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Abstract

This thesis describes recent progress in the understanding of the mathematical struc-
ture of scattering amplitudes in quantum field theory. The primary purpose is to de-
velop an enhanced analytic framework for computing multiloop scattering amplitudes
in generic gauge theories including QCD without Feynman diagrams. The study of
multiloop scattering amplitudes is crucial for the new era of precision phenomenology
at the Large Hadron Collider (LHC) at CERN. Loop-level scattering amplitudes can
be reduced to a basis of linearly independent integrals whose coefficients are extracted
from generalized unitarity cuts. We take advantage of principles from algebraic geome-
try in order to extend the notion of maximal cuts to a large class of two- and three-loop
integrals. This allows us to derive unique and surprisingly compact formulae for the
coefficients of the basis integrals. Our results are expressed in terms of certain linear
combinations of multivariate residues and elliptic integrals computed from products of
tree-level amplitudes. Several explicit examples are provided.

Resume (in Danish)

Naturens fundamentale love og vekselvirkninger udforskes ved partikelkollisioner ved
meget høje energier og hastigheder nær lysets. Verdens kraftigste partikelaccelerator er
CERN Large Hadron Collider (LHC), hvor man i 2012 opdagede den berømte Higgs-
partikel. Den enorme mængde af data som indsamles ved eksperimenterne p̊a CERN
tillader nu fysikere at stille skarpt p̊a de store uløste g̊ader.

Udfaldet af partikelkollisionerne kan forudsiges teoretisk ved hjælp af s̊akaldte spred-
ningsamplituder, der beregnes i kvantefeltteorier s̊a som QCD. Præcise teoretiske forud-
sigelser er afgørende for LHC-programmet, idet en fuldstændig forst̊aelse af baggrunds-
processerne i Standardmodellen er en forudsætning for at opdage ny fysik. Desværre har
det i løbet af de seneste årtier vist sig at være ekstremt svært at beregne de nødvendige
spredningsamplituder, p̊a trods af at resultaterne oftest er overraskende simple og besid-
der uforudsete symmetrier.

Denne afhandling beskriver de seneste års fremskridt i vores forst̊aelse af spred-
ningsamplituder i kvantefeltteori med fokus p̊a deres matematiske strukturer og bereg-
ningsmæssige komplikationer. Det primære form̊al er at udvikle en forbedret analy-
tisk metode til at beregne kvantekorrektioner (ogs̊a kaldet loop-korrektioner) til spred-
ningsamplituder i vilk̊arlige kvantefeltteorier uden brug af traditionelle teknikker herun-
der Feynman-diagrammer. Spredningsamplituder kan p̊a loop-niveau reduceres til en
basis af lineært uafhængige Feynman-integraler. Basisintegralerne er universelle og op-
gaven er derfor blot at ekstrahere deres koefficienter via s̊akaldte cuts.

Vi demonstrerer hvordan principper fra algebraisk geometri kan udnyttes til at ud-
vide anvendelsen af disse cuts til en større klasse af integraler, som er essentielle for 2- og
3-loop spredningsamplituder i QCD. Resultaterne omfatter unikke og meget kompakte
formler for integralkoefficienterne. Metoden er baseret p̊a residuer i højere dimensioner
samt elliptiske integraler. Der indg̊ar adskillige eksplicitte eksempler og beregninger.
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Introduction 1
The main objective of high energy physics is the identification and understanding of the
fundamental constituents and principles of Nature. What is regarded as fundamental
is merely a question of energy scale; as new experiments were performed and improved
throughout history, fundamental principles have changed drastically and constituents
believed to be fundamental turned out to be composite.

In the beginning of the 20th century, an accumulation of theoretical and experi-
mental observations strongly suggested that Nature behaves peculiarly at and below
the atomic level. The idea of physical determinism was challenged by completely un-
expected phenomena, which seemed to be inherit features of Nature itself. This led to
the invention of quantum mechanics, which has governed our view of Nature at its most
fundamental level ever since.

Today, particle physicists continue to unravel the fundamental laws of Nature by
accelerating protons at almost the speed of light and smashing them together to study
how elementary particles scatter off each other. This is the only viable method of
exploration as the objects of interest are extremely small and intangible, moving either at
the speed of light or decaying almost instantaneously after being produced. The world’s
largest and most powerful particle collider is the CERN Large Hadron Collider (LHC)
which is able to peer subatomic physics at unbelievable scales. The enormous amount
of data delivered by the LHC allow physicists to finally test theoretical predictions and
address unresolved questions of particle physics.

1.1 The Standard Model

The Standard Model (SM) of particle physics is an extremely (and so far the most)
successful theory: it consistently classifies all observed particles and describes the elec-
tromagnetic and the weak and strong nuclear interactions. In particular, the discoveries
of for instance the top quark at Fermilab (1995) and more recently a Higgs-boson-like
particle [109, 110] with a mass around 125 GeV at CERN (2012) have lent substantial
credence to the SM whose current form was settled around 40 years ago.

The guiding principles that govern the structure of the SM are merely the presence
of continuous local gauge symmetry and renormalizability. The set of allowed operators
in the SM Lagrangian is highly constrained, guaranteeing that the theory will have
predictive power once the fundamental fields and their internal symmetries are specified.

1



2 CHAPTER 1. INTRODUCTION

The SM dictates that all matter consists of three generations of charged quarks and
charged and neutral leptons. Quarks and leptons are called fermions due to their statis-
tical properties. The dynamics of the SM is controlled by three sectors: the electroweak
sector, the Higgs sector and the Quantum Chromodynamics (QCD) sector. The inter-
actions are mediated by gauge bosons that are elementary particles of the theory. The
electroweak sector has four gauge bosons: the photon γ and the W± and Z bosons. The
W± bosons carry electric charge whereas the photon and the Z boson are electrically
neutral. While the photon remains massless, the W± and Z bosons acquire masses
through spontaneous symmetry breaking SU(2) × U(1) −→ U(1) via the Higgs mech-
anism at energies below the electroweak scale at approximately 250 GeV. The strong
interactions between the quarks are mediated through exchange of eight massless fun-
damental particles — the gluons g — governed by QCD. In short, the particle content
of the SM forms the periodic table of the 20th century.

Although it remains unchallenged by any particle physics data, the SM is not a com-
plete description of Nature. The SM provides no explanation for phenomena of general
relativity, neutrino oscillations nor the peculiar predictions of the existence of unob-
served dark matter and dark energy. Accordingly, an appropriate extension introducing
new particles is certainly necessary. Perhaps the most attractive scenario is provided
by incorporation of supersymmetry. Supersymmetry is a very beautiful, yet specula-
tive, symmetry between fermions and bosons. The idea is that for every boson of the
theory there is a supersymmetric partner which is a fermion and vice versa. Theories
with supersymmetry contain natural dark matter candidates as well as numerous other
particles. Moreover, supersymmetry is believed to be an important ingredient in con-
structing a finite theory of quantum gravity. Generically, introducing a broader variety
of elementary particles yields a more complicated theory. On the other hand, if the
additional particles are constrained by supersymmetry, the intermediate steps produce
significant cancellations and the end results simplify dramatically.

Scientific breakthrough in the form of discoveries of beyond the SM physics depends
on our ability to take advantage of the overwhelming amount of data recorded by the
experiments at the LHC. In order words, it is crucial to gain a quantitative understand-
ing of all relevant scattering processes in the SM. We distinguish between background
processes and signal processes. The vast majority of events at the LHC is accounted for
by precisely the QCD background. In a sense extracting signals of new physics requires
subtracting the background from the experimental data.

1.2 Scattering Amplitudes in a Nutshell

The physical quantity that describes the outcome of particle collisions in collider ex-
periments is the (differential) scattering cross section. The cross section measures the
quantum mechanical probability for a given process to occur. This quantum mechan-
ical probability always arises as the absolute value squared of a quantum mechanical
amplitude, which is referred to as a scattering amplitude.

Scattering amplitudes represent fundamental objects of quantum field theory, be-
ing the furthest a theorist can push calculations without making assumptions of other
physical processes or details of the experimental setup. The origin of this statement can
be understood in terms of indistinguishability and quantum interferences. A scattering
amplitude typically receives contributions from several processes that look the same to
the detector in an experiment. Before calculating the cross section, all contributions
must be added together. The total probability is not simply the sum of the individual
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p1 p2

q1 qi

qi+1qn−2

An

Figure 1.1: An illustration of a typical scattering event: two incoming particles
with momenta p1 and p2 collide and produce (n− 2) outgoing particles with momenta
q1, . . . , qn−2.

probabilities; it also includes cross terms due to quantum mechanical interferences.

In order to gain insight into the basic theory of scattering amplitudes, let us imagine
that we collide, for instance, two particles of definite momentum and produce (n − 2)
new particles. The situation in mind is sketched in fig. 1.1. The incoming particles
interact in a single point. Before the actual collision both particles are far away from
each other. At the time of detection, the outgoing particles are again well separated. The
probability distribution associated with a specific scattering process is determined by
evolving the initial state from infinite past to infinite future and computing the overlap
with the desired final state. The evolution operator is the unitary S-matrix, customarily
decomposed into a trivial piece and an interaction part,

S = 1 + iT . (1.1)

The scattering amplitudeAn itself is conventionally defined by sandwiching the T -matrix
between incoming and outcoming states,

〈q1q2 · · · qn−2 |iT |p1p2〉 ≡ (2π)4δ(4)

(
p1 + p2 −

n−2∑

i=1

qi

)
iAn , (1.2)

where an overall four-momentum conserving delta function was extracted explicitly.

Scattering amplitudes are traditionally calculated perturbatively within a mathe-
matical framework called Quantum Field Theory (QFT). Interacting QFTs cannot be
solved in exact form, so instead we calculate a leading approximation and obtain smaller
corrections order by order. The leading approximation is given by tree-level diagrams,
while corrections pictorially form loops. We simply draw all possible Feynman diagrams
that contribute to the process in consideration and translate them to a definite math-
ematical expression using the Feynman rules. The latter may be derived directly from
the Lagrangian and are in principle sufficient to compute any scattering amplitude. We
refer to text books [119, 120] for a more comprehensive treatment of the subject.

Let us here consider the example of scattering five gluons. The leading terms are
tracked by 25 diagrams. If we follow the Feynman prescription, the associated calcu-
lation yields a result which takes up more than 25 pages. In practice, such amplitude
calculations are rapidly obscured by the obvious proliferation of color and spacetime
indices. Moreover, at higher multiplicity, the number of diagrams is huge. For these
reasons, even tree-level calculations may be severely cumbersome. Indeed, for tree-level
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gluon scattering we have

g + g −→ g + g 4 diagrams

g + g −→ g + g + g 25 diagrams

g + g −→ g + g + g + g 220 diagrams

and g + g → 8g receives contributions from more than one million diagrams. Using
supercomputers, leading order calculations to high multiplicities are trivial. However,
if we go to the next-to-leading order (NLO) or next-to-next-to-leading order (NNLO)
contributions, the calculation completely explodes. In fact, the full five-gluon amplitude
in QCD is not known beyond NLO.

1.2.1 Unexpected Hidden Structures and Simplicity

Although the intermediate steps are impossible to carry out without modern supercom-
puters, the final results are typically extremely simple and compact. The four-gluon
amplitude is nonvanishing in the Maximally-Helicity-Violating (MHV) configuration
only. This amplitude has precisely two negative helicity gluons and two positive helicity
gluons and can in fact be written

Atree
4 (1−, 2−, 3+, 4+) =

〈12〉4
〈12〉〈23〉〈34〉〈41〉 . (1.3)

This form utilizes the spinor-helicity formalism for massless particles, see for instance
pedagogical reviews by Dixon [106, 108] and by Elvang and Huang [107]. In the 1980s,
Stephen Parke and Tomasz Taylor were able to generalize the formula to scattering of
n gluons and conjecture that the simplicity of the four-point MHV amplitude extends
to all multiplicities, for example,

Atree
n (1−, 2−, 3+, . . . , n+) =

〈12〉4
〈12〉〈23〉 · · · 〈n1〉 (1.4)

and similarly,

Atree
n (1+, 2+, 3+, . . . , n+) = 0 , (1.5)

Atree
n (1−, 2+, 3+, . . . , n+) = 0 . (1.6)

This is truly astonishing from the viewpoint of Feynman diagrams. Nair further ob-
served that all amplitudes in the MHV sector are given by a natural and very simple
generalization of the Parke-Taylor formula,

Atree
n (λ, λ̃, η) = i(2π)4

δ(4)
(∑n

i=1 λ
α
i λ̃

α̇
i

)
δ(8)

(∑n
i=1 λ

α
i η

A
i

)

〈12〉〈23〉 · · · 〈n1〉 , (1.7)

where the Grassmann variables η conveniently keep track of the particle content of the
supermultiplet.

In order to regain control, make hidden symmetries and structures manifest and not
least improve the calculational techniques to facilitate precise predictions for collider
experiments, a complete reformulation of quantum field theory scattering amplitudes is
certainly necessary.
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1.3 An Overview of On-Shell Methods

The last two or three decades have seen numerous brilliant attempts to surmount the
computational bottleneck which have led to a tremendous progress in our understanding
of quantum field theory scattering amplitudes. The upshot is to exploit analyticity and
unitarity of the scattering matrix. Analyticity allows for amplitudes to be reconstructed
from their singularity structure, whereas by unitarity, residues at the poles factorize
onto products of simple amplitudes.

The most successful advances are perhaps the original unitarity method for loop am-
plitudes proposed by Bern, Dixon, Dunbar and Kosower [3, 4] and the Britto-Cachazo-
Feng-Witten (BCFW) on-shell recursion relations [1, 2] for tree-level amplitudes. These
works revealed striking and otherwise completely unexpected structures and simplicity
by virtue of retaining only physical on-shell information with no reference to the La-
grangian or Feynman diagrams. The most important implications are that all trees may
now be constructed recursively and further fused into loops.

The BCFW relations construct tree-level amplitudes recursively by factorizing them
onto products of amplitudes involving fewer particles. The process bootstraps all am-
plitudes from just three-particle amplitudes, whose form we are able to fully fix from
general principles of quantum field theory. In other words, the BCFW recursion (more
or less) trivializes the computation of all relevant tree-level amplitudes. Needless to say,
this was a huge achievement. A similar construction lies behind the Cachazo-Svrcek-
Witten (CSW) rules [42] and the MHV vertex expansion [43].

The philosophy of the unitarity method (see also later papers, e.g. refs. [5–24]) is
to reconstruct scattering amplitudes from unitarity cuts that place propagators in a
given channel on their mass-shell and break it into a product of trees. Examining all
unitarity cuts eventually fixes the amplitude unambiguously. The unitarity method has
granted otherwise unfeasible computations of scattering processes in QCD to be carried
out. Despite its success, the unitarity method has a disadvantage. Many individual
integrals contribute to the same unitarity cut and are therefore hard to separate without
carrying out intermediate algebraic steps. In that view, the generalized unitarity method
of Britto, Cachazo and Feng [7] and Forde [18] is more efficient as it allows several
propagators to be cut simultaneously. This implies that only a small subset of integrals
are extracted at the same time, leading to compact formulae for their coefficients. As a
simple example we can consider the box contribution to the one-loop amplitude. Thanks
to generalized unitarity, the box term can be reconstructed entirely from the four three-
point tree-level amplitudes sitting at its corners. The box is easy to distinguish from the
triangle and the bubble contributions. However, triple cuts are contaminated by boxes
which share the three propagators. Knowing the answer for the box from the quadruple
cut which cuts all four lines, allows us to in a sense subtract that result and isolate the
triangle.

It is fair to say that the unitarity method has revolutionized the way amplitudes
are computed, especially at one loop. More importantly, it has facilitated enhanced
theoretical predictions of numerous scattering processes of elementary particles relevant
for experiments at modern particle colliders. Many of the on-shell techniques are now
systematized in software libraries [26–34]. Further developments related to the unitarity
method can be found in refs. [35–41].

Another notable advance was the uncovery of Bern-Carrasco-Johansson (BCJ) re-
lations and also the double-copy construction [93–95] which works at both tree- and
loop-level. The BCJ relations, proven by Bjerrum-Bohr, Damgaard and Vanhove [96]
in a string theory inspired approach, involve tree-level amplitudes that are not related
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by recursion. They significantly reduce the number of independent amplitudes to be
computed and are thus directly applicable to processes in LHC physics.

The new frontier in amplitude physics in QCD at the LHC consists of NNLO cor-
rections at the two-loop level. Precise theoretical predictions at NNLO are decisive
to the success of the LHC program. Developing a consistent and computationally fa-
vorable framework for two-loop amplitudes has turned out to be a surprisingly hard
problem. Pursuing calculations at the level of a planar two-loop integral basis, the max-
imal unitarity method proposed by Kosower and Larsen [55], later clarified in ref. [56]
by Caron-Huot and Larsen, emerged as a natural continuation of the direct extraction
procedures at one loop [7, 18, 19]. The main object of computation is the coefficient
in front of each master integral. The hope is that for each basis integral there exists a
unique prescription that expresses its coefficient in terms of tree-level data. In previous
papers by Johansson, Kosower, Larsen [55, 57, 58] and Caron-Huot and Larsen [56] it has
been shown how to extract the coefficients of both planar double-box master integrals
with up to four massive external legs using multidimensional contours encircling the
global poles of the loop integrand. Zhang and the present author extended the analysis
to the nonplanar sector with external masses [59, 61, 62] and even to massless planar
triple-box integrals [60]. Very recently it was explained how to treat planar double-box
contributions with internal masses in any gauge theory by also taking topological cycles
into account [63]. The advantage of maximal unitarity is that one may circumvent the
explicit reduction from the integrand basis onto master integrals. However, the increase
of complexity compared to one loop still requires a sophisticated approach. The aim of
this research direction is to understand the hidden structures to extend the unitarity
method in a way that trivializes the computation of two-loop amplitudes for processes
that are phenomenologically important to the LHC.

Multiloop amplitudes can also be calculated by integrand-level reduction as demon-
strated at several occasions during the last couple of years. The generalization of the
Ossola–Papadopoulos–Pittau (OPP) approach at one-loop [15] has been worked out by
Badger, Frellesvig, and Zhang [68], and also by Mastrolia and Ossola in ref. [69]. We
recommend that the reader also consults refs. [70–78]. In particular, Badger, Frellesvig
and Zhang gave the first analytic results for the planar part of the all-plus two-loop five
gluon amplitude in QCD in ref. [72] and also obtained partial results at three loops in
any gauge theory [70]. We also mention that maximal unitarity cuts without complete
localization onto global poles have been studied and used in multiloop problems in super-
symmetric gauge and gravity theories [45–52]. Ref. [81]. applied the unitarity method
two-loop diagrams to determine their integral bases. Arkani-Hamed and collaborators
have developed an integrand-level recursion [87, 88] specialized to the planar contribu-
tions in maximally supersymmetric theory, valid to all loop orders. See also refs. [82–86]
for related studies. The leading singularity method of refs. [44, 45] previously addressed
hepta-cuts and octa-cuts of four-, five- and six-point two-loop amplitudes in N = 4
super Yang-Mills theory. An analysis of the global poles and associated residues of the
two-loop six-point N = 4 integrand appeared in ref. [67]. Finally, fascinating iterative
structures have been observed [89–92].

1.4 Outline of this Thesis

The body of this thesis features four chapters. The first chapter mainly focuses on
reviewing background material on efficient methods for calculating one-loop scattering
amplitudes by exploiting unitarity, whereas the remaining three chapters are based on
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recent developments described in papers I-V. For the benefit of the reader, we very
briefly recap the content of chapters 3-5.

Chapter 3 presents the extension of the generalized unitarity method of Britto, Cac-
hazo and Feng [7] and Forde [18] to two-loop amplitude contributions in generic gauge
theories with arbitrary number of fermions and scalars in the adjoint representation of
the gauge group. The new framework known as maximal unitarity was recently proposed
by Kosower and Larsen [55] (see ref. [56–58] for subsequent developments). Several new
extensions are presented, including nonplanar corrections with and without massive ex-
ternal states. In particular, we see that the previously observed simplicity at the tree-
and one-loop level continues to leak out at two loops.

A new feature of multiloop amplitudes is the appearance of degenerate multivariate
residues in generalized unitarity cuts. Therefore, chapter 4 presents a technique to cal-
culate such residues using methods from computational algebraic geometry. We extend
the maximal unitarity formalism to amplitude contributions whose maximal cuts define
multivariate algebraic varieties. As an example we demonstrate how to obtain the pla-
nar triple-box contribution to three-loop four-gluon scattering with remarkable simple
results. The formalism is also used to define generalized cuts of Feynman integrals with
higher powers of propagators, which otherwise were meaningless.

The purpose of chapter 5 is to generalize the maximal unitarity formalism to a
novel class of Feynman integrals which are presumably not expressible solely in terms of
generalized polylogarithms. These integrals have maximal cuts that give rise to algebraic
varieties with irrational irreducible components. Our primary example is the four-point
planar double-box integral with internal masses. We show how to extract the master
integral coefficients uniquely in terms of multivariate residues along with Weierstrass’
elliptic functions. Furthermore, we show how to generate the leading-topology part of
otherwise infeasible integration-by-parts identities analytically from exact meromorphic
differential forms.





Unitarity Methods 2
Every great and deep difficulty bears in itself its own solution.

It forces us to change our thinking in order to find it.
— Niels Bohr (1885–1962)

Scattering amplitudes at loop level are notoriously more complicated objects to cal-
culate than at tree-level. For that reason, loop-level scattering amplitudes are extremely
important for our understanding of the underlying structure of quantum field theories
such as N = 4 super Yang-Mills and QCD. It is our hope that a deeper control of
loop-level corrections will lead to new crucial insights and pave the way for advances in
phenomenological aspects of particle physics.

In connection with amplitudes at loop level, we will refer to three basic objects,
namely loop integrands, loop integrals and integrated expressions.

(i) The loop integrand is a rational function of internal and external kinematical
variables. It consists of a numerator factor and a number of inverse propagators
in the denominator.

(ii) The loop integral is a formal object; it is the combination of the loop integrand and
the loop-momentum integration measure. The integration region is not specified
and divergences are not addressed.

(iii) The integrated expression associated with a loop integral or a loop amplitude is ob-
tained by performing each of the loop-momentum integrations over real Minkowski
space R3,1. Regularization is typically required to avoid divergences. The result
is expressed in terms of multiple polylogarithms1 and more generally also elliptic
functions.

This chapter starts with a discussion of the implications of unitarity and calculations
of discontinuities of amplitudes across branch cuts, primarily based on the text book by
Peskin & Schroeder [120], with minor modifications along the way. A radical approach
to the computation of loop-level amplitudes is provided by the unitarity method, which
is mentioned very briefly. The chapter ends with an introduction to generalized unitarity
at one-loop in generic gauge theories with derivations of formulae for the box and triangle
contributions.

1Multiple polylogarithms form a general class of iterated integrals of which ordinary logarithms,
polylogarithms and harmonic polylogarithms are all special cases.

9
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2.1 Implications of Unitarity

Unitarity of the S-matrix, S† = S−1, is a consequence of conservation of probability and
implies that the T -matrix introduced in eq. (1.1) must satisfy the condition

2 ImT = −i(T − T †) = T †T . (2.1)

This equation immediately implies what is commonly known as the optical theorem
which states that the imaginary part of any forward scattering amplitude is proportional
to the total scattering cross section of the process. Further insight on the implications
of unitarity may be gained by expanding T perturbatively in the coupling constant,

T =

∞∑

n=4

gn−2
(
T (0)
n + g2T (1)

n + g4T (2)
n + · · ·

)
, (2.2)

and inserting this expression into eq. (2.1). The superscripts refer to the order in per-

turbation theory, e.g. T
(0)
n is a tree-level contribution. The first nontrivial relation is

extracted at O(g4),

−i
(
T

(1)
4 − T (1)†

4

)
= T

(0)†
4 T

(0)
4 . (2.3)

In order words, the imaginary part of a one-loop amplitude is determined by a product
of tree-level amplitudes. Similarly, one can argue that the imaginary parts of two-loop
amplitudes are related to products of tree-level and one-loop amplitudes.

2.1.1 Cutkosky Rules and Unitarity Cuts

The qualitative statements about the cross-order relations discussed above may be con-
cretized if we study the S-matrix as an analytic function of the kinematical variables
upon which it depends. In general, a one-loop amplitude acquires a branch cut sin-
gularity in the presence of a nonzero imaginary part. This follows from the Schwarz
reflection principle, see e.g. Peskin & Schroeder [120]. The discontinuity can be calcu-
lated by virtue of the Cutkosky rules.

(Cutkosky Rules). The s-channel discontinuity of the Feynman ex-
pression

M(1)
n (s) =

∫
dDq

(2π)D
N(q)

((k/2− q)2 −m2 + iε)((k/2 + q)2 −m2 + iε)
(2.4)

is computed by applying the simultaneous replacements

1

(k/2± q)2 −m2 + iε
−→ −2πiδ(+)((k/2± q)2 −m2) , (2.5)

where

δ(+)(· · · ) ≡ θ(k0)δ(· · · ) . (2.6)

The proof of the Cutkosky rules involves closing the integration contour into the complex
plane, carefully keeping track of the intricate pole structure implied by the Feynman
iε-prescription. For now we refer to the proof in ref. [120] which only requires minor
augmentations in order to conform with the more general case considered here. The
discontinuity only receives contributions from momenta that simultaneously put the
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two propagators in the specific channel on their mass shell. On the support of the
two delta functions, the numerator factorizes onto the product of two on-shell tree-level
amplitudes. More specifically, the discontinuity can be written

DiscsM(1)
n (s+ iε) =

(−2πi)2

∫
dDq

(2π)D
δ(+)(k/2− q)2 −m2)δ(+)(k/2 + q)2 −m2)

× Ãtree
L (k1, . . . , kj , k/2 + q, k/2− q)Ãtree

R (kj+1, . . . , kn,−(k/2− q),−(k/2 + q)) ,
(2.7)

where the tildes remind us that the trees are not on-shell before the delta functions
are integrated out. We will refer to the simultaneous replacements (2.5) as two-particle
unitarity cuts.

Ãtree
L Ãtree

R

k1

kj kj+1

kn

−q + k
2

q + k
2

Figure 2.1: A generic s-channel Feynman diagram contributing to the n-point one-
loop amplitude. The gray blobs are essentially off-shell trees.

2.1.2 Kramers-Kronig Relations

We have seen that tree-level data suffices to compute the imaginary part of one-loop
amplitudes. For sufficiently well-behaved gauge theories (such as supersymmetric the-
ories) the real part can be obtained as a dispersion integral and the amplitude can be
determined completely. This was essentially the philosophy of the analytic S-matrix
program pursued back in the 1960s.

One-loop amplitudes of supersymmetric theories are holomorphic functions of s in
the upper half of the complex s-plane. Under these circumstances, the imaginary and
real parts of the amplitude are no longer independent, and must satisfy the Kramers-
Kronig relations,

ReM(1)
n (s) = +

1

π
PV

∫ +∞

−∞
ds′

ImM(1)(s′)
s′ − s , (2.8)

ImM(1)
n (s) = − 1

π
PV

∫ +∞

−∞
ds′

ReM(1)(s′)
s′ − s . (2.9)

The Kramers-Kronig relations are trivial to derive by closing the integration contour
and invoking Cauchy’s residue theorem.
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2.1.3 The Unitarity Method

The analytic S-matrix program of the 1960s experienced a breakdown caused by the
difficulty of carrying out the required dispersion integrals in order to also reconstruct
the real part of the amplitudes. The origin of the problem was the presence of additional
singularities. In the early 1990s, Bern, Dixon, Dunbar and Kosower (BDDK) realized
that the structure of the appearing one-loop integrals is much simpler than it ought to
be. In particular, BDDK expressed the amplitude as a linear combination of a small set
of integrals — an ansatz — and computed the discontinuities in all possible channels on
both sides of the equation,

AL−loop
n =

∑

j∈Ansatz

cjIj =⇒ DiscAL−loop
n =

∑

j∈Ansatz

cj Disc Ij . (2.10)

A pictorial representation of the cut ansatz can be found in fig. 2.2. The principle is
simply to enlarge the ansatz until all unitarity cuts can be satisfied. Following this
procedure, BDDK were able to relate the integral coefficients to products of tree-level
amplitudes through the Cutkosky rules and unambiguously determine a widespread
of amplitudes in supersymmetric and nonsupersymmetric theories. This led to the
resurrection of unitarity and the unitarity method has undoubtedly proven to be one of
the most important developments in the field of scattering amplitudes.

c1 + c2 + c3 + · · · =

∫
dLIPS Atree

L Atree
R

Figure 2.2: The unitarity cut (indicated by the dashed red line) of the four-point one-
loop amplitude (right) and the corresponding ansatz (left). The · · · denote additional
terms that may have support on this cut, such as the bubble integral. There is an
implicit sum over internal states and helicity configurations between the subamplitudes.

2.2 Reduction Techniques

The existence of a simple basis of linearly independent one-loop Feynman integrals
has underpinned important developments in the area of one-loop amplitudes in gauge
theories including QCD. Here we review the content of the one-loop integral basis and
also comment on the integrand basis. We will take the external momenta to be strictly
four-dimensional throughout this thesis. All internal momenta are massless, whereas
external lines may be massive (for example representing sums of massless momenta in
the original kinematics).

Any one-loop integral can be constructed by attaching external legs to the one-loop
vacuum diagram as illustrated in fig. 2.3. In particular, the topology of a one-loop
integral is completely characterized by the number of external legs. We shall denote the
one-loop scalar integral as follows,

In(K1, . . . ,Kn)[1] ≡
∫

dD`

(2π)D
1

`2(`−K1)2(`−K12)2 · · · (`−K1···(n−1))2
, (2.11)
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K1

Kn

`

Kj

Kj+1

`−∑j
i=1Kj

Figure 2.3: The general one-loop integral with n cyclically ordered external legs with
momenta K1, . . . ,Kn. Internal particles are assumed to be massless.

where Ki···j = Ki + · · ·Kj . All external momenta are assumed to be outgoing by
convention. A generic n-point gauge theory amplitude gives rise to integrals with up to
n powers of the loop momentum in the numerator. We will refer to a one-loop integral
that has a generic numerator Φ(`) with nontrivial loop-momentum dependence as a
tensor integral and use the notation In[Φ(`)].

2.2.1 Integral Basis

Instead of evaluating tensor integrals directly, one uses integral reduction equations to
relate the desired integral to a linear combination of simpler integrals. It is a well-
established fact that any one-loop integral can be reduced to a minimal basis of scalar
integrals with at most four propagators in strictly four dimensions. The basis integrals
have topologies of boxes, triangles, bubbles and tadpoles. In particular, we can bring
the whole one-loop amplitude into the form

A(1)
n =

∑

boxes

c�I� +
∑

triangles

c∆I∆ +
∑

bubbles

c◦I◦ +
∑

tadpoles

c−◦I−◦ + rational terms (2.12)

where the sums include all possible ways of distributing the n cyclically ordered external
legs at the vertices of the integrals. Note that the integral coefficients are independent
of the dimensional regulator; additional rational terms appear as compensation. The
integrals themselves are computed in dimensional regularization once and for all. The
expansion coefficients then become the main object of calculation. The basis decompo-
sition is depicted in fig. 2.4.

The independent configurations of the box integral are four-mass, three-mass, two-
mass easy, two-mass hard, one-mass and zero-mass,

{I4m
4 , I3m

4 , I2me
4 , I2mh

4 , Im4 , I
0m
4 } . (2.13)

The two-mass easy integral has massive momenta at diagonally opposite corners, while
the two-mass hard integral has adjacent massive momenta. There are three independent
triangle master integrals, namely the three-mass, two-mass and one-mass configurations,

{I3m
3 , I2m

3 , Im3 } . (2.14)
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A
(1)
n = c� + c∆ + c◦ + c−◦ + · · ·

Figure 2.4: A graphical representation of a generic one-loop amplitude in terms of
master integrals: boxes, triangles, bubbles and tadpoles (only present in the general
case of massive propagators). The trailing dots indicate that there is an implicit sum
over all inequivalent distributions of the (cyclically ordered) external legs.

For scalar bubble and tadpoles integrals, all external momenta are necessarily massive,
so we only have the master integrals I2[1] and I1[1]. All one-loop basis integrals can be
found in fig. 2.5.

I4m
4 I3m

4 I2mh
4 I2me

4 I1m
4

‘ I3m
3 I2m

3 I1m
3 I2 I1

Figure 2.5: Master integrals at the one-loop level: the four-mass, three-mass, two-
mass-hard, two-mass-easy, one-mass boxes, the one-, two- and three-mass triangles along
with the bubble and tadpole. The four-point zero-mass configuration of the box was
omitted here.

2.2.2 Integrand Basis

Although the scalar basis decomposition (2.12) is very general and holds for an arbitrary
one-loop scattering amplitude, it has an implicit assumption which is crucial to shed
light on. The integral reduction onto masters relies on integrals being evaluated in real
Minkowski space, or equivalently, in Euclidean space by Wick rotation. More generally,
we will think of complexifying the internal degrees of freedom and deform the integration
into C4. In fact, this is precisely the philosophy which underlies the operation of taking
generalized unitarity cuts as will become clear through the remainder of this thesis.

Let us consider the box term of eq. (2.12). The momenta of the four corners are sub-
ject to the condition

∑4
i Ki = 0. We are able to span the four-dimensional momentum

space by supplementing three of the momenta, say, K1, K2 and K4 by an orthogonal
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direction which we call ω. Thus, ω ·Ki = 0 with ω2 ≥ 0. Any four-dimensional vector
can be expanded as a linear combination of these momenta. Moreover, all dot products
between the loop momentum and external vectors are trivially expressed in terms of
inverse propagators. On the contrary, the remaining dot product (` ·ω) is an irreducible
scalar product (ISP). As such, we arrive at the parametrization

N�(`) =
∑

α∈Basis

cα(` · ω)α . (2.15)

The terms in the sum are constrained by a Gram determinant relation which implies
that (` · ω)2 is a reducible scalar product (RSP). The integrand basis for the box term
is therefore given by

N�(`) = 1 + c1(` · ω) . (2.16)

It can be shown that (` · ω) ∝ ε(`,K1,K2,K4). The linear term in the box integrand is
called spurious or parity-odd because it vanishes identically upon integration over the
real slice. Indeed, restricting the integration contour to RD implies

∫

RD

dD`

(2π)D
ε(`,K1,K2,K4)

`2(`−K1)2(`−K12)2(`+K4)2
= 0 . (2.17)

The integrand-level reduction (2.16) is known as the OPP approach to one-loop ampli-
tudes [15].

A similar analysis applies to the triangle topology [15]. Here we follow ref. [68]. The
triangle only has two independent external momenta, so we need two auxiliary vectors
ω1 and ω2 in order to span the four-dimensional momentum space. There are two ISPs,
namely (`·ω1) and (`·ω2). Accordingly, we parametrize the triangle integrand as follows,

N∆(`) =
∑

{α,β}∈Basis

cαβ(` · ω1)αcαβ(` · ω2)β . (2.18)

Renormalizability requires that α + β ≤ 3. Applying Gram determinants leads to the
integrand basis

N∆(`) = c00 + c10(` · ω1) + c01(` · ω2) + c11(` · ω1)(` · ω2)

+ c12(` · ω1)(` · ω2)2 + c21(` · ω1)2(` · ω2) + c20;02((` · ω1)2 − (` · ω2)2) .
(2.19)

In this way all terms proportional to (` · ωi) integrate to zero on RD.

2.3 Basics of Multivariate Residues

Generalized unitarity cuts of Feynman integrals are naturally formulated in terms of
multidimensional contour integrals that compute multivariate residues rather than using
the delta function prescription. The explanation is that multifold unitarity cuts are not
supported on the real slice for generic external momenta. Consequently, cutting the
propagators on-shell yields a trivial equation. The obvious generalization of integrating
out a Dirac delta function on the real line, i.e.

∫ +∞

−∞
dqδ(q − q0)f(q) = f(q0) , (2.20)
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is immediately realized by defining

δ(q − q0) ≡ 1

2πi

1

q − q0
(2.21)

and replacing the contour R→ C(q0). The contur integral

1

2πi

∮

C(q0)

f(q)

q − q0
(2.22)

simply computes the residue by Cauchy’s residue theorem. In this section we will mo-
tivate the higher-dimensional analog.

Let the meromorphic function F : C2 → C be given by

F (z1, z2) =
h(z1, z2)

(az1 + bz2 + c)(ez1 + fz2 + g)
, (2.23)

and assume regularity of h : C2 → C. We denote f1(z1, z2) = az1 + bz2 + c and
f2(z1, z2) = ez1 + fz2 + g and examine the simultaneous zeros of the denominator
factors. These points are referred to as global poles G1 and G2 of the integrand,

G1 ∪ G2 = { z ∈ C2 | f1(z) = 0 , f2(z) = 0 } . (2.24)

We would like to make sense of the residues of F at the global poles. A natural definition
is achieved as follows. Consider the contour integral of F taken over a small torus
T 2(ξ) ' (S1)2 encircling the point ξ ∈ {G1,G2}. We can specify the discussion at the
origin by changing variables w1 = f1(z1, z2) and w2 = f2(z1, z2). The transformation of
the contour integral,

∮

T 2(ξ)

h(z1, z2)dz1dz2

(az1 + bz2 + c)(ez1 + fz2 + g)
=

∮

T 2(0)

dw1dw2

w1w2

h(z1(w), z2(w))

det
(
∂(w1,w2)
∂(z1,z2)

) , (2.25)

suggests that we define the residue of F at ξ ∈ {G1,G2} by

Res ξ∈{G1,G2}F (z1, z2) =
h(z1(ω), z2(ω))

det ∂(w1,w2)
∂(z1,z2)

∣∣∣∣
z=ξ

. (2.26)

The generalization to functions F : Cn → C of n complex variables z = (z1, . . . , zn)
and m ≥ n denominator factors,

F (z1, . . . , zz) =
h(z1, . . . , zn)

p1(z1, . . . , zn) · · · pm(z1, . . . , zn)
, (2.27)

is straightforward. Indeed, we impose pi1(z) = · · · = pin(z) = 0 to determine a set of
global poles {Gi}. The residue of F evaluated at ξ ∈ {Gi} takes the form

Res ξ∈{Gi}F (z) =
h(z(w))

∏
i 6=(i1,...,in) pi(z(w))) det

∂(pi1 ,...,pin )

∂(z1,...,zn)

∣∣∣∣
z=ξ

(2.28)

provided that the Jacobian is nonvanishing; in this case, the residue is termed nonde-
generate. The general case is treated in chap. 4.
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2.4 Quadruple Cuts and Box Coefficients

Let us focus our attention on extracting the coefficient in front of the one-loop scalar
box integral in eq. (2.12), working to leading order in the dimensional regulator. This
problem was first addressed by means of quadruple cuts by Britto, Cachazo and Feng
(BCF) in ref. [7] and the derivation was later clarified in ref. [55]. The virtue of the
quadruple cut is that it only selects box integrals.

The box integral shown in fig. 2.7 is

I� =

∫
dD`

(2π)D
1

`2(`− k1)2(`−K12)2(`+ k4)2
=

∫
dD`

(2π)D
1∏4

i=1 p
2
i (`)

, (2.29)

where k1, . . . , k4 are the massless external momenta attached to the four corners. For
each such a quartet of momenta, the solution set for the quadruple cut equations that
simultaneously put all propagators on-shell consists of a complex conjugate pair2,

G =
{
` ∈ C4 | `2 = 0 , (`− k1)2 = 0 ,

(`− k1 − k2)2 = 0 , (`+ k4)2 = 0
}

= G1 ∪ G2 . (2.30)

The kinematical structure of the quadruple cut solutions can be understood from the
two allowed configurations of nonconsecutive chiral and antichiral three-vertices. This
part is explained in fig. 2.6 and the two branches of the quadruple cut are illustrated in
fig. 2.7.

qa

qc

qc

|qa〉 ∝ |qb〉 ∝ |qc〉

qa

qc

qc

〈qa| ∝ 〈qb| ∝ 〈qc|

Figure 2.6: Momentum conservation in the massless three-particle vertex implies that
either (i) the chiral spinors are proportional, denoted by a black blob, allowing only a
MHV vertex to be attached or (ii) the antichiral spinors are proportional, denoted by a
white blob, allowing only a MHV vertex to be attached. Be aware that the notation of
chiral and antichiral vertices is not uniform in the literature.

We can easily evaluate the quadruple cut of the box integral and localize the inte-
grand to a point specified by either of the two solutions. However, the presence of two
solutions raises an immediate question: what is the relative normalization? The naive
prescription is just to take an average of the two quadruple cut residues. It only works
because this example is so simple. In general, calculating the quadruple cut on both
sides of eq. (2.12) along an arbitrary linear combination of tori encircling G1 and G2

produces inconsistent results. The remedy is to impose the constraint

I�[N�(`)] = I�[1] =⇒ I�[N�(`)]
∣∣
4−cut

= I�[1]
∣∣
4−cut

, (2.31)

2Technically speaking, identification by complex conjugation presumes reality of the external mo-
menta.
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k1

k2 k3

k4
`

k1

k2 k3

k4
`

k1

k2 k3

k4
`

Figure 2.7: The one-loop box integral (left) along with diagrams corresponding to the
two quadruple cut solutions G1 and G2.

or equivalently,

0 =

∫

RD

dD`

(2π)D
ε(`, k1, k2, k4)∏4

i=1 p
2
i (`)

=⇒
∑

ξ∈{G1,G2}
Ωa

∫

T 4(ξ)

d4`

(2π)4

ε(`, k1, k2, k4)∏4
i=1 p

2
i (`)

= 0 . (2.32)

Note that deforming the integration contour away from real Minkowski space renders the
integral infrared finite, so the dimensional regulator may be neglected. It is elementary
that eq. (2.32) is respected if we compute the quadruple cut with a relative normalization
of integration contours that is a simple average of the infinitesimal four-tori encircling
each global pole [55]. In fact, this is the unique prescription. For a generic numerator
function Φ(`) we will therefore simply define the augmented quadruple cut

∫

RD

dD`

(2π)D
Φ(`)∏4
i=1 p

2
i (`)

∣∣∣∣
4−cut

≡ 1

2

∑

ξ∈{G1,G2}

∮

T 4(ξ)

d4`

(2π)4

Φ(`)∏4
i=1 p

2
i (`)

. (2.33)

Freezing the internal lines at the values specified by the on-shell solutions factorizes the
one-loop amplitude onto a product of four tree amplitudes which are summed over all
possible assignments of internal particles and helicities. Applying the quadruple cut to
the master integral reduction equation yields the schematic relation

c�
2

∑

ξ∈{G1,G2}

∮

T 4(ξ)

d4`

(2π)4

4∏

i=1

1

p2
i (`)

=

1

2

∑

ξ∈{G1,G2}

∑

helicities
particles

∮

T 4(ξ)

d4`

(2π)4

4∏

i=1

1

p2
i (`)

Atree
i (pi(`), pi+1(`), ki) .

(2.34)

In order to isolate c� from eq. (2.34) and derive the desired closed-form BCF formula
for the box integral coefficient we have to consider the Jacobians

JBCF(ξ) =

(
det
i,µ

∂p2
i

∂`µ

)∣∣∣∣
ξ∈{G1,G2}

(2.35)

associated with change of variables from `µ to p2
i (`) on each side of the quadruple cut

equation. The specific form of the Jacobian is not important for our purposes as it
gives the same result for G1 and G2. Hence we just cancel the Jacobian on both sides
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of eq. (2.34). The box coefficient is therefore given by the product of the four tree-level
amplitudes evaluated at complex momenta arising by cutting all internal lines on-shell,

c� =
1

2

∑

a=1,2

∑

helicities
particles

4∏

i=1

Atree
i (pi(ξ), pi+1(ξ), ki)

∣∣
Ga . (2.36)

This derivation is easily repeated for any other configuration of massless and massive
external momenta, with the same result.

The BCF quadruple cut formula is beautiful and strikingly simple. It uniquely
expresses any one-loop gauge theory scalar box integral coefficient in terms of just a
product of four tree amplitudes evaluated at complex momenta arising by simultaneously
promoting all internal lines to on-shell values.

2.4.1 Example: −−++ Helicities

We demonstrate the BCF formula for massless scattering of four gluons with external
helicities − − ++. Consider the quadruple cut box in fig. 2.8. It suffices to work out
the details appropriate to branch G1. By chirality considerations follows that

pµ1 =
1

2
〈p1 |γµ |p1] ∝ 〈4|γµ |1] , pµ2 =

1

2
〈p2 |γµ |p2] ∝ 〈2|γµ |1] . (2.37)

The constants of proportionality are easily fixed by imposing momentum conservation
p2 = p1 − k1, with the result

pµ1 = −1

2

〈12〉
〈24〉〈4|γ

µ |1] , pµ2 = −1

2

〈14〉
〈24〉〈2|γ

µ |1] . (2.38)

The remaining two internal lines can be treated similarly and solution G2 can be obtained
by spinor conjugation, so we will spare the reader for the explicit expressions.

1−

2− 3+

4+

p1

p2

p3

p4

−
+

+

−

+

+

−
−

G1 1−

2− 3+
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−

+

G2

Figure 2.8: The depicted quadruple cut forbids scalars and fermions to propagate
in the loop on either of the two branches G1 and G2. This can easily be seen from the
internal helicity labels.

The valid assignments of helicities at the internal lines in fig. 2.8 allows only gluons
to circulate in the loop. This in turn implies that our example applies to any massless
gauge theory, including QCD and N = 4, 2, 1 super Yang-Mills theory.

A short exercise in spinor manipulations shows that

∑

helicities
particles

4∏

i=1

Atree
(i)

∣∣∣
G1,2

= is12s14A
tree
−−++ , (2.39)
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where the overall tree-level amplitude is given by the Parke-Taylor formula (1.4),

Atree
−−++ =

i〈12〉4
〈12〉〈23〉〈34〉〈41〉 . (2.40)

Feeding this expression through the BCF formula (2.36) immediately produces the de-
sired box coefficient; the result is simply

c� =
1

2

∑

a=1,2

∑

helicities
particles

4∏

i=1

Atree
(i)

∣∣∣
Ga

= is12s14A
tree
−−++ . (2.41)

2.5 Triple Cuts and Triangle Coefficients

We will also present a compact formula for the coefficient of the scalar triangle integral
with possibly massive corners K1, K2 and K3, valid in any gauge theory. A direct
extraction procedure for the triple-box coefficient was first reported by Forde [18]. The
present derivation follows ref. [118].

The triangle in question is depicted in fig. 2.9 and the scalar integral expression is
given by

I∆(K1,K2,K3) =

∫
dD`

(2π)D
1

`2(`−K1)2(`−K1 −K2)2
=

∫
dD`

(2π)D

3∏

i=1

1

p2
i (`)

. (2.42)

To solve the problem, we apply to eq. (2.12) a triple cut which projects out a unique

`K1

K2

K3

Figure 2.9: The one-loop triangle diagram with external momenta K1, K2 and K3.

triangle integral with coefficient c∆ along with multiple boxes, each of which has an
additional propagator. We construct a pair of massless flattened vectors K[,µ

1 and K[,µ
2

in order to obtain a convenient parametrization of the loop momentum,

`µ = α1K
[,µ
1 + α2K

[,µ
2 + α3〈K[

1 |γµ |K[
2] + α4〈K[

2 |γµ |K[
1] . (2.43)

For more information about the flattening procedure, refer to sec. 3.2.5. The inverse
propagators of the triangle integral take the following form in terms of the parametriza-
tion (2.43),

p2
1(α) = γ(α1α2 − 4α3α4) , (2.44)

p2
2(α) = γ((α1 − 1)(α2 − S1/γ)− 4α3α4) , (2.45)

p2
3(α) = γ((α1 − S2/γ − 1)(α2 − S1/γ − 1)− 4α3α4) . (2.46)
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Evidently, the joint solution of p2
1 = p2

2 = p2
3 = 0 is

α1 =
γ(S2 + γ)

γ2 − S1S2
, α2 =

S1S2(S1 + γ)

γ(S1S2 − γ2)
, α3α4 = −S1S2(S1 + γ)(S2 + γ)

4(γ2 − S1S2)2
. (2.47)

The third on-shell equation in eq. (2.47) gives rise to two distinct classes of kine-
matical solutions depending on whether S1S2 = 0 or not. Let us start by considering
the case S1S2 = 0, assuming S1 = 0 and S2 6= 0. In those circumstances, there are two
kinematically inequivalent solutions S1 and S2,

S1 :

{
α1 = 1 + S2/γ , α2 = 0 ,

α3 = z , α4 = 0 ,
S2 :

{
α1 = 1 + S2/γ , α2 = 0 ,

α3 = 0 , α4 = z ,
(2.48)

parametrized by a single complex variable z ∈ C. It suffices to average over the two
configurations in order to project out parity-odd terms which integrate to zero on the
real slice, as was the case for the quadruple cut above. The augmented triple cut takes
the form,

1

2

∑

ξ∈{S1,S2}

∮

T 3(ξ)

d4α

(2π)4

(
det
µ,i

∂`µ

∂αi

) 3∏

i=1

1

p2
i (α)

(
c∆ +

∑

boxes

c�I�
∣∣
3−cut

)
=

1

2

∑

ξ∈{S1,S2}

∑

helicities
particles

∮

T 3(ξ)

d4α

(2π)4

(
det
µ,i

∂`µ

∂αi

) 3∏

i=1

1

p2
i (α)

Atree
i (pi(α), pi+1(α),Ki) ,

(2.49)

where the sum in the parenthesis on the left hand side includes all cut boxes sharing
the three internal momenta of the triangle in question.

The three-dimensional residues associated with the two branches of the triangle cut
evaluate with the same result,

(
det
i,j

∂p2
i

∂αj

)∣∣∣∣
S1,2

= 4γ(γ2 − S1S2)z , (2.50)

and our expression for the triple-cut triangle integral therefore becomes,

I∆

∣∣
3−cut

=
iγ

8(γ2 − S1S2)

∑

ξ∈{S1,S2}

∮

T 3(ξ)

dz

z
. (2.51)

The pole at z = 0 which arises in the Jacobian is known as a composite leading singu-
larity. The triple-cut box integrals can be computed in a similar fashion. The specific
expressions are not important for our purpose though. Indeed, it suffices to realize that
the additional propagator from a box integral merely has a simple pole at a finite value
of z,

I�
∣∣
3−cut

∝
∑

ξ∈{S1,S2}

∮

T 3(ξ)

dz

z(z − z�,ξ)
, (2.52)

The crucial observation is that the triple cut box integrals have vanishing residues
at z =∞, which is easy to argue from power counting. This implies that we can easily
construct triangle projectors by encircling this pole. Accordingly, from eq. (2.49),

S1S2 = 0 : c∆ =
1

2

∑

a=1,2

∑

helicities
particles

∮

C(∞)

dz

z

3∏

i=1

Atree
i (z)

∣∣∣
Sa
. (2.53)
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This is essentially the result obtained by Forde [18].
In the nondegenerate case S1S2 6= 0, there is just a single simultaneous zero of p2

1,
p2

2 and p2
3. By direct calculation, we find that this triple cut corresponds to setting the

parameters to the following values,

S :





α1 =
γ(S2 + γ)

γ2 − S1S2
, α2 =

S1S2(S1 + γ)

γ(γ2 − S1S2)
,

α3 = z , α4 = −S1S2(S1 + γ)(S2 + γ)

4(γ2 − S1S2)z
.

(2.54)

The above derivation of the triangle coefficient extends seamlessly to the new problem
at hand, except that we no longer have multiple branches to average over. In that view,
we immediately find

S1S2 6= 0 : c∆ =
∑

helicities
particles

∮

C(∞)

dz

z

3∏

i=1

Atree
i (z)

∣∣∣
S
. (2.55)

This remarkably simple formula for the triangle coefficient completes our discussion
of procedures for direct extraction of integral coefficients from amplitudes at the one-loop
level.



Maximal Unitarity 3
One of the most remarkable discoveries in elementary particle

physics has been that of the existence of the complex plane.
— Julian Schwinger (1918–1994)

This chapter begins with an overview of the developments within the maximal uni-
tarity method [55, 56] — a proposed multiloop generalization of the direct extraction
procedures of Britto, Cachazo and Feng [7] and Forde [18] for one-loop master inte-
gral coefficients. Maximal unitarity was originally demonstrated for the massless planar
double-box topology in strictly four dimensions [55]. Properly accounting for the un-
derlying structure of maximal cuts led to the uniqueness conjecture for all two-loop
master integral projectors [56]. Subsequent studies extended the formalism to planar
double-box integrals with up to four massive external legs [57, 58].

One of the open question was how to augment the formalism to tackle the nonplanar
sector at two loops. The second part of this chapter presents a thorough analysis of this
particular problem. In particular, we show how to extract the coefficients of nonplanar
double-box integrals with up to four massive external legs and explain the fascinating
properties of the maximal cuts. The main references are papers II and V.

3.1 The Planar Sector

Although the planar sector is relatively simple for 2→ 2 scattering of massless particles
[100], a complete two-loop integral basis has not yet been written down. General steps
towards obtaining such a basis were taken by Gluza, Kajda and Kosower in ref. [53] and
by Schabinger in ref. [54].

3.1.1 Notation for Planar Integrals

We start by introducing some of the principal objects in our study, namely planar two-
loop integrals. Let us recall the notation for one-loop integrals around eq. (2.11),

In[1] =

∫
dD`

(2π)D
1

`2(`−K1)2(`−K12)2 · · · (`−K1···(n−1))2
, (3.1)

Basically we distinguish between two kinds of two-loop integrals: those that factor into
a product of one-loop integrals when certain internal lines are cut; and those that are

23
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genuinely two-loop and remain connected upon cutting any of the internal lines. Phrased
slightly differently, integrals that are genuinely two-loop are constructed by attaching
external legs to one or two of the outer internal lines and possibly also to one or both
of the vertices of the nonfactorizable two-loop vacuum diagram. This class of integrals
may be further organized into three types [53], labeled by distribution of the external
legs on the vacuum diagram. The three types of integrals are illustrated in fig. 3.1 and
the corresponding expressions are

Pn1,n2 [Φ(`1, `2)] =
∫

dD`1
(2π)D

∫
dD`2
(2π)D

Φ(`1, `2)

`21(`1 −K1)2 · · · (`1 −K1···n1)2(`1 + `2 +Kn1+n2+2)2

× 1

`22(`2 −Kn1+n2+1)2 · · · (`2 −K(n1+2)···(n1+n2+1))2
,

(3.2)

P ∗n1,n2
[Φ(`1, `2)] =

∫
dD`1
(2π)D

∫
dD`2
(2π)D

Φ(`1, `2)

`21(`1 −K1)2 · · · (`1 −K1···n1)2(`1 + `2)2

× 1

`22(`2 −Kn1+n2+1)2 · · · (`2 −K(n1+2)···(n1+n2+1))2
,

(3.3)

P ∗∗n1,n2
[Φ(`1, `2)] =

∫
dD`1
(2π)D

∫
dD`2
(2π)D

Φ(`1, `2)

`21(`1 −K1)2 · · · (`1 −K1···n1)2(`1 + `2)2

× 1

`22(`2 −Kn1+n2)2 · · · (`2 −K(n1+1)···(n1+n2))2
. (3.4)

In these definitions, Φ(`1, `2) is a generic numerator polynomial that depends on dot
products between the two loop momenta `1 and `2 and external vectors.

3.1.2 Maximal Cuts of Double-Box Integrals

Our aim is to determine the coefficients appearing in front of double-box master integrals
in the two-loop amplitude. Let us start by considering purely massless scattering.

We may span the four-dimensional momentum space by three external momenta,
say k1, k2, k3, supplemented with a spurious direction ω that is perpendicular to the
subspace spanned by the momenta. All contractions between loop momenta and external
vectors are expressible in terms of eight fundamental scalar products, `i · ej , where
e = (k1, k2, k4, ω). Odd powers of `1 · ω and `2 · ω vanish identically after integration,
whereas even powers are reducible in four dimensions. It is trivial to show that `1 · k1,
`1 · k2 and `2 · k4 can be written in terms of the double-box inverse propagators and
external invariants. Furthermore, `2 · k2 can be expressed linearly in terms of `1 · k4 and
`2 · k1. We may for example select the latter two as irreducible scalar products (ISP)
and parametrize the most general double-box numerator polynomial as follows [68],

N(`1, `2) = c000 + c100(`1 · k4) + c010(`2 · k1) + c001(`1 · ω) + · · · . (3.5)

The terms are restricted by renormalizability requirements and the completion of the
integrand reduction is achieved by multivariate polynomial division with respect to
a Gröbner basis constructed from the double-box inverse propagators. This part is
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Pn1,n2 P ∗n1,n2

P ∗∗n1,n2

Figure 3.1: The three types of genuine two-loop integrals in the planar sector, labeled
by the number of legs attached to each side of the vacuum diagram: (a) Pn1,n2 , (b)
P ∗n1,n2

, (c) P ∗∗n1,n2
. We indicate the absence of external line attached to a vertex by a

superscripted star.

automatically carried out by the Mathematica package BasisDet [71]. The final double-
box integrand consists of 16 parity-even and 16 parity-odd terms.

The double-box integrals that appear in gauge theories are thus

P ∗∗2,2[m,n] ≡ P ∗∗2,2[(`1 · k4)m(`2 · k1)n] . (3.6)

Many of these integrals are in fact still reducible and can be written as linear com-
binations of integrals with lower-rank tensors and fewer than seven propagators. The
reduction is carried out due to integration-by-parts (IBP) relations that follow from
inserting a total derivative into the loop integrand and discarding the boundary in D
dimensions. For the purely massless double-box, the 16 integrals of the form eq. (3.6)
can be reduced onto two master integrals. A common choice of masters involves the
scalar integral and a rank-1 tensor,

P ∗∗2,2[m,n] = c1P
∗∗
2,2[0, 0] + c1P

∗∗
2,2[1, 0] + · · · . (3.7)

In other words, the double-box contribution to the two-loop amplitude is

A
(2)
4 = c1P

∗∗
2,2[0, 0] + c1P

∗∗
2,2[1, 0] + · · · . (3.8)
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Figure 3.2: The maximally cut four-point planar double-box diagram.

We can extract both of the double-box integrals from eq. (3.8) by applying a double-
box hepta-cut on both sides; no other integrals share this particular cut. The double-
box hepta-cut places all seven propagators on their mass-shell and the diagram falls
apart into a product of six on-shell three-point amplitudes. This situation is sketched
in fig. 3.2. The unitarity cut equations form a polynomial equation system and these
equations define an algebraic set, i.e. the solution set of the cut equations in the space
spanned by the eight loop-momentum variables. The two loop momenta have a total of
eight degrees of freedom, so after we have applied the hepta-cut we will be left with one
free parameter. In other words, the hepta-cut equations define an algebraic curve. The
solution set is

S ≡
{

(`1, `2) ∈ (C4)⊗2 | `21 = 0 , (`1 − k1)2 = 0 , (`1 −K12)2 = 0 ,

`22 = 0 , (`2 − k3)2 = 0 , (`2 −K34)2 = 0 , (`1 + `2)2 = 0
}
.

(3.9)

It is hard in practice to examine this algebraic curve and hence the singularity struc-
ture of the double-box loop integrand directly from the defining system of polynomial
equations. Instead, it is customary to study the solutions locally by means of a judi-
ciously chosen loop-momentum parametrization [55],

`µ1 = α1k
µ
1 + α2k

µ
2 +

s12α3

2〈14〉[42]
〈1− |γµ |2−〉+

s12α4

2〈24〉[41]
〈2− |γµ |1−〉 , (3.10)

`µ2 = β1k
µ
3 + β2k

µ
4 +

s12β3

2〈31〉[14]
〈3− |γµ |4−〉+

s12β4

2〈41〉[13]
〈4− |γµ |3−〉 , (3.11)

which to a large extent linearizes the double-box hepta-cut equations. Although the
equations are straightforward, we will not attempt to solve them here. We will merely
quote the result for the six solutions in fig. 3.3 [55]. It follows that the six solutions
are in one-to-one correspondence with the generically valid distributions of chiral and
antichiral three-vertices.

With the hepta-cut solutions at hand we can apply the hepta-cut to the double-box
integral. The hepta-cut involves six nondegenerate seven-dimensional residues asso-
ciated with the poles of the integrand where all propagators take on on-shell values
simultaneously. The residues are obtained via eq. 2.28. Direct calculation yields the
same simple result for all six hepta-cut solutions,

P ∗∗2,2[1]|Si ∝
∮

dz

z(z + χ)
, (3.12)
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k1

k2 k3

k4
`1 `2

Solution S1, obtained by setting

α3 = −χ , β3 = z ,

α4 = 0 , β4 = 0 .

k1

k2 k3

k4
`1 `2

Solution S2, obtained by setting

α3 = z , β3 = −χ ,
α4 = 0 , β4 = 0 .

k1

k2 k3

k4
`1 `2

Solution S3, obtained by setting

α3 = 0 , β3 = 0 ,

α4 = −χ , β4 = z .

k1

k2 k3

k4
`1 `2

Solution S4, obtained by setting

α3 = 0 , β3 = 0 ,

α4 = z , β4 = −χ .

k1

k2 k3

k4
`1 `2

Solution S5, obtained by setting

α3 = 0 , β3 = −(χ+ 1) z+χ
z+χ+1 ,

α4 = z , β4 = 0 .

k1

k2 k3

k4
`1 `2

Solution S6, obtained by setting

α3 = z , β3 = 0 ,

α4 = 0 , β4 = −(χ+ 1) z+χ
z+χ+1 .

Figure 3.3: The six solutions to the hepta-cut equations for purely massless double
box. White and black blobs denote chiral and antichiral three-particle vertices. These
figures are equivalent to those of ref. [55] identifying • = ⊕ and ◦ = 	.
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where χ ≡ s14/s12. The common constant of proportionality is not important for our
purposes. We sum over all six solutions and write the hepta-cut in question as follows,

P ∗∗2,2[1]
∣∣
7−cut

=
6∑

i=1

∮
dz

z(z + χ)
, (3.13)

where the remaining one-dimensional contour is a priori unknown.

3.1.3 Uniqueness of Projectors

The left-over contour may be specified by general arguments. In particular, if the hepta-
cut prescription is to make any sense at all, all relevant integral identities such as IBP
relations must be respected. That is,

P ∗∗2,2[Φ(`1, `2)] = 0 =⇒ cut(P ∗∗2,2[Φ(`1, `2)]) = 0 . (3.14)

More specifically, we must demand that the reduction of the generic double-box inte-
grand in eq. (3.5) onto the two master integrals remains valid no matter which contour
we pick. But what is exactly the interpretation of the cut instruction in eq. (3.14)? Our
best shot is to expand the most general contour as a linear combination of small circles
around each of the z-poles,

Γi =
∑

j∈poles

ωi,jC(zj) , (3.15)

where ωi,j is the winding number around the pole zj on branch Si. We then define the
augmented hepta-cut as the completion of the contour according to this prescription,

cut(P ∗∗2,2[Φ(`1, `2)]) = P ∗∗2,2[Φ(`1, `2)]|aug =
6∑

i=1

∮

Γi

dz

z(z + χ)
. (3.16)

Naively, one would expect to find 6 × 2 = 12 Jacobians poles (those at z = 0 and
z = −χ). Moreover, solutions S5 and S6 give rise to additional poles at z = −χ − 1
which may also be encircled. By inspection of the hepta-cut solutions in fig. 3.3,

Res
z∈Si∩Si+1

J(z)Φ(`1, `2)
∣∣
Si = ± Res

z∈Si∩Si+1

J(z)Φ(`1, `2)
∣∣
Si+1

, (3.17)

where the relative sign depends on conventions. Accordingly, six of the residues are
redundant. Remember, the hepta-cuts equations define an algebraic curve; more pre-
cisely, an elliptic curve that is topologically equivalent to a genus-0 Riemann sphere,
i.e. a torus. In comparison, the only algebraic curve at one loop is a conic section from
the triangle diagram. The elliptic curve in question is reducible and has six irreducible
components, namely the six solutions [56]. The appropriate topological picture emerge
by contracting the torus along lines passing through the object via its center. A sketch
is provided in fig. 3.4

According to the above discussion, it suffices to encircle the following eight poles,

(G1, . . . ,G8) = (G1∩2, G2∩5, G5∩3 ,G3∩4, G4∩6, G6∩1, G5,∞R , G6,∞R) , (3.18)

in order to produce a linearly independent basis of homology for S1 ∪ · · · ∪ S6. The
corresponding weights are denoted by,

Ω = (ω1∩2, ω2∩5, ω5∩3 , ω3∩4, ω4∩6, ω6∩1, ω5,∞R , ω6,∞R) . (3.19)
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S1

S3

S4 S5

S2S6

∞R

∞R

2 ∩ 54 ∩ 6

3 ∩ 4

6 ∩ 1

5 ∩ 3

1 ∩ 2

Figure 3.4: Global structure of the hepta-cut of the purely massless four-point double-
box diagram. This figure in fact also applies to the one-mass, two-mass long and the
two-mass diagonal diagrams [55]. The straight lines should be thought of as CP1. The
poles at infinity are omitted as they can be eliminated by the global residue theorem.

Now, applying the augmented hepta-cut translates the consistency requirement into the
overall statement

P ∗∗2,2[N(`1, `2)]
∣∣
aug

= P ∗∗2,2[c1 + c2(`1 · k4)]
∣∣
aug

. (3.20)

Explicitly, for the parity-odd part of the integrand,

P ∗∗2,2[ε(`1, k1, k2, k4)]
∣∣
aug

= P ∗∗2,2[ε(`2, k1, k2, k4)]
∣∣
aug

= 0 ,

P ∗∗2,2[ε(`1, `2, k1, k2)]
∣∣
aug

= P ∗∗2,2[ε(`1, `2, k1, k4)]
∣∣
aug

= P ∗∗2,2[ε(`1, `2, k2, k4)]
∣∣
aug

= 0 .

(3.21)

Similarly, for the reduction of a few of the parity-even terms by IBP relations,

P ∗∗2,2[(`1 · k4)]
∣∣
aug

= P ∗∗2,2[(`2 · k1)]
∣∣
aug

, (3.22)

P ∗∗2,2[(`1 · k4)(`2 · k1)]
∣∣
aug

=
1

8
χs2

12P
∗∗
2,2[1]

∣∣
aug
− 3

4
s12P

∗∗
2,2[(`1 · k4)]

∣∣
aug

. (3.23)

The remaining IBP reduction equations can be found in e.g. ref. [59]. Surprisingly,
only four of the parity-odd constraints and merely two of the sixteen parity-even IBP
constraints are linearly independent when evaluated on the augmented hepta-cut. Hence,
two weights are left undetermined. This pleasant freedom allows us to define the master
contours,

M1 · (Res {Gi}P
∗∗
2,2[1],Res {Gi}P

∗∗
2,2[(`1 · k4])]) = (1, 0) ,

M1 · (Res {Gi}P
∗∗
2,2[1],Res {Gi}P

∗∗
2,2[(`1 · k4])]) = (0, 1) . (3.24)

Here,M1 andM2 are simply particular choices of the winding numbers (3.19), such that
only the contribution from one of the basis integrals is picked up and further normalized
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to unity. From the augmented hepta-cut of the master equation,

6∑

i=1

∮

Γi

dz

z(z + χ)

∑

particles
helicities

6∏

j=1

Atree
(j) (z)

∣∣
Si =

c1

6∑

i=1

∮

Γi

dz

z(z + χ)
+ c2

6∑

i=1

∮

Γi

dz

z(z + χ)
(`1 · k4)

∣∣
Si ,

(3.25)

we immediately project either c1 or c2 and arrive at the compact master formula [55],

ci =

∮

Mi

dz

z(z + χ)

∑

particles
helicities

6∏

j=1

Atree
(j) (z) , (3.26)

which holds in any gauge theory. The master integral coefficients can be written explic-
itly in terms of the residues picked up by the contour integrals,

c1 = +
1

4

∑

i=1,3

Res
z=−χ

1

z + χ

∑

particles
helicities

6∏

j=1

Atree
(j) (z)

∣∣
Si

+
1

4

∑

i=5,6

Res
z=−χ

1

z + χ

∑

particles
helicities

6∏

j=1

Atree
(j) (z)

∣∣
Si

− χ

4(1 + χ)

∑

i=5,6

Res
z=−χ−1

∑

particles
helicities

6∏

j=1

Atree
(j) (z)

∣∣
Si , (3.27)

c2 = − 1

2s12χ

∑

i=1,3

Res
z=−χ

1

z + χ

∑

particles
helicities

6∏

j=1

Atree
(j) (z)

∣∣
Si

+
1

s12χ

∑

i=5,6

Res
z=0

1

z

∑

particles
helicities

6∏

j=1

Atree
(j) (z)

∣∣
Si

− 1

2s12χ

∑

i=5,6

Res
z=−χ

1

z + χ

∑

particles
helicities

6∏

j=1

Atree
(j) (z)

∣∣
Si

+
3

2s12(1 + χ)

∑

i=5,6

Res
z=−χ−1

∑

particles
helicities

6∏

j=1

Atree
(j) (z)

∣∣
Si . (3.28)

3.1.4 External Masses and Topological Structure

Johansson, Kosower and Larsen extended the maximal unitarity method at two loops
to double-box basis integrals with up to three external massive legs [57] and later on
also to four external massive legs [58]. These papers lent additional nontrivial credence
to the conjecture of uniqueness of master contours in ref. [56].

We will not attempt to reproduce the results of refs. [57, 58] here. Our focus is
instead to provide a brief explanation of the global structure of the hepta-cut in presence
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S1 S2

S1

S2

S3

S4

Figure 3.5: Global structure of the maximal cut of the planar double-box diagram
with external legs configured according to class (a) (left) and (b) (right).

of external massive lines following refs. [56, 79]. Irrespective of the external kinematics,
the hepta-cut equations define an elliptic curve. The simplest example with four external
massless legs gave rise a degenerate curve associated with a sixtuply pinched torus. In
considering the various kinematic configurations of the double box, three distinct classes
appear: (a) when neither (k1, k2) nor (k3, k4) contains a massless momentum; (b) when
exactly one of the pairs contains a massless momentum; (c) when both pairs contain
a massless momentum [56]. The purely massless case is part of class (c) along with
the one-mass, two-mass long side and two-mass diagonal diagrams. Class (b) covers
the three-mass and two-mass short side double-boxes. Finally, the four-mass diagram
belongs to class (a). The classification of diagrams is summarized in figs. 3.7, 3.8 and
3.9 for clarity.

(a) (b) (c)

Figure 3.6: The pinched tori corresponding to class (a), (b) and (c) are obtained by
contracting tubes along one, two and three lines passing through the object via its center
respectively. This figure appeared in ref. [79].

The hepta-cut equations in class (b) yield four inequivalent solutions that intersect
pairwise at four distinct points. The corresponding topological picture is that of a
torus whose tubes have been contracted along two lines passing through the object
via its center as illustrated in fig. 3.5. The hepta-cut equations in class (a) yield only
two independent solutions that intersect at two points. In this case, the torus associated
with the elliptic curve is only pinched twice along a single line. A perhaps more intuitive
picture is given in fig. 3.6. It is important to note that the number of independent global
poles is constant under the chiral branchings from 1→ 2→ 4→ 6 hepta-cut solutions.
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Interestingly, the number of independent double-box basis integrals seems to be
governed by the global structure of the hepta-cut. Indeed, according to the IBP relations
generated by FIRE [103], class (a), (b) and (c) have four, three and two master integrals
respectively. In the four-mass case, the two-amplitude can be written

A
(1)
4 = c1P

∗∗
2,2[1] + c2P

∗∗
2,2[(`1 · k4)] + c3P

∗∗
2,2[(`2 · k1)] + c3P

∗∗
2,2[(`1 · k4)(`2 · k1)] . (3.29)

There are four independent parity-odd constraints, but all IBP relations are automati-
cally satisfied. The latter is rather surprising, all eight windings numbers are nevertheless
uniquely determined on the four master contours [58]. The three masters in class (b)
can be chosen as follows,

A
(1)
4 = c1P

∗∗
2,2[1] + c2P

∗∗
2,2[(`1 · k4)]c3P

∗∗
2,2[(`2 · k1)] + · · · . (3.30)

It happens that the IBP reduction equation

P ∗∗2,2[(`1 · k4)(`2 · k1)] = c′1P
∗∗
2,2[1] + c′2P

∗∗
2,2[(`1 · k4)] + c′3P

∗∗
2,2[(`2 · k1)] , (3.31)

where trailing dots hide integrals with less than seven propagators, uniquely fixes all
three master contours together with the four parity-odd constraints. Finally, the kine-
matics of class (c), where

A
(1)
4 = c1P

∗∗
2,2[1] + c2P

∗∗
2,2[(`1 · k4)] + · · · , (3.32)

gives rise to two linearly independent IBP constraints. One of them is inherited from
the reduction (3.31) from 4 → 3 master integrals. The last constraint comes from the
IBP identity relating the two rank-1 tensor integrals,

P ∗∗2,2[(`2 · k1)] = c′′1P
∗∗
2,2[1] + c′′2P

∗∗
2,2[(`1 · k4)] , (3.33)

which is responsible for the reduction from 3→ 2 masters.

3.2 The Nonplanar Sector

The majority of the irreducible integrals in the nonplanar sectors at four external par-
ticles are nonplanar double boxes [101]. In a sequence of papers [59, 61, 62] Zhang and
the author have extended the four-dimensional maximal unitarity formalism [55, 56] to
cover such integrals. The principal results, which also may find application for higher-
multiplicity scattering of massless particles, are unique projectors for all basis integral
coefficients in all inequivalent configurations of massive and massless external momenta,
valid to O(ε0) in the dimensional regulator. Remarkably, all salient features carry over
directly from the planar sector.

3.2.1 Notation for Nonplanar Integrals

We will encounter two variants of the nonplanar double-box integral in this thesis. The
two definitions differ by a cyclic permutation of the external legs and by the conventions
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Figure 3.7: When considering only four external particles, class (a) only contains the
four-mass double box. Note that we assume that all masses are distinct. The equal-mass
case with, say, m1 = m4 and m2 = m3 was examined in ref. [58].

Figure 3.8: Class (b) contains the two-mass short and three-mass configurations of the
double-box diagram.

Figure 3.9: Class (c) contains the zero-mass, one-mass, two-mass long and two-mass
diagonal configurations. We omit diagrams that are related by cyclic permutations of
external legs.
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for the momentum flow on the internal lines. The integral expressions are

X∗∗1,1,2[Φ(`1, `2)] ≡
∫

dD`1
(2π)D

∫
dD`2
(2π)D

Φ(`1, `2)

`21(`1 + k1)2`22(`2 + k3)2(`2 − k4)2(`2 − `1 + k3)2(`2 − `1 +K23)2
,

(3.34)

X∗∗2,1,1[Φ(`1, `2)] ≡
∫

dD`1
(2π)D

∫
dD`2
(2π)D

Φ(`1, `2)

`21(`1 − k1)2(`1 −K12)2`22(`2 − k4)2(`1 + `2)2(`1 + `2 + k3)2
.

(3.35)

The superscripted stars signify the absence of external lines attached to the two-loop
vacuum diagram. The three subscripts indicate the number of external legs on the
left-most, the middle and the right-most rungs respectively.

k1 k2

k3

k4

`1

`2

X∗∗1,1,2

k1

k2

k3 k4

`1

`2

X∗∗2,1,1

Figure 3.10: The nonplanar double-box integrals. Although the two figures merely
differ by a cyclic permutation of the external legs, we will distinguish between them in
the following. All external particles may be massive or massless.

3.2.2 Maximal Cuts of Nonplanar Double-Box Integrals

For simplicity we specialize purely massless scattering and postpone the more general
analysis. The goal is to extract the nonplanar double-box master integral coefficients
from the two-loop amplitude in arbitrary gauge theories.

Repeating the analysis of sec. 3.1.2 leads to the conclusion that the general nonplanar
double-box numerator polynomial can be parametrized in terms of two parity-odd and
two parity-even ISPs. We follow ref. [55] and choose the nonspurious ISPs to be `1 · k3

and `2 · k2. The numerator of the integrand can thus be written

N(`1, `2) = c000 + c100(`1 · k3) + c010(`2 · k2) + c001(`1 · ω) + · · · . (3.36)

Constraining terms by the requirement of renormalizability along with performing the
multivariate polynomial division of the numerator with respect to a Gröbner basis con-
structed form the nonplanar double-box inverse propagators completes the integrand-
level reduction. The resulting integrand has 19 parity-even and 19 parity-odd terms as
reported in ref. [68]. For more information on integrand-level reduction, consult e.g.
ref. [71].



3.2. THE NONPLANAR SECTOR 35

α1 α2 α3 α4 β1 β2 β3 β4

S1 χ− z 0 χ(z − χ− 1) 0 0 0 z 0

S2 χ− z 0 0 χ(z − χ− 1) 0 0 0 z

S3 0 0 z 0 0 0 χ 0

S4 0 0 0 z 0 0 0 χ

S5 χ− z 0 0 (χ+ 1)(z − χ) 0 0 z 0

S6 χ− z 0 (χ+ 1)(z − χ) 0 0 0 0 z

S7 −1 0 0 z 0 0 1 + χ 0

S8 −1 0 z 0 0 0 0 1 + χ

Table 3.1: An overview of the hepta-cut solutions for the purely massless four-point
nonplanar double box. The loop-momentum parameters α1, . . . , α4 and β1, . . . , β4 were
defined in eq. (3.11).

We introduce the shorthand notation for the nominally-irreducible nonplanar double-
box integrals,

X∗∗1,1,2[m,n] ≡ X∗∗1,1,2[(`1 · k3)m(`2 · k2)m] . (3.37)

Invoking IBP technology, we find 17 linear relations among the integrals of the form
(3.37). Hence, we are left with only two master integrals. In order to be able to
compare results with ref. [68], we choose the following basis decomposition,

X∗∗1,1,2[m,n] = c1X
∗∗
1,1,2[1] + c2X

∗∗
1,1,2[(`1 · k3)] + · · · . (3.38)

In particular, the nonplanar double-box contribution to the two-loop amplitude can be
written,

A
(1)
4 = c1X

∗∗
1,1,2[1] + c2X

∗∗
1,1,2[(`1 · k3)] + · · · , (3.39)

where the · · · include integrals with other topologies (the planar double-box for example)
or less than seven propagators.

The two nonplanar double-box integrals in eq. (3.39) are almost effortlessly extracted
by means of a hepta-cut that places all seven propagators on-shell. No other integrals
contribute to the cut in question, so the remaining problem is merely to disentangle the
two nonplanar double-boxes from each other. The hepta-cut equations still define an
algebraic curve. We will denote the set of hepta-cut solutions as follows,

S ≡
{

(`1, `2) ∈ (C4)⊗2 | `21 = 0 , (`1 + k1)2 = 0 , (`2)2 = 0 , (`2 + k3)2 = 0 ,

(`2 − k4)2 = 0 , (`2 − `1 + k3)2 = 0 , (`2 − `1 +K23)2 = 0
}
.

(3.40)

The solutions may be expressed with regard to the loop-momentum parametrization in
eq. (3.11). Keeping track of all possible branchings we find the four pairs of complex con-
jugate solutions shown in table 3.1. This is naturally expected in view of the, for generic
external momenta, valid distributions of internal helicities in the six three-vertices. For
a more detailed derivation of the hepta-cut solutions, see ref. [59].
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The hepta-cut of the nonplanar double-box consists of eight nondegenerate seven-
dimensional residues. Using eq. (2.28) we end up with the results [59]

X∗∗1,1,2[1]
∣∣
S3,4 = − 1

16s3
12

∮
dz

z(z + χ)
, (3.41)

X∗∗1,1,2[1]
∣∣
S7,8 = − 1

16s3
12

∮
dz

z(z − χ− 1)
, (3.42)

X∗∗1,1,2[1]
∣∣
S1,2,5,6 = − 1

16s3
12

∮
dz

z(z − χ)(z − χ− 1)
. (3.43)

Further details on how to evaluate the residues in practice can be found in ref. [59]. Note
that unlike the planar case, the analytic structure of the integrand vary from branch
to branch. Summing over all eight contributions produces what we will refer to as the
hepta-cut of the nonplanar double box,

X∗∗1,1,2[1]
∣∣
7−cut

=
1

16s3
12

[ ∑

i=1,2,5,6

∮
dz

z(z − χ)(z − χ− 1)

+
∑

i=3,4

∮
dz

z(z + χ)
+ +

∑

i=7,8

∮
dz

z(z − χ− 1)

]
. (3.44)

3.2.3 Uniqueness of Projectors

It remains to examine whether the left-over contour can be uniquely determined by
general arguments as for the planar double box. The basic principle is still that any
integral identity must be respected, i.e.

X∗∗1,1,2[Φ(`1, `2)] = 0 =⇒ X∗∗1,1,2[Φ(`1, `2)]) = 0 . (3.45)

For the problem at hand, the requirements is that the reduction of the generic nonplanar
double-box integrand in eq. (3.36) onto the two basis integrals continues to hold on
arbitrary contours away form the real slice. Accordingly, the most general contour is an
expansion of small circles around each of the z-poles,

Γi =
∑

j∈poles

ωi,jC(zj) , (3.46)

ωi,j being the winding numbers. Completing the contour along these lines yields the
augmented hepta-cut of the nonplanar double box.

Inspecting the singularity structure suggests a total of 4 × 3 + 2 × 2 + 2 × 2 = 18
Jacobian poles. None of the hepta-cut solutions give rise to additional poles for finite
values of z as all of them are holomorphically parametrized. However, many of the
residues coincide:

Res
z=0

J1(z)Φ(`1`2)
∣∣
S1 = ± Res

z=0
J6(z)Φ(`1`2)

∣∣
S6

Res
z=0

J2(z)Φ(`1`2)
∣∣
S2 = ± Res

z=0
J5(z)Φ(`1`2)

∣∣
S5

Res
z=χ

J1(z)Φ(`1`2)
∣∣
S1 = ± Res

z=−χ
J3(z)Φ(`1`2)

∣∣
S3

Res
z=χ

J2(z)Φ(`1`2)
∣∣
S2 = ± Res

z=−χ
J4(z)Φ(`1`2)

∣∣
S4
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Res
z=χ+1

J1(z)Φ(`1`2)
∣∣
S1 = ± Res

z=0
J7(z)Φ(`1`2)

∣∣
S7

Res
z=χ+1

J2(z)Φ(`1`2)
∣∣
S2 = ± Res

z=0
J8(z)Φ(`1`2)

∣∣
S8

Res
z=χ+1

J5(z)Φ(`1`2)
∣∣
S5 = ± Res

z=χ+1
J7(z)Φ(`1`2)

∣∣
S7

Res
z=χ+1

J6(z)Φ(`1`2)
∣∣
S6 = ± Res

z=χ+1
J8(z)Φ(`1`2)

∣∣
S8

Res
z=χ

J5(z)Φ(`1`2)
∣∣
S5 = ± Res

z=0
J3(z)Φ(`1`2)

∣∣
S3

Res
z=χ

J6(z)Φ(`1`2)
∣∣
S6 = ± Res

z=0
J4(z)Φ(`1`2)

∣∣
S4 . (3.47)

Phrased slightly differently, the hepta-cut branches intersect each other at 10 distinct
points. Hence we can immediately discard half of the residues, leaving only 10 inde-
pendent weights to be determined. Interestingly, the picture alluded here is that of a
genus-3 (hyperelliptic) curve. The hepta-cut equations are in one-to-one correspondence
with the eight irreducible components. Moreover, the topological picture is obtained by
contracting tubes along horizontal and vertical lines passing through the genus-3 surface
via its center. For a depiction, see fig. 3.11.

S4

S8

S7

S3

S6 S2

S1 S5

5 ∩ 3

5 ∩ 7

1 ∩ 3

1 ∩ 7

6 ∩ 8

6 ∩ 4 2 ∩ 4

2 ∩ 8

1 ∩ 6 2 ∩ 5

Figure 3.11: The maximal cut of the purely massless four-point nonplanar double-box
diagram defines a nodal genus-3 algebraic curve. The irreducible components are drawn
as straight lines, but should be interpreted as Riemann spheres.

All z-poles at finite values are located on branches S1, S2, S5 or S6, so the remaining
four branches turn out to be redundant. It thus suffices to encircle ten global poles
specified by the ordered list of winding numbers,

Ω = (ω1∩6, ω1∩3, ω1∩7 , ω2∩5, ω2∩4, ω2∩8, ω5∩3, ω5∩7, ω6∩4, ω6∩8) , (3.48)

in order to produce a minimal basis of homology for S1 ∪ · · · ∪ S8.
It remains to investigate the details of the constraints imposed on the contours. More

precisely, we would like to know the implications of enforcing the condition

X∗∗1,1,2[N(`1, `2)]
∣∣
aug

= X∗∗1,2,2[c1 + c2(`1 · k3)]
∣∣
aug

, (3.49)

where N(`1, `2) is the general nonplanar double-box numerator function with 19 parity-
odd and 19 parity-even monomials. All parity-odd constraints are respected as long as
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we require that

X∗∗1,1,2[ε(`1, k2, k3, k4)]
∣∣
aug

= 0 ,

X∗∗1,1,2[ε(`2, k2, k3, k4)]
∣∣
aug

= 0 ,

X∗∗1,1,2[ε(`1, `2, k2, k3)]
∣∣
aug

= 0 ,

X∗∗1,1,2[ε(`1, `2, k2, k4)]
∣∣
aug

= 0 ,

X∗∗1,1,2[ε(`1, `2, k3, k4)]
∣∣
aug

= 0 , (3.50)

Unlike the planar case, all five Levi-Civita constraints give rise to linearly independent
[59] expressions. This was also expected since we now have five pairs of parity conjugate
global poles. The complexity of the parity-even integral relations is modest. Typical
examples are

X∗∗1,1,2[(`1 · k3)2] = − 1

16
(1 + χ)χs2

12X
∗∗
1,1,2[1] +

3

8
(1 + 2χ)s12X

∗∗
1,1,2[(`1 · k3)] + · · · ,

X∗∗1,1,2[(`1 · k3)(`2 · k2)] = +
1

16
(1 + χ)χs2

12X
∗∗
1,1,2[1]− 3

8
(1 + 2χ)s12X

∗∗
1,1,2[(`1 · k3)] + · · · .

(3.51)

The rest of the nonplanar double-box IBP relations along with the their cut expressions
can be found in ref. [59]. Surprisingly, out of the 17 genuine IBP relations only three
of them are linearly independent when evaluated on the augmented hepta-cut. The five
parity-odd and three parity-even contour constraints uniquely determine the two master
contours

M1 · (Res {Gi}X
∗∗
1,1,2[1],Res {Gi}X

∗∗
1,1,2[(`1 · k3])]) = (1, 0) ,

M2 · (Res {Gi}X
∗∗
1,1,2[1],Res {Gi}X

∗∗
1,1,2[(`1 · k3])]) = (0, 1) . (3.52)

In fact, M1 and M2 are characterized by the 10-tuples,

M1 = 2χ(1 + χ)s3
12(−2, 1, 1,−2, 1, 1, 1, 1, 1, 1) , (3.53)

M2 = 4s2
12(2(1 + 2χ), 1− 2χ,−3− 2χ, 2(1 + 2χ), 1− 2χ,

− 3− 2χ, 1− 2χ,−3− 2χ, 1− 2χ,−3− 2χ) . (3.54)

Applying the projectors to the augmented hepta-cut of the basis expansion of the
two-loop amplitude provides us with an equation for two unknowns,

∑

i∈{1,2,5,6}

∮

Γi

dz

z(z − χ)(z − χ− 1)

∑

particles
helicities

6∏

j=1

Atree
(j) (z)

∣∣
Si =

c1

∑

i∈{1,2,5,6}

∮

Γi

dz

z(z − χ)(z − χ− 1)
+ c2

∑

i∈{1,2,5,6}

∮

Γi

dz
(`1 · k3)|Si

z(z − χ)(z − χ− 1)
.

(3.55)

Thanks to the projectors we can immediately obtain a surprisingly compact formula for
the desired coefficients c1 and c2 [59],

ci =

∮

Mi

dz

z(z − χ)(z − χ− 1)

∑

particles
helicities

6∏

j=1

Atree
(j) (z) . (3.56)
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We stress that this formula applies to any gauge theory, in particular QCD. For the
benefit of the interested reader, we provide a more explicit expression for c1 and c2 in
terms of the residues computed by the contour integrals. Here it is [59]:

c1 =
1

4

∑

i=1,2

Res
z=0

1

z

∑

particles
helicities

6∏

j=1

Atree
(j) (z)

∣∣
Si

+
1 + χ

8

∑

i=1,2,5,6

Res
z=χ

1

z − χ
∑

particles
helicities

6∏

j=1

Atree
(j) (z)

∣∣
Si

− χ

8

∑

i=1,2,5,6

Res
z=χ+1

1

z − χ− 1

∑

particles
helicities

6∏

j=1

Atree
(j) (z)

∣∣
Si , (3.57)

c2 = − 1 + 2χ

2s12χ(χ+ 1)

∑

i=1,2

Res
z=0

1

z

∑

particles
helicities

6∏

j=1

Atree
(j) (z)

∣∣
Si

+
1− 2χ

4s12χ

∑

i=1,2,5,6

Res
z=χ

1

z − χ
∑

particles
helicities

6∏

j=1

Atree
(j) (z)

∣∣
Si

+
3 + 2χ

4s12(χ+ 1)

∑

i=1,2,5,6

Res
z=χ+1

1

z − χ− 1

∑

particles
helicities

6∏

j=1

Atree
(j) (z)

∣∣
Si . (3.58)

3.2.4 Examples

We demonstrate the nonplanar double-box master formula by computing the basis inte-
gral coefficients for some specific helicity configurations. Contributions to the intermedi-
ate state sums are efficiently tracked via Grassmann variables [97–99]. In particular, we
exploit that the transition from N = 4 to fewer supersymmetries is very straightforward;
we simply apply the replacement

∑

N=4
multiplet

k∏

i=1

Atree
(i) = ∆−1(A+B + C + · · · )4 −→

∑

N<4
multiplet

k∏

i=1

Atree
(i) = ∆−1(A+B + C + · · · )N (A4−N +B4−N + C4−N + · · · ) .

(3.59)

Here A,B,C, . . . contain spin dependence for each kinematically valid assignment of
helicities on the internal lines with only gluons propagating in the loops whereas ∆ is
the denominator. Suppose that we only have two gluonic contributions A and B. For
instance this case is relevant for quadruple cuts of one-loop amplitudes and hepta-cuts of
two-loop amplitudes. A neat trick allows us to calculate the constant of proportionality
between the N ≤ 4 and N = 4 state sums. Indeed, expanding around A = −B yields
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the desired expression [55]

∑

N≤4
multiplet

6∏

j=1

Atree
(j) =

A4−N +B4−N

(A+B)4−N (1− 1
2δN ,4)

∑

N=4
multiplet

6∏

j=1

Atree
(j)

=

{
1− (4−N )

(
A

A+B

)
+ (4−N )

(
A

A+B

)2} ∑

N=4
multiplet

6∏

j=1

Atree
(j) .

(3.60)

We will apply this formula to the −−++ helicity amplitude. Our starting point is
the tree-level data in N = 4 theory,

∑

N=4
multiplet

6∏

j=1

Atree
(j) (z)

∣∣
Si = −s2

12s14A
tree
−−++ , (3.61)

which is independent of the loop momenta. Inserting the spin factors worked out in
ref. [59] into eq. (3.60) produces

∑

N≤4
multiplet

6∏

j=1

Atree
(j) (z)

∣∣
S2 = −s2

12s14A
tree
−−++

{
1− (4−N )(z − χ) + (4−N )(z − χ)2

}
.

(3.62)

Now, feeding this expression into the master formula gives

A
(2)
4 (1−, 1−, 1+, 1+) =

− s2
12s14A

tree
−−++

{[
1 + (4−N )

s14

4s12

(
1 +

s14

s12

)]
X∗∗1,1,2[1]

+ (4−N )
s13 − s14

2s2
12

X∗∗1,1,2[(`1 · k3)]

}
.

(3.63)

3.2.5 Massive Hepta-Cut Equations

It is desireable to investigate whether the simple results obtained in the nonplanar
sector for massless external particles can be generalized to massive configurations. We
are particularly interested in extracting information from the global structure of the
hepta-cut. From now on we will consider maximal cuts of the nonplanar double-box
integral X2,1,1 in the presence of one, two, three or four massive legs. Refer to eq. (3.35)
and fig. 3.10 for an outline of the conventions for the momentum flow. The rest of this
chapter follows paper II.

Massive unitarity cut equations are conveniently manipulated using mutually pro-
jected kinematics [15, 18]. The idea is to obtain massless momenta (k[i , k

[
j) from a

pair of massive momenta (ki, kj). We will consider four-point kinematics with mutually
projecting pairs (k1, k2) and (k3, k4). For each pair we define

k[,µj,1 = kµj,1 −
k2
j,1

2kj,1 · k[j,2
k[,µj,2 , k[,µj,2 = kµj,2 −

k2
j,2

2kj,2 · k[j,1
k[,µj,1 . (3.64)
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Hence, (k[,µj,1 , k
[,µ
j,2 ) are massless by construction. Note that

kj,1 · k[j,2 = k[j,1 · kj,2 = k[j,1 · k[j,2 . (3.65)

Notation may be streamlined if we define the frequently occurring quantity,

γj,12 = 2k[j,1 · k[j,2 , (3.66)

which upon identification in eq. (3.64) immediately leads to a quadratic equation with
the solutions

γ±j,12 = kj,1 · kj,2 ±
[
(kj,1 · kj,2)2 − k2

j,1k
2
j,2

]1/2
. (3.67)

Throughout this calculation we will use the loop-momentum parametrization

`µ1 =
1

2
〈λ−1 |γµ |λ̃

′−
1 ] =

1

2
〈λ1|γµ|λ̃′1] , `µ2 =

1

2
〈λ−2 |γµ |λ̃

′−
2 ] =

1

2
〈λ2|γµ|λ̃′2] . (3.68)

Note that the on-shell conditions `21 = `22 = 0 are automatically satisfied. This point will
be addressed shortly. We construct the various loop spinors from the spinors associated
with the two mutually projecting pairs,

|λ+
1 〉 = ξ1|1[,+〉+ ξ2

〈4[1[〉
〈4[2[〉 |2

[,+〉 , |λ̃′−
1 〉 = ξ′1|1[,−〉+ ξ′2

[4[1[]

[4[2[]
|2[,−〉 ,

|λ+
2 〉 = ξ3

〈1[4[〉
〈1[3[〉 |3

[,+〉+ ξ4|4[,+〉 , |λ̃′−
2 〉 = ξ′3

[1[4[]

[1[3[]
|3[,−〉+ ξ′4|4[,−〉 . (3.69)

All parameters are in general complex. We may expand `µ1 and `µ2 explicitly in the basis
of four-vectors, with the result

`µ1 (ξi, ξ
′
i) = ξ1ξ

′
1k
[,µ
1 + ξ2ξ

′
2

k[1 · k[4
k[2 · k[4

k[,µ2

+
ξ1ξ
′
2

2

[1[4[]

[2[4[]
〈1[,− |γµ |2[,−] +

ξ2ξ
′
1

2

〈1[4[〉
〈2[4[〉〈2

[,− |γµ |1[,−] , (3.70)

`µ2 (ξi, ξ
′
i) = ξ3ξ

′
3

k[1 · k[4
k[1 · k[3

k[,µ3 + ξ4ξ
′
4k
[,µ
4

+
ξ3ξ
′
4

2

〈1[4[〉
〈1[3[〉〈3

[,− |γµ |4[,−] +
ξ4ξ
′
3

2

[1[4[]

[1[3[]
〈4[,− |γµ |3[,−] . (3.71)

It follows that we are able to eventually fix two of the complex parameters without
loss of generality. This freedom amounts to some sort of a gauge choice. However, we
emphasize that this choice is not necessarily the same for all cut solutions.

We assume that all four corners are massive. Three of the on-shell equations are
very simple as they involve only one of the two loop momenta,

(`1 − k1)2 = 0 =⇒ m2
1(1− ξ1ξ

′
1)− k[1 · k[4

k[2 · k[4
ξ2ξ
′
2γ12 = 0 , (3.72)

(`1 − k1 − k2)2 = 0 =⇒ s12 −m2
1 − γ12ξ1ξ

′
1 −

k[1 · k[4
k[2 · k[4

m2
2ξ2ξ

′
2 = 0 , (3.73)

(`2 − k4)2 = 0 =⇒ m2
4(1− ξ4ξ

′
4)− k[1 · k[4

k[1 · k[3
ξ3ξ
′
3γ34 = 0 . (3.74)
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Lorentz products involving flattened momenta appear frequently in the remainder of
this calculation. Therefore we collect the expressions:

k[1 · k[3 = γ12γ34

(
2(γ2

12 −m2
1m

2
2)(γ2

34 −m2
3m

2
4)
)−1

×
{
m2

1

[
γ34(m2

2 +m2
3 − s14) +m2

3(m2
1 +m2

3 − s12 − s14)
]

+ γ12

[
m2

3(m2
1 +m2

4 − s14) + γ34(m2
2 +m2

4 − s12 − s14)
]}
, (3.75)

k[1 · k[4 = γ12γ34

(
2(γ2

12 −m2
1m

2
2)(γ2

34 −m2
3m

2
4)
)−1

×
{
m2

1

[
γ34(m2

1 +m2
3 − s12 − s14) +m2

4(m2
2 +m2

3 − s14)
]

+ γ12

[
m2

4(m2
2 +m2

4 − s12 − s14) + γ34(m2
1 +m2

4 − s14)
]}
, (3.76)

k[2 · k[3 = γ12γ34

(
2(γ2

12 −m2
1m

2
2)(γ2

34 −m2
3m

2
4)
)−1

×
{
m2

2

[
m2

3(m2
1 +m2

4 − s14) + γ34(m2
2 +m2

4 − s12 − s14)
]

+ γ12

[
m2

3(m2
1 +m2

3 − s12 − s14) + γ34(m2
2 +m2

3 − s14)
]}
, (3.77)

k[2 · k[4 = γ12γ34

(
2(γ2

12 −m2
1m

2
2)(γ2

34 −m2
3m

2
4)
)−1

×
{
m2

2

[
γ34(m2

1 +m2
4 − s14) +m2

4(m2
2 +m2

4 − s12 − s14)
]

+ γ12

[
m2

4(m2
2 +m2

3 − s14) + γ34(m2
1 +m2

3 − s12 − s14)
]}
. (3.78)

We also have trivial identity m2
i = 2k[i · ki along with the tedious expressions,

k[1 · k3 = +
γ12[m2

1(m2
2 +m2

3 − s14) + γ12(m2
2 +m2

4 − s12 − s14)]

2(γ2
12 −m2

1m
2
2)

, (3.79)

k[2 · k3 = − γ12[γ12(m2
2 +m2

3 − s14) +m2
2(m2

2 +m2
4 − s12 − s14)]

2(γ2
12 −m2

1m
2
2)

. (3.80)

Finally, we also need the quantities

τ ≡ 〈1
[4[〉〈2[3[〉
〈2[4[〉〈1[3[〉 , τ̄ ≡ [1[4[][2[3[]

[2[4[][1[3[]
. (3.81)

Note that τ and τ̄ are complex conjugates of each other for real external momenta as
indicated. But in fact τ = τ̄ . For the sake of completeness we provide the explicit
expression,

τ = τ̄ = − γ34(γ12 +m2
1)

(γ34 +m2
3)[(γ12γ34 −m2

1m
2
3)(γ12γ34 −m2

2m
2
4) + γ12γ34s12s14]

×
[
(γ12 +m2

2)(γ34 +m2
3)(m2

2 +m2
3 − s14) + 2m2

2m
2
3s12+

(γ12 +m2
2)m2

3(m2
1 −m2

2 − s12) + (γ34 +m2
3)m2

2(m2
4 −m2

3 − s12)
]
.

(3.82)

Now, returning to the hepta-cut equations for loop momentum `1, we obtain for
general masses m1 6= 0 6= m2 the solution

ξ1ξ
′
1 =

γ12s12 − (γ12 +m2
2)m2

1

γ2
12 −m2

1m
2
2

≡ ξ̄1 , (3.83)

ξ2ξ
′
2 =

m2
1(m2

1 + γ12 − s12)k[2 · k[4
(γ2

12 −m2
1m

2
2)k[1 · k[4

≡ ξ̄2 . (3.84)
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If we then rewrite eq. (3.74) such that

ξ3ξ
′
3 + µ(ξ4ξ

′
4 − 1) = 0 , µ ≡ m2

4k
[
1 · k[3

γ34k[1 · k[4
, (3.85)

it is clear that ξ3ξ
′
3 = 0 if m4 = 0 or ξ4ξ

′
4 = 1.

The coupled on-shell equations are actually also quite straightforward to solve thanks
to the loop-momentum parametrization. One of the equations factorizes completely,

(`1 + `2)2 = 0 =⇒ (ξ1(ξ3 + ξ4) + ξ2(τξ3 + ξ4))× (ξ′1(ξ′3 + ξ′4) + ξ′2(τξ′3 + ξ′4)) = 0 ,
(3.86)

whereas the other can be brought to the form

(`1 + `2 + k3)2 = 0 =⇒

m2
3 + 2

{
k[1 · k3ξ1ξ

′
1 +

[
τk[1 · k[3 +

m2
3k
[
1 · k[4
γ34

]
(ξ1ξ

′
2 + ξ′1ξ2)

+
m2

3k
[
1 · k[4

2k[1 · k[3
ξ3ξ
′
3 +

k[1 · k[4k[2 · k3

k[2 · k[4
ξ2ξ
′
2 +

γ34

2
ξ4ξ
′
4

}
= 0 .

(3.87)

Inserting eqs. (3.84) and (3.85) into eq. (3.87) yields

ξ4ξ
′
4 = −

(
γ34 −

m2
3m

2
4

γ34

)−1{
m2

3

(
1 +

m2
4

γ34

)
+ 2

[
k[1 · k3ξ̄1 +

k[1 · k[4
k[2 · k[4

k[2 · k3ξ̄2

+

(
τk[1 · k[3 +

m2
3k
[
1 · k[4
γ34

)
(ξ1ξ

′
2 + ξ′1ξ2)

]}
.

(3.88)

Taking advantage of the relations,

τ

(τ − 1)(ξ̄1 − τ ξ̄2)
=

2k[1 · k[4
γ2

34 −m2
3m

2
4

[
m2

3 + γ34τ
k[1 · k[3
k[1 · k[4

]
,

(3.89)

ξ̄1 + τ2ξ̄2

(τ − 1)(ξ̄1 − τ ξ̄2)
=

γ34

γ2
34 −m2

3m
2
4

[
m2

3

(
1 +

m2
4

γ34

)
+ 2

(
k[1 · k3ξ̄1 +

k[1 · k[4
k[2 · k[4

k[2 · k3ξ̄2

)]
,

(3.90)

allows us to rewrite eq. (3.88), with the simplified result

ξ4ξ
′
4 = 1 +

τ(ξ̄1 + ξ̄2 + ξ1ξ
′
2 + ξ′1ξ2)

(1− τ)(ξ̄1 − τ ξ̄2)
. (3.91)

We invite the reader to verify these identities through eqs. (3.75)-(3.80) and (3.82) along
with expressions for ξ̄1 and ξ̄2 given in eq. (3.84). It is a rather unwieldy task, though.

The hepta-cut solutions form three pairs of parity conjugates (S1,S2), (S3,S4),
(S5,S6). In terms of the kinematic quantities ξ̄1, ξ̄2, τ and µ, see eqs. (3.82)-(3.85),
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the explicit solutions take the form,

S1 : (ξ1, ξ2, ξ3, ξ4) =

(
1, z,

µτ(1 + z)

1 + τz
, 1

)

(ξ′1, ξ
′
2, ξ
′
3, ξ
′
4) =

(
ξ̄1,

ξ̄2

z
,− (ξ̄2 + ξ̄1z)(1 + τz)

z(1− τ)(ξ̄1 − τ ξ̄2)
,

(ξ̄2 + ξ̄1z)(1 + τz)

z(1− τ)(ξ̄1 − τ ξ̄2)

)
, (3.92)

S2 : (ξ1, ξ2, ξ3, ξ4) =

(
ξ̄1,

ξ̄2

z
,− (ξ̄2 + ξ̄1z)(1 + τz)

z(1− τ)(ξ̄1 − τ ξ̄2)
,

(ξ̄2 + ξ̄1z)(1 + τz)

z(1− τ)(ξ̄1 − τ ξ̄2)

)

(ξ′1, ξ
′
2, ξ
′
3, ξ
′
4) =

(
1, z,

µτ(1 + z)

1 + τz
, 1

)
, (3.93)

S3 : (ξ1, ξ2, ξ3, ξ4) =

(
1,− ξ̄2

ξ̄1
, z, 1

)
, (ξ′1, ξ

′
2, ξ
′
3, ξ
′
4) =

(
ξ̄1,−ξ̄1, 0, 1

)
, (3.94)

S4 : (ξ1, ξ2, ξ3, ξ4) =
(
ξ̄1,−ξ̄1, 0, 1

)
, (ξ′1, ξ

′
2, ξ
′
3, ξ
′
4) =

(
1,− ξ̄2

ξ̄1
, z, 1

)
, (3.95)

S5 : (ξ1, ξ2, ξ3, ξ4) =
(
ξ̄1,−τ ξ̄2, µ, z

)
, (ξ′1, ξ

′
2, ξ
′
3, ξ
′
4) = (1,−1/τ, 1, 0) , (3.96)

S6 : (ξ1, ξ2, ξ3, ξ4) = (1,−1/τ, 1, 0) , (ξ′1, ξ
′
2, ξ
′
3, ξ
′
4) =

(
ξ̄1,−τ ξ̄2, µ, z

)
. (3.97)

Defining

w(z) =
1 + z

1 + τz
⇐⇒ z(w) = − 1− w

1− τw , (3.98)

the on-shell loop momenta read

`µ1 |S1 = ξ̄1k
[,µ
1 + ξ̄2

k[1 · k[4
k[2 · k[4

k[,µ2 +
ξ̄2

2z

[1[4[]

[2[4[]
〈1[,− |γµ |2[,−] +

ξ̄1z

2

〈1[4[〉
〈2[4[〉〈2

[,− |γµ |1[,−] ,

`µ2 |S1 = − 1 + τz

(1− τ)(ξ̄1 − τ ξ̄2)z

{
µτw(z)(ξ̄1z + ξ̄2)

k[1 · k[4
k[1 · k[3

k[,µ3 − (ξ̄1z + τ ξ̄2)k[,µ4

− 1

2
µτw(z)(ξ̄1z + τ ξ̄2)

〈1[4[〉
〈1[3[〉〈3

[,− |γµ |4[,−] +
1

2
(ξ̄1z + ξ̄2)

[1[4[]

[1[3[]
〈4[,− |γµ |3[,−]

}
,

(3.99)

`µ1 |S2 = ξ̄1k
[,µ
1 + ξ̄2

k[1 · k[4
k[2 · k[4

k[,µ2 +
ξ̄1z

2

[1[4[]

[2[4[]
〈1[,− |γµ |2[,−] +

ξ̄2

2z

〈1[4[〉
〈2[4[〉〈2

[,− |γµ |1[,−] ,

`µ2 |S2 = − 1 + τz

(1− τ)(ξ̄1 − τ ξ̄2)z

{
µτw(z)(ξ̄1z + ξ̄2)

k[1 · k[4
k[1 · k[3

k[,µ3 − (ξ̄1z + τ ξ̄2)k[,µ4

− 1

2
µτw(z)(ξ̄1z + τ ξ̄2)

〈1[4[〉
〈1[3[〉〈3

[,− |γµ |4[,−] +
1

2
(ξ̄1z + ξ̄2)

[1[4[]

[1[3[]
〈4[,− |γµ |3[,−]

}
,

(3.100)

`µ1 |S3 = ξ̄1k
[,µ
1 + ξ̄2

k[1 · k[4
k[2 · k[4

k[,µ2 −
ξ̄1

2

[1[4[]

[2[4[]
〈1[,− |γµ |2[,−]− ξ̄2

2

〈1[4[〉
〈2[4[〉〈2

[,− |γµ |1[,−] ,

`µ2 |S3 = k[,µ4 +
z

2

〈1[4[〉
〈1[3[〉〈3

[,− |γµ |4[,−] , (3.101)

`µ1 |S4 = ξ̄1k
[,µ
1 + ξ̄2

k[1 · k[4
k[2 · k[4

k[,µ2 −
ξ̄2

2

[1[4[]

[2[4[]
〈1[,− |γµ |2[,−]− ξ̄1

2

〈1[4[〉
〈2[4[〉〈2

[,− |γµ |1[,−] ,
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`µ2 |S4 = k[,µ4 +
z

2

[1[4[]

[1[3[]
〈4[,− |γµ |3[,−] , (3.102)

`µ1 |S5 = ξ̄1k
[,µ
1 + ξ̄2

k[1 · k[4
k[2 · k[4

k[,µ2 −
ξ̄1

2τ

[1[4[]

[2[4[]
〈1[,− |γµ |2[,−]− ξ̄2τ

2

〈1[4[〉
〈2[4[〉〈2

[,− |γµ |1[,−] ,

`µ2 |S5 = µ
k[1 · k[4
k[1 · k[3

k[,µ3 +
z

2

[1[4[]

[1[3[]
〈4[,− |γµ |3[,−] , (3.103)

`µ1 |S6 = ξ̄1k
[,µ
1 + ξ̄2

k[1 · k[4
k[2 · k[4

k[,µ2 −
τ ξ̄2

2

[1[4[]

[2[4[]
〈1[,− |γµ |2[,−]− ξ̄1

2τ

〈1[4[〉
〈2[4[〉〈2

[,− |γµ |1[,−] ,

`µ2 |S6 = µ
k[1 · k[4
k[1 · k[3

k[,µ3 +
z

2

〈1[4[〉
〈1[3[〉〈3

[,− |γµ |4[,−] . (3.104)

3.2.6 Less Massive Hepta-Cut Equations

Nonplanar double-box integrals with one, two and three massive legs are important
for higher-multiplicity scattering processes, starting already at five external massless
particles. Accordingly, we will also study such contributions here.

In order to specify the discussion we focus on the two momenta in the crossed end
of the diagram and assume that m1m2 6= 0. Note that the only dependence on m3 is
implicitly through e.g. τ and µ. All hepta-cut equations behave correctly for m3 → 0.
Furthermore, µ → 0 for m4 → 0 so that eq. (3.85) becomes ξ3ξ

′
3 = 0. The number of

hepta-cut solutions remains six and the explicit solutions are inherited from the four-
mass case in the limit µ → 0. The kinematic configurations covered by this class of
kinematics are depicted in fig. 3.12.

k1

k2 k3

k4

`1 `2

k1

k2 k3

k4

`1 `2
k1

k2 k3

k4

`1 `2

Figure 3.12: The first class of nonplanar double-box integrals includes the four-mass,
three-mass and short-side two-mass diagrams with m1m2 6= 0. Massive external legs are
indicated by doubled lines.
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The situation is slightly more complicated if we allow one of both of the momenta
k1 and k2 in the planar end to become massless. The problem is that the massless limits
are no longer smooth and must be treated carefully. It can be seen that ξ̄1 → 1 as
m2 → 0 with m1 arbitrary. Moreover, ξ̄1 → 1 + m2

2/γ12 as m1 → 0. Consequently, the
equation ξ1ξ

′
1 − ξ̄1 = 0 is not branched. But ξ̄2 = 0 if m1m2 = 0 and we instead get the

equation ξ2ξ
′
2 = 0. This implies that eq. (3.84) must be replaced by a pair of solutions,

namely ξ2 = 0 with ξ′2 free or vice versa. This class of kinematics supports eight distinct
solutions that can be parametrized as follows,

S̃1 : (ξ1, ξ2, ξ3, ξ4) =

(
1, z,

µτ(1 + z)

1 + τz
, 1

)
, (ξ′1, ξ

′
2, ξ
′
3, ξ
′
4) =

(
ξ̄1, 0,−

1 + τz

1− τ ,
1 + τz

1− τ

)
,

S̃2 : (ξ1, ξ2, ξ3, ξ4) =

(
ξ̄1, 0,−

1 + τz

1− τ ,
1 + τz

1− τ

)
, (ξ′1, ξ

′
2, ξ
′
3, ξ
′
4) =

(
1, z,

µτ(1 + z)

1 + τz
, 1

)
,

S̃3 : (ξ1, ξ2, ξ3, ξ4) =

(
1, z,− 1 + z

1 + τz
, 1

)
, (ξ′1, ξ

′
2, ξ
′
3, ξ
′
4) =

(
ξ̄1, 0,

µτ(1 + τz)

τ − 1
,
1 + τz

1− τ

)
,

S̃4 : (ξ1, ξ2, ξ3, ξ4) =

(
ξ̄1, 0,

µτ(1 + τz)

τ − 1
,
1 + τz

1− τ

)
, (ξ′1, ξ

′
2, ξ
′
3, ξ
′
4) =

(
1, z,− 1 + z

1 + τz
, 1

)
,

S̃5 : (ξ1, ξ2, ξ3, ξ4) = (1, 0, z, 1) , (ξ′1, ξ
′
2, ξ
′
3, ξ
′
4) =

(
ξ̄1,−ξ̄1, 0, 1

)
,

S̃6 : (ξ1, ξ2, ξ3, ξ4) =
(
ξ̄1,−ξ̄1, 0, 1

)
, (ξ′1, ξ

′
2, ξ
′
3, ξ
′
4) = (1, 0, z, 1) ,

S̃7 : (ξ1, ξ2, ξ3, ξ4) =
(
ξ̄1, 0, µ, z

)
, (ξ′1, ξ

′
2, ξ
′
3, ξ
′
4) = (1,−1/τ, 1, 0) ,

S̃8 : (ξ1, ξ2, ξ3, ξ4) = (1,−1/τ, 1, 0) , (ξ′1, ξ
′
2, ξ
′
3, ξ
′
4) =

(
ξ̄1, 0, µ, z

)
. (3.105)

The covered kinematic configurations are shown in fig. 3.13.
We remark that six of the tilded solutions are inherited from the four-mass case by

letting ξ̄2 → 0. The new branches are named S̃3 and S̃4. For a lengthy calculation of
the explicit forms of the loop momenta evaluated on each of the hepta-cut solutions,
refer to ref. [62].

3.2.7 Residues and Topological Structure

Before we can evaluate the hepta-cut nonplanar double-box integrals, it is necessary
to figure out how to impose the automatically satisfied constraints `21 = `22 = 0 by
localization. The trick is to introduce new parameters ζ1, ζ2 ∈ C and two null-vectors
η1, η2 with the properties [55],

/η
µ
1
|λ+

1 〉 6= 0 6= /η
µ
1
|λ̃′−

1 〉 , /η
µ
2
|λ+

2 〉 6= 0 6= /η
µ
1
|λ̃′−

2 〉 , (3.106)

and then alter the loop-momentum parametrization such that

`µ1 =
1

2
〈λ1|γµ|λ̃′1] + ζ1η

µ
1 , (3.107)

`µ2 =
1

2
〈λ2|γµ|λ̃′2] + ζ2η

µ
2 . (3.108)

Intermediate calculations simplify if we use the massless legs because; take for example
η1 = k[2 and η2 = k[3. Then for S1, . . . ,S4,

`21 = γ12ξ1ξ
′
1ζ1 = 0 , `22 = γ34ξ4ξ

′
4ζ2 = 0 , (3.109)
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Figure 3.13: The second class of nonplanar double-box integrals includes the three-
mass and the two-mass short-side diagrams with massless legs in the planar end of the
diagram together with diagonal and long-side two-mass diagrams, all one-mass diagrams
and finally the zero-mass diagram.
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hence desired behavior is achieved for ζ1 = ζ2 = 0 as ξ1ξ
′
1 6= 0 6= ξ4ξ

′
4 for general

kinematics. Similarly, η1 = k[2 and η2 = k[4 are valid choices for solutions S5 and S6 is
η1 = k[2 and η2 = k[4.

The Jacobians associated with the coordinate transformation from loop four-momenta
to parameter space vary from solution to solution and are no longer constants. The rea-
son is that our parametrization is not linear. For S1 and S3 we fix ξ1 = ξ′4 = 1 and thus
keep the variables α = (ζ1, ξ

′
1, ξ2, ξ

′
2) and β = (ζ2, ξ3, ξ

′
3, ξ4). Then,

JLS1,3 = det
µ,i

∂`µ1
∂αi

= i
γ2

12k
[
1 · k[4ξ′1

4k[2 · k[4
, JRS1,3 = det

µ,i

∂`µ2
∂βi

= i
γ2

34k
[
1 · k[4ξ′4

4k[1 · k[3
. (3.110)

For S2 and S4 we keep the variables α = (ζ1, ξ1, ξ2, ξ
′
2) and β = (ζ2, ξ3, ξ

′
3, ξ
′
4) so that

the Jacobians become

JLS2,4 = det
µ,i

∂`µ1
∂αi

= i
γ2

12k
[
1 · k[4ξ1

4k[2 · k[4
, JRS2,4 = det

µ,i

∂`µ2
∂βi

= i
γ2

34k
[
1 · k[4ξ4

4k[1 · k[3
. (3.111)

Finally, for solutions S5 and S6,

JLS5 = det
µ,i

∂`µ1
∂αi

= i
γ2

12k
[
1 · k[4ξ1

4k[2 · k[4
, JRS5 = det

µ,i

∂`µ2
∂βi

= iγ2
34

(
k[1 · k[4
k[1 · k[3

)2

ξ3 , (3.112)

JLS6 = det
µ,i

∂`µ1
∂αi

= i
γ2

12k
[
1 · k[4ξ′1

4k[2 · k[4
, JRS6 = det

µ,i

∂`µ2
∂βi

= iγ2
34

(
k[1 · k[4
k[1 · k[3

)2

ξ′3 . (3.113)

Changing integration variables as explained above, replacing the real slice integration
contours by a multidimensional torus encircling one of the joint solutions of the hepta-
cut equations and finally carrying out the seven of the contour integrals produces a total
Jacobian Ji. Schematically,

X∗∗1,1,2[1]Si ≡
∮

Γi

dzJi(z) . (3.114)

The Jacobians are obtained by direct calculation without complication. We will spare
the reader for extraneous details and simply state the resulting expressions:

X∗∗1,1,2[1]S1,2 = +
γ?(1− τ)(ξ̄1 − τ ξ̄2)

τ ξ̄2
1(1 + µτ)

∮
dz

z

(z + 1)
(
z + 1

τ

) (
z + ξ̄2

ξ̄1

)(
z + τ ξ̄2

ξ̄1

) , (3.115)

X∗∗1,1,2[1]S3,4 = − γ?
ξ̄1 − τ ξ̄2

∮
dz(

z + ξ̄1−ξ̄2
ξ̄1−τ ξ̄2

)(
z − µτ(ξ̄1−ξ̄2)

ξ̄1−τ ξ̄2

) , (3.116)

X∗∗1,1,2[1]S5,6 = +
γ?

ξ̄1 − τ ξ̄2

∮
dz(

z − ξ̄1−τ2ξ̄2
τ(ξ̄1−τ ξ̄2)

)(
z + µ(ξ̄1−τ2ξ̄2)

ξ̄1−τ ξ̄2)

) . (3.117)

In these equations, (see also ref. [58])

γ? ≡
γ12γ34

32(γ2
12 −m2

1m
2
2)(γ2

34 −m2
3m

2
4)k[1 · k[4

. (3.118)

We invite the reader to consult e.g. refs. [55, 59, 60] for related examples.
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For the sake of clarity below, let us denote each of the z-pole locations as follows
(see eqs.(3.115)-(3.117)),

{z1;1, . . . , z1;4} =

{
−1,−1

τ
,− ξ̄2

ξ̄1
,−τ ξ̄2

ξ̄1

}
= {z2;1, . . . , z2;4} ,

{z3;1, z3;2} =

{
− ξ̄1 − ξ̄2

ξ̄1 − τ ξ̄2
,
µτ(ξ̄1 − ξ̄2)

ξ̄1 − τ ξ̄2

}
= {z4;1, z4;2} ,

{z5;1, z5;2} =

{
ξ̄1 − τ2ξ̄2

τ(ξ̄1 − τ ξ̄2)
,−µ(ξ̄1 − τ2ξ̄2)

ξ̄1 − τ ξ̄2

}
= {z6;1, z6;2} . (3.119)

Additional singularities are associated with solutions S1 and S2; either of the loop mo-
menta may become infinite for a finite value of z. Also, in each solution there is a pole
at z =∞. We conclude that the union of the singular point loci for all six branches has
24 points in total.

We will write the augmented hepta-cut as

X∗∗1,1,2[Φ(`1(z), `2(z)]
∣∣
aug
≡

6∑

i=1

∮

Γi

dzJi(z)Φ(`1(z), `2(z))

=

|S|∑

i=1

∑

ξ∈poles

ω(i, ξ) Res
z=ξ

Ji(z)Φ(z)
∣∣
Si . (3.120)

where Γi is a linear combination of small z-circles around the poles, so that the integral
extracts the residues of the loop integrand. Here we adopted the notation that the
weight of the residue evaluated at z = ξ at the ith branch is denoted by ω(i, ξ).

Inspecting the global structure of the hepta-cut [56, 79] reveals that not all of these
residues are linearly independent. To see this, consider an arbitrary integrand test
function Φ(`1(z), `2(z)) and assume that Φ is regular on the Jacobian poles. Then,

Res
Si∩Sj

J(z)Φ(`1(z), `2(z))
∣∣
Si = − Res

Si∩Sj
J(z)Φ(`1(z), `2(z))

∣∣
Sj . (3.121)

In this equation, the left and right hand sides of the equation are understood to be
evaluated in local coordinates on solutions Si and Sj respectively. Other choices are
equally valid. The complete list of such identities reads

Res
z=z1,1

J1(z)Φ(z)|S1 = − Res
z=z4,1

J4(z)Φ(z)|S4 ,

Res
z=z1,2

J1(z)Φ(z)|S1 = − Res
z=z6,2

J6(z)Φ(z)|S6 ,

Res
z=z1,3

J1(z)Φ(z)|S1 = − Res
z=z3,2

J3(z)Φ(z)|S3 ,

Res
z=z1,4

J1(z)Φ(z)|S1 = − Res
z=z5,1

J5(z)Φ(z)|S5 ,

Res
z=z2,1

J2(z)Φ(z)|S2 = − Res
z=z3,1

J3(z)Φ(z)|S3 ,

Res
z=z2,2

J2(z)Φ(z)|S2 = − Res
z=z5,2

J5(z)Φ(z)|S5 ,

Res
z=z2,3

J2(z)Φ(z)|S2 = − Res
z=z4,2

J4(z)Φ(z)|S4 ,

Res
z=z2,4

J2(z)Φ(z)|S2 = − Res
z=z6,1

J6(z)Φ(z)|S6 . (3.122)

This intersection pattern exactly confirms the global topological structure of the hepta-
cut in fig. 3.15. This picture is generated by pinching the tubes of the genus-3 surface six
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times along the indicated horizontal and vertical lines passing through the center of the
surface as illustrated in fig. 3.14. This identification reduces the number of independent
residues to 16. The residues at infinity and in numerator insertions are not shared. But
all residues on each of the Riemann spheres are bound to vanish by the one-dimensional
global residue theorem, hence we can further remove six residues.

Figure 3.14: The hepta-cut of the nonplanar double-box diagram defines a genus-3
algebraic curve. The one-dimensional complex curve should be understood as the filled
two-dimensional real surface. Specific kinematics lead to degeneracies that can be viewed
as contractions of tubes along straight horizontal and vertical lines in the paper plane
through the handles of the surface.

1 ∩ 4

1 ∩ 6

1 ∩ 5

1 ∩ 3

2 ∩ 4

2 ∩ 6

2 ∩ 5

2 ∩ 3

∞LR ∞LR

Figure 3.15: Global structure of the hepta-cut of the nonplanar double-box with
four massive external legs. The figure illustrates the intersections of the irreducible
components of the algebraic curve defined by the zero locus of the polynomial ideal
generated by the inverse propagators. All degenerate configurations considered in this
paper fall within this topological picture and that of fig. 3.16. The straight lines are
drawn for simplicity and should be interpreted as CP1.

The upshot of the above consideration is that it suffices to encircle 10 global poles
in order to produce a complete basis of homology for S1 ∪ · · · ∪ S6. What is more, the
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contributions from branches S3, . . . ,S6 turn out to be redundant, because each of them
only has a single pole (at z =∞) in addition to those located at the intersections with
S1 and S2. An overcomplete basis is minimized by setting extraneous residue weights
to zero. We find it natural to encircle all Jacobian poles along with poles in numerator
insertions where both loop momenta become infinite simultaneously. Following the
notation of ref. [56], the weights of the ten global poles can be written

Ω = (ω1∩4, ω1∩6, ω1∩3, ω1∩5, ω1,∞LR , ω2∩3, ω2∩5, ω2∩4, ω2∩6, ω1,∞LR) ≡ (ω1, . . . , ω10) .
(3.123)

In our convention, a residue with weight ωi∩j is evaluated on the ith branch. We can
not deny that it will likely be convenient to instead encircle infinity poles later on, since
the scalar integrals have simpler or even vanishing residues there.

We will now relax the condition m1m2 6= 0 and turn to the analytic structure of
the loop integrand under these circumstances. As will become clear in a moment, the
topological picture is that of an octuply pinched genus-3 surface, where tubes have been
contracted along one vertical and two horizontal lines passing through the center; the
setting in mind is sketched in fig. 3.14.

4 ∩ 6

4 ∩ 8

1 ∩ 6

1 ∩ 8

3 ∩ 7

3 ∩ 5 2 ∩ 5

2 ∩ 7

1 ∩ 3 2 ∩ 4

Figure 3.16: Global structure of the hepta-cut of the nonplanar double-box integrals
in class (b). The straight lines are drawn for simplicity and represent the Riemann
spheres associated with each of the eight solutions to the hepta-cut equations. See also
fig. 3.15.

The topological structure is easy to reproduce from sharing of global poles and
coincidence of residues. According to ref. [62],

X∗∗1,1,2[1]S̃1,2 = +
γ?(1− τ)

τ ξ̄1(1 + µτ)

∮
dz

z(z + 1)(z + 1/τ)
, (3.124)

X∗∗1,1,2[1]S̃3,4 = − γ?(1− τ)

τ ξ̄1(1 + µτ)

∮
dz

z(z + 1)(z + 1/τ)
, (3.125)

X∗∗1,1,2[1]S̃5,6 = −γ?
ξ̄1

∮
dz

(z + 1)(z − µτ)
, (3.126)

X∗∗1,1,2[1]S̃7,8 = +
γ?
ξ̄1

∮
dz

(z + µ)(z − 1/τ)
. (3.127)
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The residues at the poles in eqs. (3.124)-(3.127) again satisfy numerous linear relations
analogous to those in eq. (3.122). The global structure is precisely reflected by the
following pattern,

Res
z=0

J̃1(z)Φ(z)|S̃1 = − Res
z=0

J̃3(z)Φ(z)|S̃3 ,

Res
z=−1

J̃1(z)Φ(z)|S̃1 = − Res
z=−1

J̃6(z)Φ(z)|S̃6 ,

Res
z=−1/τ

J̃1(z)Φ(z)|S̃1 = − Res
z=−µ

J̃8(z)Φ(z)|S̃8 ,

Res
z=−1

J̃3(z)Φ(z)|S̃3 = − Res
z=µτ

J̃5(z)Φ(z)|S̃5 ,

Res
z=−1/τ

J̃3(z)Φ(z)|S̃3 = − Res
z=1/τ

J̃7(z)Φ(z)|S̃7 ,

Res
z=0

J̃2(z)Φ(z)|S̃2 = − Res
z=0

J̃4(z)Φ(z)|S̃4 ,

Res
z=−1

J̃2(z)Φ(z)|S̃2 = − Res
z=−1

J̃5(z)Φ(z)|S̃5 ,

Res
z=−1/τ

J̃2(z)Φ(z)|S̃2 = − Res
z=−µ

J̃7(z)Φ(z)|S̃7 ,

Res
z=−1

J̃4(z)Φ(z)|S̃4 = − Res
z=µτ

J̃6(z)Φ(z)|S̃6 ,

Res
z=−1/τ

J̃4(z)Φ(z)|S̃4 = − Res
z=1/τ

J̃8(z)Φ(z)|S̃8 . (3.128)

3.2.8 Master Integral Projectors

We fix a basis e = (k1, k2, k4, ω) of the four-dimensional momentum space. The spurious
direction is necessary as usual since only three of the four momenta are independent. All
contractions between internal and external vectors can be written in terms of the eight
fundamental scalar products, `i · ej . An analysis similar to that of the double box shows
that only two of the dot products are irreducible. A general numerator polynomial may
be parametrized as follows,

N =
∑

{α1,...,α4}
cα1···α4(`1 · k4)α1(`2 · k1)α2(`1 · ω)α3(`2 · ω)α4 . (3.129)

We impose renormalization conditions and perform the multivariate polynomial division
of N towards a Gröbner basis constructed from the seven nonplanar double-box prop-
agators using BasisDet [71]. The integrand contains 19 parity-odd and 19 parity-even
elements (see also ref. [68]). The 19 nonplanar double-box integrals of the form,

X∗∗1,1,2[n,m] ≡ X∗∗1,1,2

[(
(`1 + k4)2

2

)n((`2 + k1)2

2

)m]
(3.130)

are related by 16 or 17 IBP identities depending on the kinematic configuration in
question. For class (a) there are three master integrals. The masters will again be the
scalar integral along with a rank-1 tensor integral. The third master is a rank-2 tensor
integral. More precisely,

X∗∗1,1,2[n,m] = c1X
∗∗
1,1,2[1] + c2X

∗∗
1,1,2[(`1 · k4)] + c3X

∗∗
1,1,2[(`1 · k4)2] + · · · , (3.131)

and in particular,

A
(1)
4 = c1X

∗∗
1,1,2[1] + c2X

∗∗
1,1,2[(`1 · k4)] + c3X

∗∗
1,1,2[(`1 · k4)2] + · · · . (3.132)
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In class (b), the rank-2 integral becomes reducible, leaving only two masters. For this
project we used the Mathematica package FIRE [103] to generate the IBP relations, some
of which are included below for illustration purposes. We found two relations that hold
for arbitrary values of the external masses,

X∗∗1,1,2[0,−1] =

1

4

(
s14 +

m2
1m

2
3 −m2

2m
2
4

s12

)
X∗∗1,1,2[0, 0]− 1

2

(
1 +

m2
1 −m2

2

s12

)
X∗∗1,1,2[−1, 0] ,

(3.133)

X∗∗1,1,2[−1,−1] =

1

4

(
s14 +

m2
1m

2
3 −m2

2m
2
4

s12

)
X∗∗1,1,2[−1, 0]− 1

2

(
1 +

m2
1 −m2

2

s12

)
X∗∗1,1,2[−2, 0] .

(3.134)

If, say, m2 = m3 = m4 = 0 but m1 6= 0, there is an additional linear relation among
these integrals, namely

X∗∗1,1,2[−2, 0] = − s2
12s14

16(m2
1 − s12)

X∗∗1,1,2[0, 0]− 1

8

(
3 +

2s14

m2
1 − s12

)
X∗∗1,1,2[−1, 0] . (3.135)

In order to ensure that the unitarity cut prescription yields consistent results, we
must demand that all integral reduction identities remain satisfied; that is

X∗∗1,1,2[Φ(`1, `2)] = 0 =⇒ X∗∗1,1,2[Φ(`1, `2)]
∣∣
8−cut

= 0 . (3.136)

For the problem at hand the requirement can be formulated as

X∗∗1,1,2[N(`1, `2]]
∣∣
aug

= X∗∗1,1,2[c1 + c2(`1 · k4)]
∣∣
aug

(3.137)

for N given by eq. (3.129). Equivalently, regarding the parity-odd terms, it suffices
to require that the full variety of integrals with Levi-Civita insertions, after invoking
momentum conservations, continue to integrate to zero on general contours.

The goal of the rest of this section is to turn the two-loop master equation into
algebraic equations for the nonplanar double-box master integral coefficients. We will
present two example that are representative for each of the two classes of hepta-cut;
after all the calculations are rather self-similar and take up several pages. All cases
including the principal kinematic configuration with four distinct external masses are
treated in vast detail in ref. [62]. Our first example here is the one-mass diagram with
m1 6= 0. We decide to encircle the following ten global poles,

{G̃i} = (G̃1∩6, G̃1∩8, G̃3∩5, G̃3∩7, G̃1∩3, G̃2∩5, G̃2∩7, G̃4∩6, G̃4∩8, G̃2∩4) ≡ (G̃1, . . . , G̃10) ,
(3.138)

and denote by Ω̃ the corresponding contour weights,

Ω̃ = (ω̃1∩6, ω̃1∩8, ω̃3∩5, ω̃3∩7, ω̃1∩3, ω̃2∩5, ω̃2∩7, ω̃4∩6, ω̃4∩8, ω̃2∩4) ≡ (ω̃1, . . . , ω̃10) .
(3.139)

Eq. (3.124) reduces to

X∗∗1,1,2[1]S̃1,2 −→ −
m2

1 − s12

χs12

∮
dz

z(z + 1)(z + (s12(1 + χ)−m2
1)/(χs12))

, (3.140)

X∗∗1,1,2[1]S̃3,4 −→ +
m2

1 − s12

χs12

∮
dz

z(z + 1)(z + (s12(1 + χ)−m2
1)/(χs12))

. (3.141)
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Note that we stripped off the overall factor. The parity-odd requirements translate into
five linearly independent constraints,




1 0 0 0 0 −1 0 0 0 0

0 1 0 0 0 0 −1 0 0 0

0 0 1 0 0 0 0 −1 0 0

0 0 0 1 0 0 0 0 −1 0

0 0 0 0 1 0 0 0 0 −1







ω̃1∩6

ω̃1∩8

ω̃3∩5

ω̃3∩7

ω̃1∩3

ω̃2∩5

ω̃2∩7

ω̃4∩6

ω̃4∩8

ω̃2∩4




= 0 . (3.142)

Finally we find three linearly independent IBP equations,

Ω̃ · (0, 1, 0, 1, 0, 0, 1, 0, 1, 0) = 0 , (3.143)

Ω̃ · (1, −1, 1, −1, 0, 1, −1, 1, −1, 0) = 0 , (3.144)

Ω̃ · (1, 1, −1, −1, 2, 1, 1, −1, −1, 2) = 0 . (3.145)

The residues computed by the master integrals at the global poles are

Res{G̃i}X
∗∗
1,1,2[1] =
(
− 1, − χs12

m2
1 − (1 + χ)s12

, 1,
χs12

m2
1 − (1 + χ)s12

,
χs12

m2
1 − (1 + χ)s12

,

− 1, − χs12

m2
1 − (1 + χ)s12

, 1,
χs12

m2
1 − (1 + χ)s12

,
χs12

m2
1 − (1 + χ)s12

)
,

Res{G̃i}X
∗∗
1,1,2[`1 · k4] =

χs2
12

2(m2
1 − (1 + χ)s12)

(0, 1, 0, −1, −1, 0, 1, 0, −1, −1) . (3.146)

Imposing the integral reduction constraints leaves us with two undetermined winding
numbers. This fits perfectly with the two projectors defined by

M1 ·
(

Res
{G̃i}

X∗∗1,1,2[1], Res
{G̃i}

X∗∗1,1,2[`1 · k4]
)

= (1, 0) , (3.147)

M2 ·
(

Res
{G̃i}

X∗∗1,1,2[1], Res
{G̃i}

X∗∗1,1,2[`1 · k4]
)

= (0, 1) . (3.148)

In words, M1 andM2 are just particular choices of the contour weights with the prop-
erty that contribution from only one of the master integrals is picked up, and further
normalized to unity.

Practically speaking, the eight contour constraints together with either of the pro-
jectors are arranged as 10× 10 matrices. The rank is 10, so the equations have a unique
solution. A short calculation shows that the projectors are characterized by the following
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winding numbers,

M1 =
1

16
(−3, 1, 3, −1, 2, −3, 1, 3, −1, 2) , (3.149)

M2 =
1

8χs2
12

(−m2
1 + (1− 2χ)s12, 3m2

1 − (3 + 2χ)s12, m
2
1 − (1− 2χ)s12,

− 3m2
1 + (3 + 2χ)s12, 2(−m2

1 + (1 + 2χ)s12), −m2
1 + (1− 2χ)s12,

3m2
1 − (3 + 2χ)s12, m

2
1 − (1− 2χ)s12, −3m2

1 + (3 + χ)s12,

2(−m2
1 + (1 + 2χ)s12)) . (3.150)

We thus immediately arrive at a very compact and general formula for the one-mass
master integral coefficients

ci =

∮

Mi

dz J̃(z)
∑

helicities
particles

6∏

k=1

Atree
(k) (z) , (3.151)

where the rescaled Jacobian for this configuration takes the form

J̃(z) ≡ ±m
2
1 − s12

χs12

1

z(z + 1)(z + (s12(1 + χ)−m2
1)/(χs12)

. (3.152)

The results presented here agree with the purely massless calculation reported in ref. [59]
when we take m1 → 0.

The next example is the three-mass diagram with m4 = 0 which is smoothly con-
nected to the two-mass short-side diagram with m1m2 6= 0. The master equation for
this problem is

A
(2)
4 = c1X

∗∗
1,1,2[1] + c2X

∗∗
1,1,2[(`1 + k4)2/2] + c3X

∗∗
1,1,2[((`1 + k4)2/2)2] + · · · , (3.153)

and we use the singular point locus,

{Gi} = (G1∩4, G1∩6, G1∩3, G1∩5, G1,∞LR , G2∩3, G2∩5, G2∩4, G2∩6, G2,∞LR) ≡ (G1, . . . ,G10) .
(3.154)

Setting µ = 0 and stripping off the overall factor of γ? from eq. (3.115) leaves us with

X∗∗1,1,2[1]S1,2 −→
(1− τ)(ξ̄1 − τ ξ̄2)

τ ξ̄2
1

∮
dz

z

(z + 1)(z + 1/τ)(z + ξ̄2/ξ̄1)(z + τ ξ̄2/ξ̄1)
.

(3.155)

For this problem we prefer quantities constructed from flat momenta, ξ̄1, ξ̄2 and τ ,
instead of the usual Mandelstam variables and external masses. In this way, it is possible



56 CHAPTER 3. MAXIMAL UNITARITY

to express the residues in a rather clean form,

Res{Gi}X
∗∗
1,1,2[1] =
(
− 1

ξ̄1 − ξ̄2
,

τ

ξ̄1 − τ2ξ̄2
,

1

ξ̄1 − ξ̄2
, − τ

ξ̄1 − τ2ξ̄2
, 0,

− 1

ξ̄1 − ξ̄2
,

τ

ξ̄1 − τ2ξ̄2
,

1

ξ̄1 − ξ̄2
, − τ

ξ̄1 − τ2ξ̄2
, 0

)
, (3.156)

Res{Gi}X
∗∗
1,1,2[(`1 + k4)2/2] =
(

0, −(1− τ)(ξ̄ − τ ξ̄2)k[1 · k[4
ξ̄1 − τ2ξ̄2

, 0,
(1− τ)(ξ̄ − τ ξ̄2)k[1 · k[4

ξ̄1 − τ2ξ̄2
, 0,

0, −(1− τ)(ξ̄ − τ ξ̄2)k[1 · k[4
ξ̄1 − τ2ξ̄2

, 0,
(1− τ)(ξ̄ − τ ξ̄2)k[1 · k[4

ξ̄1 − τ2ξ̄2
, 0

)
, (3.157)

Res{Gi}X
∗∗
1,1,2[((`1 + k4)2/2)2] =
(

0,
(1− τ)2(ξ̄ − τ ξ̄2)2(k[1 · k[4)2

τ(ξ̄1 − τ2ξ̄2)
, 0, −(1− τ)2(ξ̄ − τ ξ̄2)2(k[1 · k[4)2

τ(ξ̄1 − τ2ξ̄2)
,

(1− τ)(ξ̄ − τ ξ̄2)(k[1 · k[4)2

τ
, 0,

(1− τ)2(ξ̄ − τ ξ̄2)2(k[1 · k[4)2

τ(ξ̄1 − τ2ξ̄2)
, 0,

− (1− τ)2(ξ̄ − τ ξ̄2)2(k[1 · k[4)2

τ(ξ̄1 − τ2ξ̄2)
,

(1− τ)(ξ̄ − τ ξ̄2)(k[1 · k[4)2

τ

)
. (3.158)

The correct projectors are

M1 = N1(1, 0, −1, 0, 0, 1, 0, −1, 0, 0) , (3.159)

M2 = N2(q1, q2, q3, q4, q5, q1, q2, q3, q4, q5) , (3.160)

M3 = N3(1, 1, 1, 1, 2, 1, 1, 1, 1, 2) , (3.161)

where

N1 ≡
γ12m

2
1m

2
3 − χ(γ12 +m2

1)(γ12 +m2
2)s12

4m2
1(m2

2(γ12 +m2
1)− γ12m2

3) + 4χγ12s12(γ12 +m2
1)
, (3.162)

N2 ≡
1

2(γ2
12 +m2

1m
2
2 + γ12(m2

1 +m2
2 −m2

3))

× 1

m2
1(m2

2(γ12 +m2
1)− γ12m2

3) + χγ12(γ12 +m2
1)s12

, (3.163)

N3 ≡
γ12(γ2

12 −m2
1m

2
2)

γ2
12 +m2

1m
2
2 + γ12(m2

1 +m2
2 −m2

3)

× 1

m4
1m

2
2 + χγ2

12s12 + γ12m2
1(m2

2 −m2
3 + χs12)

, (3.164)

and

q1 ≡ γ4
12 −m4

1m
4
2 + γ3

12(m2
1 +m2

2 −m2
3 − χs12)

− γ12m
2
1m

2
2(m2

1 +m2
2 −m2

3 + χs12) + γ2
12(m2

1m
2
3 − χ(m2

1 +m2
2)s12) , (3.165)

q2 ≡ m2
1(−2(γ12 +m2

1)m2
2(γ12 +m2

2)

+ γ12(γ12 + 2m2
2)m2

3)− χγ12(γ12 +m2
1)(γ12 +m2

2)s12 , (3.166)
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q3 ≡ γ4
12 −m4

1m
4
2 + γ3

12(m2
1 +m2

2 −m2
3 + χs12)

− γ12m
2
1m

2
2(m2

1 +m2
2 −m2

3 − χs12)− γ2
12(m2

1m
2
3 − χ(m2

1 +m2
2)s12) , (3.167)

q4 ≡ q1 − q2 + q3 , (3.168)

q5 ≡ q1 + q3 . (3.169)

We have verified that the projectors (3.159)-(3.161) respect all of the parity-odd con-
straints provided that




1 0 0 0 0 −1 0 0 0 0

0 1 0 0 0 0 −1 0 0 0

0 0 1 0 0 0 0 −1 0 0

0 0 0 1 0 0 0 0 −1 0

0 0 0 0 1 0 0 0 0 −1







ω1∩4

ω1∩6

ω1∩3

ω1∩5

ω1,∞LR

ω2∩3

ω2∩5

ω2∩4

ω2∩6

ω2,∞LR




= 0 . (3.170)

Moreover, we found two linearly independent constraints imposed by IBP identities,

Ω · (0, 1, 0, 1, −1, 0, 1, 0, 1, −1) = 0 , (3.171)

Ω · (1, −1, 1, −1, 0, 1, −1, 1, −1, 0) = 0 . (3.172)





Multivariate Residues

and Maximal Unitarity 4
A method is more important than a discovery, since the right
method will lead to new and even more important discoveries.

— Lev Landau (1908–1968)

Three-loop amplitudes contain a widespread of planar and nonplanar integral topolo-
gies. At four external particles, the basis integrals have at most ten propagators. A few
examples are the planar tennis court and the double-crossed ladder in fig. 4.1. Neglecting

Figure 4.1: The three-loop planar tennis court and the double-crossed triple-box dia-
gram.

the (−2ε)-dimensional components of the regularized loop momenta, the integrand of
such integrals has a total of 3× 4 = 12 degrees of freedom. In particular, the maximal
cut – in this case a deca-cut – which promotes all internal lines to on-shell values leaves
two integration variables unfrozen and thus a multidimensional contour integral to be
evaluated. The integrals in fig. 4.1 belong to a larger class of multiloop integrals, whose
maximal cuts, in the language of algebraic geometry, define multidimensional algebraic
varieties. At two loops this class of integrals include subleading topologies1 such as the
bowtie and slashed-box integrals shown in fig. 4.2.

In this chapter we present the extension of the maximal unitarity formalism to three-
loop amplitudes. We formulate the problem in terms of degenerate and nondegenerate

1Integrals with a sub-bubble, e.g. the two-loop box-bubble and even the bubble itself at one loop,
appearently have no leading singularity and hence require special treatment.

59
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Figure 4.2: The two-loop slashed-box P1,1 (left) and bowtie A∗2,2 (right) diagrams
(in the notation of ref. [53]). The four-dimensional maximal cuts leave 8 − 5 = 3 and
8 − 6 = 2 loop-momentum degrees of freedom unfrozen respectively, and hence define
multidimensional algebraic varieties rather than algebraic curves or discrete set of points
as encountered in the previous one- and two-loop examples.

multivariate residues and solve it by means of computational algebraic geometry. In the
process of developing the method, we concentrate on the the planar triple box, although
we expect our method to generalize to more complicated examples including nonplanar
diagrams. The technique is applied in gauge theories with an arbitrary number of adjoint
fermion and scalar particles. Our principal result is a surprisingly compact set of unique
projectors for all three triple-box master integral coefficients.

Curiously, degenerate multivariate residues also appear in connection with multi-
loop integrals with doubled or higher powers of propagators. It is possible to almost
effortlessly extend the notion of generalized unitarity cuts to accommodate such inte-
grals. We stress out that all IBP identities (involving integrals with and without doubled
propagators) can be derived from the set of IBPs without doubled propagators.

4.1 Multivariate Residues

Residues in higher dimensions can in many cases be evaluated straightforwardly using
a generalization of Cauchy’s theorem via Jacobian determinants. We have already seen
plenty examples of such nondegenerate multivariate residues in generalized unitarity
cuts in the previous chapters. More generally, multivariate residues can be degenerate
as alluded in sec. 2.3. Here we briefly review the concepts and explain how to calculate
degenerate residue via computational algebraic geometry methods. For a more rigorous
and comprehensive treatment, consult refs. [113–115].

The quantum field theory Feynman rules dictate that any loop integrand is a rational
function that of the loop momenta. We will therefore restrict our attention to rational
functions of several complex variables. Consider a differential form ω(z) of n complex
variables z ≡ (z1, . . . , zn),

ω(z) =
h(z)dz1 ∧ · · · ∧ dzn
f1(z) · · · fn(z)

, (4.1)

constructed from the holomorphic functions h : Cn → C and f : Cn → Cn with f(z) =
(f1(z), . . . , fn(z)). Suppose that ξ ∈ Cn is an isolated zero of f , i.e. f1(ξ) = · · · =
fn(ξ) = 0 and f−1(0) ∩ U = {ξ} for a sufficiently small neighborhood U of ξ. The
residue of ω at z = ξ with respect to the list of divisors {f1, . . . , fn} is defined to be

Res {f1,...,fn},ξ(ω) ≡
(

1

2πi

)n ∮

Γ

h(z)dz1 ∧ · · · ∧ dzn
f1(z) · · · fn(z)

, (4.2)
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where Γ = {z : |fi(z)| = δi} for infinitesimal real values δi.
Multivariate residues that are either factorizable or nondegenerate are almost trivial

to calculate.

(i) The multivariate residue is factorizable if the fis are univariate polynomials, namely,
fi(z) = fi(zi). In these circumstances, the n-dimensional contour is factorized onto
the product of n univariate circles and the residue is given by

Res {f1,...,fn},ξ(ω) =

(
1

2πi

)n ∮

|f1(z1)|=ε1

dz1

f1(z1)
· · ·
∮

|fn(zn)|=εn

dzn
fn(zn)

h(z) . (4.3)

In particular, the residue is evaluated by applying the univariate residue formula
iteratively.

(i) The multivariate residue is non-degenerate if and only if the Jacobian of the fi’s
evaluated at z = ξ is nonvanishing, i.e.,

J(ξ) = det
i,j

∂fi
∂zj

∣∣∣∣
z=ξ

6= 0 . (4.4)

Invoking the multidimensional version of Cauchy’s theorem yields [111]

Res {f1,...,fn},ξ(ω) =
h(ξ)

J(ξ)
. (4.5)

In some cases a multivariate residue is neither nondegenerate nor factorizable. For
example, consider the meromorphic differential form,

ω(z1, z2) =
z2

z2
1(z2 − z1)

, (4.6)

which has a pole at ξ = (0, 0). This residue is not factorizable as the denominator
factors are obviously not univariate polynomials. Furthermore, the Jacobian vanishes
at z = ξ, hence the above prescription does not apply. We say that the residue at
z = ξ is degenerate. Fortunately, degenerate residues can be evaluated thanks to the
transformation law [111] in algebraic geometry.

(The Transformation Law) Assume that I = 〈f1(z), . . . , fn(z)〉 and
J = 〈u1(z), . . . , un(z)〉 are zero-dimensional ideals generated by finite sets
of holomorphic functions fi, ui : CPn → C. Suppose that J ⊆ I such that
ui(z) =

∑n
i=1 aij(z)fj(z) for polynomials aij(z). Denoting the conversion

matrix by A(z) = (aij(z))i,j=1,...,n, the multivariate residue at z = ξ satisfies,

Res {f1,...,fn},ξ

(
h(z)dz1 ∧ · · · ∧ dzn
f1(z) · · · fn(z)

)
= Res {u1,...,un},ξ

(
h(z)dz1 ∧ · · · ∧ dzn
u1(z) · · ·un(z)

detA

)
.

(4.7)

The transformation law is valid for both nondegenerate and degenerate residues. There
is a particularly advantageous set of generators that may be used to transform degenerate
residues to factorizable residues. The trick is to choose the uis to be univariate and this
can be achieved via Gröbner bases [60]:

1. Calculate the Gröbner basis {g1, . . . , gk} of {f1, . . . , fn} using the DegreeLexico-
graphic order and record the converting matrix rij , such that gi = rijfj .
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f1(z1, z2) = 0

f2(z1, z2) = 0

u2(z1, z2) = 0

u1(z1, z2) = 0

Figure 4.3: Calculating multivariate residues involves disentangling denominator fac-
tors whose first approximations are linearly dependent.

2. For 1 ≤ i ≤ n, calculate the Gröbner basis of {f1, . . . , fn} using the Lexicographic
order of zi+1 � · · · � zn � z1 � · · · zi. Pick the univariate polynomial of zi from
this Gröbner basis and call it ui.

3. Divide each of the uis towards {g1, . . . , gk} so ui = sijgj .

4. The transformation matrix is aij = sikrkj . By the transformation law, the degener-
ate residue is converted to a factorizable residue with the matrix A = (aij)i,j=1,...,n.

4.1.1 Gröbner Basis Examples

We demonstrate the Gröbner basis algorithm for calculating degenerate multivariate
residues by a few simple examples.

Let us take {f1, f2} = {z1, (z1 + z2)(z1 − z2)} and h = z2. Clearly, there is a
degenerate residue at the origin. In fact, all three factors are zero at the pole, so the
Jacobian also vanishes there. The Gröbner basis G1 for I = 〈z1, (z1 − z2)(z1 + z2)〉 in
lexicographic order z2 � z1 is G1 = {z1, z

2
2}, hence we pick up u1 = z1. Similarly, the

Gröbner basis G2 for I in the lexicographic order z1 � z2 is G2 = {z2
2 , z1}, so we set

u2 = z2
2 . The two set of generators are related by the conversion matrix A,

(
u1

u2

)
= A

(
f1

f2

)
, A =

(
1 0

z1 −1

)
, (4.8)

whence detA = −1. By the transformation law (4.7),

Res {f1,f2},(0,0)

(
z2dz1 ∧ dz2

z1(z1 + z2)(z1 − z2)

)
= Res {u1,u2},(0,0)

(
− z2dz1 ∧ dz2

z1z2
2

)
= −1 . (4.9)

Our next example is slightly more general, yet still two-dimensional. Consider the
differential form,

ω(z1, z2) =
z1dz1 ∧ dz2

z2(a1z1 + a2z2)(b1z1 + b2z2)
, (4.10)

for nonzero constants a1, a2, b1, b2. There is a single pole at finite values of z1 and z2,
namely ξ = (0, 0). The associated residue is degenerate by inspection. We may partition
the denominator factors,

f1(z1, z2) = z2 , (4.11)

f2(z1, z2) = a1z1 + a2z2 , (4.12)

f3(z1, z2) = b1z1 + b2z2 , (4.13)
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in three inequivalent ways, namely {f1, f2f3}, {f2, f3f1} and {f3, f1f2}. To set the stage,
let us evaluate the residue for the denominator partitioning {f1, f2f3}. The Gröbner
basis of {f1, f2f3} in the lexicographic order z2 � z1 is G1 = {a1b1z

2
1 , z2} and for the

lexicographic order z1 � z2 we find G2 = {z2, a1b1z
2
1}. Thus, we pick u1 = a1b1z

2
1 and

u2 = z2. Dividing u1 and u2 towards a Gröbner basis constructed from the {f1, f2f3}
yields the relation

(
u1

u2

)
=

(
−(a1b2 + a2b1)z1 − a2b2z2 1

1 0

)(
f1

f2f3

)
. (4.14)

A direct calculation now shows that

Res {f1,f2f3},ξ(ω) = Res {u1,u2},ξ
z1 detAdz1 ∧ dz2

u1(z1)u2(z2)
= − Res

z1=0
Res
z2=0

1

a1b1z1z2
= − 1

a1b1
.

(4.15)

The residues for the other two denominator partitionings are computed in a similar
manner, with the results2 [64]

ρ1 ≡ Res {f1,f2f3},ξ(ω) = − 1

a1b1
, (4.16)

ρ2 ≡ Res {f2,f3f1},ξ(ω) = − a2

a1(a1b2 − a2b1)
, (4.17)

ρ3 ≡ Res {f3,f1f2},ξ(ω) = +
b2

b1(a1b2 − a2b1)
. (4.18)

In particular, note that the sum of the residues vanishes,

ρ1 + ρ2 + ρ3 = 0 . (4.19)

More generally, we have the following lemma [60]:

(Lemma) Let f1(z1, z2), f2(z1, z2) and f3(z1, z2) be linear functions with
a simultaneous zero at z = ξ such that 〈f1, f2〉, 〈f2, f3〉 and 〈f3, f1〉 are all
zero-dimensional ideals. Assume that h(z1, z2) is a holomorphic function
in a neighborhood of ξ and let the differential form ω be given by ω =
hdz1 ∧ dz2/(f1f2f3). Then,

Res {f1f2,f3},ξ(ω) + Res {f2f3,f1},ξ(ω) + Res {f3f1,f2},ξ(ω) = 0 . (4.20)

The lemma is easy to prove by direct computation. Without loss of generality we set
ξ = (0, 0), f1 = a1z1 + b1z2, f2 = a2z1 + b2z2 and f3 = a3z1 + b3z2. Using the Gröbner
basis method, we find

(
z2

1

z2
2

)
= A1

(
f1f2

f3

)
,

(
z2

1

z2
2

)
= A2

(
f2f3

f1

)
,

(
z2

1

z2
2

)
= A3

(
f3f1

f2

)
, (4.21)

where A1 and A2 and A3 are the appropriate conversion matrices. The corresponding
determinants are

detA1 =

∣∣∣∣∣
z2 z1

a3 b3

∣∣∣∣∣
∣∣∣∣∣
a3 b3
a1 b1

∣∣∣∣∣

∣∣∣∣∣
a3 b3
a2 b2

∣∣∣∣∣

, detA2 =

∣∣∣∣∣
z2 z1

a1 b1

∣∣∣∣∣
∣∣∣∣∣
a1 b1
a2 b2

∣∣∣∣∣

∣∣∣∣∣
a1 b1
a3 b3

∣∣∣∣∣

, detA3 =

∣∣∣∣∣
z2 z1

a2 b2

∣∣∣∣∣
∣∣∣∣∣
a2 b2
a1 b1

∣∣∣∣∣

∣∣∣∣∣
a2 b2
a3 b3

∣∣∣∣∣

.

(4.22)

2Yes, we again forgot to put in factors of 1/(2πi).
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All determinants in the denominators are nonzero by the assumption of zero-dimensionality
of the ideals 〈f1, f2〉, 〈f2, f3〉 and 〈f3, f1〉. A short explicit calculation shows that

detA1 + detA2 + detA3 = 0 . (4.23)

The proof is completed by invoking the transformation law (4.7).

4.2 Global Residue Theorem

A well known theorem of univariate complex analysis states that the sum of all residues
of a meromorphic differential form on CP1 vanishes. Here we review the multivariate
version – the global residue theorem. It relates residues in Cn and residues at complex
infinity and thus plays a crucial role for studying the global structure of residues from
generalized unitarity cuts.

(Global Residue Theorem) LetM be an n-dimensional compact com-
plex manifold with divisors D1, . . . , Dn and let ω be a differential n-form on
M − D1 ∪ · · · ∪ Dn. Suppose that the intersection S = D1 ∩ · · · ∩ Dn is a
discrete set. Then, with respect to the the divisor list {D1, . . . , Dn},

∑

P∈S
Res P (ω) = 0 . (4.24)

The proof of the Global Residue Theorem can be found in ref. [111]. For the sake of
definiteness, we provide further explanation of the theorem: M is locally isomorphic
to Cn, thus we may choose a local coordinate system (z1, . . . , zn). Locally, each divi-
sor Di is a hypersurface defined by the equation fi(z1, . . . , zn). The residue regarding
{D1, . . . , Dn} can thus be translated to the local residue at P regarding {f1, . . . , fn}.

A slight complication is that the manifold Cn is not compact. Instead we consider
projective space CPn with homogeneous coordinates [w0, w1, . . . , wn]. Indeed, CPn is a
compact manifold. Recall that CPn is covered by patches,

Ui = {[w0, w1, . . . , wn] | wi 6= 0} . (4.25)

In particular, Cn is embedded inside CPn as U0,

(z1, . . . , zn) =

(
w1

w0
, . . . ,

wn
w0

)
. (4.26)

Points at complex infinity form a subspace CPn−1 specified by w0 = 0.

4.2.1 Multivariate Residues at Infinity

Before we return to the three-loop problem, let us work through a simple example
demonstrating the GRT for multivariate residues. In contrast to the univariate case,
there are several different residue identities for the same differential form. We will show
how to relate residues at infinity to residues in Cn.

Consider on CP2 the differential form

ω(z1, z2) =
dz1 ∧ dz2

z1z2
. (4.27)
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Reexpressed on U1 and U2 we have ω = −(dw0 ∧ dw2)/(w0w2) and ω = (dw0 ∧
dw1)/(w0w1) and respectively. Consequently, ω is defined on CP2 excluding the ir-
reducible hyperspaces w0 = 0, w1 = 0 and w2. We may define the divisors D1 =
{w0w1 = 0} and D2 = {w2 = 0} so that D1 ∩D2 = {[1, 0, 0], [0, 1, 0]}. Then,

Res {D1,D2},[1,0,0](ω) + Res {D1,D2},[0,1,0](ω) = (+1) + (−1) = 0 , (4.28)

as implied by the GRT. Alternatively, for D′1 = {w1} and D′2 = {w0w2 = 0} we have
D′1 ∩D′2 = {[1, 0, 0], [0, 0, 1]}. By the GRT,

Res {D′
1,D

′
2},[1,0,0](ω) + Res {D′

1,D
′
2},[0,1,0](ω) = (+1) + (−1) = 0 . (4.29)

In words, there is one residue at the origin and two residues at complex infinity. Repeated
application of the GRT reveals that the values of the two residues at infinity are both
the opposite of that at the origin.

4.3 Maximal Cuts of Planar Triple-Box Integrals

After a complex detour we are now returning to the primary object of interest, namely
the four-point planar triple-box integral,

I���[Φ(`1, `2, `3)] ≡
(

3∏

j=1

∫
dD`j
(2π)D

)
Φ({`i})∏10
i=1 fi({`i}

, (4.30)

where the inverse propagators {fi} according to the momentum flow conventions out-
lined in fig. 4.4 are given by3

f1 = `21 , f2 = `22 , f3 = `23 , f4 = (`1 + k1)2 ,

f5 = (`1 − k2)2 , f6 = (`2 + k3)2 , f7 = (`2 − k4)2 , f8 = (`3 +K12)2 ,

f9 = (`1 − `3 − k2)2 , f10 = (`3 − `2 − k3)2 . (4.31)

The external momenta are for simplicity assumed to be massless. External masses can
be treated using flattened momenta as described in sec. 3.2.5. We consider generalized
unitarity cuts in strictly four dimensions and therefore reconstruct the master integral
coefficients to leading order in the dimensional regularization parameter. The analytic
expression of the scalar master integral has been computed in dimensional regularization
[102].

We will be interested in the algebraic variety defined by imposing on-shell constraints
for all triple-box propagators. The set of solutions is

S =
{

(`1, `2, `3) ∈ (CP4)⊗3 | fi(`1, `2, `3) = 0
}
. (4.32)

The deca-cut results in 10 equations for 12 unknowns. In other words, S is a two-
dimensional algebraic variety (or equivalently, a four-dimensional real surface). Fol-
lowing a the method proposed by Zhang [71], the polynomial system of equations can
be reduced by primary decomposition into an intersection of 14 primary ideals. The

3Note that our definition of the triple box integral is related to that in ref. [70] by the linear
transformation of the three loop momenta, ˜̀

1 = `1 + k1, ˜̀
2 = −`2 + k4 and `3 = −`3 − K12. The

deca-cut Jacobians are clearly invariant under such rearrangements of the momenta.
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k1

k2 k3

k4

`1

`3

`2

Figure 4.4: Momentum flow for the planar triple box with four external legs.

local form of the 14 deca-cut solutions was worked out in ref. [70] in terms of the loop-
momentum parametrization

`µ1 = α1k
µ
1 + α2k

µ
2 +

α3

2

〈23〉
〈13〉〈1

− |γµ |2−] +
α4

2

〈13〉
〈23〉〈2

− |γµ |1−] ,

`µ2 = β1k
µ
3 + β2k

µ
4 +

β3

2

〈14〉
〈13〉〈3

− |γµ |4−] +
β4

2

〈13〉
〈14〉〈4

− |γµ |3−] .

`µ3 = γ1k
µ
2 + γ2k

µ
3 +

γ3

2

〈34〉
〈24〉〈2

− |γµ |3−] +
γ4

2

〈24〉
〈34〉〈3

− |γµ |2−] . (4.33)

The parameters {αi}, {βi} and {γi} are in general complex valued. However, at specifi-
cally four external points we are able to find normalization factors for the basis elements
as in eq. (4.33) such that all parameters are rotated onto the real axis. We will not go
into specific details about how the deca-cut equations are solved algebraically. All solu-
tions were presented in ref. [70], so we merely quote the result in tables 4.1-4.2. None
of the solutions are related to each other by any kind of parameter redefinitions. For
compactness we only explicitly display solutions that are not related to each other by
parity. The parity conjugate solutions denoted with primes are easy to construct using
the following relations

α′1 = 0 , α′2 = 0 , α′3 = − 1 + χ

χ
α4 , α′4 = − χ

1 + χ
α3 ,

β′1 = 0 , β′2 = 0 , β′3 = − 1 + χ

χ
β4 , β′4 = − χ

1 + χ
β3 ,

γ′1 = γ1 , γ′2 = γ2 , γ′3 = − (1 + χ)γ4 , γ′4 = − 1

1 + χ
γ3 . (4.34)

It has been explicitly verified that the 14 deca-cut solutions are in one-to-one corre-
spondence with the generically valid configurations of chiral and antichiral three-point
vertices, see fig. 4.5.

The four-dimensional momentum space is again spanned by three of the four external
momentum vectors (remember that k1 +k2 +k3 +k4 = 0) together with a perpendicular
direction ω. We denote the basis by e ≡ (k1, k2, k4, ω). The fundamental scalar products
are ˜̀

i · ej for 1 ≤ i ≤ 3 and 1 ≤ j ≤ 4, whereas there are four parity-even and three
parity-odd ISPs, namely,

{ ˜̀
1 · k4 , ˜̀

2 · k1 , ˜̀
3 · k4 , ˜̀

3 · k1 , ˜̀
1 · ω , ˜̀

2 · ω , ˜̀
3 · ω } . (4.35)
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α1 α2 α3 α4 β1 β2 β3 β4

S1 0 0 1− 1
χ

1+z1
z2

0 0 0 1 + z2 0

S2 0 0
(

1 + 1
χ

)
(1 + z1) 0 0 0 0 −1− 1

1+χ
1
z1

S3 0 0 z2 0 0 0 0 −1− z1

S4 0 0
(

1 + 1
χ

)
(1 + z1) 0 0 0 0 z2

S5 0 0 z2 0 0 0 1 0

S6 0 0 1 0 0 0 z2 0

S7 0 0 z1 0 0 0 z2 0

Table 4.1: The deca-cut freezes the parameters α1, . . . , α4 and β1, . . . , β4 of the outer
loop momenta `1 and `2 to the displayed values. The solutions are written as functions
of the two unfrozen parameters (z1, z2) ∈ C2.

γ1 γ2

S1
1
χ

(
1 + 1

z1

)(
1 + 1

z2

)
− 1
χ

(
1 + 1

z1

)
+ z2

z1

S2
1
χ(1 + z2)(1 + (1 + χ)z1) 1

χ

(
1 + 1

z1

)
z2

S3
1
χ

(
1 + 1

z1

)
0

S4 0 − 1
χ

(
1 + 1

z1

)

S5 z1 0

S6 0 z1

S7 0 0

γ3 γ4

S1
1+χ
χ

(
1 + 1

z1

)
− 1
χ(1+χ)

(
1 + 1

z1

)(
1 + 1

z2

)
+ 1

1+χ
1+z2
z1

S2 −
(

1+χ
χ + 1

χ
1
z1

)
z2 − 1

χ(1 + z1)(1 + z2)

S3 0 − 1
χ

(
1 + 1

1+χ
1
z1

)

S4
1
χ

1
z1

+ 1+χ
χ 0

S5 0 − 1
1+χ(1 + z1)

S6 0 − 1
1+χ(1− z1)

S7 0 − 1
1+χ

Table 4.2: Values of the parameters γ1, . . . , γ4 of loop-momentum `3 defined in
eq. (4.33) specified by the seven deca-cut solutions S1, . . . ,S7. The parity conjugate
solutions S8, . . . ,S14 are obtained by applying the rules in eq. (4.34). All solutions were
borrowed from ref. [70].
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S1 S2

S3 S4

S5 S6

S7 S8

S9 S10

S11 S12

S13 S14

Figure 4.5: The 14 inequivalent solutions to the deca-cut equations for the massless
four-point triple-box diagram. The white and black blobs denote chiral and antichiral
three-vertices respectively.
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Now we can parametrize the most general form of the integrand. The numerator natu-
rally splits into a parity-odd (S) and a parity-even (NS) part,

N(˜̀
1, ˜̀

2, ˜̀
3) =

∑

{α1,...,α7}
cα1···α7(˜̀

1 · k4)α1(˜̀
2 · k1)α2(˜̀

3 · k4)α3(˜̀
3 · k1)α4

× (˜̀
1 · ω)α5(˜̀

2 · ω)α6(˜̀
3 · ω)α7

=
∑

{α1,...,α4}
(˜̀

1 · k4)α1(˜̀
2 · k1)α2(˜̀

3 · k4)α3(˜̀
3 · k1)α4

×
{
cNS
α1···α40 + cNS

α1···α41(˜̀
1 · ω)(˜̀

2 · ω)

+ cS
α1···α40(˜̀

1 · ω) + cS
α1···α41(˜̀

2 · ω) + cS
α1···α42(˜̀

3 · ω)
}

(4.36)

where the additional orthogonal direction as usual is defined by

ω ≡ 1

2s12
(〈2|3|1]〈1|γµ |2]− 〈1|3|2]〈2|γµ |1]) . (4.37)

The exponents in eq. (4.36) are constrained by renormalizability conditions and the
integrand-level reduction is then completed by multivariate polynomial division of N
modulo a Gröbner basis constructed from the inverse propagators using BasisDet [71]
as usual. The integrand contains 199 parity-even and 199 parity-odd elements [70].

The reduction to master integrals is eventually achieved by applying IBP relations
generated by Reduze2 [104, 105] and vanishing of parity-odd integrands upon integration
over real Minkowski space. A few examples of the IBP identities are included below
for reference; the remaining IBPs are available from the author upon request. For
compactness we state the IBPs in terms of the ISPs xij ≡ ˜̀

i · vj with v = (k1, k2, k4, ω).
In this notation,

I���[x2
13] = +

1

2
χs12I10[x13] + · · ·

I���[x2
13x21x31] = +

1

32
χs4

12I10[1]− 1

8
s3

12I10[x13]

I���[x2
13x

3
21x33] = − 1

128
χ(3 + χ(3 + χ))s6

12I10[1] +
1

32
(3 + χ(3 + χ))s5

12I10[x13] + · · · .
(4.38)

It is convenient to choose an integral basis which allows us to directly compare coeffi-
cients with the results obtained by Badger, Frellesvig and Zhang [70]. The three-loop
amplitude can be written

A
(3)
4 = c1I���[1] + c2I���[(˜̀

1 + k4)2] + c3I���[(˜̀
3 − k4)2] + · · · . (4.39)

The trailing dots hide terms which are not probed by the triple-box maximal cut. Note
that since the external legs are massless, e.g.,

I���[(˜̀
1 + k4)2] = 2I���[`1 · k4] + · · · . (4.40)

The changes of integration variables `µ1 → αi and similarly for the remaining two loop
momenta are compensated by three independent Jacobians. Since the loop-momentum
parametrization (4.33) is linear, these Jacobians are constant factors of external invari-
ants and can therefore be canceled on either side of the deca-cut master equation in what
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follows. For the sake of completeness we nevertheless worked out the explicit expressions
and found that

Jα = det
µ,i

∂`µ1
∂αi

=
s2

12

4i
, Jβ = det

µ,i

∂`µ2
∂βi

=
s2

12

4i
, Jγ = det

µ,i

∂`µ3
∂γi

=
s2

14

4i
. (4.41)

The deca-cut involves fourteen nondegenerate residues associated with the poles of
the integrand where all propagators go on-shell simultaneously. It is fairly easy to
express the inverse propagators using the loop-momentum parametrization (4.33) and
then calculate the residues via the transformation law (4.7). The relatively compact
results read [60]

I���[1]S1 = +
1

χ2s10
12

∮
dz1 ∧ dz2

(1 + z1)(1 + z2)(1 + z1 − χz2)
, (4.42)

I���[1]S2 = − 1

χ2s10
12

∮
dz1 ∧ dz2

(1 + z1)(1 + z2)(1 + (1 + χ)z1)z2
, (4.43)

I���[1]S3 = − 1

χ2s10
12

∮
dz1 ∧ dz2

(1 + z1)z2(1 + z1[1 + χ(1− z2)])
, (4.44)

I���[1]S4 = − 1

χ2s10
12

∮
dz1 ∧ dz2

(1 + z1)z2(1 + (1 + χ)z1(1 + z2))
, (4.45)

I���[1]S5 = − 1

χ3s10
12

∮
dz1 ∧ dz2

z1z2(1 + z1 − z2)
, (4.46)

I���[1]S6 = +
1

χ3s10
12

∮
dz1 ∧ dz2

z1z2(1− z1 − z2)
, (4.47)

I���[1]S7 = − 1

χ3s10
12

∮
dz1 ∧ dz2

z1z2(1− z1)(1− z2)
. (4.48)

The singularity structure for the parity conjugate branches is exactly the same as we
would expect from experience. For i = 1, . . . , 7,

I���[1]Si ∝ I���[1]Si+7 . (4.49)

4.3.1 Global Poles and Residue Relations

The products of on-shell tree-level amplitudes evaluated in the kinematics specified by
the deca-cut solutions define fourteen multivariate Laurent polynomials. Schematically,

∑

helicities
particles

8∏

j=1

Atree
(j) (z1, z2)

∣∣
Si =

∑

j,k

di;jkz
j
1z
k
2 . (4.50)

It can be shown that all coefficients di,jk with |j| or |k| > 4 vanish for all i in all gauge
theories even though higher order terms are not ruled out by renormalization conditions
[70]. Evaluated on solution S1 and its complex conjugate S8, the products of trees will
contain terms with negative powers of z1 and z2 in the numerator. This follows easily
from the shape of the deca-cut solutions. Also, solutions S2, S3 and S4 and their complex
conjugates will give rise to negative powers of z1 cf. tables 4.1-4.2.
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The poles contributed by the numerators must be treated on equal footing with the
Jacobian poles. We therefore write down 14 lists of poles based on all combinations
of two vanishing polynomial factors in the deca-cut Jacobians and the possible extra
denominators z1, z2. The poles are labeled by the number of the branch in Roman
numerals, and its order counted within this branch. More precisely, in (. . . ) we specify
the location of the pole, and in {. . . } we list the particular denominators vanishing for
the residue in question.

• Branch S1: 8 residues for finite z1, z2:
I1 (−1,−1) , {1 + z1, 1 + z2} I2 (−1, 0) , {(1 + z1)z2, 1 + z1 − χz2}
I3 (−1, 0) , {z2(1 + z1 − χz2), 1 + z1} I4 (−1, 0) , {(1 + z1)(1 + z1 − χz2), z2}
I5 (0,−1) , {z1, 1 + z2} I6 (0, 0) , {z1, z2}
I7 (0, 1/χ) , {z1, 1 + z1 − χz2} I8 (−1− χ,−1) , {1 + z2, 1 + z1 − χz2}

• Branch S2: 6 residues for finite z1, z2:
II1 (−1,−1) , {1 + z1, 1 + z2} II2 (−1, 0) , {1 + z1, z2}
II3 (0,−1) , {z1, 1 + z2} II4 (0, 0) , {z1, z2}
II5 (−1/(1 + χ),−1) , {1 + (1 + χ)z1, 1 + z2} II6 (−1/(1 + χ), 0) , {1 + (1 + χ)z1, z2}

• Branch S3: 4 residues for finite z1, z2:
III1 (−1, 0) , {1 + z1, z2} III2 (−1, 1) , {1 + z1, 1 + z1(1 + χ(1− z2))}
III3 (0, 0) , {z2, z1} III4 (−1/(1 + χ), 0) , {z2, 1 + z1(1 + χ(1− z2))}

• Branch S4: 4 residues for finite z1, z2:
IV1 (−1, 0) , {1 + z1, z2} IV2 (−1,−χ/(1 + χ)) , {1 + z1, 1 + (1 + χ)z1(1 + z2)}
IV3 (0, 0) , {z1, z2} IV4 (−(1/(1 + χ), 0) , {z2, 1 + (1 + χ)z1(1 + z2)}

• Branch S5: 3 residues for finite z1, z2:
V1 (−1, 0) , {1 + z1 − z2, z2} V2 (0, 0)) , {z1, z2}
V3 (0, 1) , {z1, 1 + z1 − z2}

• Branch S6: 3 residues for finite z1, z2:
VI1 (0, 0) , {z1, z2} VI2 (0, 1) , {z1, z1 + z2 − 1}
VI3 (1, 0) , {z2, z1 + z2 − 1}

• Branch S7: 4 residues for finite z1, z2:
VII1 (0, 0) , {z1, z2} VII2 (0, 1) , {z1, z2 − 1}
VII3 (1, 0) , {z1 − 1, z2} VII4 (1, 1) , {z1 − 1, z2 − 1}

• Branch S8: 8 residues for finite z1, z2:
VIII1 (−1,−1) , {1 + z1, 1 + z2} VIII2 (−1, 0) , {(1 + z1)z2, 1 + z1 − χz2}
VIII3 (−1, 0) , {z2(1 + z1 − χz2), 1 + z1} VIII4 (−1, 0) , {(1 + z1)(1 + z1 − χz2), z2}
VIII5 (0,−1) , {z1, 1 + z2} VIII6 (0, 0) , {z1, z2}
VIII7 (0, 1/χ) , {z1, 1 + z1 − χz2} VIII8 (−1− χ,−1) , {1 + z2, 1 + z1 − χz2}

• Branch S9: 6 residues for finite z1, z2:
IX1 (−1,−1) , {1 + z1, 1 + z2} IX2 (−1, 0) , {1 + z1, z2}
IX3 (0,−1) , {z1, 1 + z2} IX4 (0, 0) , {z1, z2}
IX5 (−1/(1 + χ),−1) , {1 + (1 + χ)z1, 1 + z2} IX6 (−1/(1 + χ), 0) , {1 + (1 + χ)z1, z2}

• Branch S10: 4 residues for finite z1, z2:
X1 (−1, 0) , {1 + z1, z2} X2 (−1, 1) , {1 + z1, 1 + z1(1 + χ(1− z2))}
X3 (0, 0) , {z2, z1} X4 (−1/(1 + χ), 0) , {z2, 1 + z1(1 + χ(1− z2))}
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• Branch S11: 4 residues for finite z1, z2:
XI1 (−1, 0) , {1 + z1, z2} XI2 (−1,−χ/(1 + χ)) , {1 + z1, 1 + (1 + χ)z1(1 + z2)}
XI3 (0, 0) , {z1, z2} XI4 (−(1/(1 + χ), 0) , {z2, 1 + (1 + χ)z1(1 + z2)}

• Branch S12: 3 residues for finite z1, z2:
XII1 (−1, 0) , {1 + z1 − z2, z2} XII2 (0, 0)) , {z1, z2}
XII3 (0, 1) , {z1, 1 + z1 − z2}

• Branch S13: 3 residues for finite z1, z2:
XIII1 (0, 0) , {z1, z2} XIII2 (0, 1) , {z1, z1 + z2 − 1}
XIII3 (1, 0) , {z2, z1 + z2 − 1}

• Branch S14: 4 residues for finite z1, z2:
XIV1 (0, 0) , {z1, z2} XIV2 (0, 1) , {z1, z2 − 1}
XIV3 (1, 0) , {z1 − 1, z2} XIV4 (1, 1) , {z1 − 1, z2 − 1}

We also have to consider residues at complex infinity. However, the GRT implies
that every single residue at infinity is linearly related to residues evaluated at finite
values of z1 and z2. The proof is sketched in an appendix in ref. [60].

Apparently, 64 two-dimensional residues at finite values of z1 and z2 are left to be
calculated. Thankfully, many of them are actually redundant. The first few residues
are eliminated by the above lemma. For instance, the three residues I2, I3 and I3 at
(z1, z2) = (−1, 0) sum to zero. Similarly we discard residue VIII4. We are able to
disregard more than half of the residues as they are evaluated at intersections between
the 14 deca-cut branches. Exhausting all relations leads to the conclusion that only 23
of the 64 residues are linearly independent. Our choice is summarized by the list:

{Ri} = {I1, I2, I3, I5, I6, I7, I8, II1, II3, II4, II6, III1, III3, V2,

VIII1, VIII2, VIII3, VIII5, VIII6, IX3, IX4, IX6, XI2} . (4.51)

The next step is to actually calculate the values of all terms in the numerator on these
residues. We calculate the nondegenerate residues directly by means of the Jacobian,
while the degenerate residues are obtained via the transformation law (4.7). The whole
calculation is automated by a program powered by the algebraic geometry software
Macaulay2 [112]. For example, the residues computed by the three master integrals,
namely I10[1], I10[(˜̀

1 + k4)2] and I10[(˜̀
3 − k4)2], are

Res {Ri} I10[1] =

1

χ3s10
12

{−1, 1,−1, 0, 0, 0,−1,−1, 0, 0,−1, 1, 0, 1, 1,−1, 1, 0, 0, 0, 0,−1, 1} , (4.52)

Res {Ri} I10[(˜̀
1 + k4)2] =

1

χ2s9
12

{0, 1, 0, 0, 0, 0,−1,−1, 0, 0, 0, 1, 0, 1, 0,−1, 0, 0, 0, 0, 0, 0, 1} , (4.53)

Res {Ri} I10[(˜̀
3 − k4)2] =

1

χ2s9
12

{0, 1, 0, 0, 1,−1, 0, 0, 0, 0, 0, 0,−1, 0, 0,−1, 0, 0,−1, 0, 0, 0, 0} , (4.54)

where the values are listed in the same order as in (4.51). Note that we actually calcu-
lated the values of all terms on all 64 residues and explicitly verified the linear relations
among them, for example the relation in eq. (4.20).
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4.4 Integral Reduction and Projectors

The task is now to extract the three master integral coefficients in eq. (4.39) from the
augmented deca-cut. In advance of calculations below, we pull out a universal prefactor
and define the dimensionless coefficients ĉi,

ci = s3
12s14A

tree
4 ĉi , (4.55)

where the tree-level amplitude is given by the Parke-Taylor formula (1.4). For instance
for external helicities −−++,

Atree
4 (1−, 2−, 3+, 4+) = i

〈12〉4
〈12〉〈23〉〈34〉〈41〉 . (4.56)

4.4.1 Uniqueness of Master Contours

The remaining question to resolve is whether the master integral projectors are uniquely
determined or not? In particular, is possible to find three unique linear combinations of
the multivariate residues such that all constraints from IBP identities and vanishing of
parity-odd terms upon integration over real Minkowski space? To answer this question
we organize all constraints as a homogeneous system of equations with a matrix M̃
of size 398 × 20. A direct calculation shows that rank M̃ = 20. Hence the deformed
integration contours are subject to only 20 constraints in order to yield a valid unitarity
cut prescription.

The remaining three degrees of freedom that are not fixed by integral reduction
consistency requirements leave space for exactly three master integrals. We will define
projectorsM1,M2 andM3 with the properties that only one of the master integrals are
picked up on the cut and normalized to unity. Let M be the 401× 23 matrix obtained
by extending M̃ with the residues of the three master integrals (4.54). The defining
equations for the projectors can thus be phrased as follows,

M1 : MΩ1 = (0, . . . , 0, 1, 0, 0)T , (4.57)

M2 : MΩ2 = (0, . . . , 0, 0, 1, 0)T , (4.58)

M3 : MΩ3 = (0, . . . , 0, 0, 0, 1)T . (4.59)

In this way, the three solutions Ω1, Ω2 and Ω3 correspond to extracting the coefficient
in front of I10[1], I10[(˜̀

1 + k4)2] and I10[(˜̀
3 − k4)2] respectively.

Since Ωi is a 23-dimensional vectors and rankM = 23, the solutions for the three pro-
jectors are uniquely determined. They can be obtained by standard algebra techniques,
with the result

Ω1 =
1

8
χ3s10

12(−1, 0,−2, 0, 1, 1, 0, 0, 1,−1,−1, 0, 1, 0, 1, 0, 2, 0,−1, 1,−1,−1, 0) ,

Ω2 =
1

4
χ2s9

12(0, 1, 2,−1,−2,−1, 0,−1,−1, 1, 0, 0,−1, 1, 0,−1,−2, 1, 2,−1, 1, 0, 0) ,

Ω3 =
1

4
χ2s9

12(1,−1,−2, 3, 3, 0,−2, 1, 0, 0, 1, 2, 0,−1,−1, 1, 2,−3,−3, 0, 0, 1, 0) . (4.60)

The associated master contours Mi can be written down explicitly as linear com-
binations of weighted infinitesimal toroidal surfaces encircling the global poles. Each
master contour receives only contribution from a small subset Λ of the 14 deca-cut
branches after redundant residues have been removed. This suggest the decomposition
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Mi =
∑

k∈ΛMi;k for Λ = {I, II, III, V, VIII, IX, XI}. This notation hides the weights
implicitly in the contours. Our result for the master integral coefficients can then be
written schematically in the very compact form

ci =
∑

k∈Λ

∮

Mi;k

dz1dz2

Jk(z1, z2)

∑

helicities
particles

8∏

j=1

Atree
(j) (z1, z2)

∣∣
Sk . (4.61)

4.5 Examples

In this section we demonstrate how to calculate three-loop master integral coefficients in
four-point gluon amplitudes with specific helicity configurations and massless kinemat-
ics. We specialize to deca-cuts in the s-channel since the contribution from the t-channel
follows by cyclic permutation of external labels.

The input of our computation is the intermediate state sum over the product of the
eight tree-level amplitudes which arise by cutting the amplitude on-shell, evaluated on
each of the deca-cut branches. We can think of the trees as being a numerator insertion,

N |Si =
∑

helicities
particles

8∏

j=1

Atree
(j) (z1, z2)

∣∣
Si , (4.62)

and the expression is summed over all internal helicity states and distinct configurations
of gluons, fermions and scalars propagating in the loops as usual. The state sum may
be obtained in supersymmetric Yang-Mills theories through superspace techniques, see
e.g. refs. [97–99], or by direct calculation in a generic gauge theory from the specific
distributions of on-shell tree-point MHV and MHV vertices and all possible flavor com-
binations. For now we simply rely on the fact that the triple-box tree-level data has
already been calculated in ref. [70] as explicit Laurent expansions, with nf fermion and
ns complex scalar flavors in the adjoint representation.

4.5.1 −+−+ Helicity Amplitude

Our first example is the − + −+ helicity gluon amplitude shown in fig. 4.6. We have

1−

2+ 3−

4+

Figure 4.6: The deca-cut planar four-point triple box diagram with alternating external
helicity configuration.

computed the 23 independent residues from the Laurent expansions of the products of
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tree-level amplitudes. The result can be summarized as the list

Res {Gi}
1

J(z1, z2)

∑

helicities
particles

8∏

j=1

A−+−+
(j)

=
1

χ3s10
12

(1,−1, 1,−r1, 0, r1, 1− r1, 1− r1, r1,−r1, 1,−1,

0,−1,−1 + r1, 1− r1,−1 + r1, 0, r2, 0, 0, 1− r1,−1) ,
(4.63)

where r1 and r2 are given by

r1 ≡
χ(1 + χ2)(4− nf ) + 2χ2(3− ns)

(1 + χ)4
, (4.64)

r2 ≡
χ

(1 + χ)4

(
8(1− 2χ)(3− ns)(4− nf )− (13− (24− χ)χ)(4− nf )

− 2χ(3− ns) + (1− (4− χ)χ)(nf (3− ns)2 − 2(4− nf )2)

− 2(1− 2χ)(4− nf )2
)
. (4.65)

Note that the integrand in eq. (4.63) is supposed to be evaluated on the branch on which
the specific residue actually resides.

In an N -fold supersymmetric theory one has nf = N and ns = N − 1. With this
in mind, the residues in eqs. (4.64)-(4.65) were brought to a form that exposes the fact
that the results simplify dramatically for N = 4 and also N = 2. Now, plugging the
residues into eq. (4.61) produces the normalized master integral coefficients

ĉ−+−+
1 = − 1 + (4− nf )

χ

(1 + χ)2
− 2(1 + ns − nf )

χ2

(1 + χ)4

− (2(1− 2ns) + nf )(4− nf )
(1− 2χ)χ

4(1 + χ)4

− (nf (3− ns)2 − 2(4− nf )2)
(1− (4− χ)χ)χ

8(1 + χ)4
, (4.66)

ĉ−+−+
2 = − (4− nf )

1

s12(1 + χ)2
+ 2(1 + ns − nf )

χ

s12(1 + χ)4

+ (2(1− 2ns) + nf )(4− nf )
1− 2χ

s12(1 + χ)4

+ (nf (3− ns)2 − 2(4− nf )2)
1− (4− χ)χ

2s12(1 + χ)4
, (4.67)

ĉ−+−+
3 = − (2(1− 2ns) + nf )(4− nf )

3(1− 2χ)

2s12(1 + χ)4

− (nf (3− ns)2 − 2(4− nf )2)
3(1− (4− χ)χ)

4s12(1 + χ)4
. (4.68)

Our results agree with those of Badger, Frellesvig and Zhang [70]4 and Bern, Dixon,
Smirnov [89].

4Modulo typos.
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4.5.2 −−++ Helicity Amplitude

The planar triple-box contribution to the −−++ helicity gluon amplitude turns out to
be rather trivial. We computed the three master integral coefficients from the deca-cut
shown in fig. 4.7 and found the simple results

ĉ−−++
1 = − 1 , (4.69)

ĉ−−++
2 = 0 , (4.70)

ĉ−−++
3 = 0 . (4.71)

Needless to say, eq. (4.69)-(4.71) are in agreement with the analysis of Badger, Frellesvig
and Zhang [70] and Bern, Dixon and Smirnov [89].

1−

2− 3+

4+

Figure 4.7: The maximally cut planar four-gluon triple box diagram with external
helicities −−++.

4.6 Generalized Cuts and Doubled Propagators

Feynman integrals with doubled propagators arise frequently in connection with IBP
identities, Schwinger parametrizations and Mellin-Barnes representations. This section
presents a natural extension of generalized unitarity to multiloop integrals that oth-
erwise seem to be incompatible with the usual cut prescription. Naively, if we try to
evaluate a generalized unitarity cut of an integral with higher powers of propagators,
the immediate result is singular. Nevertheless, integral bases that contain elements with
doubled propagators can lead to significant simplifications as argued in ref. [100]. We
demonstrate the cuts of integrals with doubled propagators are naturally handled by
means of multivariate residue technology.

We will consider dimensionally regularized n-loop Feynman integrals with arbitrary
integer powers (referred to as indices) (σ1, . . . , σp) of p propagators. In condensed nota-
tion,

I[Φ(`1, `2, `3)](σ1, . . . , σp) ≡
(

n∏

i=1

∫
dD`i

(2π)D

)
Φ({`i})∏p

k=1 f
σk
k ({`i}

, (4.72)

for linear polynomials fk with respect to dot products of the n loop momenta {`i}
and m external momenta {ki}. The single-propagator integral is recovered by setting
σ1 = · · · = σp = 1. Note that it is always possible to bring the numerator Φ into the
form of negative powers of additional propagators.

Multiloop amplitude calculations typically suffer from a severe proliferation of Feyn-
man integrals. Although a large portion of the integrals can be reduced algebraically
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at the level of the integrand, many integrals are nominally irreducible. The aid is to
apply IBP identities to express integrals as linear combinations of master integrals. We
exploit that total derivatives integrate to zero,

(
n∏

i=1

∫
dD`i

(2π)D

)
∂

∂`µa

(
kµb

p∏

k=1

1

fσkk ({`i})

)
= 0 , (4.73)

(
n∏

i=1

∫
dD`i

(2π)D

)
∂

∂`µa

(
`µb

p∏

k=1

1

fσkk ({`i})

)
= 0 , (4.74)

and discard the boundary term produced by the D-dimensional integration. The result-
ing equations can be cast as linear relations among integrals with shifted exponents,

∑

i

µiI(σ1 + ρi,1, . . . , σn + ρi,n) = 0 (4.75)

where ρi,j ∈ {−1, 0, 1}. The IBPs are extremely efficient in practice, reducing hundreds
of planar triple-box integrals onto just three masters, for instance.

4.6.1 Simple Example: One-Loop Box

Our first example is the one-loop box integral with four massless external legs and
arbitrary powers of propagators. The corresponding Feynman expression is a special
case of eq. (2.11), which we shall write as

I4(σ1, . . . , σ4)[Φ(`)] ≡
∫

dD`

(2π)D

4∏

i=1

Φ(`)

fσii (`)
, (4.76)

where f1, . . . , f4 are given by

f1 = `2 , f2 = (`− k1)2 , f3 = (`−K12)2 , f4 = (`+ k4)2 . (4.77)

Take as an example the box integral I4(1, 1, 1, 2)[1] which can be reduced into the
usual scalar box integral. The Jacobian of {f1, f2, f3, f

2
4 } vanishes at both branches of

the quadruple cut and thus gives rise to degenerate multivariate residues. We therefore
transform the inverse propagators into a univariate description,




g1

g2

g3

g4


 ≡




α1 − 1

α2

−α3(α3 + χ)2

−α4(α4 + χ)2


 = M




f1

f2

f3

f2
4


 . (4.78)

Here, M is a 4×4 matrix whose entries are polynomials in α1, . . . , α4. The explicit form
of M is not particular illuminating, but we need its determinant,

detM = −χ(1 + χ)(α3 − α4)(α3 + α4 + 2χ)

s5
12

. (4.79)

This transformation trivializes the calculation of the quadruple cut residues. Applying
the Britto-Cachazo-Feng formula (2.36) immediately leads to the conclusion,

I4(1, 1, 1, 2)[1] =
1

s12χ
I4(1, 1, 1, 1)[1] + · · · . (4.80)
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Similarly we find the reductions

I4(2, 1, 1, 2)[1] =
2

s2
12χ

I4(1, 1, 1, 1)[1] + · · · , (4.81)

I4(3, 1, 1, 1)[1] =
1

s2
12

I4(1, 1, 1, 1)[1] + · · · , (4.82)

which are all consistent with the known IBP identities in the ε→ 0 limit,

I4(1, 1, 1, 2)[1] =
1 + 2ε

s12χ
I4(1, 1, 1, 1)[1] + · · · , (4.83)

I4(2, 1, 1, 2)[1] =
2(1 + ε)(1 + 2ε)

s2
12χ

I4(1, 1, 1, 1)[1] + · · · , (4.84)

I4(3, 1, 1, 1)[1] =
(1 + ε)(1 + 2ε)

s2
12

I4(1, 1, 1, 1)[1] + · · · . (4.85)

4.6.2 Example: Massless Planar Double Box

We now shift gears and proceed to two-loop integrals with doubled propagator. Our
first example is the planar double-box integral P ∗∗2,2 defined in eq. (3.4). We shall rewrite
the integral into the more general 9-propagator form,

P ∗∗2,2(σ1, . . . , σ9)[Φ(`1, `2)] ≡
∫

dD`1
(2π)D

∫
dD`2
(2π)D

9∏

i=1

Φ(`1, `2)

fσii (`1, `2)
, (4.86)

where the seven inverse propagators {fi} are given by

f1 = `21 , f2 = (`1 − k1)2 , f3 = (`1 −K12)2 ,

f4 = `22 , f5 = (`2 − k4)2 , f6 = (`2 −K34)2 , f7 = (`1 + `2)2 (4.87)

and f8 = `1 · k4 and f9 = `2 · k1 are the nonspurious ISPs.

We will from now on concentrate on integrals that have at least one doubled propa-
gators, e.g.

P ∗∗2,2(2, 1, . . . , 1, 0, 0) = c1P
∗∗
2,2(1, . . . , 1, 0, 0) + c2P

∗∗
2,2(1, . . . , 1,−1, 0) + · · · , (4.88)

P ∗∗2,2(1, . . . , 1, 2, 0, 0) = c′1P
∗∗
2,2(1, . . . , 1, 0, 0) + c′2P

∗∗
2,2(1, . . . , 1,−1, 0) + · · · . (4.89)

The maximal cut of such integrals clearly involves degenerate multivariate residues by
the preceding discussion. Accordingly, we apply the algorithm and transform the residue
to a factorized form. We find that

P ∗∗2,2(2, 1, . . . , 1, 0, 0)S1,3 = − 1

16s4
12

∮
dz

z(z + χ)
, (4.90)

P ∗∗2,2(2, 1, . . . , 1, 0, 0)S2,4,5,6 = − 1

16s4
12

∮
dz

z(z + χ)2
, (4.91)

P ∗∗2,2(1, . . . , 1, 2, 0, 0)Si = − 1

16s4
12

∮
dz

z(z + χ)2
. (4.92)

Now we can take advantage of the master integral projectors in order to reduce double-
box integrals with doubled propagators. As an example we will examine the integrals
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on the left hand side of eq. (4.88). The residues evaluated at the usual list of global
poles are

Res {Gi}P
∗∗
2,2(2, 1, . . . , 1, 0, 0) =

1

16χs4
12

(1,−1, 1, 1,−1, 1, 0, 0) ,

Res {Gi}P
∗∗
2,2(1, . . . , 1, 2, 0, 0) =

1

16χ2s4
12

(1,−1, 1, 1,−1, 1, 0, 0) . (4.93)

The projectors immediately produce the reduction identities

P ∗∗2,2(2, 1, . . . , 1, 0, 0) = +
1

s12
P ∗∗2,2(1, . . . , 1, 0, 0) + · · · , (4.94)

P ∗∗2,2(1, . . . , 1, 2, 0, 0) = +
1

χs12
P ∗∗2,2(1, . . . , 1, 0, 0) + · · · . (4.95)

Our results are easily verified by considering the four-dimensional limits of the following
IBP relations in D = 4− 2ε,

P ∗∗2,2(2, 1, . . . , 1, 0, 0) =

1 + 2ε

s12
P ∗∗2,2(1, . . . , 1, 0, 0) + · · · (4.96)

P ∗∗2,2(1, . . . , 1, 2, 0, 0) =

1 + 2ε

1 + ε

(
1 + 3ε

χs12
P ∗∗2,2(1, . . . , 1, 0, 0) +

4ε

χs2
12

P ∗∗2,2(1, . . . , 1,−1, 0)

)
+ · · · . (4.97)

Indeed, when ε→ 0 the tensor integral is suppressed and the scalar integrals equate up
to the factors specified above.

We remark that any other powers of propagators may be treated analogously. A
complete list of hepta-cuts of planar double-box integrals with a doubled propagator
can be found in ref. [61].

4.6.3 Example: Massless Nonplanar Double Box

The four-point two-loop nonaplanar double-box integral with arbitrary powers of prop-
agators is given by

X∗∗1,1,2(σ1, . . . , σ7) ≡
∫

RD

dD`1
(2π)D

∫

RD

dD`2
(2π)D

7∏

i=1

1

f̃σii (`1, `2)
, (4.98)

where the inverse propagators are

f̃1 = `21 , f̃2 = (`1 + k1)2 , f̃3 = (`2 + k4)2 ,

f̃4 = `22 , f̃5 = (`1 − k3)2 , f̃6 = (`1 + `2 − k3)2 , f̃7 = (`1 + `2 −K23)2 (4.99)

and f8 = `1 · k3 and `2 · k2 are the ISPs. We will study integrals with doubled and also
tripled propagators,

X∗∗1,1,2(2, 1, . . . , 1, 0, 0) =

c1X
∗∗
1,1,2(1, . . . , 1, 0, 0) + c2X

∗∗
1,1,2(1, . . . , 1,−1, 0) + · · · , (4.100)

X∗∗1,1,2(1, . . . , 1, 3, 0, 0) =

c′1X
∗∗
1,1,2(1, . . . , 1, 0, 0) + c′2X

∗∗
1,1,2(1, . . . , 1,−1, 0) + · · · , (4.101)
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and derive the coefficients at O(ε0). The degenerate multivariate residues associated
with the hepta-cuts of the displayed integrals are

X∗∗1,1,2(2, 1, . . . , 1, 0, 0)S3,4 = +
1

16s4
12

∮
dz

1 + (1 + χ)z

z2(z + χ)2
, (4.102)

X∗∗1,1,2(2, 1, . . . , 1, 0, 0)S7,8 = +
1

16s4
12

∮
dz

1 + χ

z2(z − χ− 1)
, (4.103)

X∗∗1,1,2(2, 1, . . . , 1, 0, 0)S1,2,5,6 = +
1

16s4
12

∮
dz

1

z(z − χ)2(z − χ− 1)
, (4.104)

X∗∗1,1,2(1, . . . , 1, 3, 0, 0)S3,4 = − 1

16s5
12

∮
dz

h(z)

z(z + χ)5
, (4.105)

X∗∗1,1,2(1, . . . , 1, 3, 0, 0)S7,8 = − 1

16s5
12

∮
dz

(1 + χ)2

z(z − χ− 1)3
, (4.106)

X∗∗1,1,2(1, . . . , 1, 3, 0, 0)S1,2,5,6 = − 1

16s5
12

∮
dz

1

z(z − χ)3(z − χ− 1)
, (4.107)

where h(z) is defined by

h(z) = χ4 − χ3(4z + 1) + χ2(z(z + 1) + 1) + 2χz(z + 1) + z2 . (4.108)

It is easiest to compare results with refs. [59] if we encircle poles at the nodal points of
the pinched genus-3 curve and thus eliminate all residues at infinity. The solutions are
holomorphically parametrized and there are no additional poles in tensor integrals. We
denote the contour weights by

Ω = (ω1∩6, ω1∩3, ω1∩7 , ω2∩5, ω2∩4, ω2∩8, ω5∩3, ω5∩7, ω6∩4, ω6∩8) , (4.109)

so the corresponding residues extracted from the basis integrals read

R1 =
1

16χ(1 + χ)s3
12

(−1, 1 + χ,−χ,−1, 1 + χ,−χ, 1 + χ,−χ, 1 + χ,−χ) , (4.110)

R2 =
1

32s2
12

(0, 1,−1, 0, 1,−1, 0, 0, 0, 0) . (4.111)

We also need to collect the residues computed by the integrals with doubled and tripled
propagators,

Res {Gi}X
∗∗
1,1,2(2, 1, . . . , 1, 0, 0) =

1

16(1 + χ)χ2s4
12

(−1, 1− χ2, χ2,−1, 1− χ2, χ2, 1− χ2, χ2, 1− χ2, χ2) , (4.112)

Res {Gi}X
∗∗
1,1,2(1, . . . , 1, 3, 0, 0) =

1

16(1 + χ)χ3s5
12

(−1, 1 + χ3,−χ3,−1, 1 + χ3,−χ3, 1 + χ3,−χ3, 1 + χ3,−χ3) .

(4.113)

Applying the projectors to eq. (4.112) yields

X∗∗1,1,2(2, 1, . . . , 1, 0, 0) =

+
1

χs12
X∗∗1,1,2(1, . . . , 1, 0, 0)− 4

χs2
12

X∗∗1,1,2(1, . . . , 1,−1, 0) + · · · (4.114)
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and similarly for eq. (4.113),

X∗∗1,1,2(1 . . . , 1, 3, 0, 0) =

+
1

χ2s2
12

X∗∗1,1,2(1, . . . , 1, 0, 0)− 4(1− χ)

χ2s3
12

X∗∗1,1,2(1, . . . , 1,−1, 0) + · · · . (4.115)

The validity of the predictions (4.114)-(4.115) has been verified against IBP identities
obtained from FIRE [103]. Taking the ε = 0 limit of the following relations,

X∗∗1,1,2(2, 1, . . . , 1, 0, 0) =

+
(1 + 2ε)(1 + (3 + 2χ)ε)

(1 + ε)χs12
X∗∗1,1,2(1, . . . , 1, 0, 0)

− 4(1 + 2ε)(1 + 4ε)

(1 + ε)χs2
12

X∗∗1,1,2(1, . . . , 1,−1, 0) + · · · (4.116)

X∗∗1,1,2(1, . . . , 1, 3, 0, 0) =

+
(1 + 2ε)(2 + (9(1 + ε) + 2χ(1 + 2ε− 2(1 + ε)χ))ε)

(2 + ε)χ2s2
12

X∗∗1,1,2(1, . . . , 1, 0, 0)

− 4(1 + 2ε)(1 + 4ε)(2− 2χ(1 + ε) + 3ε)

(2 + ε)χ2s3
12

X∗∗1,1,2(1, . . . , 1,−1, 0) + · · ·

(4.117)

shows that our results are consistent.
We have also calculated hepta-cuts of all other massless four-point nonplanar double-

box integrals with single doubled propagator. The results are similar to those in
eq. (4.107) and can be found in ref. [61].





Elliptic Functions and

Maximal Unitarity 5
Es ist wahr, ein Mathematiker, der nicht etwas Poet ist,

wird nimmer ein vollkommener Mathematiker sein.
— Karl Weierstrass (1815–1897)

Cutting seven propagators on-shell at two loops leads to a one-dimensional complex
manifold. For example, the maximal cuts of the purely massless planar and nonplanar
double-box topologies define degenerate algebraic curves that are topologically equiva-
lent to multiply pinched Riemann surfaces of genus g = 1 and g = 3 respectively. In
fact, the irreducible components are just Riemann spheres.

The origin of the degeneracy may be traced back to the presence of massless external
(and internal) lines, as alluded in the previous chapters. Given a diagram, we may first
consider the prime case with the maximal number of massive external (and internal)
particles. Typically, the maximal cut then defines a high-genus irreducible curve. Next
we examine all distinct degenerate cases with fewer external legs or several massless
particles. In this case, the maximal cut typically yields a reducible curve. For genus-0
irreducible components there always exists a rational parametrization. However, if the
genus is larger than zero, it is not possible to describe the solution space by rational
parameters in any coordinates. Moreover, curves of nonzero genus give rise to additional
nontrivial topological cycles.

Here we take the first steps to develop a generalized unitarity method for the case
of higher-genus Riemann surfaces, using as a phenomenologically relevant example the
two-loop double box with internal masses. In this case the maximal cut defines a non-
degenerate elliptic curve associated with a genuine torus. Our method is based on the
theory of Weierstrass elliptic functions and meromorphic differential forms. The princi-
pal result is a highly nontrivial addition to the large body of evidence of the uniqueness
conjecture for two-loop master contours. This chapter is a moderately augmented ver-
sion of paper I.

5.1 Elliptic Curves from Maximal Cuts

In this section we present two distinct, yet intimately related, examples of elliptic curves
generated by maximal cuts of two-loop diagrams with external massive legs or massive
particles propagating in the loops. The following examples are very brief and we do not
pretend to give a comprehensive treatment.
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5.1.1 10-Gluon Double Box

Our first example of an elliptic curve from maximal cuts involves the most general
two-loop planar double-box integral with neither massive internal lines nor doubled
propagators. The integral is given by

P2,2(K1, . . . ,K6)[Φ(`1, `2)] =
∫

dD`1
(2π)D

∫
dD`2
(2π)D

Φ(`1, `2)

`21(`1 −K1)2(`1 −K12)2`22(`2 −K5)2(`2 −K45)2(`1 + `2 +K6)2
,

(5.1)

where we denoted the numerator polynomial by Φ(`1, `2). The momentum flow conven-
tions are shown in fig. 5.1. For technical reasons, we continue to evaluate unitarity cuts
in D = 4 dimensions.

`1 `2
K1

K2

K3
K4

K5
K6

Figure 5.1: The planar double-box diagram with an arbitrary number of external
outgoing momenta.

In order to simplify and linearize as many as possible of the hepta-cut equations,

`21 = (`1 −K1)2 = (`1 −K12)2 = 0 , (5.2)

`22 = (`2 −K5)2 = (`2 −K45)2 = 0 , (5.3)

(`1 + `2 +K6)2 = 0 , (5.4)

the loop momenta may be expanded in a momentum basis constructed from flat pro-
jections of some of the external momenta, say (K[

1,K
[
2) and (K[

4,K
[
5), along the lines of

sec. 3.2.5. More specifically,

`µ1 = α1K
µ,[
1 + α2K

µ,[
2 + α3〈K[

1 |γµ |K[
2] + α4〈K[

2 |γµ |K[
1] , (5.5)

`µ2 = β1K
µ,[
4 + β2K

µ,[
5 + β3〈K[

4 |γµ |K[
5] + β4〈K[

5 |γµ |K[
4] , (5.6)

where the massless momenta are defined as follows,

Kµ,[
1 =

Kµ
1 − (S1/γ1)Kµ

2

1− S1S2/γ2
1

, Kµ,[
2 =

Kµ
2 − (S2/γ1)Kµ

1

1− S1S2/γ2
1

, (5.7)
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and similarly for (K[
4,K

[
5). In the equations above,

γ1,± = (K1 ·K2)±
√

∆1 , ∆1 = (K1 ·K2)2 −K2
1K

2
2 , Si ≡ K2

i . (5.8)

For simplicity, we start by solving the on-shell constraints (5.2)-(5.3) associated with
the six outer-edge propagators, which depend only on either `1 or `2. It is straightforward
to obtain the desired solution [56],

α1 =
γ1(S2 + γ1)

γ2
1 − S1S2

, α2 =
S1S2(S1 + γ1)

γ1(S1S2 − γ2
1)
, α3α4 = − S1S2(S1 + γ1)(S2 + γ1)

4(γ2
1 − S1S2)2

,

β1 =
S4S5(S5 + γ2)

γ2(S4S5 − γ2
2)
, β2 =

γ2(S4 + γ2)

γ2
2 − S4S5

, β3β4 = − S4S5(S4 + γ2)(S5 + γ2)

4(γ2
2 − S4S5)2

.

(5.9)

The on-shell equation (5.4) for the middle-rung propagator 1/(`1+`2+K6)2 now involves
a quartic polynomial that is quadratic in two variables, for instance, α4 and β4. The
naive solution of β4 as a function of α4 takes the form,

β4 =
A(α4) +

√
∆(α4)

B(α4)
, (5.10)

where A, B, and ∆ are rational functions of α4.
The hepta-cut double-box integral is easily evaluated by means of nondegenerate

multivariate residues. Including the Jacobians associated with the change of variables
from the loop momenta to the parametrization (5.6), we arrive at the result [56, 67],

P2,2(K1, . . . ,K6)[Φ(`1, `2)]
∣∣
7−cut

=

γ1γ2

32(γ2
1 − S1S2)(γ2

2 − S4S5)

∮
dα4

Φ(α4)√
∆(α4)

, (5.11)

where ∆ = α2
4(B0(α4)2−4B1(α4)B−1(α4)) for rational functions B1, B0 and B−1 defined

as follows,

B1(α4) = 〈K[
4 |γµ |K[

5]
(
α1K

[
1,µ + α2K

[
2,µ +K6,µ

+ α3〈K[
1 |γµ |K[

2] + α4〈K[
2 |γµ |K[

1]
)
, (5.12)

B0(α4) =
(
β1K

µ,[
4 + β2K

µ,[
5 +Kµ

6

)

×
(
α1K

[
1,µ + α2K

[
2,µ + α3〈K[

1 |γµ |K[
2]

+ α4〈K[
2 |γµ |K[

1] +K6,µ

)
− 1

2
S6 , (5.13)

B−1(α4) = − S4S5(S4 + γ2)(S5 + γ2)〈K[
5 |γµ |K[

4])

4(γ2
2 − S4S5)2

×
(
α1K

[
1,µ + α2K

[
2,µ + α3〈K[

1 |γµ |K[
2] + α4〈K[

2 |γµ |K[
1]
)
. (5.14)

We remind the reader that in eqs. (5.12)-(5.14) it is understood that expressions for
α1, α2, α3 and β1, β2, β3 are those obtained by solving the bowtie hexa-cut equations,
see eq. (5.9).

The structure of the four roots (e1, . . . , e4) of the radicand ∆ is rather complicated,
but fortunately it is not necessary to solve for them analytically. Indeed, for our purposes
it suffices to verify numerically that the roots are in fact distinct for generic external
kinematics. Consequently, η2 = ∆ defines a nondegenerate elliptic curve.
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5.1.2 Internal Masses

We claim that the maximal cuts of the planar double-box integral with (i) internal
masses throughout the diagram and only four massless external legs and (ii) 10 external
massless particles are equivalent from a mathematical point of view; both of them define
a nondegenerate elliptic curve.

Without loss of main features1 of the calculation, we may assume that the six outer-
edge propagators have mass m1, while the mass of the particle propagating in the middle-
rung is m2. The external kinematics thus depends on just four invariants, namely
s, t,m1,m2.

In order to prove the above assertion, let us examine the hepta-cut equations with
internal masses,

`21 −m2
1 = (`1 − k1)2 −m2

1 = (`1 −K12)2 −m2
1 = 0 , (5.15)

`22 −m2
1 = (`2 − k4)2 −m2

1 = (`2 −K34)2 −m2
1 = 0 , (5.16)

(`1 + `2)2 −m2
2 = 0 , (5.17)

using the loop-momentum parametrization,

`µ1 = α1k
µ
1 + α2k

µ
2 + α3

s

2

〈1|γµ |2]

〈14〉[42]
+ α4

s

2

〈2|γµ |1]

〈24〉[41]
, (5.18)

`µ2 = β1k
µ
3 + β2k

µ
4 + β3

s

2

〈3|γµ |4]

〈31〉[14]
+ β4

s

2

〈4|γµ |3]

〈41〉[13]
. (5.19)

Following the strategy outlined above, we start by solving the equations for the bowtie-
shaped hexa-cut. In analogy with eq. (5.9) this quickly leads to the solution,

α1 = 1 , α2 = 0 , α3α4 =
m2

1t(s+ t)

s3
,

β1 = 0 , β2 = 1 , β3β4 =
m2

1t(s+ t)

s3
. (5.20)

The middle-rung propagator is again a quartic polynomial which is quadratic in, say,
α4 and β4; solving the on-shell constraint exactly yields a result of the form (5.10), with
the functions A and B given by

A(α4) = − s2t
(
a4s

2
(
2m2

1 −m2
2 + t

)
+ a2

4s
3 +m2

1t(s+ t)
)
, (5.21)

B(α4) = 2s3
(
a2

4s
3 + a4s

2t+m2
1t

2
)
. (5.22)

Put differently, the maximal cut gives rise to an elliptic curve.

5.2 Weierstrass’ Elliptic Functions

The principal mathematical prerequisite for this chapter is the theory of elliptic curves
and elliptic functions. Standard references are for instance text books by Silverman [116]
and Whittaker [117]. For the benefit of readers who are unfamiliar with this material,
a brief review of Weierstrass’ elliptic functions is provided in this section.

In complex analysis, an elliptic function is defined as a meromorphic function which
is doubly-periodic.2 Let us recall that for a nonconstant meromorphic function f of a
single complex variable z, periodicity is expressed as

∀z ∈ C : f(z + 2ω) = f(z) , (5.23)

1In fact, a uniform internal mass is sufficient.
2A doubly-periodic holomorphic function is constant.
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and ω ∈ C is called the half-period of f . The set of all periods of f forms a lattice
structure Λ, that can be either

• trivial, Λ = {0},
• simple, Λ = {2nω |n ∈ Z},
• double, Λ = {2n1ω1 + 2n2ω2 |n1, n2 ∈ Z}.

The simplest example of a singly-periodic function is perhaps the complex exponential
function, exp z, whose half-period is ω = πi. In the remainder of this chapter, we will
frequently encounter the doubly-periodic meromorphic Weierstrass ℘-function, which
has the series representation,

℘(z) =
1

z2
+

∞∑

n1,n2=−∞

(
1

(z − 2n1ω2 − 2n2ω)2
− 1

(2n1ω1 + 2n2ω2)2

)
, (5.24)

The periodic lattice is

Λ = {2n1ω1 + 2n2ω2 |n1, n2 ∈ Z} , (5.25)

with half-periods ω1, ω2 such that ω1/ω2 /∈ R.

5.2.1 Periods and Inverse Functions

Inverse functions of periodic functions are in general multivalued functions. For example,
the inverse function of the exponential function, w = exp z, is the natural logarithm,
z = lnw. Similarly, for the Weierstrass ℘-function, w = ℘(z), the inverse function is an
elliptic integral,

z =

∫ ∞

w

dx√
4x3 − g2x− g3

, g2 = 60
∑

ω∈Λ\{0}

1

ω4
, g3 = 140

∑

ω∈Λ\{0}

1

ω6
. (5.26)

In these equations, the constants g2 and g3 are the Weierstrass invariants and the equa-
tion,

y2 = 4x3 − g2x− g3 , (5.27)

defines an elliptic curve in the Weierstrass normal form. The elliptic curve is nondegen-
erate if and only if the modular discriminant is nonzero,

∆mod = g3
2 − 27g2

3 6= 0 . (5.28)

Periods of elliptic functions can, analogously to the exponential function, be ex-
pressed as integrals involving only algebraic functions. The period of the exponential
function is

πi = i

∫ 1

−1

dx√
1− x2

(5.29)

which is trivially verified by direct integration. We assume that ∆mod > 0 so that the
roots e1 > e2 > e3 obtained by solving the cubic equation

4t3 − g2t− g3 = 0 (5.30)

are purely real. The half-periods ω1 and ω2 of the Weierstrass ℘-function can then be
calculated as

ω1 =

∫ e2

e1

dx√
4x3 − g2x− g3

, ω2 =

∫ e2

e3

dx√
4x3 − g2x− g3

. (5.31)
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5.2.2 Identities and Differential Equations

We are primarily interested in nondegenerate elliptic curves over the field of complex
numbers, governed by the Weierstrass equation,

y2 = 4x3 − g2x− g3 , g3
2 − 27g2

3 6= 0 , (5.32)

where g2, g3 are called the modular invariants. This elliptic curve is topologically equiv-
alent to a genus-1 Riemann surface that is naturally parametrized by the Weierstrass
℘-function along with its first derivative. Indeed, the ordinary differential equation

℘′(z; g2, g3)2 = 4℘(z; g2, g3)3 − g2℘(z; g2, g3)− g3 (5.33)

is precisely of the form (5.27). This fact will prove very advantageous in what follows.

Recall that Weierstrass’ ℘-function is uniquely fixed once either g2, g3 or the half-
periods ω1, ω2 are specified. For compactness we will therefore just write ℘(z) from now
on.

An essential property of Weierstrass’ ℘-function is that it obeys the so-called addition
law, which can be stated as follows,

℘(z) + ℘(w) + ℘(z + w) =
1

4

(
℘′(z)− ℘′(w)

℘(z)− ℘(w)

)2

, (5.34)

where z, w ∈ C are chosen arbitrarily. The quantity in the parenthesis on the right
hand side of eq. (5.34) appears frequently in the calculations below, hence we define the
function

ϕ(z, w) ≡ 1

2

℘′(z)− ℘′(w)

℘(z)− ℘(w)
. (5.35)

It is important to note that this function can be expressed as a linear combination of
Weierstrass ζ-functions,

ϕ(z, w) = ζ(z + w)− ζ(z)− ζ(w) , (5.36)

with ζ ′(z) = −℘(z). Now, differentiating both sides of eq. (5.36) with respect to z
immediately gives the relation

d

dz
ϕ(z, w) = ℘(z)− ℘(z + w) . (5.37)

Finally, we also need to introduce Weierstrass’ σ-function. We can define it for example
through a logarithmic derivative,

d

dz
log σ(z) = ζ(z) . (5.38)

The Weierstrass σ-function obeys the periodicity relation,

σ(z + 2ωk) = −e2ηk(z+ωk)σ(z) , ηk ≡ ζ(ωk) , (5.39)

which we will not prove here.
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5.3 The Weierstrass Parametrization

The quartic radicand ∆ that arises in the integrand of the maximally-cut double-box
integral is conveniently reexpressed as

∆ = q0(α4 − q)4 + 6q2(α4 − q)2 + 4q3(α4 − q) + q4 (5.40)

where the constant q has been introduced in order to remove the cubic term from the
polynomial. Explicitly,

q = −1

2

(
t

s
− m2

2

s− 4m2
1

)
. (5.41)

We can now set η2 = ∆ and apply a suitably chosen birational transformation to the
elliptic curve in eq. (5.40) to gain more insight into the structure of the maximal cut of
the double-box integral with internal masses. More specifically, the transformation

x =
q0(α4 − q)2 + η

√
q0 + q2

2q0
, (5.42)

y =
(α4 − q)

(
q0(α4 − q)2 + η

√
q0 + 3q2

)
+ q3

q0
(5.43)

brings the elliptic curve in question into the Weierstrass standard form (5.27) with the
modular invariants

g2 =
3q2

2 + q0q4

q2
0

, g3 = −q
3
2 − q0q2q4 + q0q

2
3

q3
0

. (5.44)

This can be verified by direct calculation and we encourage the interested reader to do
so. In particular, the inverse of the transformation in eq. (5.43) is

α4 =
1

2

y − q3/q0

x+ q2/q0
+ q , η =

√
q0

(
2x− q2

q0
− 1

4

(
y − q3/q0

x+ q2/q0

)2)
. (5.45)

The crucial step is now to introduce a complex variable z for the torus associated
with the Weierstrass elliptic curve,

x = ℘(z) , y = ℘′(z) , (5.46)

which readily leads to

α4(z) =
1

2

℘′(z)− q3/q0

℘(z) + q2/q0
+ q , (5.47)

η(z) =
√
q0

(
2℘(z)− q2

q0
− 1

4

(
℘′(z)− q3/q0

℘(z) + q2/q0

)2)
. (5.48)

The Weierstrass parametrization may be further simplified by defining a constant u with
the properties

℘(u) = −q2/q0 , ℘′(u) = q3/q0 . (5.49)

Note that u is uniquely determined from the fact that (x, y) = (−q2/q0, q3/q0) is indeed
a point on the elliptic curve. Invoking the addition law (5.34) leaves us with the very
compact result,

η(z) =
√
q0(℘(z)− ℘(z + u)) , α4(z) = ϕ(z, u) + q , (5.50)
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where ϕ is defined in eq. (5.35).
Let us now investigate the implications of the Weierstrass parametrization for the

maximally-cut scalar double-box integral. Thanks to eq. (5.37) it is immediately clear
that

d

dz
α4(z) =

1√
q0
η(z) (5.51)

which remarkably trivializes the integrand of the cut double box,

I[1]
∣∣
7−cut

∝
∮

dα4√
∆

=
1√
q0

∮
dz . (5.52)

5.3.1 Chiral Insertions and Global Poles

Evaluated on the hepta-cut, a generic double-box numerator function is a polynomial in
α3(z), α4(z), β3(z) and β4(z). The two ISPs (see sec. 3.1.2) are conventionally chosen
to be `1 · k4 and `2 · k1. A short exercise shows that

`1 · k4 =
1

2
(α3s+ α4 + s+ t) , `2 · k1 =

1

2
(β3s+ β4 + s+ t) . (5.53)

Accordingly before we can shed light on the question of uniqueness of master integral
projectors, it is necessary to work out the Weierstrass parametrization of the remaining
three chiral3 insertions, α3, β3 and β4. Recall from eq. (5.45) that

1

α4
=

1
1
2
y−q3/q0
x+q2/q0

+ q
. (5.54)

By partial fractioning,

α3 =
m2

1t(s+ t)

s3α4
=

1

2

(
− y − y3

x− x3
+
y − y4

x− x4

)
, (5.55)

where

x3 =
s2(m2

2 − t)2 + 16m4
1t(s+ t)− 4m2

1s(m
2
2s+ t(s+ 2t))

12s3(s− 4m2
1)

, (5.56)

x4 =
s2(m2

2 − t)2 − 32m4
1t(s+ t) + 4m2

1s(t(2s+ t)−m2
2s)

12s3(s− 4m2
1)

, (5.57)

and

y3 = 0 , y4 = −m
2
1t(s+ t)(m2

2s+ 4m2
1t− st)

s4(4m2
1 − s)

. (5.58)

The points (x3, y3) and (x4, y4) lie on the elliptic curve and therefore we define constants
z3 and z4 such that

℘(z3) = x3 , ℘′(z3) = −y3 , ℘(z4) = x4 , ℘′(z4) = −y4 . (5.59)

This means that z = z3 and z = z4 are the two poles of α3(z), and equivalently the two
zeros of α4(z). It turns out that z3 and z4 are related to the poles of α4(z) by half-period
shifts,

z3 = ω1 + ω2 = z1 + ω1 + ω2 , (5.60)

z4 = z2 + ω1 + ω2 . (5.61)

3Chiral here refers to the fact that e.g. α4 ∝ 〈1|`µ1 |2] and β4 ∝ 〈3|`µ2 |4].
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An explicit Laurent expansion order-by-order surprisingly shows that

α3(z) = α4(z − z3) = α4(z − ω1 − ω2) , (5.62)

so in words, α3(z) is also simply a shift of α4(z).
This pattern remarkably extends also to β3(z) and β4(z). We find that

β4 =
A(α4) +

√
∆(α4)

B(α4)
=

1

2

(√
(s− 4m2

1)t2

s3
− t

s
− y − y5

x− x5
+
y − y6

x− x6

)
. (5.63)

where (x5, y5) and (x6, y6) are again points on the elliptic curve. Explicitly,

x5 =
s2
(
t−m2

2

)
2 + 16m4

1t(t− 2s) + 4m2
1s
(
2t(s− t)−m2

2(s− 3t)
)

12s3
(
s− 4m2

1

) , (5.64)

y5 =
m2

1

(
−4m2

1 +m2
2 + s

)√
s9t2

(
s− 4m2

1

) (
s
(
t−m2

2

)
− 4m2

1t
)

s8
(
s− 4m2

1

)
2

, (5.65)

and likewise for the other pair. If we now set ℘(z5) = x5, ℘′(z5) = −y5, ℘(z6) = x6 and
℘′(z6) = −y6, the poles of β4(z) are z5 and z6. We have verified that z6 = z5 + z2 and

β4(z) = α4(z − z5) . (5.66)

Furthermore, if z7 and z8 are the two poles of β3(z),

z7 = z5 + ω1 + ω2 , (5.67)

z8 = z6 + ω1 + ω2 = z5 + z2 + ω1 + ω2 . (5.68)

Finally, by comparing the Laurent expansions order by order,

β3(z) = α4(z − z7) . (5.69)

This remarkable structure of the locus of poles is demonstrated in fig. 5.2.

z1 z2

z3 z4z5 z6

z7 z8

2ω1

2ω2 4ω2

A

B

z1 z2

z3 z4z5 z6

z7 z8

2ω1

2ω2 4ω2

Figure 5.2: The eight poles (z1, . . . , z8) of the numerator factors are here depicted in
the underlying of the elliptic functions. The poles are related by shifts, z2i = z2i−1 + z2

for i = 1, 2, 3, 4 and zi+2 = zi + ω1 + ω2 for i = 1, 2, 5, 6.

5.3.2 Periods and Residues

The half-periods of the torus associated with our elliptic curve are ω1 and ω2. For the
sake of simplicity it is assumed that the internal and external invariants, i.e. the masses
m1 and m2 of the propagators and the Mandelstam invariants s12, s14, are purely real
quantities. In those these circumstances we may choose ω1 to be purely imaginary and
negative and ω2 to be real and positive.
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Figure 5.3: An alternative view of the fundamental cycles on the torus.

In order to specify the discussion, the first fundamental cycle A is defined to be the
line from ε to ε + 2ω1, while the second fundamental cycle B is the line from −iε to
−iε+ 2ω2. Here, ε is a small positive constant. Refer to figs. 5.2-5.3 for illustrations of
the fundamental cycles.

Let us consider the completion of the contour for the maximally-cut scalar double-
box integral. The integrand is trivial in this case and contains no singularities so there
are no residue cycles to examine. By construction, integrating over the fundamental
cycles merely produces the two periods,

∮

A
dz = 2ω1 ,

∮

B
dz = 2ω2 . (5.70)

However, in the generic case with a nontrivial numerator insertion, the fundamental cycle
integrations give rise to more complicated expressions involving Weierstrass functions
evaluated at certain values. For example, with a α4(z) insertion,

∮

A
dzα4(z) = 2qω1 +

∮

A
dz

1

2

℘′(z)− ℘′(u)

℘(z)− ℘(u)
= 2qω1 + 2(uη1 − ω1ζ(u)) , (5.71)

∮

B
dzα4(z) = 2qω2 +

∮

B
dz

1

2

℘′(z)− ℘′(u)

℘(z)− ℘(u)
= 2qω2 + 2(uη2 − ω2ζ(u)) . (5.72)

These results are rather easy to derive. For the sake of definiteness, let us work out the
details that lead to eq. (5.71). Using the alternative addition law (5.36) allows us to
write

∮

A
dz

(
q +

1

2

℘′(z)− ℘′(w)

℘(z)− ℘(w)

)
=

∮

A
dz
(
q + ζ(z + u)− ζ(z)− ζ(u)

)
. (5.73)

The integral over the Weierstrass ζ-functions on the right hand side is now easily eval-
uated by means of eqs. (5.38)-(5.39). It follows that

∮

A
dz
(
ζ(z + u)− ζ(z)− ζ(u)

)
= − 2ω1ζ(u) + log

σ(z + u)

σ(z)

∣∣∣∣
ε+2ω1

ε

= − 2ω1ζ(u) + log
σ(u+ ε+ 2ω1)σ(ε)

σ(u+ ε)σ(ε+ 2ω1)

= − 2(ω1ζ(u)− uη1) , (5.74)
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which suffices to complete the proof as the integral for the constant term in eq. (5.71) is
trivial. This derivation seamlessly applies to the second fundamental cycle by replacing
ω1 → ω2 and η1 → η2.

The α4(z) insertion gives rise to two simple poles in the integrand as we discussed
above. Accordingly, there are two residue cycles with nonvanishing integrations in ad-
dition to the two fundamental cycles. We call these cycles C1 and C2. The residues are
computed by examining the Laurent expansions of ϕ(z, u) around the poles at z = 0
and z = −u. Near z = 0 and z = −u the function ϕ(z, u) has the respective behaviors

ϕ(z, u) = − 1

z
+

1

2

( m2
2

s− 4m2
1

− t

s

)
+ ℘(u)z +O(z2) , (5.75)

ϕ(z, u) = +
1

z + u
+

1

2

( m2
2

s− 4m2
1

− t

s

)
− ℘(u)(z + u) +O((z + u)2) . (5.76)

Accordingly, the residue cycle integrations yield
∮

C1
dzα4(z) = −2πi ,

∮

C2
dzα4(z) = +2πi , (5.77)

which concludes our treatment of the α4(z) insertion.
The remaining three linear insertions produce no new results compared to the residues

and fundamental cycle integrations obtained above. To understand this, recall that
α3(z), β3(z) and β4(z) are all obtained by shifting α4(z). In particular, this shift clearly
leaves the residues and periods invariant. More specifically,

∮

C3
dzα3(z) = −2πi ,

∮

C4
dzα3(z) = +2πi , (5.78)

where C3 and C4 encircle z3 and z4 respectively. Similarly, for β4(z),
∮

C5
dzβ4(z) = −2πi ,

∮

C6
dzβ4(z) = +2πi , (5.79)

and finally,
∮

C7
dzβ3(z) = −2πi ,

∮

C8
dzβ3(z) = +2πi . (5.80)

If we define the tensor integral

Ia,b,c,d ≡ I[αa3α
b
4β

c
3β

d
4 ] , (5.81)

the partial results obtained until this point can be summarized as follows,

I0,0,0,0 −→ (2ω1, 2ω2, 0, 0, 0, 0, 0, 0, 0, 0) ,

I0,1,0,0 −→ (A0,1,0,0,B0,1,0,0,−2πi, 2πi, 0, 0, 0, 0, 0, 0) ,

I1,0,0,0 −→ (A1,0,0,0,B1,0,0,0, 0, 0,−2πi, 2πi, 0, 0, 0, 0) ,

I0,0,0,1 −→ (A0,0,0,1,B0,0,0,1, 0, 0, 0, 0,−2πi, 2πi, 0, 0) ,

I0,0,1,0 −→ (A0,0,1,0,B0,0,1,0, 0, 0, 0, 0, 0, 0,−2πi, 2πi) , (5.82)

where the periods are given by

A1,0,0,0 = · · · = A0,0,0,1 = 2qω1 + 2(uη1 − ω1ζ(u)) ,

B1,0,0,0 = · · · = B0,0,0,1 = 2qω2 + 2(uη2 − ω2ζ(u)) . (5.83)

Note that ω1 and ω2 are related by

η1ω2 − η2ω1 =
iπ

2
. (5.84)
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5.4 Uniqueness of Projectors

The remaining arbitrary one-dimensional integration contour may be expressed in a
overcomplete basis of the first homology group of the z torus with the eight poles ex-
cluded. In order to maintain a compact notation, the weights of the two fundamental
cycles and the eight residue cycles will be written

Ω = (ΩA,ΩB,Ω1, . . . ,Ω8)T . (5.85)

Then for an arbitrary numerator insertion Φ(z) we define the operation of applying
the hepta-cut to the double-box integral and subsequently completing the contour by
replacing

I[Φ] −→ ΩA

∮

A
dzΦ(z) + ΩB

∮

B
dzΦ(z) + 2πi

8∑

j=1

Ωj Res
z=zj

Φ(z) , (5.86)

for weights that are a priori undetermined. According to the Global Residue Theorem
discussed in sec. 4.2, only seven of the residues are independent. The extraneous weight
is simply set to zero at a later stage when we reduce to a linearly independent basis.

We have used the Mathematica package FIRE [103] to generate IBP relations to
verify the number of master integrals for the double-box topology with internal masses
m1 and m2. There are four masters and as we have seen in the previous examples, these
are normally chosen to be of the form

Im,n ≡ I[(`1 · k4)m(`2 · k1)n] . (5.87)

But from a calculational point of view it is much more advantageous to work with
master integrals which have chiral numerator insertions instead. A suitable set of linearly
independent integrals is for example

(I1, . . . , I4) = (I0,0,0,0, I0,1,0,0, I0,2,0,0, I0,1,1,0) . (5.88)

Evidently, imposing the orthonormality constraints on the master contours leaves five
weights to be fixed by other means. Remarkably, it turns out that there are exactly five
linearly independent constraints, whose origin are Levi-Civita insertions that integrate
to zero on the real slice or left-right symmetry of the double-box diagram in the presence
of only four massless external particles. All constraints from IBP reduction are satisfied
automatically.

The constraints take the form of a matrix equation

MΩ = 0 (5.89)

and the 10 × 5 coefficient matrix M is surprisingly simple as it has only has integer
entries,

M =




1 −1 0 0 0 0 0 2 0 −2

0 0 1 0 0 −1 0 1 −1 0

0 0 0 1 0 −1 0 1 0 −1

0 0 0 0 1 −1 0 0 −1 1

0 0 0 0 0 0 1 −1 −1 1




. (5.90)



5.5. EXACT MEROMORPHIC DIFFERENTIAL FORMS 95

Furthermore, we implement the constraint from the Global Residue Theorem by requir-
ing that

GΩ = 0 , G = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1) . (5.91)

LetMi denote the ith master contour which extracts Ii and normalizes its cut expression
to unity, while respecting the constraints. A clean way of presenting the projectors is
via solutions to inhomogeneous matrix equations. To that end we construct the 10× 10
matrix F ,

F =
(
M G I1 I2 I3 I4

)T ∣∣
aug

. (5.92)

Here, the aug subscript implies that the master integrals are evaluated on the hepta-cut
with the remaining contour being expanded as in eq. (5.86). Also note that transposition
is understood with respect to the six blocks. It is not hard to verify that F has full rank,
so all four projectors are uniquely determined. Defining the four 10-tuples δ1, . . . , δ4 by

(
δ1 δ2 δ3 δ4

)
=




0 0 0 0
...

...
...

...

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




, (5.93)

we thus have Mi = F−1δi. Therefore our final formula for the double-box master
integral coefficients reads

ci = Ω
(i)
A

∮

A
dz

6∏

k=1

Atree
(k) (z) + Ω

(i)
B

∮

B
dz

6∏

k=1

Atree
(k) (z) + 2πi

8∑

j=1

Ω
(i)
j Res

z=zj

6∏

k=1

Atree
(k) (z)

(5.94)

for Mi = (Ω
(i)
A ,Ω

(i)
B ,Ω

(i)
1 , . . . ,Ω

(i)
8 ). This result represents the natural generalization of,

say, eq. (3.26) to the case where topological cycles must be taken into account. We
remind the reader that the products of tree-level amplitudes in eq. (5.94) are implicitly
summed over all internal on-shell states in the theory.

5.5 Exact Meromorphic Differential Forms

Following the resolution on the question of uniqueness of the master integral projec-
tors we present an amazing property, namely the relation between exact meromorphic
differential forms and the leading-topology part of planar double-box IBP identities.

Suppose that F is some meromorphic elliptic function and assume regularity of F
on T \ S. Recall that S = {z1, . . . , z8} where z1, . . . , z8 are the eight poles on the z-
torus associated with the maximal cut. Now we can immediately construct an exact
differential form on T2 \ S,

dF = fdz . (5.95)
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Stokes’ Theorem implies that the one-form in question has vanishing integrations on all
cycles on the torus. In particular, dF integrates to zero on both topological cycles,

∮

A
dF =

∮

B
dF = 0 (5.96)

and on all residue cycles,
∮

Ci
dF = 0 , i = 1, . . . , 8 . (5.97)

According to eq. (5.86), the equation

I[f ] = · · · , (5.98)

where the trailing dots hide other integrals with fewer than seven propagators, is an
on-shell IBP identity. This is precisely the part of the IBP relation that is typically used
to derive the consistency equations for the master contours. Invoking various properties
of the Weierstrass functions, we can for example derive the following exact differential
forms,

d(f1(α4)η) =
f ′1(α4)∆ + 1

2f1(α4)∆′(α4)
√
q0

dz , (5.99)

d(f2(α4)) =
f ′2(α4)(B(α4)β4 −A(α4))√

q0
dz , (5.100)

where f1 and f2 are arbitrary polynomials in α4. These expressions immediately yield
two additional highly nontrivial on-shell IBP equations, namely

I[f ′1(α4)∆ + 1
2f1(α4)∆′(α4)] = · · · , (5.101)

I[f ′2(α4)(B(α4)β4 −A(α4))] = · · · . (5.102)

In order to demonstrate the strength of relation between exact meromorphic differ-
ential forms and IBP identities, take for example the function f2(α4) = α4. We almost
effortlessly obtain

m2
1t

2(s+ t)I0,0,0,0 + 2s4I0,2,0,1 + s3tI0,2,0,0 + 2s3tI0,1,0,1

+ s2t(2m2
1 −m2

2 + t)I0,1,0,0 + 2m2
1st

2I0,0,0,1 = · · · (5.103)

which is a actually rather nontrivial IBP identity to derive by other means, in particular
analytically using public computer codes such as FIRE [103]. More evidence for the
efficiency of the method is easily provided. Since ∆ is a quartic polynomial in α4, the
integral I0,3,0,0 is clearly reducible in terms of I0,2,0,0, I0,1,0,0 and I0,0,0,0. To be accurate,

[
m2

1t(s+ t)
(
s
(
t−m2

2

)
− 4m2

1t
)]
I0,0,0,0

+
[
s
(
s2
(
t−m2

2

)
2 − 8m4

1t(s+ t) + 2m2
1s
(
t(s− t)− 2m2

2s
))]

I0,1,0,0

+
[
3s3
(
s
(
t−m2

2

)
− 4m2

1t
)]
I0,2,0,0 + 2s4

(
s− 4m2

1

)
I0,3,0,0 = · · · . (5.104)

Also, I3,0,0,0 can be expressed as a linear combination of I2,0,0,0, I1,0,0,0 and I0,0,0,0,

[
m2

1t(s+ t)
(
s
(
t−m2

2

)
− 4m2

1t
)]
I0,0,0,0

+
[
s
(
s2
(
t−m2

2

)
2 − 8m4

1t(s+ t) + 2m2
1s
(
t(s− t)− 2m2

2s
))]

I1,0,0,0

+
[
3s3
(
s
(
t−m2

2

)
− 4m2

1t
)]
I2,0,0,0 + 2s4

(
s− 4m2

1

)
I3,0,0,0 = · · · , (5.105)
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with the same coefficients as in eq. (5.104). Consequently, the leading-topology part of
the IBP relation for I[(`1 ·k4)3] in terms of I[1], I[(`1 ·k4)] and I[(`1 ·k4)2] is now readily
available by combining eqs. (5.104)-(5.105).

The fact that eqs. (5.101)-(5.102) generate the full set of IBP identities without
doubled propagators for the planar double-box topology with internal masses on the
hepta-cut, suggests that this relation between meromorphic exact forms and IBPs would
hold for other two-loop diagrams as well. This could have very important consequences
for calculations in practice. In particular, this has potential to lead to an extremely
efficient algorithm for generating IBPs analytically.





Conclusion and Outlook 6
The present thesis has reviewed recent advances in the field of two- and three-loop
scattering amplitudes reported in a sequence of papers I-V. The philosophy of the devel-
opments is completely general and all statements and results obtained here are expected
to hold in all gauge theories, in particular QCD. The work comprises several important
extensions of the maximal unitarity formalism of refs. [55, 56] along with techniques
and mathematical theory from computational algebra which together pave the way for
further progress. The conclusion of the thesis is divided into in three headlines.

Nonplanar Integrals and Maximal Unitarity. The first steps towards extending
the maximal unitarity method at two loops [55, 56] to integrals with nonplanar topologies
were taken by the author in paper I. Although the intermediate calculations are slightly
more involved compared to the planar case, we find that all salient features carry over
directly to the nonplanar sector. In particular, the master integral projectors were found
to be unique, and very compact results were derived. Paper IV extended the analysis to
all nonplanar double-box integrals with up to four massive external legs and confirmed
an unexpected simplicity [57, 58] that now is believed to be much more general. In
summary, papers I and IV has shown that instead of being disconnected calculations, the
inequivalent kinematic configurations of the nonplanar double-box integrals are related
through an underlying structure that apparently is controlled by the global structure
derived from the maximal unitarity cut.

Multivariate Residues and Maximal Unitarity. Paper II presented the first
steps towards developing an extended framework that works for multiloop amplitude
contributions, whose maximal cuts define multidimensional algebraic varieties. The
technique is seemlingly valid to higher orders in perturbation theory, but was here
explicitly demonstrated at three loops in gauge theories with an arbitrary number of
adjoint fermions and scalars. We formulated the problem in terms of degenerate and
nondegenerate multivariate residues and showed how to solve the problem via compu-
tational algebraic geometry. The principal results are unique projectors for all master
integral coefficients for the triple-box topology with four massless external legs. The
ideas and techniques described in paper II were applied also to two-loop integrals in
paper III. In particular, an extended notion of generalized unitarity cuts that accommo-
date multiloop integrals with higher powers of propagators was given. Previously, such
integrals appeared to be incompatible with generalized unitarity.

Elliptic Functions and Maximal Unitarity. Paper V presented the to this
date most nontrivial addition to the body of evidence of the uniqueness conjecture of
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projectors for two-loop master integrals. Zhang and the present author gave a practical
exhibition on how to use Weierstrass’ elliptic functions to parametrize maximal cuts that
are associated with irreducible elliptic curves. As a phenomenologically relevant example
a unique and compact prescription for the two-loop planar double-box contribution with
internal massive lines was derived. Paper V also explained how to extract the leading-
topology part of otherwise infeasible IBP relations analytically from exact meromorphic
differential forms. The calculations presented in paper V revealed an intimate connection
between algebraic geometry and multivariate complex analysis and the structure of
maximal cuts; this interplay may lead to important implications for practical calculations
in the future.

6.1 Future Directions

The intriguing developments and results achieved in this thesis spawn a host of new
exciting directions in the area of generalized unitarity to explore over the next couple
of years.

The most important extension that remains is to formalize maximal cuts of pla-
nar and nonplanar two-loop integrals in D dimensions. We expect that multivariate
residues can be generalized to arbitrary dimensions by analytic continuation. Alterna-
tively it could be useful to work with a basis with coefficients that are independent of
the dimensional regulator [66]. More specifically, a consistent and efficient framework
that works in D dimensions will allow us to compute complete results for scattering
amplitudes at two loops, to gradually meet the acute demand for precise theoretical
predictions from the LHC at CERN.

Calculating full amplitudes requires that we are able to capture the contributions
from all integrals in a two-loop basis. In addition to planar and nonplanar double boxes,
this basis will contain integrals with fewer than seven propagators at four points, such
as bowtie, butterfly and slashed-box integrals. In general, the basis will also contain
integrals with eight propagators. At two loops, integrals with more than eight propa-
gators, or more than four propagators involving only one of the loop momenta, can be
expressed in terms of simpler integrals [53]. A complete survey of octa-cuts and higher-
point integrals and hexa-cuts, penta-cuts etc. of lower-point integrals will hopefully
lead to compact expressions for all integral coefficients, expressed solely as a function
of tree-level input. The appearance of numerous basis integrals poses an immediate
complication. However, we hope that the freedom in completing the cut integral can
be exploited to in a sense derive contours that are orthogonal to each other and thus
only pick up a single basis integral. The theory of degenerate multivariate residues is
likely to find application in solving these problems. It may be advantageous to calculate
the multivariate residues by means of the Bezoutian matrix method. Indeed, for typical
planar and nonplanar examples at two loops with and without doubled propagators, the
Bezoutian matrix method is considerably faster than the transformation law [62].

Another very important next step is to work out the projectors for the basis integrals
contributing to scattering of five massless particles. Some of the integrals are pentaboxes,
turtle boxes, one-mass double boxes and related nonplanar diagrams. Results for 2→ 3
gluon scattering are highly important for phenomenological reasons. We also believe that
a generalization beyond four external particles will offer new insight in the uniqueness
of projectors [65]. It is our impression that multivariate residues and the appearance of
nonhomologous integration contours will be decisive [64].

The global structure of maximal cuts appears to hide surprisingly rich information
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about the arrangement of and relations between global poles and the associated mul-
tivariate residues. It is of course desirable to gain an understanding of the nature of
the constraints imposed on the projectors by IBP relations in vast detail. On the other
hand, the parity-odd constraints are very intuitive. Is it possible to fully determine
the constraints from the underlying algebraic geometry and algebraic topology without
reference to integral reduction identities? The unexpected systematics of the IBP con-
straints observed in the planar [55, 57, 58] and nonplanar sectors [59, 62] leave us with
a well-founded hope. In fact, recent progress shows that discrete symmetries derived
from the global structure to some extent determine the IBP constraints for the planar
double-box diagram. However, these symmetries seem to be less constraining for more
complicated problems. It will be fascinating to see if future investigations will allow us to
trivialize the projectors by an appropriate representation of the planar and nonplanar
two-loop integrals, for example with chiral numerator insertions that by construction
vanish on most of the global poles and thus produce only a few nonzero residues [56].

It would be very interesting to understand the structure of maximal cuts which define
not only nondegenerate elliptic curves, but also genuine hyperelliptic curves, for example
from the nonplanar double-box diagram. More generally, we are enthusiastic about
applying principles of algebraic geometry to examine the global structure of topologically
nontrivial surfaces generated by more complicated generalized unitarity cuts of two- and
three-loop integrals. The techniques reported in refs. [79, 80] may become increasingly
valuable over the next years. Given that the Weierstrass parametrization is so powerful
for the genus-1 problem, we are curious to understand how these ideas can be applied
more generally. Abelian functions which are generalizations of elliptic functions (also
called hyperelliptic functions) will ostensibly play a role of significance.

As previously alluded, the planar double-box contributions to (1) massless 10-particle
scattering and (2) four-gluon scattering with internal massive particles are mathemati-
cally equivalent. Our method based on Weierstrass’ elliptic functions and meromorphic
differential forms demonstrated explicitly for (2) presumably carries over directly to (1),
with minor adjustments along the way. We expect that the relation between meromor-
phic exact forms and IBP relations would find application for other two-loop diagrams
than the planar double box. It may lead to a highly efficient analytic IBP algorithm
and this could have a major impact on our ability for derive master integral projectors
without relying on input from memory consuming computer codes such as FIRE [103]
and Reduze [104, 105]. A closely related problem that naturally comes to mind is to
investigate and precisely quantify the relation between maximal cuts and evaluation of
master integrals. For example, the maximal cut of the two-loop double-box integral
which contains no chiral vertices is associated with an elliptic curve. The presence of
an elliptic curve presumably reflects that this integral cannot be expressed in terms of
polylogarithms solely.

We feel that it may be possible to examine the UV properties of supergravity theories
by applying the ideas presented in this thesis. The conjectured color/kinematics duality
of gauge theory and double-copy structure of gravity theories [93–95] could maybe be
rephrased in terms of multivariate residues and thus allow us to shortcut certain loop-
level calculations.

The problems suggested above provide avenues for discovering further pathbreaking
relations between areas of modern mathematics and quantum field theory scattering
amplitudes at the multiloop level.
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