
U N I V E R S I T Y  O F  C O P E N H A G E N

 

Testing cosmological models

Will the real non-gaussianity please stand up

Jeppe Trøst Nielsen

Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen

July 3rd, 2017

Academic supervisor:

Subir Sarkar

This thesis has been submitted to the PhD School

of The Faculty of Science, University of Copenhagen



this page is intentionally left blank



iii

I am resolved; ’tis but a three years’ fast:

The mind shall banquet, though the body pine:

Fat paunches have lean pates, and dainty bits

Make rich the ribs, but bankrupt quite the wits.

Love’s labour’s lost



A B S T R A C T

The concordance model of cosmology is remarkable for its apparent simplicity, and

vast range of predictions. Yet its two most well known and infamous ingredients,

dark energy and inflation, have so far avoided all attempts at direct observation. Even

so, theorists invent ever more exotic models, and experiments must keep up at an

ever increasing pace, preserving both precision and accuracy in the analysis.

In this thesis I compute corrections to large scale structure observables, corrections

we expect solely due to general relativity. The calculations can be perceived in two

ways. The pessimist will say these effects are unwanted systematics in the search for

primordial physics, the optimist will see it as a chance to test general relativity to

ever increasing precision. Regardless, these effects must be computed as part of the

interpretation of coming observations.

I calculate the predicted bispectrum in galaxy number counts from general relativistic

effects. This includes in particular lensing, which will systematically shift the

observed bispectrum for observations of large scale structure. Furthermore, I develop

and explore a scheme for fast computation of the galaxy number count spectra, in

the flat-sky approximation.

The last part of the work is a numerical analysis of the resulting spectra. I analyse

both the potential observability of individual bispectra, and their correction due to

general relativistic effects. It is clear from the results that lensing must be carefully

included in any attempt at accurately extracting primordial bispectra.
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S A M M E N FAT N I N G

Den kosmologiske overensstemmelsesmodel er bemærkelsesværdig på grund af

sin tilsyneladende enkelhed og samtidige lange række af forudsigelser. Modellens

to mest berømte og berygtede ingredienser, mørk energi og inflation, har hidtil

undveget alle vores forsøg på direkte observation. Alligevel opfinder teoretikere

mere og mere eksotiske modeller, og eksperimenter skal således holde trit med

stadigt stigende tempo, og samtidigt bevare både præcision og nøjagtighed i deres

analyse.

I denne afhandling beregner jeg korrektioner til observable i storskala struktur,

korrektioner vi forventer udelukkende fra generel relativitetsteori. Beregningerne

kan således ses fra to vinkler. Pessimisten vil sige, at disse effekter er uønskede

systematiske fejl i vores jagt efter ’big bang’ fysik. Optimisten derimod ser det

som en chance for at teste generel relativitetsteori mere præcist end nogensinde.

Uanset hvad må disse korrektioner beregnes som led i fortolkningen af kommende

observationer.

Jeg beregner det forudsagte bispektrum i galakseantallet fra generel relativitetste-

ori. Dette omfatter især linseeffekter, som systematisk vil ændre det observerede

bispektrum for observationer af storskala struktur. Desuden udvikler og udforsker

jeg et system til hurtig beregning af galakseantalsspektrene, hvor jeg gør brug af at

tilnærme himlen som værende flad.

Den sidste del af arbejdet er en numerisk analyse af de resulterende spektre. Jeg

analyserer både den potentielle synlighed af individuelle bispektre og deres kor-

rektioner på grund af generel relativistetsteori. Det fremgår klart af resultaterne,

at linseeffekter omhyggeligt må inddrages i vores forsøg på nøjagtigt at bestemme

bispektre fra big bang.
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1
I N T R O D U C T I O N

The concordance model of cosmology is well equipped to explain numerous ob-

servations of large experiments. The standard model of cosmology has two main

components: dark energy, denoted by Λ, and cold dark matter (CDM). ΛCDM, the

combination of the two on a homogeneous and isotropic background, is able to

explain observations from the very early universe to the very late. The spectrum

of the cosmic microwave background, the earliest photons we can ever observe,

can be fitted by just six important parameters (Ade et al., 2016). With only few

additions, the same parameters seem to be able to explain the large scale structure

in the late universe – the clumps of galaxies, galaxy groups, and the large filaments

stretching across the universe. As such, the detailed structure on these largest scales

in the universe become an important probe for our understanding beyond the six

parameters. Perhaps the small neutrino masses will be observed as a minute effect in

the clustering of galaxies, or exotic theories of gravity may show themselves as small

effects beyond Einstein’s relativity. Common to the observation of physics beyond

the standard cosmology is its small effects – the gross features of the universe have

been observed, and ΛCDM is de facto the reigning theory, despite its theoretical

shortcomings (Sarkar, 2008). Given the small size of the higher order effects, we Recently Tutusaus et al. (2017)
questioned the direct evidence
for the model from low-redshift
probes, and found that there is
little to no preference for
ΛCDM over non-accelerated
universes.

must compute the predictions of the theories more and more precisely. Indeed to

distinguish two theories from each other – even very different theories – can come

down to the small contributions in higher order observables. To test which is the

better description of nature requires precision calculations.

A well-known higher-order observable is the three point correlation, or the bi-

spectrum of the perturbations in the universe. Observing truly primordial non- Correlators are the quantities
describing the expectation
value of fluctuations.
Three-point correlators describe
the expectation value of the
product of the value of a field
evaluated at three points. Since
the quantum fluctuations are
very small, the n-point
correlators of the primordial
field shrink as n grows –
therefore the three-point
correlator is a higher order

observable, ie. higher order in
the initial, small field.

gaussianities in the three point correlator has the potential to be a great guide to

the physics just moments after the big bang. Inflation in all its incarnations, to be

predictive, will dictate certain slightly non-gaussian statistics in the early quantum

fluctuations of the universe. The observation of such non-gaussianities, although not

a smoking gun, will guide the hand of theorists for the coming waves of theories

of primordial physics. As with all higher order observables, it does unfortunately

hide behind unwanted noise, both terrestrial, astrophysical and cosmic. The cosmic

microwave background is literally at the edge of the universe, and we must be sure

we are not seeing the effects of the dust on its way, be it in the Milky Way, our more

distant neighbours, or the enormous clouds of dust spanning the cosmos.

1



2 introduction

The large scale structure on the other hand, we know, has three-point correlations –

general relativity predicts them. It is therefore necessary to calculate these predictions

with the same precision one hopes to observe the primordial prediction. Non-linear

evolution of the cosmic structure formation along with gravitational lensing effects

are just some of the effects that must be understood to exquisite precision if we hope

to see deviations from the standard theory.

Three point correlations are far from the only interesting thing to look for. In recent

news, gravitational waves, both primordial and astrophysical, have featured on a lot

of frontpages – and for good reason. Observation of primordial gravitational waves –

or more practically, a particular pattern of polarization in the cosmic microwaves –

is a so far unverified prediction of inflation, and one that would put it on a much

more solid foundation (Krauss et al., 2010). Unfortunately general relativity predicts

contamination of this signal. As the light travels through the universe, it is lensed, and

this creates the same patterns as the primordial gravitational waves. Foregrounds

such as dust may also pollute the observed signal, and so far has prevented detection

of primordial gravitational waves – if they exist (Ade et al., 2015).

Astrophysical gravitational waves, on the other hand, are not just swirly patterns in

the observed photon polarization, but rather are the direct detection of space-time

perturbations. All information we have about the universe so far has been carried

by light. Whether it be the light from the early primordial plasma, light from

supernovae or simply starlight, it has always been electromagnetic radiation which

kept us informed. If the observations of gravitational waves live up to their hype,

they will be not just new observations, but a new way of observing altogether (Abbott

et al., 2016a). A large amount of work has gone into the detection and understanding

of these very tiny undulations of space-time. However it is still not clear that the

signals and the detector noise have been completely understood (Creswell et al.,

2017; Liu and Jackson, 2016; Naselsky et al., 2016).

In the meantime, we must explore all available options. If higher-order correlators

carry information, we must find it. To distinguish it from known physics, we must

weed out all traces of the old. In this thesis I focus on the bispectrum of galaxies and

the cosmic microwaves. While the latter has been thoroughly explored (Ade et al.,There are indeed papers dating
back to before the COBE years

talking about primordial
bispectra. Komatsu and
Spergel (2000) already

comment that even Planck

would not be able to see the
bispectrum from the most

vanilla, single-field slow-roll
inflation. Naturally, one may

hope for even more exotic
theories – ones that Planck

might just see – or for galaxy
surveys to come to the rescue.

2014b), the former is still in development (Bertacca et al., 2014a; Di Dio et al., 2014;

Yoo and Zaldarriaga, 2014). The main contributions presented in this work are the

development of the flat sky approximation to galaxy surveys, and the extension of

the calculation of dominant terms in the galaxy distribution, at small scales, to all

orders in perturbation theory. The long calculation of the flat sky quantities and

their comparison with the full sky calculation allows for a significant decrease in

computation time. The proof of the all-order calculation of dominating terms at small

scales is also included, as it was only conjectured in the earlier paper on the matter.

The explicit comparison of the three calculations in the recent literature has already

been published (Nielsen and Durrer, 2017), the rest has not.
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These two developments – flat sky and the use of dominant terms – combined

allow me to do realistic galaxy survey computations, including redshift binning, for

higher multipoles than has been done before. The flat sky calculations I do are not

restricted to the dominating terms however. One proviso is that one expects the

flat sky approximation to hold at relatively high multipoles, where in any case the

remaning terms are small. The calculational technique, however, is generic. These

calculations help both in the computation of the general relativistic effects and the

effects of a primordial bispectrum.

I try throughout to combine mathematics and physical insight. Especially the flat-sky

approximation will give us a great deal of intuition on the physics, which is easily

lost in the full-sky calculation. Certain terms will have a very natural interpretation,

which will be clear only when comparing the results of the two methods.

This work should be seen in continuation of my previous thesis, written two years ago

(Nielsen, 2015). It served as the extension of our work on supernova analyses (Nielsen

et al., 2016). In it, I introduced basic concepts of probability theory, the evolution

of the perfectly homogeneous and isotropic universe, and various discussions on

non-standard theories of the cosmos. All of these topics are also useful in the current

context, but will not be repeated. That means the level of discussion in the following

starts beyond these topics.

The following chapters are ordered chronologically, according to the universe. The

necessary mathematics comes first, in chapter 2. Chapter 3 introduces cosmological

perturbations, their generation, and evolution. Observing these perturbations is the

main part of the work, and chapter 4 is the tour de force through the calculations

of both signal and noise in these observations. Finally, chapter 5 presents some

computations showing what we can expect to find, and chapter 6 the concluding

remarks.
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2
I M M E D I AT E M AT H E M AT I C A L A S I D E

The purpose of the current chapter is two-fold. The first is to set in stone the

notations and conventions I will be using, and the second to keep a record of results

I will use, so expect to see references back to this chapter in the following. It is my

hope that a dive into the mathematics will help give you a clearer physical picture

of what is going on. Doing it this way the mathematics will be set, and excessive

derivations can be kept out of the way of physical results in the rest of the work.

The nature of this chapter does not entice new results, although I hope a number of

approximations I find are new to some.

The following sections will go through random fields, in particular random gaussian

fields and small excursions from these; we will put the random fields on the sky and

study the spherical harmonics and related identities; and lastly we take a look at

how to simplify the computations by employing the flat sky approximation, and to

which degree we can trust the results.

For an introduction to basic probability theory, see eg. the first chapter of Nielsen

(2015).

2.1 random fields

The great tragedy of cosmology is our inability to make exact predictions about

the state of the universe. The physical laws we follow only predict the behavior of

space and matter. The only way we know how to set the boundary conditions are by

way of statistical methods, ie. randomness. However, given knowledge about the

probability distributions of the initial conditions, and the deterministic evolution,

we may still predict eg. moments of distributions of matter and radiation in the

early and late universe. To treat this, we need to look at the concept of a random

field.

Random fields are the natural evolution of random variables and stochastic processes.

The random variable does not have a sense of place or distance to other random

variables. It may be the observation of light from a distant source, or the blip in

a detector. The random field is putting a random variable at every point in eg. a

vector space. Now the variables have an intimate relation to each other, and we may

talk of the distance between them. For standard cosmology the interesting fields

are homogeneous and isotropic – fields for which the statistical properties depend

5



6 immediate mathematical aside

neither on the exact location nor the orientation of the observer. As always, this puts

enormous constraints on the allowed structures.

Just as the gaussian distribution is the go-to distribution for random variables, the

gaussian random field is a good starting point for us. Just as the gaussian random

variable is completely described by its mean and covariance, the gaussian random

field is completely described by its mean and two-point correlator. The two-point

correlator of the random field f (x) is defined just like the covariance

ξ(x, y) = 〈 f (x) f (y)〉 (2.1.1)

where 〈· · · 〉 is the ensemble average. In general, this is a function of both variables

and is the function describing completely the gaussian field. However, imposing

isotropy and homogeneity on f has great effect on the correlator. Homogeneity

means only the relative positions of x and y can be important, and isotropy means

the result cannot depend on an absolute angle. Homogeneity removes three degreesThis already sounds a lot like
the cosmological principle –

and it is! We will indeed
assume the matter

distribution of the Universe is
homogeneous and isotropic.

Without these assumptions, the
analysis becomes much harder.

of freedom, the three dimensions of translational invariance, and isotropy removes a

further two, the angles. We can write up all three scenarios

ξ(x, y) =


ξ(0, x− y) homogeneous

ξ(x, |x− y|) isotropic around x

ξ(0, |x− y|) both

(2.1.2)

So as long as we are dealing with the case of the (assumed) homogeneous and

isotropic universe, the two-point correlator is a function of only one variable, the

distance r = |x − y| between the points of interest ξ = ξ(r). All higher point

correlators of the gaussian field are, analogously to the case of a random variable,

completely specified by this function. In the case of a zero-mean random gaussianThis is known as Isserlis’
theorem, (Isserlis, 1916), or in
the context of particle physics

as Wick’s theorem, (Wick,
1950).

field, we have

ξ(x1, . . . , xn) =

 〈 f (x1) · · · f (xn)〉 = 0 for n odd

〈 f (x1) · · · f (xn)〉 = ∑ ∏
pairings

ξ(rij) for n even (2.1.3)

where the sum goes over all possible pairings of the n random variables, the product

goes over all the pairs, and rij = |xi − xj|. It is customary to define a connected

correlator or, in a sense, the non-gaussian part of the correlator. We may define themIn statistical mechanics, this is
know as the Ursell function,

(Ursell, 1927). It was initially
constructed to compute

thermodynamic observables in
imperfect gases.

recursively as follows,

ξc(x) = ξ(x) (2.1.4)

∑ ∏
partitions

ξc(xi, . . . , xj) = ξ(x1, . . . , xn) (2.1.5)

where the sum goes over all partitions (not just pairs) of the xi, and the product over

all the terms in the partition. This means in particular for us,

ξc(x, y) = ξ(x, y)− ξ(x)ξ(y) (2.1.6)

ξc(x, y, z) = ξ(x, y, z)− ξ(x, y)ξ(z)− ξ(x)ξ(y, z)− ξ(z, x)ξ(y) + 2ξ(x)ξ(y)ξ(z)

(2.1.7)
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Note that the connected correlator takes care of removing the mean of the field for

us. The combinations of Isserlis’ theorem and connected correlators will prove very

useful in the computation of cosmological bispectra. In particular we will encounter

random fields, which are not exactly gaussian, but whose non-gaussian part can

be written as the product of gaussian fields. Say we have the random field f given

by

f (2)(x) = a f0(x) + a2 f1(x) f2(x) (2.1.8)

where all fi are zero-mean gaussian fields with correlation function 〈 fi(x) f j(y)〉 =
ξij(x, y) and a is a small parameter. Let us see what the connected three-point

function looks like to lowest order in a. Employing directly equation (2.1.7) we

get

ξ
(2)
c (x, y, z) = a4[ξ10(x, y)ξ20(x, z) + ξ10(y, z)ξ20(y, x) + ξ10(z, x)ξ20(z, y) (2.1.9)

+ξ20(x, y)ξ10(x, z) + ξ20(y, z)ξ10(y, x) + ξ20(z, x)ξ10(z, y)] +O(a6)

It should now be clearer why it is called the connected correlator: each term above

connects the three points, and there is no term like ξ(x, x)ξ(y, z), where one coor-

dinate is left alone. This calculation is illustrated in figure 1, where the diagrams

appear in the same order as the terms in the equation.

In light of the above, we also see that the connected three-point function of a

homogeneous, isotropic field is only a function of the lengths of the three distances

between the points, ξc = ξc(|x− y|, |z− y|, |x− z|).

y
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Figure 1: Illustration of the differents terms of the connected three-point correlator. A

line between two points designates a two-point correlator. In any figure here, any

point can be reached by any other by walking along connecting lines. Permuting the

lines here corresponds to permuting the indices 1 and 2 in the correlators.
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2.1.1 Fourier transforming random fields

All the previous discussion was in real-space. The correlator tells us something about

correlations between different points in space. Given the correlator of a gaussian

field we showed that all other properties of the field were fixed. What happens

when we Fourier transform the random field, and what can we say about its Fourier

coefficients?

Given a homogeneous, isotropic random field f , we construct the Fourier trans-

formThis fixes my Fourier
convention: I include the

(2π)−n and the minus in the
exponential when doing the
integral over k-space. That

means there are no factors here.

f̂ (k) =
∫

dnx f (x) exp(ix · k) (2.1.10)

where n is the dimension of the space. We now ask what are the properties of the

correlators of f̂ . They turn out, not surprisingly, to be very simple,

〈 f̂ (k) f̂ (k′)〉 =
∫

dnxdnx′〈 f (x) f (x′)〉 exp(ix′ · k′ + ix · k) (2.1.11)

=
∫

dn(x′ − x)ξ(|x− x′|) exp(i(x′ − x) · k′)
∫

dnx′ exp(ix · (k + k′))

= (2π)nδ(n)(k + k′)
∫

dnXξ(x) exp(−iXk cos θ) ≡ (2π)nδ(n)(k + k′)P(k)

where P(k) is called the power spectrum. This last integral can be solved in general in

terms of hypergeometric functions. Writing the volume element in spherical coordi-

nates as dnX = rn−1drdΩn−1, where Ωn−1 is the solid angle in n dimensions, we can

recursively generate the next dimension by adding another angle, call it θn−1, going

from 0 to π. We must then extend the measure as dn+1X = dnXr sinn−1 θn−1dθn−1.

In these coordinates, we fix the angle between the two vectors to be θn−1 and inte-

grate all the others out. That leaves us the volume of the unit ball in n− 1 dimensions.

The rest of the integral is ugly, but can be written down in terms of a hypergeometric

function:∫
dnXξ(X) exp(−iXk cos θ) = Ωn−2

√
π

Γ( 1+n
2 )

Γ(1 + n
2 )

∫
drrn−1ξ(r)0F1(1 +

n
2

; kr)

(2.1.12)

It is now explicit that P(k) is only a function of the size of k, not its direction. In

three dimensions the result takes the form

P(k) = 4π
∫

drr2 sin(kr)
kr

ξ(r) (2.1.13)

An analogous argument shows that the bispectrum, the Fourier transform of the

three-point function, is only a function of the lengths of the three ks, just like the

three point correlator is a function of the lengths between the coordinates,

〈 f̂ (k1) f̂ (k2) f̂ (k3)〉 ≡ (2π)nδ(n)(k1 + k2 + k3)B(k1, k2, k3) (2.1.14)
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This is again due to the fact that only the sides of the triangle of ks matter, not the

orientation or location of the triangle.

The different bispectra of the universe is what will concern us for the most part of

this work, and as such I will not go to higher cumulants here. The next thing that

will concern us is how this all translates to observations made in the sky.

2.2 random fields on the sky

Just as we defined random fields in Rn before, we now would like to know how

the results translate into things we observe. As cosmological observations typically

take place on the sky, we need to know how our functions behave on the sky. A In the case of satellite and
balloon experiments, even the
observer is in the sky!

particularly well-suited set of functions are the spherical harmonics, Y`m. These are

the simultaneous eigenfunctions of the Laplacian and the ∂φ differential operator on

the 2-sphere,

∇2Y`m = −`(`+ 1)Y`m ∂φY`m = imY`m (2.2.1)

I will use the convention that the functions integrate to 1 over the sphere. The

spherical harmonics will be our sines and cosines, or rather complex exponentials, of

the 2-sphere. Just as we expanded the functions in R3 in Fourier modes, we would

like to expand functions on S2 in spherical harmonics.

Since the Y`m were constructed to be orthogonal on the sphere, we have immediately

that the expansion parameters for a function f , which we call a`m, are

f (n) = ∑
`m

a`mY`m where a`m =
∫

d2n f (n)Y∗`m(n) (2.2.2)

These are completely analogous to fourier components, and so the results from the

previous section will carry over rather straight forwardly. A homogeneous random

field on the sky will have a correlation function which only depends on the angle

between the two directions, ξ = ξ(n · n′). In the case of spherical harmonics, we

again get a power spectrum, this time dependent only on `, not m. I take for physical

reasons the field to be real, and we get

〈a`ma∗`′m′〉 =
∫

d2nd2n′ξ(n · n′)Y∗`m(n)Y`′m′(n
′) (2.2.3)

To do the integrals we expand the correlator in Legendre polynomials. These are

real, orthogonal polynomials on [−1; 1] which we label by ` = 0 . . . ∞,∫ 1

−1
P`(x)P`′(x)dx =

2δ``′

2`+ 1
(2.2.4)

We then expand the correlation function in these functions, with a conventional

prefactor,

ξ(n · n′) = ∑
`

2`+ 1
4π

C`P`(n · n′) where C` = 2π
∫ 1

−1
dxξ(x)P`(x) (2.2.5)
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A beautiful property of the Legendre polynomials is an expansion of the polynomial

in terms of products of spherical harmonics

P`(n · n′) = ∑
m

4π

2`+ 1
Y`m(n)Y∗`m(n

′) (2.2.6)

Now putting the identity in equation (2.2.6) into equation (2.2.5), putting the whole

thing into our expression in equation (2.2.3) and using the orthogonality of the

spherical harmonics we get the nice result

〈a`ma∗`′m′〉 = δmm′δ``′C` (2.2.7)

So the expectation value of the product of expansion coefficients is only a function of

`, and its power spectrum C` is simply the expansion parameters of the correlation

function. If we compare with equation (2.1.11) this should not be surprising. This

can also be interpreted as an effect of rotational invariance. Since rotations mix as

of different m but not of different `, it is clear that the power spectrum cannot have

explicit dependence on the m – that would break the rotational invariance.

We find similar result for the bispectrum. Using that the correlator is only a function

of the three angles between the three directions, write

〈a`1m1 a`2m2 a`3m3〉 =
∫

d2n1d2n2d2n3ξ(n1 · n2, n1 · n3, n2 · n3)

Y∗`1m1
(n1)Y∗`2m2

(n2)Y∗`3m3
(n3) (2.2.8)

As before, we expand the correlation function in Legendre polynomials, this time

with a sum over three different indices, one for each argument of the function.The constraints on the
arguments here present a

problem for the general case.
We assume for a moment the

correlation function can be
split in three independent
pieces, and the correlation

function can be regarded
simply as a function of three

arguments x, y, z. This is not

general, but will nonetheless
prove useful later.

ξ(n1 · n2, n1 · n3, n2 · n3) = (2.2.9)

∑
``′`′′mm′m′′

C``′`′′Y`m(n1)Y∗`m(n2)Y`′m′(n1)Y∗`′m′(n3)Y`′′m′′(n2)Y∗`′′m′′(n3)

C``′`′′ =
∫

dxdydzξ(x, y, z)P`(x)P`′(y)P`′′(z) (2.2.10)

Now we need to know the integral over three spherical harmonics. The explicit form

is not very enlightening, and I will simply call it the Gaunt integral, G, with three

lower ` indices and three upper m indices. It can be written in terms of Wigner 3j

symbols, which are closely related to Clebsch-Gordan coefficients. The 3j symbols are

written as a matrix of three upper numbers and three lower numbers, but evaluate

to just a single number. The integral over three spherical harmonics is then, by

definition∫
d2nY`1m1(n)Y`2m2(n)Y`3m3(n) ≡ G

m1m2m3
`1`2`3

(2.2.11)

Gm1m2m3
`1`2`3

=

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3

0 0 0

)(
`1 `2 `3

m1 m2 m3

)
(2.2.12)

This is also the expansion coefficient of the product of spherical harmonics in terms

of a single spherical harmonic,

Y`1m1(n)Y`2m2(n) = ∑
`3

Gm1m2m3
`1`2`3

Y∗`3m3
(n) where m3 = −m1 −m2 , (2.2.13)
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from which the result of the triple integral is apparent. In terms of the Gaunt

integrals, the correlator is

〈a`1m1 a`2m2 a`3m3〉 = ∑
``′`′ ,m,m′ ,m′′

C``′`′′G
m1,−m,m′′
`1``′′

Gm2,−m′ ,m
`2`′`

Gm3,−m′′ ,m′
`3`′′`′

(2.2.14)

Using Equation (12.1.3.6) of Varshalovich et al. (1988) we can do the sum over the

three ms. That gives us a 6j symbol along with just the geometric factor we are

looking for,

〈a`1m1 a`2m2 a`3m3〉 = G
m1m2m3
`1`2`3

b`1`2`3 where (2.2.15)

b`1`2`3 = ∑
``′`′′

(2`+ 1)(2`′ + 1)(2`′′ + 1)
4π

C``′`′′

(
`1 `2 `3

0 0 0

)−1

×
(
`1 ` `′

0 0 0

)(
`2 `′ `′′

0 0 0

)(
`3 `′′ `

0 0 0

){
`1 `2 `3

` `′ `′′

}
(2.2.16)

where Bm1m2m3
`1`2`3

= Gm1m2m3
`1`2`3

b`1`2`3 is the bispectrum and b`1`2`3 is called the reduced

bispectrum. Again, the precise form of it is not as interesting as the fact that the

physics of the bispectrum only depends on the `s, not the ms. There are however

certain selection rules, like the δmm′ for the power spectrum. The Gaunt integral is

non-zero only if ∑ ` is even, ∑ m = 0 and the `s fulfill the triangle condition: no `

may be bigger than the sum of the others.

It is now interesting to know how a 3 dimensional field with a particular power

spectrum, or bispectrum, projects onto the 2 dimensional sky, and how these relate

to the angular power spectrum and bispectrum. Take a random field in three

dimensions, f (x) and look at only the points on the 2-sphere at a distance r from the

origin. Equating the fourier expansion of the field on the sphere with the expansion

in spherical harmonics we see that the coefficients are given by

a`m =
1

2π2i`

∫
d3kj`(kr)Y`m(k̂) f̂ (k) (2.2.17)

where j` is a spherical Bessel function. I used here the expansion of the exponential

function,

exp(−ik · nr) = 4π ∑
`m

i−` j`(kr)Y`m(n)Y∗`m(k̂) (2.2.18)

From this expression for the a`m we derive

C` =
2
π

∫
dkk2P(k)j`(kr)2 (2.2.19)

So evidently there is a direct translation between the full three dimensional field

and the projection, as expected. We will need many more expressions like this for

derivatives of fields and integrated fields, later.

The same calculation for the bispectrum can be found in Fergusson and Shellard

(2008) in great detail. One takes the delta function of ks coming from the expectation
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value and writes it in integral form, δ(x) = 2π
∫

dk exp(ikx), and performs the

expansion in equation (2.2.18) to get the very cumbersome – analytically as well as

numerically – expression

b`1`2`3 =
8

π3

∫
dk1dk2dk3(k1k2k3)

2B(k1, k2, k3)
∫

dxx2 j`1(xk1)j`2(xk2)j`3(xk3)

(2.2.20)

The last integral over x can be found in Jackson and Maximon (1972). Numerically it

is quite impossible to solve.

One soon realises that full sky calculations are entirely intractable. Analytically it

is beautiful, but tedious, numerically it is almost impossible, and even on the data

side of things, there is simply not enough computer power to make use of it all.

It is therefore interesting for us to see if there is a way to speed up things. Before

doing that, we need to do a further, short detour to look at spin-weighted spherical

harmonics.

2.2.1 Spin-weighted spherical harmonics

The spin-weighted spherical harmonics are a generalization of the ordinary spherical

harmonics, as derived by eg. Newman and Penrose (1966). For our purposes, we do

not need the deep mathematical details about how these functions are really U(1)

gauge fields and how they transform. More explanations on their definition and

further properties can be found in eg. Boyle (2016); Durrer (2008).

We simply need some grasp of their construction, and we are going to use that

when looking at derivatives of fields on the sphere. Let us then simply write down

a way to construct spin-weighted spherical harmonics. As a start, the ordinary

spherical harmonics are simply the spin-weighted, with weight zero. We denote the

spin-weight with a small subscript s before the function. Therefore we have

0Y`m(n) = Y`m(n) (2.2.21)

The spin-weight, like the ordinary projection of the angular momentum m, takes

values between −` and `. We may now act on such a function with a differential

operator to lower or raise the spin. Take a function η with spin weight s. We now

construct the following functions,

ðη = −(sin θ)s
(

∂

∂θ
+

i
sin θ

∂

∂φ

)
(sin θ−sη) (2.2.22)

ðη = −(sin θ)−s
(

∂

∂θ
− i

sin θ

∂

∂φ

)
(sin θsη) (2.2.23)
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which have spin-weights s + 1 and s− 1 respectively. Combined with the fact that

we know the spherical harmonic with spin weight zero, we can this way generate

the rest of them. We define the following

ð(sY`m) =
√
(`− s)(`+ s + 1)s+1Y`m (2.2.24)

ð(sY`m) = −
√
(`+ s)(`− s + 1)s−1Y`m (2.2.25)

Like the ordinary spherical harmonics, the spin-weighted spherical harmonics form

an orthonormal basis on the sphere. Any function with spin-weight s may be written

as a sum of sY`m. Furthermore the product of two functions of spin-weights s, s′ is

s + s′. It is therefore interesting to find an expression like the Gaunt integral for the

functions with spin-weights. Indeed, we may write the product af two spin-weighted

spherical harmonics as the following sum – compare equation (2.2.13)

s1Y`1m1(n)s2Y`2m2(n) = ∑
`3

s1s2s3G
m1m2m3
`1`2`3 s3Y∗`3m3

(n) where
m3 = −m1 −m2

s3 = −s1 − s2

(2.2.26)

where I have defined the spin-weighted Gaunt integral

s1s2s3G
m1m2m3
`1`2`3

=

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3

−s1 −s2 −s3

)(
`1 `2 `3

m1 m2 m3

)
(2.2.27)

We are going to use these functions when looking at derivatives of random fields on

the sky. Writing the normal partial derivatives as the vectors (e1, e2) = (∂θ , sin θ−1∂φ),

we introduce the helicity basis e± = 1√
2
(e1 ± ie2). The derivatives with respect to

these may be identified proportinal to the derivatives defined in equations (2.2.22)

and (2.2.23). In terms of these, the product of covariant derivatives is

∇a f∇ag = ∇+ f∇−g +∇− f∇+g =
1
2
(ð fðg + ð fðg) (2.2.28)

This raises and lowers the spin weights of f , g, and allows us to use equation (2.2.26)

to perform integrals. We may for example be interested in the spherical harmonic

coefficients of the function ∇ f∇g. This can be found as follows

a∇ f∇g
`m =

∫
d2nY∗`m ∑

`2m2`3m3

(a f
`2m2

)∗(ag
`3m3

)∗∇aY∗`2m2
∇aY∗`3m3

(2.2.29)

= −1
2

∫
d2nY∗`m ∑

`2m2`3m3

(a f
`2m2

)∗(ag
`3m3

)∗
√
`2(`2 + 1)`3(`3 + 1)

× (1Y∗`2m2−1Y∗`3m3
+ −1Y∗`2m2 1Y∗`3m3

)

= −1
2 ∑

`2m2`3m3

(a f
`2m2

)∗(ag
`3m3

)∗
√
`2(`2 + 1)`3(`3 + 1)(01−1Gmm2m3

``2`3
+ 0−11Gmm2m3

``2`3
)

We thus succeed in writing the a`m solely in terms of the coefficients of the original

functions f , g and geometrical factors. Manipulations like these will be useful when
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we need to calculate the bispectrum of galaxy number counts. These perturbations

also have derivatives of different fields, and need to be treated similar to what we

just did. Naturally the calculation is slightly different since we will be calculating

bispectra, and not power spectra, but the idea is the same. Derivatives on the sphere

are translated into spin spherical harmonics, which are integrated by the use of

equation (2.2.26).

2.3 the flat sky approximation

A popular approximation is to only treat a small part of the sky, or rather to treat

the full sky as a patchwork of many small, flat pieces. We may restrict ourselves to a

part that is so small, it seems to not curve. Remember, the trouble with the full sky is

that it curves in on itself. Taking only a part of the sky, we have no such restriction,

and can again do a simple Fourier analysis. We only need to build up a dictionary

between the flat sky and the full sky, and we need to keep in mind how well one

approximates the other. The results here rely heavily on Bernardeau et al. (2011) and

their references.

For my purposes, the first order approximation suffices. However, to have a handle

on the accuracy, it is good to have a bound on the following order. Some interesting

insight appears if we take the naive construction of the flat sky to its limit. We will

see this later, when we start constructing the observable galaxy distribution.

First let us construct the simple flat sky. It is simply the two dimensional fourier

transform,

f (n) = (2π)−2
∫

d2`a(`) exp(−i` · n) where a(`) =
∫

d2n f (n) exp(i` · n)

(2.3.1)

where I choose to call the Fourier modes a(`) instead of f̂ (k) – the reason being its

close connection to the a`m from the full sky. What we need is a relation between

the power spectrum of a(`) and the a`m, in the limit θ � 1 - for very small patches.

With this definition, we apply equation (2.1.12) and find the power spectrum, which

we call C(`), not P(k), is

C(`) = 2π
∫

J0(`θ)θξ(θ)dθ (2.3.2)

Keeping only lowest orders in θ we can write sin θ ≈ θ and as shown by Bernardeau

et al. (2011)

P`(cos θ) = J0(Lθ) +O(θ2) where L =
√
`(`+ 1) (2.3.3)

With these two identifications, we see that the computations of equations (2.2.5)

and (2.3.2) match. That means our construction with exponentials works, and because

of the slightly off definition of L, we even get rid of the first order correction to P`.
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This simple observation makes for incredible simplification in the computations of

power spectra and bispectra.

The most important quantities to take with us are of course C(`) and b(`1, `2, `3)

which are given by

〈a(`)a∗(`′)〉 = (2π)2δ(`− `′)C(`) (2.3.4)

〈a(`1)a(`2)a(`3)〉 = (2π)2δ(`1 + `2 + `3)b(`1, `2, `3), (2.3.5)

and which, as we just saw are completely analogous to the corresponding quantities

on the full sky. I will, when computing this, strictly use the flat sky approximation.

However, I find it instructive to derive the results in both ways and compare the

different expressions. That will turn out to not only verify our flat sky calculations,

but also teach us the physics content of the full sky calculation. Many physical

effects lie hidden behind complex expressions. Usually, the flat sky approximation

guides the way to a better understanding of these expressions.

2.3.1 Results about 3j symbols

Because of the many bispectrum calculations, we will encounter 3j symbols en masse.

In an effort to thwart computing time, various approximations for these have been

necessary. For completeness, I list here the more important ones.

Case: All mi = 0

In this case, a simple analytic expression can be written down, and is listed in eg.

Nielsen and Durrer (2017),(
` `′ L

0 0 0

)
= (2.3.6)√

[(`− `′ + L− 1]!![(`′ − `+ L− 1]!![(`+ `′ − L− 1]!![(`+ `′ + L)/2]!
[(`− `′ + L)/2]![(`′ − `+ L)/2]![(`+ `′ − L)/2]![(`+ `′ + L− 1]!!(`+ `′ + L + 1)

With the usual selection rules. The expression is, however neither enlightening

nor simple to put on a computer – factorials usually are not. By using Stirling’s

approximation, it is however possible to reduce all the factorials to exponentials and

polynomials. The exponentials all cancel out, and we are left with the delightfully

simple expression for the squared 3j symbol,(
` `′ L

0 0 0

)2

=
2

π
√
(`+ `′ + L + 1)(`+ `′ − L)(`− `′ + L)(−`+ `′ + L)

(2.3.7)

which has corrections of order 1/ min(`, `′, L). This number can be interpreted as

the inverse area of the triangle with sides `, `′, L times 2π. This interpretation will
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naturally be handy as a way of comparing the expressions of full sky calculations

with those of a flat sky.

Case: m1 = 0, m2 = −m3

This scenario appears when in the computation of galaxy bispectra we run into

terms differentiated with respect to the angle, as we will encounter the spin-spherical

harmonics above. In Di Dio et al. (2016) the ratio of the first to the zeroth is called A,

the second to the zeroth C. Here, I will simply refer to them as

A(m)
`1`2`3

=

(
`1 `2 `3

0 m −m

)
+

(
`1 `2 `3

0 −m m

)

2

(
`1 `2 `3

0 0 0

) =

(
`1 `2 `3

0 m −m

)
(
`1 `2 `3

0 0 0

) or 0 (2.3.8)

I have here used that for the relevant `, changing the signs of the m leaves A(m)Note that when the three `i

sum to an odd number, the 3j
symbol changes sign when

flipping the m. That means we
end up with the same selection
rules as we started with for the

3j symbol with all mi = 0.
When the `i sum to an even

number, the A is given by this
expression, and when the `

sum to an odd number, it is
zero.

invariant. It is clear that A(0) = 1. To compute it for higher m we need the recursive

results of Luscombe and Luban (1998). For illustration, I first do the case m = 1

explicitly. We use the formua for g(m) in their table 1 and insert it in their equation

(1). After replacement, it reads

C(1)A(1) + D(0)A(0) + C(0)A(1) = 0 where (2.3.9)

C(0) = C(1) =
√
(`2 + 1)`2(`3 + 1)`3 and (2.3.10)

D(0) = −`1(`1 + 1) + `2(`2 + 1) + `3(`3 + 1) (2.3.11)

where I have quietly dropped the ` subscripts. It is now clear that we can write,

analytically,

A(1) = − D(0)
2C(0)

=
`1(`1 + 1)− `2(`2 + 1)− `3(`3 + 1)

2
√
(`2 + 1)`2(`3 + 1)`3

(2.3.12)

Dropping subleading powers of `i, this isWe may even want to keep the
subleading powers, just as we
in the flat sky approximation

use
√
`(`+ 1) as the length of

the L, as this actually makes
the approximation better. It is

curious that the same thing
happens here.

A(1)
`1`2`3

≈ −
`2

2 + `2
3 − `2

1
2`2`3

= − ˆ̀2 · ˆ̀3 (2.3.13)

where the vectors `i form a triangle, which is exactly the case for our bispectrum

calculations. With this result, we can go ahead and write down the answer for any

m� `i.

Note first that in this limit the functions C(m), D(m) reduce to constants, and in

particular we can write

A(m+2) + 2xA(m+1) + A(m) = 0, (2.3.14)

where x ≡ D/C. This difference equation, with boundary conditions A(0) = 1 and

A(1) = −x/2, is solved by

A(m) = −1
2

[(
−
√

x2 − 1− x
)m

+
(√

x2 − 1− x
)m]

(2.3.15)
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Writing x = cos θ, we immediately recognise − sin2 θ in the square roots, and may

expand

A(m) = −1
2
[(−i sin θ − cos θ)m + (i sin θ − cos θ)m] = (−1m)

1
2

[
eimθ + e−imθ

]
= (−1)m cos mθ = (−1)mTm(x) (2.3.16)

The cognizant reader may already from the difference equation have recognised

the solutions are the Chebyshev polynomials Tm. So in the asymptotic limit, the

expression can be written as

A(m)
`1`2`3

≡

(
`1 `2 `3

0 m −m

)
(
`1 `2 `3

0 0 0

) ≈ (−1)mTm( ˆ̀2 · ˆ̀3) (2.3.17)

where the product ˆ̀2 · ˆ̀3 is defined in equation (2.3.13). This approximation is shown

in figure 2 for various combinations of `i. We see clearly that small `1 compared to

`2,3 and m make for a better approximation.

We will need the exact expression for A(2). Keeping the m dependence in the

formulas, we have, in the notation of Luscombe and Luban (1998)

A(2)C(2) + A(1)D(1) + C(1) = 0⇒ (2.3.18)

A(2)
`1`2`3

=
D(0)D(1)− 2C(1)2

2C(1)C(2)
(2.3.19)

=
(`2(`2 + 1) + `3(`3 + 1)− `1(`1 + 1))(`2(`2 + 1) + `3(`3 + 1)− `1(`1 + 1)− 2)− 2(`2 + 1)`2(`3 + 1)`3

2
√
(`2 − 1)`2(`2 + 1)(`2 + 2)(`3 − 1)`3(`3 + 1)(`3 + 2)

All the notation and vocabulary presented here is going to be put to extensive use in

chapter 4, where I will calculate the observed cosmological bispectra. Before that

happens, we need to know how the primordial perturbations are created and what

happens to them as the universe grows old.
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Figure 2: Plots of the approximation of equation (2.3.17) subtracted from the exact

value for different angles `2 · `3, as indicated on the axes. We see that the smaller the

angle is – ie. the smaller `1 is – the better the approximation. The x-axis goes from

m = 0 to the maximal m allowed.



3
C O S M O L O G I C A L P E RT U R B AT I O N S

This chapter is intended to be a boiled-down introduction to the structures of the

universe and where they come from. The seeds of cosmic structures are usually

assumed to be quantum fluctuations which have undergone inflation, which I briefly

describe. Following that, we will have a look at how the initial seeds evolve in the

expanding universe, and how they become the cosmic microwave background (CMB)

with its intricate anisotropies we see in the early universe, and the cosmic large scale

structures (LSS) we see in the old universe.

I cannot hope to make this a fully fledged introduction to cosmological perturbation

theory. Instead, I will focus on the things that are important for the following chap-

ters. Further details can be found in the literature or text books, eg. Dodelson (2003);

Durrer (2008); Mukhanov (2005) from which these sections draw inspiration.

An introduction to the macroscopic evolution of the Friedmann-Lemaı̂tre-Robertson-

Walker (FLRW) universe can be found in Nielsen (2015).

It is standard belief that the macroscopic evolution of the universe can be decoupled

from the perturbative calculations. Any effect of the perturbations is called backreac-

tion, and whether or not this effect is important is not quite settled yet, see eg. Bolejko

and Korzyński (2016) and their references for a review and survey. For our purposes

I will simply assume perturbation theory works, and do the calculations.

The perturbed universe is comprised of two parts: space-time and fields. As always,

fields – matter and radiation – dictate how space-time curves, while the space-time

tells the fields how to move. Perturbation theory treats the universe at large as small

excursions away from the FLRW model, in terms of field contents and space-time.

The simplest case of such a perturbed universe is one with scalar perturbations. This

is desribed by the simple metric This particular choice of how
to write the scalar degree of
freedom is called Poisson or
Newtonian gauge. In this
gauge, there is a simple
translation of Ψ in the
Newtonian limit, since it is
simply the classical Newtonian
gravitational potential. I will
not dive deeper into the (many)
problems of gauge invariance.

gµν = ḡµν + hµν where hµν = a2diag(−2Ψ,−2Ψ) (3.0.1)

and the barred ḡµν fulfills the unperturbed Einstein Equations, a is the cosmological

scale factor and Ψ is the scalar perturbation, or loosely the gravitational potential. I

stress that this is not general, but will serve us well for the approximations we make.

The most general scalar perturbation has two degrees of freedom instead of one,

while the most general perturbation has ten degrees of freedom – all of them! For

our purposes, one degree of freedom suffices. The difference between using one and

19
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two is going to be suppressed in the limit we will work in, for standard cosmological

parameters.

For CMB calculations, we will need linear relativistic perturbation theory, while

for the calculations of the LSS, we will take a simpler approach to get higher order

corrections. To calculate the LSS perturbations in section 3.2.1, we will work in

the Newtonian limit, that is, Newtonian physics in an expanding universe. The

CMB calculation can be summarised as expanding the Einstein field equations (EFE)

and the Boltzmann equations around their homogeneous solutions, to calcluate

simultaneously the space-time and field perturbations. The calculation is long, and

is done in many text books on the subject, and I summarize the major points in

section 3.2.2.

3.1 generation of perturbations

The generation of cosmological perturbations is usually assumed to happen by

quantum fluctuations of a scalar field filling the universe. The details of the behaviorWhether or not the theory of
inflation actually works has for
some years been up for debate,

notably by Paul Steinhardt, see
eg. Steinhardt (2004, 2011). It
seems whether or not it does is

either a philosophical or
political issue. I do not mean

to take any stance on the
subject, except to say if

inflation works, I look at the
potential observable outcome.

of this field can be more or less complicated, but the basic point remains: The scalar

field is supposed to fill the universe with energy – making the inflationary scenario

happen – and is also going to decay into ordinary matter and radiation when

inflation ends. The perturbations of the scalar field during inflation are therefore

taken over by the resulting decay products – matter and radiation. That means

a particular spectrum of scalar field perturbations give a predictable spectrum of

ordinary fields. This spectrum is what we take as the initial condition for our later

calculations.

While the principle started off rather clean – a scalar degree of freedom filling

up the universe – the details get messy. I will not go deep into the machinery of

inflation, but choose to just outline the calculations. I loosely follow the derivations

of Baumann (2011); Chluba et al. (2015).

The simplest toy model that provides an inflationary scenario is a scalar field coupled

minimally to gravity. This is described by the action

S =
1
2

∫
d4x
√

g[R− (∇φ)2 − 2V(φ)] (3.1.1)

The first term gives the EFE, while the last two are the usual terms in the action for

the scalar field, except for the fact that they now multiply the jaccobian
√

g. This is

the minimal coupling. Skipping right over all the gauge invariance problems, we

define the comoving curvature perturbation R = Ψ− Hδq/(ρ̄ + p̄), a combination

of the scalar metric perturbation Ψ and the density, pressure and momentum density

ρ, p, q. This quantity has the nice property that it is approximately time-independent

on super-horizon scales, k� aH. It therefore makes sense to expand this quantity

in Fourier modes. These Fourier modes have a power spectrum. The spectrum is
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interesting, because these adiabatic perturbations will decay to ordinary matter, and

this matter will inherit the power spectrum.

As it turns out, the power spectrum arises from quantum fluctuations of the scalar

field. We can take the action in equation (3.1.1) and write it as an expansion in

R – a perturbative quantity. Doing this and finding the equations of motion gives

independent equations for each Fourier mode of v = zR where z = aφ̇/H,

v′′k + (k2 − z′′/z)vk = 0 (3.1.2)

This is the equation for a harmonic oscillator with time dependent frequency. Quan-

tizing this harmonic oscillator while setting reasonable boundary conditions – even

earlier than inflation – one can solve for the modes of v, which in turn give the

modes of the curvature perturbation. For this single field model the resulting power

spectrum of the curvature perturbations is

PR =
H2

8π2εM2
pl
(k/H)ns−1 (3.1.3)

where ε is the slow-roll parameter describing the change of the Hubble constant Remember inflation happens in
not quite de Sitter space. Had
it been exact de Sitter, then
inflation would never end. So,
in an effort to make the actual
universe happen, we must have
a slowly changing Hubble
parameter. How slow this
change is determines how
much the power spectrum is
tilted.

during inflation, and ns is the famous tilt of the spectrum. This tilt depends on how

quickly inflation happens, and the various parameters of the field theory.

When inflation ends, the inflaton field – with its perturbation as we just outlined –

will decay to ordinary matter. This is usually called reheating, since the inflaton decay

heats up the universe by providing a bath of radiation and matter. For the small

perturbations we have in the early plasma of the universe, all the physics can be

approximated as linear. This means that the power spectrum of the curvature pertur-

bations carry over with a simple multiplicative function to eg. density perturbations.

We have eg.

Pmatter(k, z) ≈ Tmatter(k, z)PR(k) (3.1.4)

where T is a transfer function. This transfer function and its relatives for radiation

are the topic of the next section.

3.2 evolution of perturbations

To get from the initial conditions to our observables, we need to have a grasp of

how perturbative quantities in the universe evolve. We will have a look at two

approaches. For the CMB, we need the full relativistic machinery going in order to

get all the details of the power spectrum out. For LSS however, we can get by using

just Newtonian theory in an expanding universe.
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3.2.1 The Newtonian universe

Let us see how Newtonian physics in an expanding universe can give us a first

look at cosmological structures. We will do the calculation in a universe consisting

of just normal matter. Regardless of whether the cosmological constant shows up

at late times, the ’early old’ universe – ie. at redshifts above, say 1, but long after

recombination – is practically only matter and dark matter. Any corrections to the

structure formation will be small.

First we need to set up the Newtonian dynamics. This can be written as a set of three

equations. They are the continuity equation, Euler equation and Poisson equation,

as given by Bernardeau et al. (2002)

ρ′ + 3Hρ +∇ · (ρv) = 0 (3.2.1)

H′x + v′ +Hv + (v · ∇)v = −∇φ (3.2.2)

∇2φ = 4πGa2ρ (3.2.3)

Where ρ = ρ̄(1 + δ) is the matter density, v = Hx + u is the velocity, split into

Hubble expansion Hx and the peculiar velocity u, and φ = Ψ̄ + Ψ is the gravitational

potential. We are interested in the perturbative departures from these. Taking theNote the Jeans’ swindle going
on here: For a homogeneous

universe, Ψ̄ formally diverges.
We will simply subtract it.

zeroth-order part to be solutions of the zero-order equations, we can write down the

equations for the perturbations. These are

δ′ +∇([1 + δ]u) = 0 (3.2.4)

u′ +Hu + (u · ∇)u = −∇Ψ (3.2.5)

∇2Ψ =
3
2
H2δ (3.2.6)

where I neglect anisotropic stress and I remind that Ωm = 1. The last equation here

can be used to find Ψ once the density contrast δ has been obtained. Neglecting

vorticity, which quickly decays away if it were present, we need to specify only

the divergence of the velocity field, θ = ∇ · u. We may also define the velocity

potential v through u = ∇v. It is clear that in Fourier space, the two are related by

−k2v = θ.

Let us now rewrite equation (3.2.4) in Fourier modes. We may write the equation

as

δ′ + θ = −∇(δu) (3.2.7)

Fourier expanding the left hand side is straight forward. The right hand side may be

written as

−(2π)−6∇ ·
∫

d3k1d3k2 exp(−i(k1 + k2) · x)δ(k1)u(k2) =

(2π)−6
∫

d3k1d3k2 exp(−i(k1 + k2) · x)δ(k1)i(k1 + k2)u(k2) =

−(2π)−6
∫

d3k1d3k2 exp(−i(k1 + k2) · x)δ(k1)
(k1 + k2) · k2

k2
2

θ(k2) (3.2.8)
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where I have used that u is curl free, and so u = ik−2kθ. Fourier transforming this

expression, we get from equation (3.2.7),

δ′(k) + θ(k) = −(2π)−3
∫

d3k1d3k2δ(k1 + k2 − k)
(k1 + k2) · k2

k2
2

δ(k1)θ(k2) (3.2.9)

Now taking the gradient of equation (3.2.5), inserting equation (3.2.6) and rearranging

we get

θ′ +Hθ +
3
2
H2δ = −∇ · [(u · ∇)u] (3.2.10)

We have again an easy left hand side and a tricky right hand side. Replacing

gradients by momenta, we find

∇ · [(u · ∇)u] =iδ(k1 + k2 − k)(k1 + k2) ·
[(
−i

θ(k1)k1

k2
1

)
· ik2

(
−i

θ(k2)k2

k2
2

)]

=δ(k1 + k2 − k)θ(k1)θ(k2)
(k1 + k2) · k2k1 · k2

k2
1k2

2
(3.2.11)

by symmetrisation, we then get for the Fourier transformed Euler equation

θ′ +Hθ +
3
2
H2δ = −(2π)−3

∫
d3k1d3k2δ(k1 + k2 − k)

(k1 + k2)
2k1 · k2

2k2
1k2

2
θ(k1)θ(k2)

(3.2.12)

Let us now expand the Fourier modes of the density contrast and velocity field

as It should be clear why we must
be careful when the density
field becomes ’big’, δ1 ≈ 1! I
will not delve into the details
of convergence or non-linearity,
suffice it to say that it is a big
problem.

δ(k) = ∑ anδn(k) (3.2.13)

θ(k) = −H∑ anθn(k) (3.2.14)

Here, higher order terms xn include more and more powers of the initial fields, eg.

δ2 is quadratic in the initial density field. It is clear that the mode coupling terms

of equations (3.2.9) and (3.2.12) couple different terms in these series. The general

solution can in our approximation be written down:

δn = (2π)−3
∫

d3k1 . . . d3knδ(k−∑ kn)Fn(k1, . . . , kn)δ1(k1) . . . δ1(kn) (3.2.15)

θn = (2π)−3
∫

d3k1 . . . d3knδ(k−∑ kn)Gn(k1, . . . , kn)δ1(k1) . . . δ1(kn) (3.2.16)

where F and G are homogeneous functions of the momenta with degree zero, ie.

scaling the momenta up or down leaves the functions invariant. They are given

by

Fn(q1, . . . , qn) =
n−1

∑
m=1

Gm(q1, . . . , qm)

(2n + 3)(n− 1)
[(2n + 1)α(k1, k2)Fn−m(qm+1, . . . , qn)

+ 2β(k1, k2)Gn−m(qm+1, . . . , qn)] (3.2.17)

Gn(q1, . . . , qn) =
n−1

∑
m=1

Gm(q1, . . . , qm)

(2n + 3)(n− 1)
[3α(k1, k2)Fn−m(qm+1, . . . , qn)

+ 2nβ(k1, k2)Gn−m(qm+1, . . . , qn)] (3.2.18)
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where k1 = q1 + · · · + qm, k2 = qm+1 + · · · + qn. The starting point is of course

F1 = G1 = 1. The case which we need for the bispectra is the first corrections to the

linear evolution. They are

F2(q1, q2) =
5
7
+

1
2

q1 · q2

q1q2
(q1/q2 + q2/q1) +

2
7
(q1 · q2)

2

q2
1q2

2
(3.2.19)

G2(q1, q2) =
3
7
+

1
2

q1 · q2

q1q2
(q1/q2 + q2/q1) +

4
7
(q1 · q2)

2

q2
1q2

2
(3.2.20)

With these, we now have the expressions for perturbative non-linearity of structure

formation. We simply need the starting point – everything is given in terms of

δ1(k, τ). To find this, we differentiate the continuity equation with respect to confor-

mal time, and insert the Euler equation – everything cut at first order. This gives

us

δ′′ + θ′ = 0⇒ δ′′ +Hδ′ =
3
2
H2δ (3.2.21)

Let us factorise the density contrast, δ(x, τ) = δ(x, 0)D1(τ) where τ is conformal

time, and solve this equation for D1. In the universe we are considering, the

conformal hubble rate is H = Ha = a−1/2 ⇒ H′ = −1/(2a). Inserting this, and the

ansatz D1 = an we get the following equation for the power n,

n2 + n/2 = 3/2 (3.2.22)

This equation is solved by n = 1, corresponding to a growing mode, and n = −3/2,

corresponding to a decaying mode. In the simple case we have covered so far,

evidently we can describe the perturbed density, velocity and potential in terms of

the initial density perturbation, scaled by the cosmological scale factor a(τ). However,

we still need that seeding first order density fluctation – not the primordial, but the

one which results from the plasma in the early universe. We did this calculation

assuming only matter. However, in the very early universe, radiation played a large

role, and we will have to do the relativistic calculation to get the evolution right at

these very early times.

3.2.2 The early universe

I will simply try to outline the calculations, and cannot give enough credit to the

massive amount of work that lies behind. More details can be found in Dodelson

(2003), which I follow. The basic equation to be solved – to put it lightly, is the

Boltzmann equation. For some collection of particle species, we provide distribution

functions fi(x, p, t), and the Boltzmann equation then describes the evolution of said

particles,

d f
dt

= C[ f1, . . . , fn] , (3.2.23)
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where C describes all interactions between the particles. In the case of the entire

universe, in principle all particles shall be taken into account. Luckily, some are

more important than others – though the importance of particles changes during

the course of history. In the beginning – not the very begnning – at a temperature of

around 1 MeV, photons and charged particles are very important, and all behave like

radiation. After recombination – when the primordial plasma recombines, ie. forms

neutral atoms – photons start becoming less important. In the very late universe, the

gravitational potential is very simple. All these things help us to make approximate

solutions at different times. To appreciate how messy things quickly become, let us

write down the collisionless Boltzmann equation for photons in an inhomogeneous

universe,

d f
dt

=
∂ f
∂t

+
p̂i

a
∂ f
∂xi − p

∂ f
∂p

(
H +

∂Φ
∂t

+
p̂i

a
∂Ψ
∂xi

)
= 0 (3.2.24)

This describes the continuity, Euler equation, the cosmological redshifting and

gravitational pull on photons – we have yet to put in charged particles! Important

collisions in the primordial plasma are the result of Compton scattering. This is the

simple elastic scattering of photons off electrons,

e− + γ↔ e− + γ (3.2.25)

To describe this with the Boltzmann equation, we need to know the distribution

function of both electrons and photons, and then for the collision subtract the

disappearing left hand side above, and replace it with the right hand side, where the

momenta have changed. This can be written as

C[ f (p)]Compton = p−1
∫

d3qLIPS

∫
d3q′LIPS

∫
d3 p′LIPS|M|2(2π)4

δ(4)(pµ + qµ − p′µ − q′µ)
(

fe(q′) f (p′)− fe(q) f (p)
)

(3.2.26)

whereM is the amplitude which can be calculated from quantum field theory, and

the measures are Lorentz Invariant Phase Space differentials, that is, they have been

normalised by the energy and suitable factors of π. The point being, a collision term

like this simply transports the particles around in the distribution functions – the

two particles on the left of equation (3.2.25) with momenta q, p become particles

with momenta q′, p′.
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After including baryons, dark matter and potentially even the slight effect of neutri-

nos, one must simultaneously solve a number of equations,

Θ̇ + ikµΘ =− Φ̇− ikµΨ− τ̇

[
Θ0 −Θ + µvb −

1
2

P2(µ)Π
]

(3.2.27)

Π =Θ2 + ΘP2 + ΘP0 (3.2.28)

Θ̇P + ikµΘP =− τ̇

[
−ΘP +

1
2
(1− P2(µ))Π

]
(3.2.29)

δ̇ + ikv =− 3Φ̇ (3.2.30)

v̇ + Hv =− ikΨ (3.2.31)

δ̇b + ikvb =− 3Φ̇ (3.2.32)

v̇b + Hvb =− ikΨ +
τ̇

R
[vb + 3iΘ1] (3.2.33)

Ṅ + ikµN =− Φ̇− ikµΨ (3.2.34)

where equations (3.2.27) to (3.2.29) describe the photon temperature and polarization,

equations (3.2.30) and (3.2.31) describe dark matter interactions, equations (3.2.32)

and (3.2.33) describe the baryon evolution and finally equation (3.2.34) describes the

neutrinos. The density and velocity fields are δ, v, µ = cos θ, τ is the optical depth

and R is the ratio of photon to baryon density.

All these are cogs in the machinery to calculate two things important to us: the

temperature anisotropies at recombination – the anisotropies we now see as CMB –

and the linear density inhomogeneities which seed our Newtonian calculation from

before.

Lucky for us, solving these equations has never been easier: software packages like

camb (Lewis, 2013; Lewis and Bridle, 2002) and class (Blas et al., 2011; Lesgourgues,

2011) can solve the systems to percent level accuracy within a matter of seconds.Given more time, the precision
will even reach sub-percent

levels.
These programs use various approximation schemes to speed up computations,

and can be coerced into providing both transfer functions for different species

and power spectra of various observables. The true beginning of these kinds of

programs were with cmbfast by Seljak and Zaldarriaga (1996), which utilised a

trick to get tremendous speed-up when going from the temperature field to the

observable CMB power spectrum. Although, as time goes by, the physics gets

hidden in what essentially becomes a black-box of CMB computations. Perhaps

that is why Mukhanov (2004) developped cmbslow – a way to bring back at least

approximations for what is going on, and how one may interpret constraints on

cosmological parameters as consequences of physical phenomena.

Equipped with the knowledge of the universe and its structures, we now need to

find out how to observe them, and what our limited observations can tell us. That is

the subject of the next chapter.
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For all the perturbative quantities described in the previous chapter, we have to

observe them. This is in principle simple – just look at the sky! – but in practice all

but impossible.

Take first the CMB. Place the earth in the middle of the observable universe. From There is a slight difference
between the visible and the
observable universe. The
visible universe is all the way
up to redshift ≈ 1080, when
the primordial plasma
recombines. Earlier than that,
all photons are bouncing
around on the plasma, and the
universe is completely opaque.
However, all observations need
not be optical. Should one find
a way to observe for instance
the cosmic neutrino
backgorund, this would be an
observation inside the opaque
universe. Similarly, primordial
gravitational waves, if they
exists, will let us look all the
way to the big bang. Hence I
find it reasonable to
distinguish the two.

all sides, photons stream to us from the edge of the visible universe and from every

small pixel of a detector we can determine the temperature of exactly that one spot

on the sky. Each photon received has been on the way to our eyes since about 380

thousand years after the big bang, which is when it was last scattered in the hot early

plasma. The temperature and movement of the plasma then, determines the photon

energy distribution, which we observe today. In NASA’s illustration in figure 3, this

is compared to looking into the cloudy Danish sky – we know there is space and

universe above the clouds, however, the photons we observe have last been scattered

in the cloud, and that means our view of what is beyond is obscured.

All the observations of CMB photons put together give us a temperature field of the

CMB sky,

T(n) = T0(1 + Θ(n)) (4.0.1)

where observationally, T0 ≈ 2.726 (Fixsen, 2009), and Θ ≈ 10−5 (Bennett et al., 2003),

except the dipole, which is presumably of kinematic origin. This temperature field

on the sky is then interpreted as photons arriving from the perturbed radiation field

just around recombination, when the photons start free-streaming – the two are not

exactly coincidental, but are very close. The difficult part comes now: to see the

edge of the universe, there is an enormous amount of universe to see through, a

universe full of dust and galaxies and most notably our own galaxy. All these things

pollute observations of the CMB, and always will. In the most recent space-borne

mission, the Planck satellite, these problems are circumvented by mapping in many

frequencies and assuming the shape of the spectra of foregrounds. It is no wonder Foregrounds in this regard is
different types of dust and
gasses between us and the
surface of last scattering.

that one needs a firm grasp of foreground pollution to determine just how much

of the observed light really is the CMB. It is therefore no surprise that observations

of polarisation spectra, which are even further suppressed, are that much harder.

One bad example is the 2014 press release from bicep2 (Ade et al., 2014a), which

hardly did any foreground cleaning and as a consequence was dead on arrival.

Further analysis indeed showed that the polarisation spectra they had found were

compatible with being only foreground (Ade et al., 2015).

27
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Figure 3: Illustration of last scattering by the NASA/WMAP Science

Team. The sky, like the primordial plasma, is literally clouded, and we

only see the surface on which the photons were last scattered. From

https://map.gsfc.nasa.gov/media/990053/index.html, last updated 1st April 2011.
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In that sense, galaxy surveys are simpler. An observed galaxy is after all a galaxy.

Another great complication arises immediately though. What is the distribution

of galaxies in the universe? Our calculations so far concerned the density field of

baryons and dark matter. To which degree can we really say that galaxies follow

the distribution of dark matter? This problem is known under the umbrella term

galaxy bias. One way about it is to scale the predicted galaxy density by a bias factor

b, and include this factor in the analysis. More sophisticated analyses will introduce

even second and higher order biasing, as described by eg. McDonald and Roy (2009).

I will not treat the problem of bias in the following. For the simple procedure of

linear or quadratic bias, these effects are simple to include later. There is also the

trouble that galaxies move around. Since the light from moving galaxies is Doppler

shifted, there is no one-to-one correspondence between the redshift of a galaxy and

the cosmological redshift at the time the galaxy emitted the light. Furthermore the

light is lensed as it traverses the universe. This effect changes the perceived location

of the galaxy, so one cannot even be sure of the observed angular position. These

effects, and many more, can be taken into account however. We will do so in the

sections below. Using a special set of coordinates, it is possible to predict not just the

galaxy distribution, but rather the perceived distribution.

The following sections first introduce the calculations of the CMB observations on

the sky, and its cosmic noise. We will use the same language to describe the galaxy

number counts on the sky. The calculations of the number counts in various limits

are very long, and very detailed. The main result is the proof of equation (4.2.94),

the derivation and verification of equations (4.2.163) to (4.2.165), including the

expressions of all their individual terms, and finally the flat-sky expression for the

bispectrum in equations (4.2.194) to (4.2.200).

4.1 cosmic microwave background

Given the mathematics of chapter 2, it should come as no surprise that we wish to

Fourier transform the observed temperature anisotropies on the sky. The great leap

forward by Seljak and Zaldarriaga (1996) was writing the temperature field transfer

function as a line-of-sight integral

Θ(k, µ ≡ n̂ · k̂) =
∫ η0

0
S(k, η) exp(ikµ(η − η0)) (4.1.1)

where S(k, η) is called the source function. The important part being that the source

function by partial integration can be written as a function of just k and η – not of

µ. This allows a simple decomposition onto Legendre polynomials. Expanding this
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exponential as equation (2.2.18) and inserting equation (2.2.6) we see by orthogonality

that ∫ 1

−1
dµP`(µ) exp(ikµ(η − η0)) = 2i` j(k[η − η0]) (4.1.2)

⇒ Θ`(k) = 4πi`
∫

dηS(k, η)j(k[η − η0]) (4.1.3)

To compute the observable CMB sky we put ourselves at x = 0 and compute the

expansion coefficients of the spherical harmonics,

a`m =
∫

d2nY∗`m(n)Θ(x = 0, µ) =
∫

d2nY∗`m(n)
∫ d3k

(2π)3 Θ(k, µ)

=
∫ d3k

(2π)3 d2nY`m(n) ∑
`′m′

Θ`(k)Y`′m′(n)Y
∗
`′m′(k̂)

= 4πi`
∫ d3k

(2π)3 ∆`(k)Φ(k)Y`m(k̂) (4.1.4)

where I have defined the transfer function ∆`(k) =
∫

dηS(k, η)j`(k[η − η0]), which

takes the initial perturbations to the observed anisotropies, Θ`(k) = 4πi`∆`(k)Φ(k).

Given a power spectrum and bispectrum of the primordial fluctuations we use this

to translate to observed anisotropies. Taking the primordial power spectrum to be

〈ΦΦ∗〉 = (2π)3δ(k− k′)P(k) we get

C` ≡ 〈|a`m|2〉 =
2
π

∫
dk k2|∆`(k)|2P(k) ≡ 4π

∫ dk
k
|∆`(k)|2P(k) (4.1.5)

where I write the dimensionless primordial power spectrum, P(k) = P(k)k3/(2π2).

We also want to calculate the observed bispectrum. All I need to insert in equa-

tion (2.2.20) is the transfer functions ∆`(k), since I am correlating temperature

anisotropies, not primordial perturbations. That makes the reduced bispectrum

b`1`2`3 =
8

π3

∫
dk1 dk2 dk3 (k1k2k3)

2B(k1, k2, k3)

∆`1(k1)∆`2(k2)∆`3(k3)
∫

dxx2 j`1(k1x)j`2(k2x)j`3(k3x) (4.1.6)

4.1.1 Cosmic variance

The a`m are random variables whose variance is C`. That means that even from the

cleanest map of the CMB sky, we can never be completely sure exactly which power

spectrum we are seeing. A tell-tale sign of dark energy for example shows up at

very low `. However, as the a`m here have a relatively large variance, we cannot

say for sure that we are seeing the so-called Sachs-Wolfe plateau. As we get to larger

`, this effect wears off, and the variances becomes much smaller than the squared

mean. Since the theoretical predictions is the power spectrum – not the a`m – we

need to determine this quantity. Our best estimator is simply the average of |a`m|2.
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Since the a`m are gaussianly distributed, our estimator will be distributed as a scaled

chi-squared with 2`+ 1 degrees of freedom, I am always assuming full sky
coverage. Without this, the
spherical harmonics are not
orthogonal, and the variance
on the a`m increases. The
simplest way to salvage this for
the C` estimator is to just scale
it down by the fraction of the
sky covered. This does
introduce correlations among
the C`. The C` obtained this
way can be called pseudo-C`.

Ĉ` = (2`+ 1)−1 ∑
m
|â`m|2 (4.1.7)

It is simple to show this has mean C` and variance 2C2
` (2`+ 1)−1 (Nielsen, 2015). This

unbeatable uncertainty is called cosmic variance. This property of the measurements

can be seen in figure 4. The plot shows D` = `(`+ 1)C`/(2π) and the difference to

the best fit model.

We can do a similar analysis for the cosmic variance of the bispectrum in a gaussian

universe. The mean of the bispectrum is simply zero, since it is the expectation value

of an odd number of gaussian variables. The variance of the bispectrum however,

is not. By Isserlis’ theorem we get 15 different pairings of the six terms, each of

which potentially contributes, depending on the different mi values. The result can

be found in eg. Gangui and Martin (2000); Luo (1994) and is

〈a`1m1 a`2m2 a`3m3 a∗`1m1
a∗`2m2

a∗`3m3
〉 = (4.1.8)

C`1 C`2 C`3 + 2δ`1`2`3(δm1m3 + δm1,−m3)(δm1m2 + δm1,−m2)C
3
`1
+

δ`1`2 [δm1,m2 + δm1,−m2 ]C
2
`1

C`3 + δ`3`2 [δm3,m2 + δm3,−m2 ]C
2
`2

C`1+

δ`3`1 [δm3,m1 + δm3,−m1 ]C
2
`1

C`2

To get an estimator of the bispectrum, we will have to do something like equa-

tion (4.1.7), a sum over many products of a`m to get a reliable estimate of their

origin. To get rid of the m dependence of the full bispectrum in equation (2.2.15), we

use the orthogonality of the 3j symbols and define the rotationally invariant reduced

bispectrum, as defined by Ade et al. (2014b) This definition differs by a
factor of h` from some recent
papers. We will mostly use b`,
and will not notice this
difference much.

B`1`2`3 =h`1`2`3 ∑
mi

(
`1 `2 `3

m1 m2 m3

)
Bm1m2m3
`1`2`3

= h2
`1`2`3

b`1`2`3 where (4.1.9)

h`1`2`3 =

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3

0 0 0

)
(4.1.10)

Taking now our best estimate of the individual Bm
` to be the corresponding product I will use the shorthand

notation Bm1m2m3
`1`2`3

→ Bm
`

when the ` or m values are not
important. It should be clear
from the context that there are
actually three ` values hiding
behind the one explicitly
written down.

of three a`m, we take as an estimate of B` the corresponding sum of B̂m
` ,

B̂`1`2`3 = h`1`2`3 ∑
mi

(
`1 `2 `3

m1 m2 m3

)
â`1m1 â`2m2 â`3m3 (4.1.11)

It is clear from orthogonality of the 3j symbols, ∑mi
(Gm

` )
2 = h2

` , that 〈B̂`〉 = h2
`b`.

The exact cosmic variance of the bispectrum is difficult to get. We can, however get a

reasonable approximation for high `i if we simply discard all terms in equation (4.1.8)

except the first. It is clear that this is exact for all different `, and an approximation

if some are equal. With just this first term we see that the variance becomes

V`1`2`3 ≡ 〈B̂`1`2`3 B̂`1`2`3〉 = h2
`1`2`3

C`1 C`2 C`3 g`1`2`3 (4.1.12)
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Figure 4: The 2015 Planck temperature power spectrum from Aghanim et al. (2016).

Two things to note: the first 28 multipoles are plotted logarithmically, while the rest

are plotted linearly and the higher multipoles have been binned. The error bars

include – but are not limited to – cosmic variance. The binning visibly helps beat

down cosmic variance, but comes at the cost of washing out features. It can therefore

only be done for the parts of the power spectrum that are relatively slowly varying.

We see clearly here how for the very low multipoles `, cosmic variance ruins our

chances for making very precise comparisons. For the difference plot, the left y-axis

corrresponds to the first 28 multipoles, and the right y-axis to the rest.
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where the factor g is 1 for all different `, 2 if two are equal, and 6 if all three are

equal. The reason it enters is the two sums over mi in the B` – eg. if `1 = `2, then

both m1 = m′1, m2 = m′2 and m1 = m′2, m2 = m′1 contribute, giving an overall factor

2. If all three ` are equal, then this factor is 6, for the six combinations of pairs of

(mi, m′j). This does neglect terms like (here for `1 = `2)

h2
`1`2`3

C`1 C`2 C`3 ∑
m1

(
`1 `1 `3

m1 −m1 0

)2

+

(
`1 `1 `3

m1 m1 −2m1

)2

(4.1.13)

for the high ` we are interested in, these terms are practically percent level corrections

– and only correction to equal-` bispectra, which are very rare. As is usual, we will

completely neglect these terms.

Doing the sum to obtain all observed B` is in practice very limiting, as the computa-

tional time scales as `5
max – one sum over mi drops out due to the selection rules on

Gm
` . For the resolutions in Planck, `max ≈ 2500. Suffice it to say this cannot be done

in reasonable time – especially when accounting for error analysis on simulations!

Various techniques have been developed to cope with this fact. Common for all of

them is a degree of approximation, usually motivated ones. For that reason, different

approximate estimators will have different use cases.

Since we are not doing data analysis, we are free from these computations. We only

need to compute the predicted bispectrum, which scales as `3
max – one power for each

index. Assuming full sky coverage and no foreground – which is absurd! – we will

instead estimate to which degree we see a particular template B` of non-gaussianity

as follows. Put a parameter fNL in front of the template, and do a simple χ2 analysis

with the variance V` we found before,

χ2 = ∑
`1≥`2≥`3

(B̂`1`2`3 − fNLB`1`2`3)
2

V`1`2`3

(4.1.14)

where B̂` is the observed bispectrum and B` is the predicted bispectrum. This tells

us to which degree the observed B̂` shows the template B`. Clearly, this linear model

has a minimal χ2 at

f̂NL =
∑`1≥`2≥`3

B̂`1`2`3(V`1`2`3)
−1B`1`2`3

∑`1≥`2≥`3
B`1`2`3(V`1`2`3)

−1B`1`2`3

(4.1.15)

From equation (4.1.12) we get directly that, in a gaussian universe, the estimator f̂NL

will have a cosmic variance of

σ2
fNL

=

(
∑

`1≥`2≥`3

B`1`2`3(V`1`2`3)
−1B`1`2`3

)−1

=

(
∑

`1≥`2≥`3

h2
`1`2`3

b2
`1`2`3

/
(g`1`2`3 C`1 C`2 C`3)

)−1

(4.1.16)

I have here rewritten it in terms of the reduced bispectrum, which is the quantity

we compute. The interesting number to calculate for one’s favourite model with a
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characteristic bispectrum is of course the signal-to-noise ratio of the expected fNL.

Let us without loss of generality expect it to be unity. The crucial number to get low

in order to have a chance of observing the bispectrum is then

S
N

=

√
∑

`1≥`2≥`3

B`1`2`3(V`1`2`3)
−1B`1`2`3

=

√
∑

`1≥`2≥`3

h2
`1`2`3

b2
`1`2`3

/
(g`1`2`3 C`1 C`2 C`3) (4.1.17)

As long as the bispectrum is small, and the approximation in equation (4.1.12) holds,

the variance, or signal-to-noise is fixed. If we are to directly observe this quantity,

we must have noise considerably smaller than the signal. The computation of this

number will be the aim of the coming chapter.

These computations assume a full sky all the way through, which ensures rotational

invariance, and in turn gets rid of a lot of problems. In a more realistic analysis,

where eg. the galaxy takes up almost 25% of the sky, one has to include more

terms to take good care of the incomplete sky coverage. Creminelli et al. (2006)

show that including a linear term, besides the bispectrum triplets we include, saves

the estimator. This term, on a full sky, will obviously average to zero, but on the

incomplete sky, it makes sure one is not biased simply because the sky is not being

observed in a particular direction.

4.1.2 Computing the primordial bispectrum in the CMB on a flat sky

The expression in equation (4.1.6) is in principle very limiting. I will now derive

a simpler way to calculate it on a flat sky, following the derivation of Babich et al.

(2004); Fergusson and Shellard (2008).

We first write the temperature field on the sky as

T(n) = (2π)−2
∫

d2`a(`)exp(−i` · n)⇒ a(`) =
∫

d2nT(n) exp(i` · n) (4.1.18)

Note that the vector n is now a two-dimensional vector in the plane of the sky, it is

no longer pointing in the direction of the sky from us. The vector (0, 0) is then a

special direction picked by us, eg. the z direction, in which the coordinate system

originates. We now write out the temperature field in Fourier space and instead of

equation (4.1.4) we now have

a(`) =
∫

d2n exp(i` · n)
∫ d3k

(2π)3

∫ ηo

0
dηS(k, η) exp(−ik · n(ηo − η))

=
∫ d3k

2π
Φ(k)

∫ ηo

0
dηS(k, η) exp(−ikz[ηo − η])δ(k⊥(ηo − η)− `) (4.1.19)

where k⊥ is the momentum perpendicular to the line of sight, and kz is along

it.
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Figure 5: Comparison of the flat sky computation with the full sky computation

from class for a run-of-the-mill ΛCDM universe. The result is noticeably worse

around the first acoustic peak, as we get into low-` territory. For high `, evidently

this is a reasonable approximation.

The power spectrum and bispectrum are defined by equations (2.3.4) and (2.3.5). Let

us first compute the power spectrum. It is

(2π)2δ(`− `′)C(`) = (2π)
∫

d3kP(k)
∫ ηo

0
dηS(k, η) exp(−ikz[ηo − η])δ(k⊥(ηo − η)− `)∫ ηo

0
dη′S(k, η′) exp(ikz[ηo − η′])δ(k⊥(ηo − η′)− `′)

(4.1.20)

Now we use that the source function mainly has contributions around the last

scattering surface, at ηR. This is known as the thin shell approximation. We therefore

put η → ηR each time we calculate the momentum k⊥ above, and use η ≈ η′ ≈ ηR

to set the other delta function to δ(`− `′). This leaves us with

C(`) =
∫ ∞

0

dkz

π
P(
√

k2
z + `2/(ηo − ηR)2)(ηo − ηR)

−2|∆(kz, `)|2 (4.1.21)

where I change the integral to start at zero in exchange for a factor two, and define

the flat sky transfer function

∆(kz, `) =
∫ ηo

0
dηS(

√
k2

z + `2/(ηo − ηR)2, η) exp(ikzη) (4.1.22)

This approximation of the power spectrum is shown in figure 5.
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Next, let us go through the same procedure for the bispectrum, as Fergusson and

Shellard (2008) do. We may again simply write down the correlator

(2π)2δ(∑ `)b`1`2`3 =
∫

d3k1d3k2d3k3δ(∑ k)B(k1, k2, k3)∫ ηo

0
dηS(k, η1) exp(−ik1z[ηo − η1])δ(k1⊥(ηo − η1)− `1)∫ ηo

0
dη′S(k, η2) exp(ik2z[ηo − η2])δ(k2⊥(ηo − η2)− `2)∫ ηo

0
dη′S(k, η3) exp(ik3z[ηo − η3])δ(k3⊥(ηo − η3)− `3) (4.1.23)

Under the same approximations we integrate out the three k⊥ and insert them in the

δ(∑ k⊥) to get a delta function on the `i, which leaves us with

b`1`2`3 =

(
1

2π(ηo − ηR)2

)2 ∫ ∞

−∞
dk1zdk2zdk3zδ(∑ kiz)B(k1, k2, k3)∆(k1z, `1)∆(k2z, `2)∆(k3z, `3)

(4.1.24)

where the ki in the bispectrum are given by ki =
√

k2
iz + `2

i /(ηo − ηR)2. We can get

rid of ’half’ of these three integrals. The k3z takes the delta function, and the lower

half of the k2z integral can be found by the symmetry ∆(kz, `) = ∆(−kz, `)∗. We

therefore get ∆(k3z, `3) → ∆(k1z + k2z, `3)
∗. We can use to our advantage that the

integral is invariant under simultaneous complex conjugation and sending both

kiz → −kiz. We therefore only need to integrate eg. the positive k2z values, and the

negative part of the integral will just be the complex conjugate of the result. This also

makes manifest the fact that our integral is real – we are adding a number and its

complex conjugate. This frees us from numerical mistakes, which might otherwise

have introduced accidental imaginary parts in the integration procedure. Writing

this out, we have the final result

b`1`2`3 =

(
1

2π(ηo − ηR)2

)2 ∫ ∞

−∞
dk1z

∫ ∞

0
dk2zB(k1, k2, k3)

× 2Re(∆(k1z, `1)∆(k2z, `2)∆∗(k1z + k2z, `3)) (4.1.25)

4.2 large scale structure

We will in this analysis treat observations of galaxies similar to the previous analysis

of the CMB. To do this, we must know the perceived galaxy distribution across the sky,

for all relevant redshifts. The wrong answer is to simply take the galaxy distribution

and write it in terms of spherical harmonics, as we will be missing terms like doppler

shifting and lensing effects.

Three different groups have recently done this analysis to second order (Bertacca,

2015; Bertacca et al., 2014b,a; Di Dio et al., 2014; Yoo and Zaldarriaga, 2014). I will

follow the derivation of Di Dio et al. (2014), which uses the so-called geodesic light
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cone coordinates. These are coordinates in which geodesics are easy to work with.

In return, however, the translation back to Poisson gauge is a bit tricky. We need the

translation back to Poisson gauge because it is here we know how the perturbations

evolve. We will afterwards try to make sense of the small differences in the results

of the three different calculations, largely following the work of Nielsen and Durrer

(2017).

The galaxy number count is defined as

∆(n, z) =
N(n, z)− N(z)

N(z)
(4.2.1)

where N(n, z) is the number of galaxies in a differential volume dzd2n and N(z) =

(4π)−1
∫

d2nN(n, z). Now, both the density and the volume element will be per-

turbed by general relativistic effects. It is these effects we want to clarify. I will here

first do the calculation to first order in an attempt to let the physics be clear in spite

of the calculations. A cursory glance at Di Dio et al. (2014) shows that the final

answer to second order takes up several pages. There is, however a particular limit

in which I will calculate the result to all orders. This will help us in the identification

of discrepancies of different calculations. This means I will be spelling out a lot of

details, which will be necessary to calculate the higher orders – even though it will

seem excessive for the calculation of the first order.

We define for the density field and the jacobian the following

ρ(n, z) = ρ̄(η
(0)
s )(1 + ∑

n
δ(n)) (4.2.2)

V(n, z) = V̄(z)

(
1 + ∑n δV(n)

V̄

)
(4.2.3)

where the superscript (n) signifies the order of the contribution. It is clear that the

first order contribution to ∆ is

∆ =
ρV − 〈ρV〉
〈ρV〉 (4.2.4)

⇒ ∆(1)(n, z) =δ(1) +
δV(1)

V̄
(4.2.5)

Background values have a superscript (0), such that the fiducial conformal time and

distance of a source at observed redshift z are defined by

1 + zs =
a(ηo)

a(η(0)
s )

and r(0)s = ηo − η
(0)
s (4.2.6)

To find the corrections, we will first calculate them exactly in the geodesic lightcurve

coordinates and then do an approximate translation to Poisson gauge.
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4.2.1 Geodesic lightcone coordinates

The geodesic lightcone (GLC) coordinates were first introduced by Gasperini et al.

(2011) in relation to the problem of averaging in inhomogeneous cosmology, and can

be seen as a gauge fixing of the historical observational coordinates of Ellis et al. (1985).

They As it turns out, they will be very useful to our somewhat different purpose.

Instead of the normal (η, r, θ, φ) we call them (τ, w, θ̃1, θ̃2). τ is a timelike coordinate,

w is a null coordinate, and the remaining two θ̃a are angular variables. We write the

line element in these coordinates as

ds2 = Y2dw2 − 2Ydwdτ + γab(dθ̃a −Uadw)(dθ̃b −Ubdw) (4.2.7)

where as is usual there is an implicit sum over repeat indices, here a and b. In

an exact FRW universe, the coordinates and metric functions translate trivially as

τ(0) = t, w(0) = η + r, θ̃(0) = (θ, φ), Y(0) = a, U(0)
a = 0, γab = a2r2diag(1, sin2θ). We

can also write the metric in matrix form as

gµν =


0 −Y 0

−Y Y2 + U2 −Ub

0 −Ua γab

 , gµν =


−1 −Y−1 −Ub/Y

−Y−1 0 0

−Ua/Y 0 γab

 (4.2.8)

We see that w is null by ∂µw∂µw = gww = 0. We may also check that −∂µτ describes

geodesic flow by verifying the following is zero,

∂ντ∇ν(∂µτ) = −1
2

gντ gστ(gσν,µ + gµσ,ν − gµν,σ) = −
1
2

gντ gστ gσν,µ

= −2
∂µY
Y

+
∂µ(Y2 + U2)

Y2 − 2
Ua∂µUa

Y2 +
UaUb∂γab

Y2 = 0 (4.2.9)

where the last equality follows from Ua∂µUa = Ua∂µUa + UaUb∂γab and ∂µU2 =

Ua∂µUa +Ua∂µUa. We can similarly show that the null rays ∂µw are geodesic, and so

the lightrays emitted by sources travel to the observer along these, on the observer’s

lightcone. The change in energy – the redshift – is then calculated as the product

of the source/observer velocity and the photon momentum, kµ ∝ Y−1δ
µ
τ , (Gasperini

et al., 2011)

1 + zs =
(kµuµ)s

(kµuµ)o
=

(Y−1δ
µ
τ ∂µτ)s

(Y−1δ
µ
τ ∂µτ)o

=
Y(τo, wo, θ̃a)

Y(τs, wo, θ̃a)
(4.2.10)

Note that the arguments wo, θ̃a are fixed along the geodesic. In the homogeneous

universe this is the known result 1/a(t). In the inhomogeneous universe this is

no longer true, however equation (4.2.10) is still exact, since the meaning of Y

changes.

The angular diameter and luminosity distances may also be written down exactly in

the GLC coordinates, Fanizza et al. (2013)

d2
L = (1 + zs)

4d2
A = (1 + zs)

4 4
√

γs

(det(u−1
τ ∂τγab)γ3/2)o

(4.2.11)
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where γ = det γab.

We now wish to translate these results into coordinates for which we can solve

the behavior, here I choose Poisson coordinates. To do this, we must expand the

expressions for the GLC coordinates in terms of the Poisson coordinates – specifically

in powers of the first-order potential Ψ(1), which comes from the expansion of the

full potential, Ψ = ∑n Ψ(n). This is done via the transformation

gµν
GLC = gσρ

PG∂PG
σ xµ

GLC∂PG
ρ xν

GLC (4.2.12)

with suitable boundary conditions (Marozzi, 2015). We will take advantage of the

many zeros in the inverse GLC metric. To repeat equation (3.0.1), the Poisson metric

is, using conformal time and neglecting anisotropic stress, a useful approximation in

the late universe,

gPG
µν = a(η)2


−1− 2Ψ 0 0

0 1− 2Ψ 0

0 0 (1− 2Ψ)γPG
ab

 (4.2.13)

where γPG
ab = r2diag(1, sin2 θ). Remember from the identification in the homoge- Keep good track of the factors

of a when manipulating
angular indices. For the
Poisson coordinate angles, I
take the indices to be raised
and lowered using the
scale-factor free γ. Also note
that it means we have
γ(0) = a2γPG .

neous universe, we already have the zeroth-order of the coordinate transformation.

We first look at the τ − τ component of equation (4.2.12), which gives

−a2 =
(∂ητ)2

−1− 2Ψ
+

(∂rτ)2

1− 2Ψ
+

∂aτ∂aτ

1− 2Ψ
(4.2.14)

Here the partial derivatives ∂a refer to the Poisson variables θa (with no tilde), whose

indices are raised and lowered using γPG
ab . We know of course that the zeroth order

must match, τ = t =
∫

dηa. Taking only the first order of this equation, we get only

contributions from the first term on the right-hand side

2Ψa2 = 2a∂ητ(1) ⇒ τ(1) =
∫ η

dη′a(η′)Ψ(η′, r, θa) ≡ a(η)P(η, r, θa) (4.2.15)

which also defines the shorthand function P. For the null coordinate w we get, using

the w− w part of equation (4.2.12),

0 =
(∂ηw)2

−1− 2Ψ
+

(∂rw)2

1− 2Ψ
+

∂aw∂aw
1− 2Ψ

(4.2.16)

Again, we may insert the zeroth order result, which gets rid of the angular part,

(1− 2Ψ)(∂ηw)2 = (1 + 2Ψ)(∂rw)2 ⇒ 2∂ηw(1) − 2Ψ = 2∂rη + 2Ψ (4.2.17)

Let me now define zeroth order lightcone variables η± = η ± r, with the partial

derivatives ∂± = (∂η ± ∂r)/2. With these we write the previous equation as

∂−w(1) = Ψ⇒ w(1)(η+, η−, θa) =
∫ η−

ηo
dxΨ(η+, x, θa) (4.2.18)

where the integral goes along the observer lightcone. This integral can also be

written as

w(1) = −2
∫ ηo

ηs
dη′Ψ(η′, η + r− η′) ≡ −2

∫ ηo

ηs
dη′Ψ[η′] (4.2.19)
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where the square brackets around the argument η′ define a shorthand notation

for the past lightcone at conformal time η′. Finally, looking at the w − a part of

equation (4.2.12) we have – after having already found the expression for w

0 =
∂ηw∂η θ̃a

−1− 2Ψ
+

∂rw∂r θ̃a

1− 2Ψ
+

∂bw∂b θ̃a

1− 2Ψ
(4.2.20)

This equation is trivially satisfied at zeroth order, and the first order is

2∂− θ̃(1)a = ∂bw(1) ⇒ θ̃(1)a(η+, η−, θa) =
1
2

∫ η−

ηo
dx∂aw(1)(η+, x, θa) (4.2.21)

equations (4.2.15), (4.2.18) and (4.2.21) define for us the first order translation to GLC

coordinates from Poisson gauge. We are now in a position to translate the functions

of the GLC metric as well. The τ − w part of equation (4.2.12) gives

Y−1 = a−2
(

∂ητ∂ηw
1 + 2Ψ

− ∂rτ∂rw
1− 2Ψ

− ∂aτ∂aw
1− 2Ψ

)
(4.2.22)

To first order the angular derivatives disappear, and we are left with

1/Y(1) =a−2
(

a
1 + 2Ψ

+ ∂ητ(1) + a∂ηw(1) − ∂rτ(1)
)

=a−1
(

∂ηw(1) −Ψ− ∂rP
)
= a−1

(
∂+w(1) − ∂rP

)
(4.2.23)

where I use ∂ηw(1) = ∂+w(1) + Ψ. To get Ua we look at the τ − a components of

equation (4.2.12). These give to first order

UaY−1 = a−2
(

∂ητ∂η θ̃a − ∂rτ∂r θ̃a − ∂bτ∂b θ̃a
)
= a−2

(
∂η θ̃(1)a − ∂aτ(1)

)
⇒ U(1)a = ∂η θ̃a − ∂aP (4.2.24)

Finally, we look at the a− a part of equation (4.2.12). To first order both η and r

derivatives drop out, which leaves us with

γab =a−2 ∂c θ̃a∂c θ̃b

1− 2Ψ
= a−2

(
γ(0)ab

1− 2Ψ
+ ∂b θ̃a + ∂a θ̃b

)
(4.2.25)

⇒ γ(1)ab =a−2
(

2Ψγ(0)ab + ∂(a θ̃b)
)

(4.2.26)

where X(... ) denotes symmetrization of the enclosed indices.

Having defined all the above functions we can begin translating the exact results

in GLC gauge to approximate results in Poisson gauge. The redshift as given by

equation (4.2.10) becomes, by inserting equation (4.2.23) and rewriting ∂+w(1) =

∂ηw(1) −Ψ,

1 + zs ≡
ao

as
(1 + z(1) + . . . ) =

ao

as

(
1− ∂rP− 2

∫ ηo

ηs
dη′∂ηΨ[η′]−Ψ

)
(4.2.27)

Let us now find a more familiar form of the first term, −∂rP. Remember that the

geodesic sources and observers have velocities uµ = −∂µτ. By taking the spatial part

of the scalar product of a unit vector along the line of photon propagation with the
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source velocity, we get the velocity of the source parallel to the line of sight. The

unit vector is nµ = (0,−a
√

1− 2Ψ, 0, 0) – note it is pointing inwards – and so the

product is

v|| = v · n = grµ
PGa
√

1− 2Ψ∂µτ =
1

a
√

1− 2Ψ
∂rτ (4.2.28)

v(1)|| = ∂rP (4.2.29)

This shows that the first term of equation (4.2.27) is simply the recession velocity, ie.

minus the speed towards us. This is the well known Doppler shift. Its effect is clear:

when we observe a galaxy and infer its distance from us in terms of the redshift, the

Doppler shift will change the two quantities. There is as such no direct translation

from redshift to cosmic distance unless one knows the velocity of the galaxy.

4.2.2 Galaxy number count perturbation from GLC to Poisson gauge

Now to find the perturbation to ∆, we must find the perturbations of both parts of

equation (4.2.4), ρ and V. The Newtonian calculation we did in section 3.2 gives us

part of the answer, namely the simple expression of ρ(n)(z, θa) = ρ̄ δ
(n)
ρ for n > 1 in

terms of ρ(1). However, we know that eg. the redshift has been perturbed, so we

must also expand the first order contribution – and all higher orders – around the

observed coordinates.

To do this, we first define a fiducial cosmology, in a sense the naively observed

distances. This is simply identifying the redshift directly with the FRW conformal

time and distance,

1 + zs = a(ηo)/a(η(0)
s ), w = wo = ηo = η

(0)
s + r(0)s (4.2.30)

We will then expand all observed quantities around these, and calculate the perturba-

tions in GLC coordinates in powers of δ(1). For these quantities, we need the follow-

ing defining equations, which I equate with the definitions in equation (4.2.30)

a(ηo)

a(ηs)

(
1 + z(1) + . . .

)
=

a(ηo)

a(η(0)
s )

(4.2.31)

w(0) + w(1) + · · · = η
(0)
s + r(0)s (4.2.32)

where I leave ”. . . ” in place of higher orders. Solving these equations for the higher

order Poisson variables, as expanded around the fiducial value, ηs = η
(0)
s + η

(1)
s +

. . . , rs = r(0)s + r(1)s + . . . . The perturbative solutions for the first order is

η
(1)
s = z(1)H−1

s (4.2.33)

r(1)s = −η
(1)
s + 2

∫ ηo

η
(0)
s

dη′Ψ[η′] (4.2.34)

The first equation comes from expanding a(ηs)/a(η(0)
s ) taking ηs = η

(0)
s + . . . in

equation (4.2.31), which gives the factorHs = a′(η(0)
s )/a(η(0)

s ), the conformal Hubble
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parameter at the fiducial conformal time. The second equation is simply the collection

of terms in equation (4.2.32), giving an expression for r(n)s in terms of the GLC

coordinates and η
(n)
s . We also need the angular changes. At first order, this is easy,

since going from GLC to Poisson angles simply gives a sign change,

θ(1)a = −θ̃(1)a (4.2.35)

With these perturbed Poisson coordinates, we may directly write down the perturba-

tion of the observed density field,

ρ = ρ̄(η
(0)
s ) + η(1)∂ηρ(η

(0)
s ) + δρ(1)(η

(0)
s ) + . . . (4.2.36)

Since the zeroth order density field only depends on the conformal time, there is

only the one correction at this order. At higher orders, we will find also coordinate

perturbations of the perturbed density field. In terms of physical quantities, we may

use the relation dρ̄/dz = 3ρ̄/(1 + z) to write

δ(1) = ρ̄−1(η
(1)
s ∂η ρ̄ + δρ(1)) = −3δz(1) + δ

(1)
ρ (4.2.37)

where δρ is the result of the Newtonian calculation.

We now also need the volume perturbation in order to get the full number count

result. The 3 dimensional volume element as seen by an observer with velocity

uµ = −∂µτ is

dV =
√
−gεµνσλuµdxν ∧ dxσ ∧ dxλ (4.2.38)

We may change coordinates to the observed redshift and angles, which defines a

quantity v as follows

dV =
√
−gεµνσλuµ ∂xν

∂z
∂xσ

∂θs

∂xλ

∂φs

∣∣∣∣ ∂(θs, φs)

∂(θo, φo)

∣∣∣∣ dzdθodφo ≡ v(z, θo, φo)dzdθodφo (4.2.39)

where the term in | . . . | is simply a Jacobian. The volume perturbation we are trying

to find is directly related to this v, since δV/V̄ = (v− v̄)/v̄. As before, the result in

GLC coordinates can be written down exactly. I remind that the geodesic null rays

run along fixed GLC angles, so the Jacobian is trivial, and this fact also restricts the

partial derivatives. Seeing as gττ = 0 and gτw = Y−1 only one term in the sum ends

up contributing. The determinant of the metric is easily found to be
√−g =

√
|γ|Y,

and so the result for the volume change is

dV = −
√
−guw ∂τ

∂z
dzdθodφo ⇒ v = −

√
|γ|dτ

dz
(4.2.40)

I stress again that the expression in equation (4.2.40) is exact, and defines a very

straight forward splitting of the volume change into redshift space distortion −dτ/dz

and lensing effects,
√
|γ|. This splitting keeps its shape even after changing to

Poisson variables, but is obvious in these coordinates. We will use this fact when

calculating higher orders.
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We now need to translate this expression into Poisson coordinates. To compute the

first order contribution, as always, we can be a bit careless – things usually only get

dirty at second order. We will use this to our advantage, as we can use the same

trick to shorten the calculations for the following all-order result. I calculate first the

determinant of γ divided by the zeroth order contribution, since we are calculating

δv/v̄. We can do this by taking the expression in equation (4.2.25) and do the explicit You will notice this derivation
does not use the expression for
the luminosity distance, as it
does in Di Dio et al. (2014). It
is indeed nice to see that two
different routes end up with
the same result.

determinant to first order, which gives us the inverse determinant.√
γ−1/

√
(γ(0))−1 =

1
1− 2Ψ

|∂b θ̃a| (4.2.41)

To first order the last determinant here is simply 1 + ∂a θ̃(1)a. That means to first

order we can invert this expression to get

√
γ/
√

γ(0) = 1− 2Ψ− ∂a θ̃(1)a (4.2.42)

However, we are still missing a piece of the full first order expression, which is

the change of the determinant due to the change in redshift. We have already in

equations (4.2.33) and (4.2.34) calculated the changes in Poisson variables, so we

simply need to add

∂η

√
γ(0)η

(1)
s + ∂r

√
γ(0)r(1)s + ∂a

√
γ(0)θa

= (2Hη(1) + 2r−1r(1) + cot(θ)θ)
√

γ(0) (4.2.43)

where θ is only the first angle of the duo. The total first order change in the

determinant of the Jacobian – what I call the lensing contribution – is then the sum

of equations (4.2.42) and (4.2.43) minus 1,√
|γ|(1)√
|γ|(0)

= −2Ψ− ∂a θ̃a − cot(θ)θ̃ + 2δz(1) +
2

r(0)s

(
− z(1)

H + 2
∫ η0

η
(0)
s

dη′Ψ[η′]

)
(4.2.44)

To make the comparison with Di Dio et al. (2014) explicit we rewrite the gradient of

the angles. We calculated the angles in equation (4.2.21), and inserting and using

equation (4.2.18) we get

θ̃(1)a =
1
2

∫ η−

ηo
dx∂aw = 2

∫ ηo

ηs
dη′γab

PG∂b

∫ ηo

η′
dη′′Ψ[η′′]

= 2r2∂a
∫ ηo

ηs
dη′

1
(ηo − η′)2

∫ ηo

η′
dη′′Ψ[η′′] (4.2.45)

To do one of these integrals, remember that the γab
PG includes a factor r−2, which we

must include when integrating along the lightcone. We define the lensing potential

ψ as follows,

ψ(zs, θa) = −2
∫ ηo

η
(0)
s

dη′
η′ − η

(0)
s

(ηo − η
(0)
s )(ηo − η′)

Ψ[η′] (4.2.46)
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We can check that the angular derivative of the lensing potential is equal to the GLC

angles. We first check the following derivative,

d
dη

ψ = −2
1

(r(0)s )2

∫ ηo

η
(0)
s

dη′Ψ[η′] (4.2.47)

where I have identified r(0)s = ηo − η
(0)
s . It is clear when comparing this expression

with equation (4.2.45) that we may write the angle as

θ̃(1)a = r2γab
PG∂aψ⇒ ∂a θ̃a = r2∂aγab

PG∂bψ (4.2.48)

To this we add cot(θ)θ̃, which gives us exactly the dimensionless Laplacian on the

sphere, such that

−∂a θ̃a − θ̃ cot θ = ∆2ψ where (4.2.49)

∆2 = cot(θ)∂θ + ∂2
θ + sinθ−2∂φ2 (4.2.50)

That at last allows us to rewrite equation (4.2.44) to match the result of Bonvin and

Durrer (2011); Di Dio et al. (2014),

√
|γ|(1)√
|γ|(0)

= −2Ψ + ∆2ψ + 2z(1)
(

1− (Hsr
(0)
s )−1

)
+

4

r(0)s

∫ η0

η
(0)
s

dη′Ψ[η′] (4.2.51)

We now have the lensing contribution to the volume change. We now need the

contribution from redshift space distortion (rsd). This is, as we found, −dτ/dz,

and I remind we again need to divide out the zeroth order contribution. We again

need to find the expansion around the fiducial cosmology, and then perform the

differentiation. In terms of zeroth order coordinates, differentiation with respect to

the redshift can be written as

−dτ

dz
= −dη

(0)
s

dz
dτ

dη
(0)
s

=
1

(1 + zs)Hs

dτ

dη
(0)
s

(4.2.52)

Expanding τ around the fiducial cosmology, I denote by a subscript s that its

arguements are now (η
(0)
s , r(0)s , θa

o). The zeroth and first orders are given by

τ
(0)
s = τ(0) =

∫ η
(0)
s

dη′a(η′) (4.2.53)

τ
(1)
s = η

(1)
s ∂ητ

(0)
s + τ(1) = a(η(0)

s )η
(1)
s +

∫ η
(0)
s

dη′a(η′)Ψ(η′, r(0)s , θa
o) (4.2.54)

The ratio of the first order to zeroth order of the rsd contribution is thenRemember here that
r(0)s = η0 − η

(0)
s , and so we

need to take this into
consideration when

differentiating with repsect to
η
(0)
s .

dτ
(1)
s /dz

dτ
(0)
s /dz

=
dτ

(1)
s /dη

(0)
s

dτ
(0)
s /dη

(0)
s

(4.2.55)
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where we know dτ
(0)
s /dη

(0)
s = a. Writing out the derivative of equation (4.2.54) we

get

d

dη
(0)
s

(a(η(0)
s )z(1)H−1) = a

(
1− H

′

H2

)
z(1) +

a
H

dz(1)

dη
(0)
s

(4.2.56)

dz(1)

dη
(0)
s

= Hv|| + ∂rv|| + ∂ηΨ (4.2.57)

d

dη
(0)
s

∫ η
(0)
s

dη′a(η′)Ψ(η′, r(0)s , θa
o) = a(η)Ψ(η

(0)
s , r(0)s , θa

o)− av(1)|| (4.2.58)

To get equation (4.2.57) I use the form z(1) = −v|| + ∂+w(1) and write out the two

terms as

dv||

dη
(0)
s

= ∂rψ−Hv|| − ∂rv(1)|| (4.2.59)

∂+
dw(1)

dη
(0)
s

= ∂+(2Ψ) = ∂ηΨ + ∂rΨ (4.2.60)

Summing it all up, we end with

dτ
(1)
s /dz

dτ
(0)
s /dz

=

(
1− H

′

H2

)
z(1) +H−1(∂ηΨ + ∂rv||) + Ψ (4.2.61)

We can finally write down the first order correction to the volume, and in turn the

full first order correction to the galaxy number count.

v− v̄
v̄

=

√
|γ|(1)√
|γ|(0)

+
dτ

(1)
s /dz

dτ
(0)
s /dz

(4.2.62)

= −Ψ + ∆2ψ + z(1)
(

3− 2

Hr(0)s

− H
′

H2

)
+

4

r(0)s

∫ η0

η
(0)
s

dη′Ψ[η′] +H−1(∂ηΨ + ∂rv(1)|| )

Adding the contributions of equations (4.2.37) and (4.2.62) we have the full first order

result,

∆(1)
full = δ

(1)
ρ −Ψ + ∆2ψ +

(
v(1)|| + Ψ + 2

∫ ηo

η
(0)
s

dη′Ψ[η′]

)(
2

Hr(0)s

+
H′
H2

)

+
4

r(0)s

∫ η0

η
(0)
s

dη′Ψ[η′] +H−1(∂ηΨ + ∂rv(1)|| ) (4.2.63)

It is now interesting to study the approximate size of each of these terms. In Remember small scales on the
full sky translate to our ability
to approximate the result by a
flat sky. Therefore the terms we
find at small scales will have
their computation greatly
simplified.

particular I am interested in small scales at intermediate redshift – where one could

imagine a galaxy survey. The terms I keep will be the ones that naively match the

size of δ
(1)
ρ . As we can see from eg. equation (3.2.6) the potential is

Ψ = −3
2

δ
H2

k2 (4.2.64)

It is suppressed by two factors of H/k. Small scales have large k, and so this

suppresses the potential. We also have from equation (3.2.16) that the gradient of the
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velocity field times the conformal Hubble factor is of the same order as the density

field. This means we have the following approximate result

H−1∂rv(1)|| ≈ θ1 = δ
(1)
ρ (4.2.65)

Evidently, we need either angular or radial derivatives to pull out factors of k/H,Do not let the notation confuse.
This θ1 is the perturbative

expansion of the velocity
potential – not an angle.

which enhance the terms. Terms like a bare potential are suppressed, and so we

neglect them in the further analysis. The same goes for integrated potentials and

velocities with no derivative. Going through all the terms in equation (4.2.63) it is

clear that only three terms survive,

∆(1) = δ
(1)
ρ +H−1∂rv(1)|| + ∆2ψ (4.2.66)

The angular derivative of the potential gives a factor `2 ∼ (k/H)2, which enhances

the lensing term enough to be considered. In the notation of Di Dio et al. (2016) the

middle term is written as H−1∂2
r v(1) where v is the velocity potential.

It is in this limit that I want to derive the all-order result, for what we call the

dominant terms. It should be clear that the dominating term of a particular order

is not necessarily larger than subdominant terms of lower orders. However, both

second and third order dominant terms are important for the bispectrum and for

the first corrections to the power spectrum. The remaining higher orders will simply

be a by-product of the general derivation. Should the full higher order perturbations

ever be calculated, I hope this result can serve as a cross-check.

4.2.3 All-order result at small scales

Now I proceed to calculate the galaxy number count change at all orders, but only

the dominant terms, as defined above. In doing this, I will at all times throw away

subdominant terms immediately, to facilitate the process. This is the only reason

the calculation is doable at all. As we have seen, even the first order result is

somewhat long, and as I already mentioned, the second order result takes up many

pages.

We start over from the beginning. That means we need the expressions for the

GLC coordinates in terms of Poisson coordinates. Rewriting equation (4.2.14) andA clearly subdominant term is
the potential. Unless it carries

along angular derivatives, I
discard a potential right away.

discarding subdominant terms we have

∂ητ(N) = a−1
N−1

∑
n=1

∂rτ(n)∂rτ(N−n) + ∂aτ(n)∂aτ(N−n) (4.2.67)

2∂−w(N) =
N−1

∑
n=1

∂aw(n)∂aw(N−n) (4.2.68)

2∂− θ̃(N)a =
N

∑
n=1

∂bw(n)∂b θ̃(N−n)a (4.2.69)
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with the first order result

∂ητ(1) = aΨ ∂−w(1) = Ψ 2∂−θ(1)a = ∂aw(1) (4.2.70)

We may recursively generate all the higher orders of the coordinate transforma-

tion. We also need the two GLC functions Y and γ, which from equations (4.2.22)

and (4.2.25) are simply Note here that I throw away
the radial derivative of an
integral on the lightcone. I also
discard the term ∂aτ∂aw – it
has two derivatives, but also
two factors of potential to
suppress it, so it is one
suppressive factor short of ∂rτ.

Y−1 = a−2∂rτ (4.2.71)

γab = a−2∂c θ̃a∂c θ̃b (4.2.72)

To get the redshift perturbation, we simply take the exact definition in GLC coordi-

nates

1 + zs = Yo/Ys ⇒ z(N)(ηs, rs, θa
s ) = a−1∂rτ(N) = −v(N)

|| = −∂rv(N) (4.2.73)

I have here identified the recession velocity with the radial velocity, as the difference

is subdominant, and written it in terms of the velocity potential v. We now proceed

to find the changes with respect to the fiducial cosmology, the naive expectation.

Since all factors of w are subdominant, except for the first one, we simply have to

solve Here I only include the first
derivative of a. It should be
clear that higher derivatives
will include products of higher
order of η

(n)
s , which in turn

are subdominant contributions

a(η(0)
s )−1 = a(ηs)

−1(1 + ∑ z(N)(ηs, rs, θa)) where η
(N)
s + r(N)

s = 0 (4.2.74)

⇒ η
(N)
s = −r(N)

s = H−1[z](N) (4.2.75)

The bracket-notation is to signify all n-th order terms coming from the Taylor

expansion around the fiducial model. Since the coordinates of z above are (ηs, rs, θa),

the second order term will also include radial and angular derivatives. For instance,

the second order redshift perturbation is

[z(ηs, rs, θa
s )]

(2) = z(2)(η(0)
s , r(0)s , θa

o) + r(1)s ∂rz(1)(η(0)
s , r(0)s , θa

o)

+ θ(1)a∂az(1)(η(0)
s , r(0)s , θa

o) (4.2.76)

Note that since the second order redshift change is dependent on the first order

redshift change, we need to do this procedure recursively.

Getting the angles right is somewhat tricky when starting from the GLC coordinates.

Luckily, angular perturbations have been important since lensing in the CMB was

found significant. That means we can lift the result from the old literature and

mold them for our purposes. Here I take the results of Pyne and Carroll (1996). In

particular, we will need to find the dominating terms in their f (N)µ, defined in their

equations (3.3) and (3.4). These equations are simply the geodesic equation written

in terms of an explicit expansion of coordinates and the connection,

∞

∑
a=0

[
d2x(a)µ

dλ2 +
(

Γ(a)µ
αβ + Σ∞

b=1
1
b!

∂σ1 · · · ∂σb Γ(a)µ
αβ

(
Σ∞

c=1x(c)σ1
)
· · ·
(
Σ∞

d=1x(d)σl
))

×
(
Σ∞

e=1k(e)α
)(

Σ∞
f=1k( f )β

)]
= 0 (4.2.77)
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We now rewrite this equation order by order. This defines f (N)µ,

d2x(a)µ

dλ2 + 2Γ(0)µ
αβk(0)αk(a)β + ∂σΓ(0)µ

αβk(0)αk(0)βx(a)σ = f (a)µ (4.2.78)

An important feature of f (a)µ is that the highest order of x or k appearing is (a− 1).

Calculating this quantity will give us the angular perturbation when inserted into

their equation (3.13), which in a flat universe reads

x(a)i
⊥ =

∫ λ

λo
(λ− λ′) f (a)i

⊥ (λ′)dλ′ (4.2.79)

The projection is defined as xi
⊥ = (δi

j − eiej)xj where e are unit vectors.

To find the dominating terms of f µ it is easiest to first do a conformal transformation.

Remember that all we are after is the angular changes, and conformal transformations

leave angles unchanged. To first order in the gravitational potential, we can therefore

change the metric to g̃µν = diag(−1− 4Ψ, 1, 1, 1) and do the calculations here. The

answer we get for the angles will then be conserved if we were to change coordinates

back again. For this metric, the relevant terms in the connection are only

Γ(1)0
i0 = Γ(1)i

00 = 2∂iΨ = 2∂i ∑
n

Ψ(n) (4.2.80)

All other terms either contain time-derivatives or no derivatives at all, both of which

are suppressed in the limit we are working with. It should also be clear, that all

higher orders in the counting of Pyne and Carroll (1996) are similarly suppressed. So

the only terms we need to include in f µ are those containing Γ(1). In our counting,

this will also contain higher order corrections of the gravitational potential coming

from the evolution of large scale structure, ie. Ψ(N). We are further constrained to

only look at the terms with the lowest order of kα, since higher orders would simply

lower the number of derivatives we have on the terms – fewer derivatives means the

term is subdominant in our counting. Removing all these subdominant terms from

their equation (3.3) it should be clear that the only terms we keep are

f (N)µ = −[Γ(1)µ
αβ k(0)αk(0)β](N) =

{
−[2ei∂iΨ](N) when µ = 0

−[2∂iΨ](N) when µ = i
(4.2.81)

where again the brackets stand for the Taylor expansion of the expression, taken at

order N. Now, to get the angular perturbations, we need to insert this expression

in their equation (3.13). Specifically, we want the expression for the coordinates

perpendicular to the line of sight, what I call the screen space, x(n)i⊥ → r(0)θ(n)a. I

remind that the derivatives in equation (4.2.81) are with respect to the screen space

coordinates, not the angles, so another factor r(0) will appear when changing from

these to angles. Inserting our answer for f (N)µ in their expression for x(N)i
⊥ , we

get

x(N)i
⊥

r(0)s

= −2
∫ r(0)s

0
dr

r(0)s − r

r(0)s r

[
r(0)s ∂Ψ

∂xi
⊥

](N)

(4.2.82)



4.2 large scale structure 49

Changing the indices from screen space i to the angular a, we have immedi-

ately

θ
(N)a
s = −2

∫ r(0)s

0
dr

r(0)s − r

r(0)s r
[∂aΨ](N) (4.2.83)

As an example, the explicit form of the second order angular change is

θ(2)a = −2
∫ r(0)s

0
dr

r(0)s − r

r(0)s r

[
∂aΨ(2) + θ(1)b∂b∂aΨ(1)

]
(4.2.84)

Note that the change in radial coordinates does not affect the angles. This would

have entered in the limits of the integral, however inserting it, we see that it does not

contribute with derivatives – the differentiation simply removes the integral, and we

are a derivative short of being a dominant contribution. We therefore only need to

expand the ∂aΨ in angular coordinates inside the integral.

With all the fiducial coordinates determined, we are able to calculate the expansion

of the density field around the fiducial coordinates and to calculate the change in the

Jacobian. The expansion is rather simple, since we know all the coordinate changes.

The derivatives with respect to conformal time are still subdominant, and are left

out of the expansion,

δ(N)(η
(0)
s , r(0)s , θa

o) =
[
δρ(η

(0)
s , rs, θa)

](N)
(4.2.85)

As an example, the second and third orders are

δ(2) = δ
(2)
ρ + (r(1)s ∂r + θ

(1)a
s ∂a)δ

(1)
ρ (4.2.86)

δ(3) = δ
(3)
ρ + (r(1)s ∂r + θ

(1)a
s ∂a)δ

(2)
ρ (4.2.87)

+ (r(2)s ∂r + θ
(2)a
s ∂a)δ

(1)
ρ

+
1
2

(
(r(1)s )2∂2

r + θ
(1)a
s θ

(1)b
s ∂a∂b + 2r(1)s θ(1)a∂r∂a

)
δ
(1)
ρ

where all terms on the right-hand side are evaluated at the fiducial coordinates.

What remains is the change in the perceived volume. We first look at the lensing

part. From equation (4.2.72) we find the ratio to be√
γ−1√

γ−1(0)
=

√
|γ−1|(0) × |∂a θ̃b|2√

γ−1(0)
= |∂a θ̃b| (4.2.88)

⇒
√

γ
√

γ(0)
=

∣∣∣∣∣∂θb
s

∂θa
o

∣∣∣∣∣ (4.2.89)

This is precisely the determinant of the lensing-map which takes observed angles

to the actual source angles. We of course need this determinant at the fiducial

coordinates. We therefore need to expand the terms in the determinant, like we

did for the density field. We may write the following general expression for the

determinant, where I define δθa = θa − θa
o = ∑∞

n=1 θ(n)a,(
v− v̄

v̄

)(N)

=

[∣∣∣∣∣∂θb
s

∂θa
o

∣∣∣∣∣
](N)

=

[
1 + ∂aδθa +

1
2

(
(∂aδθb)2 − ∂aδθb∂bδθa

)](N)

(4.2.90)
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The notation here is simply [. . . ] for the taylor expansion and | . . . | for the determi-

nant. For the second and third order of the lensing contribution that gives(
v− v̄

v̄

)(2)
= ∂aθ(2)a +

1
2
(∂aθ(1)a)2 − 1

2
∂aθ(1)b∂bθ(1)a (4.2.91)(

v− v̄
v̄

)(3)
= ∂aθ(3)a + ∂aθ(1)a∂aθ(2)a − ∂aθ(2)b∂bθ(1)a (4.2.92)

Note again that all radial derivatives are gone, since the angles are all given by

integrals along the lightcone.

To calculate the rsd term we need to find the dominating terms of dτs/dz, where

again τ has been expanded around the fiducial coordinates.

The only term in this expansion we get is the very first derivative of the zeroth order

τ. That is, for all N we have τ
(N)
s = a(η(0)

s )η
(N)
s = aH−1

s z(N). Note it is easy to check

that this dominates all the expansions in τ(N) – without the subscript s – since we see

from equation (4.2.73) that z(N) = ∂rτ(N)/a ie. it has a derivative, or a factor k, over

the bare τ expansion in Poisson coordinates. Therefore, the dominating term does

not include any of the terms from the expansion in equation (4.2.67). We also do not

include higher derivatives of τ(0) since these contribute with fewer derivatives. For

example r(1)∂rτ = aH−1(z(1))2 is subdominant compared to eg. z(2).

The only contribution to the rsd term is therefore

rsd
(N) = H−1 d(−z(N))

dη
(0)
s

= H−1∂r[z](n) (4.2.93)

All in all we may write, in a somewhat concise notation

∆ = (1 + δ)(1 + rsd )|Ab
a| (4.2.94)

where all terms are expanded around the fiducial coordinates. The matrix A is

the lensing map, defined as Ab
a = ∂θb

s /∂θa
o . The expansion can be found from

equations (4.2.73), (4.2.75), (4.2.83), (4.2.90) and (4.2.93) We may immediately write

out the second order perturbations, which are

∆(2) = H−1δ(1)∂2
r v(1) − 2δ(1)κ(1) − 2H−1∂2

r v(1)κ(1) (4.2.95)

+ δ(2) +H−1∂rv(1)∂rδ(1) + ∂aψ(1)∂aδ(1)

+H∂r

(
∂rv(2) +H∂rv(1)∂2

r v(1) + ∂aψ(1)∂a∂rv(1)
)

− 2κ(2) + 2κ(1)2 − 2∂aκ(1)∂aψ(1)

− 1
2

∫ r(z)

0
dr

r(z)− r
r(z)r

∆2

(
∂aΨ(1)

1 ∂aΨ(1)
1

)
− 2

∫ r(z)

0

dr
r

∂aΨ(1)
1 ∂aκ(1)

I have here introduced the convergence κ(N) = − 1
2 ∂a∂aψ(N) and the shorthand for the

logarithmic radial derivative of the lensing potential Ψ(N)
1 = −rdφ(N)/dr. The first

line here are all the cross-products from the three terms, the next lines are the density
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and rsd terms expanded, while the last two lines are the lensing term expanded and

rewritten. This result matches exactly the result derived by Di Dio et al. (2016) from

the full result of Di Dio et al. (2014). Since the calculation was done by Bertacca et al.

(2014a) and Yoo and Zaldarriaga (2014) as well, let us delve into their calculations.

They disagree on minor points. We shall see how they differ, and how they compare

to the result of equations (4.2.67) to (4.2.94). The coming two sections follow Nielsen

and Durrer (2017) closely.

4.2.4 Comparison with Bertacca et al. (2014b)

I start by relating the notation of one to the other. The main notational differences

are:

• The second order metric perturbations are defined with a factor 2 difference.

• There is a factor (−1) between the definitions of the velocity potential.

• Projected derivatives are used, ie. ∂‖ = ∂r and ∂i
⊥ = r−1∂a. Note that the index structure

here enjoys a slight abuse of
notation. However, the
angular derivatives always
appear contracted, and we do

have the strict equality
∂i
⊥ f ∂i⊥g = r−2∂a f ∂ag.

Identifying the leading terms in the expression for ∆(2), and expanding the expres-

sion for ∆(1), we find

∆(2) = δ
(2)
g −

1
H ∂2
‖v

(2) − 2κ(2) + 4κ(1)2 − 4δκ(1) − 2
δg

H ∂2
‖v (4.2.96)

+
4κ(1)

H ∂2
‖v +

2
H2

(
∂2
‖v
)2

+
2
H2 ∂‖v∂3

‖v−
2
H

dδg

dχ̄
∆ ln a(1)

− 2
[

χ̄∂⊥iδg −
χ̄

H ∂⊥i∂
2
‖v
]

∂i
⊥T(1) + 4

[
χ̄∂⊥iδg −

χ̄

H ∂⊥i∂
2
‖v
]

Si(1)
⊥

− 4
( ∫ χ̄

0
dχ̃

χ̃

χ̄
(χ̄− χ̃)P p

j P
iq∂̃q∂̃pΦ

)( ∫ χ̄

0
dχ̃

χ̃

χ̄
(χ̄− χ̃)Pn

i P jm∂̃m∂̃nΦ
)

.

The translation of the majority of the terms is straight-forward. The term a(1) is

the first order perturbation of the scale factor taken to be 1/(z + 1). To leading

order, we may substitute it by the redshift space distortion, ∆ ln a(1) = −∂rv(1). χ̄ I will in these two sections
keep the notation strictly as it
is written in the relevant other
paper. That means for example
the derivatives are written as
d/dλ in one notation but as
∂|| in another. This is done
purposefully to keep the
comparison across the
literature explicit and simple.

is the comoving distance which we call r and d/dχ̄ = −d/dλ = ∂r − ∂t ' ∂‖, the

difference ∂t is subdominant. With this we can write the first two lines immediately

in the more familiar form,

δ(2) +
1
H ∂2

r v(2) − 2κ(2) + 2
(

2κ(1)2 − 2δκ(1) +
δ(1)

H ∂2
r v(1)

− 2κ(1)

H ∂2
r v(1) +

1
H2

(
∂2

r v(1)
)2

+
1
H2 ∂rv(1)∂3

r v(1) +
1
H ∂rδ(1)∂rv(1)

)
. (4.2.97)
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The third line above requires the translation of Si(1)
⊥ and ∂i

⊥T(1). Denoting the

transverse direction of a vector, vi
⊥ by va, these are

Si(1)
⊥ = −∂a

∫ rs

0
dr

1
r

Ψ(1) , ∂i
⊥T(1) = −∂a

∫ rs

0
dr

2
rs

Ψ(1)

so that 2Si(1)
⊥ − ∂i

⊥T(1) = ∂aψ(1) . (4.2.98)

This multiplies the term in brackets, hence this line is the angular Taylor expansion

of δ +H−1∂2
r v, with the appropriate extra factor 2. In the last line of equation (4.2.96)

we simply need to substitute the derivatives and notation of potentials to obtain

−∂a∂b
(

2
∫ χ̄

0
dχ̃

χ̄− χ̃

χ̄χ̃
Ψ(1)

)
∂a∂b

(
2
∫ χ̄

0
dχ̃

χ̄− χ̃

χ̄χ̃
Ψ(1)

)
= −2

1
2

∂a∂bψ(1)∂a∂bψ(1) .

(4.2.99)

This is exactly twice the last term of equation (4.2.91), which cancels a term in

∂a[θa](2), and therefore does not appear in the final result. The factor 2 comes from

the definition of the second order perturbations.

This shows that the difference between the results of Di Dio et al. (2016) and Bertacca

et al. (2014b) is simply the substitution of ∂a[θa](2) with κ(2), which neglects the termsThe authors of Bertacca et al.
(2014b) agree with this finding

and they have corrected the
error in v4 on the arXiv with

which we fully agree.

coming from the fact that in ∂a[θa](2) there are the additional lensing terms, namely

all terms coming from evaluating the first order lensing integral at the perturbed

position, the so called ’post-Born’ contributions.

4.2.5 Comparison with Yoo and Zaldarriaga (2014)

I now proceed to identify the leading terms of Yoo and Zaldarriaga (2014). Since

the full final result is not written down in closed form, we perform the ’stitching-

together’ on the fly, working our way back through the paper. The main remarks

about the notation here are:

• Latin indices go from 0 to 3, greek indices go from 1 to 3.

• The metric perturbations are called A and Cαβ, where Cαβ = −Ψδαβ in the

gauge we are working, for purely scalar perturbations. They are however

defined with no factor 2 at second order.

• All perturbation orders are left implicit. Here we keep them explicit.

• The angles (θ, φ) are written explicitly. This gives rise to some factors of sin θ

between expressions, which are implicit in our notation with θa and covariant

derivatives.

The leading terms in the main result, their equation (94) are

Σ(2) = δ(2) + δV(2) + δ(1)δV(1) . (4.2.100)
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The first order volume perturbation is given by

δV(1) = −2κ(1) + Hz∂zδr(1) = −2κ(1) +H−1∂2
r v(1) , (4.2.101)

where we use ∂z = H−1
z ∂r. The product of these terms with δ(1) is readily identified in

equation (4.2.95). Going on to the second order volume perturbation, we find

δV(2) = δD(2) + Hz∂zδr(2) − 2Hzκ(1)∂zδr(1) + ∆x(1)b∂bδV(1) , (4.2.102)

where δD(2) is the equivalent of [|A|](2) = [|∂θs/∂θo|](2), which we show now. The

dominating terms are

δD(2) =
∂

∂θ
δθ(2) +

∂

∂φ
δφ(2) +

∂

∂θ
δθ(1)

∂

∂φ
δφ(1) − ∂

∂θ
δφ(1) ∂

∂φ
δθ(1) . (4.2.103)

Note the similarity to equation (2.20) of Di Dio et al. (2016). Now we need to make

sure the terms above are correctly calculated. Concerning the angles, we will just

look at θ and argue that with the appropriate factors sin θ the calculations extend

naturally to φ. Identifying A− Cαβeαeβ = 2Ψ, they are given by

δθ(1) = −
∫ r̄z

0

(
r̄z − r̄

r̄z r̄

)
∂θ

(
A− Cαβeαeβ

)
dr = ∂θψ(1), (4.2.104)

just as expected. This shows that the last two terms of (4.2.103) are simply the last

terms of equation (4.2.91). We want to show that the first two terms are equal to our

∂a[θa](2). For the second order angles, the leading parts are

δθ(2) r̄z = −
∫ r̄z

0
(r̄z − r̄) eθα

(
δΓ(2)α + ∆x(1)b∂bδΓα(1)

)
dr̄ . (4.2.105)

Here eθα is the α component of the unit vector in θ-direction. We expand the

contracted Christoffel symbols, δΓ, and interpret the sum in ∆x(1)b∂bδΓα(1) as a sum

only over the two transversal directions. Substituting ∆x(1)b∂b = θ(1)a∂a, the correct

expression becomes There is also a typo in their
equations (51) and (52) where
the angular derivative in the
third line should only act on
the metric components and not
on ∆xb.

δθ(2) = −
∫ r̄z

0

(
r̄z − r̄

r̄z r̄

)(
∂θΨ(2) + θ(1)a∂a∂θΨ(1)

)
dr̄ . (4.2.106)

This means the first two terms of equation (4.2.103) can be written as

∂aθ(2)a = ∆Ωφ(2) −
∫ r̄z

0

(
r̄z − r̄

r̄z r̄

)
∂b

(
∂aφ(1)∂a∂bΨ(1)

)
dr̄ . (4.2.107)

This formula matches equation (4.2.84), showing that indeed δD(2) = [|A|](2), all

pure lensing terms are included. For the remaining terms of equation (4.2.102),

we find the leading order contributions to be δr(2) = H−1∂rv(2) −H−1∆xb∂bδz(1).

Writing out the terms, we obtain

Hz∂zδr(2) − 2Hzκ∂zδr(1) = (4.2.108)

H−1∂2
r v(2) +H−1∂aφ(1)∂a∂2

r v(1) +H−2∂r
[
∂rv(1)∂2

r v(1)
]
− 2H−1κ(1)∂2

r v(1) ,

which directly matches the corresponding terms in equation (4.2.95). Since δ(2) is

left untouched here, we are missing terms relating to the Taylor expansion of δ(1),
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both radial and angular. Including these terms, we account for all leading order

contributions, but are still left with the last term of equation (4.2.102), ∆x(1)b∂bδV(1).

Expanding this expression gives

∆x(1)b∂bδV(1) = −2∂aφ(1)∂aκ(1) +H−1∂aφ(1)∂a∂2
r v(1) +H−2∂rv(1)∂3

r v(1) . (4.2.109)

However all these terms are already accounted for above in δD(2) and in Hz∂zδr(2)

respectively. The reason for this is clear. The three terms are the Taylor expansion

of rsd and the lensing term which are contained in the expressions for δr(2) and

δθ(2) above. We argue that adding also ∆x(1)b∂bδV(1) is double-counting this ef-Jaiyul Yoo agrees with this
finding (private

communications).
fect. Discarding this last term entirely in (4.2.102), the results (4.2.100) and (4.2.95)

agree.

4.2.6 Explicit extension to higher perturbative orders

The procedure developed in section 4.2.3 is easily used to derive the expression for

the dominant terms of higher perturbative orders in the number counts. Higher

orders will in particular be important to calculate the 1-loop corrections to the

power spectrum and bispectrum, where at least third order perturbative results are

needed.

Following the recipe, this time to third order, we arrive at the following expression

for the dominant third order terms,

∆(3) = [δ](3) + [rsd](3) + [|Aa
b|](3)

+δ(1)[rsd](2) + [δ(2)]rsd
(1) + δ(1)[|Aa

b|](2) + [δ(2)]|Aa
b|(1)

+ rsd
(1)[|Aa

b|](2) + [rsd](2)|Aa
b|(1) + δ(1)rsd

(1)|Aa
b|(1) , (4.2.110)

where all first and second order terms have already been calculated. The brackets

around the second and third order terms still serve as a reminder that these are not

simply the corresponding order term at the unperturbed position but we also have

to take into account the lower order terms X(3−n) with the deviation from the Born

approximation at order n. Note also that the separation of second order terms is

important, as it determines which cross terms appear at third order.



4.2 large scale structure 55

The third order leading contribution to the angles has already been calculated by

Fanizza et al. (2015) and we check our simple prescription against their result. We

obtain to third order, by including second order deviations of the photon path,

[θa](3) =− 2
∫ r(z)

0
dr

r(z)− r
r(z)r

(
∇aΨ(3)+∇bφ(1)∇b∇aΨ(2) + [θb](2)∇b∇aΨ(1)

+
1
2
∇bφ(1)∇cφ(1)∇b∇c∇aΨ(1)

)
= ∇aφ(3) − 2

∫ r(z)

0
dr

r(z)− r
r(z)r

(
∇bφ(1)∇b∇aΨ(2) +∇bφ(2)∇b∇aΨ(1)

− 2
[∫ r

0
dr′

r− r′

r r′
∇cφ(1)∇c∇bΨ(1)

]
∇b∇aΨ(1) +

1
2
∇bφ(1)∇cφ(1)∇b∇c∇aΨ(1)

)
.

(4.2.111)

The first two lines here match exactly the dominant contribution in the result of

Fanizza et al. (2015), when taking into account factors 1
2 and 1

3! in their definitions of

second and third order metric perturbations.

4.2.7 Galaxy count power spectrum

We will now calculate the first order observed galaxy count power spectrum. To this

end we need the result of equation (4.2.66). To find the power spectrum, we need to

extend the procedure following equation (2.2.17) to account for the derivatives and

integrals in our expression.

First, rewrite the result in terms of the velocity potential and convergence,

∆(1) = δ
(1)
ρ +H−1∂2

r v(1) − 2κ(1) (4.2.112)

where the convergence is κ = −∆2ψ/2. In order of appearance the three spherical

harmonic coefficients of this are Note I define the velocity
potential according to
v = −ikv – with a factor k
different than eg. Bonvin and
Durrer (2011). That is why I
have −k2 where they have k.

aδ
`m = (2π)−3

∫
d3k

∫
d2nY∗`m(n) exp(−ik · nr)δ(k, ηs)

=
1

2π2i`

∫
d3kj`(kr)Y∗`m(k̂)δ(k, ηs) (4.2.113)

av′
`m = (2π)−3 ∂2

r
H

∫
d3k

∫
d2nY∗`m(n) exp(−ik · nr)v(k, ηs)

=
1

2π2i`

∫
d3k

k2

H j′′` (kr)Y∗`m(k̂)v(k, ηs) (4.2.114)

aκ
`m = (2π)−3(−2)

∫ rs

0
dr

rs − r
rsr

∫
d3k

∫
d2nY∗`m(n)∆2 exp(−ik · nr)Ψ(k, η(r))

=
2

2π2i`

∫
d3kY∗`m(k̂)`(`+ 1)

∫ rs

0
dr

rs − r
rsr

j`(kr)Ψ(k, η(r)) (4.2.115)

In the last expression I use the fact that the spherical harmonic in the expansion of

the exponential is an eigenfunction of the Laplacian. Using the separation of the
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density, velocity and potential into transfer function times the primordial fluctuations

Φ, we may write a`m for the contribution A as

aA
`m(z) =

1
2π2i`

∫
d3kY∗`m(k̂)Φ(k)∆A

` (k, z) (4.2.116)

where the factors ∆` can be read off equations (4.2.113) to (4.2.115) as

∆δ
`(k, z) = j`(kr(z))Tδ(k, z) (4.2.117)

∆v′
` (k, z) = H−1 j′′` (kr(z))Tθ(k, z) (4.2.118)

∆κ
`(k, z) = 2`(`+ 1)

∫ r(z)

0
dr

r(z)− r
r(z)r

j`(kr)TΨ(k, r) (4.2.119)

I have here used that −k2Tv = Tθ where θ = ∂2v is the divergence of the velocity

field. Incidentally it is also the transfer function which is standard output of class.

With the notation CAB
` (z, z′) = 〈aA

`m(z)aB∗
`m(z

′)〉, we can now write down the general

result for the C`, which is

CAB
` (z, z′) =

1
4π4

∫
d3kd3k′Y`m(k)Y∗`m(k

′)〈Φ(k)Φ(k′)〉∆A
` (k, z)∆B

` (k
′, z′)

=
2
π

∫
dkk2P(k)∆A

` (k, z)∆B
` (k, z) (4.2.120)

Thus the power spectrum is, in total

C∆
` (z, z′) = Cδδ

` (z, z′) + Cv′v′
` (z, z′) + Cκκ

` (z, z′) + Cv′δ
` (z, z′) (4.2.121)

+ Cδv′
` (z, z′) + Cδκ

` (z, z′) + Cκδ
` (z, z′) + Cv′κ

` (z, z′) + Cκv′
` (z, z′)

For exactly equal z, these functions are manageable, even numerically. However for

slightly different redshift, we see that the arguments of the many different spherical

bessel function differ just enough to make beats – which have very high frequencies.

Numerically, this is very challenging. In the coming sections we will see how to

simplify this result on the flat sky, and how the answer compares to the exact answer

we have just found.

4.2.8 Galaxy count bispectrum

With the second order galaxy count perturbations calculated we may also find the

bispectrum solely induced by general relativistic effects. This will pollute any attempt to

find a primordial bispectrum, since we must determine the pollution to at least the

precision we wish to look for primordial bispectra.

With the notation just developped on the a`m it is easy to extend the calculation to

the ’product terms’ of the second order number count. These are all the terms except
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δ(2),H−1∂2
r v(2),−2κ(2). For such a real product term – the galaxy count is real after

all – it is clear that we may write

∆(2)(n, z) ⊃ ∆A(n, z)∆B(n, z) = ∑
`m

Y∗`m(n)(aA
`m(z))

∗∑
`m

Y∗`′m′(n)(aB
`′m′(z))

∗ (4.2.122)

aAB
`1m1

(z) =
∫

d2nY∗`1m1
(n)∆A(n, z)∆B(n, z) = ∑

``′mm′
Gm1mm′
`1``′

(aA
`m(z))

∗(aB
`′m′(z))

∗

(4.2.123)

It should then be clear, when forming correlators of the second order a`m and

two first order a`m – which is the lowest order correction to the bispectrum – one

encounters terms like

b(AB)CD =
〈

aAB
`1m1

(z1)aC
`2m2

(z2)aD
`3m3

(z3)
〉 (
Gm1m2m3
`1`2`3

)−1
(4.2.124)

= CAC
`2

(z1, z2)CBD
`3

(z1, z3) + CBC
`2

(z1, z2)CAD
`3

(z1, z3)

Note that the first order contributions ’decide’ the ` on the C`, however all the

three `s are intertwined in the selection rules of the Gaunt factor. The shorthand

subscript notation b is simply b ≡ b`1`2`3(z1, z2, z3) – the arguments are usually not

critical. The superscript letters tell which contribution is under consideration. The

parenthesis denotes the second order contribution. To complete the notation we have

to derive similar rules as equations (4.2.117) to (4.2.119) for the terms appearing in

equation (4.2.95). For the terms with no angular derivatives it is straight forward.

The terms we are missing can be calculated just as before, and they are

∂rδ→ ∆δ′
` (k, z) = Tδ

k
H j′`(kr) (4.2.125)

∂rv→ ∆v
` (k, z) = Tθ

1
k

j′`(kr) (4.2.126)

H−2∂3
r v→ ∆v′′

` (k, z) = Tθ
k
H2 j′′′` (kr) (4.2.127)

Ψ1 → ∆Ψ1
` (k, z) =

2
r

∫ r(z)

0
drj`(kr)TΨ(k) (4.2.128)

The term ψ is already given, since we have Remember the superscript κ

here really stands for the
contribution from −2κ to the
number count.

∆2ψ = (−2κ)⇒ ∆ψ
` (k, z) = − 1

`(`+ 1)
∆κ
`(k, z) (4.2.129)

We now only need to know how to treat the terms with angular derivatives. Using

equations (2.2.29) and (2.3.8), we may write for the simple terms ∇a A∇aB the

bispectra as

b(∇A∇B)CD =− A`1`2`3

√
`2(`2 + 1)`3(`3 + 1) (4.2.130)(

CAC
`2

(z1, z2)CBD
`3

(z1, z3) + CBC
`2

(z1, z2)CAD
`3

(z1, z3)
)

The last term I want to detail is the four-derivative lensing term, ∆2(∇Ψ1∇Ψ1)

which appears integrated over the lightcone. With the same identities as before, we

may immediately write this term as

∆2(∇aΨ1∇aΨ1) =∆2(∑
`m

a∇Ψ1∇Ψ1
`m Y`m) = −∑

`m
`(`+ 1)a∇Ψ1∇Ψ1

`m Y`m (4.2.131)
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This gives us the very simple expression for the associated bispectrum,

b∆2(∇Ψ1∇Ψ1)CD =A`1`2`3

√
`2(`2 + 1)`3(`3 + 1)`1(`1 + 1) (4.2.132)(

CΨ1C
`2

(z1, z2)C
Ψ1D
`3

(z1, z3) + CΨ1C
`2

(z1, z2)C
Ψ1D
`3

(z1, z3)
)

Let me compare this to the expression found in Di Dio et al. (2016), where the term

was split up into many pieces. In terms of the factors in front of the product of C`i

they calculate it as the sum of the following three terms

2(∇a∆2Ψ1)∇aΨ1 → A(1)
`1`2`3

√
`2(`2 + 1)`3(`3 + 1)(`2(`2 + 1) + `3(`3 + 1))

ð2Ψ1ð̄2Ψ→ A(2)
`1`2`3

√
(`2 + 2)!
(`2 − 2)!

√
(`3 + 2)!
(`3 − 2)!

(∆2Ψ1)
2 → `2(`2 + 1)`3(`3 + 1)

Looking to the results of section 2.3.1 we can rewrite A(2) in terms of A(1) and add

the three terms. The dominating terms – the leading order in `i – match. equa-

tions (4.2.124), (4.2.130) and (4.2.132) describe all the simple terms of the bispectrum.

We will in the flat sky calculation see what the physics of the different factors of A(1)

are.

Let me now briefly mention the remaining terms δ(2), v′(2), κ(2) and their associated

problems. The bare density perturbation can be calculated nicely, as has been done

in Di Dio et al. (2016) in terms of Legendre polynomials. Let us go through their

calculation and later on do it in the flat sky for comparison. We already have the

Newtonian result for the second order density perturbation in terms of the first

order. According to equation (3.2.15) it is

δ
(2)
ρ (n, z) = (2π)−3

∫
d3q1d3q2e−i(q1+q2)·nrF2(q1, q2)δ

(1)
ρ (q1)δ

(1)
ρ (q2) (4.2.133)

In terms of Legendre polynomials P` we may write F2, defined in equation (3.2.19)

as

F2(q1, q2) =
17
21

+
1
2

(
q1

q2
+

q2

q1

)
P1(q̂1 · q̂2) +

4
21

P2(q̂1 · q̂2)

= ∑
`,m

f`(q1, q2)
4π

2`+ 1
Y`m(q̂1)Y∗`m(q̂2) (4.2.134)

and we can thereby split up the second order density perturbation in three terms, that

we treat seperately. For the first term with no angular dependence, the calculation is

straight-forward. We have a completely separable term ∝ δ
(1)
ρ (n)δ(1)ρ (n) which can

be treated with equation (4.2.124). Let us however do all the terms in one go. Taking

the coefficients of the spherical harmonics of equation (4.2.133) we get

aδ(2)
`1m1

=
(4π)3

(2π)6

∫
dk1k2

1dk2k2
2 ∑
``′`′′mm′m′′

i`
′+`′′ f`(k1, k2)∆δ

`′(k1r)∆δ
`′′(k2r)Gm1m′m′′

`1`′`′′∫
d2k̂1d2k̂2Y`′m′(k̂1)Y`′′m′′(k̂2)Y`m(k̂1)Y∗`m(k̂2)Φ(k1)Φ(k2) (4.2.135)
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where the sum over ` goes to 2 and `′, `′′ go to infinity. Taking a correlator with two

first order a`m as defined in equation (4.2.116) we get

〈aδ(2)
`1m1

aC
`2m2

aD
`2m2
〉 = 16

π2 ∑
``′`′′mm′m′′

∫
dk1k2

1dk2k2
2P(k1)P(k2) f`(k1, k2) (4.2.136)

i`
′+`′′−`2−`3(−1)m+m′+m′′∆δ

`′(k1)∆δ
`′′(k2)G−m1m′m′′

`1`′`′′
(2`+ 1)−1(

∆C
`2
(k1)∆D

`3
(k2)G−m2−m′m

`2`′`
Gm3m′′m
`3`′′`

+ ∆C
`2
(k2)∆D

`3
(k1)Gm2m′′m

`2`′′`
G−m3−m′m
`3`′`

)
This form is unfortunately not very enlightening. The velocity and gravitational

potential terms suffer even worse fates. Both of these have a factor k−2 that we cannot

easily get rid of. The calculations are written in Di Dio et al. (2016) and I will not

repeat it here. Suffice to say the calculation is long, and the numerical computation

of the terms, even worse. As we shall see, however, this calculation does simplify on

the flat sky. We will be able to reduce the number of integral drastically, to the point

that the eg. the second order lensing contribution has just one integral.

Let me finally list explicitly how all the permutations come out. Remember, each `i

in the bispectrum has both a first and second order contribution, which interact with

the two others. Therefore, writing the first and second order number counts as sums

of the individual contributions A and (BB′) for first and second order respectively,

we can write the bispectrum as a sum over all these,

∆ =∑
A

∆A + ∑
(BB′)

∆(BB′) ⇒ a`m = ∑
A

aA
`m + ∑

(BB′)
a(BB′)
`m (4.2.137)

b = ∑
(AB),C,D

b(AB)CD + bC(AB)D + bCD(AB) (4.2.138)

where each of the terms b contain 2 products of C`s. With three first order terms and

12 simple second order contributions, this sum contains 12× 2× 2× 3× 2 = 288

terms for each ` – and this is just the contaminating GR contribution. Seeing as

integrals over spherical Bessel functions are hard enough as it is, it is imperative

that we simplify the computations as much as possible. This can be done in the flat

sky.

4.2.9 Computing the primordial bispectrum of the galaxy number count

We also need to know how a primordial bispectrum looks in the galaxy number

counts. Due to the somewhat simpler nature of the galaxy counts, this will be

computationally easier than the corresponding CMB calculation. In particular the

transfer functions will not be integrals. I denote the primordial part with a tilde to
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distinguish it from the GR part of the bispectrum. Inserting equation (4.2.116) and

taking the correlator we get

b̃ABC =(Gm1m2m3
`1`2`3

)−1〈aA
`1m1

aB
`2m2

aC
`3m3
〉 = (4.2.139)(

2
π

)3 ∫
dk1k2

1dk2k2
2dk3k2

3dxx2B(k1, k2, k3)

× j`1(k1x)j`2(k2x)j`3(k3x)∆A
`1
(k1, z1)∆B

`2
(k2, z2)∆C

`3
(k3, z3)

I have here written out the delta function as the integral over an exponential function.

The exponential is then expanded in spherical harmonics and spherical Bessel func-

tions, and the angular part integrated out to give the Gaunt integral, as follows

〈ΦΦΦ〉 = B(k1, k2, k3)
∫

d3x exp(ix · (k1 + k2 + k3)) = (4.2.140)

8B(k1, k2, k3) ∑
`i ,mi

i`1+`2+`3Gm1m2m3
`1`2`3

Y`1m1(k̂1)Y`2m2(k̂2)Y`3m3(k̂3)

×
∫

dx x2 j`1(k1x)j`2(k2x)j`3(k3x)

The spherical harmonics of the momenta are then integrated out and gets rid of the

sum over `i, mi.

While the integral in equation (4.2.139) is in principle the correct answer, it is not

quite the right answer. The four integrals over what is effectively a delta function is

simply not numerically feasible. What we need is again a flat sky calculation, which

we finally get to next.

4.2.10 Computing the bispectrum of the galaxy number count on a flat sky

I now want to derive the flat sky approximation for the galaxy number counts. This

consists of two steps. First we find all the flat sky C`s, which give us a large part of

the GR induced bispectrum. Second, we do a calculation similar to section 4.1.2 to

find the primordial part of the galaxy count bispectrum.

Let us begin with the flat sky C(`) calculations. Because the lensing terms have

integrals in them already, we end up treating the two different ’kinds’ of first order

contributions slightly differently. Along with the calculation I will compare our

calculations here with the full sky results, from which we will gain valuable insight

into both physics and computational aspects. First look at the density term. I call

the Fourier transform aA(`) as a reminder that it should end up corresponding to

the full sky results. We have for the density term

aδ(`, z) =
∫

d2nei`·nδ(n, z) ≈
∫

d2n
∫ d3k

(2π)3 ei(`−k⊥rs)·ne−ikzrs Tδ(k, ηs)Φ(k)

(4.2.141)
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I here make the approximation that k · x ≈ rsk⊥ · n + kzrs, meaning the n only spans

a small square on the flat sky, and I can split up the contributions. This also re-

introduces the perpendicular, or screen, direction, denoted by ⊥ and the z-direction.

Doing this approximation allows me to perform the d2n integral, and I get

aδ(`, z) ≈ (2π)−1
∫

d3kδ(`− k⊥rs)e−ikzrs T(k, ηs)Φ(k) (4.2.142)

To make further progress we need to calculate correlators to get rid of the initial

perturbations. Doing so with two density contributions, we get

〈aδ(`, z)aδ(`′, z′)∗〉 = (2π)
∫

d3kδD(`− k⊥rs)δ
D(`′ − k⊥r′s)T(k, ηs)T(k, η′s)P(k)e−ikzrs+ikzr′s

(4.2.143)

To proceed, we do a Limber approximation, as described by Bernardeau et al. (2011):

we realise that the exponential function kills the integral unless rs ≈ r′s. That allows

us to everywhere put z ≈ z′ ⇒ rs ≈ r′s. So apparently, in the Limber approximation, Note that this means we have
little hope for this
approximation when z1 and z2

are very different. As it turns
out, we will get a reasonable
order-of magnitude, however
the exact number cannot be
trusted for redshift differing by
more than about a half.

only same-z correlators are important for the density contrast. This is well reflected

in the full-sky computation. The two 2-dimensional delta functions in k⊥ now have

the same argument only if ` = `′, in which case we get a number of rs out from

the integral and a delta function in `. Anticipating the form of the correlator, we

therefore write

〈aδ(`, z)aδ(`′, z′)∗〉 = (2π)2δ(`− `′)(2πrsr′s)
−1
∫

dkzT(k, ηs)T(k, η′s)P(k)e−ikzrs+ikzr′s

(4.2.144)

where k⊥ = `/rs ≈ (` + 1/2)/rs ≈
√
`(`+ 1)/rs and k =

√
k2
⊥ + k2

z. We notice

that the integral for negative and positive kz are complex conjugates, and therefore

write

〈aδ(`, z)aδ(`′, z′)∗〉 ≈ (2π)2δ(`− `′)
1

πrsr′s

∫ ∞

0
dkzT(k, ηs)T(k, η′s)P(k) cos(kz(rs − r′s))

(4.2.145)

from which we read off

Cδδ(`) =
1

πrsr′s

∫ ∞

0
dkzT(k, ηs)T(k, η′s)P(k) cos(kz(rs − r′s)) (4.2.146)

Notice that the integral is over kz, not k. This will be important in what follows –

and for computational purposes. Let us immediately check how the result compares

to the full answer. To do that, we need a fantastic approximation for the spherical

Bessel functions, which is given by Mukhanov (2004), This approximation is his
equation (60)

j`(x) ≈
{

0 x < ν

x−1/2(x2 − ν2)−1/4 cos(
√

x2 − ν2 − ν arccos(ν/x)− π/4) x > ν

(4.2.147)
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Figure 6: Illustration of the approximation of the spherical bessel function by

equation (4.2.147). We see astonishing agreement at values of x only slightly larger

than ν. The divergence at x = ν does not cause any problems, as the further

calculations show.
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where ν = `+ 1/2. This approximation for ` = 1, 10, 100 is illustrated in figure 6.

We now use this approximation in the calculation of equation (4.2.120) with two

density contributions

Cδδ
` (z, z′) =

2
π

∫
dkk2P(k)Tδ(k, ηs)Tδ(k, η′s)j`(krs)j`(kr′s) (4.2.148)

Separating off the two spherical Bessel functions and the factor k2, we have

j`(krs)j`(kr′s)k
2 ≈ k

kzrsr′s
cos(kzrs − ν arccos(ν/krs)− π/4) cos(kzr′s − ν arccos(ν/kr′s)− π/4)

(4.2.149)

This product of cosines can be written as beats. For small differences rs − r′s, this

leaves us with a low frequency, which we keep, and a high frequency we can

disregard. Neglecting the difference in the arccos which decreases at large k, this

simply leaves us with

cos(kzrs − π/4) cos(kzr′s − π/4) ≈ 1
2
(cos(kz[rs − r′s]) + high frequency) (4.2.150)

The prefactor k/kz helps us change the measure, as we have dkz = kdk/kz. Inserting

this in the original integral, we get

C` ≈
1

πrsr′s

∫ ∞

0
dkzT(k, ηs)T(k, η′s)P(k)(cos(kz(rs − r′s))) , (4.2.151)

Where the lower limit of the integral has changed due to the approximation of the

spherical Bessel function. It is now clear that the lower of the beat frequencies gives

us the flat sky approximation. The high frequency quite simply oscillates too quickly

to pick out any features in the transfer functions or primordial power spectrum. This

means that when we compute the C` in the flat-sky approximation, we can live with

sampling the integral over k much less, since we do not need to resolve the high

frequency at all.

Let us then see how the lensing term behaves. We start off as before with Fourier

transforming the lensing term −2κ,

aκ(`, z) =
∫

d2n
∫ d3k

(2π)3 ei`·n
∫ rs

0
dr

rs − r
rsr

(−k2
⊥r2)e−ik⊥ ·nre−ikzr2TΨ(k, η)Φ(k)

= (2π)−1
∫

d3k
∫ rs

0
dr

rs − r
rsr

(−k2
⊥r2)δ(`− k⊥r)e−ikzr2TΨ(k, η)Φ(k)

(4.2.152)

where I have differentiated the exponential twice to get the factor (−k2
⊥r2) down

– this factor will turn out to be just −`(` + 1), as we know it from the full sky

calculation. Like before, we now take a lensing-lensing correlator,

〈aκ(`, z)aκ(`′, z′)∗〉 = 2π
∫

d3k
∫ rs

0
dr

rs − r
rsr

∫ r′s

0
dr′

r′s − r′

r′sr′
δ(`− k⊥r)δ(`′ − k⊥r′)

× 4TΨ(k, η)TΨ(k, η′)P(k)(k2
⊥rr′)2e−ikz(r−r′) (4.2.153)
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Now we do a Limber approximation, however slightly differently than before.

Following Bernardeau et al. (2011) Equation (42), I simply exchange the integral over

kz to a delta function in r − r′ and a factor 2π, while simply setting kz = 0. That

allows me to do the r′ integral – assuming z′ ≥ z to make sure I ’catch’ the delta

function – and in turn do the k⊥ integral. I end up with

〈aκ(`, z)aκ(`′, z′)∗〉 = δ(`− `′)(2π)2
∫ rs

0
drr−2 rs − r

rsr
r′s − r

r′sr
4TΨ(k, η)2P(k)(`[`+ 1])2

(4.2.154)

where k ≈ k⊥ ≈
√
`(`+ 1)/r. To make this result look more familiar, we change

variables from r to k. Taking out just the C(`) we get

Cκκ(`) = 4
∫ ∞

l/rs
dk

rs − r
rsr

r′s − r
r′sr

TΨ(k, η)2P(k)(`[`+ 1])3/2 (4.2.155)

where we have r =
√
`(`+ 1)/k and so η = η0 −

√
`(`+ 1)/k. To compare this

with the full sky calculation, we need the following approximation,∫ b

a
dχF(χ)j`(χk) ≈

√
π

2
F(
√
`(`+ 1)/k)

1
k(`[`+ 1])1/4 (4.2.156)

We can use this directly on equation (4.2.119) to get

∆κ
`m(k, z) ≈

√
2π(`[`+ 1])3/4

√
k

rs − r
rsr

TΨ(k, η) (4.2.157)

where again r =
√
`(`+ 1)/k and η = η0 −

√
`(`+ 1)/k. From this we get the

following power spectrum

Cκκ
` (z, z′) = 4

∫
dkP(k)TΦ+Ψ(k, η)2(`[`+ 1])3/2 rs − r

rsr
r′s − r

r′sr
(4.2.158)

which is what we anticipated. It is indeed encouraging that two different ways of

approximating the same thing agree. The only difference is the lower limit in the

integral, which in the flat sky was determined by the lowest redshift conformal

distance. As is evident, that small distinction is unimportant.

We have now seen that the two terms behave somewhat differently, and need different

approximations. It is therefore interesting to see how they behave together in a

mixed-term Cδκ
` . As it turns out, this will completely remove all the integrals. Taking

the correlator of equations (4.2.142) and (4.2.152) we get

〈aδ(`, z)aκ(`′, z′)〉 (4.2.159)

= 2π
∫

d3k
∫

drδ(`− k⊥rs)δ(`
′ − k′⊥r)2Tδ(k)TΨ(k)P(k)

r′s − r
r′sr

exp(ikz(rs − r))

≈ (2π)2δ(`− `′)2P(k)Tδ(k, ηs)TΨ(k, ηs)
r′s − rs

r′srs

`(`+ 1)
r2

s

Where k ≈ `/rs, and rs the distance to the density perturbation – which has to be in

front ie. z < z′. What happens here is the integral over kz is Limber approximated by
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a delta function in rs− r and a factor 2π. Inserting this delta function we can do the r

integral from the lensing term, which latches on to r = rs. Evidently, the contribution

to the mixed term depends only on the lensing at the location of the foreground

galaxy. This makes sense, since we are correlating the lensing of the background

with the density of the foreground. Conversely a galaxy in the background will

hardly be lensed by the foreground.

The comparison with the full calculation requires two Limber approximations in the

form of equation (4.2.156). First we again approximate the ∆κ
` which gives us

Cδκ
` =

2
π

∫
dkP(k)j`(krs)Tδ(k, ηs)TΦ+Ψ(k, ηs)

√
π

2
(`[`+ 1])3/4k

r′s − r
r′sr

(4.2.160)

When we again apply equation (4.2.156), we get exactly the desired result.

All these calculations speed up the C` computations we are going to need. The speed-

up comes mainly from lower sampling rates – as we saw, eg. the high frequencies of

the Bessel function beats are approximated away.

We are of course going to need to calculate all the terms required for the C`. However,

let us first generalize what we just saw to make future calculations easier. I will

split the terms into two groups, the density-like and lensing-like. The defining

difference is the integral. The lensing-like terms are κ, Ψ1, ψ, and all the remaining

are density-like: δ, δ′, v, v′, v′′. The two types of terms can be written in the following

way,

∆D(n) = f (n)⇒ aD(`) = (2π)−1
∫

d3kδ(`− k⊥rs)e−ikzrs ∆D(k, ηs)Φ(k) (4.2.161)

∆L(n) =
∫

dr f (n)⇒ aL(`) = (2π)−1
∫

d3k
∫

drδ(`− k⊥r)e−ikzr∆L(k, η)Φ(k)

(4.2.162)

where in each case f (n) = (2π)−3
∫

d3k∆(k, η)Φ(k) exp(−ik · nrs). This makes for

three different combinations in the C`s, given by 〈∆∆〉 = (2π)2δ(`− `′)C`. Following

the explicit derivations from before we have

CDD
` = (πrsr′s)

−1
∫

dkz cos(kz[rs − r′s])∆
D
1 (k, ηs)∆D

2 (k, η′s)P(k) (4.2.163)

CLL
` = [`(`+ 1)]−1/2

∫
dk∆L

1 (k, η)∆L
2 (k, η)P(k) (4.2.164)

CDL
` = r−2

s ∆D(k, ηs)∆L(k, ηs)P(k) zD < zL (4.2.165)

In these expressions, the different variables are given by eg. η = η0 − r and r =√
`(`+ 1)/k. In the last one, we have k =

√
`(`+ 1)/rs and kz = 0. I already
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found the density and lensing transfer functions explicitly. All the relevant transfer

functions are

∆δ
D = Tδ(k, z) (4.2.166)

∆δ′
D = (−i)

kz

HTδ(k, z) (4.2.167)

∆v
D = i

kz

k2 TΘ(k, z) (4.2.168)

∆v′
D =

(
kz

k

)2
H−1TΘ(k, z) (4.2.169)

∆v′′
D = (−i)

k3
z

k2H2 TΘ(k, z) (4.2.170)

∆κ
L = 2

rs − r
rsr

TΨ(k, z)`(`+ 1) (4.2.171)

∆ψ
L = −2

rs − r
rsr

TΨ(k, z) (4.2.172)

∆Ψ1
L = 2r−1

s TΨ(k, z) (4.2.173)

As an example of the radially differentiated contributions, let me explicitly deriveSome of these transfer
functions are apparently

imaginary. However, a glance
at equation (4.2.95) shows that

any one of the imaginary
functions is always multiplied
by another imaginary transfer
function. Specifically, we only
encounter the products (v, v′′)

and (δ′, v). We see that for
both products, the i’s cancel.

We may therefore simply leave
them out when computing the

transfer functions numerically.

the v′ transfer function.

∆v′(n, z) = H−1∂2
r

∫ d3k
(2π)3 exp(−ik · nrs)

−TΘ(k, z)
k2 Φ(k) (4.2.174)

where I use that −k2Tv = TΘ. The partial derivative now pulls out −(k · n)2 ≈ −k2
z.

We thus see immediately the claimed result

∆v′
D =

(
kz

k

)2
H−1TΘ(k, z) (4.2.175)

It is again insightful to compare this with the full calculation. Equation (4.2.118)

contains a differentiated spherical Bessel function. We may approximate that as

follows,

j′′` =

(
`(`+ 1)

x2 − 1
)

j` − 2j′`/x ≈
(
`(`+ 1)

x2 − 1
)

j` (4.2.176)

where I throw away the term suppressed by x. Inserting x = krs and the approxima-

tion k⊥ ≈
√
`(`+ 1)/rs we see that the parenthesis in front reduces to (kz/k)2. This

means the full sky transfer function is approximated as

∆`(z, k) = −H−1TΘ(k, z)j′′` (krs) ≈ TΘH−1
(

kz

k

)2
j`(krs) (4.2.177)

Now calculating the C` we again use equation (4.2.147) and the calculation that

follows to find the flat sky result. Note the similarity between equations (4.2.175)

and (4.2.177), the only difference is the spherical Bessel function. This behavior

mimics what happens for the density contribution. Unlike the density however, we

see here, that on the flat sky, the correlation between the velocity field and the lensing

is strictly zero, since the former contains a factor kz. This approximate zero helps a
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great deal to shorten our computations. This fact makes a lot of sense physically –

the density or rather the gravitational potential, is doing the lensing, not the velocity

of the galaxies. The effect of the velocity as such is not part of the dominating

contribution to the power spectrum.

Figures 7 to 11 show how the flat sky calculations compare with the computations

coming from the public code class, written by Lesgourgues (2011). These com-

putations are done for a standard ΛCDM universe, the parameters of which are

immaterial. Do note the changing y-axes. From the last figure it should be clear

why we need the lensing contribution, which is a purely general relativistic effect.

For very different redshift, it and especially its correlation with the density field far

outshines both the density and rsd contributions – although with different signs.

So, if we hope to make use of the correlations between redshift bins, we absolutely

must include lensing effects. For these very different redshifts, both computations

even look like simple numerical artefacts – the density and rsd look alike in the

two different computations, even though across the computations they look nothing

alike. It is therefore nice that the lensing contribution dominates, so we can worry

less about these problems. We are in a sense lucky that as the accuracy of the density

computation degrades, its importance also fades.

We in principle only need to insert the flat sky C` expressions we just calculated in

the expression for the bispectrum we already calculated on the full sky. It is however

amusing to see how the angular derivatives behave on the flat sky, to see explicitly

that the factors A(1)
` are just cosines of angles between `-vectors. Let us therefore

write down a generic expression with angular derivatives,

∇aB∇aC = (−ikBrB) · (−ikCrC)BC (4.2.178)

We thereby expand the expression BC by minus the dot product of what turn into

the corresponding `s. Both D and L-like transfer functions have delta functions

surrounding them, meaning the dot product we get in front of BC is simply −`B · `C.

This should not be surprising at all. Looking at equation (2.3.13) this is exactly what

we expect to get once all the expectation values have been taken, and the two initial

`s become `2, `3. Remember that outside the flat sky bispectrum we have a delta

function in ∑ `i making sure the `s form a triangle. This is reminiscent of what

happened in the ∆κ calculation, where the ∆2 pulls down two factors kr, which turn

into the known `(`+ 1).

The calculations so far have focused on the product-terms of the bispectrum. The

terms coming from the Newtonian calculation are not quite as simple. The density

term δ(2), as it turns out, is manageable. We can write it in the same way as we have



68 observations on the sky

200 400 600 800 1000

0

2

4

6

(
+

1)
C

Only 

200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

(
+

1)
C

Only H 1 2
r v

200 400 600 800 1000

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

(
+

1)
C

Only  2

200 400 600 800 1000

0

2

4

6

8

10

(
+

1)
C

Figure 7: Galaxy count power spectrum computed by class in cyan lines and by the flat sky approximation

we calculated in orange dashed lines. The top three show the individual contributions from density, rsd , and

lensing. The bottom plot includes the correlations as well. Here calculated for z1 = z2 = 1. For equal redshifts,

evidently, it is an excellent approximation, including the fact that rsd and lensing do not correlate.
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Figure 8: Normalized difference of the galaxy count power spectra computed by class and by the flat sky

approximation. Here calculated for z1 = z2 = 1. The difference for equal redshift is evidently kept at about

permille level.
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Figure 9: Galaxy count power spectrum computed by class in cyan lines and by the flat sky approximation we

calculated in orange dashed lines. Here calculated for z1 = 1, z2 = 1.02. Even for slightly different redshifts, it

remains an excellent approximation.
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Figure 10: Normalized difference of the galaxy count power spectra computed by class and by the flat sky

approximation. Here calculated for z1 = 1, z2 = 1.02. The wiggles, to very high and very low differences line

up with the zero-points and accidental intersections of the two computations. We see here, that the precision

is still at the sub-percent level.
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Figure 11: Galaxy count power spectrum computed by class in cyan lines and by the flat sky approximation

we calculated in orange dashed lines. Here calculated for z1 = 1, z2 = 2. For different redshifts, evidently, the

D-like computation is not very accurate anymore. The lensing contribution continues to be well-approximated

by the flat sky however, as does the cross-correlation between it and the density.
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the previous terms, with only few modifications. First we write F2(p, q) as a sum of

separable terms,

F2(p, q) =
5
7
+ (p2q2)−1

{
1
2
(p⊥ · q⊥ + pzqz)(p2 + q2) +

2
7
(p⊥ · q⊥ + pzqz)

2
}

(4.2.179)

where the dot product of screen-momenta are written as p⊥ · q⊥ → −A`1`2`3 p⊥q⊥.

Since we are now multiplying on extra factors of kz, we will need extra transfer

functions, given by

∆(1)δ = kzTδ(k, z) (4.2.180)

∆(2)δ = k2
zTδ(k, z) (4.2.181)

The extra factors of p, q need only be inserted once we calculate the power spectrum

of these contributions. These are defined as follows,

Cδ(i)D
`,−2 = (πrsr′s)

−1
∫

dkz cos(kz[rs − r′s])∆
(i)δ(k, ηs)∆D(k, η′s)P(k)k−2 (4.2.182)

Given all these expressions, we are able to do a straight forward computation of the

bispectrum induced by the second order Newtonian density perturbation, which I

remind is

δ(2) = (2π)−6
∫

d3 pd3qF2(p, q)δ(p)δ(q)exp(i[p + q] · nr) (4.2.183)

Correlating this contribution with either D- or L-like first order contributions lead

to many different terms. The contributions to the bispectrum bδ(2)XX are listed

in tables 1 and 2, with the expression in F2 on the left and the final bispectrum

contribution from one such term on the right. As for the rsd contributions, we

have here that all kz are zero when a lensing contribution is involved. That means

many of the terms can be thrown away to avoid wasting time. There are, however,

still many new terms, and with them many new C` to calculate. However, we still

see the factorization into the contributions of products of C`, which brings down

the computing time. As already mentioned, this does not happen as easily for the

second order Newtonian potential and rsd contributions. It is however possible to

simplify the lensing computations on the flat sky.

The second order potential from the Newtonian evolution is

Ψ(n)(k, η) = −3H2Ωm(η)

2k2 δ(n)(k, η) (4.2.184)

The lensing contribution is then `(`+ 1) times the weighted integral of minus twice

this quantity over the past lightcone. We would now like to calculate the bispectrum

contribution coming from this term and two first order terms. To that end, let us

first write down the coefficient from the contribution −2κ(2),

aκ(2)(`) =
3H2Ωm(η)`(`+ 1)

(2π)4

∫ rs

0
dr

rs − r
rsr

∫
d3kk−2e−ikzrs δ(k⊥r− `)

×
∫

d3 pd3qδ(k− p− q)F2(p, q)δ(1)(p)δ(1)(q) (4.2.185)
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5/7 5/7CδD2
`2

(z1, z2)C
δD3
`3

(z1, z3)

1
2 p−2 p⊥ · q⊥ −A`1`2`3`2`3(2r2

1s)
−1CδD2

`2,−2(z1, z2)C
δD3
`3

(z1, z3)

1
2 q−2 p⊥ · q⊥ −A`1`2`3`2`3(2r2

1s)
−1CδD2

`2
(z1, z2)C

δD3
`3,−2(z1, z3)

1
2 p−2 pzqz

1
2 Cδ(1)D2

`2,−2 (z1, z2)C
δ(1)D3
`3

(z1, z3)

1
2 q−2 pzqz

1
2 Cδ(1)D2

`2
(z1, z2)C

δ(1)D3
`3,−2 (z1, z3)

2
7 p−2q−2(p⊥ · q⊥)2 2(A`1`2`3)

2`2
2`

2
3(7r4

1s)
−1CδD2

`2,−2(z1, z2)C
δD3
`3,−2(z1, z3)

4
7 p−2q−2 p⊥ · q⊥pzqz −4A`1`2`3`2`3(7r2

1s)
−1Cδ(1)D2

`2,−2 (z1, z2)C
δ(1)D3
`3,−2 (z1, z3)

2
7 p−2q−2 p2

zq2
z

2
7 Cδ(2)D2

`2,−2 (z1, z2)C
δ(2)D3
`3,−2 (z1, z3)

Table 1: Contributions to the bispectrum due to the second order Newtonian density

perturbation and two D-like first order contributions. The term in F2 on the left gives

the bispectrum contribution on the right.

5/7 5/7CδL2
`2

(z1, z2)C
δX3
`3

(z1, z3)

1
2 p−2 p⊥ · q⊥ − 1

2 A`1`2`3(`2/`3)C
δX2
`2

(z1, z2)C
δL3
`3

(z1, z3)

1
2 q−2 p⊥ · q⊥ − 1

2 A`1`2`3(`3/`2)C
δX2
`2

(z1, z2)C
δL3
`3

(z1, z3)

1
2 p−2 pzqz 0

1
2 q−2 pzqz 0

2
7 p−2q−2(p⊥ · q⊥)2 2

7 (A`1`2`3)
2CδL2

`2
(z1, z2)C

δX3
`3

(z1, z3)

4
7 p−2q−2 p⊥ · q⊥pzqz 0

2
7 p−2q−2 p2

zq2
z 0

Table 2: Contributions to the bispectrum due to the second order Newtonian density

perturbation and either two L-like first order contributions, or one L- and one D-like

contribution. I denote here either D or L by X. The term in F2 on the left gives the

bispectrum contribution on the right.
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We would now like to calculate the correlators with both D- and L-like first order

contributions, which behave slightly differently. First, I take two D-like contribu-

tions,〈
aD

1 aD
2 aκ(2)

3

〉
=6H2`3(`3 + 1)

∫ r3s

0
dr

r3s − r
r3sr

∫
d3k1d3k2d3 pd3q

× (p + q)−2e−ik1zr1s−ik2zr2s−i(pz+qz)r (4.2.186)

× δ(k1⊥r1s − `1)δ(k2⊥r2s − `2)δ([p⊥ + q⊥]r− `3)

× ∆D
1 (k1, η1)∆D

2 (k2, η2)F2(p, q)Tδ(p, η)Tδ(q, η)

× δ(p + k1)δ(q + k2)P(k1)P(k2)Ωm(η)

=6H2`3(`3 + 1)
∫ r3s

0
dr

r3s − r
r3sr

∫
d3k1d3k2

× (k1 + k2)
−2e−ik1z(r1s−r)−ik2z(r2s−r)

× δ(k1⊥r1s − `1)δ(k2⊥r2s − `2)δ([k1⊥ + k2⊥]r− `3)

× ∆D
1 (k1, η1)∆D

2 (k2, η2)F2(k1, k2)Tδ(k1, η)Tδ(k2, η)P(k1)P(k2)Ωm(η)

where a factor two appears from the two permutations of the expectation value

combined with the symmetry p ↔ q of the lensing contribution. We now wish to

Limber approximate the exponentials. However, let us first rewrite the argument of

the exponential, so the symmetry 1↔ 2 is more apparent. We rewrite the argument

as

k1z(r1s − r) + k2z(r2s − r) =
k1z + k2z

2
(r1s + r2s − 2r) +

k1z − k2z

2
(r1s − r2s)

(4.2.187)

Changing variables from k1z, k2z to k± = (k1z ± k2z)/2 introduces a jacobian factor of

2 in the integral. We then Limber approximate the k+ integral by setting k+ = 0 and

inserting (2π)δ(r1s + r2s − 2r). Integrating out the r using the delta function gives

a factor 1/2, which cancels with the jacobian. This naturally requires the lensing

contribution to be in the background, z3 > z1, z2. Having done these integrals, we

may integrate out the screen-k, and approximate the last delta function as over the

sum of the `i. Thus we end up with

bDDκ(2) ≈− 6H2Ωm(η1)`3(`3 + 1)
2πr2

1sr
2
2s

2r3s − r1s − r2s

r3s(r1s + r2s)

∫ ∞

−∞
dk−e−ik−(r1s−r2s)

r1s + r2s

2`3
∆D

1 (k1, η1)∆D
2 (k2, η2)F2(k1, k2)T3(k1, η1)T3(k2, η2)P(k1)P(k2)

=− 6H2Ωm(η1)(`3 + 1)
2πr2

1sr
2
2s

× 2r3s − r1s − r2s

r3s
(4.2.188)∫ ∞

0
dkz cos(kz[r1s − r2s])∆D

1 (k1, η1)∆D
2 (k2, η2)F2(k1, k2)Tδ(k1, η1)Tδ(k2, η2)P(k1)P(k2)

where in the last line I write k− = k1z = −k2z ≡ kz. We have thereby reduced the

number of integrals for this contribution to the bispectrum to just one. The important

thing happening for the lensing term is that the Limber approximation makes sure

the sum of kiz is zero. That means the problematic term k−2, which on the full
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sky completely hinders the computation of this term, now does reduce, and in fact

is entirely unproblematic. For the last integral, one may simply insert the explcitDo note that this fact rests on
the appearance of the integral.

For the corresponding rsd

contribution, this does not
happen for the DDv′(2)

contribution, which will have
two integrals over a kernel G2.

expression from equation (4.2.179) and use the fact that the screen-k are given by

`i/ris. That means we can write the kernel F2 as a function of just the kz, given the

`i,

F2(kz) =
5
7
+ (k2

1k2
2)
−1

{
− 1

2
(A`3`1`2`1`2/(r1sr2s) + k2

z)(k
2
1 + k2

2)

+
2
7
(A`3`1`2`1`2/(r1sr2s) + k2

z)
2

}
(4.2.189)

where the sizes are given by k2
i = k2

z + `2
i /r2

is.

The generalisation of this result to the DLκ(2) and LLκ(2) cases is straight-forward.

The only change is the integrals over r2 and r1 instead of fixed ri = ris. For the

DL case, we therefore insert another integral over rs in equation (4.2.186). This

integral stays in place all the way to the result, where now we allow another

Limber approximation. That means instead of writing the exponential as two times

cosine, we now Limber approximate the kz integral by setting kz = 0 and inserting

2πδ(r1s − r2). The integral over r2 is then performed, provided z2 > z1, and we end

with the result

bDLκ(2) ≈− 6H2Ωm(η1)(`3 + 1)
r4

1s
× r3s − r1s

r3s
(4.2.190)

∆D
1 (k1, η1)∆L

2 (k2, η1)F2(0)Tδ(k1, η1)Tδ(k2, η1)P(k1)P(k2)

This time with no integrals left. Note that in this case, the kz = 0, and eg. rsd

contribution vanish. The kernel is furthermore evaluated at zero, where it is given

by the somewhat simpler expression

F2(0) =
5
7
+

{
−1

2
A`3`1`2

(
`1

`2
+

`2

`1

)
+

2
7

A`3`1`2
2
}

(4.2.191)

Finally, setting all contributions to be lensing is to include yet another integral over

r1. That means the answer this time is

bLLκ(2) ≈−
∫ r1s

0
dr

6H2Ωm(η)(`3 + 1)
r4 × r3s − r

r3s
(4.2.192)

∆L
1 (k1, η)∆L

2 (k2, η)F2(0)Tδ(k1, η)Tδ(k2, η)P(k1)P(k2)

Having reduced the number of integrals from five to just one, this term is now easily

computed along with the rest. The results are generally not separable in the `i as

the product terms and the δ(2) term are. That means the computations scale as `3
max

instead of simply `max. If one is to calculate this for a very large number of `, it is

possible to further write the expressions with the `3 factorized out. This can be done

by writing out A`3`1`2 in F2 and extracting the `3 term.
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The splitting of the terms into results with different numbers of integrals is also

exhibited in the calculation of the primordial contribution to the bispectrum, which

we calculate next.

4.2.11 Computing the primordial galaxy bispectrum on a flat sky

Now let us look at the galaxy bispectrum coming from a primordial bispectrum on

a flat sky. I remind that this computation is all but impossible on the full sky. It

is therefore very important to calculate on the flat sky. We have already calculated

the relevant a(`), and now simply need to calculate the correlators given an initial

bispectrum. Because of the classification into D- and L-like transfer functions, we

will have four different bispectrum calculations – one for each combination of types

of transfer functions. Like before, some will be simpler than others, as more integrals

are taken off the calculation. I first do the DDD correlator,

〈aD
1 (`1)aD

2 (`2)aD
3 (`3)〉 = (4.2.193)

(2π)−3
∫

d3k1d3k2d3k3δ(k1⊥r1s − `1)δ(k2⊥r2s − `2)δ(k3⊥r3s − `3)

× 〈Φ(k1)Φ(k2)Φ(k3)〉∆D
1 (k1, η1s)∆D

2 (k2, η2s)∆D
3 (k3, η3s)e−i(k1zr1s+k2zr2s+k3zr3s)

= (2π)2δ(`1 + `2 + `3)
∫ ∞

−∞
dk1zdk2z(2πr1sr2s)

−2B(k1, k2, |k1 + k2|)

× ∆D
1 (k1, η1s)∆D

2 (k2, η2s)∆D
3 (|k1 + k2|, η3s)e−i(k1z(r1s−r3s)+k2z(r2s−r3s))

Here I simply integrate out the delta functions and use r1s ≈ r2s ≈ r3s, which is

reasonable for the D-like contributions. Like we did for equation (4.1.25) we would

like to have this result manifestly real. We may again use the trick that the negative

part of the k2z integral is simply the complex conjugate of the positive part. We may

therefore write the result as

bDDD = (2πr1sr2s)
−2
∫ ∞

−∞
dk1z

∫ ∞

0
dk2zB(k1, k2, |k1 + k2|) (4.2.194)

× ∆D
1 (k1, η1s)∆D

2 (k2, η2s)∆D
3 (|k1 + k2|, η3s)× 2 cos [k1z(r1s − r3s) + k2z(r2s − r3s)]

It is important to realise of course, that even though naively it seems we are favouring

1 and 2 over 3, we might as well have written this in terms of k1z, k3z or k2z, k3z with

the same result. In an effort to make this even more transparent, one might consider

using (r1sr2sr3s)
−4/3 in front of the integral as well.
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Now we need the remaining three combinations. We begin with one L,

〈aD
1 (`1)aD

2 (`2)aL
3 (`3)〉 = (4.2.195)

(2π)−3
∫

d3k1d3k2d3k3

∫ r3s

0
dr3δ(k1⊥r1s − `1)δ(k2⊥r2s − `2)δ(k3⊥r3 − `3)

× 〈Φ(k1)Φ(k2)Φ(k3)〉∆D
1 (k1, η1s)∆D

2 (k2, η2s)∆L
3 (k3, η3)e−i(k1zr1s+k2zr2s+k3zr3)

=
∫

d3k1d3k3

∫ r3s

0
dr3δ(k1⊥r1s − `1)δ((k1⊥ + k3⊥)r2s + `2)δ(k3⊥r3 − `3)

× B(k1, |k1 + k3|, k3)∆D
1 (k1, η1s)∆D

2 (|k1 + k3|, η2s)∆L
3 (k3, η3)e−i(k1z(r1s−r2s)+k3z(r3−r2s))

= (2π)2δ(`1 + `2 + `3)
∫ ∞

−∞
dk1z(2π)−1(r1sr2s)

−2B(k1, k2, |k1 + k2|)

× ∆D
1 (k1, η1s)∆D

2 (k2, η2s)∆L
3 (|k1 + k2|, η1s)e−ik1z(r1s−r2s)

The first equality here is simply integrating out k2 using the delta function. Then I

Limber approximate the k3z integral and replace the exponential by 2πδ(. . . ) while

setting k3z = 0. This delta function is integrated out, given z3 > z2 – ie. we again

need the lensing to be behind the density contributions. This integration also fixes

the conformal time at which to evaluate the lensing transfer function. The delta

function on ∑ ` is then written using r1s ≈ r2s. The last integral here can again be

written as a cosine. Let me call k1z = kz, to explicitly show how neither 1 nor 2 is

’preferred’, even though I integrated out k2 first above. With this, the bispectrum

is

bDDL =
1

π(r1sr2s)2

∫ ∞

0
dkzB(k1, k2, |k1 + k2|) (4.2.196)

× ∆D
1 (k1, η1s)∆D

2 (k2, η2s)∆L
3 (|k1 + k2|, η1s) cos(kz(r1s − r2s))

It is not obvious from this expression how all the momenta are set. From the initial

delta function we know however that k2z = k1z since k3z = 0. We also have for all

the momenta ki⊥ = `i/r1s ≈ `i/r2s. This also means we have at all values of kz a

fixed expression for k3 = |k1 + k2| = k3⊥ = `3/r1s. To our great joy, we have one

less integral to perform in this case.

Next up is two L-like contributions.

〈aD
1 (`1)aL

2 (`2)aL
3 (`3)〉 = (4.2.197)

(2π)−3
∫

d3k1d3k2d3k3

∫ r2s

0
dr2

∫ r3s

0
dr3δ(k1⊥r1s − `1)δ(k2⊥r2 − `2)δ(k3⊥r3 − `3)

× 〈Φ(k1)Φ(k2)Φ(k3)〉∆D
1 (k1, η1s)∆L

2 (k2, η2)∆L
3 (k3, η3)e−i(k1zr1s+k2zr2+k3zr3)

=
∫

d3k2d3k3

∫ r2s

0
dr2

∫ r3s

0
dr3δ((k2⊥ + k3⊥)r1s + `1)δ(k2⊥r2 − `2)δ(k3⊥r3 − `3)

× B(|k2 + k3|, k2, k3)∆D
1 (|k2 + k3|, η1s)∆L

2 (k2, η2)∆L
3 (k3, η3)e−i(k2z(r2−r1s)+k3z(r3−r1s))

= (2π)2δ(`1 + `2 + `3)r−4
1s B(k1, k2, k3)∆D

1 (k1, η1s)∆L
2 (k2, η1s)∆L

3 (k3, η1s)

Here we use the same trick as before, only this time, twice. The k1 takes the intial

delta function for the first equality. Then k2z, k3z are Limber approximated and the
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delta functions integrated out, given z1 < z2, z3, and all conformal times in the

transfer functions are set to η1s. Finally the screen-space momenta are integrated

out and inserted in the delta function in ∑ `. We get rid of all integrals, and the

bispectrum is

bDLL = r−4
1s B(k1, k2, k3)∆D

1 (k1, η1s)∆L
2 (k2, η1s)∆L

3 (k3, η1s) (4.2.198)

where all momenta are given by ki = ki⊥ = `i/r1s.

The final term has only L-like contributions.

〈aL
1 (`1)aL

2 (`2)aL
3 (`3)〉 = (4.2.199)

(2π)−3
∫

d3k1d3k2d3k3

∫ r1s

0
dr1

∫ r2s

0
dr2

∫ r3s

0
dr3δ(k1⊥r1 − `1)δ(k2⊥r2 − `2)δ(k3⊥r3 − `3)

× 〈Φ(k1)Φ(k2)Φ(k3)〉∆L
1 (k1, η1)∆L

2 (k2, η2)∆L
3 (k3, η3)e−i(k1zr1+k2zr2+k3zr3)

=
∫

d3k2d3k3

∫ r1s

0
dr1

∫ r2s

0
dr2

∫ r3s

0
dr3δ((k2⊥ + k3⊥)r1 + `1)δ(k2⊥r2 − `2)δ(k3⊥r3 − `3)

× B(|k2 + k3|, k2, k3)∆L
1 (|k2 + k3|, η1)∆L

2 (k2, η2)∆L
3 (k3, η3)e−i(k2z(r2−r1)+k3z(r3−r1))

= (2π)2δ(`1 + `2 + `3)
∫ min(ris)

0

dr
r4 ∆L

1 (k1, η)∆L
2 (k2, η)∆L

3 (k3, η)B(k1, k2, k3)

Here I first integrate out k1. We then Limber approximate the remaining two kiz

integrals. The resulting delta functions are integrated out with r2, r3, which are set

equal to r1 ≡ r, provided z1 < z2, z3. After all this, the screen-space momenta are

integrated out and give four factors of r and a delta function in ∑ `. The momenta

are given by ki = `i/r, as it was for the CLL
` . This gives us

bLLL =
∫ min(ris)

0

dr
r4 ∆L

1 (k1, η)∆L
2 (k2, η)∆L

3 (k3, η)B(k1, k2, k3) (4.2.200)

This last bispectrum of only lensing contributions has already been investigated

to some extent in relation to weak lensing surveys by eg. Bernardeau et al. (2003);

Munshi et al. (2008)

The four equations (4.2.194), (4.2.196), (4.2.198) and (4.2.200) are our result for the

primordial bispectrum as observed in galaxy correlations on a flat sky. Considering

the expressions have maximum two integrals, these are much more tractable than the

full sky calculation of equation (4.2.139). This will allow us to compute the observed

bispectrum for many redshifts and `-combinations. When computing the bispectra,

it is useful to remember that the velocity and lensing never correlate, since we have

kz = 0 due to the Limber approximation, which kills the velocity term. This fact cuts

down the number of terms dramatically.

It is also wise to make sure we remember when the approximations are expected

to be good. We see that both DDD and DDL rely on the radial distances to the

D-like contributions being similar. The remaining two, DLL and LLL are however

not relying on this. As we learned from figures 7, 9 and 11 it may not be wise to

trust the computations of DDD and DDL for very large separations of the D-like

contributions. The lensing contribution simply has to be in the background.
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So why, in the end, are we calculating the GR induced bispectra? The answer is

simple – this ‘fake’ bispectrum will bias any attempt at extracting a primordial

bispectrum from any data we might get. In other words, if we simply try to

extract directly the primordial bispectrum from the galaxy bispectrum, we will

see something, namely the projection of the GR bispectrum onto the shape of

the primordial bispectrum. Considering just these contributions, we may easily

check how much one contaminates the determination of the other. We imagine an

experiment measuring the galaxy count bispectrum b`, but forgetting to include the

GR bispectrum in the fit for the fNL. This results in a χ2 of the following schematic

form, similar to equation (4.1.14)

χ2 = ∑
`={`1,`2,`3}

(n` + h`[bGR
` − fNLbin f l

` ])2

C`1 C`2 C`3

, (4.2.201)

where n` is the noise for the particular set ` of multipoles, bGR is the bispectrum

from general relativistic effects, and bin f l is the sought-for primordial bispectrum

coming from inflation. The noise is drawn from a gaussian with variance C`1 C`2 C`3 ,

since the cosmic variance is the only noise I include. This function is minimized to

find the best fit fNL. Normally, ie. with bGR
` set to zero, the best fit would be

f̂NL = ∑
`

n`h`b
in f l
`

C`1 C`2 C`3

/
∑
`

(bin f l
` h`)2

C`1 C`2 C`3

(4.2.202)

However, with the non-zero GR contribution, this best fit is changed to

f̂ contaminated
NL = ∑

`

(n` + h`bGR
` )h`b

in f l
`

C`1 C`2 C`3

/
∑
`

(bin f l
` h`)2

C`1 C`2 C`3

, (4.2.203)

and so, the expected contamination in terms of a bias of the fNL estimator is

bias( f̂NL) = ∑
`

h2
`bGR

` bin f l
`

C`1 C`2 C`3

/
∑
`

(bin f l
` h`)2

C`1 C`2 C`3

(4.2.204)

We can think of this as a systematic effect of the experiment. We simply need to

exactly remove the late-time bispectrum before trying to extract the primordial one.

If we do not, we see here how much our result is affected.

Directly observing the bispectrum is the most obvious way of proving its existence.

There exists other indirect observables however. A popular one is to find scale-

dependent bias in the observed power spectrum, as suggested by Dalal et al. (2008).

They calculate the corrections to the matter power spectrum from local primordial

non-gaussianity. The detection of such a scale-dependent bias, while not direct

evidence for a particular primordial bispectrum, would be evidence for something

more. However, the observation of this power spectrum and its correction are still

subject to the pollution we calculate. We cannot a priori disentangle primordial

bispectrum from GR corrections in the observed matter distribution. As such, all
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non-gaussianities in the observed galaxy number count must be accounted for when

calculating this corrected power spectrum. It is not entirely clear how the bias

we calculate in equation (4.2.204) translates to corrections of the power spectrum,

which is usually calculated in k space, but one must expect corrections even after

subtracting the Newtonian bispectrum.

4.2.12 Redshift binning and shot noise

The quantities we have calculated for LSS so far have been only theoretical quantities.

They are, as the CMB calculation, the observed density field at one point in time. For

realistic surveys however, we will need to bin the observed galaxies across redshift

in order to get a reliable estimate of the density field. This has several effects. The

variance of both power spectrum and bispectrum will, in addition to the cosmic

variance, include shot-noise since we have a finite number of galaxies. Furthermore,

any sharp features in the spectra tend to wash out when integrating over z. We are

therefore fighting two contrasting limitations against one another: we need wide

enough bins that the shot-noise becomes small, but we need tight enough bins that

we retain the features we are looking for. The practical answer to this battle of

terms depends on a number of things: the bispectra we look for, and which features

it has; the expected number of observed galaxies in a particular survey; and the

cosmological parameters determining the underlying physics.

We have already seen what the variance of the power spectrum and bispectrum are

for a single redshift, ie. the infinitely thin bin. Let us now see how the calculation

of equations (4.1.12) and (4.1.17) generalizes to finite redshift bins and so a finite

sample. The observables are as always the a`m. The calculation so far has focused on

a`m(z), which we now generalize to a binned version,

ai
`m = 1/Vz

∫
bin i

dza`m(z) , (4.2.205)

where Vz is the width of the bin. The remaining calculation simply substitutes this I here use only tophat bins.
This may be generalized to any
window function W(z) – eg. a
gaussian – and any redshift
distribution dN/dz by taking
the integral over
dN
dz W(z)a`m(z), while still

dividing out the bin-width, ie.
normalizing W(z)dN/dz.

in the place of the theoretical a`m(z). That means we will have the binned power

spectrum and bispectrum

Cij
` = 〈ai

`m(aj
`m)
∗〉 = V−2

z

∫
bin i

dz
∫

bin j
dz′C`(z, z′) (4.2.206)

bijk
`1`2`3

= 〈ai
`1m1

aj
`2m2

aj
`3m3
〉 = V−3

z

∫
bin i

dz
∫

bin j
dz′

∫
bin k

dz′′b`1`2`3(z, z′, z′′)

(4.2.207)

Note that the binned bispectrum coming from second order perturbations is not

simply a product of binned C` like one might have expected. It is rather the

’double binning’ of the two power spectra, which we may schematically write∫
dzdz′dz′′C`2(z, z′)C`3(z, z′′).
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The interesting quantity now is the noise in a`m, not only due to cosmic variance, but

simply due to the finite number of observed galaxies in the redshift bin.

Given N observed galaxies in one redshift bin, we wish to estimate the distribution

from which they came, and in particular its spherical harmonic coefficients. If we

could simply see the field, as is the case for CMB, this is a simple integral over the

field and a spherical harmonic. For a finite sample of galaxies, we will perform what

looks like a monte carlo integral using importance sampling, as described by Kroese

et al. (2013). Since we already have a sample from the distribution – the galaxies

themselves – we can evaluate the integral as follows,

a`m =
∫

d2n
ρ(n)

ρ̄
Y∗`m(n) ≈

4π

N ∑
ni

Y∗`m(ni) (4.2.208)

where the ni are positions on the sky drawn from a distribution proportional to the

galaxy density field itself,

ni ∼ p(n) = 1 + δρ(n) = ρ(n)/ρ̄ (4.2.209)

The shot noise of the a`m observation is simply the variance of this monte carlo

integral, which itself is estimating the random coefficient. The total variance of the

observed galaxy distribution is then

〈|â`m|2〉 =
(

4π

N

)2

∑
ni ,nj

〈Y∗`m(ni)Y`m(nj)〉p = N−2 ∑
ij
(〈|a`m|2〉+ δij(4π)) = C` + 4π/N

(4.2.210)

where the subscript p denotes the expectation value under the distribution p(n). The

expectation values here furthermore are taken over both the random sampling of

the a`m and the random sampling of galaxies over the resulting density field. The

important factor is the simple 4π/N shot noise – as we know it from the Poisson

distribution. This is simply the number of galaxies per steradian in the sky. In the

case of two different redshift bins, the expectation value does not get biased from

the shot noise. We may write this as

〈âi
`m âj

`m〉 = Cij
` + δij4π/Ni (4.2.211)

The variance of the a`m first of all biases the naive estimator of C` for coincidental

redshift bins. This however, is salvageable, since we know what the extra variance

should be, and may simply subtract it when computing the estimate of C`, ie. we

construct a new estimatorWhile it is possible for this
estimator to be negative, the
physical power spectrum is of

course always positive.
Ĉ` =

(
(2`+ 1)−1 ∑

m
|a`m|2

)
− 4π/N (4.2.212)

It furthermore increases the variance of the spectra. We may, as we calculated it for

the CMB, calculate the expected variance for our C` estimate, including both cosmic

variance and shot noise

Var(Ĉ`) =
2

2`+ 1
(C` + 4π/N)2 (4.2.213)
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For different redshift bins this changes to a covariance. The structure is only slightly

more complicated,

Cov(Ĉij
` , Ĉkm

` ) = (2`+ 1)−1
(
(Cik

` + δik4π/Ni)(C
jm
` + δjm4π/Nj) (4.2.214)

+ (Cim
` + δim4π/Ni)(C

jk
` + δjk4π/Nj)

)
The Kronecker deltas here make sure that the extra variance only appears if two of

the bins coincide. Note this means the variance of the power spectrum in different

redshift bins is

Var(Cij
` ) = (2`+ 1)−1

(
(Cii

` + 4π/Ni)(C
jj
` + 4π/Nj) + (Cij

` )
2
)

. (4.2.215)

That means the power spectrum across bins has cosmic variance determined by

same-z power spectra.

We now need equivalent results for the bispectrum. In the case of no shot noise in

a gaussian universe, the estimator and its variance are given by equations (4.1.11)

and (4.1.12). With shot noise included, this expression changes to

〈â`1m1 â`2m2 â`3m3〉p =

(
4π

N

)3

∑
ni ,nj ,nk

〈Y∗`1m1
(ni)Y∗`2m2

(nj)Y∗`3m3
(nk)〉p

= N−3 ∑
ijk
〈a`1m1 a`2m2 a`3m3〉+ (4π)2δijδjkG

m1m2m3
`1`2`3

= Gm1m2m3
`1`2`3

(
b`1`2`3 + (4π/N)2

)
(4.2.216)

Evidently this estimator is biased as well, but again by a simple constant, which we

may subtract. The variance, we may write by simply changing C` → C` + 4π/N like

for the new shot noise limited C` estimator,

Var(Bijk
`1`2`3

) ≈ h2
`1`2`3

(Cii
`1
+

4π

Ni
)(Cjj

`2
+

4π

Nj
)(Ckk

`3
+

4π

Nk
) · [`i = `j] (4.2.217)

where the superscript i, j, k denote the redshift bin. Note that this also goes on the

number of galaxies N, which may well change between bins. Remember we had a

factor g`1`2`3 in this expression in the case of CMB. I tentatively put a bracket here in

its place. For the galaxy correlations, we have the extra dimension in the problem,

the redshift. The C`i
above are all evaluated at their respective zi. However, if two `i

are equal, then we get expressions like (Cij
`1
)2Ckk

`3
for `1 = `2. It is important here that

the variance of the bispectrum ends up depending on the same-z power spectrum.

As we have already seen in figures 7 and 9, the same-z δ, v′ correlators completely

dominate this signal. For bispectra at three different z this means the signal, which

is now lowered due to the difference in z, is polluted by noise from the enormous

same-z power spectrum. On the other hand, this may be a good sign for lensing

surveys. Since for the small lensing contributions, the same-z power spectrum is

usually very small, the cosmic variance of only lensing to a bispectrum with very

different z could be relatively small.
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The end result of our shot noise calculation is a guidance of how wide to pick

our redshift-bins. We see that the important quantity to look at is simply 4πNC`.

We want to keep this number well above one. That means the shot noise will be

dominated by the physics, for both power spectrum and bispectrum. So in the next

section when we will do the actual computations, we have to keep in mind that

our redshift bins must be wide enough to accomodate enough galaxies. Another

problem here is of course the precision with which the redshift is determined.

For spectroscopic redshift determinations this is no problem, as it is rather well

determined. For photometric surveys however, the redshift uncertainty must be

reflected in the binning procedure. The Dark Energy Survey, which is currently under

way, as an example aims at collecting photometric redshifts of some 300 million

galaxies in a ≈ 5000 square degree footprint, (Abbott et al., 2016b). Whatever the

number of galaxies are found like this, the redshift uncertainty is around 0.1 (Asorey

et al., 2016). Euclid aims at having spectroscopic redshift of some 65 million galaxies

on a ≈ 15000 square degree footprint between redshifts 0.7 and 2, (Majerotto et al.,

2012). These numbers are for us only guiding, and the exact number will not be

crucial.

4.2.13 Next-to-leading order corrections

I now briefly discuss the effect of higher order perturbations on the correlation

function and the power spectrum, i.e. the C`s. This part follows Nielsen and Durrer

(2017). The 1-loop correction to the correlation function is

ξ(2)(n · n′, z, z′) = 〈Σ(2)(n, z)Σ(2)(n′, z′)〉 − 〈Σ(2)(n, z)〉〈Σ(2)(n′, z′)〉

+ 〈Σ(1)(n, z)Σ(3)(n′, z′)〉+ 〈Σ(3)(n, z)Σ(1)(n′, z′)〉

≡ 1
4π ∑

`

(2`+ 1)C(2)
` (z, z′)P`(n · n′) (4.2.218)

Here we just derive the formal expressions for the simplest terms in the 1-loop power

spectrum in `-space. First we show how second order quantities from squared first

order terms contribute. Denoting the different first order terms by ∆A, ∆B, ∆C, ∆D

(eg. δ(1), ∂2
r v(1) etc.), we consider the following second order contributions (which is

not completely general),

∆AB(n, z) ≡ (∆A · ∆B)(n, z) . (4.2.219)

The contribution from such product terms to the 1-loop correlation function is

ξ AB|CD(n · n′, z, z′) ≡ 〈∆AB(n, z)∆CD(n′, z′)〉 − 〈∆AB(n, z)〉〈∆CD(n′, z′)〉

=〈∆A(n, z)∆C(n′, z′)〉〈∆B(n, z)∆D(n′, z′)〉+ 〈∆A(n, z)∆D(n′, z′)〉〈∆B(n, z)∆C(n′, z′)〉

=ξ AC(n · n′, z, z′)ξBD(n · n′, z, z′) + ξAD(n · n′, z, z′)ξBC(n · n′, z, z′) . (4.2.220)
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These are simply products of first order correlation functions of the factors. We can

use this to compute the corresponding contribution to the power spectrum. We first

write out the first order correlation functions in terms of the C`(z, z′),

ξ AB =
1

4π ∑
`

(2`+ 1)CAB
` (z, z′)P`(n · n′)⇒

ξAB|CD(n · n′, z, z′) =
1

(4π)2 ∑
`,`′

(2`+ 1)(2`′ + 1) (4.2.221)

×
[
CAC
` (z, z′)CBD

`′ (z, z′) + CAD
` (z, z′)CBC

`′ (z, z′)
]
P`(n · n′)P`′(n · n′) ,

where P` denotes the Legendre polynomial of order `. We would now like this in the

form of equation (4.2.218). To do this, we use the following expansion of products of

Legendre polynomials,

P`(x)P`′(x) =
`+`′

∑
L=|`−`′ |

(
` `′ L

0 0 0

)2

(2L + 1)PL(x) , (4.2.222)

which is a special case of the expansion of a product of spherical harmonics. The

squared Wigner 3j symbols are given by equations (2.3.6) and (2.3.7). This means the

contribution from these terms to the 1-loop power spectrum is

CAB|CD
` (z, z′) = ∑

`1`2

(2`1 + 1)(2`2 + 1)
4π

(
` `1 `2

0 0 0

)2

×
(

CAC
`1

(z, z′)CBD
`2

(z, z′) + CAD
`1

(z, z′)CBC
`2

(z, z′)
)

. (4.2.223)

Pure product contributions from third order are structurally even simpler. We set

∆ABD = ∆A∆B∆C. Since three of the four factors are evaluated at the same position

and redshift, we get

ξ ABC|D(n · n′, z, z′) ≡ 〈∆ABC(n, z)∆D(n′, z′)〉

= ξBC(1, z, z)ξ AD(n · n′, z, z′)

+ ξAC(1, z, z)ξBD(n · n′, z, z′) (4.2.224)

+ ξAB(1, z, z)ξCD(n · n′, z, z′) ,

where half of the functions are evaluated at n · n = 1. Since P`(1) = 1, these are

simply given by

ξAB(1, z, z) =
1

4π ∑
`

(2`+ 1)CAB
` (z) , (4.2.225)

and we can write this contribution to the 1-loop power spectrum as

CABC|D
` (z, z′) =

1
4π ∑

`′
(2`′ + 1)

×
{

CBC
`′ (z)C

AD
` (z, z′) + CAC

`′ (z)CBD
` (z, z′) + CAB

`′ (z)CCD
` (z, z′)

}
.

(4.2.226)
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One may also wonder about the next order contributions to the bispectrum. These

terms will now involve 6, instead of 4, factors of the primordial perturbations. While

their observation, even full calculation, is doubtful, it is interesting to see at least

schematically, their effect. These corrections also come in two forms: one with three

second order contributions and another with a first, a second and a third order

contribution.

For the three second-orders contribution, we may write the correlator simply

as

ξAB|CD|EF = 〈∆AB(n, z)∆CD(n′, z′)∆EF(n′′, z′′)〉c (4.2.227)

from which one of the many terms – which behave alike – is the contraction

(AD)(BE)(CF), whose contribution is

ξAD(n · n′)ξBE(n · n′′)ξCF(n′ · n′′) (4.2.228)

Now using equation (2.2.9) and the following equations to compute the bispectrum –

note how this correlator exactly factorizes as is necessary – we see that

C`1`2`3 =
1

(2π)3 CAD
`1

CBE
`2

CCF
`3

(4.2.229)

with the bispectrum given by equation (2.2.16). This term is illustrated in the first

picture of figure 12. For the correction from third order, we define

ξABC|DE|F = 〈∆ABC(n, z)∆DE(n′, z′)∆F(n′′, z′′)〉c (4.2.230)

The terms in this correlator come in two forms, one has the third order contribution

interact with itself, illustrated in the middle of figure 12, and for the other, it does not,

as illustrated in the last picture of figure 12. Examples of the terms of the resulting

three-point correlators are therefore

ξABC|DE|F ⊃ξAB(1, z, z)ξCD(n · n′, z, z′)ξEF(n′ · n′′, z′, z′′) (4.2.231)

+ξAD(n · n′, z, z′)ξBE(n · n′, z, z′)ξCF(n · n′′, z, z′′)

The first line here resembles the last correction we calculated for the power spec-

trum. Calculating the C``′`′′ of equation (2.2.10) this first term gives the following

correction,

C``′`′′ ⊃
δ`0

(2π)3 CCD
`′ (z, z′)CEF

`′′ (z
′, z′′)∑

`s

(2`s + 1)CAB
`s

(z) (4.2.232)

The last correction resembles the first correction to the power spectrum. We again

have two correlators with the same argument, n · n′, which we combine to one, like

in equation (4.2.223). With this expression for CAB|CD
` we can again calculate the

coefficient of equation (2.2.10), which is

C``′`′′ ⊃
δ`0

2π2 CAD|BE
`′ (z, z′)CCF

`′′ (z, z′′) (4.2.233)
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Figure 12: Illustration of the three higher order corrections to the bispectrum. Each

picture stands for many different terms, which share the calculational details, but

with the indices interchanged.

Note this is a very condensed version of the corrections. I have not included all

permutations, by a long shot. Furthermore, the Kronecker deltas forcing one of

the multipoles to be zero in the C``′`′ do not mean the multipoles are zero in the

bispectrum. Remember from equation (2.2.16) that the reduced bispectrum is given

by a large sum over the multipoles of the coefficients.

Of course these corrections to the power spectrum and bispectrum are mainly rel-

evant in the weakly non-linear regime and perturbation theory is not expected to

converge in the fully non-linear regime. Nevertheless, perturbation theory remains

computationally much less heavy than N-body simulation and it is therefore inter-

esting to translate the many promising results obtained in Fourier space Pajer and

Zaldarriaga (2013); Senatore and Zaldarriaga (2014) into the more directly observable

`-space.

We now have all the calculations ready. Bispectra and power spectra are quickly

computed due to the flat sky approximations we have developed. In the following

chapter I do the actual computations of these numbers, which will hopefully give us

a hint as to the nature of the perturbations we may hope to observe.
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5
A T H E O R E T I C I A N ’ S E X P E R I M E N T

So far we have been setting the stage. Obviously I think it is an important stage to

set – it is the main part of this work! – nonetheless there has been no attempt at

numbers and real-world observations yet. We have models describing the universe

from start to end, and we have the necessary statistical tools to analyse the potential

observations. It is now my intention to briefly investigate a particular model of

inflation. My main take-aways from the model are the primordial power spectrum

and bispectrum. These will turn into observables in the CMB and the galaxy

distributions.

The experiment I propose is as follows. We make the minimal change to the power

spectrum we must, in order to make the CMB observations match the predictions

of a universe, with only matter and radiation – no dark energy. While this model

may be considered ruled out by other observations, it will be our starting point.

The exercise will be to see what the CMB tells us, and what we tell ourselves, and

whether higher order observables will help us. I will in a similar vein look at the

bispectrum of the LSS and see if observations here will bring more information. The

two analyses will be very similar. The decomposition into spherical harmonics of

both CMB and LSS means we will use identical statistical tools to judge the two. The

LSS naturally has the advantage of depth – there is only one CMB sky, while there

are many LSS skies – or rather, redshift bins.

A similar analysis has been done by Di Dio et al. (2017), who calculate the contamina-

tion from the general relativistic correction on a series of simple bispectra. They look By simple I think of
seperable primordial
bispectra. These can be
obtained from very generic,
simple inflationary models,
and simplify the following
calculations.

at large scales, and therefore include other terms than I do here. They take not the

dominating terms, but look at the subdominating terms, which become important at

larger scales. The last section can be seen as a continuation of this work, with some

technical differences. I keep strictly to the dominating terms, and keep to higher

multipoles, ie. smaller scales. This reduces the number of terms, but increases the

number of multipoles to compute, both for power- and bispectrum. I circumvent this

difficulty by using the flat sky expressions for both computations. This allows me to

further extend the work by considering not just single redshifts, but to integrate over

redshifts to get a more realistic picture of the spectra. Recall that we must perform

some redshift binning in order to drive down the shot noise, and due to simple

uncertainty in the redshift.

I will first assume a generic model of inflation, described by Achucarro et al. (2011a,b);

Achúcarro et al. (2013) and their related work. The idea is an effective field theory

89
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of inflation. What was briefly described in chapter 3 was inflation with a single

inflaton field. The eager theorist may, however, dream of more fields in the very

early universe. Some of these fields surely will be heavier than the others. In the

simplest case, all except one degree of freedom will be very heavy. That allows one

to integrate out the heavy fields, in exchange for operators suppressed by the ratio

of mass scales. That leaves us with the effective theory of just the one light field

– an effective field theory. Such a theory can for example accomodate features in

the power spectrum quite nicely. I will explore in the CMB and LSS with direct

observations what we should and should not expect to observe.

Finally I also hope to more directly extend the work of Di Dio et al. (2017) and

look for the GR pollution in higher multipoles of the usual, more managable bi-

spectra from very simple theories of inflation. This explores how much especially

the lensing effects are expected to bias our attempts of finding primordial non-

gaussianities.

5.1 the model

The model here refers to the model of inflation. For computations of transfer functions

etc. we will stay within the comforting confines of perturbative FRW – for the time

being, not quite ΛCDM, but rather a model with both hot and cold dark matter and

a very low Hubble constant, dubbed HCDM. We will change the model of inflation,

which changes the primordial statistics – the power spectrum and bispectrum.

Changing these spectra will naturally change the observed CMB spectra. However,

these depend also on the content of the universe – radiation, matter and cosmological

constant – and so we can in a sense undo the change of the power spectrum by

changing the intervening conditions. I am here going to explore the observable

differences between ΛCDM with a featureless power spectrum and HCDM with a

featureful power spectrum – and hence a bispectrum.

Hunt and Sarkar (2007) did an analysis of, amongst other things, the WMAP data

(Spergel et al., 2003), showing that one can have excellent agreement with CMB data

with a very different model than the current concordance ΛCDM parameters. The

change was adding hot dark matter and a primordial power spectrum with a ‘bump’.

The model we employ will follow the same spirit. We add hot dark matter and alter

the power spectrum in order to get agreement with the CMB power spectrum. I

then continue to see if, in the effective theory of inflation, this power spectrum will

induce an observable bispectrum. The exact parameters of hot and cold dark matter

densities and other cosmological parameters will not be of great importance. TheThe important parameters are
h = 0.44, ωb = 0.018,

ωCDM = 0.16, ων = 0.017.
main test I will do is to see if the changes in the power spectrum – which are not

subtle – will induce remarkable changes in the bispectrum.
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For the galaxy counts however, we know there will be a bispectrum, no matter

what primordial spectrum we put in. We shall see to which degree the bispectrum

coming solely from relativistic non-linear effects will contaminate the signal we

are looking for. This will guide us to determine how well we need to know and

compute the relativistic effects in order to be able to observe the expected signal

from primordial spectra. We must obviously remove the contaminating signal with

at least the precision to which we wish to measure the primordial signal.

We will investigate the observability of the bispectrum of primordial perturbations

as calculated in an effective field theory of inflation. Following Achúcarro et al.

(2013), the model of inflation will generate features in the primordial spectra as a

consequence of a changing speed of sound – the speed of the adiabatic fluctuations.

Any small feature in the power spectrum is interpreted as the inflaton slowly rolling

through a ‘wiggly‘ potential. Keeping the notation from their work, we call the

unperturbed power spectrum PR and the change to it ∆PR. The prediction for the

change in the bispectrum is then

∆BR(k1, k2, k3) =
(2π)4P2

R
(k1k2k3)2× (5.1.1){

−3
2

k1k2

k3

[
1
2k

(
1 +

k3

2k

)
∆PR
PR

(k)− k3

4k2
d

d log k

(
∆PR
PR

)]
+ 2 perm

+
1
4

k2
1 + k2

2 + k2
3

k1k2k3

[
1
2k

(
4k2 − k1k2 − k2k3 − k3k2 −

k1k2k3

2k

)
∆PR
PR

(k)

− k1k2 + k2k3 + k3k1

2k
d

d log k

(
∆PR
PR

)
+

k1k2k3

4k2
d2

d log k2

(
∆PR
PR

)]} ∣∣∣∣
k=(k1+k2+k3)/2

While this long expression is slightly menacing, one feature sticks out. The changes of

the power spectrum at wavenumber k carry over directly to features in the bispectrum

at k1+k2+k3
2 = k. It is this feature we will need to see. It is not only enough that there

is a bispectrum – if we are to discern the different predictions, we must not just

observe them, but observe their individual features. The power spectrum we use is

shown in figure 13 along with the bispectrum in various configurations.

5.2 computational observations

We now go directly to the in observations of bispectra. All computations are

performed in Python, using transfer functions computed using either camb or class.

The transfer functions have been subjected to the calculations of chapter 4 in order to

compute the power spectra and bispectra in the CMB and the LSS. All computations

are done on a local machine. All integrals over k and r for both power spectra and

bispectra have been done using the simple Simpson’s rule, with manually adapted

grids. The flat-sky expressions have in general very simple integrands, and as such

there is no need for eg. monte carlo integrators.
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Figure 13: Plots of the power spectrum with large, but localised oscillations around

0.1/Mpc. This induces the bispectrum shown in three different configurations in the

three plots, as described above each one. We see here exactly how the oscillations in

the power spectrum translate to features in the bispectrum at ∑ ki = k/2. All x-axes

are shared, while all y-axes are individual.
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We will explore the observable quantities of a bispectrum coming from reasonable,

but still rather large changes in the power spectrum. The power spectrum we use is

a very simple one. It has a couple of oscillations around 0.1/Mpc to help the gas

physics make the acoustic peaks we see in the CMB. Without these oscillations, the

model alone would not quite fit the Planck data. The first peak is here not taken into

account when changing the power spectrum.

The missing first peak combined with the flat sky approximation means when

checking the bispectrum, I do not include the very low multipoles. I will however

include as many multipoles upwards as computationally feasible. For the bispectrum

I work with, I found that reasonable accuracy is obtained when calculating every 30th

multipole from ` = 300 to 1200, and doing a 3rd degree three dimensional spline

between these points to all relevant multipoles in between. Increasing the frequency

to every 10th multipole hardly changes the result. The range is chosen to include as The relevant multipoles are the
ones allowed by the triangle
inequalities of the Gaunt
integral, the symmetry
constraints, and the resolution
of our experiment, both
upwards and downwards.

much of the input primordial bispectrum while respecting the missing first peak.

Including all multipole triplets in the allowed region (there are 51, 952, 750 of them),

I find that the signal to noise, as defined by equation (4.1.17) is S/N ≈ 1/26. This

number is, unfortunately, fantastically small – I remind that I do not even consider

foregrounds, which are by far the greatest threat to any bispectrum observation in

the CMB. Including lower multipoles naturally raises this number. Going down to Lower multipoles in this
regard will usually carry a
larger signal. However, the
features from the power
spectrum will only show at
higher multipoles, and so even
if there is a potential signal at
low multipoles, it will not help
us extract the features of the
bispectrum.

` = 100 and for a moment ignoring the missing first acoustic peak, gives S/N ≈ 1/20

for a total of 69, 552, 850 multipole triplets observed. I reiterate that observing a

bispectrum is much different from discriminating between two. The check I do here

is to see if one might hope to see a particular bispectrum with large oscillations, I

am not checking whether any bispectrum at all will be visible.

Figure 14 shows the angular power spectrum in the relevant range and the bispec-

trum in various configurations.

As the discriminatory power of the CMB temperature is lacking, one might instead

hope to be able to observe the signal in galaxy surveys which have an extra dimension,

and as such offer more modes to observe. Polarization in the CMB also helps, but I

will not investigate that.

As we have seen these extra modes are for some experiments obscured by poor

redshift determination. Assuming in any case very sharp spectroscopic redshift

observations, we may hope to observe many thin redshift bins. It should still be clear

though, that most direct galaxy-galaxy correlation will be seen in same-z bins, as

discussed in section 4.2.12. One might be able to leverage lensing effects alone, which

would make observations across redshift more feasible. For such an observation,

only the lensing contributions in the cosmic variance will come into play and so the

small lensing bispectrum would stand out more clearly. This means again we have

to be strict when splitting up the higher order terms to determine exactly which
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Figure 14: Plots of the CMB angular power spectrum and bispectrum in the EFT

description, with the power spectrum from figure 13. The bispectrum is shown in

various configurations, as described above the respective plots.
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ones affect lensing and which ones do not – luckily, with the all-order calculation,

this distinction is trivial.

Let us do the same comparison in the LSS as we just did for CMB. This will simply

be computing the bispectrum predicted by the EFT and comparing it with the cosmic

variance. Doing the redshift binning here is really what ramps up the computation

time – for every bin we have to perform a triple integral over the redshifts. I do the The shape of the bin, when it is
as small as this, does not
matter much. The major
defining factor of the bins is
their width. However, I remind
that the variance of a top-hat
bin with full width w is
σ2 = w2/12. Therefore, this
tophat bin corresponds roughly
to a gaussian with width
σ = w/

√
12, not just w.

redshift bins as simple top-hats, and the integrals over redshifts simply as the sum of

many small top-hat sub-bins. Furthermore, we must do this for every redshift bin we

have. For just the auto-correlations this is doable, but if we hope to see correlations

across bins as well, that increases computing time dramatically.

Let us simply compute the expected signal to noise in small bins and estimate what

we might hope to see. The signal to noise computed in a single bin of width 0.01 at

redshift 1, with multipoles between 30 and 500 is

S/N(z = 1) ≈ 1/16 S/N
not binned

(z = 1) ≈ 1/72 (5.2.1)

It is clear that binning help enormously to lower the cosmic variance. The numbers

also tell us that we must use what the full 3d universe gives us, not just a single bin.

Very roughly, the auto-correlation of 16 bins would seem to be sufficient to give a

1σ result. Using cross-correlations as well may help, but I remind that the cosmic

variance on bispectra in different bins is relatively larger according to the result of

equation (4.2.217). The dependence of these numbers on the redshift is very small,

and is depicted in figure 15.

While this study is not quite representative of current experiments, it is at least

heart-warming to see that the predicted bispectrum from the EFT is in principle

observable. There is a long way from the observation of something, ie. seeing fNL 6= 0

for a particular template, to saying one template fits better than another. In other

words, even if one sees non-gaussianities in the LSS, it is hard to know exactly what

the underlying bispectrum is. Given the infinite possibilities of the EFT of inflation

only makes matters worse. Studies searching for features in the power spectrum,

as done eg. by Hunt and Sarkar (2015), already show a large scatter in the possible

reconstructed power spectra. It is not clear that the constraints from bispectrum

observations will be enough to constrain such an arbitrary parametrisation, and it

is very clear that the computational time needed will be very limiting. Although

experimental systematics and non-linear physics are still in play and must be under

control, LSS looks to be a valueable resource if the full potential of the 3d distribution

can be harnessed.
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Figure 15: Redshift dependence on the signal-to-noise of the galaxy number count

bispectrum in the HCDM model. For bins of width ∆z = 0.01 this quantity is

brought up by about a factor 6.

5.3 general relativistic pollution of simple galaxy bispectra

I finish by calculating the pollution from all dominating lensing effects into the more

usual templates of non-gaussianity on a standard ΛCDM background, with Planck

best-fit parameters (Ade et al., 2016). I focus here on the local template, which is the

primordial bispectrum given by

Blocal(k1, k2, k3) =
6 fNL

5
[P(k1)P(k2) + P(k1)P(k3) + P(k2)P(k3)] (5.3.1)

This shape of bispectrum comes from non-gaussianity that only acts locally, in the

following sense,

Φlocal(x) = ΦG(x) +
3
5

fNL(ΦG(x)2 − 〈Φ2
G〉) (5.3.2)

where the prefactor is historical and the mean of the squared gaussian field ΦG

is subtracted to keep 〈Φ〉 = 〈ΦG〉 = 0. The primordial power spectrum is in this

case taken to be featureless and almost scale-invariant as is usually assumed for

ΛCDM.

The reason this simple bispectrum is interesting is the chance to observe the fNL

and circumventing the cosmic variance of the spectra – as we just saw, the direct

observation is very difficult. If one is not directly interested in the power spectrum,
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but rather a constant in front, to put it roughly, then the cosmic variance can be

circumvented by comparing two different tracers of the underlying field, as proposed

by McDonald and Seljak (2009). However to extract eg. fNL, the method relies on The tracers here can be for
example different kinds of
galaxies which are known to
have different biases. Alonso
and Ferreira (2015) as an
example use red and blue

galaxies in their forecasts.

the assumption that the particular template one uses is a good representation of the

primordial non-gaussianity. Dalal et al. (2008) calculate a scale-dependent bias of

matter as a function of fNL for local non-gaussianity in k-space, which is

∆bNL ∝
fNL(b− 1)

k2 (5.3.3)

It is clear that for different populations of tracers, with different biases b, this

number will be different, and one may subject it to the multi-tracer technique to

extract fNL. However, simply observing a scale-dependent bias is far from observing

primordial non-gaussianities. As we have seen, relativistic and non-linear effects

will systematically bias the spectra, and we must compute the bias of the local fNL

before making claims about observations of anything more. Using these techniques

it is not possible to observe directly the bispectrum ie. the exact shape and features

of it.

This analysis is similar to what is done in Di Dio et al. (2017). I here explore how

redshift binning affects the result. It is naturally expected to reduce the power in

both signal and noise, and I aim to see which of the two shrinks most quickly. I

furthermore include additional lensing terms, in partcular the corrections coming

from first order lensing correlated with second order density contributions. I do not

include the subdominant terms. Since we are only showing the effects of lensing, I

exclude, as they do, terms which contain only density-like terms. The terms included

here are both the second order lensing terms they include, and first order lensing

terms correlated with second order density terms.

For very thin top-hat bins of width 0.01, the resulting GR pollution of the primordial,

local bispectrum, according to equation (4.2.204) is

bias( fNL)(z = 1) ≈ −1.96 bias( fNL)
not binned

(z = 1) ≈ −3.28 (5.3.4)

I calculate this number for the redshift range from 0.7 to 1.65, which is plotted

in figure 16. These numbers are computed using multipoles between 30 and 500.

It is not clear a priori whether these numbers will go up or down when properly

including galaxy-biasing. Since the largest results generally are cross-correlations

between density and lensing, the GR terms of the form 〈δδδκ〉 will naı̈vely receive

the same bias-enhancement as the density contribution to the primordial bispectrum

〈δδδ〉.

Figure 17 shows the shape of the GR and primordial bispectra in various multipole

configurations. A clear trend is for the primordial signal to fade as we go to higher

redshift, while the GR contribution rises, just as we saw in figure 16. This has a

natural interpretation, as the GR signal we are looking at is lensing, which is expected
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Figure 16: Plot of the contamination from lensing effects on the local fNL parameter

from binned and unbinned estimates. Evidently, binning does reduce the pollution

from lensing effects, but only by roughly a factor 2.

to rise as we look further out in the universe, in particular at small scales. The all-

density contribution, which is the major part of the primordial signal, however, is

expected to reduce as we look at the younger universe. It therefore comes as no

surprise that the size of the bias of fNL grows as we go to higher redshift. Moreover,

we see that for local primordial non-gaussianity, the signals expected from GR

corrections look almost exactly like the primordial signal. This cements the need for

precise theoretical calculations, as there is no obvious way to distinguish the signals

experimentally. One must therefore rely on the theory to do proper subtraction of

the unwanted signal.

Whether it be cosmic variance limited surveys or more indirect observations of the

non-gaussianities, it is clear that precise computations of the GR contribution beyond

rsd to the observed density field is needed. The calculation of these effects in the

very physical coordinates we have performed here facilitates the inclusion of lensing.

As the estimates in this last chapter shows, it is absolutely necessary to have fast and

precise ways of doing these computations. The flat-sky computations are one way of

obtaining this. Without the simplifications they result in, the computations in this

chapter would not have been possible to obtain in any reasonable time.
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Figure 17: Plot of the absolute value of the bispectrum from a local primordial

non-gaussianity and from general relativity. The signals are calculated in top-hat

bins of width 0.01. The ` configurations are as described above each plot. The same

legend describes all the plots.
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6
F I N A L R E M A R K S

To date, every cosmological experiment seems to be in agreement with the predictions

of the simple concordance model. At the same time, every corner of the model is

entirely mysterious to theorists. Inflation at its core relies on the energy density

of the vacuum expectation value of a scalar field to make the inflationary scenario

happen – a thing which is not happening for the Higgs field, the only scalar field

we know exists today. In essense, the mechanism one uses is – if not falsified –

completely unverified. The same logic applies to the dark energy of the ΛCDM

model. The tiny amount of dark energy, in terms of fundamental physics, has no

obvious explanation. The cosmological constant – the most obvious answer – would

be the most fine-tuned physical constant ever observed. Even dark matter, as much

evidence as there seems to be for it, has never been observed directly. All evidence

we have, whether it be from CMB, LSS, galaxy cluster collisions, lensing, etc. are

indirect and circumstantial. We always see its gravitational effects on something else,

never any particle-like effect. All direct searches through colliders, or fixed-target

experiments have so far failed.

For all these reasons, it is important to hold a theory to its predictions. A theory

which can be tailored to fit anything, does not predict anything. However, all coming

predictions are de facto small effects, since all data so far seem to fit the concordance

model so well. This puts stress on precision calculations, not just of the new theory,

but as much on the old theory. My work has focussed on the latter – precision

predictions of general relativity.

In this thesis I have focused on the calculation of the bispectrum of galaxy number

count correlations from gravitational effects. At small scales, one may separate the

effects of general relativity into the dominating terms, and the remaining terms,

which are suppressed by at least k/H. In this small-scale limit, I have calculated

the perturbative effects to all orders by combining the calculations in the geodesic

lightcurve coordinates with results from lensing calculations. This has allowed me

to check and verify the calculations in recent literature. The results have since been

propagated to the relevant publications, which have been corrected.

As one needs more and more precise computations and observations, clearly the

computational complexity rises. I have therefore developped the flat-sky approxi-

mation for galaxy number counts, which greatly decreases the computing time for

both the power spectrum and the bispectrum. This approximation is very good,

even at relatively large scales. The approximation relies on manually removing
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beat-like effect in the integrands, and on the Limber approximation for contributions

integrated over the past light-cone.

The computations I do show that when looking for the faint signatures of inflationary

theories, it is of utmost importance to include – or rather subtract – lensing effects in

the analysis. If this is not done properly, purely general relativistic effects may look

like signs of inflation. This is in good agreement with earlier publications from this

year. I have extended these computations, as is only possible thanks to the flat-sky

approximation.

The effects I calculate are naturally part of a bigger picture. Beyond the Newtonian

calculation, I have not included the non-linear evolution of galaxy clustering, and

I have made a number of simplifying assumptions. I assume a full sky, and I do

not include any systematic effects of experiments. However, all the calculations

done here are easily extended to accomodate such effects. For example, the transfer

functions may take into account non-linear evolution, and this does not change the

following calculations.

The calculations I have done will allow experiments to really test the tiny effects of

inflation. For all its virtues, it does not seems that theorists agree whether inflation

works, and we have so far seen no direct evidence for it. I have therefore focussed

on the possibility of directly observing an inflationary bispectrum. While it seems

possible in the idealised setting I have provided, it will take a fantastic effort on

the part of experiments to do both observations and data-reduction to the precision

needed.
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