are several different definitions
of nonclassical states. Most no-
tably a more stringent require-
ment was put forth in [Kot et al.
2012]. In comparison to the cri-
terion used here no explicit as-
sumption of quantum mechanics
is made. In the end the criterion
by Kot et al. [2012] boils down
to the following — if the Wigner
function of the state takes nega-

tive values then the state is nonclassical.

7.5 summary

Starting by describing the measurement procedure and the central cal-
ibration measurement of the probe induced decoherence we turned
our attention to the main experiment and presented three key results.
First, we showed that the experimental apparatus resolves the atomic
projection noise. Second, we created and characterized a SSS using
atomic homodyne detection. The state had a spectroscopically rele-
vant squeezing of −1.7 dB (in the single point measurements). From
this we concluded that the atoms are in a many-body entangled state.
Third, using the nonclassicality criterion of Vogel [2000], it was shown
that the created state had nonclassical features with a statistical signif-
icance of up to 23 standard deviations.
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8
C O L L E C T I V E - S I N G L E E X C I TAT I O N

With the successful creation and characterization of a SSS and its non-
classical properties we now turn our attention to the next state of inter-
est — the collective-single-excitation state.1 Compared to other imple-
mentations of this state [Kuzmich et al. 2003; MacRae et al. 2012; Bim-
bard et al. 2014] where the characterization is done by mapping the
atomic excitation back into a photonic mode, we take a different ap-
proach. With a strong confidence in the atomic tomography methods
used for the SSS we characterize the created state in a similar fashion.

The chapter is structured as follows. First we recap the general ex-
perimental ideas, based on the detection of a heralding photon (sec. 5.2).
We then consider the extra experimental “add-ons” required for this ex-
periment and show that we still resolve the atomic projection noise. We
then compare the measurement statistics for the case where a herald-
ing click was observed or not. A statistically significant difference
between the two cases is observed. This is followed by a model in ex-
cellent agreement with the observations. Together with an analysis of
the excitation statistics conditioned on a detected photon this shows
that we have created a (non-pure) collective-single-excitation state —
the main result of the chapter. Using the insights gained from the
model, we finish the chapter by considering several possible improve-
ments. The chapter is based on [Christensen et al. 2013; Christensen
et al. 2014].

8.1 experimental implementation

To understand the extra requirements for the creation and characteri-
zation of the state we (once again) consider the generation procedure
(sec. 5.2) outlined in fig. 8.1. In the remaning parts of this chapter we
take the ground state to be |0〉A ≡ |θ = 0, φ〉A. This is due to the fact

1 This state is also known as the first Dicke state, first excited AFS or Werner state. In
someways this is the natural extension and follows the progress that was made in
photonic systems where some of the first created nonclassical states where squeezed
states, and afterwards the attention was turned to a single photon state.
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Figure 8.1.: Starting with all atoms in the upper state (a), a single un-
known atom is flipped by the detection of a heralding anti-
Stokes photon (b). The Bloch vector is then rotated into the
equatorial plane via a π/2 pulse (c). The state is then char-
acterized using the dual-color probing method (c). The in-
set in (c) shows the expected measurement outcomes for a
CSS (orange) and the collective-single-excitation state (blue)
as derived in sec. 3.6.

that the Clebsh-Gordon coefficients are more favorable for excitations
from the |↑〉 than the |↓〉 state.2 The method used to generate and
characterize the collective-single-excitation state is as follows:

Initial state: Using the state creation method (sec. 6.2) a π pulse, and
an optical purification pulse, the ensemble is prepared in the CSS

(fig. 8.1(a))

|0〉A ≡ |θ = 0, φ〉A (8.1a)

= |↑↑ . . . ↑〉A . (8.1b)

The purification pulse is required to remove any remaning coher-
ences (from the π pulse) between the two clock states.

2 As the definition of the ground state in chap. 3 was rather arbitrary and the two states
enter symmetric we can make this change without any changes to the theoretical part.
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8.1 experimental implementation

Figure 8.2.: Experimental setup used for the creation of the collective-
single-excitation state. The dual-color probe and excitation
beams arrive at the MZI via one single mode fiber. The
main changes from the setup used to create a SSS (fig. 7.1)
is the addition of a λ/2 wave plate to set the polarization
of the probe and excitation beams at the ensemble and po-
larization and frequency filtering in the single photon path
(green).

Spin flip: Following the DLCZ protocol (sec. 5.2) a single unknown atom
is probabilistically transfered to the other spin state (fig. 8.1(b)).
If the flip was unsuccessful the ensemble remains in

|0〉A = |↑↑ . . . ↑〉A , (8.2a)

and if the flip succeeded it becomes (sec. 5.2)

|1〉A =
1√
Nat

Nat

∑
l=1
|↑↑ . . . ↑ ↓︷ ︸︸ ︷

lth atom

↑ . . . ↑↑〉A . (8.2b)

Rotation: The state is then rotated into the equatorial plane via a π/2
pulse. Leaving the ensemble in one of the states∣∣0′〉A = |←← . . .←←〉A , (8.3a)

or ∣∣1′〉A =
1√
Nat

Nat

∑
l=1
|←← . . .←→︷ ︸︸ ︷

lth atom

← . . .←←〉 , (8.3b)
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depending on the success of the spin flip or not (fig. 8.1(c)).

Detection: A measurement of the population difference ∆N (fig. 8.1(c))
is made to characterize the state, and we compare the cases with
and without an observed click.

As shown in sec. 3.6 we expect significantly different statistics of ∆N
for the states |0′〉A and |1′〉A (inset in fig. 8.1(c)). Phrased differently,
the detection of a single photon fundamentally changes the probability
distribution of the atomic ensemble. These differences are due to the
negative Wigner function and non-Gaussian marginal distribution of
|1′〉A. It can be understood as a quantum interference effect between
the atoms. Before we describe the actual experiment we consider the
required extra additions to the experiment — an excitation beam, sin-
gle photon detection, polarization and frequency filtering, and a high
magnetic bias field. The full setup is shown in fig. 8.2.

8.1.1 Excitation

The excitation laser is derived from the MOT cooler slave (fig. 6.5). To
suppress the incoherent background of the diode we use a filtering
cavity. Using a single-pass AOM setup we shift its frequency to be
resonant with the |F = 4〉 → |F′ = 4〉 transition. It is then coupled
into the same single mode fiber taking the probe beams to the MZI (see
fig. 6.5). Its frequency can be tuned by controlling the frequency of
the cooler master. With the excitation and probe lasers arriving at the
MZI via the same single mode fiber the optical excitation and probe
modes are identical. This perfect spatial overlap comes at a price, the
excitation and probe beams have similar polarizations at the atoms
(fig. 8.2). This is a problem since the optimal polarization for state
characterization is π as it allows to probe on a closed transition (see
sec. 6.3). To excite the atoms on the desired |↑〉 → |F′ = 4〉 transition
we require σ+ or σ− light.3

Due to the choice of quantization axis (again along the z-axes —
see fig. 8.2) we can not address the circular polarizations exclusively
but only a superposition of the two, i.e., x = (σ+ + σ−)/

√
2. We

make a compromise by taking the beams to be 80 % π-polarized and

3 Recall that the |↑〉 → |F′ = 4, mF′ = 0〉 transition is forbidden.
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Figure 8.3.: The measured transition frequency between |↓〉 ↔ |↑〉 as a
function of applied magnetic field, |B|. We observe a clear
quadratic dependence, in good agreement with the theoret-
ical value of 427.45 Hz G−2. Note that we have allowed for
an offset in the theoretical curve to compensate for other
shifts. Inset: The Ramsey sequence used to measure the
transition frequency.

20 % x-polarized.4 With the choice of polarization and quantization
axis we will excite to an equal superposition of the |F′ = 4, mF′ = ±1〉
states. As the Clebsh-Gordon coefficients describing the decay from
|F′ = 4, mF′ = ±1〉 to |↓〉 have opposite phase, the photons emitted
into our detection spatial mode — the forward direction — will inter-
fere destructively.

To break the symmetry we take advantage of the optical Hanle effect
(app. D.1) by applying a strong magnetic bias field |B| ≈ 20 G along
the quantization axis.5 This magnetic field is much higher than what
the compensation coils can produce. We therefore switch the MOT coils
from an anti-Helmholtz to a Helmholtz configuration and use these to

4 Instead of this one could consider a switchable polarization element. Wanting the
experiment to be on the same time scale as for the SSS this requires switching times
∼ 10 µs which could be done by a Pockels cell. Due to technical limitations, and the
fear of adding an extra potentially noisy element to the MZI this was not implemented.

5 From a different viewpoint this corresponds to shifting one of the states
|F = 4′, mF′ = ±1〉 out of resonance with the excitation beam.
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create the field. To calibrate the applied field we run a Ramsey se-
quence (inset fig. 8.3), and measure the transition frequency between
the |↑〉 ↔ |↓〉 as a function of the applied magnetic field. We observe
a clear quadratic scaling6 (fig. 8.3), in agreement with the theoretical
value of 427 Hz G−2, [Steck 2010]. Knowing how to drive the proba-
bilistic spin flip we consider how to detect the heralding anti-Stokes
photons.

8.1.2 Filtering

From the excited |F′ = 4〉 state the atoms can decay through different
channels as shown in fig. 8.4. As we are only interested in the decays
to the |↓〉 state, we need to filter out the other decay channels. Further-
more, the excitation beam (containing several thousands photons) is co-
propagating with the single photon and also needs to be rejected. The
first filtering element is a PBS (fig. 8.2) allowing us to suppress π po-
larized photons from the excitation beam and decays to |F, mF = ±1〉
states by 1 : 7000. The second filtering stage is done by two successive
Fabry-Pérot cavities. Each with a finesse of F = 300 and a linewidth of
δνc = 25 MHz. They reject the excitation beam and decays to |F = 4〉
by a factor 1 : 2.7× 108 and their design and operation is well de-
scribed in [Christensen 2012]. The decay into the |F = 3, mF = ±2〉
states can currently not be filtered out as the frequency difference to
the heralding photon, even at the high magnetic field is on the order of
the filter cavity linewidth. The cavities are locked to an auxiliary beam
with a variable frequency, via a dither lock. The center frequency of
the cavities can thus be set via the frequency of the auxiliary beam.

When tested, the filtering system initially did not perform according
to its design specifications. The reason turned out to be the sponta-
neous emission background of the MOT cooler slave (from which the
excitation beam is derived). This was solved by introducing a cleaning
cavity (fig. 6.5) into the excitation beam.
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Figure 8.4.: Possible decay channels from the excited state. Consider-
ing only mF ≥ 0 we have six possible decays. To filter
out decays to mF = 1 (blue) we use a PBS. Decays to
F = 4 (orange) are filtered out via two cavities. The de-
cay to |F = 3, mF = 2〉 (red) can not be filtered out as the
frequency difference from the desired photons (green) is
on the order of the filter cavity linewidth.

8.2 gain estimation

Before we proceed with the main experiment, we want to investigate
the Raman scattering model introduced in sec. 5.2. This is done by
considering the scaling of the number of emitted photons with the
initial CSS amplitude. In app. A.1.2 we show that the expected scaling
is

Nph =
(
1 + Nat sin2(θ)

)
sinh2 (|χ| t) (8.4a)

≈
(
1 + Nat sin2(θ)

)
|χ|2 t2, (8.4b)

where we have assumed the input state

|ψ〉 = |θ, φ〉A |0〉L (8.4c)

6 To compensate for other shifts, from the dipole trap etc. of the transition frequency
we allow for an offset in the theoretical curve.
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Figure 8.5.: The number of emitted photons as a function of the ini-
tial CSS amplitude. We observe the expected quadratic de-
pendence, in agreement with the Raman scattering model
presented in sec. 5.2.

and

χ ∝
√

NatNph,ext. (8.4d)

To test this, we perform the experiment shown in the inset of fig. 8.5.
After preparing all atoms in the |↑〉 state we use a microwave pulse
with a duration τ to perform a small rotation around the y-axis — cre-
ating the CSS, |θ, φ = 0〉A. The FORT is switched off and an excitation
beam with a total of Nph,ext = 1.4× 105, detuned by ∆ = 1.5γe ≈
8 MHz from the |↑〉 → |F′ = 4, mF = 0〉 transition and a duration of
10 µs is sent. The filter cavity lock is turned off and the SPCM is gated
at the same time and will, due to the filtering, mainly count photons
of the desired frequency. The data is shown in fig. 8.5 and we com-
pare it to the parametric gain model (eq. (8.4a)). We clearly see the
expected quadratic scaling with θ, and conclude that the model and
data are in good agreement. Fitting the data to eq. (8.4a) with χ as the
free parameter we find the probability to forward scatter a photon of
the right frequency into our detection spatial mode for the unseeded
process (θ = 0) to be

pforward = 1.4× 10−10 NatNph,ext

4∆2 . (8.5)
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Figure 8.6.: Line Shape of the heralding photons. Fitting a Lorentzian
function we find a linewidth of 1.8γe. The broadening is
ascribed to inhomogeneus shifts from the high magnetic
field. We also see an asymmetry of the line shape — for
∆44 ≥ 0 we detect more photons. We believe this is due
to a misalignment of the magnetic bias field and the polar-
ization, meaning that we have more σ+ than σ− photons
in the excitation beam. Note that the data has been shifted
such that the peak is centered at ∆44 = 0.

Given an atom number and a detuning we can estimate the number
of excitation photons required to get a certain pforward. Taking the
experimental relevant numbers of pforward = 1 %, ∆ = 2γe, and Nat =

250× 103 we find Nph,ext = 126× 103.
We have also measured the line shape of the atomic transition by

simply counting the number of emitted photons as a function of the
detuning of the excitation beam. As we are driving a Raman transition,
the frequency of the emitted photon depends on the frequency of the
excitation laser. Therefore, the cavity lock position has to be changed
accordingly as the excitation detuning is scanned. Due to human error
this optimization was not done for the data presented in fig. 8.6. This
will therefore be an underestimate of the actual linewidth. We fit a
Lorentzian line shape, and deduce a width of γ = 1.8γe. The observed
broadening is due to inhomogeneities in the applied magnetic field
and the ac Stark shift introduced by the excitation beam. As we are
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working in a configuration with a high magnetic bias field, |B| ≈ 20 G,
one would expect to resolve the different excited mF states. The reason
this is not the case is ascribed to inhomogeneus magnetic fields and
the missing optimization of the filter cavity lock position. Although
we are not able to resolve the excited mF states, the symmetry has
been broken, and due to the Hanle effect (app. D.1) we get the desired
forward scattered signal photons.

8.3 single excitation

At this point we are ready to turn the attention to the main experiment.
We start by performing the same optimization procedure as for the SSS

(sec. 7.1). The only modifications is to set the number of excitation
photons as well as optimizing the filter cavity lock position. With this,
we proceed with the main experiment. Starting with all atoms in the
|↑〉 state. The FORT is switched off to avoid inhomogeneus effects and
an excitation pulse containing Nph,ext = 8.9× 105 photons7 with a du-
ration of τexc = 2.5 µs is sent. A microwave π/2 pulse rotates the state
into the equatorial plane and the FORT is switched back on. The pop-
ulation difference ∆N is measured using 18 dual-color probe pulses,
each containing Nph = 8.9× 106. The atoms are then pumped into
F = 4, and we measure the total number of atoms Nat, as for the SSS.
This is done four times before the atoms are removed and calibration
measurements of the empty MZI and filtering are performed. The filter
cavity lock is switched off doing the measurements and we rely on the
passive stability of the cavities.

Using the calibration measurements we find the probability to scat-
ter a photon of the correct frequency into our detection mode8 to be
pforward = 1.43 %. This is the ratio of experiments where a single
photon was detected9 to the total number of runs. With the experi-
ment running for almost three weeks we get Nsam = 248 326 series of
{t, VQND, Vref, Nph,det}i, each with four measurements for varying atom
numbers. Before we compare the cases of when a heralding photon
was detected and when it was not we show that even with the higher

7 This is the total photon number, i.e., in all polarizations.
8 Defined by the collecting single mode fiber.
9 This is the number of experiments where we observed a click corrected for dark counts

and leakage photons etc.

110



8.3 single excitation

Time

M
O

T

D
ip

ol
e

tr
an

sf
er

Pr
ep

ar
e

|0
〉 A

Ex
ci

ta
ti

on

π
/

2

Trap off ∆N Nat

R
ep

um
p

R
em

ov
e

at
om

s

C
al

ib
ra

ti
on

×4

click no click

Figure 8.7.: Timing sequence for the single excitation experiment. Start-
ing with all atoms in the state |↑〉 we switch off the FORT

to avoid any inhomogeneus shifts. We send the excitation
pulse followed by a π/2 pulse before the FORT is again
switched on. We then use 18 probe pulses to measure the
population difference ∆N, before the atoms are repumped
into F = 4 and the atom number Nat is measured. Finally,
the atoms are removed from the trap, and we perform cali-
bration measurements.

magnetic bias field and the excitation beam we still resolve the atomic
projection noise.

8.3.1 Projection noise

To test if we resolve the projection noise we perform an almost identical
analysis to the case of the SSS. The main difference is that to compen-
sate for long term drifts of mean values, we use n-point pulses. This is
simply the generalization of the two-point pulses. This is done for two
reasons. First if a measurement of |1′〉A is subtracted from |0′〉A, it will
result in a incorrect estimation of the atomic projection noise. Second,
using more files we hope to improve the cancellation of mean value
drifts. We proceed in the following fashion:
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Integration: The raw scope traces are integrated to yield a single
point per pulse (sec. 6.3.2).

6-point pulses: We find each file where a click was observed and
mark the surrounding 12 files as reference measurements which
we denote by ϕ. As the click probability is low these will contain
purely measurements without a click.10 This leaves many files
unused, for which the procedure is the same — we pick a file and
mark the surrounding 12 samples as reference measurements. A
crucial point is to make sure that there are no overlapping re-
gions as this would introduce artificial correlations between our
samples. From the uncorrected measurements φ̃ we then get the
decorrelated samples as

φi = φ̃i −
6

∑
j=−6
j 6=0

wj ϕ
j
i . (8.6)

The weight factors, wj are chosen such that var ({φi}) is mini-
mized (app. D.2). This leaves us with Nsam = 20 694 for the
analysis and have added an extra amount of shot and projection
noise corresponding to ∑ w2

j = 0.09 (app. D.2).

Baseline: We subtract the baseline of the MZI, i.e., the signal measured
in the absence of atoms. This corrects for any offsets of the MZI.

Filtering: Using independently measured quantities, probe powers, lock-
ing signals etc., we discard data showing a “non-normal” behav-
ior. With this we are left with Nsam = 11 589. As it was the case
for the SSS, a large amount of files have been discarded which is
due to the experiment operating unsupervised at night.

Phase shift: We combine 10 pulses and use the power reference and
fringe calibration measurement to convert into the corresponding
phase shift measurement.

We are thus left with a data set {Nat, φ, Nph,det}i and can proceed in a
similar fashion as for the SSS (sec. 7.3.1).

Without distinguishing between clicks and no-click events we con-
sider var (φ) as a function of Nat. We perform a noise scaling analysis

10 To be sure our selection algorithm makes sure this does not happen.
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Figure 8.8.: Variance of the noise corrected optical phase shift φ, as a
function of atom number Nat. A noise scaling analysis al-
lows us to distinguish between technical noise (red) which
is the shot noise (constant) and classical noise (scaling
quadraticly). The projection noise (green) scales linearly
with the atom number. We deduce the quantum efficiency
of the atomic tomography measurement as the amount of
projection noise over the total noise to be εnoise = 0.5.

and present the results in fig. 8.8. A predominately linear scaling is
observed. In comparison to the data for the SSS (fig. 7.5) extra classical
noise, scaling quadraticly with Nat is present. This is mainly due to
the operation at the higher magnetic field where the clock transition
|↓〉 → |↑〉 is magnetically sensitive (17.5 kHz G−1). From the noise scal-
ing we can also deduce the effective quantum efficiency of the atomic
state detection, εnoise. This is simply the amount of atomic projection
noise to the total noise (see eq. (7.18)). For the highest atom num-
ber, this reaches values of 50 %, and will become important when we
model the observed data. In a similar fashion to the SSS (sec. 7.3.2
and app. C.1.1) we make a consistency check of the atom number and
probe induced decoherence. We find a good agreement with the data
presented in fig. 8.8.

From the measurement of the gain in sec. 8.2, we can also calculate
the expected pforward. Inserting the number of excitation photons and
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the maximum atom number in eq. (8.5) we find pforward = 5 %. Initially
confused by the discrepancy with the measured 1.5 %, we now believe
that it is due to the multimode nature of the problem. In the seeding
experiment the initial CSS makes it more favorable to scatter into our
detection spatial mode in comparison to the single excitation experi-
ment. We note that this discrepancy does not matter for the following
analysis where we compare the cases with and without a click.

8.3.2 Variance increase

With a projection noise limited sensitivity, we should be able to distin-
guish the states |0′〉A and |1′〉A from each other. To do this we compare
the variances of φ in the cases with and without a detected click. The
analysis is as follows:

High atom number: We only consider data with Nat ≥ 2× 105. Here
both the probability to detect a heralding photon and our detec-
tion efficiency, εnoise is the highest.

Sample variance: For each measurement outcome we compute the
variance of the M = 200 surrounding experiments

Yi ≡ var ({φi−M/2, . . . , φi+M/2}) . (8.7)

Due to the low pforward these data are mainly no-click11 realiza-
tions corresponding to a measurement of |0′〉A.

Normalization: To compensate for slow drifts in the light-atom cou-
pling strength, resulting in a drifting projection noise level, (see
eq. (7.4)), each measurement is normalized as

Zi ≡
φi√
Yi

. (8.8)

This means that the no-click data (|0′〉A) should have a variance
of unity.

Variance: The parameter of interest is the variance of this rescaled
quantity

WL ≡ var ({Zi}i∈L) , (8.9)

for the cases of L = {i : click} and L = {i : no click}.
11 On average there will be 3.6 click events in the 200 files.
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Figure 8.9.: Cumulative variance depending on a click (blue) or not
(red). We see that the two cases are clearly distinguishable
and a statistically significant increase in the variance is ob-
served when a photon is detected.

The result of this analysis is presented in fig. 8.9, where we show WL

for an increasing number of samples for the click and no-click case.
Using the full data set we find

Wno click = 1.02± 0.02 (8.10a)

Wclick = 1.24± 0.08. (8.10b)

A statistical significant increase in the variance is observed if we con-
dition on a detection click. This is a clear sign that if the photon is
detected, the properties of the atomic ensemble has changed.

Due to our normalization procedure the Zi are not independent. To
minimize the effect of this we work in the range where L � M � 1
(app. D.3). The above error estimation is checked both by a bootstrap-
ping method and by sub-dividing our data set (app. D.3). The some-
what disappointing news is that the above variance increase falls short
of the expected factor of three, for the collective-single-excitation state
(sec. 3.6.3).
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8.4 variance model

To understand quantitatively the observed increase in variance and
why it does not reach its expected value — we present a model taking
into account the effect of false positive events and the finite quantum
efficiency of the tomography measurement. Both effects will result in
a reduction of the expected variance increase.

8.4.1 False positives

The first and simplest to consider is the effect of false positive events,
i.e., the detector clicked but it was not due to the heralding photon.
Such clicks could be due to dark counts, leakage photons or the un-
filtered decays to |F = 3, mF = ±1〉. If this happens, we assign the
created state to be |1′〉A but have actually created |0′〉A. Conditioned
on a click the state is therefore decribed as a statistical mixture

ρ̂ = p
∣∣1′〉A〈1′|+ (1− p)

∣∣0′〉A〈0′|. (8.11)

Here p is the classical probability that the state |1′〉A is created condi-
tioned on a click. The effect of the false positives is to decrease the
variance as

Wρ̂ = pW|1′〉A + (1− p)W|0′〉A , (8.12a)

= 2p + 1. (8.12b)

We thus expect a variance increase of 2p for the state ρ̂ as compared
to |0′〉A. From the reference measurements we find the probability for
the different click origins (table 8.1) giving

pstate = 1− pdark − pdecay − pexct, (8.13a)

= 0.38. (8.13b)

This is the purity of the state for which the expected variance increase
is 76 % still not in agreement with the observed 24 %. The second
thing to consider is the finite quantum efficiency of the atomic-state
detection.

8.4.2 Finite efficiency

As it is the case for quantum state tomography of optical states, a fi-
nite quantum efficiency effectively decreases the quantum features of
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Table 8.1.: Probability for clicks with different origins conditioned on
the observation of a click.

origin notation probability (%)

Dark count pdark 13
Bad decay pdecay 11
Excitation leakage pexct 38
Heralding photon pstate 38

interest [Leonhardt 1997, sec. 5.3.1; Lvovsky et al. 2009]. This corre-
sponds to a further reduction of pstate and therefore a decrease in the
measured variance. We consider several effects reducing the quantum
efficiency:

Noise: The analysis is made on the optical phase shifts which contain
both shot noise, atomic noise and classical noise. It is only the
variance of the atomic part, that increases with the detection of a
heralding photon. The light and classical noise therefore add an
independent and Gaussian distributed contribution to the mea-
surements. This will reduce the quantum efficiency [Appel et al.
2007] and from the noise scaling analysis, we find εnoise = 50 %
(fig. 8.8).

Mode matching: Non-perfect spatial overlap between the atomic ex-
citation mode and the probe mode reduces the efficiency. This
is in analogy to the overlap between the quantum field and LO

(visibility) in optical homodyne detection, [Leonhardt 1997, sec.
4.2.3]. In our experiment this overlap corresponds to the cou-
pling efficiency of the probe into the single mode fiber defining
the excitation mode. In the absence of atoms this is measured to
be εmm = 75 %.

Scattering: It is only coherent atoms in either |↓〉 or |↑〉 that are in-
terfered by the microwave pulse. Atoms in other Zeeman states
therefore do not contribute to the variance increase. To estimate
this effect, a separate experiment (fig. 8.10) is performed. First
we prepare all atoms in the state |↑〉, we then switch off the
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Figure 8.10.: To measure the number of atoms that scatter out of the
two level system of interest we perform a separate experi-
ment. Starting with all atoms in the upper state we switch
off the FORT and an excitation pulse is sent followed by a
microwave π-pulse. This is followed by an optional re-
pumping pulse and a measurement of N↑. From this we
find that 23 % of the atoms are scattered into other hyper-
fine levels.

FORT and the excitation pulse12 is sent followed by a π-pulse
before the FORT is switched back on. An optional repumping
pulse is sent and the number of atoms in the |↑〉 state N↑ is
measured (single-color probe). In the absence of the repumper
we measure all atoms that are initially in |F = 4, mF 6= 0〉 and
|↓〉. When the repumping pulse is sent all atoms in the trap are
measured, N↑ = Nat. Comparing the measured N↑ in the two
cases and using the Clebsch–Gordan coefficients we deduce that
1− εscatter = 23 % of the atoms undergo a scattering event.

Phase shift: Due to the initial atomic population in |↑〉, the single
photon (|F′ = 4〉 → |↓〉) and excitation beam (|↑〉 → |F′ = 4〉)
experience different refractive indices as they propagate through
the cloud. This results in a phase shift between the two, which
effectively decreases the mode-overlap. Using a one-dimensional
(1D) model, the phase shift is described by

φ(y) = y∆k, (8.14a)

∆k = kµ-wave + kexct − kphoton. (8.14b)

12 With the same number of photons as in the single excitation experiment. We use this
experiment to set Nph,ext.
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As no atoms are in the |↓〉 state, the phase mismatch only comes
from the excitation beam φexct = φ(la), where la is the length
of the atomic sample. Assuming that the atoms have a homoge-
neous distribution this decreases the mode-overlap by

εphase =

∣∣∣∣ 1
la

∫ la

0
e−iφ(y)dy

∣∣∣∣2 (8.15a)

= sinc2(φexct/2), (8.15b)

as shown in app. D.4. We are thus interested in estimating the
phase shift of the excitation beam φexct.

From Clebsh-Gordon coefficients we can relate this to the phase
shift of the QND probing φprobe in the following way. The resonant
optical depth on a cyclic, |F = 4, mF = 4〉 → |F′ = 5, mF′ = 5〉
transition is denoted by α0. As derived in sec. 4.1.1 light propa-
gating through a medium will experience a phase shift

φ(∆, α0) =
α0

4 ∑
m
℘m

∆m

∆2
m + (γe/2)2 , (8.16)

where ∆, is the detuning and ℘m is the strength of the mth transi-
tion. From the atom number measurement, where all atoms are
in F = 4, we measure an optical phase shift corresponding to an
optical depth of α0 = 31. From this, using the above equations,
we find φexct = 42◦, giving εphase = 95 %. This is a small effect in
comparison to the detection noise and mode-mismatch.

ac Stark shift: The excitation beam induces a light shift on the |↑〉
and the excited F′ = 4 states as it propagates through the atomic
cloud. This directly leads to a dephasing of the spin wave [Ham-
merer et al. 2010], reducing the expected variance increase. To
model this we consider the spatially inhomogeneous shift of the
|↑〉 state. With the atomic cloud being short compared to the
Rayleigh length of the probe beam we only consider transverse
effects. From Hammerer et al. [2010] we have

εac-Stark =

τexc∫
0

∣∣∣∫∫ $at(x, z) I(x, z)2 e−iωLS(x,z)t dxdz
∣∣∣2 dt

τexc
∣∣∫∫ $at(x, z) I(x, z)2 dxdz

∣∣2 . (8.17)
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Figure 8.11.: Histograms of the measurement outcomes for click (blue)
and no click (red) with the gray dark region as their over-
lap. The full lines are the expected probability distribu-
tions derived in sec. 3.6.1, taking into account that the
single excitation state is non-pure according to the model
explained in the text.

Here I(x, z) is the transverse Gaussian intensity profile of the
beam and $at(x, z) is the atomic column density, and the integra-
tion over x and z is over all space. The relevant frequency shift
is ωLS(x, y) ∝ I(x, z) and τexc is the pulse duration. The fourth
power of the intensity comes from carrying a squared mode func-
tion from the classical and the quantum field [Hammerer et al.
2010]. Numerical evaluation yields εac-Stark = 97 %, again a small
contribution.

Combining all these inefficiencies we find a total detection efficiency of
ε = 27 %. This non-perfect detection corresponds to an extra vacuum
admixture [Appel et al. 2007], which effectively decreases the state
purity

pmod = pstateε (8.18a)

= 10 %. (8.18b)

The corresponding variance of 20 % (eq. (8.12)) is in good agreement
with the measured 24± 8 %.
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8.5 multiple excitations

To compare the model and the data, a histogram of the measurement
outcomes Zi for the click and no-click case is shown in fig. 8.11. In the
figure, we also plot the theoretical expected measurement outcomes.
For the no-click case this is p0(∆N) (eq. (3.40)). Whereas for the click
case this is

pρ̂(∆N) = p1(∆N)pmod + p0(∆N)(1− pmod), (8.19)

where p1(∆N) is given in eq. (3.47). From fig. 8.11 two things can be
seen. First, the measurement and theoretical predictions are in agree-
ment. Second, comparing the case of a click and no-click we see a
slight change in the distribution of measurement outcomes.

8.5 multiple excitations

The observed variance increase could be due to higher order excita-
tions or classical effects.13 To support our claim that the observed
variance increase is due to the creation of a (non-pure) collective-single-
excitation state we perform a careful analysis of the excitation statistics
conditioned on a detected click.

The quantity of interest is the probability that the nth AFS is created
conditioned on the detection of a single click. Using Bayes formula we
write this as

p(n|1click) =
p(n) p(1click|n)

p(1click)
. (8.20)

Here p(n) is the probability to scatter n photons of the correct fre-
quency into the desired detection mode. The probability to have n
photons with a frequency corresponding to a decay into |↓〉 follows a
thermal distribution (eq. (5.17b))

pS0(n) = (1− p0) pn
0 , (8.21)

here p0 is the probability to generate at least one of the desired photons,
i.e., pforward. Photons corresponding to the unfiltered decay into |F =

4, mF = ±2〉 also follows a thermal distribution

pS2(n) = (1− p2) pn
2 . (8.22)

13 It does not require a vivid imagination to come up with effects that would make a
minimum uncertainty state, more noisy.
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collective-single excitation

Here p2 is the probability to scatter at least one of these photons into
our detection spatial mode.14 In contrary false positive events from
dark counts and leakage15 are Poissionian distributed

pDE(n) =
pf

n e−pf

n!
, (8.23)

where (1− pf) is the probability to get at least one false positive from
either dark counts or leakage.

To calculate the probability to get false positive events from the
decay into |F = 4, mF = ±2〉, we introduce our detection probability
pd = 0.82× 0.56× 0.5 = 0.18. The factors are the transmission through
the two filter cavities, other optical losses in the path and the quan-
tum efficiency of the SPCM. If m photons are emitted the probability to
detect n of these is given by the Binomial distribution

pDS2(n) =
∞

∑
m=n

pS2(m)

(
m

m− n

)
p̃d

m−n pd
n, (8.24a)

=
(1− p2) (p2 pd)

n

(1− p2 p̃d)
n+1 , (8.24b)

where p̃d = 1− pd. This allows us to find the probabilities to either
have no or a single false positive event

pF(0) = pDE(0) pDS2(0), (8.25a)

pF(1) = pDE(1) pDS2(0) + pDE(0)pDS2(1). (8.25b)

The probability to detect a single click given n photons emitted into
our desired mode is then

p (1click|n) = n pd p̃n−1
d pF(0) + p̃n

d pF(1). (8.26)

The first term is the probability that exactly one of the n photons gives
a click while no false positive event happened. The second term is
the probability that none of the n emitted photons gives a click while
exactly one false positive event gives a click.

The remaning unknown in eq. (8.20) is p(1click), which can be found
via the normalization condition ∑n p(n|1click) = 1 giving

p(n|1click) =
p̃n

d pn
0(1− p̃d p0)

(
n pd

p̃d
+ pf +

pd p2
1− p̃d p2

)
pf +

pd p2
1− p̃d p2

+ pd p0
1− p̃d p0

. (8.27)

14 This can be found directly from the Clebsh-Gordon coefficients and pforward.
15 Mainly from the excitation beam.
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Figure 8.12.: Probability of having n excitations for the created state, a
coherent state and thermal state with same mean photon
number. We clearly see that the single excitation compo-
nent of the created state is not compatible with neither
the coherent nor thermal state. Note that the reason the
thermal state does not add up to 100 % is that we have
not included p(n ≥ 3|1click).

Evaluating for the first few values of n we find

p (n = 0|1click) = 0.606± 0.021, (8.28a)

p (n = 1|1click) = 0.385± 0.021, (8.28b)

p (n = 2|1click) = 0.009± 0.001. (8.28c)

This is the conditioned excitation probability for the created mixture
state ρ̂. To benchmark these numbers we compare them to the expected
distribution for a coherent and thermal state with an identical mean
excitation number of 0.39 (see fig. 8.12). We see that p(n = 1|1click)
is significantly higher, and incompatible, with both the thermal and
coherent state. The above error has been found through Gaussian error
propagation of eq. (8.27) where the largest contribution comes from the
measurement of the detection probability pd.
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Figure 8.13.: Non-Gaussianity criteria. All Gaussian states lie in the
blue region marked by G. Using eq. (8.28) we find the red
point.

8.6 nonclassicality and non-gaussianity

With the prospect of the collective-single-excitation being both non-
classical and non-Gaussian we consider if these features can be infered
from our data.

As described in sec. 2.2.1 and 7.4 a negativity of the Wigner function
is a clear sign of a nonclassical state.16 The created state is a mixture
of the collective-single-excitation and CSS (vacuum) state,

ρ̂ = p
∣∣1′〉A〈1′|+ (1− p)

∣∣0′〉A〈0′|. (8.29)

It can be shown that negative values of the Wigner function requires
p > 0.5. As we have pmod = 10 %, no negativity is expected.

The other possibility is to test for nonclassicality using the criterion
by Vogel [2000] (sec. 7.4). Lvovsky et al. [2002] showed that no matter
the amount of vacuum admixture to the single excitation state it is
still nonclassical according to this criterion. Furthermore, the article
considers the number of samples required to show this nonclassicality
for a given vacuum admixture. From [Lvovsky et al. 2002, fig. 2] we
see that for pmod = 10 % it would require ∼ 1010 samples. With only

16 This is no matter which definition of nonclassicality that is used.
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8.6 nonclassicality and non-gaussianity

495 samples it would be impossible to infer any nonclassicality of the
created state using this method. The last predicted property of the
state is the non-Gaussian distribution of the measurement outcomes
(sec. 3.6.3). We test for this in two ways:

excitation probability : In [Filip et al. 2011; Ježek et al. 2011] a
simple criterion to test non-Gaussianity based on excitation probabili-
ties was derived. For the case of p(n ≥ 2|1click) � 1 an optimization
over all Gaussian states was performed. It was found that all mixtures
of Gaussian states lie in the blue region labeled G in fig. 8.13. With the
conditioned probabilities and their corresponding errors (eq. (8.28)) we
can compare the created state (red point in fig. 8.13) to this criterion.
We see that the mean of the point lies in the non-Gaussian region, but
when the errors are taken into account the point overlaps with the
Gaussian region. We can therefore not, with statistical significance,
claim any non-Gaussian features of the created state.

cumulant : Dubost et al. [2012] described how cumulants can be
used to test for non-Gaussianity. The idea is simply to consider the
fourth cumulant

κ4 = µ4 − 3µ2
2 (8.30)

where µn denotes the nth moment. As all Gaussian distributions have
κ4 = 0, a test for non-Gaussianity can be made by estimating κ4 from
the data — if κ4,est 6= 0, the state is non-Gaussian.

We estimate the fourth cumulant and its error in three different ways.
First, we use k-statistics which are the unbiased estimators of the cu-
mulants. The relevant formulas to evaluate these and their variance
can be found in [Kenney et al. 1951]. Second, we sub-divide our data
set into five bins of equal size. We then find the fourth cumulant in
each subset, together with the mean and standard deviation. Third,
we use a bootstrapping method.

From table 8.2 we see that the three methods agree and that κ
(click)
4,est 6=

0 with about one standard deviation of significance. We do however
also see that κ

(no click)
4,est 6= 0, making it incompatible with the expected

Gaussian (eq. (3.40)). The reason for this is still not understood but
could be related to the normalization procedure, outliers in the data, or
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Table 8.2.: Estimated fourth cumulants and corresponding statistical er-
ror.

L method κ4,est

Click
k-statistics −0.4 ± 0.2
Sub-divide −0.5 ± 0.3
Bootstrapping −0.4 ± 0.2

No-click
k-statistics −0.2 ± 0.1
Sub-divide −0.2 ± 0.1
Bootstrapping −0.2 ± 0.1

simply the coincidence17 that our experiment is a 2σ event. Assuming
the latter is the case and using the fact that the cumulants are additive
we can subtract κ

(no click)
4,est from κ

(click)
4,est . Doing this the click data becomes

compatible with a Gaussian — in agreement with the other criterion.
With all of the used criteria for nonclassicality and non-Gaussianity
being unsuccessful we now consider possible improvements.

8.7 improvements

Having showed that the observed variance increase is due to the collective-
single-excitation state, the natural question to ask is which improve-
ments could lead to the detection of associated nonclassical and non-
Gaussian features.

Excitation leakage: The biggest contribution in decreasing pstate is
from leakage of the excitation beam (table 8.1). This could be ad-
dressed in two ways. Either we improve the filtering ratio of the
two cavities, i.e., narrow their linewidth or we simply decrease
the number of excitation photons used. The latter is not feasible
as it would also decrease the probability of actually generating
the heralding photon (pforward) thus increasing the experimental
run time.18 If however we could increase the collection efficiency
we would, keeping the same pforward, be able to use fewer ex-

17 Having numerically confirmed that κ4,est for normally distributed data is Gaussian
distributed, a 2σ event should happen with a 5 % chance.

18 Recall that for the presented data the experiment was kept running for three weeks.
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citation photons.19 To improve the filtering we can increase the
finesse of each of the cavities by using a new set of cavity mirrors
with a higher reflection or increasing the cavity length.20

Bad decay filtering: Another possible improvement would be the fil-
tering of the photons originating from the decay to |F = 3, mF =

±2〉. The simplest way to improve this would again be by de-
creasing the linewidth of the filter cavities by increasing their
finesse or the cavity length.

Dark count rate: To decrease the number of dark counts two things
can be done. Either we get a new SPCM with a lower dark count
rate, νdark or we reduce the gating time τexc. The current detector
has νdark ≈ 250 Hz using commercially available state of the art
SPCM21 this can be improved to νdark ≈ 25 Hz without loss in
quantum efficiency.

All of the above are “simple” technical improvements, which should
increase the state purity to be pstate ≈ 70 %, allowing for the observa-
tion of both non-Gaussianity as well as the negativity of the Wigner
function. The state purity and characterization would be comparable
to state of the art experiments where the excitation is mapped onto an
optical state and then characterized [Bimbard et al. 2014].

8.8 summary

In this chapter we have presented the second experimental result of
the thesis — the creation of a (low purity) collective-single-excitation
state in an atomic ensemble. Starting by recapping the idea behind
the state generation we discussed the extra experimental requirements
— a high magnetic bias field and frequency and polarization filtering.
After this a detailed description of how the experiment was performed
and analyzed was presented. Two main results were obtained. First, it
were shown that the experiment resolves the atomic projection noise.
Second, comparing the variance of the measurement outcomes for the
click and no click case a difference of 24 % was observed — a clear

19 This possibility is discuss in sec. 9.5.
20 For a different project in the group, we are currently developing stable filtering cavities

with a linewidth of δνC ≤ 100 kHz.
21 This could for instance be a Perkin-Elmer SPCM-AQRH-16.
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signature of the collective-single-excitation state. To quantitatively ex-
plain the variance increase a detailed model, considering false positive
events and the finite quantum efficiency of our detection was intro-
duced. The model and data were in excellent agreement. A careful
investigation of the counting statistics was made, showing that the ob-
served state is incompatible with both a coherent and thermal state.
Finally a discussion of possible improvements which would allow for
the detection of a non-Gaussian state with a negative Wigner function
was presented.
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9
N A N O F I B E R - T R A P P E D AT O M I C E N S E M B L E

In the last chapters we described experiments using an atomic ensem-
ble trapped in a FORT. In this chapter we instead consider the newest
experimental venture of our group — a nanofiber based light-atom in-
terface. We start by addressing the question of why a new setup is
required. This is followed by a short description of the used trapping
and probing methods. We then consider two experiments. First, the
atom number and the optical depth per atom is determined by mea-
suring optical pumping transients. Second, we present an experiment
showing the measurement and preparation of an ensemble with a sub-
Poissonian atom number distribution. This leads to a feasibility study
where we consider the performance of the setup for state tomography
and generation. Much of the experimental work was done by Jean-
Baptiste Béguin who was later joined by Eva Bookjans and my role
has mainly been in the initial steps,1 model development, and data
analysis. The chapter is based on [Béguin et al. 2014].

9.1 why a nanofiber?

With the quantum noise limited performance and shown state prepara-
tion capability of the MZI setup a natural question to ask is — why are
we building a new setup? To understand this we start by recapping
the main insights gained in the previous chapters:

Optical depth: The central parameter for the squeezing experiment
was the resonant optical depth α0 (see eq. (5.8)) the higher α0

the more squeezing. The optical depth is not only central for
the creation of a SSS but for a large range of applications with
light-atom interfaces [Hammerer et al. 2010]. The optical depth
can be increased by either using more atoms or increasing the
light-atom coupling strength.

1 Transfer of the fiber to the vacuum setup, building MOT coils and optics for the MOT

beams.
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Classical noise: From the noise model presented in sec. 7.3.1 it is
clear that one of the biggest enemies is the classical noise, scal-
ing quadraticly with the number of atoms. To minimize this
it is desirable to have as few atoms as possible. It is therefore
preferable to increase the optical depth through the light-atom
coupling strength.

Repetition rate: Interested in the second and higher order moments
of the measurement outcomes (sec. 8.6) we require a large amount
of samples to infer these from experiments. Therefore, to lower
the overall experimental time, a high repetition rate is desirable.

To build a light-atom interface with these properties we use a tapered
nanofiber. This is a conventional step-index optical fiber where the
diameter have been reduced to ∼ 1 µm over a few mm. As light can be
effectively coupled in and out of the tapered section [Ding et al. 2010;
Hoffman et al. 2014] and atoms can be trapped in the evanescent field,
this system addresses all of the above criteria. The light-atom coupling
is high due to the small quantization volume.2 For a few thousand
atoms we measure resonant optical depths of α0 ≈ 20 comparable to
the free space setup. With so few atoms, the classical noise is expected
to be small compared to the atomic projection noise. This should give
a high atomic tomography efficiency εnoise (eq. (7.18)). With the low
atom number we also hope to push the trap loading time into the ms
range, allowing for a similar increase of the repetition rate.

Besides the direct relation to the topics of the previous chapters this
system also opens up for several other avenues:

Scalability: Since the tapering from the conventional fiber to the
nanofiber can be made almost lossless the trapped ensemble can
be integrated as nodes in quantum networks [Kimble 2008]. A
first step towards this would be the implementation of teleporta-
tion or memory protocols between two ensembles — inspired by
the work of [Sherson et al. 2006; Jensen et al. 2010; Krauter et al.
2013].

Fiber-coupled atoms: With atoms trapped in the evanescent field of
the fiber guided light, coupling atoms to other systems should be

2 This is set by the size of the evanescent field which decays as exp(−r/λ) confining
the light to a few µm, in comparison to the ≈ 30 µm in the free space setup.
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Figure 9.1.: Experimental setup. From a ECDL two sidebands are gen-
erated via a AOM. They are overlapped using a beam
displacer and combined with the two trapping beams on
a dichroic mirror after which they are coupled into the
nanofiber. At the output the probe and traps are filtered
out by a dichroic mirror. Afterwards the probe is over-
lapped with the LO and the beat-note is detected.

straight forward. The great prospect of this comes with the fact
that systems ranging from mechanical [Aspelmeyer et al. 2013]
to solid-state [Lodahl et al. 2013] have been coupled to light. To
take the next step and couple such systems to a fiber-trapped
ensemble, would “only” require to couple light into the nanofiber.
This has given rise to the term “fiber-coupled atoms”.

9.2 experimental setup

In this section we briefly outline the methods for atom trapping and
probing. The main experimental work was done by Jean-Baptiste Béguin
and will be part of his PhD thesis [Béguin n.d.]. We therefore keep it
short and only give enough information to understand the two experi-
ments we have conducted so far.
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trapping : Several different trapping configurations have been pro-
posed [Sagué et al. 2008; Lacroûte et al. 2012]. We follow the orig-
inal idea by Le Kien et al. [2004], which led to the first nanofiber
trapped ensemble [Vetsch et al. 2010]. Using a combination of light
fields the strong van der Waal force from the fiber can be overcome
and at the same time stable trapping potentials for the atoms can be
created. We use a blue-detuned trap λblue = 780 nm with a power of
Pblue = 10 mW and a standing wave red-detuned trap λred = 1057 nm
with a total power of Pred = 2× 0.9 mW. The traps are overlapped with
the probe beam using dichroic mirrors and coupled into a nanofiber
with a diameter of 500 nm (fig. 9.1). The red and blue detuned traps
have orthogonal polarizations in the fiber and form two standing wave
potentials with local trapping minima Utrap = −0.2 mK at a distance
dtrap ≈ 200 nm above and below the fiber surface (fig. 9.2). The trap is
expected to operated in the collisional blockage regime, where there is
only a single atom per trapping site.3 Note that the trapping configu-
ration is very sensitive to the power balancing of the two traps. If it is
off by 10 % the trap is almost completely gone.

probing : To probe the atomic ensemble we measure atoms4 in F =

4 using a method closely related to the dual-color probing method
used in the MZI setup (sec. 6.3). The setup is shown in fig. 9.1. Two side-
bands detuned by ΩSB = ±2π × 62.5 MHz from the F = 4 → F′ = 5
resonance are created by an AOM. They are then overlapped using
a beam-displacer before they are coupled into the nanofiber. The
atoms imprint a phase shift of φ with opposite sign on each sideband
(chap. 4). The probes are then mixed with a common optical local oscil-
lator (LO) and the beat-note signal is detected. Mixing the signal to a
direct current (DC) with an I/Q mixer we detect both the phase shift
and the combined absorption of the two sidebands.

The phase resolution is set by the shot noise of light and is [Béguin
et al. 2014, eq. (S12)]

δφ =
1

2
√

εNph
. (9.1)

3 This has never been experimentally verified.
4 We have not (yet) introduced hyperfine pumping allowing us to distinguish different

mF states for this experiment.
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9.2 experimental setup

Figure 9.2.: Calculated trap potentials for a fiber of radius a = 250 nm
and powers and wavelengths as given in the text. (a) Poten-
tials as a function of the radial distance r, for y = x = 0. In
red the red-detuned trap, blue the blue detuned trap, and
green the combined potential taking into account the van
der Waals potential from the fiber. (b) Potentials in the yz
plane for x = 0. (c) Potentials in the xz plane for y = 0.
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Figure 9.3.: Probe transmission as a function of time, blue points are
the average over 179 experiments. The red line is the av-
erage of the individual fits to eq. (9.7) giving Nat = 1605.
The data points have been decimated for the visual presen-
tation.

Here Nph denotes the total number of photons (in both sidebands) and
ε is the effective quantum efficiency of the detection given by

ε = T 2εQE(1− τ)εelec (9.2a)

= 0.4. (9.2b)

Here εQE = 0.89 is the detector quantum efficiency, τ = 0.7 is the
losses from the fiber to the detector,5 εelec = 0.73 is the ratio of elec-
tronic noises to shot noise, and T 2 = 0.89 is the visibility. To stabilize
the path-length difference between the LO and the probes a dither lock
is implemented. The shot noise limited operation is shown by measur-
ing the Allan variance and is in agreement with the predictions from
eq. (9.1) [Béguin et al. 2014, fig. S1].

9.3 atom number

With the experimental setup limited by the shot noise of light we de-
termine the atom number by measuring optical pumping transients.

5 Mainly from an optical isolator with a transmission of ≈ 0.8 inserted to prevent reso-
nant back-scattering.
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With all atoms in F = 4 we use a single sideband resonant with the
F = 4 → F′ = 4 transition. An atom excited to F′ = 4 can decay to
both F = 4 and F = 3. The latter is far-detuned from our probe laser,
and do therefore not interact with the light. The average number of
photons it takes to pump an atom from F = 4 to F = 3 can be calcu-
lated from the branching ratios (sec. E.1). We therefore simply need to
“count” the number of photons it takes to bleach the ensemble trans-
parent from which the atom number can be determined.6 The experi-
ment is made 10 ms after a sub-Doppler cooling phase and the data are
shown in fig. 9.3. In agreement with the qualitative description above,
the probe is initially fully absorbed and for long times (when all atoms
are in F = 3) we observe a fully transparent ensemble.

To understand the experiment on a quantitative level we present a
simple model describing the optical depth as a function of time. Con-
sidering a three level system (fig. 9.4) the number of atoms in F = 4
changes according to

dNat,4

dt
=

1
q
(Φin(t)−Φout(t)) . (9.3)

Here q = 2.4 is the number of scattering events it on average takes
to pump an atom from F = 4 to F = 3 (app. E.1) and Φin (Φout) is
the input (output) photon flux. The change of photon flux follows
Lambert-Beer’s law

dΦout(t)
dt

= Φin(t) exp [−Nat,4(t)αat] , (9.4)

where αat is the optical depth per atom. Combining eqs. (9.3) and (9.4)
and taking a constant input flux we get

dα(t)
dt

= −αat

q
Φin [1− exp(−α)] , (9.5)

with α = Nat,4αat. The solution to this differential equation is

α(t) = ln
[
1 +

(
eα(t=0) − 1

)
exp (−αatΦint/q)

]
. (9.6)

From which we find the transmission using Lambert-Beer’s law

T(t) =
1

1 + [exp (αatNat,4)− 1] exp (−αatΦint/q)
. (9.7)

6 A similar method has been used to count the number of Bragg excitations in a degen-
erate quantum gas [Pino et al. 2011].
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Figure 9.4.: Three level atom with a resonant probe on the F = 4 →
F′ = 4 transition. An excited atom in the F′ = 4 state can
decay to either the F = 4 or F = 3 ground-state with the
rates p4 and p3.

The only free parameters in this expression is the optical depth per
atom, and the number of atoms.

Using the measured power P = 5.0 pW we fit eq. (9.7) to each of the
200 realizations with Nat,4 = Nat and αat as the free parameters. In
the following we only consider experiments where Nat ≥ 1000 leaving
us with 179 realizations. The average of the fitted traces are shown in
fig. 9.3 and are in good agreement with the date. Taking the mean of
the individual fit parameters we find the following estimates7

〈Nat〉est = 1605± 4(stat)± 161(sys) (9.8a)

〈αat〉est = 0.32 %. (9.8b)

Here αat is quoted for atoms isotropicly distributed (an unpolarized
ensemble) and probed on the F = 4→ F′ = 4 transition. For the atom
number, we have given both a statistical and systematic uncertainty,
which are discussed below. For the optical depth per atom the fitting
procedure plays a central role. To show this the data have been fitted in
three different ways. Either we fit the mean of the 200 traces, each trace

7 We will in the following make the explicit distinction between true values and our
estimators.
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Table 9.1.: A comparison of the three different methods used to fit the
data. For the individual and common αat fits we discard
realizations where Nat < 1000.

Method Traces Nat αat (%)

Mean traces 200 1525 0.25
Individual traces 179 1605 0.32
Common αat 177 1603 0.31

individually or make a combined fit with a common αat for all traces
and an independent atom number for each trace as the fit parameters.
The outcomes of these fitting procedures are summarized in table 9.1.
Most notably we see that fitting the mean traces gives a smaller αat then
the other methods. The reason for this is as follows; realizations with
different atom numbers (loading noise) will start to bleach (increase
in transmission, see fig. 9.5) at different times. When taking the mean
over the different realizations this will reduce the slope of the pumping
transient (see fig. 9.5), which determines αat.

9.3.1 Error estimate

To quantify how precise the atom number estimate is we need to con-
sider its associated error. This has been divided into a statistical and
systematic contribution.

statistical : To estimate the statistical uncertainty of 〈Nat〉est we
consider a single of the 179 experiments. The atom number is deter-
mined by fitting the transmission function (eq. (9.7)). This is equivalent
to finding it from the number of scattered photons

Nat =
Nph,sc

q
, (9.9)
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Figure 9.5.: Reduction of slope. The dashed orange lines show eq. (9.7)
plotted for Nat = 1200, 1400, 1800, 2000 and a fixed opti-
cal depth per atom. In red is the mean of these traces,
corresponding to an atom number of 1600. Compared to
eq. (9.7) evaluated for Nat = 1600 which is shown in blue,
we clearly see that the slope of the average trace is reduced.

where Nph,sc = Nph,in − Nph,out. Using Gaussian error propagation we
get8

var (Nat)est =
〈Nat〉2est

〈q〉2
var (q)
〈Nat〉est

+
var

(
Nph,in

)
est

〈q〉2
+

var
(

Nph,out
)

est

〈q〉2
.

(9.10)

Using coherent light states9 and assuming the laser is shot noise lim-
ited we have var

(
Nph

)
= Nph. The number of input and output pho-

tons can be rewritten in terms of the corresponding fluxes and the
measurement time, tp, giving

var (Nat)est =
〈Nat〉2est

〈q〉2
var (q)
〈Nat〉est

+
tp 〈Φin〉est

〈q〉2
+
〈T(t)〉tp

tp 〈Φin〉est

〈q〉2
.

(9.11)

8 The factor of 〈Nat〉−1
est in the first term is because we are interested in the variance of

the mean of q and we perform the “experiment” for each atom.
9 Modeling each atom as a beam-splitter, the output is also in a coherent state.
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9.4 number squeezing

Where the output flux has been written in terms of the average trans-
mission during the measurement time 〈T(t)〉tp

. Considering the spe-
cific case above and inserting the relevant numbers we get a statistical
uncertainty for a single realization. Converting this to the standard
deviation of the mean we find std (Nat)est = 4.

systematic : The systematic effects are much larger than the statis-
tical, with the main contribution from ε. We ascribe a 10 % fractional
uncertainty to ε, coming from the measurement of the probe power,
visibility and losses. This carries directly over to the atom number
(eq. (9.2)). By technical improvements10 this could be reduced to be on
the percent level. Other more physical, effects that could influence the
estimation are radiation trapping, collective-back scattering and dark-
state pumping. If significant radiation trapping is present, a single
photon could pump multiple atoms. This would lead to an underesti-
mate of the atom number. Collective back-scattering would also result
in the estimated Nat being to low. As we would not “count” all the
photons it took to bleach the ensemble. We note that both of these
effects should be minimal in our experiment due to the 1D geometry.
Special care should also be taken to make sure that no F = 4 dark-state
exists. This can be done by an appropriate magnetic field11 leading to
a mixing of mF states. Effects such as laser detuning, polarization, and
inhomogeneus broadening do not affect the measurement [Chen et al.
2001].

9.4 number squeezing

The second experiment performed show the preparation and detection
of an ensemble with a sub-Poissonian atom number distribution. The
ensemble is measured 10 ms after the sub-Doppler cooling phase12 us-
ing a dual-sideband continues probe with a power of P = 155 pW.
This is well below the expected saturation intensity and we record the
phase shift (or equivalently the atom number) for 4 ms. To track and

10 To start with, a National Institute of Standards and Technology (NIST) calibrated power
meter would help.

11 This could be external or a fictitious magnetic field due to the strong trapping beams
[Le Kien et al. 2013].

12 This is to avoid any residual atoms from the molasses passing through the probe
volume.
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update the atom number distribution at each measurement we sub-
divide samples into evenly spaced time bins of length ∆t = 5 µs, each
containing Nph = 3.3× 103. Using the method of Bayesian inference
we estimate the atom number distribution conditioned on all previous
measurement outcomes as

p(Nl |φl) = N p(φl |Nl) p(Nl |φl−1). (9.12)

Here N is a normalization factor.
We first consider p(φl |Nl) which is the most probable measurement

outcome of the phase shift given a certain atom number Nl . We split
φl into a mean and a fluctuating part and have

φl = φatNl + δφ. (9.13)

Using the dual-sideband probing method we measure the total phase
shift of the atomic ensemble which combined with an atom number
measurement gives a phase shift per atom13 of φat = 0.2 mrad/Nat.
The fluctuations δφ are due to light shot noise (eq. (9.1)) which is Gaus-
sianly distributed such that

p(φl |Nl) =
1√

2πvar (δφ)
exp

(
− (φl − φatNl)

2

2var (δφ)

)
. (9.14)

The last factor in the Bayesian update rule (eq. (9.12)) is the proba-
bility to have Nl atoms, given all previous samples p(Nl |φ1...l−1). With
the atom loss being a Markov process we can write this as

p(Nl |φ1...l−1) =
∞

∑
Nl−1=0

p(Nl |Nl−1)p(Nl−1|φ1...l−1). (9.15)

This is our “best prediction” for Nl given Nl−1 atoms in the previous
sample. To model this we consider the stochastic loss of atoms from
the trap due to heating, pumping and other decays. In each time step
there is a probability P that an atom is lost. Therefore, p(Nl |Nl−1)

follows the binomial distribution

p(Nl |Nl−1) =

(
Nl−1

Nl

)
(1− P)Nl PNl−1−Nl . (9.16)

13 To calibrate this we probe the ensemble 40 ms after the sub-Doppler cooling and find
Nat = 416 and a maximum phase shift of φ = 85 mrad on the F = 4 → F′ = 5
transition.
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Figure 9.6.: Bayesian inference. (a) Measured atom number (blue

points) as a function of probe photons together with the
mean of p(Ni|φ1...l) (red). (b) Estimated Fano factors.

Since

〈Nl〉 = N0 exp (−lP) (9.17a)

= N0 exp
(
− t

∆t
P
)

, (9.17b)

we can find P from the decay rate (fig. 9.6(a)).
The only thing left is a starting point for the algorithm, p(N0). For

this we take a uniform distribution for the atom number in the range
[0, 4400]. Having all the ingredients for the Bayesian inference model
(eq. (9.12)) we can estimate the probability distribution at each sam-
ple. The mean of the estimated distribution (red) and the data (blue
points) are in good agreement already after the first few updates (see
fig. 9.6(a)). With the knowledge of the full distribution and not only
its mean we can also estimate the variance of Nat. From this we find
the Fano factor F = 〈Nat〉 /var (Nat) — which if smaller than one cor-
responds to a sub-Poissonian atom number distribution also known as
number squeezing. We find a minimum of F = −14 dB (fig. 9.6(b))
after we have invested Nph = 4.9× 105. This corresponds to a loss of
15 % of the atoms. This clearly shows the capability of the apparatus to
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create and measure an ensemble of Nat ≥ 1000 with a sub-Poissonian
atom number distribution.

9.4.1 Variance estimator model

To quantify the performance and the limits of the probing method, we
consider a simple model for the atom number variance, inspired by
[Zhang et al. 2012]. Two effects change the variance — the information
gain due to measurements and the information loss due to atoms being
removed from the trap.

Starting with the information gain, we consider the single atom
phase shift (eq. (4.12a))

φat = αat
∆/(γe/2)

(γe/2)2 + ∆2 (9.18a)

≈ αat
1

∆/(γe/2)
, (9.18b)

where the approximation holds for ∆/(γe/2) � 1. Furthermore, the
number of scattered photons follows from eq. (4.12b)

Nph,sc = αat
1

∆2 + (γe/2)2 Nph,in (9.19a)

≈ αat
1

∆2 Nph,in, (9.19b)

where the approximation is again for large detunings. Combining
eqs. (9.18) and (9.19) we can rewrite the single atom phase shift as

φ2
at =

αat

4
Nph,sc

Nph,in
. (9.20)

Together with eq. (9.1) the variance of the atom number due to the shot
noise of light is then

var (Nat) =
1

εαatNph,sc
. (9.21)

This is independent of the total number of atoms and inverse propor-
tional to the detection efficiency ε, the light-atom coupling αat and the
number of scattered photons Nph,sc.
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9.4 number squeezing

The second part of the model is the variance increase due to atoms
being lost as we probe. To describe this we introduce nloss as the num-
ber of scattering events it takes to lose and atom. Adding the different
contributions up we get for the total variance [Zhang et al. 2012]

var (Nat) =

(
1

var (Nat)prior
+ εαatNph,sc

)−1

+ Nat
Nph,sc

nloss
, (9.22)

where any prior information is contained in var (Nat)prior.
We neglect any prior information and minimize this expression with

respect to Nph,sc. In this way we find the optimal trade-off between the
information gained due to probing and information lost due to lose of
atoms (partition noise)

min {var (Nat)} =
(

4Nat

nlossεαat

)1/2

, (9.23a)

min {F} =
(

4
Natnlossεαat

)1/2

, (9.23b)

for

Nph,sc =

(
nloss

Natεαat

)1/2

. (9.23c)

To consider the performance of the probing for different tasks we need
the relevant loss rate, nloss. Atoms can be “lost” either due to hyperfine
pumping (nhf) to F = 3, heating (nheat) or trap decay in the absence of
any probing. As the trap lifetime (1/e) is 20 ms we can neglect it on
the 4 ms time scale we have in this experiment. From the measured
decay time (fig. 9.6(a)) and theoretical calculation we find nheat = 56
and nhf = 67.

Considering preparation of number squeezed states, the limiting
loss mechanism is atoms being removed from the trap, i.e., nprep

loss =

nheat from which we get a minimal Fano factor of

min {F}prep = −10.7 dB (9.24)

using Nat = 2500 and a conservative optical depth per atom of αat =

1 %. This is comparable to the observed −14 dB. The discrepancy
comes since the model only makes a single update in comparison to
the Bayesian inference model. The pseudo-continues update formula
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(eq. (9.12)) monitors and updates the atom loss whereas the single
update formulation do not.

For state tomography the requirement is more stringent and noise is
added if either an atom is lost or pumped to the other hyperfine level

ntomo
loss =

1
n−1

heat + n−1
hf

(9.25a)

= 31. (9.25b)

A typical tomography experiment, as studied in depth in the previ-
ous chapters, are made on |θ = π/2, φ〉A. The probe therefore, only
interacts with half the atoms leading to Nat = 1250 which gives

min {F}prep = −7.9 dB. (9.26)

Neglecting the influence of technical noise this should result in a high
quantum state tomography efficiency, εnoise (eq. (7.18)).

From eq. (9.23b) we also directly see how the probing can be im-
proved, most notable is the dependence on the quantum efficiency. We
are currently limited by the electronic noise entering through εelec. This
could be improved by simply increasing the LO power or by making a
balanced detection of both outputs of the beam splitter combining the
probe and LO.

Related results with lower Fano factors where obtained in a cavity
system [Zhang et al. 2012] and in a dedicated MOT [Hume et al. 2013].

9.5 projected single excitation purity

With the biggest motivation of setting up the nanofiber experiment be-
ing the prospect of outperforming the free-space setup we want to esti-
mate the expected purity of a collective-single-excitation state. Staying
as close to the MZI experiment as possible we consider a similar ex-
periment.14 A strong magnetic bias field is applied along the z-axis
(fig. 9.1) and defines the quantization axes, and atoms are excited us-

14 We are currently considering if this is the optimal setting. We are mainly concerned
with the polarizations in the nanofiber.
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9.5 projected single excitation purity

ing x-polarized light. The expected state purity can be found from
eq. (8.27) which we reprint here

p(n|1click) =
p̃n

d pn
0(1− p̃d p0)

(
n pd

p̃d
+ pf +

pd p2
1− p̃d p2

)
pf +

pd p2
1− p̃d p2

+ pd p0
1− p̃d p0

. (9.27)

To evaluate this we need the probability to detect a photon emitted
into our detection spatial mode pd, the forward scattering probability
of the heralding (p0) and bad (p2) photons, and the probability of false
positives from dark counts or leakage photons, pf. To estimate p0 we
first consider the collection efficiency, i.e., the probability that an emit-
ted photon goes into the nanofiber mode. From this we can find the
required number of excitation photons leading to a consideration of
the required filtering efficiencies. In comparison to the MZI setup we
need to take particular care with respect to filtering out the two trap
beams, since they are propagating in our detection mode.

excitation photons The nanofiber is a wave-guide and we there-
fore expect that the scattering into this mode is enhanced by the β-
factor [Lodahl et al. 2013]. As we only collect photons emitted into
one direction, the relevant quantity is the directional β-factor given
by15 βdirc = β/2. From [Le Kien et al. 2005] we find the conservative
estimate16 βdirc = 0.01. The probability of scattering a photon of the
desired energy into the detection spatial mode, is then

pforward = p|e〉→|↓〉Nexcβdirc. (9.28)

Here p|e〉→|↓〉 = 0.15 is the probability for an atom excited to the state
|F′ = 4, mF′ = 1〉 to decay into the state |↓〉, and Nexc is the number of
excited atoms.

To proceed with the calculation we fix the number of excited atoms,
Nexc. To avoid state degradation due to atoms in other states (sec. 8.4)
this should be much smaller than the total atom number. Taking
Nexc = 30 the number of photons required follows from Lambert-
Beer’s law

Nph,out = Nph,in exp(−Natαat(∆)) (9.29a)

15 Recent work [Mitsch et al. 2014; Petersen et al. 2014] have shown that the directionality
of nanofiber systems can be greatly improved.

16 This should be compared to the collection efficiency of 1 : 40× 103 in the MZI setup.
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where

αat(∆) =
α0,at

1 + (∆/(γe/2))2 . (9.29b)

and α0,at is the resonant optical depth of a single atom. Using Nexc =

Nph,in − Nph,out we can write the number of excited atoms as

Nexc = Nph,in(1− exp(−Natαat)). (9.30)

To have an equal probability of interacting with each atom we want
α(∆) � 1. This can always be fulfilled by increasing ∆. As the detun-
ing increases we require more input photons to get the desired Nexc,
and thus require an improved filtering ratio. Taking α0 = 10 (on the
|F = 4, mF = 4〉 → |F′ = 5, mF′ = 5〉 transition and ∆ = 10γe, the opti-
cal depth experienced by the excitation beam (|↑〉 → |F′ = 4, mF′ = 1〉)
is αexc(10γe) = 0.007. Solving eq. (9.30) with these numbers we find
the required number of input photons to be Nph,in = 4140. With a
rejection of 1 : 2.7× 108 the current filtering cavities, should be able to
filter these photons out completely.

filtering of traps To filter out the traps we use a dichroic mirror
similar to those overlapping the trap and the probe (sec. 9.1) with a
reflection coefficient of r2 > 99.9 % for our trap wavelengths. This is
combined with two volume Bragg gratings with a rejection17 of the
traps of 1 : 109, for both wavelengths as measured by Kyung [2010].
This gives a rejection of 1 : 1× 1019 for the traps, which is more than
enough to make these negligible.

other improvements As noted in sec. 8.7 we are limited by the
decay into |F = 3, mF = 2〉 and without further improvements the state
purity will never exceed 70 %. Increasing the reflection coefficient of
the current cavity mirrors by 0.5 % the cavity linewidth becomes δνc =

6.3 MHz. Keeping all other cavity parameters fixed this should filter
out the bad decay by a factor 1 : 33, if a magnetic bias field of |B| =
20 G is assumed. The last thing to consider is the used SPCM, for the
best commercially18 available photon counters the dark count rate is
as low as νdark ≈ 25 Hz

17 This rejection is so large that it might be compromised by dust particles and have to
really be measure at the wavelengths of interest in the setup.

18 This could for instance be a Perkin-Elmer SPCM-AQRH-16.
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With these improvements we find the following set of parameters19

p0 = 0.045 (9.31a)

p2 = 4.0× 10−4 (9.31b)

pd = 0.16 (9.31c)

pf = 6.5× 10−5. (9.31d)

The state purity can then be found by evaluating eq. (8.27) which gives

p (n = 0|1click) = 0.016, (9.32a)

p (n = 1|1click) = 0.911, (9.32b)

p (n = 2|1click) = 0.068. (9.32c)

This should be compared to the state purity of 0.38 attained in the free-
spaces setup. In combination with the high detection efficiency εnoise

the nanofiber setup offers an exciting prospect for “re-doing” the ex-
periment regarding the collective-single-excitation state. We note that
the main improvements comes from the reduced number of required
excitation photons and the filtering of the bad decay channel.

9.6 summary

In this chapter we briefly decribed our newest setup — a light-atom
interface based on a optical nanofiber. We discussed two different
experiments. First, a fast and robust method to determine the atom
number and the optical depth per atom. Second, we performed a dual-
frequency dispersive measurement of the atomic induced phase shift.
Using the method of Bayesian inference we estimated the Fano fac-
tor and found a minimum value of F = −14 dB. This clearly shows
the sub-Poissonian resolution and preparation capabilities of the ex-
periment — the main result of the chapter. With this we estimated
the feasibility for the setup to be used for quantum state tomography.
We ended the chapter by considering the setup for the creation of a
collective-single-excitation state and found that we should expect state
purity of 90 % or more.

19 To include the extra filtering of the bad decays we simply reduce the generation rate
of these, i.e., p2.
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Part III

C O N C L U S I O N A N D O U T L O O K

In this, the last, part of the thesis we summarize and con-
clude the work. This is followed by an outlook considering
possible improvements and extensions of the work. Last,
we present a short review of related work, regarding the
creation and characterization of non-Gaussian and nonclas-
sical states of atomic ensembles.
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C O N C L U S I O N

In this thesis we have dealt extensively with the generation and char-
acterization of exotic quantum states within a cold atomic ensemble.
We presented results showing the creation and characterization of a
spin-squeezed state (SSS), a collective-single-excitation state as well as
the preparation of ensembles with a sub-Poisonian atom number dis-
tribution coupled to a nanofiber.

To understand these results we started by introducing an elaborate
framework of light, atoms and their interactions. We especially focused
on the unified description of the two systems as harmonic oscillators
and pseudo-spins. This allowed us to draw clear analogies between the
well known states of light and the spin-states of the ensemble. With
the description of the two independent systems we considered their
interactions. We especially focused on the use of a dispersive dual-
color measurement to characterize and prepare collective atomic states.
The main feature of this method is the (to first order) cancellation of the
ac Stark shift, which allows us to realize the desired QND Hamiltonian.
With this background we then presented the three main results of the
thesis.

First, the creation and characterization of a SSS and its associated
nonclassical features. With the light-atom interaction being of the QND

type it directly allows for measurement based squeezing. Using this
we created a SSS with a spectroscopically relevant noise reduction of
−1.7 dB. This noise reduction is due to nonclassical correlation — the
ensemble is in a many-body entangled state. Furthermore using the
concept of atomic quadrature quasi-probability (AQQP) distributions
we demonstrated the nonclassical features of the state with up to 23
standard deviations of statistical significance. With this high signifi-
cance even for this weakly squeezed state the usefulness and feasibility
of the atomic homodyne tomography and AQQP method is evident.

Second, we used the atomic tomography method to characterize a
collective-single-excitation state — the atomic equivalent of a single
photon state. This state is probabilistically generated by the detection
of a single photon which heralds the atomic state. To characterize
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this state we compared the variance of the measured population dif-
ference in the cases with and without a heralding click. A variance
increase of 24 % was observed distinguishing the created collective-
single-excitation state from the CSS by three standard deviations. To
explain quantitatively the observed variance increase we presented a
general model taking into account the effect of false positive events
and the inefficient detection. This model is in excellent agreement
with the observation. Furthermore, we analyzed the probability that
we created the nth collective-excitation state conditioned on detecting
a heralding click. This shows a state purity (corrected for detection)
of pstate = 38 % — incompatible with both a CSS and a thermal state
with the same mean excitation number. Several tests for nonclassi-
cality and non-Gaussianity were made. Due to the limited number
of samples, neither the nonclassicality or non-Gaussianity of the state
could be infered with statistical significance from the data. With the
presented model we identified possible technical improvements which
should allow to increase the state purity to pstate ≥ 70 %. This should
allow for the observation of non-Gaussian features and possibly a neg-
ative Wigner function. The presented experiment is, to the best of my
knowledge, the first implementation of a hybrid discrete-continuous
light-atom interface.

Third, with the insights gained from the creation of the SSS and
collective-single-excitation state we set out to implement a light-atom
interface based on a tapered optical nanofiber. We presented a fast and
robust way of determining the atom number and single atom coupling
strength based on optical pumping transients. In combination with
a dispersive phase shift measurement this allows for a atom number
resolution approaching the single atom level for ensembles of a few
thousand atoms. Furthermore, using Bayesian inference we continu-
ously track the full atom number distribution, showing Fano factors of
F = −14 dB. This is well below Poissonian noise, equivalent to num-
ber squeezing. This shows the capability to prepare and characterize
an ensemble with sub-Poissonian atom number distribution.
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O U T L O O K

The work presented here and in [Petrov 2006; Windpassinger 2008;
Oblak 2010] gives an account of our groups contribution to the field of
“quantum state engineering of cold atomic ensembles”. As part of the
third generation of PhD students in our group I joined an experiment
and field in rapid development. Doing my time a few problems both
technical and more fundamental were solved allowing to take our ex-
perimental efforts to the next level. With this we (as always) hope to
explore and observe new physics which is discussed in the following.

single excitation state The obvious next steps would be to
prepare higher purity collective-single-excitation states. These states
could be created either in the MZI setup (sec. 8.7) or in the nanofiber
setup (sec. 9.5). With a main goal being the direct observation of a
negative Wigner function of the ensemble, a high detection efficiency
is required. This makes the nanofiber setup an excellent platform for
such an experiment. With only minor modification of the filter cavi-
ties needed and the theoretical framework presented here “only” two
things are missing. First, hyperfine pumping and coherent manipula-
tion of the atoms. For this we are currently setting up a laser to drive
Raman transitions. With expected coherence times being on the order
of 1 ms [Reitz et al. 2013] and the potential of high Rabi frequencies
due to the highly focused light we expect fast manipulations of the
atoms. Second, is the challenge of operating the setup at the projec-
tion noise level. There should be no fundamental problem in this and
with the low atom number it could turn out to be easier than in the
MZI setup.

other states Combining the capabilities presented in this work
should allow to create a wide range of atomic spin states. Most straight-
forward would be a squeezed single-excitation state. Making a non-
destructive QND measurement of the collective-single-excitation state,
such a state will be created.
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More interesting would be the generation of a Schrödinger cat state
within the ensemble. Several proposals [McConnell et al. 2013] for how
this could be done exist, with that of Brask et al. [2010] being of particu-
lar relevance. Starting from a single excitation state the cat is generated
by conditioning on the outcome of quadrature measurements. Besides
the clear interest from a fundamental perspective a Schrödinger cat
state would allow for the enhancement of measurement precision as
well as the implementation of quantum information protocols. A con-
sideration of the details regarding these topics is far beyond the scope
of this work.

atomic mirror By carefully spacing the fiber trapped atoms by
λ/2, they fulfill the Bragg condition. This means that light scattered
backwards (reflected) from each atom interferes constructively. In this
way the atoms form a mirror with close to unity reflection [Chang et al.
2012]. Such a mirror would have a narrow bandwidth as only close to
resonant light would interact with the atoms and hence be reflected.
Furthermore, it should be switchable as the atoms could be pumped
back and forth between dark and bright states.

With the help of our local theory collaborators Prof. Anders Søren-
sen and Ivan Iakoupov we have found that a “patterned optical pump-
ing” technique should allow to prepare the evenly spaced ensemble
— giving reflections on the order of 50 % for current experimental pa-
rameters. The idea would be to pump all atoms into F = 3 and shine
a standing wave repumping beam (F = 3 → F′ = 4) on for a time
τ. Atoms at the anti-nodes (with λ/2 spacing) will have the largest
chance of being transfered to F = 4, the bright state. With the the-
oretical support we are actively pursuing this and are in the process
of setting up a detection channel for the reflected light, together with
other minor modifications of the setup.

With this list of possible future topics, it is safe to say that the next
generation of PhD students will have more then enough to do. It is
therefore a pleasure to leave the experimental playground to them.
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R E V I E W O F R E L AT E D W O R K

The generation of non-Gaussian and nonclassical spin states is a vast
and active research area. In this section we review some of the main
results of this field. We focus on the implementation of non-Gaussian
states, and refer the reader to [Ma et al. 2011] for a discussion of SSS.

[Bimbard et al . 2014] The current state of the art implementa-
tion based on the DLCZ protocol has been made in the group of Prof. P.
Grangier in Paris. This work is based on many years of improvements
[Wal et al. 2003; Chou et al. 2005; Thompson et al. 2006; MacRae et al.
2012]. An ensemble of 10× 103 rubidium (Rb) atoms is trapped and
cooled inside a cavity of finesse F = 120. Using the DLCZ protocol an
atomic excitation is created and is retrieved with an maximal efficiency
(corrected for detection imperfections) of 80 %. Storing the atomic-
excitation in the ensemble for longer times decreases1 the efficiency.
For a storage time of 1 µs the efficiency is on the order of 50 %. The
retrieved excitation is characterized by both photon-correlation mea-
surements and optical homodyne tomography.

For the short storage times (< 1 µs) reconstructed Wigner functions
show negativities, even for the uncorrected data — a clear sign of non-
classicality and non-Gaussianity. With the high conversion efficiencies
presented, the method has the potential to be expanded to characterize
more complex atomic states. Going to non-symmetric states will how-
ever require to actively stabilize and control the phase between the LO

and the read-beam.

[McConnell et al . 2013] In the group of Prof. V. Vuletić at MIT
work on creating collective-single-excitation states is ongoing. Their
proposal is described in the article by McConnell et al. [2013]. The
idea is, as they note, closely related to ours2

1 Among other things this is due to the random motion of the atoms, which could be
solved by more sophisticated trapping [Zhao et al. 2008].

2 The citations have been cast into the format of this thesis.
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The scheme proposed and investigated in Refs. [Chris-
tensen et al. 2013; Christensen et al. 2014] for Dickie-state
preparation is similar to our scheme and should allow the
same metrological gain.

However, with their ensemble being trapped inside a high finesse cav-
ity (F ≈ 5.5× 103), a smaller atom number (Nat ≈ 2000) and higher
detection efficiency [Zhang et al. 2012] their implementation should
allow for a higher state purity than the pstate = 38 % presented in this
work.

[Haas et al . 2014] In the group of Prof. J. Reichel in Paris,
Werner states — equivalent to the collective single-excitation-state —
in an ensemble of Nat = 41 have been created. The ensemble is situ-
ated in a high finesse (F ≈ 35× 103) fiber based cavity. With all atoms
in the ground state |↓〉 the cavity is fully transmitting. If a single atom
is in the |↑〉 state the cavity is shifted out of resonance and reflects the
input light. In this way the cavity allows for a binary readout of the
atomic state [Volz et al. 2011] — if the cavity reflects one or more atoms
are in |↑〉 if it transmits all atoms are in |↓〉. The desired state can
then be created in the following way. Starting with all atoms in |↓〉 a
weak microwave pulse creates a CSS with a small amplitude. This is
followed by the binary measurement. The measurement projects the
CSS onto |0〉A or |1〉A depending on its outcome. To characterize the
state measurements of the Q-function are made

Q(θ, φ) = 〈0|M†
µW(θ, φ)ρMµW(θ, φ)|0〉. (12.1)

Several key results are obtained in the experiment. First the created
collective-single-excitation state has a purity of pstate = 0.42. Second,
the measured Q-function is clearly non-Gaussian, showing the char-
acteristic dip of the single-excitation state.3 Third, a careful analysis
shows that in the ensemble of Nat = 41 at least 13 of the atoms are
entangled.

Several differences between this and our work should be noted. First
and foremost, is the difference in the number of atoms. In the consid-
ered free-space setup we work with Nat ≈ 100× 103 compared to the

3 This should be puzzling as a state ρ̂ = p |1′〉A〈1′|+ (1− p) |0′〉A〈0′| for p = 0.42 does
not have a dip. The reason this is still observed is that their measurement is only
sensitive to the symmetric sub-space J = Nat/2, where about 45 % of the population
remains.
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Nat = 40 used in this work. Second, is the measurement method. In
comparison to the continuous variable Gaussian measurement used in
this work, that of Haas et al. [2014] is a non-Gaussian measurement.

[Strobel et al . 2014] The recent work in the group of Prof. M.
Oberthaler in Heidelberg shows the creation of a non-Gaussian state
in a Bose–Einstein condensate (BEC) of Nat ≈ 400. The state is created
using a spin dependent nonlinear interactions between particles in the
BEC. This realizes one-axis twisting dynamics Ĥint ∝ χ Ĵ2

z −Ω Ĵx, where
the Ĵx term is due to Rabi coupling between the two states. Starting
from a CSS aligned along the x-axis the evolution leads first to a SSS

followed by a non-Gaussian “bend” state.
Loading a large BEC in a 1D optical lattice 35 separate condensates are

formed. They now evolve for a time τ, and depending on this a SSS or
bend non-Gaussian state is realized. A measurement of the population
difference is done by site resolvable absorption measurements.

The created state is characterized in two ways. First a maximum-
likelihood reconstruction of the density matrix is made. This allows
for the calculation of the Q-function in good agreement with theoreti-
cal expectation. Second, in close connection to the use of the created
state for quantum assisted metrology it is characterized through mea-
surements of its Fisher information. This method for extraction of the
Fisher information should be applicable for a wide variety of states.
Furthermore, the non-squeezed but non-Gaussian state is used for sub-
projection noise measurement.
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A
E X P E R I M E N TA L C O N S I D E R AT I O N S

a.1 parametric gain hamiltonian

We consider the parametric gain Hamiltonian given in eq. (5.13a), which
we reprint here

ĤG = χ∗ â†
A â†

L + χâA âL, (A.1a)

where

χ =
g(Nat)ΩR

2∆
. (A.1b)

The unitary evolution of this operator is given as

ŜG(ζ) = exp
(
−iĤGt/h̄

)
(A.2a)

= exp
(

ζ∗ â†
L â†

A + ζ âL âA

)
, (A.2b)

where

ζ = − iχ
h̄

t. (A.2c)

This is the two-mode squeezing operator, leading to a Bogolibov trans-
formation of the light and atomic operators as [Gerry et al. 2005, sec.
7.7]

âL → âL cosh(ζ)− â†
A sinh(ζ), (A.3a)

âA → âA cosh(ζ)− â†
L sinh(ζ), (A.3b)

â†
L → â†

L cosh(ζ)− âA sinh(ζ), (A.3c)

â†
A → â†

A cosh(ζ)− âL sinh(ζ). (A.3d)

From this we will calculate two things, first we show that excitations
are created in pairs and secondly we show that the process, can be
seeded.
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a.1.1 Excitation created in pairs

Considering the ground state of the two modes, |0, 0〉 where neither
the atomic or photonic mode has excitations. Applying the two mode
squeezing operator leads to

|ζ〉 = ŜG(ζ) |0, 0〉 . (A.4)

Expanding this on the compleate basis of Fock states we get

|ζ〉 =
∞

∑
n=0

∞

∑
m=0

Cn,m |n, m〉 , (A.5)

we are interested in deriving an expression for Cn,m and show that
this contains a delta function in n and m. To do this we consider the
eigenvalue equation

âL |0, 0〉 = 0, (A.6)

we multiply by ŜG from the left and use that ŜG is unitary

ŜG(ζ)âLŜG(ζ)
†ŜG(ζ) |0, 0〉 = 0, (A.7a)

ŜG(ζ)âLŜG(ζ)
† |ζ〉 = 0 (A.7b)(

âL cosh(ζ) + â†
A sinh(ζ)

)
|ζ〉 = 0 (A.7c)

∞

∑
n=0

∞

∑
m=0

Cn,m

(√
n cosh(ζ) +

√
m + 1 sinh(ζ)

)
|n, m〉 = 0 (A.7d)

By multiplying with 〈n, m + 1| from the left leads to the resucive defi-
nition

Cn,m = δn,m(−1)n tanh(ζ)n

cosh(ζ)
(A.8)

where C0,0 is found via normalization.

a.1.2 Expected photon number

We are interested in calculating the expected photon number in the
detection mode described by âL and consider the time evolution of the
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A.1 parametric gain hamiltonian

initial state |ψ〉 = |0, α〉 = |0〉L |θ, φ〉A. The expected photon number is

Nph = 〈ψ|â†
L(t)âL(t)|ψ〉 (A.9a)

= 〈ψ|Û† â†
LÛÛ† âLÛ|ψ〉 (A.9b)

=
(
〈0, α|âA â†

A|0, α〉
)

sinh2(χt) (A.9c)

=
(
1 + α2) sinh2(χt) (A.9d)

where α2 is the amplitude of the CSS and from the second to third
line we have used eq. (A.3) . We are thus left with re-expressing α in
terms of known quantities, it is simply the projection onto the z-axes
allowing us to write

Nph =
(
1 + Nat sin2(θ)

)
sinh2(χt). (A.10)
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We present two additional drawings first of the optical setup used to
create the MOT see fig. B.1 and second the acquisition and control sys-
tem fig. B.2
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Figure B.1.: Setup used for generating the six beams for the MOT. As
the setup was build around 10 years ago there is room for
improvement, especially making it more compact. As the
setup is in a working condition, there was no intention to
change and modify it.
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Figure B.2.: Outline of the acquisition and control system. Figure mod-
ified (with permission) from [Oblak 2010, fig. 7.2].
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In this appendix we follow [Appel, Windpassinger, et al. 2009] and
consider a different derivation of the detected signal and relate it the
model used in sec. 7.3.1 and 7.3.2. We are especially interested in
showing the relation φ = K∆N.

c.1 qnd master equation

For a plane wave propagating along the y-direction through a medium
with a refractive index n the field is

E(y, t) = E0 exp [i(ky−ωt)] + C.C. (C.1)

= Evac(y, t) exp [iφ(y)] exp [−αz/2] + C.C. (C.2)

where

φ(y) =
π

λ
yRe (χ) (C.3)

α =
2π

λ
Im (χ) (C.4)

Evac(y, t) = E0 exp(iω(y/c− t)). (C.5)

These equations are similar to what is presented in sec. 4.1.1 but writ-
ten in terms of the complex value susceptibility

χ =
λ

2π

$at

la
Q (C.6a)

where

Q = ∑
m

℘m

∆m/γe + i/2
. (C.6b)

The atomic column density is $at and the summation is over the differ-
ent levels. The susceptibility is related to the refractive index through

n =
√

1 + χ (C.7a)
χ�1≈ 1 +

χ

2
. (C.7b)
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With the two probes only interacting1 with atoms in either of the states
|↑〉 or |↓〉 we find

φi =
1
2

$iRe (Qi) (C.8a)

αi = $iIm (Qi) (C.8b)

where i =↑, ↓. The MZI is locked around a zero crossing of the two
probes which are out of phase (sec. 5.1) the photon-number-difference
of the two detectors are

Nph,− = ±2 sin(φ↑ − φ↓)
√

tNph,i,RNph,i,P (C.9a)

φ�1
≈ ±2(φ↑ − φ↓)

√
tNph,RNph,P. (C.9b)

Here Nph,R and Nph,P is the photon numbers in the reference and probe
arm and t the probe arm transmission. We have taken the phase-shift
to be small, in agreement with the previous assumption of χ� 1.

The detected phase shift φi is averaged over the transverse spatial
profile of the probe

φi =
1
2

Re (Qi)

2π∫
0

dθ

∞∫
0

rdrIP(r)$i(θ, r) (C.10)

with

IP(r) =
2

π(wprobe
0 )2

exp

(
−2

r2

(wprobe
0 )2

)
. (C.11)

As in sec. 5.1 we take

Nph ≡ Nph,↑ = Nph,↓ (C.12)

Q ≡ Q↑ = Q↓. (C.13)

With this the interference fringe amplitude becomes

Ñph =
√

tNph,RNph,P (C.14)

which gives a signal from the atoms as

Nph,− = ÑphRe (Q)

2π∫
0

dθ

∞∫
0

rdrIP(r)($↑(θ, r)− $↓(θ, r)). (C.15)

1 They are far-detuned from the other transition.
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C.1 qnd master equation

Here $↓ and $↑ denotes the column density of atoms in the respective
level and we have

$at = $↓ + $↑. (C.16)

For the atom number measurement we have all atoms in the upper
state which means

N↑ph,− = $↑ÑphRe (Q) , (C.17)

as IP(r) is normalized.
To relate this to the model used in the main text we define

Nat,i ≡ π(wprobe
0 )2

2π∫
0

dθ

∞∫
0

rdrIP(r)$i (C.18)

K ≡ ÑphRe (Q)

Nph,totπ(wprobe
0 )2

(C.19)

Nph,tot ≡ 2(Nph,i,R + tNph,i,P) (C.20)

We can find the phase shift as

φ =
Nph,−
Nph,tot

(C.21a)

= K∆N. (C.21b)

This is simply the atomic contribution in eq. (7.3). Furthermore we can
calculate the variance of the CSS aligned along the x-axis of the Bloch
sphere. For this state $↑(θ, r) = $↓(θ, r) which means that

〈
N(CSS)

ph,−
〉
= 0

with a variance

var
(

N(CSS)
ph,−

)
= Ñ2

ph(Re (Q))2
2π∫
0

dθ

∞∫
0

rdrI2
P(r)var

(
$↑(θ, r)− $↓(θ, r)

)
(C.22a)

= Ñ2
ph(Re (Q))2 $at

π(wprobe
0 )2

(C.22b)

Considering the corresponding phase-shift we find var (φ) = K2var (∆N),
which is the atomic contribution in eq. (7.4).
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c.1.1 Consistency check

From the phase shift measurement with all atoms in |↑〉 we can deter-
mine the atom number as

Nat =
φat

K . (C.23)

We therefore need to determine K which can be done in two ways.
First, from the projection noise scaling as shown in eq. (7.5). Second, it
can be estimated directly from eq. (C.19) as

Q↑ = −
3λ2

4π
γe

[
5/9

∆↑ + iγe/2
+

1/9
∆↑ + 452 MHz + iγe/2

]
(C.24)

where the first term is the coupling to F′ = 5 and second term to
F′ = 4.

Furthermore, we also estimate the expected decoherence. For the
probe interacting with an ensemble in the CSS aligned along the x-axis
of the Bloch sphere the absorption coefficient is

α(CSS) =
$at

4
(
Im
(
Q↓
)
+ Im

(
Q↑
))

(C.25)

With the total number of probe photons being 2Nph this leads to 2α(CSS)Nph
scattering events. With each single scattering event reveling the inter-
nal state of the atom this gives the amount of decoherence. Denoting
the column density of atoms in the CSS by $

(CSS)
at we have

$
(CSS)
at = $at exp

(
−2α(CSS) IP(r)

Nph

$at

)
. (C.26)

Considering the decoherence we find

η = 1− Nat

N(CSS)
at

(C.27a)

= 1−
2π∫
0

dθ

∞∫
0

rdrIP(r)
$

(CSS)
at
$at

(C.27b)

= 1−
2π∫
0

dθ

∞∫
0

rdrIP(r) exp
(
−2α(CSS) IP(r)

Nph

$at

)
. (C.27c)

As above this can directly be evaluated and compared to the measure-
ments as done at the end of sec. 7.3.2.
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d.1 hanle effect

In the main text, sec. 8.1, we argued that heralding photons could
scatter into our detection spatial mode due to the Hanle effect. Fol-
lowing [Demtröder 2008, sec. 7.1] we consider the V-system shown
in fig. D.1(a). We take the light to propagate along y-direction, the
excitation is made with x-polarized light (σ+ and σ−). A magnetic
bias field B is applied along the z-direction and we are interested in
detecting x-polarized light emitted into the propagation directions, see
fig. D.1(b). The x-polarized excitation light will create the excited state
superposition

ψx = − 1√
2

(∣∣F′ = 4, mF = 1
〉
+
∣∣F′ = 4, mF = −1

〉)
. (D.1)

This state evolves according to

ψx(t) = e−γet/2 exp(−iĤt/h̄)ψx(0). (D.2)

Here the decay term has been added by hand and Ĥ is the relevant
Hamiltonian with eigenvalues EmF = E0 +∆ωZeemanh̄, where ∆ωZeeman =

µBgFmF |B| /h̄, (eq. (3.1b)). This gives

ψx(t) = e−γet/2e−iE0t/h̄ [cos(∆ωZeemant)ψz + sin(∆ωZeemant)ψx] (D.3a)

where

ψy = − i√
2

(∣∣F′ = 4, mF = 1
〉
−
∣∣F′ = 4, mF = −1

〉)
. (D.3b)

For the detected intensity Ifl we will due to the polarization filter only
see ψx which gives

Ifl(t) ∝ e−γet sin2(∆ωZeemant). (D.4)

We see that Ifl(t = 0) = 0, which as argued in the main text, is due
to destructive interference. However for ∆ωZeeman � γe the oscillating
term averages out and Ifl 6= 0.
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single excitation state

y

z

(b)(a)
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Figure D.1.: Hanle effect. (a) shows the atomic level structure for the
considered case. (b) the spatial configuration considered.

d.2 n-point pulses

To improve on the two-point pulses we have developed its generaliza-
tion to n-point pulses.

Consider the general case of two measurements described by

ai = (a1,i, a2,i, . . . , an,i) (D.5)

bi = (b1,i, b2,i, . . . , bn,i) . (D.6)

We want to show that the quantity

βi = bi − KTai (D.7a)

is completely uncorrelated to ai, where

K = (Caa)−1 · Cab, (D.7b)

and

C ≡ cov (ai, bi) (D.7c)

=

(
Caa Cab

Cba Cbb

)
. (D.7d)

We start by defining the matrix

K̃ ≡
(

1 −K
0 1

)
. (D.8)
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D.3 error estimate

We can now calculate the covariance matrix between ai and βi as fol-
lows

C̃ ≡ cov (ai, βi) (D.9)

= K̃TCK (D.10)

=

(
Caa Cab − CaaKT

Cba − KTCaa Cββ

)
(D.11)

=

(
Caa 0
0 Cββ

)
(D.12)

where we in the last line have used the definition of K. As the off-
diagonal blocks are zero, we have shown that the measurements ai
and βi are now uncorrelated.

As an example we consider the 6-point pulses used in the analysis
of the collective single excitation state in sec. 8.3.1 where the noise
subtracted measurements are defined as eq. (8.6)

φi = φ̃−
6

∑
j=−6
j 6=0

wj ϕ
j
i . (D.13)

From eq. (D.7) we can now find the weight coefficients wj (fig. D.2).
Considering the variance of φi we have

var (φi) = var (φ̃) +
6

∑
j=−6
j 6=0

w2
j var

(
ϕ

j
i

)
. (D.14)

Taking the case where var (φ̃) = var (ϕ) = 1, we see that the decorre-
lated measurements have an extra noise contribution of ∑j w2

j = 0.09.

d.3 error estimate

In this section we consider the statistical uncertainty on the quantity
of interest (eqs. (8.7), (8.8) and (8.8))

WL ≡ var ({Zi}i∈L) (D.15a)

where

Zi ≡
φi√
Yi

(D.15b)

175



single excitation state

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

File index: j

W
ei

gh
t

fa
ct

or
:

w
j

Figure D.2.: Weight factors used for the optimal noise subtraction.

and

Yi ≡ var ({φi−M/2, . . . , φi+M/2}) . (D.15c)

In calculating the WL care needs to be taken.
The error in estimating Yi is

δYi =

√
2

M− 1
Yi, (D.16)

which, since all φi are independent and identical distributed just the
mean squared error (MSE). The variance on Zi can then be found via a
Taylor expansion around the mean of Yi

var (Zi) =

(
1 +

1
4

2
M + 1

)
var

(
φi

〈Yi〉

)
. (D.17)

From this we clearly see the effect of correlations between Zi in a range
M to make this negligible small we take M� 1. By taking L� M we
see thatWL is the unbiased estimator for the variance of Zi. Its error is
then simply the MSE given by

δWL =

√
2

L− 1
WL. (D.18)

This error-estimate have been tested both by a bootstrapping method
[Efron et al. 1994] and by sub-dividing our data set, see table D.1.
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D.4 collective single excitation state w. phase profile

Table D.1.: Error estimates using different methods.

method L WL δWL

MSE
Click 1.24 0.079
No click 1.01 0.019

Sub-dividing
Click 1.25 0.076
No click 1.01 0.020

Bootstrapping
Click 1.24 0.074
No click 1.01 0.018

d.4 collective single excitation state w. phase profile

In this section we consider the single excitation state with a phase
profile given as

∣∣1̃′〉A =
1√
Nat

Nat

∑
l=1

exp (i∆kzl) |↑↑ . . . ↑↓↑ . . . ↑〉 . (D.19)

Using the the formalism introduced in chap. 3 and especially in sec. 3.6
we find

p̃1̃(n) ≡ 〈1̃′|P̂(n)|1̃′〉 (D.20a)

=
1

2Nat

1
Nat

∑
π

∣∣∣∣∣Nat

∑
l=1

eiφl
(

δπ
l↑ − δπ

l↓
)∣∣∣∣∣

2

(D.20b)

Where we have introduce two delta functions and the phase parameter
φl = ∆kzl . The simplest case is φl = 0 ∀ l, where the above becomes

p̃1̃(n) =
1

2Nat

1
Nat

(
Nat

n

)
(2n− Nat)

2 , (D.21)

in agreement with eq. (3.46). The main question is what happens when
the phase φl 6= 0. We assume that φl are uniformly distributed as

φl ∈
[
− θM

2
,

θM

2

]
, (D.22)

This fits the experiment well. As the light travels through the atomic
cloud each time it sees an atom it will get a phase shift — which can
not depend on the atomic position in the regime of low optical depth.
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The phasor sum can now be projected on to the real axes of the
complex plane as

Re

(
Nat

∑
l=1

eiφl

)
=

1
θM

∫ +
θM

2

− θM
2

cos (φ)dφ (D.23a)

= sinc2
(

θM

2

)
. (D.23b)

This leaves us with the last demand which is to still have something
that is normalized, which is done by “adding” a corresponding vac-
uum leading to the result

p1̃(∆N) = sinc2
(

θM

2

)
p1(∆N) +

[
1− sinc2

(
θM

2

)]
p0(∆N). (D.24)

Which should be compared to eq. (3.47).
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E
N A N O F I B E R E X P E R I M E N T

e.1 atom number

We consider the three level model showed in fig. 9.4 and are interested
in how many photons it on average takes to move and atom to the
F = 3 state, i.e., the parameter q. The probability to be in the F = 3
state after n scattering events is

p(1) = p3 (E.1a)

p(2) = p3 p4 (E.1b)

p(3) = p3 p2
4 (E.1c)

...

p(n) = p3 pn−1
4 . (E.1d)

We easily find the mean value of n

〈n〉 =
∞

∑
n=1

np(n) (E.2a)

= 2.4 (E.2b)

where we have used p4 = 7/12 and p3 = 5/12. More interesting is it
to compute the variance

var (n) =
〈
n2〉− 〈n〉2 (E.3a)

= 3.36. (E.3b)

With var (n) ≥ 〈n〉 this is a super-Poisonian process.
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nanofiber experiment

e.2 squeezing estimation

We consider a two-level atom, which imprints a phase-shift on a light
pulse given by

φ = −1
2
L(∆) ∆

γe/2
Nat (E.4a)

∆�γe/2≈ −1
4

γe

∆
(E.4b)

where

L(∆) ≡ αat
1

1 + ( ∆
γe/2 )

2
. (E.4c)

This is a Lorentzian line-shape and αat is the optical depth per atom.
This gives a per atom phase-shift of

φat = −
1
2
L(∆) ∆

γe/2
. (E.5)

For a homodyne measurement using Nph the minimum resolvable phase,
limited by the shot noise of light, is

δφ =
1

2
√

εNph
(E.6a)

with

ε = εvisεelecεloss (E.6b)

the total efficiency of the detection. Note that this is equivalent to our
dual-sideband heterodyne measurement. This means that the number
of atoms we can resolve is given by

δNat =
δφ

|φat|
(E.7)

=
1√

εNph

1
L(∆)

γe/2
∆

(E.8)
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E.2 squeezing estimation

The variance then becomes

var (δNat) =
1

εNphL(∆)
1
L(∆)

(
γe/2

∆

)2

(E.9)

=
1

εNphL(∆)
1

αat

[
1 +

(
∆

γe/2

)2
](

γe/2
∆

)2

(E.10)

=
1

εNphL(∆)
1

αat

[
1 +

(
γe/2

∆

)2
]

(E.11)

∆�γe/2≈ 1
εNphL(∆)αat

. (E.12)

We now consider the disturbance of the measurement, on a CSS. The
fraction of atoms that scatter is given as

Nph,in − Nph,out

Nat
= L(∆)Nph,in ⇒ (E.13a)

η̃ = exp
(
−L(∆)Nph,in

2

)
(E.13b)

where η̃ is the coherence, and the factor of 2 in the exponential comes
from the fact that only atoms in the upper state scatters. This leads to
the natural definition of the decoherence parameter

η ≡ L(∆)
2

, (E.14)

which is simply the number of scattering events per photon.

We now consider the sequence where we have a total of Nat, make a
π/2 pulse to create a equal superposition state and then measure N↑
and have

〈N↑〉 =
Nat

2
(E.15a)

var(N↑) =
Nat

4
, (E.15b)
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where var(N↑) is the projection noise. The signal to noise (atomic noise
to shot noise) is given by

κ2 =
var(N↑)

var
(
δN↑

)2 (E.16a)

=
Nat

4
εNphL(∆)αat (E.16b)

= αeff
NphL(∆)

2
(E.16c)

where we have defined the effective optical depth as

αeff ≡
Nat

2
εαat (E.17)

The amount of squeezing we can obtain is given by [Appel, Wind-
passinger, et al. 2009]

ξ2
Wineland =

1
1 + κ2

1
η̃2 (E.18a)

=
1

1 + κ2
1

exp
(
−L(∆)Nph

) (E.18b)

=
1

1 + αeff
NphL(∆)

2

1
exp

(
−L(∆)Nph

) . (E.18c)

(E.18d)

We minimize this and find

min
{

ξ2
Wineland

}
=

2
αeff

exp (1− 2/αeff) for NphL(∆) =
αeff − 2

αeff
.

(E.19)

The requirement for obtaining spin squeezing is therefore

2 < αeff =
Nat

2
εαat. (E.20)

182



B I B L I O G R A P H Y

[Appel, Windpassinger, et al. 2009] J. Appel, P. J. Windpassinger, D.
Oblak, U. B. Hoff, N. Kjærgaard, and E. S. Polzik (2009). „Meso-
scopic atomic entanglement for precision measurements beyond the
standard quantum limit.“ Proceedings of the National Academy of Sci-
ences 106.27, pp. 10960–10965. doi: 10.1073/pnas.0901550106 (cit.
on pp. 2, 4, 85, 95, 169, 182).

[Appel et al. 2007] J. Appel, D. Hoffman, E. Figueroa, and A. I. Lvovsky
(2007). „Electronic noise in optical homodyne tomography.“ Physical
Review A 75.3, p. 035802. doi: 10.1103/PhysRevA.75.035802 (cit. on
pp. 98, 117, 120).

[Appel, MacRae, et al. 2009] J. Appel, A. MacRae, and A. I. Lvovsky
(2009). „A versatile digital GHz phase lock for external cavity diode
lasers.“ Measurement Science & Technology 20.5, p. 055302. doi: 10.
1088/0957-0233/20/5/055302 (cit. on p. 72).

[Arecchi et al. 1972] F. T. Arecchi, H. Thomas, R. Gilmore, and E.
Courtens (1972). „Atomic Coherent States in Quantum Optics.“ Phys-
ical Review A 6.6, pp. 2211–2237. doi: 10.1103/PhysRevA.6.2211 (cit.
on p. 29).

[Aspelmeyer et al. 2013] M. Aspelmeyer, T. J. Kippenberg, and F. Mar-
quardt (2013). „Cavity Optomechanics.“ arXiv: 1303.0733v1 (cit. on
p. 131).

[Babichev et al. 2004] S. Babichev, J. Appel, and A. Lvovsky (2004).
„Homodyne Tomography Characterization and Nonlocality of a Dual-
Mode Optical Qubit.“ Physical Review Letters 92.19, p. 193601. issn:
1079-7114. doi: 10.1103/physrevlett.92.193601 (cit. on p. 2).

[Béguin n.d.] J. B. Béguin. „A Novel Invisible Quantum Interface Be-
tween few Atoms and few Photons.“ To be published (cit. on pp. 6,
131).

[Béguin et al. 2014] J. B. Béguin, E. Bookjans, S. L. Christensen, H. L.
Sørensen, J. H. Müller, J. Appel, and E. S. Polzik (2014). „Generation

183

http://dx.doi.org/10.1073/pnas.0901550106
http://dx.doi.org/10.1103/PhysRevA.75.035802
http://dx.doi.org/10.1088/0957-0233/20/5/055302
http://dx.doi.org/10.1088/0957-0233/20/5/055302
http://dx.doi.org/10.1103/PhysRevA.6.2211
http://arxiv.org/abs/1303.0733v1
http://dx.doi.org/10.1103/physrevlett.92.193601


Bibliography

and detection of a sub-Poissonian atom number distribution in a
one-dimensional optical lattice.“ arXiv: 1408.1266v1 (cit. on pp. 6,
129, 132, 134).

[Bimbard et al. 2014] E. Bimbard, R. Boddeda, N. Vitrant, A. Grankin,
V. Parigi, J. Stanojevic, A. Ourjoumtsev, and P. Grangier (2014). „Ho-
modyne Tomography of a Single Photon Retrieved on Demand from
a Cavity-Enhanced Cold Atom Memory.“ Physical Review Letters 112.3,
p. 033601. doi: 10.1103/PhysRevLett.112.033601 (cit. on pp. 1, 101,
127, 155).

[Bizarro 1994] J. P. Bizarro (1994). „Weyl-Wigner formalism for rota-
tion angle and angular-momentum variables in quantum mechan-
ics.“ Physical Review A 49 (5), pp. 3255–3276. doi: 10.1103/PhysRevA.
49.3255 (cit. on p. 28).

[Bohnet et al. 2014] J. G. Bohnet, K. C. Cox, M. A. Norcia, J. M. Weiner,
Z. Chen, and J. K. Thompson (2014). „Reduced spin measurement
back-action for a phase sensitivity ten times beyond the standard
quantum limit.“ Nature Photonics, pp. 1–4. doi: 10.1038/nphoton.
2014.151 (cit. on p. 95).

[Brask et al. 2010] J. B. Brask, I. Rigas, E. S. Polzik, U. L. Andersen,
and A. S. Sørensen (2010). „Hybrid Long-Distance Entanglement
Distribution Protocol.“ Physical Review Letters 105.16, 10.1103/Phys-
RevLett.105.160501. issn: 1079-7114. doi: 10.1103/physrevlett.105.
160501 (cit. on p. 154).

[Cahill et al. 1969] K. E. Cahill and R. J. Glauber (1969). „Density
Operators and Quasiprobability Distributions.“ Physical Review 177
(5), pp. 1882–1902. doi: 10.1103/PhysRev.177.1882 (cit. on p. 13).

[Chang et al. 2012] D. E. Chang, L. Jiang, A. V. Gorshkov, and H. J.
Kimble (2012). „Cavity QED with atomic mirrors.“ New Journal of
Physics 14.6, p. 063003. doi: 10.1088/1367-2630/14/6/063003 (cit.
on p. 154).

[Chen et al. 2001] Y. C. Chen, Y. A. Liao, L. Hsu, and I. A. Yu (2001).
„Simple technique for directly and accurately measuring the number
of atoms in a magneto-optical trap.“ Physical Review A 64.3, p. 031401.
doi: 10.1103/PhysRevA.64.031401 (cit. on p. 139).

184

http://arxiv.org/abs/1408.1266v1
http://dx.doi.org/10.1103/PhysRevLett.112.033601
http://dx.doi.org/10.1103/PhysRevA.49.3255
http://dx.doi.org/10.1103/PhysRevA.49.3255
http://dx.doi.org/10.1038/nphoton.2014.151
http://dx.doi.org/10.1038/nphoton.2014.151
http://dx.doi.org/10.1103/physrevlett.105.160501
http://dx.doi.org/10.1103/physrevlett.105.160501
http://dx.doi.org/10.1103/PhysRev.177.1882
http://dx.doi.org/10.1088/1367-2630/14/6/063003
http://dx.doi.org/10.1103/PhysRevA.64.031401


Bibliography

[Choi et al. 2008] K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble
(2008). „Mapping photonic entanglement into and out of a quantum
memory.“ Nature 452.7183, pp. 67–71. issn: 1476-4687. doi: 10.1038/
nature06670 (cit. on p. 2).

[Choi et al. 2010] K. S. Choi, A. Goban, S. B. Papp, S. J. van Enk,
and H. J. Kimble (2010). „Entanglement of spin waves among four
quantum memories.“ Nature 468.7322, pp. 412–416. issn: 1476-4687.
doi: 10.1038/nature09568 (cit. on p. 2).

[Chou et al. 2005] C. W. Chou, H. de Riedmatten, D. Felinto, S. V.
Polyakov, S. J. van Enk, and H. J. Kimble (2005). „Measurement-
induced entanglement for excitation stored in remote atomic ensem-
bles.“ Nature 438.7069, pp. 828–832. issn: 1476-4679. doi: 10.1038/
nature04353 (cit. on p. 155).

[Christensen et al. 2014] S. L. Christensen, J. B. Béguin, E. Bookjans,
H. L. Sørensen, J. H. Müller, J. Appel, and E. S. Polzik (2014). „Quan-
tum interference of a single spin excitation with a macroscopic atomic
ensemble.“ Physical Review A 89, p. 033801. doi: 10.1103/PhysRevA.
89.033801 (cit. on pp. 5, 101, 156).

[Christensen et al. 2013] S. L. Christensen, J. B. Béguin, H. L. Sørensen,
E. Bookjans, D. Oblak, J. H. Müller, J. Appel, and E. S. Polzik (2013).
„Towards quantum state tomography of a single polariton state of
an atomic ensemble.“ New Journal of Physics 15.1, p. 015002. doi:
10.1088/1367-2630/15/1/015002 (cit. on pp. 5, 101, 156).

[Christensen 2012] S. L. Christensen (2012). Generation of exotic quan-
tum states in acold ensemble of Caesium atoms. MA thesis. url: http:
//quantop.nbi.ku.dk/publications/thesis/ (cit. on pp. 5, 76, 83,
85, 87, 106).

[Combescure et al. 2012] M. Combescure and D. Robert (2012). Co-
herent states and applications in Mathematical Physics. Springer. isbn:
9400701950 (cit. on p. 29).

[Demtröder 2008] W. Demtröder (2008). Laser Spectroscopy. Vol. 2: Ex-
perimental Techniques. Springer Science & Business Media. isbn:
3540749543 (cit. on p. 173).

185

http://dx.doi.org/10.1038/nature06670
http://dx.doi.org/10.1038/nature06670
http://dx.doi.org/10.1038/nature09568
http://dx.doi.org/10.1038/nature04353
http://dx.doi.org/10.1038/nature04353
http://dx.doi.org/10.1103/PhysRevA.89.033801
http://dx.doi.org/10.1103/PhysRevA.89.033801
http://dx.doi.org/10.1088/1367-2630/15/1/015002
http://quantop.nbi.ku.dk/publications/thesis/
http://quantop.nbi.ku.dk/publications/thesis/


Bibliography

[Dicke 1954] R. Dicke (1954). „Coherence in Spontaneous Radiation
Processes.“ Physical Review 93.1, pp. 99–110. doi: 10.1103/PhysRev.
93.99 (cit. on pp. 33, 34).

[Ding et al. 2010] L. Ding, C. Belacel, S. Ducci, G. Leo, and I. Favero
(2010). „Ultralow loss single-mode silica tapers manufactured by a
microheater.“ Applied Optics 49.13, pp. 2441–2445. doi: 10.1364/AO.
49.002441 (cit. on p. 130).

[Dowling et al. 1994] J. P. Dowling, G. S. Agarwal, and W. P. Schleich
(1994). „Wigner distribution of a general angular-momentum state:
Applications to a collection of two-level atoms.“ Physical Review A 49
(5), pp. 4101–4109. doi: 10.1103/PhysRevA.49.4101 (cit. on pp. 27,
28).

[Duan et al. 2001] L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller
(2001). „Long-distance quantum communication with atomic ensem-
bles and linear optics.“ Nature 414.6862, pp. 413–418. doi: 10.1038/
35106500 (cit. on pp. 53, 58).

[Dubost et al. 2012] B. Dubost, M. Koschorreck, M. Napolitano, N.
Behbood, R. J. Sewell, and M. W. Mitchell (2012). „Efficient Quantifi-
cation of Non-Gaussian Spin Distributions.“ Physical Review Letters
108.18, pp. 1–5. doi: 10 . 1103 / PhysRevLett . 108 . 183602 (cit. on
p. 125).

[Efron et al. 1994] B. Efron and R. Tibshirani (1994). An Introduction
to the Bootstrap. Chapman & Hall/CRC Monographs on Statistics &
Applied Probability. Taylor & Francis. isbn: 9780412042317 (cit. on
p. 176).

[Filip et al. 2011] R. Filip and L. Mišta (2011). „Detecting Quantum
States with a Positive Wigner Function beyond Mixtures of Gaus-
sian States.“ Physical Review Letters 106.20, p. 200401. doi: 10.1103/
PhysRevLett.106.200401 (cit. on p. 125).

[Garrison et al. 2008] J. Garrison and R. Chiao (2008). Quantum optics.
Oxford graduate texts. Oxford University Press. isbn: 9780198508861
(cit. on pp. 9, 15).

186

http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1364/AO.49.002441
http://dx.doi.org/10.1364/AO.49.002441
http://dx.doi.org/10.1103/PhysRevA.49.4101
http://dx.doi.org/10.1038/35106500
http://dx.doi.org/10.1038/35106500
http://dx.doi.org/10.1103/PhysRevLett.108.183602
http://dx.doi.org/10.1103/PhysRevLett.106.200401
http://dx.doi.org/10.1103/PhysRevLett.106.200401


Bibliography

[Gerry et al. 2005] C. Gerry and P. Knight (2005). Introductory Quan-
tum Optics. Cambridge University Press. isbn: 9780521527354 (cit. on
pp. 60, 161).

[Giovannetti et al. 2011] V. Giovannetti, S. Lloyd, and L. Maccone
(2011). „Advances in quantum metrology.“ Nature Photonics 5.4, pp. 222–
229. doi: 10.1038/NPHOTON.2011.35 (cit. on pp. 30, 31).

[Grimm et al. 2000] R. Grimm, M. Weidemüller, and Y. B. Ovchin-
nikov (2000). „Optical Dipole Traps for Neutral Atoms.“ Advances
In Atomic, Molecular, and Optical Physics. Ed. by B. Bederson and H.
Walther. Vol. 44. Academic Press, pp. 95–170. doi: 10.1016/S1049-
250X(08)60186-X (cit. on p. 68).

[Hammerer et al. 2010] K. Hammerer, A. S. Sørensen, and E. S. Polzik
(2010). „Quantum interface between light and atomic ensembles.“
Reviews of Modern Physics 82.2, pp. 1041–1093. doi: 10.1103/RevModPhys.
82.1041 (cit. on pp. 2, 26, 32, 56, 58, 119, 120, 129).

[Hinkley et al. 2013] N. Hinkley, J. A. Sherman, N. B. Phillips, M.
Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and
A. D. Ludlow (2013). „An Atomic Clock with 10−18 Instability.“ Sci-
ence 341.6151, pp. 1215–1218. doi: 10.1126/science.1240420 (cit. on
p. 50).

[Hoffman et al. 2014] J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano,
P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston
(2014). „Ultrahigh transmission optical nanofibers.“ AIP Advances
4.6, p. 067124. doi: 10.1063/1.4879799 (cit. on p. 130).

[Holstein et al. 1940] T. Holstein and H. Primakoff (1940). „Field De-
pendence of the Intrinsic Domain Magnetization of a Ferromagnet.“
Physical Review 58 (12), pp. 1098–1113. doi: 10.1103/PhysRev.58.
1098 (cit. on p. 26).

[Hume et al. 2013] D. Hume, I. Stroescu, M. Joos, W. Muessel, H. Stro-
bel, and M. Oberthaler (2013). „Accurate Atom Counting in Meso-
scopic Ensembles.“ Physical Review Letters 111.25, p. 253001. doi: 10.
1103/physrevlett.111.253001 (cit. on p. 144).

[Haas et al. 2014] F. Haas, J. Volz, R. Gehr, J. Reichel, and J. Estève
(2014). „Entangled States of More Than 40 Atoms in an Optical Fiber

187

http://dx.doi.org/10.1038/NPHOTON.2011.35
http://dx.doi.org/10.1016/S1049-250X(08)60186-X
http://dx.doi.org/10.1016/S1049-250X(08)60186-X
http://dx.doi.org/10.1103/RevModPhys.82.1041
http://dx.doi.org/10.1103/RevModPhys.82.1041
http://dx.doi.org/10.1126/science.1240420
http://dx.doi.org/10.1063/1.4879799
http://dx.doi.org/10.1103/PhysRev.58.1098
http://dx.doi.org/10.1103/PhysRev.58.1098
http://dx.doi.org/10.1103/physrevlett.111.253001
http://dx.doi.org/10.1103/physrevlett.111.253001


Bibliography

Cavity.“ Science 344.6180, pp. 180–183. issn: 1095-9203. doi: 10.1126/
science.1248905 (cit. on pp. 156, 157).

[Itano et al. 1993] W. M. Itano, J. C. Bergquist, J. Bollinger, J. M. Gilli-
gan, D. J. Heinzen, F. L. Moore, M. G. Raizen, and D. J. Wineland
(1993). „Quantum Projection Noise - Population Fluctuations in 2-
Level Systems.“ Physical Review A 47.5, pp. 3554–3570. doi: 10.1103/
PhysRevA.47.3554 (cit. on p. 38).

[Jensen et al. 2010] K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz,
B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and
E. S. Polzik (2010). „Quantum memory for entangled continuous-
variable states.“ Nature Physics 7.1, pp. 13–16. doi: 10.1038/nphys1819
(cit. on p. 130).

[Ježek et al. 2011] M. Ježek, I. Straka, M. Mičuda, M. Dušek, J. Fi-
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1D one-dimensional

AFS atomic Fock state

AOM acousto optical modulator

AQQP atomic quadrature quasi-probability

BEC Bose–Einstein condensate

CAMOT Carlos MOT controller

Cs cesium

CSS coherent spin state

DC direct current

DIO DIO64 pulsing unit

DLCZ Duan, Lukin, Cirac and Zoller

ECDL external cavity diode laser

FORT far-off-resonant dipole trap

FWHM full width half maximum

JA Jürgen Appel

JB Jean-Baptiste Béguin

JHM Jörg H. Müller

LO local oscillator

MIT Massachusetts Institute of Technology

MOT magneto-optical trap

MSE mean squared error
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MZI Mach-Zehnder interferometer

NBI Niels Bohr Institute

NI National Instruments

NIST National Institute of Standards and Technology

PBS polarizing beam-splitter

PDH Pound–Drever–Hall

QND quantum-nondemolition

QPD quasi-probability distribution

QUANTOP Danish Center for Quantum Optics

RF radio frequency

Rb rubidium

SPCM single-photon-counting module

SSS spin-squeezed state

SNR signal-to-noise ratio

SQL standard quantum limit

UCPH University of Copenhagen
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