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Dansk resume
Denne afhandling præsenterer resultater fra eksperimentelle og teoretiske stu-
dier af kulstofnanorør (CNT) implementeret i kvantekredsløb og målt ved
kryogene temperaturer. Specielt undersøges opsplitning af Cooper pair (CPS)
i CNT kredsløb med stråledeler-geometri og en central superledende elektro-
de.

Kulstofnanorør er velegnede til brug i kvantekredsløb på grund af deres
eksotiske elektroniske og mekaniske egenskaber. Ét forslag til anvendelse af
kulstofnanorør udnytter deres indbyggede spin-bane kobling som et spin-filter
til at demonstrere den sammenfiltrede karakter af opsplittende Cooper pair.
Et sådant kredsløb ville have anvendelser inden for hardware til kvantecom-
putere som en kilde af sammenfiltrede elektroner.

En model til beskrivelse af CNT spektret udvides til at inkludere koblin-
gen mellem langsgående niveauer i en CNT kvantedot. Udvidelsen forudsæt-
ter en generalisering af det elektrostatiske potentiale langs tuben. Vi viser,
at modellen stemmer godt overens med data indsamlet fra transport i et
to-terminalt CNT kvantedotkredsløb.

Et fremstillet CNT CPS kredsløb tillader identificering af ikke-lineare
spin-bane magnetiske felter i de to dele af kredsløbet. Dette er muligt fordi
det kurvede kulstofnanorør udviser lav urenhed gennem dets lave værdi af
forholdet mellem KK ′ spredning og spin bane-kobling ∆KK′/∆SO. Sådanne
spin-bane magnetiske felter blev tidligere betragtet som svære at opnå uden
anvendelse af specielle fremstillingsteknikker. Vi opgiver detaljer til frem-
stilling af kredsløbet, men noterer, at udbyttet for denne proces var lavt.
Motiveret af ovenstående resultater, udvikles en teori til beskrivelse af effek-
ten af KK ′ spredning på gennemførbarheden af forslaget nævnt ovenfor til
at detektere sammenfiltring af opsplittende Cooper par.

I det samme CNT CPS kredsløb analyseres transportdata for at uddrage
bidragene fra processerne Cooper par opsplitning og elastisk cotunnelering
til den samlede strøm. Det forhold, at det ikke-lokale konduktans-signal for-
svinder i endeligt magnetfelt indikerer, at en del af transportmekanismen
involverer den superledende elektrode. Derudover viser beregninger af Q pa-
rameteren, som er nødvendig i ovennævnte forslag, at en test af sammenfil-
tring er robust i forhold til falske positive resultater.

Det er attraktivt at kunne kontrollere elektrode-dot koblingerne i et CPS
kredsløb, fordi de har betydning for CPS effektiviteten. Transportdata fra
et nanotråds-CPS kredsløb med bundelektroder præsenteres. De viser, at en
given elektrode-dot kobling kan indstilles af dens tilsvarende bundelektrode
uden at påvirke de andre koblinger nævneværdigt. Koblingernes afhængighed
af bundelektrodernes spænding konkluderes at være eksponentiel, hvilket er
konsistent med forudsigelser fra grundlæggende kvanteteori.

Resultaterne i denne afhandling giver nye indsigter i at bruge kulstofnano-
rør i Cooper par splitter kredsløb og sammenfiltringsdetektions-eksperimenter.
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Abstract
This thesis presents results from experimental and theoretical investigations
of carbon nanotube (CNT) quantum devices at cryogenic temperatures. Specif-
ically, Cooper pair splitting (CPS) in CNT devices with beam-splitter geome-
tries and a central superconducting electrode is investigated.

Carbon nanotubes are attractive to use in quantum devices because of
their exotic electronic and mechanical properties. One proposal involving
carbon nanotubes utilizes their intrinsic spin-orbit interaction as a spin filter
to demonstrate the entangled nature of splitting Cooper pairs. Such a device
would have applications for quantum computing hardware as a source of
entangled electrons.

A model for the CNT spectrum is extended to include the coupling be-
tween longitudinal levels in a CNT quantum dot. The extension requires a
generalization of the electrostatic potential along the nanotube. The model
is shown to have god correspondence with transport data obtained from a
two-terminal CNT quantum dot device.

A CNT CPS device is fabricated which allows identification of non-collinear
spin-orbit magnetic fields in the two segments of the device. This is made
possible because the curved nanotube exhibits low disorder as measured by
its ratio of KK ′ scattering to spin-orbit coupling ∆KK′/∆SO. The spin-orbit
magnetic fields obtained in this device were previously considered to be dif-
ficult to obtain without using special fabrication techniques. We provide the
details for fabrication of the device, but note that the yield for this process
was low. Motivated by the results above theory is developed to describe the
effect of KK ′ scattering on the viability of the proposal mentioned above to
demonstrate entanglement of splitting Cooper pairs.

In the same CNT CPS device transport data is analyzed to extract the
contributions from Cooper pair splitting and elastic cotunneling processes to
the overall current. The vanishing of the nonlocal conductance signal with
magnetic field indicates that part of the transport mechanism involves the
superconducting electrode. Additionally, calculations of the Q parameter,
which are required in the above proposal, show that the test of entanglement
is robust against false positive results.

Control of the electrode-dot couplings in CPS devices is desirable for CPS
devices since it impacts the CPS efficiency. Transport data from a bottom
gated nanowire CPS device is presented showing that a given electrode-dot
coupling can be tuned by its corresponding bottom gate while leaving the
other couplings essentially constant. The dependence of the couplings on
the voltage on the bottom gates is found to be exponential consistent with
predictions from basic quantum theory.
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Overall, the results in this thesis give new insights into using carbon
nanotubes for Cooper pair splitter devices and entanglement detection ex-
periments.
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Glossary

A4 4% 950PMMA A resist in anisole. Produced by MicroChem.

A6 6% 950PMMA A resist in anisole. Produced by MicroChem.

AC Alternating current

AJA AJA evaporation chamber. Manufactured by AJA International Inc.

CNT Carbon nanotube.

CPS Cooper pair splitting/splitter.

CSAR4 Resist AR-P 6200.04 produced by Allresist.

EL6 6% Copolymer resist in ethyl lactate. Produced by MicroChem.

IPA isopropanol, 2-propanol

MIKB methyl isobutyl ketone

Nanotube See CNT.

NMP N -methyl-2-pyrollidone, chemical used for lift-off of resist.

Normal metal A metal which is not superconducting in the temperature
and pressure range typically used in mesoscopic physics: 1 mK-300 K
and 1× 10−10 mbar-1 bar. Examples include Au, Cr, Pd, Ti.

NW (semiconducting) nanowire.

PMMA poly(methyl methacrylate)

Switch A sudden change in electrostatic potential which causes electrical
measurements to exhibit discontinuities.

Ultra-clean A CNT device is “ultra-clean” if no fabrication has been per-
formed following the placement of the nanotube on the device elec-
trodes. This technique was introduced in ref. [1].

ZEP520A Resist produced by Zeon Corporation.
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Chapter 1

Introduction

As Moore’s law [2, 3] is starting to fail due to fundamental constraints candi-
dates are being considered as replacements for traditional silicon computing
[4]. Quantum computing is one of these candidates [5, 6].

Classical computers come up short when dealing with problems of a cer-
tain size or complexity such as simulating superconductors or protein folding.
A quantum computer replaces the classical bit with a qubit (quantum bit).
By doing so it enables the use of new and faster algorithms that are capable of
dealing with larger and more complex problems than are classical computers.

A key element in these algorithms is the entangled state and being able
to reliably generate entangled states is key to building a quantum computer.
Given two qubits and two states |0〉 and |1〉 an entangled state is one which
can not be written as a product of two single-qubit states. For instance,

|ψ〉 = |0〉 |0〉+ |1〉 |1〉 (1.1)

is an entangled state because products of single-particle states |φ〉 = |0〉+ |1〉
inevitably includes cross-terms like |0〉 |1〉.

A natural source of entangled pairs is the superconducting condensate.
Cooling some metals to cryogenic temperatures causes some of its conduc-
tion electrons to rearrange into so-called Cooper pairs. The electrons in the
Cooper pairs have opposite momentum and spin. According to BCS theory
[7, 8, 9], the state of a Cooper pair can be expressed as

|ψ〉 BCS = u |0〉 |0〉+ v |k ↑〉 |−k ↓〉 , (1.2)

that is, the states |k ↑〉 and |−k ↓〉 must be simultaneously occupied. A
Cooper pair is an entangled state which is hinted at by the similarity of its
state above with (1.1). If the Cooper pair can be split into its constituent
electrons we have, in principle, our entangled state.

In a quantum dot electrons are made to tunnel one-by-one through a
constricted region by utilizing their mutual repulsion. A Cooper pair is not
allowed in quantum dots because of this repulsion. Thus, if the Cooper

13
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Figure 1.1: A schematic of the Braunecker proposal [10]. Cooper pairs
are ejected from a central superconductor (SC) and cause a nonlocal current
in the two nanotube quantum dots. The current depends on the overlap
between the spin of the Cooper pair electrons (horizontal arrows) and the
spin of the nanotube states (slanted arrows). Measuring the current for
all 16 combinations of the states in the nanotube segments reveals whether
the particles responsible for the current are entangled. In order to obtain
dissimilar splittings of the levels in the two nanotube segments the nanotubes
must be at an angle.

pair electrons were to leave the superconductor through a quantum dot they
would have to separate and tunnel through different dots. Figure 1.1 shows
this situation where carbon nanotubes play the role as quantum dots.

Experiments of this type have already been done by measuring a corre-
lation in current between the two quantum dots. Also, Cooper pair splitting
(CPS) in both carbon nanotubes [11, 12] and nanowires [13, 14, 15] has been
demonstrated. What remains to be seen is that the electrons are actually
entangled when they leave the superconductor.

This question is addressed in the proposal by Braunecker et al. [10] shown
schematically in Figure 1.1. The idea is to use a curved carbon nanotube
with spin-orbit coupling as spin-filters so that the current is suppressed for
certain filter configurations. For instance, splitting a Cooper pair through
two spin-up states in the nanotubes should yield a lower current than splitting
it through states with opposite spin. This type of correlation test is called a
Bell test. Carbon nanotubes are especially well suited for this purpose since
the coupling between spin and orbital motion gives rise to a built-in magnetic
field oriented parallel to the tube axis. When an external magnetic field is
applied we can calculate the spin direction of the states in the nanotube and



CHAPTER 1. INTRODUCTION 15

orient the “filter” as we choose, thus enabling us to do controlled correlation
measurements. It is essential the the nanotubes are at an angle so that their
built-in magnetic fields are non-collinear.

We can sum up the requirements for the Braunecker proposal as follows:

1. The states in the carbon nanotube should be identifiable, that is, the
quantum dot should exhibit four-fold periodicity.

2. A superconducting gap must be present in a bias spectroscopy plot to
indicate that the central lead is superconducting.

3. The critical magnetic field BC of the superconductor must not be much
lower than the spin-orbit magnetic field. Otherwise the superconductor
will be made normal before the field can appreciably alter the nanotube
spectrum at a value of about B ∼ BSO.

4. In order to have reasonably well-defined spin states we require that
spin-orbit interaction dominates disorder: ∆SO > ∆KK′ .

5. The spin-orbit magnetic fields must not be parallel to ensure that the
spin bases are not parallel. Consequently, the nanotube segments them-
selves must be at an angle.

6. Finally, the current should exhibit nonlocal correlations in a specific
pattern.

Several of the requirements above have already been demonstrated previ-
ously in separate devices. Carbon nanotubes quantum dots exhibiting four-
fold symmetry and with superconducting gaps are common and were first
observed in [16]. Getting a high critical magnetic field is a matter of choos-
ing the right material or making the superconducting film thin. Spin-orbit
dominated nanotubes have been demonstrated in so-called “ultraclean” de-
vices [17], but also in a regular “non-clean” device [18]. Some bent (or kinked)
nanotubes have been measured previously, e.g. in ref. [19]. Cooper pair split-
ting has only been demonstrated recently [13, 11] and is a topic of current
research [12, 14, 15, 20].

In this thesis we investigate experimentally and theoretically carbon nan-
otube quantum dot devices in various geometries with an emphasis on their
utility for entanglement detection.

1.1 Outline of this thesis
The outline of this thesis is as follows

Chapter 2 describes basic theory on carbon nanotubes, quantum dots
and superconductivity. We focus in particular on the spectrum of carbon
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nanotubes and transport mechanisms in quantum dots. Bringing all of the
above together the chapter closes with transport in hybrid normal metal-
superconductor systems and the Cooper pair splitter geometry.

Chapter 3 outlines the experimental methods employed in this work which
include nanofabrication and cryogenic electronic measurements. Note that
the appendices contain additional, detailed information on, e.g., fabrication
parameters and tricks, lock-in measurements, and data modeling and visual-
ization.

Chapter 4 presents an analysis of a carbon nanotube quantum dot. Trans-
port through the dot is measured at high magnetic fields which allows the
hybridization of the nanotube shells to be observed and modelled. The in-
sights gained in this study advance the understanding of the carbon nanotube
spectrum. This understanding is important for realizing proposals such as
the entanglement detection experiment.

Chapter 5 contains the central results in this thesis. We show that the
requirements in the Braunecker proposal can realistically be satisfied in a
carbon nanotube device processed with conventional methods. In addition,
we analyze the effect of KK ′ scattering on the feasibility of the entanglement
detection experiment. The results show that entanglement detection can be
achieved with a finite amount of disorder.

Chapter 6 builds on the preceding chapter by analyzing nonlocal signals
in the same device. The evolution of these signals with magnetic field indi-
cates that they are, indeed, caused by splitting Cooper pairs. Calculations
on experimental data indicate that the Q parameter is robust against false
positive detection.

Chapter 7 shows that full control of the electrode-dot couplings can be
achieved in a bottom gated nanowire device. The dependence of these cou-
plings with the voltage applied to the bottom gates is exponential as predicted
by basic quantum theory.

This PhD thesis is written as part of the so-called “integrated” (4+4) PhD
program. Thus, some of the material presented in this thesis also appears in
the author’s master thesis (reference [21]). Specifically, Chapter 1, sections
2.1, 2.2, Chapter 3, the experimental data in Chapter 5 and Chapter A
appear in the author’s master thesis in shorter forms as material has been
added in the present thesis. We note that this practice is consistent with the
spirit and regulations of the integrated PhD program.

1.2 Publications
The work described in this thesis has resulted in the following publications

• M. C. Hels, K. Grove-Rasmussen, T. S. Jespersen, and J. Nygård, to
be submitted in Physical Review B. Chapter 4.



CHAPTER 1. INTRODUCTION 17

• M. C. Hels, B. Braunecker, K. Grove-Rasmussen, and J. Nygård. Non-
collinear spin-orbit magnetic fields in a carbon nanotube double quan-
tum dot. Phys. Rev. Lett., 117:276802, Dec 2016. Reference [22].
Chapter 5.

• M. Kühnel, M. Overgaard, M. C. Hels, T. Vosch, B. W. Laursen and
K. Nørgaard, to be submitted [23]. The manuscript is not included in
this thesis.



Chapter 2

Theory

2.1 Carbon Nanotubes
In this section we present an overview of the electronic structure of carbon
nanotubes. Focus will be on the effects that will be discussed in the data
which means that, e.g., strain and torsion effects will not be considered. A
more complete treatment can be found in [24] which also serves as inspiration
for the present section.

2.1.1 Physical Structure
A carbon nanotube (CNT) is a cylinder made of carbon atoms bonded in a
hexagonal structure.

For analyzing both physical and electronic properties the nanotube can
be thought of as a rolled-up graphene sheet as shown in Figure 2.1. The
graphene unit cell consists of two inequivalent carbon atoms, A and B. The
translation vectors are a1 and a2. We can form a cylinder from the sheet by
defining the chiral vector

Ch = na1 +ma2 (2.1)

and rolling the sheet along it until the start and end points of the chiral
vector touch. Examples of the resulting cylinder are shown in Figure 2.2. In
the general case the tube will be chiral so that its mirror image represents
a different structure which can not be obtained from rotation. Using the
short-hand notation Ch = (n,m) we see that two cases have a special sym-
metry: (n, 0) (zig-zag) and (n, n) (arm-chair). These tubes are non-chiral,
i.e., mirroring yields an equivalent structure.

The angle θ between a1 and the chiral vector Ch is important for the
properties of the CNT. It is given by

cos θ = Ch · a1

|Ch||a1|
= 2a+ b

2
√
a2 + ab+ b2

(2.2)

18
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Figure 2.1: A nanotube is obtained from a sheet of graphene by “rolling” the
sheet along C. The area defined by the T and C vectors define the surface
of the nanotube. The chiral vector C determines various properties of the
nanotube through the angle θ. Since a nanotube exhibits cylindrical symme-
try the graphene coordinates x, y, z are transformed into t, r, c coordinates
for the nanotube, denoting the axial, radial and circumferential direction,
respectively. Figure adapted from [25, 26, 27]

For the zig-zag and armchair structures θ = 0◦ and 30◦, respectively.
In graphene the distance between nearest neighbors aCC = 0.142 nm. The

diameter D of the CNT can be calculated with

D =
√

3aCC
π

√
a2 + ab+ b2 (2.3)

which also equals |Ch|/π. Typical nanotube diameters are 1 nm to 6 nm.

2.1.2 Electronic Structure
The starting point for the CNT band structure is the graphene spectrum
which we’ll review first, before going into the corrections necessary for nan-
otubes. The important part of the graphene spectrum are the Dirac cones
which are located at the Dirac points K,K′ = (0,∓)4π/3aCC. The Dirac
points K and K′ are a time-reversed pair, so by Kramers’ theorem they must
have the same energy as long as time-reversal symmetry is not broken. Near
the Dirac points the dispersion is approximately linear so with EF as the
zero-point of energy and measuring κ from a Dirac point we can write

E = ±~vF|κ|. (2.4)
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Figure 2.2: The chiral vector Ch defines the chirality of the CNT as either
armchair, zigzag or chiral. Armchair: Ch = (n, n), zigzag: Ch = (n, 0). All
other vectors give chiral nanotubes. Adapted from [28].

Here vF is the Fermi velocity of graphite which is about 8× 105 m/s.
For the purposes of this thesis we consider the following perturbations to

the graphene spectrum:
1. Quantization of the circumferential k-component k⊥ which confines the

spectrum to lines in the graphene spectrum.

2. Curvature-induced shift of the Dirac cones.

3. Application of an external magnetic field.

4. Spin-orbit coupling between the spin of an electron and its motion
around the nanotube.

5. A disorder term ∆KK′ which mixes the circumferential modes K and
K ′.

Quantization of k⊥ Rolling up a graphene sheet puts restrictions on k⊥
which is unrestricted in graphene. For the wave function to be single-valued
we require that it does not change its value upon completing one revolution
around the nanotube:

exp(ikr) = exp(ik(r + C))⇒ k ·C = 2πp⇒ k⊥ = 2p/D (2.5)

where p is an integer. Restricting k⊥ in this way yields a spectrum consisting
of line cuts through the graphene spectrum as shown in Figure 2.3.

Depending on whether the cuts miss the Dirac points or pass through
them the low-energy dispersion will be either linear or hyperbolic. In the
latter case a gap opens up since the conduction and valence bands don’t
touch at |κ‖| = 0. When k⊥ is quantized the dispersion takes the form

E = ±
√
~2v2

Fκ
2
‖ + E2

G/4 (2.6)
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Figure 2.3: (a), (c) By quantizing the wave number k⊥ around the nanotube
circumference the 1D dispersion of a nanotube is obtained as shown in (b),
(d). If the red quantization lines pass through a Dirac point (circles) the
nanotube is nominally metallic, while a band gap EG opens in the opposite
case. Figure adapted from [24].

Metallic nanotubes have linear dispersions and are gapless while semicon-
ducting nanotubes have hyperbolic dispersions and show gaps of

EG = 4~vF/3D ≈ 700 meV/D[nm]. (2.7)

Anticipating its use for quantum dots we replace ~vFκ‖ in (2.6) by the
confinement energy Econf:

E = ±
√
E2

conf + E2
G/4 (2.8)

In quantum dots the longitudinal motion is confined which leads to quantized
values for κ‖ and hence Econf. States that have the same Econf are said to
belong to the same shell.

In Figure 2.3 we see that a quantization line that passes close to a K
point will also pass close to a K′ point in the same distance. The states on
these lines close to the K and K′ points constitute the low-energy dispersion.
It is convenient to classify them as K or K ′ states according to which type of
point they are close to. This enables us to make the intuitive interpretation
that K and K ′ states in the same band (conduction or valence) circulate the
nanotube in opposite directions because they are time-reversal conjugates.
The direction of circulation is opposite for states in the conduction and va-
lence bands since v⊥ ∝ ∂E/∂k⊥ has opposite signs in the conduction and
valence bands.
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The K and K ′ points are collectively known as the valley quantum num-
ber. We’ll use τ = ±1 to refer to the valley quantum number where τ = +1
(−1) corresponds to K (K ′).

The K states are time-reversed partners of the K ′ states so they are
degenerate when time-reversal symmetry is not broken. This makes the
total degeneracy in nanotubes equal to four since the states are also spin-
degenerate.

Curvature-induced displacement of Dirac cones Another consequence
of rolling up a graphene sheet is that the orbital overlaps of the carbon atoms
change. This displaces the Dirac cones by a vector ∆κcv which is opposite for
K and K ′. In some metallic nanotubes this displacement causes the quan-
tization line to no longer go through the Dirac points. These nanotubes are
thus no longer gapless but exhibit gaps of [24]

Ecv
G = 2~vF|∆κcv⊥ | (2.9)

where the cv superscript stands for curvature. Nanotubes that change char-
acter in this way are called narrow-gap nanotubes. The magnitude of the
curvature band gap is about

Ecv
G ∼

50 meV
D[nm]2 cos 3θ (2.10)

which is always smaller than the quantization band gap in (2.7) so that semi-
conducting nanotubes remain semiconducting. Armchair nanotubes remain
metallic with the curvature perturbation since in their case ∆κcv is parallel
to the quantization lines and kcv⊥ = 0.

Behavior in Magnetic Fields A magnetic field interacts with an electron
orbiting a CNT in two ways: By coupling to the electron spin (Zeeman effect)
and by coupling to the circumferential motion around the nanotube.

The Zeeman energy in a magnetic field oriented parallel to the nanotube
axis is

EZ = 1
2gsµBsB‖ (2.11)

where s = ±1 denotes spin parallel or anti-parallel to the nanotube axis.
To find the energy of the coupling between the circumferential motion and

the magnetic field we use the following classical argument: The nanotube
cross-section has an area A = πD2/4 and the electron carries a current
I = |e|vF/πD by orbiting the tube. This gives for the magnitude of the
orbital magnetic moment

µorb = IA = |e| vF
πD
· πD2/4 = |e|vFD/4. (2.12)



CHAPTER 2. THEORY 23

B‖

Figure 2.4: Schematic showing orbital angular momentum (purple), spin
angular momentum (green) and applied B‖-field. Adapted from [17].

To obtain the orbital magnetic moment for a specific state we multiply by
τ which determines the direction of circulation. Applying a magnetic field
parallel B‖ as in Figure 2.4 thus increases the energy of the electron by

Eorb = ∓τµorbB‖. (2.13)

where the minus (plus) is for the conduction (valence) band. This equation
fixes our convention regarding valley interaction with a magnetic field: K
states (τ = +1) in the conduction band decrease in energy with increasing
parallel magnetic field. By defining an orbital g-factor1

gorb = µorb/µB = 1
4DevF ≈ 3.5×D[nm] (2.14)

we can write

Eorb = ∓τgorbµBB‖ (2.15)

so that the total energy Emag due to a parallel magnetic field is given by

Emag = EZ + Eorb = (sgs ∓ τgorb)µBB‖. (2.16)

A rigorous derivation of the orbital interaction involves the Aharonov-
Bohm flux through the nanotube cross section. The result obtained in this
way is the same as the one above, though.

In a magnetic field with arbitrary orientation the spin-up and spin-down
states are mixed by the perpendicular field, but only within a valley.

The nanotube spectrum as a function of perpendicular and parallel mag-
netic field is shown in Figure 2.5. In a parallel field sgs and τgorb add to give
four slopes. Two doubly-degenerate lines are visible for a perpendicular field
because it does not break the valley degeneracy.

1 Sometimes gorb is defined as gorb = 2µorb/µB so that we get the same factor of 1/2
as in (2.11) in the expression for Eorb.
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Figure 2.5: Nanotube spectrum without spin-orbit coupling or disorder
effects. In a parallel magnetic field the states split up according to their
combined g-factor sgs ∓ τgorb. A perpendicular field only affects the spin
because the orbital motion is perpendicular to the field. Figure adapted
from [24].

Spin-orbit Coupling The interaction between the spin of an electron and
the orbit in which it moves is called spin-orbit coupling. For instance, an
electron moving with velocity v in the electric field E of an atomic nucleus
will experience a magnetic field

B = − 1
c2 (v× E). (2.17)

This magnetic field then couples with the electron spin. For this electron the
“orbit” in spin-orbit coupling is an actual orbit around the atomic nucleus.

In carbon nanotubes the “orbit” is the motion around the circumference
of the tube. In cylindrical coordinates this motion is in the azimuthal direc-
tion while the average electric field from the nanotube atoms is in the radial
direction for symmetry reasons. Thus, an electron orbiting a nanotube expe-
riences a magnetic field which is directed parallel to the nanotube axis. This
property is important for the Braunecker proposal.

A closer theoretical treatment reveals that there are two types of spin-
orbit coupling in carbon nanotubes: A Zeeman-like contribution which shifts
the Dirac cones up or down by an amount

∆ESO,Z(τ, s) = ∆0
SOτs, (2.18)

and an orbital-like contribution which shifts the Dirac cones horizontally by
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Figure 2.6: Nanotube spectrum including spin-orbit interaction. The nan-
otube states split according to their combined g-factor as before, but the
spin-orbit coupling now acts to align orbital and spin magnetic moments,
even at zero field. The zero-field splitting ∆SO motivates the definition of a
spin-orbit magnetic field BSO = ∆SO/gsµB. By slanting the magnetic field
away from parallel spin-up and spin-down states are mixed as shown by the
anti-crossing in the inset. Figure adapted from [24].

an amount

∆κSO,orb
⊥ (s) = −s∆1

SO
~vF

. (2.19)

The Zeeman-like term is simply added to the Hamiltonian while the orbital-
like contribution is added to the curvature shift of the Dirac cones.

At zero magnetic field with only spin-orbit coupling present the splitting
of the four states is given by

∆SO ≡ 2
(

∆0
SO ∓∆1

SO
gorb
g0
orb

)
. (2.20)

The data presented in this thesis does not allow distinguishing the two types
of spin-orbit coupling so we will be using only the ∆SO parameter. We can
also define a spin-orbit magnetic field BSO by taking ∆SO as the Zeeman
splitting of this field:

∆SO = gsµBBSO ⇒ BSO = ∆SO

gsµB
. (2.21)

The spin-orbit magnetic field is directed along the axis of the nanotube.
Figure 2.6 shows the spectrum with spin-orbit coupling included. Com-

paring to Figure 2.5 we see the zero-field degeneracy of 4 is split into 2: a
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Figure 2.7: Nanotube spectrum including both spin-orbit coupling and
disorder. Neither spin nor valley are good quantum numbers if spin-orbit
and disorder effects are taken into account. Disorder ∆KK′ causes an anti-
crossing of the K ′ ↑ and K ↓ states and also contributes to the zero-field
splitting. Figure adapted from [24].

pair which has spin and orbital magnetic moments aligned (K ′↑ and K ↓)
and one that has them anti-aligned. The slopes are the same as before.

Note that the state labels have been removed from the perpendicular part
of the spectrum because valley and spin are not good quantum numbers in
this case.

The inset shows how misaligning the magnetic field relative to the nan-
otube axis changes the spectrum. A considerable change is seen in the per-
pendicular part since the magnetic field now also couples to the orbital mo-
tion. For a parallel field the K ′↓ and K ′↑ states exhibit an anti-crossing due
to their spins being mixed. This gap has a magnitude

∆Θ = |∆SO| tan Θ (2.22)

where Θ is the misalignment angle.

Disorder in the nanotube Impurities and dislocations are included in
the spectrum by a disorder term ∆KK′ which mixes K and K ′ states with
the same spin. It is a phenomenological parameter that is not derived from
first principles. Figure 2.7 shows the spectrum with both spin-orbit coupling
and disorder. The crossing of the K↑ and K ′↑ states is now an anti-crossing
due to K and K ′ being mixed. Neither spin nor valley are good quantum
numbers.
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The complete Hamiltonian Combining the contributions above involves
setting up a Hamiltonian in A−B subspace2 for parallel magnetic field and
without disorder and diagonalizing it. While it does provide some physical
insight it is outside the scope of this thesis. We simply give the result in the
approximation

E0
G � |∆1

SO|, µ0
orb|B‖| (2.23)

where µ0
orb is the orbital magnetic moment of the (electron or hole) shell

closest to the band gap. This is justified for typical semiconducting and
narrow-gap nanotubes. It does not hold for true metallic nanotubes, though,
since they have no band gap.

We will use the definition

E±τ,s ≈ E±0 + sτ
∆SO

2 +
(
∓τgorb + 1

2sgs
)
µBB‖ (2.24)

where
E±0 = ±

√
E2

conf + (E0
G)2/4 (2.25)

and E0
G is the combined quantization and curvature band gap. The magnetic

field is expressed as
B = (B‖, B⊥) = B(cos θ, sin θ) (2.26)

where θ is the angle between the nanotube axis and the magnetic field. In
the basis (K↑, K ′↓, K↓, K ′↑) we end up with

H =


E±1,1 0 0 ∆KK′/2

0 E±−1,−1 ∆KK′/2 0
0 ∆KK′/2 E±1,−1 0

∆KK′/2 0 0 E±−1,1



+1
2gsµBB


0 0 sin θ 0
0 0 0 sin θ

sin θ 0 0 0
0 sin θ 0 0

 . (2.27)

Note that in this basis the Hamiltonian is diagonal if no perpendicular mag-
netic field is applied and no disorder is present. In this case the energies can
simply be obtained from (2.24).

The E±0 term does not change within a shell. If we define this quantity
as the zero of energy for a given shell we should be able to reproduce its
spectrum using only the parameters ∆SO, gorb, ∆KK′ and the angle of the
nanotube axis.

For the N = 2 state electron-electron interactions can be included which
are sometimes important. Hence, the N = 2 states include an additional
parameter J for the exchange coupling. We will not discuss the spectrum for
N = 2 states here, but refer to [29].

2 Recall that the graphene unit cell contains two inequivalent carbon atoms, A and B.
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2.2 Quantum Dots
In this section we will briefly review the basics of quantum dots before de-
scribing cotunneling processes in more detail. The latter will play an impor-
tant role for data analysis in chapters 5 and 4. For a more in-depth treatment
of quantum dots we refer to [30].

2.2.1 Quantum dot basics
A quantum dot consists of a microscopic region typically of the order of
hundreds of nanometers in which electrons are confined by potential barriers.
Two requirements are made of the barriers: They must be high enough that
the number of electrons is a good quantum number and they must not be so
high as to prevent tunneling altogether.

In the following we will use the constant interaction model for the quan-
tum dot. The energy of the quantum dot E is determined by the number of
electrons on the dot N , the voltages and capacitances of nearby gates Vi, Ci
and the energies of the quantum mechanical levels εi

E = 1
2C

(
−|e|(N −N0) +

∑
i

CiVi

)2

+
N∑
i

εi (2.28)

where C is the self-capacitance of the dot, typically approximated by C =∑
iCi.
Using E we can get an expression for the addition energy Eadd, i.e., the

energy for adding an electron given N electrons already on the dot:

Eadd = µN+1 − µN = (EN+1 − EN)− (EN − EN−1)

= e2

C
+ ∆E ≡ U + ∆E (2.29)

where µN is the chemical potential for adding the N ’th electron. The charg-
ing energy U and the level spacing ∆E are key quantities for the quantum
dot.

We can approximate these quantities specifically for a nanotube: The
capacitance should be linear in L if the nanotube is much longer than it is
wide. Thus, the charging energy can be estimated for a nanotube of length
L by making the crude assumption

C ≈ ε0εrL (2.30)

so that

U ≈ e2

ε0εrL
≈ 4.5 meV

L[µm] . (2.31)
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where we have used the SiO2 value for εr of 4.
The level spacing is only added to the charging energy when a longitudinal

level in the dot is filled. In the simplest case the energy of the longitudinal
levels is simply given by a particle-in-a-box calculation. Taking E(k‖) =
~vFk‖ for a Dirac cone and k‖,n = nπ/L for a 1D particle in a box with
hard-wall boundary conditions we get

∆E = ~vF(k‖,n − k‖,n−1) = hvF
2L ≈

1.7 eV
L[µm] (2.32)

Longitudinal levels are often called shells to emphasize the similarity between
quantum dots and atoms. As discussed in the previous section carbon nan-
otube shells are four-fold degenerate in contrast to most other systems (e.g.,
nanowires,2-dimensional electron gases etc.) which only exhibit two-fold de-
generacy.

2.2.2 Transport in a quantum dot
To describe transport through the quantum dot we define the Hamiltonian
H for the system consisting of a dot and two metal leads

H = HD +HL +HR +HT (2.33)

where the first three terms determine the energy levels of the dot and the
left and right leads. We denote this non-interacting part of the Hamiltonian
by H0. The last term is the transfer term which transfers electrons between
the leads and dot. It can be split into parts concerning either lead

HT = HTL +HTR (2.34)

Transport through the quantum dot can be described by using a transfer
matrix T which is given self-consistently as [31]

T = HT +HT
1

Ei −H0
T (2.35)

where Ei is the energy of the initial state.
The transition rate of electrons Γβα from state α to state β is then given

by

Γβα = 2π
~
|〈β|T |α〉|2 δ(Eβ − Eα) (2.36)

where the delta function δ ensures energy conservation. Sequential tunneling
is the first-order contribution to this rate. Take, for instance, the first-order
term of the rate for the transition between α and β which moves one electron
from the left lead onto the dot:

Γ1st,L
βα = 2π

~
|〈β|HTL |α〉|2 δ(Eβ − Eα) (2.37)
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Figure 2.8: Sequential tunneling in a quantum dot. This type of transport
is first-order in the lead couplings Γi and is only possible when a transition
in the dot is in the bias window defined by the leads. (1)-(3) Transporting
an electron across the dot requires two sequential tunneling events. (4) By
increasing the bias window excited states can also be used for transport.
Adapted from [32].

To transport an electron from the left lead to the right lead we need two of
the above processes: left lead→ dot and dot→ right lead. That is, transport
occurs in separate steps. This is shown in Figure 2.8. Sequential tunneling is
also possible through excited states as shown in panel 4 in the same figure.

A standard result for sequential tunneling through a single quantum dot
level is the Breit-Wigner shape of the resulting conductance [33]

GBW = e2

h

ΓLΓR
ΓL + ΓR

Γ
(ε/~)2 + (Γ/2)2 (2.38)

where ΓL,R are couplings between left and right lead and the dot, Γ = ΓL+ΓR
and ε is the detuning of the level. An important point in eq. (2.38) is that
when the level is on resonance ε = 0 and the couplings are equal ΓL = ΓR
the conductance is e2/h.

If only sequential tunneling is considered a current can only flow when
the chemical potential of a transition (say, µN↔N+1 from N to N + 1) is
positioned between the Fermi energy of the leads:

µL > µN↔N+1 > µR. (2.39)

Transitions that are between the chemical potentials of the two leads are said
to be in the bias window. In this situation the dot occupation oscillates like
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Figure 2.9: Cotunneling in a quantum dot. These second-order processes
transport an electron across the dot via an intermediate state with a clas-
sically forbidden energy. (5) In elastic cotunneling processes the initial and
final energy of the dot are the same, although the state of the dot electrons
need not be. (6) If the final and initial states of the dot do not have the
same energy the process is inelastic. The extra energy must be provided from
somewhere else, in this case the source-drain bias. Adapted from [32].

N → N + 1 → N . If no transition satisfies this condition no current flows,
i.e., the dot is in Coulomb blockade.

Cotunneling is the second-order contribution to Γβα. Second-order pro-
cesses transport electrons all the way from the left to the right lead (they
may also transport electrons from a lead onto the dot and then into the initial
lead again, but these processes do not contribute to the current). Consider
a second-order process that takes an electron from the left lead and puts it
in the right lead via the intermediate state HTL |α〉.

Γ2nd
βα = 2π

~

∣∣∣∣〈β|HTR
1

Eα −H0
HTL |α〉

∣∣∣∣2 δ(Eβ − Eα) (2.40)

Here, the states α and β differ by one electron in the leads.
Cotunneling processes are shown in Figure 2.9. They are either elastic or

inelastic: In elastic cotunneling the initial and final state of the dot have the
same energy, i.e. an electron transfers onto the dot and the same electron
tunnels out again. In inelastic cotunneling an electron is removed from a level
that is different from the one that was tunneled into by the first electron. In
the latter case the energy difference between the initial and final state of the
dot is provided by, e.g., the source-drain voltage or microwave radiation. In
this project we will only consider source-drain voltage as the energy provider
for cotunneling. Inelastic cotunneling spectroscopy was first used to probe
the discrete spectrum of the quantum dot by De Franceschi et al. [34].

Let’s rewrite (2.40) a bit to gain some intuition. Letting H0 act on |α′〉 ≡
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HTL |α〉 gives Eα′ so the fraction above becomes

1
Eα −H0

|α′〉 = 1
Eα − Eα′

|α′〉 (2.41)

The transfer Hamiltonians HL,R contain the tunneling amplitudes tL,R be-
tween the leads and the dot, so, leaving out the details, Γ2nd

βα becomes

Γ2nd
βα ∝

|tR|2|tL|2

(Eα − Eα′)2 (2.42)

The quantity Eα−Eα′ is the difference between the initial configuration and
the configuration in which one electron in moved from the lead onto the dot.
If state α has N electrons on the dot this energy difference is

Eα − Eα′ = εL − µN+1 (2.43)

where εL is the energy of the electron in the lead that was transferred.
Let’s restate (2.42) as3

|tR|2|tL|2

(εL − µN+1)2 ∝
τ 2
α′

τRτL
(2.44)

This fraction sets the amplitude for the cotunneling process. In order to have
an appreciable amplitude τRτL should be of the same order or smaller than
τ 2
α′ . Intuitively this means that the electron must be able to tunnel through
the left and right barriers in a time comparable to or smaller than the time
τα′ it’s allowed to be in the virtual state α′. Thus, cotunneling is expected
to be stronger in dots with strong tunnel couplings.

Elastic cotunneling is only limited by the amplitude (2.44) so it can oc-
cur even when the dot is in Coulomb blockade. Inelastic cotunneling has
the further limitation that the source-drain voltage must match the energy
difference between two levels in the quantum dot. Thus, when the current is
dominated by cotunneling (i.e., in Coulomb blockade) the current increases
sharply when the source-drain voltage matches the energy difference between
two energy levels in the dot. Using this property of cotunneling to gain knowl-
edge about the spectrum of the dot is called excitation spectroscopy. We will
use excitation spectroscopy to determine the parameters of the nanotube in
the Results and Discussion section

The condition above also means that no inelastic cotunneling current is
possible before |e|VSD is equal to the energy difference between the lowest
two levels in the dot ∆1. For |VSD| > ∆1/|e| the current depends linearly on

3 We’re using |t|2 ∝ 2π|t|2d = Γ ∼ h/τ where d is the density of states which is assumed
constant. In a rigorous treatment the density of states is obtained from integration over
initial and final states. τα′ = h/(εL − µN+1) is the characteristic time that the system is
allowed to virtually occupy the intermediate state α′.
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source-drain bias because increasing VSD allows more states in the leads to
participate in the transport.

Finally, when the leads are superconducting and not metallic we should
take into account the superconducting gap ∆SC and the fact that the super-
conducting density of states is different from that in a metal. In the absence
of in-gap states no transport is allowed before the source-drain bias is raised
above ∆SC since no quasiparticle states are available in the leads. This su-
perconducting density of states may change the magnitude of the inelastic
cotunneling current, but we will not consider such effects here.

2.2.3 Kondo physics in a quantum dot
The conventional Kondo effect arises from a magnetic impurity embedded in
a metal [35]. Conduction electrons screen the spin of the impurity and form
a many-body state with a characteristic energy kBTK. This causes scattering
of the conduction electrons and increases the resistance once the temperature
drops below TK, the Kondo temperature.

A quantum dot with an odd number of electrons has a net spin-1
2 . The

occupied state with the highest energy will be doubly degenerate if time-
reversal symmetry is not broken. We can now imagine cotunneling processes
like above in which the dot electron with, say, spin up tunnels out and a
conduction electron with spin down tunnels in. The net result is a spin
flip of the dot electron. Summing all processes of this type again results in
a many-body “Kondo” state between conduction electrons in the lead and
the dot electron. Rather than suppress current as in a metal the Kondo
state actually enhances current since it provides a spatially extended state
at zero bias where the dot would normally be Coulomb blockaded. For a
degeneracy of 2 this effect is known as the SU(2) Kondo effect which again
has a characteristic energy of TK (if we drop the kB). Its effect is to increase
the conductance at zero bias, ideally to a maximum of 2e2/h when T � TK
rather than the standard e2/h for sequential transport through a single level
[36, 37]. The Kondo effect is only observed when the lead couplings are large
since it relies on cotunneling processes.

We can imagine the same processes in a carbon nanotube, but in this
system the level degeneracy is four rather than two. If the carbon nanotube
levels are not too split relative to the lead couplings we can potentially get
an SU(4) Kondo effect which involves all four levels. In analogy with the
SU(2) case this gives rise to an ideal maximum conductance at zero bias of
4e2/h [38, 39]. Thus, depending on the value of the lead couplings we can
observe both the SU(2) and SU(4) Kondo effect in a carbon nanotube.
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2.3 Superconductor-quantum dot systems
In a normal metal electrons can to a good approximation be treated as if they
do not feel each other’s repulsion. In a superconducting metal that is not so.
Here, electrons attract each other through an interaction mediated by the
positive ions in the lattice of the material. The result is that some electrons
pair up into Cooper pairs which are named after Leon Cooper. He developed
the BCS theory of superconductors with John Bardeen and John Schrieffer
in three seminal papers [7, 8, 9]. This section describes the properties of
superconductors from the point of view of BCS theory. We apply this theory
in the data analysis in Chapter 6.

This section draws on the excellent textbook by Michael Tinkham [40].

2.3.1 BCS Theory
The defining property of superconductors is the ability to conduct a finite
current with zero voltage drop. This dissipationless transport is only possi-
ble below certain critical values of temperature TC, magnetic field BC and
current IC. In temperature-magnetic field-current space we can speak of the
critical surface below which the metal carries the current with no voltage
drop.

Suppose we add a pair of electrons to a metal with a filled Fermi sea at
T = 0. Further, suppose the paired electrons have opposite momenta k and
−k and are in a spin singlet configuration to ensure that their wave function
is anti-symmetric as required when fermions are exchanged4. We can write
the state containing the Fermi sea and an additional electron pair as

|ψ〉 =
∑
k>kF

gkc
†
k↑c
†
−k↓ |F 〉 (2.45)

Here, gk is a weight that determines how much a given k-state contributes.
By doing so it also ensures, e.g., that states with infinite momentum and
energy are not occupied. All states with momentum smaller than the Fermi
momentum k < kF are filled by definition so unfilled states have k > kF. The
creation (annihilation) operator c†kσ (ckσ) creates (annihilates) an electron
with momentum k and spin σ =↑, ↓. Finally, |F 〉 denotes the Fermi sea
where all states up to kF are filled with electrons.

Let us check that the pairs are actually in spin singlet configurations.
Note that for a specific k0 with k0 > kF the sum in eq. (2.45) includes both

4 Some superconductors host paired electrons whose momenta are not opposite and this
allows for other spin configuration than the spin singlet [41, 42, 43]. In the following we deal
only with s-type superconductors, where the paired electrons are always in spin singlet
configurations. Furthermore, we will also restrict ourselves to type-I superconductors
which have more basic magnetic properties than type-II superconductors.
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k0 and −k0. Writing out both the k0 and −k0 term and requiring gk = g−k
we get for the part of |ψ〉 that concerns k0

|k0〉 = (gk0c
†
k0↑c

†
−k0↓ + g−k0c

†
−k0↑c

†
k0↓) |F 〉

= gk0(c†k0↑c
†
−k0↓ − c

†
k0↓c

†
−k0↑) |F 〉 (2.46)

where we have used the fermion anti-commutator {c†kσ, c
†
k′σ′} = 0. The state

in eq. (2.46) is, indeed, a spin singlet as required above. Being a singlet
it is also an entangled state meaning that at least part of the state cannot
be written as the product of two single-particle states. Moreover, it is a
maximally entangled state since it consists solely of terms that cannot be
written as the product of two single-particle states.

By inserting (2.45) into the Schrödinger equation it can be shown that the
energy of the pair is lower than 2EF for reasonable assumptions. Thus, the
pair forms spontaneously because it has lower energy than the two separate
electrons.

The next step is to allow all conduction electrons in the metal to form
pairs. In this case the wave function for N electrons can be expressed as

|ψN〉 =
∑

g(ki, . . . ,kt)c†ki↑c
†
−ki↓ · · · c

†
kl↑c

†
−kl↓ |φ0〉 (2.47)

where |φ0〉 is the empty state containing no electrons whatsoever. This wave
function is an educated guess. Its justification lies in whether or not it can be
used to predict properties of superconducting metals. Proceeding as above,
we extract these predictions by inserting (2.47) into the Schödinger equation.
Below we summarize the predictions we obtain.

In a normal metal in three dimensions the electron density of states N(E)
goes as

√
E [44]. Here, E is measured from the Fermi energy. Around

a sufficiently small interval around EF we can approximate the density of
states by a constant N(0). In a superconductor single-particle states are
pushed away from the Fermi energy. We can see this in the density of states

Ns(E)
N(0) =


E

(E2−∆2)1/2 , E > ∆
0, E < ∆

(2.48)

where E is the energy of independent (non-paired) particles and Ns(E) is
the superconducting density of states. In Figure 2.10 we compare the den-
sity of states of a superconductor with that of a normal metal. The square
root divergence at E = ∆ in the density of states of the superconductor is
important for quantum transport because an electrical current depends on
the density of states. Ns(E) approaches the value of the normal metal far
away from EF. Equation (2.48) says that in the interval −∆ < E < ∆
no single-particle states exist in the superconductor. Outside this interval



CHAPTER 2. THEORY 36

Figure 2.10: Comparison of density of states in a superconductor Ns(E)
and a normal metal N(0). The density of states for the normal metal is
approximated by the constant N(0) which is reasonable because the energy
scale of the interval 2∆ ∼ meV is small compared to changes in N(E) which
typically occur on the order of eV. The energy E is measured from the Fermi
energy EF. Adapted from [40].

single-particle excitations are typically called bogoliubons or quasiparticles5.
In practice superconductors may show deviations from the ideal density of

states outlined above. Recently, the distinction has been made in mesoscopic
physics between a “soft” gap if the bogoliubon states “leak” into the gap and
a “hard” gap if the gap more closely resembles the ideal case [46].

Our approach of eq. (2.47) hinges on idea that electrons pair up in a
metal. The attraction that causes this pairing is not infinitely strong so
we should expect the pairs to break up as we increase thermal fluctuations.
Indeed, this can be observed in the temperature dependence of ∆ which for
the simple superconductors discussed here takes the form

∆(T )
∆(T = 0) ≈ 1.74

(
1− T

TC

)1/2
, T ≈ TC (2.49)

5 The latter terminology may lead to confusion since the term “quasiparticle” also
denotes many-body states in quantum physics in general. Indeed, being the result of
many-body interactions a Cooper pair may arguably be regarded as a quasiparticle it-
self (quasiparticle in the sense of a many-body state, not quasiparticle in the sense of
a bogoliubon)! To be clear, in the terminology of superconductors, “bogoliubons” and
“quasiparticles” both refer to single-particle excitations, while a Cooper pair can only be
called a quasiparticle in the broad many-body meaning of the word (and even in that case
it may be more suitable to call Cooper pairs “collective excitations” since they are bosons,
see Mattuck pages 10, 227 [45]).
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where ∆(T ) is the magnitude of the gap at temperature T and TC is the
critical temperature at which the superconductor transitions into a normal
metal. For temperatures much lower than TC there is little variation in ∆
because few extra bogoliubons are excited by an increase in temperature.

Similarly, we can derive an expression for the gap dependence on magnetic
field [47]

∆(B)
∆(B = 0) =

√
1− (B/BC)2 (2.50)

where ∆(B) is the magnitude of the gap at magnetic field B and BC is
the critical magnetic field at which the superconductor transitions into a
normal metal. Actually, it is the magnetic flux through the superconductor
that affects this change. Thus, for the thin film superconductors used in
mesoscopic physics it is important to know how the magnetic field is oriented
relative to the film.

The paired electrons have a characteristic spatial extent which is termed
the coherence length. It is defined as

ξ = ~vF
π∆(T = 0) . (2.51)

Note that ξ is inversely proportional to ∆ meaning that superconductors
with larger gaps have smaller coherence lengths.

All these predictions are consistent with experimental results which indi-
cates that (2.47) is a good representation of the underlying physical system.

2.3.2 Transport in hybrid superconductor systems
Suppose we want to run a current through a superconductor coupled to a
different system, e.g., a metal, an insulator or a quantum dot. In the simple
case of a metal we already run into problems: The superconductor has no
single-particle states at EF for the metal electrons to go into. What happens
instead is that the incoming metal electron is transferred to the supercon-
ductor while a hole is reflected from the interface to the superconductor. The
net transfer is two electrons which pair up to form a Cooper pair in the su-
perconductor. This is illustrated in Figure 2.11a). This process is called an
Andreev reflection (AR) and the hole is said to be retro-reflected. If the hole
is ejected into a different piece of metal electrode than that of the incoming
electron the process is called a crossed Andreev reflection (CAR) (shown in
Figure 2.11). Both processes can occur in reverse, that is, the superconduc-
tor ejects a Cooper pair so that the constituent electrons go into the same
or separate metals. A reverse CAR is commonly referred to as Cooper pair
splitting (CPS).

A schematic of a Cooper pair splitter device is shown in Figure 2.12. A
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Figure 2.11: Schematics of a) an Andreev reflection and b) a crossed Andreev
reflection. S (N) denotes superconductor (normal metal). In an Andreev
reflection an electron impinging on a N-S interface is retro-reflected as a hole,
thus transferring two electrons to the superconductor. A crossed Andreev
reflection process proceeds along the same lines as an Andreev reflection,
except that the retro-reflected hole is ejected into a different metal than the
one of the impinging electron. As such, a CAR can be seen as the splitting
of the Cooper pair such that its constituent bogoliubons go into different
metals. Adapted from [48].

Figure 2.12: a) Schematic showing parameters of the Cooper pair splitter
system with superconducting (S) and normal (N) leads and two quantum
dots (QD1,2). The leads have chemical potentials µ and couplings Γ to
the quantum dots which have a mutual coupling Γ12. The energy of the
quantum dot levels is given by ε1,2 and the charging energies are U1,2. δr is
the spatial separation between the tunneling points. If δr is larger than the
coherence length ICPS is exponentially suppressed. The level spacing between
spin-degenerate levels ∆E is not shown in the figure. b) Energy diagram of
the Cooper pair splitter system. The black arrows show the process for the
Cooper pair splitting current ICPS. Adapted from [49, 48].
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Figure 2.13: Schematics of elastic cotunneling process involving virtual occu-
pation of intermediate states in a) QD2 and b) the superconductor. Process
I is suppressed as 1/U and process II is suppressed as 1/∆. Consequently,
in order to suppress the current due to cotunneling IEC large U and ∆ are
required. Adapted from [48].

central superconductor is connected to two quantum dots which are in turn
connected to normal metal leads. The charging energies U1 and U2 on the
dots suppress tunneling of Cooper pairs into the same dot.

The purpose of the Cooper pair splitter is to separate Cooper pairs. An
interesting feature of the split Cooper pairs is that their constituent bogoli-
ubons remain entangled as they travel on in either lead. Thus, the Cooper
pair splitter can be regarded as a rough electronic analog to experiments on
EPR pair generation in quantum optics [50, 51, 52]. Note, however, that
while entanglement experiments in optics deal with single pair detection the
electronic Cooper pair splitter has current as observable. Except in the case
where an additional dot senses the charge transport [53] the current measure-
ment is an average over many splitting pairs. Generating entangled particles
is also important for quantum computing algorithms [54].

Multiple transport processes are possible in a Cooper pair splitter apart
from CAR. In the following we will briefly review the theoretical results of
the analysis of transport by Recher et al. [49] of the CPS system.

The splitting of Cooper pairs is identified by current measurements. The
benchmark of the Cooper pair splitter can be defined as the ratio between
the current due to Cooper pair splitting ICPS and that due to other (elas-
tic cotunneling) processes IEC. Figure 2.12b) shows the desired Cooper pair
splitting transport process and Figure 2.13 shows unwanted elastic cotunnel-
ing transport processes. In Figure 2.13a) the intermediate cotunneling state
is the next level in the quantum dot, while in Figure 2.13b) the intermediate
state is the lowest bogoliubon. The former is suppressed as 1/U and the
latter is suppressed as 1/∆ by the same arguments as in section 2.2.2 so it is
desirable to have U and ∆ larger than the applied bias |eVSD| = |µS−µN1,2|.

The Cooper pair cannot split if one dot is occupied and the other is not.
Thus, the dot-lead couplings should be larger than the superconductor-dot
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couplings to increase the probability that both dots are unoccupied.
The level spacing ∆E is required to be larger than |eVSD| to avoid pro-

cesses where an electron with spin σ jumps onto the dot and another elec-
tron with opposite spin jumps back. Such processes destroy the entangle-
ment of the bogoliubons in the Cooper pair. Similarly, we require that
ΓN1,ΓN2 < |eVSD| to avoid spin-flip processes into and out of the leads.
Finally, the thermal energy kBT must be smaller than |eVSD| in order for the
voltage excitation not to be dominated by thermal fluctuations.

The conditions for the largest ICPS/IEC ratio can be summarized as

∆, U,∆E > |eVSD| > ΓN1,ΓN2, kBT, ΓN1,ΓN2 > ΓS. (2.52)

Apart from conditions on energy scales we should also require that the S-
QD tunneling points δr are not separated by more than the coherence length
ξ. Otherwise ICPS will be exponentially suppressed with increasing δr. Keep
in mind that these results are only strictly valid for a superconductor with a
hard gap.

The first experimental observations of CAR in metal-superconductor junc-
tions is by Beckmann et al. [55]. In Beckmann’s work two ferromagnetic
metal electrodes are connected to an Al superconductor via oxide barriers.
A current is sourced across one of the barriers and the voltage across the other
barrier is measured. The central finding is that the latter voltage depends on
whether the magnetizations of the ferromagnetic leads are parallel or anti-
parallel. This is consistent with CAR processes since having anti-parallel
magnetizations increases the probability of joining two electrons with oppo-
site spins. Soon after, Russo et al. [56] were able to quantify the relative
contributions of EC and CAR to the transport of the same configuration.

The configuration described above lacks control over the splitting process.
Such control was demonstrated at about the same time in a nanowire CPS
[13] and a carbon nanotube CPS [11]. In the former work Hofstetter and co-
workers showed that the magnitude and sign of the nonlocal signal depended
strongly on the tuning of the quantum dot as shown in Figure 2.14. Later
work on Cooper pair splitters has explored, e.g., the effect of finite bias
[57], the possibility of high efficiency splitting [12] and detection with noise
measurements [14].

To characterize Cooper pairs splitters two figures of merit are commonly
used: efficiency ε and visibility η. In this thesis we will use the definitions by
Schindele et al. [12]

ε = 2GCPS

G1 +G2
, η = η1η2 = ∆G1

G1

∆G2

G2
(2.53)

where Gi is the differential conductance in dot i, ∆Gi is the additional con-
ductance in dot i due to the Cooper pair splitting process and GCPS is the
additional conductance identifiable in both dots due to the Cooper pair split-
ting process: GCPS = min(∆G1,∆G2). In this thesis we will sometimes refer
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Figure 2.14: Standard measurement of the nonlocal signal in a Cooper
pair splitter. The gate voltage Vg2 on dot 2 is swept (panel a) while the
gate voltage Vg1 on dot 1 is held constant at various points (detunings) on
a Coulomb peak in dot 1 (panel c). Panel b shows the Coulomb peaks in
dot 2. Clearly, the detuning in dot 1 affects the magnitude and sign of the
nonlocal signal ∆G1. Adapted from Hofstetter et al. [13].
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to η as the global visibility and η1,2 as local visibilities. The additional signal
∆G will sometimes be referred to as the nonlocal signal. We note that other
definitions of efficiency exists, e.g., in reference [58].

In addition, the theoretical proposal by Braunecker et al. [10] suggests us-
ing the parameter Q in a Bell-like test [51] to determine whether the splitting
Cooper pair are entangled:

Q =
∣∣∣CaK ,bK + CaK ,bK′ + Ca

K′ ,bK
− Ca

K′ ,bK′

∣∣∣ ≤ 2 (2.54)

where the spin-spin correlator

Caτ ,bτ ′ =
∑
ν,ν′=± νν

′Gνaτ ,ν′bτ ′∑
ν,ν′=±Gνaτ ,ν′bτ ′

. (2.55)

for spin polarization axes a and b and Gνaτ ,ν′bτ ′
is the conductance product

G1G2 integrated over a suitable region centered on a resonance crossing. We
will discuss the Q parameter in Chapter 5.



Chapter 3

Fabrication and Experimental
setup

3.1 Fabrication
Device fabrication on the nanoscale requires use of multiple advanced tech-
niques, all of which have a number of tunable parameters that must be just
right in order for the fabrication to be successful. Part of the present project
has been to figure out the right combination of parameters for the fabrication
of carbon nanotube devices with arbitrary geometries, i.e. figuring out the
fabrication recipe. An overview of this development process as well as the
final recipe are available in Appendix A.

Carbon nanotube devices with Cooper pair splitter (CPS) geometries
were a specific focus in this project. One such device is shown in Figure
3.1. The CPS geometry consists of a central superconducting lead with two
normal leads placed symmetrically on either side of it. The side gates can
be on either side of the nanotube. This geometry defines two quantum dots
in the carbon nanotube that can be tuned with the side gates. This thesis
presents data from one CPS device in chapters 5 and 6. We will refer to this
device as devA in the following. Chapter 4 presents data from a 2-terminal
carbon nanotube device. Details for the fabrication process for this device
can also be found in Chapter 4.

The normal (i.e., non-superconducting) leads on devA consist of 50 nm
Au (thermally evaporated). Typically, a thin layer (≈ 5 nm) of titanium or
chromium is deposited below the Au to “stick” the Au to the surface of the
chip since Au peels off easily by itself. Due to fabrication irregularities this
sticking layer was not deposited on devA which means that the nanotube is
in direct contact with the Au.

The superconducting lead on devA is 5/15 nm Ti/Al (e-beam evapo-
rated). A thin layer was chosen for the aluminium to give a high critical
in-plane field in the superconducting state. The standard value for the crit-

43
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400 nm

Figure 3.1: Scanning electron microscope (SEM) image of the nanotube in
devA with metal leads overlaid digitally. The gold areas are 50 nm Au and
the dark grey area is 5/15 nm Ti/Al. The image was taken before metal leads
were deposited which is why they are overlaid instead. To avoid the risk of
damaging the nanotube no SEM image has been taken of the device after
metal leads were deposited.

ical magnetic field of bulk aluminium at 0 K is 10.5 mT [44]. This value is
too low to change the energy levels in a typical carbon nanotube appreciably
which is required for the Braunecker proposal.

For the nanotube growth we decided to use few lithographically defined
catalyst islands rather than spreading smaller catalyst particles over the full
chip. Having precisely defined catalyst islands provides spatial control with
the nanotubes thus making it easier to avoid stray tubes shorting electrodes.
However, having less catalyst may also lead to fewer nanotubes overall.

A 1× 1 cm chip would typically have 16 catalyst islands, each with diam-
eters of about 10 µm. The diameter was increased from about 3 µm early in
the process since the smaller diameter islands tended to be removed in the
lift-off step. The 10 µm islands were remarkably robust when defined with a
double resist layer of A6 as done in ref. [59]. It was not uncommon for a base
chip with 32 islands to have 100% yield after the catalyst deposition step.
Alignment marks were placed at the corners of a 100 × 100 µm square for
accurate alignment of the inner features. An example of an inner square be-
fore processing electrodes is shown in Figure 3.2. The nanotube yield in this
figure was typical in this project. It is ideal for fabricating devices since only
one or two tubes are long enough to extend a significant distance (& 1 µm)
from the catalyst island. Fewer or shorter nanotubes cause cramped designs
because of proximity to the catalyst island. Avoiding stray nanotubes be-
comes a problem if the tubes are longer and more numerous. In perhaps 10%
of the growths either zero or thousands of nanotubes would form, rendering
the chip useless. We did not investigate this issue, since a new growth could
easily be made after removing the nanotubes with plasma ashing [60].

Figure 3.2 demonstrates that the nanotubes readily position themselves
in advantageous geometries for fabricating Cooper pair splitters. The cross-



CHAPTER 3. FABRICATION AND EXPERIMENTAL SETUP 45

Figure 3.2: Central 100×100 µm area of a carbon nanotube chip after CVD
growth. Carbon nanotubes (dark and light grey lines) are seen “sprouting”
from the central catalyst island. The island is defined lithographically to be
a perfect circle, but it typically ended up somewhat smaller or larger as seen
here. Alignment marks for accurate alignment of electrodes to the nanotubes
are seen in the corners.
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Figure 3.3: Close-up of a nanotube (light grey line) curved into a complex
geometry. Electrodes (green) have been overlaid graphically on the device,
forming three side-gated quantum dots.

ing nanotube to the upper left of the catalyst island is one example of this.
One explanation for this self-arrangement of the tubes is that they grow per-
pendicular to the chip and collapse onto the substrate while entangling once
they become too long to sustain themselves [61]. At the substrate van der
Waals forces prevent them from disentangling. The nanotubes often twisted
into even more interesting geometries as shown in Figure 3.3. Although this
particular nanotube geometry was the most spectacular encountered in this
project similar geometries were observed in about 1 out of 16 islands, or
roughly one per 1 × 1 cm chip. Such tube geometries could be used to im-
plement, e.g., a Shiba molecule [62], in this case with three Shiba “atoms”.
Unfortunately, the final device exhibited low conductance at room temper-
ature, indicating that it would not have formed a well-behaved dot at low
temperatures.

3.1.1 Fabrication challenges
Although devA exhibits a clean electronic structure, which is desirable for
carbon nanotube devices, it should be noted that only a few high-quality
devices were fabricated out of hundreds of attempts. The chip containing
devA had a yield of ≈ 40% for Cooper pair-splitter geometries and was one
of the earliest fabricated in this project. Despite great efforts to replicate the
exact process for this chip the yield never increased beyond 5% in subsequent
attempts. Thus, despite the quality of the devA chip the overall yield for the
fabrication process described here and in Appendix A is still in the single
digits percent. Specifically, the issue was obtaining conducting nanotubes
at room temperature. Low temperature properties were rarely measured be-
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cause of the low room temperature conductance. In the following we outline
some of the measures that were taken to combat this issue. Please refer to
section A.4 for more details

One concern about the fabrication process was the necessity of imaging
the carbon nanotubes with a SEM after growth in order to design device
geometries on them. We were concerned that the SEM electron beam would
damage the nanotubes and alter its electronic properties. Although some
devices with carbon nanotubes of high quality have been fabricated in this
project it is unknown whether the yield would have been higher if the nan-
otubes had not been imaged. It is the impression of this author, though, that
the adverse effects of imaging are negligible compared to the type of metal
used in the leads, the width of the metal leads, how well resist is removed
in the development step before depositing metal leads and the pressure and
procedure of metal evaporation.

When a normal metal is brought into contact with a semiconductor a
Schottky barrier is formed. The height of the barrier depends on the differ-
ence in the work functions in the metal and semiconductor. This has recently
been discussed in the context of carbon nanotubes in ref. [28]. A high bar-
rier may cause the metal-CNT junction to block all electron transport so
the typical approach is to choose a metal with a work function close to the
≈ 4.7 − 4.8 eV found in CNTs [28]. Gold (5.1 eV), chromium (4.5 eV), pal-
ladium (4.25 eV), rhodium (4.98 eV) and titanium (4.33 eV) [63] are often
used. In this project gold (both thermal and e-beam evaporation), titanium
and palladium (both from the Copenhagen lab and the Laboratoire Pierre
Aigrain run by Professor Takis Kontos) were used with no observable and/or
consistent difference in conductance of the final devices.

If a suitable metal is selected and the Schottky barrier is low enough to
allow transport the metal-CNT interface may still be degraded by impurities.
This is especially true for typical nanofabrication processes where resist is
repeatedly applied to and stripped from the substrate. It is standard practice
to plasma ash the substrate after development to remove any resist residues.
This is not an option for CNTs since plasma ashing damages the tubes [60].
Instead, efforts have been made towards “ultra-clean” nanotube devices [1]
where nanotube placement is the last step in the fabrication process. The
issue of resist contamination has been treated recently by Samm and co-
workers at the University of Basel in ref. [64]. They find that substituting the
PMMA resist for ZEP520A results in better yield. The fabrication process is
described in great detail in ref. [65]. Despite following the process above no
difference in conductance was observed in this project indicating the presence
of at least one other issue.

Another potential cause for contamination of the metal-CNT interface is
using an inadequate dose when exposing the electrodes. In the same vein, an
inadequate lift-off can leave residues behind. Dose tests and lift-off tests were
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conducted to investigate this. The results showed that the electrodes them-
selves have a wide margin of error before breaking because of underexposure
or fusing together to short-circuit. A factor of two between the clearing dose
and the fusing dose was not unusual. However, varying the dose or the lift-off
process did not yield observable differences for the nanotube conductance.

One interpretation of the low nanotube device conductance is that the
metal-CNT contact is mediated by point-like uncontaminated spots. If a
given piece of the nanotube has a high probability of being covered by con-
taminants, one could argue that high conductance devices are those where
a point-like uncontaminated metal-CNT interface exists, not those with low
general contamination. To investigate this we conducted tests where the elec-
trode width was varied since wider electrodes would increase the probability
of hitting an uncontaminated point on the nanotube with the electrode. This
test also did not show observable or consistent increased conductance.

An interesting approach to avoiding contamination is to use ice as a novel
type of resist for CNT devices. Although “ice lithography” yields clean de-
vices and minimizes resist residue it also requires major modifications to
e-beam lithography equipment [66, 67, 68, 69]. Also, to our knowledge no
low-temperature studies have been made yet of CNT devices fabricated using
ice lithography. Such studies could provide further insights into the influence
of resist on nanotube device quality.

Of course, the nanotubes themselves may be of low quality. For instance,
defects and oxygen functionalization have been found to heavily impact CNT
conductivity [60, 70]. Varying the gas flows and durations of the growth pro-
cess in the Copenhagen lab did not yield an observable difference in nanotube
conductance. However, the CVD tube itself, which may also be a source of
contamination, was not changed during the process. The strongest test of
the hypothesis that the nanotubes are low quality is to obtain nanotubes
that are known to work from other laboratories. Nanotube samples from
University of Basel and Laboratoire Pierre Aigrain did not show observably
increased conductance, however. Processing the samples from University of
Basel was made difficult by the fact that their surface had become hydrophilic
which effectively prevented resist spinning. The usual treatment for this is-
sue, plasma ashing, was not available because of its detrimental effects on
the structure of CNTs [60].

In summary, although one batch of high-quality devices was successfully
fabricated no general method for obtaining such devices was developed. Im-
proving the nanofabrication scheme as attempted above certainly has the
potential to yield high-quality devices as attested by the high-quality devices
in the literature. However, it is the author’s opinion that in order to effi-
ciently employ nanotubes in devices with advanced geometries or materials
while maintaining low disorder (that is, ∆SO > ∆KK′) it is necessary to ex-
plore novel fabrication schemes. Such schemes could include ice lithography
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or in-situ screening of nanotubes at cryogenic temperatures [71, 72].

3.2 Experimental Setup
All measurements were done in a Oxford Instruments Triton200 dilution re-
frigerator at a base temperature of 30 mK unless otherwise specified. The
base temperature is calibrated at installation by Oxford Instruments engi-
neers using 60Co nuclear orientation thermometry. During standard opera-
tion the base temperature is measured using a RuO2 sensor. The electron
temperature was not measured in this project but it is typically ∼ 100 mK
[73, 74].

Temperatures in the tens of millikelvins range are achieved by dilution
refrigerators by letting 3He cross a phase boundary between a pure 3He phase
(the concentrated phase) and a 3He-4He phase (the dilute phase). In doing so
the 3He extracts energy from the system. This process occurs continuously
in a mixing chamber. Pumping on the dilute phase preferentially removes
3He which prevents the phases in the mixing chamber from reaching equilib-
rium. The 3He is then recycled and eventually enters the concentrated phase
again where the process is repeated. The Triton200 refrigerator is cryogen
free, meaning that the 3He-4He mixture is kept in a closed loop. Having a
closed loop is advantageous because liquid 4He and especially 3He are rather
expensive.

The refrigerator is fitted with a superconducting vector magnet powered
by a Mercury iPS. The magnet can reach (nominally) 3 T in the x-direction
and 8.5 T in the z-direction. The magnet is unable to set a field in the y-
direction. Cylindrical polar coordinates can also be used which allows the
magnetic field to be set at an arbitrary angle within 3 T in the x-z plane.
The sample itself is also in the x-z plane so no out-of-plane magnetic field
can be applied.

The electrical setup is as shown in Figure 3.4. All DC lines in the cryostat
go through an RF filter to prevent high frequency noise. All lines also go
through an RC filter for low-frequency filtering, but only the lines connecting
the side gates have resistances in the RC filter. For the remaining lines the
resistance was removed from the RC filter to make correlation measurements
easier. The specific instrument models used are as follows: DAC: DecaDAC
custom-built by Jim MacArthur at Harvard. Lock-in amplifiers: Stanford
Research Systems SR830. Multimeters: Agilent 34401A. Current amplifiers:
Ithaco DL1211. Voltage source: Keithley 2614B.

The figure also shows the couplings between the normal leads and the
nanotube ΓNL and ΓNR, and the coupling between the superconducting lead
and the nanotube ΓSL and ΓSR.

The current amplifier has two inequivalent output connections. One
which passes the signal through a low-pass filter with a variable time constant
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and one in which the signal is not filtered. The first output is configured to
a time constant of ∼ 100 ms and sent to a multimeter for measuring DC cur-
rent. The second signal is sent to a lock-in amplifier for measuring differential
conductance using standard techniques.

The differential conductance dI/dVSD is obtained using either the lock-
in signal or numerically differentiated DC current which is in some cases
less noisy. The second derivative of the current d2I/dV 2

SD is obtained either
by numerically differentiating the lock-in signal by VSD or directly from the
lock-in (see Appendix C.1).

Data acquisition was done with the matlab-qd framework for Matlab
written by Anders Jellinggaard1.

1 The framework is available here https://github.com/qdev-dk/matlab-qd.
Special thanks go to Anders for supplying this code which simplified data acquisition
immensely.

https://github.com/qdev-dk/matlab-qd
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Figure 3.4: Setup for measuring devA. A DC and AC voltage is applied
to the central superconducting lead and the corresponding DC and AC cur-
rent through each nanotube segment is measured two-terminally. Couplings
Γ(S/N)i, currents Ii, bias voltage VSD and side gate voltages VSGi are shown
on the device. Note that 1 and 2 are sometimes used in place of L and R
for the currents, couplings and side gates. The makes of the instruments are
specified in the main text. See also Figure 5.1.
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Abstract
We systematically study the coupling of longitudinal modes (shells) in a car-
bon nanotube quantum dot. Inelastic cotunneling spectroscopy is used to
probe the excitation spectrum in parallel, perpendicular and rotating mag-
netic fields. The data is compared to a theoretical model including coupling
between shells, induced by atomically sharp disorder in the nanotube. The
calculated excitation spectra show excellent correspondence with experimen-
tal data.

Introduction
Carbon nanotube (CNT) quantum devices have been the basis for many
studies of, e.g., quantum information processing [18, 75, 76, 77], spintronics
[78] and coupling of mechanical and electronic degrees of freedom [79, 80].
CNTs are attractive because their electronic behavior is well-understood and
can be accurately described with a single-particle model. This sets them
apart from other more complex systems such as 2DEGs and nanowires. The
basic behavior can be captured in a simple four-level model for spin s =↑, ↓
and valley τ = K,K ′ degrees of freedom. Advances in fabrication have
produced high quality nanotube devices [1, 71] which enable measurements
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of more exotic properties such as, e.g., spin-orbit interaction [17, 81, 82, 83].
The additional valley degeneracy increases the total degeneracy from two to
four in CNT quantum dot longitudinal modes (shells) [16, 84, 85]. So far,
the coupling of nanotube shells has not been examined in detail since the
level spacing between shells in carbon nanotubes is typically so high that
this coupling can be safely neglected.

In this paper, we systematically study the coupling of three shells in
a CNT quantum dot and show that it can be adequately described with
a minimal extension of the existing model [24]. The nanotube spectrum
is probed experimentally with inelastic cotunneling spectroscopy [86] which
yields the differences between energy levels in the nanotube quantum dot.
The evolution of the energy level differences for various fillings of a nanotube
shell is measured as a function of parallel, perpendicular and rotation of
the magnetic field. The quality of the model is assessed by calculating the
excitation spectrum and fitting it to the obtained data. We find that the
model fits the data well given two sets of parameters describing fillings of 0,
1 and 2, 3 and 4, respectively.

Model
For the states in shell ν we will use an effective four-level model [24, 81, 82,
83, 87, 88] for a carbon nanotube quantum dot in an applied magnetic field
with magnitude B and angle θ measured from the nanotube axis:

Hν =gsµBB(cos θσzτ0 + sin θσxτ0)
+ gνorbµBB cos θσ0τz + ∆ν

SOσzτz (4.1)

where τi and σi are Pauli matrices in valley (K, K ′) and spin space, gs
the electron spin g-factor and µB the Bohr Magneton. The effect of the
magnetic field on the circumferential motion is opposite for K and K ′ and
is set by the orbital angular moment gνorb. ∆ν

SO sets the magnitude and
sign of the spin-orbit interaction which couples spin and valley states. Each
shell ν has its own set of parameters as indicated by the superscript. This is
justified by experimental studies which show that the parameters may change
significantly between shells, but rarely change within a shell [81, 22].

Both shell index ν, valley index τ and spin s are conserved quantities inHν

so we can label the eigenstates as |ντs〉. When imposing periodic boundary
conditions along the circumference and hard-wall boundary conditions at
the nanotube-electrode interfaces we get the following wave functions for a
metallic nanotube [83, 88]

Ψντs(φ, z) = 〈r|ντs〉 = 1√
πL

eiτqφ sin(νzπ/L) |s〉 . (4.2)
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Here ν = 1, 2, . . ., τ = ±1 for K,K ′. The nanotube quantum dot segment
has length L, r is the position vector for the electron, z lies along the nan-
otube axis, and φ is along the circumferential direction. The orbital quantum
number q is defined by the chiral vector indices n1, n2 as q = (n1 − n2)/2
which is an integer for metallic nanotubes. Note that the nanotube is only
nominally metallic as it may still exhibit a (smaller) bandgap induced by
curvature [24].

We now introduce a perturbation H ′ to coupleK andK ′ states motivated
by disorder in the nanotube and interaction with the substrate

H ′ = V (z)δ(φ). (4.3)

Here V (z) is an atomically smooth perturbation in the longitudinal z direc-
tion and δ(φ) is an atomically sharp perturbation along the circumference.
Note that H ′ can only couple K and K ′ states if it contains an atomically
sharp part [24]. H ′ leads to the following matrix elements

〈νms|H ′ |ν ′m′s′〉 = ∆νν′

KK′δss′ (4.4)

where

∆νν′

KK′ = 1
πL

∫ L

0
V (z) sin(νzπ/L) sin(ν ′zπ/L)dz. (4.5)

Hence, this perturbation mixes all states in shell ν with all states in shells ν ′,
except states with opposite spin. Note that eq. (4.5) implies ∆νν′

KK′ = ∆ν′ν
KK′ .

For a constant V (z) = V0 we get for the coupling of shell ν with itself

〈νms|H ′ |νm′s′〉 = ∆ν
KK′ ≡ ∆νν

KK′δss′ = V0

2 σ0(τ0 + τx) (4.6)

The τ0 term is often ignored when considering only a single shell because
it simply amounts to a shift in energy which can be absorbed in the level
spacings. The remaining τx describes the usualKK ′ mixing. Here, we extend
the standard model described above by allowing terms in the expansion of
V (z) which are first-order and above in z. These terms lead to the same
structure as eq. (4.6), but they are off-diagonal in shell space.

In the following we will restrict ourselves to three shells labeled ν =
0, 1, 2 and separated by level spacings ∆Eνν′ , so that the full 12-dimensional
Hamiltonian becomes in ν-space

H =

H0 0 0
0 H1 + ∆E01 0
0 0 H2 + ∆E12

+ ∆νν′

KK′δss′ (4.7)

Each shell has three intrinsic parameters, gorb, ∆SO and ∆KK′ , and there
are three shell coupling parameters ∆νν′

KK′ . This makes for a total of 14
independent parameters.
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Figure 4.1: (a) Bias spectroscopy data in the conductance band. Diamond
heights exhibit four-fold periodicity indicating filling of spin and valley degen-
erate shells whose indices are shown with ν. The magnitude of the zero-field
Kramers doublet splittings can be identified from the onset of inelastic co-
tunneling, highlighted as Λν =

√
(∆ν

SO)2 + (∆ν
KK′)2. The colormap is shown

as
√
dI/dV rather than dI/dV to emphasize these onsets whose conductance

jumps are small relative to sequential tunneling conductance. (b) Schematic
of device (not to scale). (c) Schematic of inelastic cotunneling spectroscopy
which is used to probe the spectrum of the nanotube quantum dot. Markers
refer to Fig. 4.2 at 5 T.

In summary, the model describes three shells, each with two Kramers dou-
blets. Parameters or excitations that involve more than one shell (Kramers
doublet) are termed inter-shell (inter-Kramers). Correspondingly, we use
intra-shell (intra-Kramers) within a shell (Kramers doublet).

Methods
Fig. 4.1(b) shows the simple two-terminal geometry of the device. The nan-
otube is grown using chemical vapor deposition (CVD)[89] on a doped Si chip
with a 500 nm capping layer of SiO2. Subsequently, electrodes are defined
with electron-beam lithography so that they are bridged by the nanotubes
at random. The electrodes consist of Au/Pd (40/10 nm).

Rotation of the magnetic field in the x-z plane was achieved using a piezo-
electric rotator. Standard lock-in techniques were used to obtain dI/dV .
The lock-in conductance was differentiated numerically to obtain d2I/dV 2.
Measurements were done at a temperature of 100 mK in a 3He/4He dilution
refrigerator.

The CNT spectrum was probed with inelastic cotunneling spectroscopy
to obtain the excitation spectrum. In this technique the applied voltage VSD
is increased at a fixed magnetic field with the device in Coulomb blockade
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until it matches the energy difference between two levels. At this voltage
a second-order tunneling process such as the one sketched in Fig. 4.1(c) is
allowed which causes an increase in conductance. Numerically taking the
derivative of the conductance subsequently yields peaks where VSD matches
energy differences.

Experimental Results
Initial characterization of the device using bias spectroscopy is shown in Fig.
4.1(a). We plot

√
dI/dV rather than dI/dV to highlight the onset of inelastic

cotunneling. The heights and widths of the Coulomb diamonds are seen to be
approximately four-fold periodic, reflecting the filling of Kramers doublets in
the nanotube shells. We label the electron filling of the dot by ∆ne ≡ ne−ne,0
and estimate ne,0 ≈ 40. At half-filling of shell ν (∆ne = 2) the onset of
inelastic cotunneling is marked on the figure as Λν =

√
(∆ν

SO)2 + (∆ν
KK′)2.

We estimate the charging energies U = 7–8 meV and level spacings ∆E = 2–
4 meV.

In order to investigate the shell couplings of the nanotube spectrum we do
inelastic cotunneling spectroscopy in shell ν = 1 for various fillings, magnetic
field strengths and angles. The model in (4.7) is fitted to the data by manu-
ally iterating the parameters and visually inspecting the goodness-of-fit. The
bias spectroscopy data in Fig. 4.1(a) fixes some parameters and/or constrains
the parameter space by providing Λν and level spacings. Additionally, some
intra-shell parameters are determined as in previous studies [22] from data at
low magnetic field where inter-shell couplings are negligible. We find param-
eter values consistent with those previously reported [17, 18, 81, 19, 90, 91].
Since ∆SO � ∆KK′ in all shells we can treat spin as an approximately good
quantum number. This means that the two time-reversed states in a Kramers
doublet have approximately opposite spin.

For fillings ∆ne = 0, 1 the obtained spectrum and data for parallel mag-
netic field are shown in Fig. 4.2. In the calculated spectrum in Fig. 4.2(a)
occupied (empty) energy levels are indicated by solid (dashed) lines. Thus,
the spectrum corresponds to a filling of ∆ne = 1 as noted in the top left cor-
ner of the figure. Excitations are shown with vertical lines and a marker, but
only between occupied and empty levels. This means that some excitations
for, e.g., ∆ne = 0 are not shown in Fig. 4.2(a) because they involve two filled
or two empty levels. The parameters for the spectrum can be found in Table
4.1. Note that all three panels in Fig. 4.2 share the same set of parameter
values.

The experimental excitations in Fig. 4.2(b),(c) are all captured accurately
by the model. At low magnetic field in Fig. 4.2(c) (∆ne = 1) the expected
excitations are observed: The intra-Kramers excitation starts at zero energy
due to the required degeneracy at B = 0 and the two inter-Kramers excita-
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Figure 4.2: (a) Spectrum of the three nanotube shells as a function of
magnetic field strength obtained from fitting (b) and (c) to the model in eq.
(4.7). Solid (dashed) lines indicate filled (empty) states. The inset shows
how the ν = 0, 1 anticross magnitude depends on the inter-shell parameter
∆01. (b) and (c) Inelastic cotunneling spectroscopy in the center of Coulomb
diamonds ∆ne = 0e, 1 as a function of magnetic field strength. The excitation
spectrum is calculated from level differences in (a) and overlaid on the data.
Excitations are identified by markers for easy comparison between model and
data. Note that markers for high-energy excitations are left out for clarity.
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Table 4.1: Parameters obtained from fitting inelastic cotunneling data in
figures 4.2, 4.3 and 4.4. The parameters for 0 and 1 electrons in shell 1 are
different from those for 2, 3 and 4 electrons. This can be explained by a
change in the electrostatic potential along the nanotube. All values are in
meV except gorb-values which are dimensionless.
shell ν = 0 ν = 1 ν = 2
parameter ∆SO ∆KK′ gorb ∆SO ∆KK′ gorb ∆SO ∆KK′ gorb
∆ne = 0, 1 0.0 0.9 −6.4 0.07 0.45 −5.5 0.0 0.9 −8.7
∆ne = 2, 3, 4 0.0 0.9 −6.4 0.07 0.45 −6.2 0.0 0.9 −6.2
difference − − − − − −0.7 − − +2.5

shell Inter-shell parameters
parameter ∆E01 ∆E12 ∆01

KK′ ∆12
KK′ ∆02

KK′

∆ne = 0, 1 3.7 3.5 0.4 0.2 0.4
∆ne = 2, 3, 4 3.7 2.9 0.5 0.25 0.75
difference − −0.6 +0.1 +0.05 +0.35

tions initially at Λ1 split with approximately the electron g-factor. The fact
that ∆SO is finite can be deduced by comparing the lowest excitation in Fig.
4.2(c) (∆ne = 1) with the one in Fig. 4.3(c) (∆ne = 3). The former is convex
while the latter is concave.

Conversely, at low magnetic field no low-energy, intra-shell excitations
are available for a ∆ne = 0 in Fig. 4.2(b) since all states in the ν = 1 shell
are empty and the lowest excitation energy must therefore include a level
spacing. By increasing the magnetic field the upper (lower) Kramers doublet
in shell ν = 0 (ν = 1) are gradually brought closer until they anticross at
B‖ ≈ 6 T. In Fig. 4.2(c) the same behavior for inter-shell excitations (square
and circle) is observed. In fact, the square and circle excitations have exactly
the same energy in Fig. 4.2(b) as in (c) since the parameters do not change
between these two panels.

The anticross between shells ν = 0 and ν = 1 is shown in detail in the
inset of Fig. 4.2(a). Blue levels anticross with blue, and orange with orange.
Blue levels do not anticross with orange levels since they have opposite spin.
This prediction is confirmed by the data in Fig. 4.2(c) and Fig. 4.3(c) where
the square and cross excitations do not repel each other to within the spectro-
scopic linewidth which is much smaller than the relevant inter-shell couplings
∆01
KK′ = 0.4 meV and ∆12

KK′ = 0.2 meV. The same behavior is shown in the
model at B‖ ≈ 5.5 in Fig. 4.3(a), but this transition cannot be observed in
the data because of noise. The anticross magnitude is proportional to |∆01

KK′ |
as indicated by arrows. This magnitude is directly observable as ≈ 4|∆01

KK′ |
in the data in Fig. 4.2(c) at B‖ ≈ 5.5 T. Due to the finite spin-orbit coupling
∆ν=1

SO 6= 0 the anticrosses occur at slightly different magnetic fields.
The anticross between shells ν = 1 and ν = 2 is predicted by the spectrum

in Fig. 4.2(a) to be similar to the ν = 0, 1 one. Since all excitations involving
the ν = 1, 2 shell anticrosses are high in energy we cannot directly confirm
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Figure 4.3: Same as Fig. 4.2 for ∆ne = 2, 3 and 4 in shell 1. Note that in
(a) only excitations between filled and empty states for a filling of 3 electrons
are marked. This means that some marks in (b) and (d) are not found in
(a).
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this in the data due to noise and smearing at high VSD. Thus, in Fig. 4.3 we
repeat the procedure for fillings ∆ne = 2, 3, 4. Markers have been retained
between Fig. 4.2 and Fig. 4.3 for the excitations that are present in both
figures. The agreement between theory and data is again good, although we
find that some parameters must be adjusted for these new fillings to provide
a good fit. The parameters for Fig. 4.3 are shown in Table 4.1 along with the
difference in parameter values between the two shells. Most notable is the
change in gν=2

orb of +2.5 and ∆02
KK′ of +0.35 meV. Adding electrons to the dot

may change the electrostatic potential along the tube. This may explain the
change in inter-shell parameters which are determined by V (z). The changes
in gorb can be explained by a shift in the wave function density along the
tube so that the electron spends more time in a segment of the tube with a
larger diameter.

Two features in the data in Fig. 4.3 are unaccounted for in the model: At
low magnetic field in Fig. 4.3(b) (∆ne = 2) at VSD ≈ 2 mV a faint excitation
is visible, gradually fading out below B‖ = 1 T. This excitation looks like
the square and circle excitations from Figs. 4.3(c),(d) but it should not be
present in the ∆ne = 2 excitation spectrum since the corresponding states
are all empty.

The other unexplained feature concerns the diamond and asterisk intra-
Kramers excitations in Fig. 4.3. These excitations arise from taking an elec-
tron from either occupied state in the lower Kramers doublet and putting
them in the unoccupied state in the upper Kramers doublet. These excita-
tions arise from tunneling processes where an electron tunnels out of either
occupied state in the lower Kramers doublet and an electron tunnels into
either unoccupied state in the upper Kramers doublet. Thus, only two exci-
tations are possible which is consistent with the data up to about B‖ ≈ 2.5 T.
Here, however, the degenerate excitations split in energy to reveal three exci-
tations, the lowest of which is not captured in the model (this is most visible
at negative VSD).

To further verify the extracted parameters Fig. 4.4 shows excitation spec-
troscopy data for perpendicular orientation of the magnetic field (Fig. 4.4(a),(c))
and rotation of the magnetic field (Fig. 4.4(b),(d)), both for a filling of 2e.
The parameters used are the same as in Fig. 4.3. Again, the correspondence
between data and theory is good. We highlight the good correspondence of
the � excitation in Fig. 4.4. This excitation involves two levels with approxi-
mately opposite spin so their separation is expected to increase proportional
to gs. Although gs is not a free parameter in the model the fit is still good.

The splitting of the states in Fig. 4.4(a),(c) is smaller than in previous
figures since a perpendicular magnetic field does not couple to the orbital
motion around the nanotube. Consequently, no shell anticrosses are visible
and we instead show intra-shell anticrosses caused by ∆SO which in the case
of shell ν = 0 is zero to within the spectroscopic linewidth.
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Figure 4.4: Same as Fig. 4.3, but for (a), (c) θ = 90◦ and (b), (d) magnetic
field rotation. The insets in (a) show spin-orbit induced anticrosses, one of
which is a crossing since ∆ν=0

SO = 0. These (anti)crossings are unrelated to
shell couplings since they occur for states which belong to the same shell. In
(b) no inset is shown since there are no “simple” single parameter anticrosses.
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In Fig. 4.4(d) the fact that the and excitations have a finite splitting
in parallel field and no splitting in perpendicular field is another indication
of the finite spin-orbit coupling. At perpendicular field (see Fig. 4.4(a))
the orbital motion does not couple to the magnetic field. The resulting
energy levels are split purely by spin, leading to particle-hole symmetry and
consequently to degenerate excitations. Conversely, at parallel magnetic field
(Fig. 4.3(a)), spin-orbit interaction causes a slight asymmetry between the
upper and lower Kramers doublet and a corresponding splitting of the and
excitations.
No inset is shown in Fig. 4.4(b) since no “simple” single-parameter anti-

crosses are visible here.

Conclusion
In conclusion, we have studied experimentally and theoretically the coupling
between three shells in a carbon nanotube quantum dot. The results show
that the evolution of the energy levels can be accurately captured by extend-
ing an existing model. Contrary to expectations, we find that some inter-shell
parameters and orbital g-factors in the model change when adding the second
electron to one of the considered shell. The change in inter-shell parameters
can be explained by a change in the electrostatic potential caused by the
added electron. The change in gorb is harder to explain, although the chang-
ing potential may also affect the wave function density along the tube and
hence gorb.
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Non-collinear spin-orbit
magnetic fields in a carbon
nanotube double quantum dot
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Non-collinear spin-orbit magnetic fields in a carbon nanotube double
quantum dot. Phys. Rev. Lett., 117:276802, Dec 2016. [22].

5.1 Main text
Abstract

We demonstrate experimentally that non-collinear intrinsic spin-orbit mag-
netic fields can be realized in a curved carbon nanotube two-segment device.
Each segment, analyzed in the quantum dot regime, shows near four-fold de-
generate shell structure allowing for identification of the spin-orbit coupling
and the angle between the two segments. Furthermore, we determine the four
unique spin directions of the quantum states for specific shells and magnetic
fields. This class of quantum dot systems is particularly interesting when
combined with induced superconducting correlations as it may facilitate un-
conventional superconductivity and detection of Cooper pair entanglement.
Our device comprises the necessary elements.

Main text

Controlling local magnetic fields on the nanoscale is currently of strong inter-
est in quantum information and spintronics. Local fields are important for
operating spin quantum bits, spin-filters and realizing topological states of
matter. Several approaches to address the spin degree of freedom in this man-
ner have been pursued involving techniques based on on-chip strip lines [92],
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Figure 5.1: (a) SEM image of nanotube with Au normal leads (50 nm), a
Ti/Al superconducting lead (5/15 nm) and two side gates. Note that the lead
geometries are overlaid on the image digitally. (b) Schematic of the device.
The angle ϕ reflects the angle between the external magnetic field Bext and
the tangent of the midpoint of the right nanotube segment. A rigorous
definition of ϕ is given below. Note that Bext is constricted to the x-z-plane.
The expected valley-dependent directions of the spin-orbit magnetic fields
±BSO,(L/R) are indicated by the two-headed arrows.

nuclear spin ensembles [93], micromagnetic stray [94, 95, 96] and exchange
fields [97, 98], g-factor engineering [99] and spin-orbit coupling [100, 101].

A particularly interesting situation arises in double dots coupled to a cen-
tral superconducting electrode. Here the control of the local spin directions,
inducing non-collinear spin projection axes for the two dots, is predicted
to give rise to unconventional superconductivity [42], poor man’s Majorana
physics [102] and novel schemes for transport based spin-entanglement de-
tection of Cooper pairs [10].

These geometries can favorably be realized with carbon nanotubes when
utilizing spin-orbit interactions (SOI) [17, 81, 82, 83, 103, 104] to control
[76] and filter spins [78]. In contrast to other quantum dot systems (e.g.
semiconducting nanowires), the effect of SOI on the four-fold degenerate en-
ergy spectrum (due to spin s =↑, ↓ and valley τ = K,K ′) of nanotubes
is well-understood [24] and gives rise to spin-orbit magnetic fields oriented
along the nanotube axis. In this Letter we demonstrate the realization of
non-collinear magnetic fields using the spin-orbit fields in a bent carbon nan-
otube [75, 105, 106, 77, 76, 19] double quantum dot connected in parallel
between the superconductor and two normal leads. The non-collinearity of
the fields originates from the geometry-defined angle between the two quan-
tum dot tube segments. Furthermore, the spin alignment can be controlled
and rotated by applying an external magnetic field.

In this paper we present data from the hybrid carbon nanotube device
[11] shown in Fig. 5.1(a). Nanotubes are grown using chemical vapor deposi-
tion [89] (CVD) on a doped Si chip with a 0.5 µm thermal oxide cap. In the
growth process nanotubes are bound to the substrate in random orientations
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by van der Waals forces. Many of the tubes are in this way fixated in curved
configurations. The nanotubes are subsequently located using scanning elec-
tron microscopy (SEM) at an acceleration voltage of 1.5 kV and metal leads
are defined by e-beam lithography at 20 kV. The two nanotube segments are
450 nm long and the superconducting lead (5 nm Ti sticking layer with 15 nm
Al on top) is 240 nm wide.

The measurement configuration is indicated in Fig. 5.1(b). The super-
conducting lead is voltage biased and the normal leads are grounded through
current amplifiers so that the nanotube segments are measured in paral-
lel. Standard lock-in techniques and differentiated DC current were used to
obtain dI/dV . The lock-in conductance was differentiated numerically to
obtain d2I/dV 2. Measurements were done at a base temperature of 30 mK.

Bias spectroscopy plots for the two nanotube segments are shown in Figs.
5.2(a),(c). In both plots Coulomb resonances occur in sets of four reflecting
the spin and valley degeneracy in carbon nanotubes at zero magnetic field
(i.e., the shells g-e, M-O are (near) four-fold degenerate) [24]. Coulomb
blockade in shell f in the left dot and shell M and O in the right dot is lifted by
the SU(2) Kondo effect which is visible as zero-bias conductance resonances
at electron fillings 1 and 3. In shell e in the left dot the lead-dot coupling is so
strong that all four states participate in an SU(4) Kondo state which gives rise
to a zero-bias conductance resonance for all fillings in the shell [24]. About
35 (60) shells are observed in the left (right) dot indicating that the nanotube
is of high quality even though we do not employ an ultraclean fabrication
procedure [24]. The right dot has a charging energy UR ≈ 9 meV and the left
dot has a charging energy UL ≈ 6 meV. In Fig. 5.2(b),(d) bias spectroscopy
plots at low V SD reveal a soft superconducting gap ∆SC ≈ 60 µeV [46]. For
|V SD| < ∆SC/|e| transport takes place via Andreev reflections.

A narrow band gap is identified at V BG ≈ 0 V from room temperature
data. We define the lettering of the shells so that lower (upper) case letters
count in the direction of negative (positive) V BG starting with “a” (“A”) at
the band gap. Thus, the filling in, e.g., shell N in the right side is 53-56
electrons within the uncertainty of the band gap position.

We determine the electronic structure of a specific shell by inelastic co-
tunneling spectroscopy as sketched in Fig. 5.3(i). When eV SD matches the
energy difference between two levels in the nanotube there is an increase
in conductance, i.e., a peak or a dip in d2I/dV 2

SD. By varying the mag-
netic field strength and direction for different fillings (backgate voltages) in
a shell the evolution of the four levels can be fitted to a four-level model
[24, 81, 87, 82, 83, 88, 107]. In this way we extract the spin-orbit energy
∆SO, valley coupling ∆KK′ , orbital g-factor gorb and offset angle ϕSO for the
spin-orbit magnetic field which is parallel to the tube axis. The parameters
∆SO and gorb depend on chirality which is, however, hard to determine.

SOI has the effect of lowering the energy of states with parallel spin and



CHAPTER 5. NON-COLLINEAR SPIN-ORBIT FIELDS IN A CNT 66

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

V
S
D

(m
V

)

0

2.5

d
I
/
d
V

(e
2
/h

)

-2.0

0.0

2.0
left quantum dot

g f e

4 3 2 1 nh + 0

(a)

-4.0 -3.0 -2.0 -1.0 0.0

Gate voltage VSGL (V)

-0.2

0.0

0.2
g f e

(b)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

V
S
D

(m
V

)

0

1.2

d
I
/
d
V

(e
2
/
h

)

-5.0

0.0

5.0
right quantum dot

M N O
ne + 0 1 2 3 4

(c)

4.0 4.25 4.5 4.75

Gate voltage VBG (V)

-0.2

0.0

0.2
M N O

(d)

Figure 5.2: (a),(c) Bias spectroscopy of the left and right quantum dots
showing charging energies of UL ≈ 6 meV and UR ≈ 9 meV, respectively.
Both dots show four-fold shell filling characteristic of carbon nanotubes.
Kondo resonances caused by strong lead-dot coupling are visible at zero bias
for multiple fillings. They are most pronounced in shell e in the left dot.
The blue arrow shows the the onset of inelastic cotunneling close to zero bias
in shell M. The dot filling is ne = 53-56 electrons for shell N and nh = 20
holes for shell f. (b),(d) A superconducting gap is visible in both dots with
a magnitude of about 60 µeV. Cuts in (c) and (d) show the superconducting
gap.
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orbital magnetic moments. For the electron spin this is equivalent to the
effect of a local magnetic field with opposite direction for the K and K ′

states. Thus, in zero magnetic field with only SOI present the four-fold
degenerate states split into two doublets. Introducing disorder ∆KK′ couples
K and K ′ states and opens avoided crossings. With both SOI and disorder
present neither spin nor valley is a good quantum number.

Fits for shell N are shown in Fig. 5.3 with excellent correspondence be-
tween spectroscopic data and model. In particular the electron-hole symme-
try within the shell is seen to be broken by comparing (a) and (c) (see Fig.
5.3(h)). For this shell we find ∆SO = 120-170 µeV,∆KK′ = 50-100 µeV, |gorb| =
2.4-2.9 and exchange splitting J = 50-200 µeV, which are consistent with
values previously reported [17, 18, 81, 19, 90, 91]. Some transitions are not
visible in the magnetic field angle sweeps because of noise. The offset angle
for shell N, ϕN

SO is chosen as the zero-point of ϕ so that ϕN
SO ≡ 0. This angle

is found to coincide with the tangent of the midpoint of the right segment in
the SEM image within experimental uncertainty.

Interestingly, shell N is spin-orbit dominated by having ∆SO > ∆KK′ .
A nanotube in this regime is not normally obtained in devices that are not
ultraclean since exposing the nanotube to lithographic processing typically
introduces disorder. The property of being spin-orbit dominated shows up
clearly in the difference between Fig. 5.3(a) and (c) which would be identical
[81] for ∆SO = 0. With SOI the two highest-energy levels cross at the spin-
orbit magnetic field BSO ≡ ∆SO/gsµB. Disorder does not cause an anti-
crossing here since the two states belong to the same valley. However, the
spin-flip scattering by an external magnetic field Bext making an angle Θ
with BSO causes an anti-crossing of ∆Θ [18] which is observed in Fig. 5.3(c).

Of particular interest is the angle ϕνSO between the directions of the intrin-
sic spin-orbit magnetic field in a given shell ν and N. The ϕνSO are extracted
from magnetic field angle sweeps by identifying the angle with which the fit
must be offset for it to correspond to the data. The model does not take
into account the curving of the tube and thus ϕνSO represents an effective
angle dependent on the position of the wave function of each shell ν. This
interpretation implies that ϕνSO is the same for levels in the same shell, which
is consistent with the data.

We now want to establish that the ϕνSO are, indeed, different in the two
nanotube segments. Figure 5.4 shows a comparison between excitation spec-
troscopy for shell h in the left segment and shell N in the right segment (shell
N is also shown in Fig. 5.3). In this figure the minimum of the second (first)
transition for shell h (N) can be identified as the angle where the external
magnetic field is oriented perpendicular to the spin-orbit magnetic field. The
minimum occurs because the magnetic field couples minimally with the or-
bital magnetic moment in the nanotube at perpendicular orientation. We
find that the spin-orbit magnetic field angles ϕh

SO = 109◦ − 90◦ = 19◦ and
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(by definition) ϕN
SO = 0◦ are at an angle of 19◦ with respect to each other.

Similar sets of measurements of parallel, perpendicular and angular mag-
netic field sweeps have been made for nine other shells. The extracted angles
ϕνSO are plotted in Fig. 5.4 in which a clear clustering is seen with the ϕSO-
angles generally being smaller in the right dot. From the ϕνSO-values we
estimate the average angle for the left and right segment ϕav,(L,R)

SO and the
difference between the averages ∆ϕav

SO = ϕav,L
SO −ϕ

av,R
SO = 21◦± 3◦. This angle

is visualized in the inset of Fig. 5.4 by tangents drawn on the nanotube seg-
ments. The large uncertainties in shells i, c and b are due to low gorb-values
which reduces the curvature in the excitation spectroscopy plots 1.

The present device geometry allows for injection of Cooper pairs from the
central superconducting electrode into the two dots. Ideally, as one electron
tunnels into each dot, the Cooper pair is split into the two nanotube segments
[13, 11], thereby injecting nonlocal spin-entangled electrons in the two dots
[49]. This type of device may allow tests of a Bell inequality for Cooper
pairs 2. Notably, it has recently been proposed that with the bent nanotube
geometry the effective magnetic field due to SOI and external field, can be
used to configure levels with two spin projection axes per segment to act as
spin filters for entanglement detection [10, 78, 58]. This scheme therefore
requires a clear quantum dot shell structure, SOI, and a finite angle ϕSO
between the spin-orbit fields for the two dots as shown above.

To address the spin projection axes we show in Fig. 5.5(a),(c) the spin
expectation value 〈S〉 for shells h and N as a function of external magnetic
field angle ϕ based on the four-level model. For ∆KK′ = 0, all quantum dot
levels are fully spin polarized, with directions of 〈S〉 that are different in the
two quantum dots because of different ϕSO and ∆SO. In reality ∆KK′ is al-
ways present, and the spin polarization is only partial. Nonetheless, as long
as ∆KK′ remains smaller than the minimum energy difference δE between
the levels with opposite valley in the same shell (see Supplemental Informa-
tion), a detection of entanglement remains possible upon a prudent selection
of angular ranges and magnetic field strengths, for which the polarizations
remain close to full, e.g., as indicated in Fig. 5.5(b),(d) at ϕ = −36◦. For
systems as our sample, ∆KK′ should lie in the sub 100 µeV range to fulfill
this requirement, which puts shell N in the good regime but would require
further improvement for shell h. While challenging, this is within experimen-

1 The data set consists of 77 sweeps similar to the six sweeps in Fig. 5.3. Only for
the ne = 3 sweep for shell d (i.e., one sweep out of 77) is the value for ϕSO inconsistent
with the other sweeps for the shell. The correspondence between data and model for this
particular sweep is not as good as for the remaining sweeps in this shell, even if the angle
is chosen to fit only this shell. One explanation is that the longitudinal wave function for
this filling is different from the other fillings.

2In such an experiment, the violation of a Bell inequality is not used to disprove local
hidden variable theories [51], but as a proof of entanglement under the assumption that
quantum mechanics is valid.
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Figure 5.4: Excitation spectroscopy of (a) shell h in the left segment and
(b) shell N in the right segment. Annotations show the angle where Bext
is oriented perpendicular to the spin-orbit magnetic field. This occurs for
different angles in the two segments. Inset: SEM image of the device. The
average angle difference between the left and right dot of 21◦ is illustrated
by tangents drawn on the nanotube segments. Drawing the tangents at the
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SO ≈ 32◦. (c) Spin-orbit magnetic
field angles plotted for the shells measured. Red (blue) denotes left (right)
segment. Dashed lines are averages of angles in a segment. Error bars are
obtained as the minimum and maximum value for ϕνSO that make the model
fit the data.
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tal reach and shows that our device is close to fulfilling the conditions for an
entanglement test. Furthermore, our theoretical understanding for ∆KK′ 6= 0
(Supplemental Information) allows analysis even in the non-ideal regime.

In conclusion, we have shown that non-collinear spin-orbit magnetic fields
with a significant average angle of over 20◦ degrees can be realized in a curved
nanotube parallel double dot device. The underlying analysis of fits of the
energy spectrum versus magnetic field allows for precise predictions of the
spin orientation in the two quantum dots. Spin control has implications for
several proposals coupling quantum dots to superconductors [102, 42, 108].
In particular, the distinctly non-collinear spin projection axes can be used for
spin detection and future testing of spin-entanglement of split Cooper pairs
[10].

Acknowledgments

We thank A. Levy Yeyati, and J. Paaske for fruitful discussions and ac-
knowledge the financial support from the Carlsberg Foundation, the Euro-
pean Commission FP7 project SE2ND, the Danish Research Councils and
the Danish National Research Foundation.

The research data supporting this publication can be accessed at [109].

5.2 Supplemental Information
The purpose of the Cooper pair splitter is to split entangled pairs that tun-
nel from the superconductor into the parallel quantum dots. Due to the
special bent geometry of the CNT, the external field, and the intrinsic SOI
magnetic fields pointing along the axes of the nanotube dots, the four en-
ergy levels in each dot have different alignment of the spin. Measuring the
conductance product through different pairs of levels with different relative
alignment of spin is similar to having different alignments of detectors in a
traditional Bell test setup. For instance, for a parallel alignment of the po-
larizations on both levels the conductance over either level is suppressed as
the splitting of spin singlets is blocked, whereas tuning the polarizations to
an antiparallel alignment leads to an increase to a maximum conductance.
Therefore the conductance itself is proportional to the spin correlation mea-
surements required for the Bell inequality [10]. The appropriate addition of
these conductances according to a Bell-type inequality reveals by violation of
this inequality whether the Cooper pairs are entangled when tunneling out
of the superconductor.

While we could clearly demonstrate that our device has spin polarized
quantum dot levels, they are not fully polarized mainly due to scattering
between the valleys K and K ′. This degradation of the spin polarization has
substantial influence on spin entanglement detection schemes and can lead
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to erroneous conclusions. In this supplement we provide an estimate on the
acceptable magnitude of the inter-valley scattering. Remarkably, our cur-
rent device is close to fulfilling the necessary requirements for entanglement
detection.

For transport measurements in the Cooper pair splitter, we shall focus
on the entanglement detection scheme put forward in Ref. [10]. It relies on
the violation of the CSHS Bell inequality

Q = |〈SKS ′K〉+ 〈SKS ′K′〉+ 〈SK′S ′K〉 − 〈SK′S ′K′〉| ≤ 2, (5.1)

which includes four nonlocal spin correlators obtained, as described below,
by transport measurements through the different quantum dot levels. Equa-
tion (5.1) was originally designed to disprove, for instance, hidden variable
theories. However, if we accept quantum mechanics, a violation of Eq. (5.1),
i.e. a measurement of Q > 2, provides a sufficient demonstration of the ex-
istence of entanglement in the measured quantum states, which are in the
present setup the split spin-entangled Cooper pairs.

This detection of entanglement is robust against most scattering processes
and imperfections in either quantum dot, but can be falsified by inter-valley
scattering ∆KK′ [10]. While the latter is unimportant for semiconducting
nanotubes [10], it plays a limiting role for the small bandgap nanotubes used
in the experiments. In the following we will use Q′ to denote the result for
Eq. (5.1) in the presence of ∆KK′ and use Q for the ideal, unperturbed value.
In Fig. 5.6 we show Q′ as a function of magnetic field rotation angle ϕ for the
parameters of shells h and N provided in the main text, comparing the calcu-
lated values Q′ for the experimentally determined ∆KK′ (dashed lines) with
the optimal case of ∆KK′ = 0 in both dots (solid lines), assuming the injec-
tion of spin singlet electron pairs in the Cooper pair splitter. Figure 5.6 shows
that the valley mixing is dominating Q′ and that the violation of Eq. (5.1)
does not allow any conclusion on the entanglement of the injected electron
pairs. In particular, the fact that Q′ exceeds the maximally possible value
Q =

√
8 ≈ 2.83 for spin correlators demonstrates that the spin reconstruc-

tion completely fails. The relevant question is therefore about the acceptable
maximum ∆KK′ such that Eq. (5.1) remains trustworthy for entanglement
detection.

In the following we answer this question by first identifying the situations
in which ∆KK′ scattering can become decisive, which requires an investiga-
tion of the microscopic model of carbon nanotubes. This will provide us
estimates on the acceptable magnitudes of ∆KK′ . These estimates are then
corroborated by some quantitative numerical examples. Our main conclu-
sion is that even small bandgap nanotubes remain useful for entanglement
detection under considerable amounts of inter-valley scattering, if a careful
selection of the angular range is made where the individual levels remain
energetically far apart with respect to the ∆KK′ .
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Figure 5.6: Values of Q′, evaluated by Eq. (5.1) in the presence of ∆KK′ , as a
function of the magnetic field rotation angle ϕ, based on the effective model
with the experimentally determined parameters for shells h (left quantum dot
L) and N (right quantum dot R), computed for the splitting of spin-singlet
entangled Cooper pairs at B = 0.7 T and the angle ∆ϕSO = 21◦ between
the quantum dot axes. The solid red line shows the ideal case Q′ = Q
with ∆L

KK′ = ∆R
KK′ = 0, and shows over a wide range 2 < Q <

√
8 ≈

2.83 (between the dashed horizontal lines), demonstrating the potential of
this Cooper pair splitter for entanglement detection. The dashed green line
represents the same calculation of Q′ in the presence of ∆L

KK′ = 0.45 meV for
shell h and ∆R

KK′ = 0.07 meV for shell N, which are strong enough scattering
amplitudes to destroy the resemblance with the red curve and lead even to
Q′ >

√
8 which would be impossible for spin correlators.

For the experiment presented this means that the right side (shell N)
has sufficiently low valley mixing, while the left side (shell h) should be in
the same regime, i.e. in the sub 100 µeV range. This is an experimentally
challenging but feasible requirement. Furthermore, even for larger K − K ′
coupling, the strong variations of Q seen in Fig. 5.6 may be tested and would
provide insight into the applicability of the model and the assumption related
to tunneling.

Effect of valley mixing on spin projections
If we neglect spin-orbit interaction (SOI), curvature and inter-valley scat-
tering, the 4 levels of a quantum dot orbital, for 2 spin projections s =
+,− =↑, ↓ and 2 valley indices τ = +,− = K,K ′, have degenerate energies
Eτ,s. If we choose the spin Sz direction along the nanotube axis, SOI and
curvature cause a partial lifting of the degeneracy, such that Eτ,s 6= Eτ,−s,
but Eτ,s = E−τ,−s is maintained due to the time-reversal symmetry of the
SOI. Nonetheless, the splitting can be interpreted as arising from a valley
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dependent Zeeman field τBSOẑ, where ẑ is the unit vector along the nan-
otube axis. The further application of an external magnetic field B then
creates an effective, valley dependent Zeeman field Beff

τ = B + τBSOẑ. The
orbital effect of the magnetic field causes a further valley dependent shift of
the energy levels, expressible by an orbital g-factor τgorb (with a positive or
negative gorb depending on whether the quantum dot is electron like or hole
like) multiplying the z component of the magnetic field. Consequently, the
effective Hamiltonian describing the quantum dot in a magnetic field takes
the form

H0 = E0 + gs
2 µBS · (B + τzBSOẑ)− τzgorbẑ ·B, (5.2)

for E0 an energy offset, S = (Sx, Sy, Sz) the vector of spin-Pauli matrices,
and we will use τx,y,z for the valley Pauli matrices. Both Zeeman and orbital
effects together cause a full lifting of the degeneracy, and hence allow the
detection of each state individually. Due to the Zeeman term, each eigenstate
is fully spin polarized, providing a projection onto ±Sτ where Sτ = âτ ·S for
âτ = Beff

τ /|Beff
τ | the unit vector parallel to Beff

τ . As shown in Ref. [10], the
reconstruction of spin correlators through conductance measurements over
these spin projective states can be used to probe the spin entanglement of
Cooper pairs in a Cooper pair splitter setup through a Bell inequality as
Eq. (5.1).

The requirement for a useful test of the Bell inequality are measurements
along non-collinear spin projection axes âK and âK′ . A valley mixing scat-
tering process with amplitude ∆KK′ leads to a hybridization between the
different spin projected eigenstates. Spin is then no longer a good quantum
number, and the interpretation of the Bell inequality becomes for large ∆KK′

meaningless. For a quantitative estimate, we need to investigate the effect of
∆KK′ .

For this purpose, we must consider the Hamiltonian before attaining the
effective model of Eq. (5.2). Following the notations of Refs. [87, 82], the
Hamiltonian of a long carbon nanotube is given by

HCNT = ~vF
(
kGσ1 + k′τzσ2

)
+
(
ασ1 + βτz

)
Sz, (5.3)

where vF is the Fermi velocity, σ1,2 the Pauli matrices referring to the A,B
sublattice indices of the hexagonal carbon lattice, and α, β are the SOI cou-
pling constants (denoted by ∆1

SO,∆0
SO in Ref. [24]), depending both on

chirality and radius. The quantity k′ = k + ∆kzcv denotes the sum of the
longitudinal momentum k and a small curvature induced shift ∆kzcv. Finally,
kG = k0

G + ∆ktcv provides the transverse quantized momentum, giving rise to
the gap EG = 2~vFkG between the subbands, with ∆ktcv a curvature induced
offset and k0

G = (n − τm/3)/R for n the subband index, R the nanotube
radius, and m = (N1 − N2) mod 3, for the chirality indices (N1, N2). The
confinement potential of a quantum dot causes a further quantization of k′
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and leads to the quantum dot levels that can be captured by the effective
Hamiltonian H0, with level depending BSO, E0, and gorb.

For the lowest subband n = 0, it is important to notice that both k0
G and

∆ktcv [87, 82] are proportional to τ and hence have opposite signs in opposite
valleys (yet the final eigenvalues depend on the squares of these amplitudes
and lead to similar energies in each valley). A valley mixing scattering poten-
tial of the form HKK′ = τx∆KK′/2 leads therefore to a mixing of components
in the Hamiltonian that are characterized by the energy amplitudes +EG
and −EG. In the limit |∆KK′ | � |EG|, the hybridization between the valleys
can be expanded as a function of ∆KK′/EG. With typical values ∆KK′ ∼ 0.1
meV, it is clear that for semiconducting nanotubes with EG ∼ 100 meV
the effect of the hybridization is negligible [10], and Hamiltonian (5.2) as
well as its consequences, for instance, on probing the Bell inequality remain
unchanged.

However, for small gap nanotubes with k0
G = 0, the dominating role of

EG is replaced by a competition between ∆KK′ with the remaining curvature
induced bandgap, the SOI coupling strength, the quantum dot confinement
energy, and the orbital and Zeeman energies by the magnetic field, which all
together lead to the effective magnetic splittings |gSµBBeff

τ | and |2gorbµBẑ ·
B|. As long as ∆KK′ remains smaller than these scales, the loss of spin
polarization by the valley mixing remains a small effect. It should be noticed
that the curvature induced small gap ~vF∆ktcv depends on the nanotube
diameter D as ∆ktcv ∝ 1/D2, allowing us to achieve some tunability of Beff

τ

by choosing nanotubes with smaller or larger diameter.
The preceding observations can be quantified by adding the first order

correction in HKK′ to the wave functions,

|ψτ,s〉 = |φτ,s〉+
∑
s′

〈φ−τ,s′|∆KK′τx |φτ,s〉
Eτ,s − E−τ,s′

|φ−τ,s′〉 , (5.4)

where |φτ,s〉 and Eτ,s denote the eigenvectors and eigenvalues of H0. If χ is
the angle between âK and âK′ , we have 〈φ−τ,s′ |∆KK′τx |φτ,s〉 ∝ cos(χ/2) for
s = s′ and ∝ sin(χ/2) for s 6= s′. For general angles cos(χ/2), sin(χ/2) ∼ 1,
showing that the amplitude of the valley mixing part of the wave function is
indeed set by δτ = ∆KK′/mins,s′{|Eτ,s − E−τ,s′|}.

The ideal determination of spin expectation values is based on the pro-
jectors Pτ,s = |φτ,s〉 〈φτ,s|, such that Pτ,↑ − Pτ,↓ = Sτ = âτ · S. For a re-
alistic measurement, the projection is obtained from restricting transport
through a selected quantum dot level, for instance, by integrating the con-
ductance over the resonance of the level. This results in a measured quantity
Gτ,s ∝ 〈φτ,s| ρ̂Î |φτ,s〉, where ρ̂ is the density matrix of injected particles or
Cooper pairs, and Î the current operator. The spin reconstruction is then
based on [10]

Gτ,↑ −Gτ,↓
Gτ,↑ +Gτ,↓

= 〈Sτ 〉+ 〈Xτ 〉, (5.5)
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where the division by the sum of the Gτ,s provides the normalization, 〈Sτ 〉 is
the ideal spin measurement, and 〈Xτ 〉 ∼ δτ is the error from valley mixing.

Spin correlation measurements in a Cooper pair splitting operation are
obtained in a similar way. We use the notations above for the left quantum
dot and use a tilde for the quantities of the right quantum dot. If Gτ,s;τ̃ ,s̃
contains the nonlocal Cooper pair splitting amplitude, projected on states
|ψτ,s〉 on the left and

∣∣∣ψ̃τ̃ ,s̃〉 on the right quantum dot [10], we have
∑
s,s̃ ss̃Gτ,s;τ̃ ,s̃∑
s,s̃Gτ,s;τ̃ ,s̃

= 〈Sτ S̃τ̃ 〉+ 〈Xτ ;τ̃ 〉, (5.6)

with the error 〈Xτ ;τ̃ 〉 ∼ maxτ,τ̃{δτ , δ̃τ̃}. The value Q in Eq. (5.1) then be-
comes Q′ = Q+ δQ with the ideal result Q and the error

δQ = C max
τ,τ̃
{δτ , δ̃τ̃}, (5.7)

where C, with |C| & 1, accounts for all further details and the sums and
differences in Q.

With such a δQ the threshold for entanglement detection increases. In-
deed, for an ideal measurement of Q, spin entanglement of injected electron
pairs is detected if Q ≤ 2 is violated. With a measured Q′ = Q + δQ, this
inequality becomes

Q′ ≤ 2 + |δQ|, (5.8)
where we need to choose absolute values for δQ to rule out misinterpretations
of Q′ > 2 − |δQ| but still Q′ < 2 as proofs of entanglement. The latter
equation gives an estimate on the necessary violation of the Bell inequality
(5.1) for a valid detection of entanglement.

It should be stressed that for large ∆KK′ the perturbative result (5.7) is
no longer limiting, and δQ can become large and, in particular, can lead to a
Q′ exceeding the possible maximum Q =

√
8 for spin correlators. The latter

case is a strong indicator of a loss of spin polarization due to ∆KK′ .

Quantitative numerical test
For a quantitative check of the estimate in Eq. (5.8) we investigate the in-
fluence of ∆KK′ on two models of the type as discussed above. As the first
example, we consider a nanotube with chirality (24,12) in a magnetic field
of B = 1 T, in a bent Cooper pair splitter setup as considered in Ref. [10].
The calculation of the quantum dot levels follows then from Eq. (5.3) in the
presence of confining gates defining dots with a length of 450 nm, following
Refs. [10, 83, 88, 107].

Figure 5.7 shows the values of Q′ as a function of ϕ and ∆KK′ , up to
the maximum of ∆KK′ = 0.12 meV. The thick dash-dotted line marks where
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Figure 5.7: The bottom graph shows a density plot for Q′ as a function of
∆KK′ (same for both quantum dots) and magnetic field angle ϕ for a (24,12)
nanotube in a 1 T magnetic field, with quantum dot lengths of 450 nm.
Assumed is a bending angle ∆ϕSO = 30◦ between both quantum dot axes
and a large bending radius, as in the experimental setup, such that the local
spin axes defining S are adiabatically transformed when transporting a spin
from the left to the right end of the nanotube, such that the spin correlators in
Eq. (5.1) must be evaluated in the local coordinate systems of both quantum
dots. The contour lines mark the boundary Q′ = 2. In the unhatched
areas Q′ > 2 + |δQ| such that entanglement detection based on Q′ would be
consistent with the ideal Q. In the diagonally hatched areas Q′ < 2 + |δQ|
and no conclusion can be made. In the cross-hatched areas the ideal Q ≤ 2
excludes entanglement detection, but Q′ > 2 due to the valley mixing, which
would lead to a false entanglement detection. The dash-dotted blue line
marks min{δτ , δ̃τ̃} = 1, and the spin correlation reconstruction via Eq. (5.6)
is valid only far below this dash-dotted line. In the top plot we display the
ideal curve with ∆KK′ = 0 (solid red line) and the curve with ∆KK′ = 0.07
meV for both quantum dots (dashed green line), corresponding to horizontal
cuts through the bottom plot at the minimum and at the position of the
green arrow on the vertical axis. The range of 2 < Q <

√
8 is framed by the

dashed horizontal lines.
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maxτ,τ ′{δτ , δ′τ ′} = 1, and we can expect that the entanglement detection
remains valid sufficiently below this line. In the diagonally dashed regions
Q < 2 + |δQ| and entanglement detection is impossible, whereas in the un-
dashed regions Q > 2 + |δQ| provides a safe entanglement detection. The
cross-hatching, however, marks regions, in which Q′ > 2 but Q < 2, meaning
that |δQ| is large enough to provide an apparent but de facto inconclusive
violation of the Bell inequality. The black contour lines mark the threshold
value Q′ = 2. This figure indicates that while for specific level configurations
even weak valley mixing amplitudes of ∆KK′ & 0.01 meV have a sufficient
influence to destroy the spin projections, the principal detectability of en-
tanglement extends over a remarkably wide range of ∆KK′ values. This is
illustrated in particular by the top part of Fig. 5.7, which shows the angular
dependence of Q′ for the ideal case with ∆KK′ = 0 (solid red line) and with
∆KK′ = 0.07 meV (dashed green line). Although Q′ with large ∆KK′ shows
strong jumps whenever two dot levels are coming close to each other, the
overall trend and shape of the curve as a function of ϕ follows the ideal case
Q.

As a second example we consider the effective model of Eq. (5.2) for a
quantum dot, as used in Ref. [24], parametrizing the spin-orbit interaction
strength by the energy ∆SO = gsµBBSO/2 and gorb → ±gorb depending
if the quantum dot levels are electron or hole like. Figure 5.8 shows the
results as in Fig. 5.7 within this model for the experimentally determined
parameters for shells h and N of the two quantum dots, yet with varying
(and identical) ∆KK′ for both dots. In contrast to the previous example,
both quantum dots are substantially different. The influence of ∆KK′ is
much more pronounced, leading to much wider regions of inconclusive or
wrong entanglement detection, also well illustrated by the inset where the
curve at ∆KK′ = 0.07 meV (dashed line) has now only little in common with
the result at ∆KK′ = 0 (solid line).

A particular sensitivity to valley mixing is noted in Fig. 5.8 at angles
ϕ > 0. While Q′ > 2 for ∆KK′ = 0 (solid red curve in upper panel), these
Q′ values drop below 2 almost instantaneously as soon as ∆KK′ becomes
nonzero (observe in the lower panel the thin, bright, horizontal area (visible
when zooming) close to ∆KK′ = 0 at ϕ > 0, which is immediately replaced by
the hatched blue regions when moving up on the vertical axis). This behavior
reflects a strong sensitivity of the spin polarizations upon valley mixing, and
the abrupt change in Q′ is the result of the nonlinear normalizations in Eq.
(5.6). Such a behavior is absent in Fig. 5.7 which thus represents a sample
with more robust spin polarizations. We remark furthermore that Fig. 5.8
shows that a qualitatively unchanged behavior of Q′ over a range of small to
large values of ∆KK′ does not allow to conclude on the stability of the spin
projections.

Yet improvement can be made even for this system, for instance, by en-
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Figure 5.8: Same plots as for Fig. 5.7 based on the effective model, Eq. (5.2),
for both quantum dots with the experimental parameters for shells h (hole
type, ∆SO = gsµBBSO/2 = 0.05 meV, gorb = 5.2, gs = 2) and N (electron
type, ∆SO = 0.15 meV, gorb = 2.6, gs = 2), subject to B = 0.7 T and
the bending angle ∆ϕSO = 21◦. The dashed contour lines show where Q′
exceeds the nominal maximum Q = 2

√
2, giving a definite identification of

the regions where the spin correlation reconstruction is entirely invalidated
due to ∆KK′ .
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Figure 5.9: Repetition of the results of Fig. 5.8 for an increased magnetic
field of B = 2 T and an enhanced range of ∆KK′ . The top plot shows still the
curves at ∆KK′ = 0 and ∆KK′ = 0.07 meV (corresponding to a horizontal
cut at the green arrow on the ∆KK′ axis in the bottom plot).
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hancing the stability of the spin polarizations by increasing the magnetic field
(assuming that the critical field for the superconductor could be increased
accordingly). Figure 5.9 shows the same situation as Fig. 5.8 for the larger
field B = 2 T. While still far from ideal, the improvement of the situation
for entanglement detection is quite notable.

These results show that with the flexibility of the free choice of ϕ there
are ranges of the direction of the magnetic field, in which Q′ follows quite
closely the ideal values of Q even for values of ∆KK′ that can become even
as large as the 0.07 meV of shell N. From the data these angular ranges are
characterized by a smooth behavior of Q′ without the discontinuous jumps
arising from approaching and crossing energy levels, for which the strict
requirement ∆KK′ � minτ,s,s′{|Eτ,s − E−τ,s′ |} can be weakened to ∆KK′

approaching this upper limit.

Superconducting gap in excitation spectroscopy
data
In Fig. 5.10 excitation spectroscopy of filling ne + 2 of the h shell in the left
segment is shown. In addition to the excitation lines at larger bias the closing
of the superconducting gap of ∆SC ≈ 60 µeV is also visible at zero bias and
B‖∗ . 0.8 T. The superconducting gap changes the excitation spectrum by
shifting up the excitations in energy by ∆SC. This is, however, too small an
energy scale to be noticeable in plots such as Fig. 3 (a)-(c) in the main text
due to low-energy excitations in those plots. Similarly, the inclusion of the
superconducting gap in the nanotube model does not change the extracted
parameters, since the fit is dominated by data above BC. Cuts along VSD in
Fig. 2 (b),(d) in the main text show that the gap is “soft”[46].
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Figure 5.10: (a) Excitation spectroscopy of the ne + 2 filling in shell h.
The first excitation is seen to be at significantly higher energy than the
superconducting gap at ≈ 60 µeV. (b) Zoom of region at low magnetic field
and low bias showing the closing of the superconducting gap in more detail.



Chapter 6

Nonlocal signals in a carbon
nanotube Cooper pair splitter

The results in the Chapter 5 showed that even in the presence of KK ′-
scattering it is still possible to detect entanglement by modifying the original
scheme by Braunecker et al. [10]. Thus encouraged we move forward in this
chapter with an entanglement detection experiment on the CNT CPS device
from the previous chapter. In practical terms this procedure involves

1. Identifying a set of nonlocal conductance signals ∆G between at least
one shell in each dot. The signals must be positive even after subtract-
ing the classical negative resistive crosstalk signal.

2. Calculating the Q-value from equation eq. (2.54) and asserting that it
violates (5.8) where disorder has been taken into account.

Please refer to figures 2.12 and 5.1 for schematics of the device.
Relative to last chapter we shift our focus to shells h, g, f, e, d, c and b

in the left dot and shells w, v, u, t, s in the right dot. The backgate voltage
is now fixed at VBG = −10.5 V compared to VBG ≈ 5 V in the last chapter.
These voltages are on either side of the band gap which means that we are
now dealing with holes in both dots. Also note that we will use dot 1 (dot
2) interchangeably with “left” (“right”) dot according to the context.

Figure 6.1 shows bias spectroscopy data of the region of interest (subfig-
ures a and c) as well as low-bias zooms revealing the superconducting gap
and subgap states (subfigures b and d). The shape of the subgap states
in dot i depends on the relative magnitudes of ∆, charging energy Ui and
dot-superconductor coupling ΓSi [110]. Charging energy and level spacing
are larger than all other parameters in both dots at 4 meV to 8 meV. The
fact that the subgap excitations approach VSD = 0 in Figure 6.1(b) indicates
that ΓS1 is comparable to or larger than ∆ ≈ 60 µeV. Conversely, in dot 2 in
Figure 6.1(d) the subgap excitations are everywhere pushed out to the gap
at ∆ reflecting a high energy for the singlet [110] and consequently a low

84
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Figure 6.1: a), c) High bias data showing the shell structure in dot 1 and 2.
Shells h, g, f, d, c and b show zero-bias SU(2) Kondo resonances whereas shell
e has an SU(4) Kondo resonance. The coupling is weaker in dot 2 than in
dot 1 and consequently dot 2 is Coulomb blockaded between all resonances.
b), d) Zoom around the superconducting gap in dot 1 and 2. Line cuts in
blue show the superconducting gap more clearly. The structure of the subgap
states in dot 1 indicates that ΓS1 & ∆. In dot 2 the subgap excitations are
pushed out to ∆ which indicates a weak ΓS2 � ∆. Note the vertical offset
in voltage of 70 µeV in dot 2 visible in the t shell and in the blue line cut.
Truncated versions of a) and b) are also shown in Chapter 5.

value for ΓS2, such that ΓS2 � ∆. Since the excitations are narrow and the
maximum conductance is close to 1e2/h we take ΓN2 to be comparable to
ΓS2 by the standard Breit-Wigner shape of Coulomb resonances (see section
2.2.2). Conversely, for device 1 the asymmetry in conductance at positive
and negative bias in, e.g., shells g and b indicates that one coupling is much
smaller than the other. In this case ΓN1/ΓS1 � 1 except for shell d where
the coupling strengths are opposite ΓN1/ΓS1 � 1. The thermal energy is
negligible at the experiment temperature of about 25 mK: kBT ≈ 2.5 µeV.
The AC excitation |eVSD| = 6 µeV is smaller than all other parameters except
kBT .

In summary we are in the parameter regime

Ui,∆Ei � ΓS1 & ∆� ΓS2,ΓN1,ΓN2, kBT and |eVSD| > kBT (6.1)
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except for shell d which has ΓN1/ΓS1 � 1.
If we compare these parameter values with the those found to maximize

the ICPS/IEC in the analysis of Recher et al. ([49] and section 2.3.2) we see
that our device is not ideally suited for Cooper pair splitting. Being in the
wrong parameter regime does not exclude transport by Cooper pair splitting,
but we should expect a lower ICPS/IEC ratio as well as lower efficiency ε and
visibility η.

Now, to measure a nonlocal signal we must sweep the chemical potential
of the dots independently. In order to do this we define linear combinations
of side gates to cancel the cross capacitance. These “mix” gates are defined
by (

VSG1
VSG2

)
=
(

1.000 −0.100
−0.102 1.000

)(
VMG1
VMG2

)
. (6.2)

Figure 6.2 shows the stability diagram of a subset of the region in Figure
6.1. Specifically, Figure 6.2 comprises all states in dot 1 in Figure 6.1(a),
but only the states in dot 2 which are below VSG2 = 0. The off-diagonal
coefficients in the definition of the mix gates (6.2) are sufficiently small that
we can use mix and side gates interchangeably when comparing the two
figures. Note that both plots in Figure 6.2 consist of two separate sweeps.
This is visible as a slight vertical discontinuity in Figure 6.2(a) at VMG2 =
−3.2 V and blank areas in the top left and bottom right corners in both plots.
These sweeps were taken using the mix gates by fixing the value of VMG1 and
sweeping the full ranges of VMG2 (that is, VMG2 is swept from ≈ −6 V to
≈ −3.2 V in the left sweep and from ≈ −3.2 to ≈ −1 V in the right).

We wish to identify the nonlocal signals ∆Gi in Figure 6.2, which are
expected to have maximum amplitude at the crossing between resonances
in the two dots [49]. Evidently, no nonlocal signals are immediately visible
in Figure 6.2. To enhance the visibility we subtract for each vertical col-
umn (horizontal row) in the left (right) plot the background using the new
algorithm described in section C.2. By doing this we obtain the nonlocal
signal

∆Gi = Gi −G0,i (6.3)

where G0 is the baseline signal which is assumed to contain no CPS processes.
We emphasize that the procedure of C.2 takes a 1D data trace as input.
Thus, the constituent 1D traces in the plots are treated separately and no
correlation between 1D traces is used, whether the 1D traces are adjacent in
the data or not. Also, since the plots in Figure 6.2 consist of two separate
sweeps each, the procedure is applied to the sweeps separately to avoid any
artifacts that may arise from the discontinuity at VMG2 ≈ −3.2 V.

The background subtraction procedure only gives a meaningful result for
G1 due to the way the sweep is performed (sweeping VMG2 and stepping
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Figure 6.2: Stability diagram of a) dot 1 and b) dot 2 measured using mix
gates which correct for cross capacitance. Letters denote naming of shells.
The magnitude of the nonlocal signal is too small to be immediately visible.
Note that both subplots consist of two sweeps each, which is the reason for the
blank space in the corners and the vertical discontinuity at VMG2 ≈ −3.2 V
(orange arrow).
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Figure 6.3: Line cuts at the positions of the arrows in Figure 6.2 which
illustrate the difficulties in baseline subtraction. a) Line cut in dot 1, b) line
cut in dot 2. The conductance in dot 1 is well-behaved and the baseline is
well-defined. Drift and noise cause the baseline in the dot 2 line cut to be
poorly defined. Note that a) only extends half the VMG2 range of Figure 6.2.

VMG1). To illustrate the problem Figure 6.3 shows line cuts at the arrows in
Figure 6.2. Conductance in dot 1 along the blue arrow is shown in Figure
6.3(a). Four peaks are clearly visible along with the baseline despite noise.
The conductance in dot 2 in Figure 6.3(b) shows a more noisy, drifting be-
havior. This is caused in part by the fact that the time between adjacent G2
data points is equivalent to the time it takes to do the whole trace in Figure
6.3(a). Thus, drift over time has a marked negative effect on G2 leading to
an ill-defined baseline.

With the above reservations regarding background subtraction in mind
the dot 1 nonlocal signal ∆G1 is shown in Figure 6.4 along with the cor-
responding visibility η1 = ∆G1/G1. The horizontal noisy bands in Figure
6.4 coincide with the horizontal resonances in Figure 6.2 where the higher
current causes an increased shot noise. We observe that the positive nonlo-
cal signals appear both on resonances, slopes of resonances, and in valleys.
Negative nonlocal signals only appear on resonances. The nonlocal signals
do not depend on resonance detuning in the way predicted by eq. (20) in [49]
which predicts maximum amplitude for the nonlocal signal at zero detuning.
This may be explained by the fact that our device is not in the ideal CPS
regime as discussed above. Also, we predict the softness of the gap in the
our device (see line cuts in Figure 5.2) to diminish the Cooper pair splitting
process relative to other transport processes.

We obtain a local visibility η1 no higher than 6 % which is comparable to
some results in the literature: Hofstetter et al.: 0-12% [13], Fülöp: 3.7% [111],
Fülöp et al.: 2.8%-28.7% [15], Schindele et al.: 0-12% [112], Herrmann et al.:
35-55% 0-100% [11], Schindele et al.: 75%-98% [12]. Das et al.: 70%-100%
[14].

We can calculate the classical negative crosstalk using δG1 ≈ −δG2RWG1
[13]. Here, δG1 is the change in dot 1 conductance as a resonance enters the
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Figure 6.4: a) Nonlocal signal ∆G1 in dot 1. b) Visibility η1 in dot 1. The
horizontal noisy bands coincide with horizontal resonances in Figure 6.2(a).
No obvious variation in ∆G1 can be deduced within shells, although variation
between shells can be seen at, e.g., VMG1 = 3 V.



CHAPTER 6. NONLOCAL SIGNALS IN A CNT CPS 90

bias window in dot 2 with a consequent increase in conductance δG2. The
expression is valid as long as the wire series resistance RW is much smaller
than 1/G1 which is valid in our device which has RW ≈ 130 Ω and 1/G1 ∼
h/e2 ≈ 25 kΩ. From Figure 6.2 we get δG2 . 0.2e2/h and G1 . 2.1e2/h
so that δG1 becomes . 0.002e2/h. This is small enough that we can safely
neglect it in analyzing the experimentally obtained ∆G1 in Figure 6.4.

Of particular interest for the entanglement detection experiment [10] is
whether ∆G1 shows any variation depending on the specific combination of
resonances within a shell. The only clear difference is observed at VMG1 = 3 V
where the four left-most (right-most) resonances show negative (positive)
values for ∆G1. These eight resonances belong to two distinct shells (w and
v), however, and no variation is visible within the shells. Unfortunately, we
do not have data on shell w, but we can speculate that its lead couplings
are different from shell v, which leads to a different ∆G1. Rather than this
coupling-induced change in ∆G1 we are interested in changes in ∆G1 caused
by the quantum mechanical character of the carbon nanotube states.

Despite sincere efforts it has not been possible for this author to identify
consistent patterns in the magnitude or sign in ∆G1. Possible hypotheses
for ∆G1-dependence such as, e.g., sign of detuning and strength of coupling
(including SU(2) vs SU(4) Kondo effect) do not hold across all resonances.
Analysis is also impeded by the fact that the effective bias is only known
with a substantial margin of error. This will be discussed at the end of the
chapter.

To establish that the nonlocal signals we observe are, indeed, a super-
conducting effects we sweep VMG2 in Figure 6.5 at the position of the blue
arrow in Figure 6.4 and increase the magnetic field to quench the supercon-
ductor. The nonlocal signal vanishes between B ≈ 0.2 and 0.3 T, well before
the in-plane critical field of ≈ 0.7 T where the superconducting gap goes to
zero. The values of ∆G1 of the four resonances do not decrease monotoni-
cally, however. The ∆G1-value in the top resonance appears to increase, not
decrease, until B ≈ 0.2 T for instance. This could be an expression of the
spin-filter effect we are looking for in the entanglement detection experiment.
Without knowing the parameter regime of the shells in question it is hard to
say anything quantitative about this observation, though. In the following
we will attempt a speculative explanation:

The chemical potential in dot 1 is fixed at VMG1 = −1 V between shell f
(no holes) and shell e (4 holes). The four relevant resonances in dot 2 belong
to shell v which we assume to have ∆KK′ > ∆SO as this is usually the case.
Suppose BSO � 0.1 T in both dots. In this case the spins in both dots will
be fully polarized along B for B & 0.1 T with one spin-up-spin-down pair
increasing in energy and one pair decreasing in energy (see Figure 21(c) in
Laird et al. [24]). Suppose further, that only a single level with a fixed spin
in dot 1 participates in the CPS process. Then the amplitude for the CPS
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Figure 6.5: Evolution of the nonlocal signal ∆G1 as a function of magnetic
field strength. The magnetic field is oriented parallel to the tube axis to
within 10◦. The critical field of the aluminium film for this orientation of the
field is ≈ 0.7 T. The plot consists of two merged sweeps which explains why
the resolution for B < 0.1 T is higher.

process will depend on the overlap between the level in dot 1 and a given
level in dot 2 where the spin alternates between up and down. For instance,
if dot 1 holds a spin-up electron, then the CPS process has larger amplitude
for a spin-down in dot 2 because of the singlet nature of the Cooper pair.
The polarization of the spins explains why the top and third ∆G-values
and the second and bottom ∆G-values are similar. A disorder-dominated
shell ∆KK′ > ∆SO ensures that levels with opposite spins do not cross with
increasing B which serves to explain why the pattern just described is the
same for all B-values. We emphasize that this is a speculative, albeit realistic,
explanation.

Given the small magnitude of the superconducting gap ∆ ≈ 60 µeV in our
device it is important to be able to control VSD precisely since the Cooper
pair splitting current is sensitive to the ratio |eVSD|/∆ [57]. The current
amplifiers employed in the measurements (Ithaco DL1211, see section 3.2)
unfortunately do not support automatically regulating the offset voltage at
the input connector at the microvolt level. Also, this voltage offset was sus-
pected to drift on the order of tens of microvolts. To gauge this drift the
offset was measured periodically by performing bias spectroscopy in later,
equivalent measurements on a nanowire CPS device and identifying the VSD
zero-point. A series of such measurements is shown in Figure 6.6. The offset
shows 24 hour periodic oscillations with maxima at 4PM and minima at 4AM
which is consistent with the warmest and coldest times of day in Copenhagen
in July. Although the data in this chapter was taken in December-January
and the laboratory is air conditioned we should still expect the bias to os-
cillate on the time scale of 24 hours given the measurement in Figure 6.6.



CHAPTER 6. NONLOCAL SIGNALS IN A CNT CPS 92

0 24 48 72 96 120 144 168 192

Number of hours after July 26th 2015 04:09:21

−50

−25

0

25

50

75

V
ol

ta
ge

off
se

t
(µ

eV
)

dot 1

dot 2

Figure 6.6: Evolution over time of current amplifier voltage offsets in dot 1
(blue) and dot 2 (orange) obtained from bias spectroscopy data. The offsets
are seen to oscillate with a 24-hour period. The minima and maxima of
the oscillations are consistent with those of temperature. Straight lines are
due to the fact that points are not equidistant on the x-axis. The current
amplifiers were calibrated manually near the start of the measurement where
the offsets drop from > 25 µeV to smaller values. Note that this measurement
is not conducted on the CNT CPS device discussed in this chapter. The
measurement setup is equivalent so the offset results should be transferable.



CHAPTER 6. NONLOCAL SIGNALS IN A CNT CPS 93

Figure 6.7: Stability diagram for calculating Q for a) superconducting state
and b) normal state. The magnetic fieldB is used to drive the superconductor
normal. The black rectangles show the region where the conductance product
G1G2 is numerically integrated to obtain Gνaτ ,ν′bτ ′

in eq. (2.55).

Thus, the CPS measurements are done, effectively, at a finite, unknown bias
with oscillations on the order of ∆. This seriously impedes analysis of the
measurements. To address this issue subsequent measurements employed SP
983 current amplifiers [113] which have adjustable input voltage 1.

Finally, in a separate cooldown of the CNT CPS device we sought to
establish a baseline for Q by measuring a combination of resonances which
ought not to demonstrate entanglement. The measurement is shown in Fig-
ure 6.7. Note that the plot shows the conductance product, not conductance
for the separate dots. The black rectangles show the region where the con-
ductance product G1G2 is numerically integrated to obtain Gνaτ ,ν′bτ ′

in eq.
(2.55). In this particular region of chemical potential we have no information
about the spin and valley character of the states which is necessary to calcu-
late Q. Therefore, we calculate Q for all (4!)2 = 576 possible combinations
of spin and valley index to get an upper bound on Q. We use eq. (2.54) to
get for the superconducting and normal state, respectively

QSC ≤ 0.16, QN ≤ 0.1. (6.4)

These values are comforting to use as baseline values because they indicate
that no amount of data wrangling can produce a high Q-value if the physical
effect is not present. As such, a small Q-value of even 0.5 would be strong
indication of a non-trivial effect. We find that the values in (6.4) are robust
against small changes in the boundary of the black boxes since the conduc-
tance product is strongly suppressed away from resonance by either one or

1 Both the LSK389A and IF3602 models were used and both consistently achieved
stable input voltage control at the ±10 µV level or better.
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the other dot being in Coulomb blockade.
Note that it is not possible to do this calculation for the data in Figure

6.2 because all resonances in dot 1 are SU(2) or SU(4) Kondo resonances
which are outside the scope of the Braunecker proposal.

In closing we sum up the results of the carbon nanotube Cooper pair
splitter device investigated in this chapter and Chapter 5. The device sat-
isfies many of the requirements for the entanglement detection experiment.
Specifically, it shows a superconducting gap, a critical magnetic field com-
parable to the appreciable spin-orbit magnetic field in the nanotube, shell
structure, low disorder (in dot 2), a non-zero angle between the nanotube
segments, and evidence of Cooper pair splitting transport processes.

When the entanglement detection experiment and analysis are carried out
we find that the value of the Q parameter does not indicate entanglement
which is to be expected given the couplings between nanotube and leads.
The fact that Q < 0.16 for several hundred combinations of spin and valley
state assignments is evidence that Q is a robust parameter and that a finding
of Q > 2 would be trustworthy evidence for transport of entangled Cooper
pairs.

Despite sincere efforts this project has not succeeded in fabricating addi-
tional samples with nanotube-lead couplings better suited for the entangle-
ment detection experiment. Compared to the requirement of non-collinear
spin-orbit fields combined with low disorder, better-suited couplings ought
to be straightforward to achieve judging by the range of couplings observed
in the literature [114, 91, 115, 81]. Thus, the present device serves as a proof-
of-concept that a CNT CPS device capable of demonstrating entanglement
is well within reach for a lab with a working CNT device process.



Chapter 7

Tuning of Couplings in an InAs
nanowire device

In chapters 5 and 6 we saw that carbon nanotube devices with exotic proper-
ties can be fabricated used conventional techniques without the use of “ultra-
clean” schemes [1]. The performance of the device in question was, however,
limited by the fact that the couplings Γi between quantum dot and elec-
trodes were inappropriate for the planned experiments. Compared to the
exotic nanotube properties the Γi couplings depend on simple electrostatics
and should, in principle, be straightforward to control. In this chapter we
address the shortcomings of the device in chapters 5 and 6 by showing results
from an InAs nanowire (NW) CPS device with 15 bottom gates. The Γi’s in
the device are shown to depend exponentially on the voltage applied to the
gates which is the behavior predicted by basic quantum theory [116].

Figure 7.1 shows the geometry of the device internally known as “N3B”.
Arrays of 15 bottom gates with a pitch of 50 nm are covered with 24 nm layers
of HfO2. InAs NWs are deposited randomly on the chip and electrodes are
defined on the nanowires which are located on top of bottom gate arrays.
The device was fabricated by Anders Jellinggaard and the measurements
presented in the following were done by the author. For more details on
fabrication we refer to [110, 117].

The device was measured using the setup detailed in Section 3.2 with
additional lock-in amplifiers for measuring the voltage drops over two dots in
the device. Conductances in this chapter are thus calculated four-terminally.
The device was meant for Cooper pair splitting experiments so efforts were
spent initially to tune it into the ideal regime identified by Recher et al.
in reference [49]. Here, we focus on the tuning of the dot-lead coupling to
complement chapters 5 and 6. In the following we will use the terminology
“plunger” for gates which (primarily) control electrochemical potential in a
dot and “cutter” for gates which (primarily) control lead-dot coupling. Note
that a plunger (cutter) gate may also affect dot-lead coupling (electrochem-
ical potential) due to cross-capacitance.
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Figure 7.1: (a) Artist’s representation of the left half of the InAs NW device.
The purple NW is contacted by gold (N) and aluminium (S) electrodes. All
three rest on a layer of HfO2 (green) which covers 15 bottom gates (only
10 shown here). (b) Side view schematic of InAs NW device. Dot-electrode
couplings Γi are specified on the figure. Note that the schematic is not to
scale. Both are adapted from [110, 117].

With all bottom gates at 0 V the device is usually “open” with a con-
stant conductance of order e2/h when any single gate is varied. The tuning
procedure then typically proceeds as

1. Decrease the voltage simultaneously on all gates until pinch-off is achieved.
In some devices this pinch-off voltage is rather high (that is, it is large
and negative). Such high voltages often cause the device to exhibit
“switches” (see glossary) which impede consistent measurements.

2. Tune the plunger gate relative to the cutter gates to define a quantum
dot with reproducible gate traces.

3. The cutter gate voltages are now varied one at a time. At each value
of the cutter gate the plunger gate is swept and Γ’s are extracted by
fitting Coulomb peaks to eq. (2.38). Note that Γ1 and Γ2 (we use 1
(2) for L (R) in this chapter) enter symmetrically in eq. (2.38) which
means that it is not possible a priori to know which lead a given Γ-value
belongs to.

Figure 7.2 shows Coulomb peaks in dot 2. The height and width of
the peaks are seen to change with increasing Vg11 which is consistent with
our expectation that Vg11 should tune Γ2S. A conductance trace and the
corresponding fit are shown in the zoomed conductance trace.

Repeating the fit in Figure 7.2 for multiple values of Vg11 and for gates
2, 6 and 14 yields the results in Figure 7.3. In this figure Γν and Γν′ are
distinguished by the output order of the fitting algorithm. Post-fitting anal-
ysis ascribes ν and ν ′ to lead N or S. Different colors correspond to different
peaks, although the peaks are in general different between plots (for instance,
the Coulomb peaks in dot 1 do not exist in dot 2). Note that the data in
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Figure 7.2: Example of coupling extraction. Conductance in dot 2 as a
function of cutter gate Vg11 and plunger gate Vg11. Coulomb peaks are seen
in the horizontal direction. The peaks change appearance when changing
Vg11 since gate 11 tunes Γ2S. The peaks in the blue parallelogram are ana-
lyzed further below. Conductance data as well as the corresponding fit to
four instances of eq. 2.38 are shown in the zoom-in. This trace yields two
couplings per peak, or eight couplings in total. The data is taken with the
Al electrode in the superconducting state. The coupling to the SC electrode
is found to be small enough that eq. 2.38 provides a good description of the
peaks, even though the peaks are technically resonances of subgap states.
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Figure 7.3: Couplings Γ as a function of gate voltage. In each plot a
number of peaks have been fitted and the corresponding couplings (two per
peak) are shown as lines. Peaks with same color within a plot belong to the
same peak. Fitting peaks to eq. (2.38) outputs two unspecified couplings.
It is straightforward to identify which lead a coupling belongs to from its
evolution with gate voltage, but here we conservatively distinguish them
with subscripts ν and ν ′. In (d) one set of couplings is tuned to increase
beyond the other. Although this looks messy it is consistent with the tuning
in the other plots. See main text for analysis. Note that Γν′ is tuned across
two orders of magnitude with a modest change in Vg11 in (c).
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Figure 7.2(c) is taken in the SC state. Comparing the SC and N state for
other data shows that the difference is negligible for these Γ2S values.

In Figure 7.3(a)-(c) we see clearly that one set of Γ’s (either solid or
dashed lines) depends exponentially on the gate voltage and that the other
is roughly constant. At a glance Figure 7.3(d) appears to break this trend.
The slope of the leftmost three data points indicates, however, that the
gammas actually cross around −0.1 V. Switching dashes and solid lines for
the two rightmost data points means that we again have one set of lines
which depends exponentially on Vg14 and one set which is roughly constant.
The trend is not as clear for the blue lines, though. We note that this tuning
is not efficient for every single peak in the device as demonstrated by the
different ranges on the x-axes in Figure 7.3.

The interpretation of Figure 7.3 is now straightforward: Varying the volt-
age on a gate tunes the closest dot-lead coupling exponentially, while leaving
the other dot-lead coupling essentially untouched. For instance, we identify
the dashed lines in Figure 7.3(b) with Γ1S and the solid lines with Γ1N. This
level of control is highly desirable in a Cooper pair splitting device since it is
predicted to provide a way to tune the ratio between cotunneling and Cooper
pair splitting currents.

The tunability in the device was used to investigate the hybridization
between the dot electron and quasiparticles in the superconductor. This
work was done by Anders Jellinggaard et al. and is published in ref. [110].
For this study the right electrode was left floating and a single dot was tuned
up in the left segment such that Γ1N is the smallest energy scale in the system.
In this configuration the system can exhibit various types of singlet subgap
states, determined by the ratio U/∆. A large U/∆ favors a single screened
electron on the dot while a small U/∆ favors a superposition of zero and
double occupation. By varying the dot-superconductor coupling the singlet
subgap states are mixed and lowered in energy.

Figure 7.4 shows bias spectroscopy data for increasing values of Vg3. While
gate 3 primarily tunes Γ1N exponentially it also has an effect on Γ1S that is
generally unsystematic. We focus on the resonance labeled IV where Vg3
does tune Γ1S systematically so that higher n in Figure 7.4 gives smaller
Γ1S. At a0 (that is, strong Γ1S) the loop is open since the singlet states
are sufficiently hybridized and low in energy that the doublet states never
become the ground state. As n is increased (that is, Γ1S is decreased) the
loop gradually closes again as the hybridized singlets increase in energy and
the doublet becomes the ground state. Between a3 and a4 a quantum phase
transition occurs where the doublet and lowest singlet have the same energy.

Cooper pair splitting in the device was also investigated, but the results
were not conclusive.

The results presented in this chapter shows that bottom gates can be em-
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Figure 7.4: Bias spectroscopy data for a range of Vg3-values. The effect
of Vg3 on Γ1S is generally unsystematic, except in resonance IV. Here, Γ1S
decreases with increasing n, thus tuning the resonance through a quantum
phase transition. Adapted from [110].
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ployed to efficiently control the dot-electrode coupling in a NW quantum dot
device. The ability to change parameters independently is highly desirable
since it enables strong tests of theoretical predictions. This is demonstrated
with data on subgap transport in the dot.

Implementing bottom gates for on CNT devices is somewhat more chal-
lenging because of the high temperatures required for CNT growth. This
can be solved by growing the tubes on a separate substrate and subse-
quently transferring them to a chip with the pre-defined device electrodes
using stamping [118, 119, 120] or other methods [71]. Bottom gates that can
withstand high temperatures have also been explored in the literature [121].
However, transfer of a curved, kinked or crossed nanotube would be necessary
in order to obtain a device for the entanglement detection experiment.



Chapter 8

Conclusion and Outlook

This thesis describes fabrication, measurement and analysis of transport in
carbon nanotube devices.

Carbon nanotubes are attractive to use in quantum devices because of
their exotic, well-understood electronic properties. The spectrum in a carbon
nanotube quantum dot are typically described in terms of shells which are
sets of four states close in energy. This thesis builds on the understanding of
the carbon nanotube spectrum by showing that the coupling between such
shells can be straightforwardly included in the existing model by allowing the
electrostatic potential to vary along the tube, rather than staying constant.
The validity of the extended model is established by presenting inelastic
cotunneling spectroscopy data which is in excellent correspondence with the
model.

Furthermore, we present data from a curved carbon nanotube Cooper pair
splitter device demonstrating that the intrinsic spin-orbit magnetic fields in
the two segments of the device are non-collinear. Such a device allows precise
predictions of spin directions in the nanotube, hence allowing future studies
on, e.g., entanglement detection, Majorana bound states, and unconventional
pairing in superconductors [10, 102, 42]. The presented data also shows
that the nanotube device has low disorder which is a requirement for many
nanotube applications. However, such low disorder is not typically obtained
with the fabrication scheme used here. We provide fabrication details for the
potential replication of the device. The impact of disorder on the validity
of the entanglement detection experiment is also developed. We find that
the experiment can be conducted in a finite disorder device if a modified Q
parameter is used.

Continuing the study of the device above we present data on its Cooper
pair splitting capabilities. We find that the bend of the nanotube along
with its low disorder and high spin-orbit coupling satisfies the requirements
for the entanglement detection experiment [10] that are typically considered
difficult. However, the quantum dots in the device are too strongly coupled
to the superconductor and too weakly coupled to the normal electrodes to
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be well-suited for the above experiment. Still, the measurement of nonlocal
signals that vanish in magnetic field is an indication that the device does
produce a finite Cooper pair splitting current. Finally, the Q parameter is
calculated and tested against the threshold value of 2. The obtained Q-
values are all below 0.16 indicating that the Q parameter is robust against
false positive Q > 2 results. This is reassuring for future experiments.

Finally, we report data from a bottom gated nanowire Cooper pair splitter
device. We find that the electrode-dot couplings can be tuned independently
and exponentially by the bottom gates as predicted by basic theory. Combin-
ing bottom gates with the low disorder and high spin-orbit coupling described
above would yield a device ideal for the entanglement detection experiment
[10]. Executing such a combination again ties back to the employment of
novel fabrication techniques.

Where to go from here? There is no question that carbon nanotubes is
an excellent platform for studying new physics. However, to perform such
studies the increasing complexity and requirements of theoretical proposals
must be matched by a corresponding increase in ingenious techniques for
implementing said proposals. Although recent advances have yielded high-
quality devices [1, 71] they have not done so consistently when implemented
in other labs. Indeed, the enthusiasm for carbon nanotubes as a replacement
for silicon has existed at least 20 years [122, 123] and yet, despite the slow-
down of Moore’s law [4], carbon nanotube transistors have only recently been
shown to perform better than their silicon counterparts [124]. Conversely,
a deep understanding of nanowire growth [125] has enabled, e.g., epitaxy of
semiconductor-superconductor interfaces [126] which have made nanowires
front-runners in the race for robust qubits [127, 128]. In the author’s opin-
ion a similar breakthrough is necessary for carbon nanotubes if their exotic
properties are to be fully exploited.

Ice lithography [66, 67, 68, 69], in-situ selection of carbon nanotubes
[71, 72] and chirality-selection [129, 130] are approaches to this problem.
Ice lithography addresses the resist residue issue while in-situ selection pro-
vides the ability to test a number of nanotubes at cold temperatures until a
high-quality specimen is found. Chirality selection is desirable since chirality
determines whether the CNT is semiconducting or metallic. While it is pos-
sible to determine the chirality of a given nanotube [129] chirality-controlled
growth [130, 131] as well as the general growth mechanism are still topics
of current research [132, 133, 134]. If such techniques are able to provide
consistent results they will set a new standard for carbon nanotube devices
and enable a host of new studies.

As for the Cooper pair splitter, a couple of interesting questions are of
current interest. One question concerns the piece of nanotube or nanowire
directly under the superconducting electrode. Under certain conditions this
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piece forms a “third site” [15, 135] which may cause interference with the
dot electrons. To avoid such interference recent approaches have cut the
nanowire under the superconducting electrode with focused ion beam (FIB)
milling and/or used wide bottom gates to deplete the nanowire segment that
remains [111]. Additional experiments using these techniques could shed
light on the mechanisms that limit Cooper pair splitting efficiency and help
explain why some devices do not show Cooper pair splitting at all.

The question of whether the splitting Cooper pair is entangled is still
open. Other proposals for entanglement detection exist besides using spin-
orbit magnetic fields in carbon nanotubes. These include using ferromagnetic
leads [136, 137, 138], noise cross-correlation [139, 140, 141], or Tomonaga-
Luttinger liquids [142].

In a broader perspective the Cooper pair splitting geometry can also host
studies unrelated to Cooper pair splitting. As mentioned above these include
(poor man’s) Majorana bound states [102], coupling spin qubits [143], and
controlling the character of the paired electrons [42]. A Cooper pair splitter
device may also be used as a counterpart to STM measurements of magnetic
impurities on the surface of superconductors [144]. Such impurities are of
strong current interest since they host Majorana modes at their ends whose
topological protection increases with the length of the chain [145, 146, 147].
In STM experiments magnetic adatoms such as Mn, Fe, Co and Ni play the
role of the impurities with spin moments of 5/2, 2, 3/2 and 1. Conversely,
quantum dots with an odd occupation of electrons have spin moments of 1/2
which are well understood. CPS devices also potentially provide a higher
degree of control of couplings, charging energies etc. These features allow
detailed studies of the smallest non-trivial chain with two impurities, often
called an Andreev or Shiba molecule [62, 148]. Extending the chain would
allow strong tests of theoretical predictions for Majorana modes while being
in principle straightforward to implement experimentally.



Appendix A

Fabrication

A.1 Standard fabrication processes
This section contains information about default parameters and procedures
for fabrication. Note that they do not necessarily represent optimized or
best-practice values, but rather the values that were actually used, unless
otherwise noted. Fabrication process A.1.1

Resist spinning

1. Clean chip in first acetone, then IPA. Sonicate when the chip is in
acetone. If nanotubes are on the chip, do not sonicate.

2. Bake chip on hotplate for 4 minutes at 185◦C.

3. Spin resist at 4000 revolutions per minute for 45 seconds.

4. Bake chip on hotplate for 3 minutes.

5. Repeat steps 3-4 for additional layers of resist.

Fabrication process A.1.2
CVD process for growing nanotubes.

Time Gas flow (nL/min N2)
(minutes) Tset (◦C) Toven (◦C) Ar H2 CH4

0 910 21 2 − −
5 910 z 0.8 − −
x 910 910 − 0.1 −

x+10 910 910 − 0.1 0.65
x+10+y 0 910 0.8 − −
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Here, x is the time when the oven reaches 910◦C and y is the desired
growth time. The temperature z varies from growth to growth.

Fabrication process A.1.3
Exposure settings for rough features, that is, features larger than about

500 nm.

• Area step size: 20 nm

• Dose: 390 µC/cm2

• Write field size: 200 µm

• Aperture: 120 µm

• Voltage: 20 kV.

Fabrication process A.1.4
Exposure settings for fine features, that is, features smaller than about

500 nm.

• Area step size: 4 nm

• Dose: 390 µC/cm2

• Write field size: 100 µm

• Aperture: 30 µm

• Voltage: 20 kV.

Fabrication process A.1.5
Development of PMMA resists.

1. Immerse chip in MIBK:IPA 1:3 for 55 seconds at room temperature.

2. Immerse chip in IPA for 55 seconds at room temperature.

3. Blow dry with N2 gun.
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A.2 Fabrication recipe for devA
Data from devA are presented in chapter 5. devA was known as cnt_gen5_FI
during fabrication.

1. Cut out 1.1 cm× 2.0 cm chip with a 500 nm SiO2 top layer.

2. Sonicate chip in acetone. Flush with IPA and dry with nitrogen.

3. Bake chip on hot plate at 185 ◦C for 4 minutes.

4. Spin resists EL-6 and A4 at 4500 rpm for 1 minute. Bake chip at 185 ◦C
for 4 minutes between spinning EL-6 and A4 and after spinning A4.

5. Expose alignment mark pattern in the resist using an Elionix ELS-
70001 and settings: Field size: 300 µm, dots: 20000, dose time: 0.22 µs,
dose: 922 µC/cm2, current: 10 nA, aperture 120 µm.

6. Develop chip in MIBK:IPA 1:3 for 90 seconds at room temperature,
then 55 seconds in IPA at room temperature.

7. Ash 30 seconds before evaporating Ti/Pt (5/60 nm) in AJA evaporation
chamber.

8. Lift-off in NMP at 80 ◦C in water bath for 25 minutes. Sonicate in
NMP for 2 minutes and flush with transfer pipette.

9. Apply carbon nanotube catalyst to chip. See section A.3 for details.

10. Grow CNTs at 910 ◦C for 18 minutes. See fabrication process A.1.2 for
details.

11. Take images of carbon nanotubes in SEM at an acceleration voltage
of 1.5 kV. Use the following image properties: Size: 100 µm× 100 µm,
resolution: 2000 points× 2000 points, point average: 1.

12. Design devices based on SEM images. DesignCad 23 was used for
this purpose, but the author has later found LayoutEditor to be a
superior program. A notable improvement over DesignCad is that it
can make arbitrary transformations to imported images to align them
to the design. It also provides faster rendering of the design+image
combination.

1 The ELS-7000 operates at an acceleration voltage of 100 kV while the minimum energy
required to knock out a carbon atom of the nanotube is estimated at 86 keV [149]. Thus,
the Raith eLine (variable acceleration voltage, but typically 20 kV) was used exclusively
after nanotube growth to avoid damaging the nanotubes.
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13. Flush chip in acetone and then IPA. Dry with nitrogen. Sonication
should be avoided when CNTs are on the chip.

14. Spin resist EL-6 and A4 as in point 4.

15. Expose pattern for normal contacts in the resist using Raith eLine. Set-
tings for inner contacts are given in A.1.4. Settings for outer contacts
are given in A.1.3.

16. Develop chip in MIBK:IPA 1:3 for 55 seconds at room temperature,
then 55 seconds in IPA at room temperature.

17. Evaporate Au on the chip using Edwards Auto 306 thermal evaporator.

18. Spin resist EL-6 and A4 as in point 4.

19. Expose pattern for superconducting contacts in the resist using Raith
eLine. Settings for inner contacts are given in A.1.4. Settings for outer
contacts are given in A.1.3.

20. Develop chip in MIBK:IPA 1:3 for 55 seconds at room temperature,
then 55 seconds in IPA at room temperature.

21. Evaporate Ti/Al on the chip in AJA evaporation chamber.

If the metals used for the device are not suitable for bonding an additional
lithography step is required to define bonding pads. This was the case for the
fabrication of devA where an additional lithography step of Ti/Au 10/90 nm
was done. Generally, the Au lithography step (point 15) should be last
because Au doesn’t adhere well to the chip surface2. The reason that it’s not
the last step in the recipe above is that the intention was to deposit titanium
as a sticking layer below the gold. This did not work out for various reasons.

A.3 Deposition of carbon nanotube catalyst
It took a few tries to figure out an efficient way of depositing the CNT
catalyst on the wafer. The below recipe was found to work consistently
for the catalyst consisting of iron nitrate (Fe(NO3)3) molybdenum acetate
and alumina support particles3. Note that this recipe is designed for dot
exposures in a Raith eLine. It consistently yielded catalyst dots with radii
of 2 µm with little to no catalyst contamination on the rest of the chip. It
might not work with area exposures below a certain size unless the exposure
parameters are changed.

2 This is even more of a problem when using leads made of Pd which adheres poorly
to the chip surface.

3 The catalyst itself was introduced by Kong et al. [89].
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1. Spin A6 PMMA at 4500rpm for 1 minute.

2. Bake at 185 ◦C for 1 minute.

3. Spin another layer of A6 PMMA at 4500rpm for 1 minute to yield a
double-layer of A6.

4. Bake at 185 ◦C for 1 minute.

5. Expose catalyst pattern using dot exposure with parameters: Dose:
350 µC/cm2, area step: 10 nm, dot dose: 0.1 pA, write field: 200 µm,
acceleration voltage: 20 kV, aperture: 30 µm. It is important in this
step that you scan as little as possible on the chip when finding align-
ment marks and aligning. If possible you should know the distance
from an alignment mark to the corner of your chip and jump directly
to it rather than searching for it. Accidentally exposing resist promotes
sticking of catalyst to the chip in that spot. Catalyst that sticks acci-
dentally to the chip is typically more prone to being scattered on the
chip in subsequent steps.

6. Develop for 55 seconds in MIBK:IPA 1:3, then 55 seconds in IPA.

7. Stir catalyst solution for 2 minutes or more.

8. For a 1 cm× 2 cm chip apply 4 drops of catalyst using a transfer pipette.

9. Let the chip dry under a petri dish for about 11 minutes. The duration
is probably not important as long as the chip is completely dry. The
purpose of the petri dish is to avoid stray drops of liquid hitting the
chip.

10. Bake the chip for 7 minutes at 185 ◦C.

11. Lift-off in 100 mL NMP for two hours at 76 ◦C.

12. At this point the chip can be sonicated if it is absolutely necessary.
Sonication is efficient in removing catalyst resting on resist, but it also
shakes loose and scatters catalyst resting on the chip. Typically, soni-
cation is not necessary if the chip has been sitting in NMP long enough
at 76 ◦C.

13. Spray the chip thoroughly with acetone to remove unwanted catalyst
residues before moving the chip to IPA and drying it.



APPENDIX A. FABRICATION 110

Figure A.1: Left: Titanium/platinum alignment mark after exposure to
CNT growth. Middle: Tantalum mark before exposure to heat. Right: The
same Tantalum mark after exposure to CNT growth.

A.4 Other fabrication issues

A.4.1 Alignment marks for CNT devices
When working with carbon nanotubes it is preferred to expose them to as
few lithography steps as possible when they are on the chip to avoid intro-
ducing disorder and resist contamination. Thus, alignment marks should
preferentially be done before the CVD growth. However, not all metals can
withstand exposure to the high temperatures of the CVD growth process
(see, e.g., A.1.2). A common solution [1, 17, 150] is to use a tungsten/plat-
inum metal stack which have high melting points of 1768◦C and 3422◦C,
respectively. For this project tungsten was initially substituted by titanium
due the the former being unavailable.

In the left panel of Figure A.1 a alignment mark with the metal stack
Ti/Pt (5/90nm) is shown after being exposed to a CVD growth similar to
A.1.2. This degradation of the metal is known as titanium-platinum agglom-
eration [151] and in this alignment mark it impedes, e.g., the mark’s use for
automatic alignment. It may cause smaller marks to be unusable altogether,
even for manual alignment.

Tantalum with a melting point of 3020◦C does not show this problem.
Comparing Figure A.1 middle (before growth) and right panel (after growth)
we see that the alignment mark maintains its shape nicely. We attribute
the change in color to the formation of Ta2O5. Since tantalum has a high
superconducting transition temperature its resilience to the CVD growth
process would indicate that it’s an interesting candidate for electrodes for
“clean” nanotube devices. However, we have found that after CVD growth
the tantalum film is typically insulating at room temperature which indicates
that it would not turn superconducting at low temperature.

A.4.2 Choosing resist for CNT devices
In this thesis PMMA resist is usually chosen for e-beam lithography. Some
investigations find that ZEP520A is superior for obtaining low-resistance
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contact to carbon nanotubes. The hypothesis is that the low surface adhe-
sion, low molecular-weight, low clearing-dose and high sensitivity of the ZEP
copolymer decrease the amount of resist residue left behind after develop-
ment [64, 65]. These residues are thought to have great effect on the contact
between metal and CNT.

Hoping to improve the device yields we attempted the ZEP520A as well,
changing most other steps in the fabrication process as well, according to the
references above. Notably, as the clearing dose of ZEP520A is much lower
than PMMA, the current and consequently the aperture of the SEM must
be changed.

Despite closely adhering to the procedure given in [64, 65] and visiting the
University of Basel where this process is used, no difference in low-resistance
device yield was observed in our lab. This negative result indicates that there
are more than one crucial step in CNT device fabrication.

Another step commonly thought to be crucial is metal evaporation which
is also a determining factor for the CNT-metal interface. The Paris group
run by Takis Kontos obtain good CNT devices with a nitrogen-cooled Plassys
evaporator with a low base pressure of < 5× 10−10 mbar. The device is left
to sit overnight in the evaporator overnight to allow potential outgassing
of resist, thereby decreasing resist residues. Although the Paris group uses
PMMA they also use a lower current (aperture) of ≈ 20 pA (10 µm) at 20 kV.
The settings given in section A.1.4 lead to a substantially higher current of
≈ 300 pA. At face value a current of 20 pA would be more appropriate
for ZEP520A than for PMMA where it leads to long exposure times due to
PMMA’s higher sensitivity. Given the higher yield in the Paris group, it raises
the question, however, whether a high current can damage the nanotube
similarly to a high voltage [149].

A.4.3 Miscellaneous fabrication tips
The author has found that the exact position of the nanotubes in SEM
images sometimes differed from their position after fabricating electrodes.
One obvious explanation is misalignment which causes the device shift, rotate
or magnify relative to the tube. There are some indications, however, that
spraying the chip, either with a plastic pipette or using a N2 gun causes a
larger displacement of the tubes. This should be avoided, if possible.

Due to yield issues a sample was designed to test the sensitivity of the
CNT-metal interface to e-beam dose. Surprisingly, the author found high
conductances larger than e2/h independent of the dose which varied between
0.8 and 1.9 times a base dose of 390 µC/cm2. This result is contrary to
those found by Samm et al. [64] who find that the resistance of the CNT
devices strongly depends on the dose. Note, however, that the result in
[64] is for the ZEP520A resist. Some of the tubes on the test sample had
conductances larger than 4e2/h indicating double-walled CNTs, which may
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contact differently to metal than single-walled CNTs.
Initially in this project the author had issues with write field errors in the

Raith eLine. Write field errors occur when the electromagnetic deflection
of the electron beam and the laser movement of the stage are not precisely
adjusted. The symptom is gaps in metal structures, which of course breaks
devices. An easy fix is to increase the write field magnification values by,
says 1% after doing adjustment. This will enlarge all structures by 1%,
ensuring overlap between write fields. This fix should obviously not be used
for structures that are size-sensitive.

Gaps in structures which do not cross a write field may be caused by the
following setting in the eLine: Patterning Details -> Area Mode ->
Direction mode -> Scan direction. Setting this to preset U rather
than automatic longest solved the gap problem for the author.

On the topic of write field adjustment the author stresses the importance
of using narrow alignment marks. A width of, e.g., 1 µm may be too much
to get proper definition of the center when doing manual adjustment. The
author uses alignment marks in the shape of a plus that decrease in width
from 1 µm at the tips to 100 nm at the center.
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Miscellaneous data

B.1 CNT devices with vanadium electrodes
For the Cooper pair splitter geometry a large superconducting gap ∆ is de-
sirable since it suppresses unwanted cotunneling processes (see section 2.3.2)
if U > ∆. This is the typical regime for quantum dots with dimensions
. 500 nm and leads of aluminium or superconductors with similar gap mag-
nitude. Bulk vanadium has a superconducting gap of ∆ = 1.6 meV [44] while
a thin film of vanadium has been observed with a gap of ∆ = 0.55 meV [152].
Both of these values are significantly larger than that in aluminium.

In the present work 2-terminal nanotube devices were fabricated with
vanadium leads at a separation of 300 nm. Figure B.1 shows bias spec-
troscopy from one such device exhibiting a superconducting gap of ∆ =
0.65 meV, consistent with [152]. The vanadium-specific part of fabrication is
as follows:

1. Spin resists EL6 and A4 according to fabrication process A.1.1.

2. Expose leads using settings in A.1.4.

3. Develop chip using A.1.5.

4. Evaporate 5 nm titanium followed by 90 nm vanadium in AJA. The
evaporation was done at 10 kV with currents of (Ti) 18.7 mA and (V)
30.6 mA and rates of (Ti) 0.75Å/s and (V) 1.2Å/s. The base pressure
of the evaporation chamber was 1.2× 10−8 Torr before loading the chip.
The pressure during evaporation was not recorded, but is typically
found to be lower than 5× 10−7 Torr.

5. Lift-off in NMP in water bath at 80◦C for 2 hours. Flush chip with
7.5 mL plastic pipette to remove any remaining metal film.

Bias spectroscopy from one such device is shown in Figure B.1. In the
plot we see Coulomb blockade with subgap resonances in the regions with
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Figure B.1: Bias spectroscopy of a 2-terminal carbon nanotube device with
superconducting titanium/vanadium leads at 300 mK. The superconducting
character of the leads is reflected in the presence of subgap states for |VSD| <
1.3 mV.

strong dot-lead coupling for biases below the superconducting gap of about
∆ = 0.65 meV. The subgap states extend to a bias of 2∆ because both
leads are superconducting. Having two superconducting leads rather than
one superconducting and one normal also complicates the appearance of the
subgap states since both leads have non-trivial density of states. To obtain
the subgap spectrum of one superconductor one would have to deconvolve
the density of states of the other superconductor from the data.

Despite this promising result similar subsequent devices did not exhibit
any superconducting gaps. One of these subsequent samples were fabricated
using thermal evaporation in an Edwards Auto 306 thermal evaporator in-
stead of the e-beam evaporation in step 4. above. The thermally deposited
vanadium was hard to lift-off, requiring more than 10 hours in both hot
(85◦C) and room-temperature NMP and blasting with a nitrogen gun in the
NMP solution. Possibly due to the harsh lift-off treatment the devices on the
chip did not show a high enough conductance to warrant a cool-down. The
difficult lift-off process may have been caused by the high melting point of
vanadium of 1910◦C. Metals with high melting points require high currents
in an evaporation chamber before reaching evaporation. This warms up the
chamber and may cause the resist to bake and harden.

To investigate the dependence of fabrication parameters of the vanadium
film a series of thin films of Ti/V 5/60 nm were fabricated following the above
recipe, but without nanotubes. The test films were fabricated at widths
of 300 nm, 500 nm, 1 µm and 5 µm. Current-biased measurements at low
temperature showed that only the 5 µm film exhibited a superconducting
transition. This transition occurred between 300 mK and 2.5 K while for a
BCS-type superconductor with the above gap of 0.65 meV a superconducting
temperature TC ≈ ∆/(1.75kB) ≈ 4.3 K is expected. Two hypotheses were put
forward as to the low transition temperature and absence of superconducting
transitions:

1. Contamination of the vanadium by atmospheric oxide. Depending on
the oxidation depth of the material a thin vanadium film may not have
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enough bulk left to maintain the superconducting phase.

2. Contamination of the vanadium by resist from the lithography pro-
cess. The high energies required to evaporate vanadium may cause
outgassing of resist from the sample. The resist polymers are conse-
quently incorporated into the metal film reducing its purity.

To test hypothesis 1. a new, similar sample was fabricated with a metal
stack of Ti/V/Al 5/60/10 nm such that the native aluminium oxide would
prevent oxide migration into the vanadium. However, no improvement was
observed in the transition temperatures for this sample. Because of these
issues the vanadium film was abandoned in favor of tantalum which at that
point in the project had a higher transition temperature, both nominally and
practically.
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Methods

C.1 Lock-in measurements
In transport studies in condensed matter physics we often want to measure
the differential conductance dI/dV in some mesoscopic circuit. This section
explains how such measurements can be made with a lock-in amplifier.

The current Isig through the circuit is caused by an AC+DC voltage

V = V0 + VL cosωt = V0 + V ref (C.1)

applied across the device. Assuming Isig is a function of V only, we can
Taylor expand it around V0

1

Isig(V ) = Isig(V0) + dIsig
dV

∣∣∣∣∣
V=V0

VL cos(ωt) + 1
2

d2Isig
dV 2
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V=V0

V 2
L cos2(ωt) + . . .

=
∞∑
n

1
n!

dnIsig
dV n

∣∣∣∣∣
V=V0

V n
L cosn(ωt) (C.2)

We are following the terminology in the Stanford Research Systems 830
(SR830) lock-in manual [153] so that signal denotes the input to the lock-in
and reference denotes the output from the lock-in. In the following we will
disregard phase difference between the signal and reference as well as X and
Y components since these can be easily calculated from the results given
here.

Inside the lock-in the signal (C.2) is multiplied with the reference signal
by a phase sensitive detector:

Isig(V )VL cosωt =
∞∑
n

1
n!

dnIsig
dV n

∣∣∣∣∣
V=V0

V n+1
L cosn+1(ωt). (C.3)

1 Typically, the current Isig is converted to a voltage in a current amplifier and measured
in the lock-in amplifier as a voltage. Below, we will use Isig in the equations for clarity.
Results for a measured voltage can be obtained by replacing Isig → gV sig throughout,
where g is the gain of the current amplifier and V sig is the voltage signal measured in the
lock-in.

116



APPENDIX C. METHODS 117

Split the sum in odd and even n to separate even and odd powers of cosωt

Isig(V )VL cosωt = Isig(V0)VL cosωt
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(C.4)

After the phase sensitive detector the signal is put through a low-pass filter
that removes all AC components. As (C.4) stands, it is not clear whether
there are DC components hidden in the powers of cosωt. By using the
following trigonometric identities ([154] eq. (12.71) and (12.73) we can see
clearly which terms are AC and which are not:
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We see that all odd powers of cosωt are AC and that even powers of cosωt
only contains one DC term: 2−2n

(
2n
n

)
. Consequently, the output of the low-

pass filter is
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The zero-order term in eq. (C.4) is also removed since it contains cosωt.
Before the lock-in outputs this expression on its display as the R value it

divides by VL to take account for the factor introduced when the reference
signal was multiplied

R = 1
VL

LPF(Isig(V ) cosωt) =
∞∑

n=1,2...
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n!(n− 1)!
d2n−1Isig
dV 2n−1

∣∣∣∣∣
V=V0

V 2n−1
L . (C.8)

Let’s calculate a few terms of R:

R(n = 1) = 1
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R(n = 3) = 1
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Post-processing in the lock-in may or may not scale the output so that the
numerical pre-factor for the n = 1 term is cancelled.

Thus, by choosing the reference signal to have the same frequency ω
as the input signal we can measure the differential conductance dI/dV by
(C.9). The measurement includes higher order derivatives of Isig, but they
are attenuated by a fast-growing pre-factor.

Suppose we instead chose the reference signal to be twice the input signal
frequency 2ω. Measuring at multiples of the input frequency is called mea-
suring the harmonics of the signal. Repeating the procedure above we arrive
at an expression for the second harmonic output

R2ω = −Isig(V0) +
∞∑

n=1,2,...
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This expression involves only even derivatives of Isig, including the DC term
−Isig(V0)VL. In order to get rid of this unwanted DC term some lock-ins have
a high-pass filter at the input2.

Calculating a few terms of the sum in (C.12) gives
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V 6
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2 This setting is called “AC vs DC coupling” on the SR830 lock-in.



APPENDIX C. METHODS 119

The second harmonic output gives direct access to the second derivative of
the current which may contain important information about the underlying
physical system.

Importantly, obtaining the derivatives directly from the lock-in output
avoids numerical differentiation of current data which often introduces addi-
tional noise.

Standard lock-in measurements are used throughout the thesis to obtain
dI/V data. Second harmonic lock-in measurements were used to obtain the
d2I/V2 data in [23] while numerical differentiation was used to obtain the
d2I/V2 data in chapters 5 and 4.

C.2 Baseline subtraction for nonlocal signals
In order to extract the additional nonlocal signal ∆G on top of a conductance
signal the baseline must be subtracted. Consider the data in Figure C.1a)
and c). Sweeping over peaks in the right dot (c)) gives rise to nonlocal
signals in the left dot (a)). However, the right mix gate slightly perturbs
the baseline conductance in the left dot due to imperfect coefficients in the
definition of the mix gates in eq. (6.2). Common strategies for baseline
subtraction address this problem with varying degrees of success:

1. Subtracting the average of the conductance, Figure C.1, blue. This
method does not take drift into account. Also, the average depends on
the height of the peaks which leads to incorrect detection of a negative
nonlocal signal between the peaks.

2. Subtracting a fitted polynomial, Figure C.1a), orange. This method
takes care of the drift as long as the drift is not too large. The method
still suffers from dependence on peak heights, however.

We propose a new algorithm which yields representative values of ∆G as
long as peak widths are narrower than the separation between peaks and the
drift can be captured with a polynomial of finite order:

1. Fit data with a polynomial of degree deg.

2. Subtract the polynomial from the data.

3. Set the fraction 1 − keep_frac of points that are furthest from the
median to the value of the median. After subtracting the polynomial
from the data the median lies on the true baseline and the points fur-
thest from the median are peaks. Essentially, this step “drags down”
points on the peaks to lie on the baseline.

4. repeat the above steps n_iter times.
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The result of applying this algorithm is shown in Figure C.1a) and b). In this
project good results have been obtained using deg = 2,keep_frac = 0.9
and n_iter = 5. In some cases the baseline acts erratically and the order
of the polynomial must be increased. Also, if the peaks are wider than their
separation the median may no longer lie on the baseline. However, as the
peaks widen beyond this point the notion of a baseline is increasingly ill-
defined. Note that the new algorithm also correctly handles datasets with
both positive and negative nonlocal signals.

Another option for baseline subtraction is to use Gaussian smoothing.
The performance of this approach has not been investigated by the author.

A Python implementation of the algorithm is presented in the following.
The implementation is fast since the heavy lifting is done with the vectorized
operations in the Numpy library. Note the use of numpy.polynomial.polynomial
rather than numpy.polyfit which is deprecated.
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Figure C.1: Comparison of baseline subtracting algorithms. a) To find
the baseline of the conductance data (black) one can, e.g., take the mean
(blue), fit a polynomial (orange) or use the new algorithm proposed here
(green). The performance of the algorithms depends on whether they are
robust against, e.g., changes in peak heights or drift. b) Subtracting the
obtained baseline gives the nonlocal signal ∆G. Taking the mean (blue) does
not take drift into account, while fitting a polynomial (orange) gives false
detection of negative nonlocal signals between peaks. The new algorithm is
the best performer and represents the nonlocal signal accurately. c) Peaks
in the opposite (right) dot which give rise to the nonlocal signals. The
large range on the y-axis causes the GR data to appear noiseless. The data
presented here comes from averaged sweeps of Figure 6.2 at VMG1 = −3 V.
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import numpy as np
import numpy.polynomial.polynomial as po

def fit_baseline(ys, n_iter=5, keep_frac=0.9, deg=2, axis=0):
"""
Iteratively fit a polynomial of degree ‘deg‘ to data in ‘ys

‘.
In every iteration a fraction 1-‘keep_frac‘ of the points
in ‘ys‘ is set to the median of the current ‘ys‘.
For data with sufficiently narrow peaks (positive or
negative) the fit converges to the baseline of the
original data (until too many points are set to the median).

Parameters
----------
ys: ndarray, 1D or 2D

Array to fit.
n_iter: int

Number of iterations to perform.
keep_frac: float

Fraction of points to not set to median in every
iteration.

deg: int
Degree of polynomial to fit.

axis: int
Axis along which to fit. Must be 0 if ‘ys‘ is 1D.

Returns
-------
fit_out: ndarray of size ys.shape

Array with final fit.
"""
if axis == 1:

ys = ys.T
n_valid = ys.shape[0]
xs = np.linspace(0, 1, n_valid)
fit_out = np.zeros(shape=ys.shape, dtype=float)
for _ in range(n_iter):

coef = po.polyfit(xs, ys, deg=deg)
fit = po.polyval(xs, coef)
fit_out = fit_out + fit.T
ys = ys - fit.T
med = np.median(ys, axis=0)
y_delta = np.abs(ys-med)
keep_n = int(n_valid*keep_frac)
threshold = np.sort(y_delta, axis=0)[keep_n]
n_valid = keep_n
np.putmask(ys, y_delta >= threshold, med)

if axis == 1:
fit_out = fit_out.T

return fit_out
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C.3 The cntSpectrum Python package
The amount of carbon nanotube modeling in this thesis motivated the author
to develop a robust implementation of the four-level model [24] in Python.
The result is the cntSpectrum package available at https://github.
com/mchels/cntSpectrum/. The primary use case of the package is to
generate the spectrum and excitation spectrum of a single four-level carbon
nanotube shell given the intrinsic parameters ∆SO, ∆KK′ and µorb and values
for the magnetic field. For instance, the code from the file simple_example.py
from cntspectrum import cntSpectrum
import numpy as np
import matplotlib.pyplot as plt
model_kw = {

’deltaSO’: 0.15,
’deltaKK’: 0.07,
’mu_orb’: 0.15,
’J’: 0.12,

}
model = cntSpectrum(**model_kw)
B_fields = 2
B_angles = np.linspace(0, np.pi, 46)
spectrums = model.get_spectrums(B_fields, B_angles, two_electron

=False)
fig, ax = plt.subplots()
ax.plot(B_angles, spectrums.squeeze())
ax.set_xlabel(’Magnetic field angle (radians)’)
ax.set_ylabel(’Energy (meV)’)
plt.show()

produces the plot shown in Figure C.2. The methods get_spectrums and
get_ex_spectrums are available from the class cntSpectrum which is
initialized with the intrinsic parameters given above. The magnetic field
values are only passed to the methods, not at initialization. For the pairs
µorb, gorb and ∆SO, BSO only one parameter must be given. The other is
available for convenience as an attribute in the class as shown in the code
snippet below
model = cntSpectrum(deltaSO=0.15, deltaKK=0.07, mu_orb=0.15, J

=0)
print(model.BSO)
# prints 1.2975778546712804
print(model.g_orb)
# prints 2.595155709342561

As a secondary use-case the package can calculate expectation values for
the spin vector for a given basis. The class cntSpin is initialized with a basis
and has the methods get_spin_vector and get_spin_vectors_from_eigenstates.
The latter method takes the eigenvector output from the get_spectrums
method and calculates the spin vectors.

https://github.com/mchels/cntSpectrum/
https://github.com/mchels/cntSpectrum/
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Figure C.2: Calculated carbon nanotube spectrum with parameters ∆SO =
150 µeV, ∆KK′ = 70 µeV and µorb = 150 µeV, J = 120 µeV, B = 2 T and a
magnetic field angle between 0 and π. Plot generated by the code given in
this section and the spectrum is calculated using the cntSpectrum Python
package.

Finally, the function get_ex_spectrums in base.py calculates the
excitation spectrum for a general spectrum and number of occupied states.
This function can be used for non CNT-data as well.

The package contains tests where the output of various methods is com-
pared against experimentally verified values. The implementation is done in
Numpy where possible, which ensures fast processing. We refer to documen-
tation in the code for more information.

C.4 The FolderBrowser Python package
A challenge in transport measurements is visualizing large amounts of data.
For this purpose the FolderBrowser package was developed in Python by the
author. The package defines a graphical user interface (GUI) which is shown
in Figure C.3.

The FolderBrowser package allows plotting of data acquired with the
matlab-qd framework with the following features

1. All standard Matplotlib controls (zoom, pan etc.) are available.
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Figure C.3: An example of the FolderBrowser GUI. Note that the size,
number and position of sub-windows are adjustable.

2. Additionally, colormap, plot type, limits and aspect ratio can be con-
trolled.

3. Any data column in the dataset can be plotted against any other col-
umn.

4. The figure can be copied to the clipboard as a png file.

5. Code for generating the figure can be copied to the clipboard.

6. The figures can be modified interactively from a Jupyter notebook.

7. The FolderBrowser window can host as many plots as required and the
layout can be configured on-the-go.

8. The backend can be easily configured to allow data in other formats
than the one used by matlab-qd.

For more details, see the GitHub repository at https://github.com/
mchels/FolderBrowser.

https://github.com/mchels/FolderBrowser
https://github.com/mchels/FolderBrowser
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