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Abstract

In this work, we use the force of light pressure to precisely control the
motion of a vibrating thin membrane. We manage to reduce the motion of
the main mode almost to the lowest possible level, limited only by the quan-
tum mechanical ground-state motion. Then, we successfully convert this
mechanical motion into information carried by light, and finally analyze this
information using a photon detector capable of detecting single photons.
We show, in a way, the manner in which the membrane’s surrounding ther-
mal environment influences its motion on a quantum level. Then we use
the exceptional isolation of the main mechanical mode, enabled by the ul-
tracoherent soft-clamped design of the membrane, to prepare non-classical,
non-Gaussian states of its motion via heralded preparation. Analyzing the
Cauchy-Schwarz parameter that stems from our statistics, we show strong
evidence of non-classicality, i.e. that the behaviour of our system in this re-
gime cannot be described by classical physics. This work brings us very close
to demonstrating the possibility of creation of highly non-classical single-
excitation states of macroscopic mechanical motion.
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Sammenfatning

I dette værk udnytter vi kræften produceret af lys til at kontrollere bevæ-
gelsen af en tynd vibrerende membran. Vi lykkes at reducere bevægelsen af
den primære mode til næsten det lavest mulige niveau, kun begrænset af den
kvantemekaniske grundtilstands bevægelse. Dernæst konverterer vi denne
mekaniske bevægelse til information, båret af lys, og endeligt analyserer vi
denne information ved brug af en lys detektor, i stand til at detektere enkel-
te fotoner. Vi viser, på sin vis, måden hvorpå membranens termiske miljø
påvirker dens bevægelse på et kvantemekanisk niveau. Dernæst bruger vi
den exceptionelle isolation af den primære mekaniske mode, muliggjort af
membranens ultra-kohærente blød-fæstnet (Soft-clamped) design, til at for-
berede ikke-klassiske, ikke-Gaussiske tilstande af dens bevægelse ved hjælp
af bebudet forberedelse (Heralded preparation). Ved analyse af Cauchy-
Schwarz parameteret som stammer fra vores statistik, viser vi stærk evidens
for ikke-klassikalitet (Non-classicality), hviket vil sige, at vores systems op-
førsel ikke kan beskrives med klassisk fysik. Dette værk bringer os meget
tæt på at demonstrere muligheden for skabelsen af yderst ikke-klassiske
enkelt-excitations tilstande af makroskopisk mekanisk bevægelse.
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To-scale schematic of the experiment of Lebedew (1901) for measuring the pressure of light.
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1
Introduction

Quantum mechanics is often described as study of objects on microscale.
"Microscale" refers to physical microscale, a world where single particles
play together, and where even a the tiniest virus is a behemoth. And yet, the
birthplace of quantum mechanics is precisely the macroscopic world, where
Planck took the first macroscopically giant leap, explaining the nature of
thermal radiation emitted by incandescent objects (Planck 1900)(1). Quantum
mechanics indeed closed several large gaps in our understanding of thermo-
dynamics, bringing a deep explanation of the entropy, a very macroscopic
phenomenon, by linking it with the microscopic world. In hindsight, the first
system that obtained its quantum description via Planck’s work, where he
postulated quantization of energy "in an act of desperation"(2), was a harmo-
nic oscillator.

What followed next was an avalanche of results, both theoretical and
experimental, in time for more and more sophisticated experiments that ma-
nipulated matter and energy on increasing levels of precision. The works of
De Broglie (De Broglie 1923)(3) and Bohr (Bohr 1913)(4) explained the wave-
like behavour of matter, and explained a great amount of properties of light
emission and absorption by simple atoms. Schrödinger (Schrödinger 1926)(5)

and Heisenberg (Heisenberg 1925)(6), in turn, laid the theoretical foundation
on which modern quantum theory stands, allowing the semi-classical des-
cription of atoms by Bohr to be corrected and extended to explain essentially
all properties of atomic emission, and allowing the quantum description to
be applied, at least in principle, to essentially all non-relativistic problems.
We are, of course, skipping many other beautiful results in quantum theory
for brevity.

As we said, the first results were applied to explain behaviour of col-
lections of quantum objects. In the times when quantum mechanics were
Born(7), the state of technology would not allow experiments to be performed
on single atoms. Many of the ground-laying results from that era studied
the fundamental behaviour of large collections of atoms, such as emission
lines of a discharge lamp, heat capacity of solids, etc. Particle accelerators,
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and their detection techniques, were among the first systems that allowed to
visualize the trajectories of single particles after their interaction. Advances
in vacuum tube technology then enabled the construction of photomultiplier
and electromultiplier tubes, among the first experimental devices able to
detect, in the modern sense of the word, single particles.

1.1 History of light pressure

It is rather amazing that light can exert pressure, to be honest. We are accus-
tomed in our daily life (8) that light is a thing that is "there". It can illuminate,
or even burn, but we never experience light pressure. Of course, that is due
to the simple fact the force that a light source can exert is extremely tenuous,
on the order of P/c. To levitate a single mosquito (2 mg), one would require
about 5 kW of light power, which is rather likely to convert the poor thing
into plasma in a couple of milliseconds.

However, light pressure does have visible effects, which many of us have
seen as the tail of a comet(9). As far as 1619, Kepler observed the fact that a
comet’s tail always pointed away from the sun (Keplero 1619)(10), which he
attributed to Sun’s light pushing it away. Back then it was only a hypothesis,
of course, as experimental techniques capable of measuring such a miniscule
force did not exist yet, and neither did a theory capable of predicting its mag-
nitude. That theory was created a few centuries later as a corollary to the
foundational work of Maxwell on the behaviour of electromagnetic waves
(Maxwell 1873)(11), where we finally found the force that an electromagnetic
wave would produce. As stated above, it is simply P/c upon full absorption
in the object, with P being the power of the incident wave, and c being the
speed of light. A small force indeed!

It took a few decades more to measure this force reliably, experimentally
shown in the beautiful experiments of (Lebedew 1901)(12) and (Nichols and
Hull 1903)(13), both of which accounted for other light-induced forces, espe-
cially heat-induced ones that power Crookes’ radiometers. Light pressure
remained somewhat of a curiosity, as with light sources available at the time
it was not possible to create light intensities necessary for much observable
force. With the advent of lasers (Maiman 1960)(14), however, everything chan-
ged. Due to lasers’ single-mode emission, focusing large powers of light to
a very tight spot became possible. Shortly after, Ashkin (Ashkin 1970)(15)

demonstrated optical trapping of microscopic spheres, which in turn led to
the creation of a whole new field: optical tweezers. These devices are used
nowadays as a standard technique in microbiology, and are a welcome guest
in many quantum experiments, where even single atoms can be held nicely
and firmly in the warm embrace of a beam waist. The author himself has
done work on interferometric techniques in optical tweezers (Ivan Galinskiy,
Meza, and Hautefeuille 2014)(16).

The masses manipulated by light were getting bigger and bigger, cul-
minating in the massive test masses of interferometric gravitational wave
detectors. We shall briefly overview those next.
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1.2 Non-classical mechanical objects

Despite the name "quantum mechanics", historically most of quantum work
was done on everything but mechanics. I mean this in the most respectful
sense, as it was indeed quite difficult to experiment with things that we
would call "mechanical" until the second half of the 20th century. But then
the situation began to change, as the experimental techniques were becoming
more and more precise, measuring smaller and smaller displacements. We
owe a lot of research in optomechanics to the gravitational-wave commu-
nity, where measurements of distance fluctuations among the most precise
measurements ever done. It is due to this precision that even effects such
light shot noise, an intrinsically quantum phenomenon, start to play a role
(Caves 1981)(17),(18). On the other hand, theoretical work by Braginsky and
colleagues both introduced a lot of the theory of measurement of mechani-
cal motion (Vladimir B. Braginsky, Vorontsov, and Kip S. Thorne 1980)(19),
and experimentally showed non-trivial ponderomotive effects of electro-
magnetic pressure (V. B. Braginsky and Manukin 1967)(20). While targeted at
gravitational-wave detectors, where measurement of mass positions is above
all, these works laid a foundation and motivated further work on interaction
between electromagnetic radiation and mechanical motion.

It is difficult to point to a specific work that really "started quantum op-
tomechanics", so we instead point the reader to the excellent review article
(Aspelmeyer, Kippenberg, and F. Marquardt 2014)(21) that covers a multitude
of different aspects of our multi-faceted field. It is fair to say, however, that
nowadays optomechanics is performed on anything that moves(22), inclu-
ding but not limited to bacteria (Gil-Santos et al. 2020)(23). Optomechanical
interaction has been achieved with liquid helium (Shkarin et al. 2019)(24), mi-
crotoroids (Jiang et al. 2009)(25), and many other systems, too many to count.

What unites most of these experiments is the size of the mechanical
oscillator: it is nearly always a "big thing", involving the collective motion
of a great multitude of individual atoms. For us, for example, a nanogram
effective mass corresponds to trillions of atoms participating in the motion,
and the large size of the mode, on the order of 100 µm(26) makes the object
visible to the naked eye. Efforts in other groups are underway to increase the
absolute mass of the object in motion, in hopes of measuring gravity effects
on quantum states.

In this work we push our macroscopic system towards nonclassicality as
well, and shall explain that in Chapter 10.

1.3 Notable previous work on non-classical mechanics

In experimental physics, one always stands on the shoulders of giants, many
of them. It is a rather wobbly construction, and many of our field’s achie-
vements are due to people falling off that tower. And yet, moving sideways
from the peak often reveals beautiful landscapes. In the GHz domain, the
work of Simon Gröblacher’s group, for example, has already shown non-
classicality of photon-phonon pairs (Riedinger, Hong, et al. 2016)(27), together
with subsequent entanglement of two oscillators through a similar setup
(Riedinger, Wallucks, et al. 2018)(28).
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“
The career of a young theoretical physicist consists of treating

the harmonic oscillator in ever-increasing levels of abstraction.

Sidney Coleman

2.1 Optical cavities

Optical cavities are one of the central topics of this thesis. We use them for
filtering, stabilization, and most importantly, optomechanical interaction. To
be clear, while we often refer to "optical cavities" or simply "cavities", most
results are generally applicable to any other optical resonator, such as, for
example, microresonators. However, we will focus our description on Fabry-
Pérot resonators.

A Fabry-Pérot resonator is a conceptually simple optical device that con-
sists of two mirrors that recirculate the light inside of the cavity. We will
discuss the geometric properties of those mirrors below, and for now will
focus on their purely optical properties. Each mirror will reflect a certain
amount of light into the cavity, and transmit or absorb the rest. We denote
the power reflectivity and transmittivity as R and T respectively. When the
mirror is entirely lossless, i.e. no power is absorbed or scattered, R + T = 1.
However, that’s unfortunately never the case, so we define the loss (absorp-
tion, scattering, or any other irreversible process) as L, so that R + T + L = 1.
The two mirrors need not be the same, in which case we will use subscripts
to distinguish them.

Optical resonators, as the name suggests, display resonances due to light
interference. Historically, Fabry-Pérot resonators were first made as highly
polished plates of glass, where the reflectivity was due to the mismatch bet-
ween the refractive index of glass and the surrounding medium. This form
would be called an etalon. For us, using discrete mirrors gives more freedom
in choosing reflectivity, distance, and geometric properties. The mathematics
are entirely the same, however. For the derivations, we refer the reader to
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(1) Nur Ismail et al. (July 25, 2016). “Fabry-
Pérot Resonator: Spectral Line Shapes,
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issn: 1094-4087. doi: 10.1364/OE.24.016366.
url: https://opg.optica.org/oe/abstract.
cfm ? uri = oe - 24 - 15 - 16366 (visited on
02/13/2023).

Ismail et al. (2016)(1), where the relevant derivations have been carried out in
great detail. In a nutshell, to obtain the reflection, transmission, and intraca-
vity power of a Fabry-Pérot resonator, one sets the necessary external field
(usually one incident beam), and uses boundary conditions of the mirrors to
obtain all the other fields. After that is carried out, we obtain the circulating,
reflected, and transmitted field strenghts:

Ecirc =
it1

1 − r1r2e−2iϕ (2.1)

Etrans =
−t1t2e

−iϕ

1 − r1r2e−2iϕ (2.2)

where we have set the incident field to 1 for simplicity, i.e. Einc = 1, without
loss of generality. Note that we have introduced the amplitude transmission
and reflection for both mirrors as tn and rn, with n ∈ { 1, 2 }. While (Ismail
et al. 2016) does not contain an expression for the reflected field, we shall
derive it soon.

2.1.1 T-matrix method for optical resonators

Calculating electric fields in optical cavities is sometimes a bit of a chore, es-
pecially when the cavity has elements inside of it. One has to solve coupled
field equations, which tends to be error-prone if done by hand. However, the
RF design community has had the same problem for a long time now, and
has come with the concept of S-parameters and T-parameters (members of a
bigger family of scattering parameters). Let us consider some optical compo-
nent, such as a mirror. When we operate with a single mode of light, it can
be considered a 2-port device, as it has one input and one output. We shall call
the fields on the left a1 and b1 (a is incident and b is "scattered"). Likewise,
the fields on the right side of the system are a2 and b2, as shown in Fig. 2.1.

a1

b1

b2

a2

Figure 2.1: Field definitions of a general two-port system

This notation might look odd at first, but the rationale is to label inci-
dent and scattered fields separately, while using the subscript to denote the
port in question. As you will see soon, this ends up being convenient for
multi-component systems. The scattered fields are defined from incident

https://doi.org/10.1364/OE.24.016366
https://opg.optica.org/oe/abstract.cfm?uri=oe-24-15-16366
https://opg.optica.org/oe/abstract.cfm?uri=oe-24-15-16366
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(2) William Egan (Apr. 2, 2003). Practical
RF System Design. John Wiley & Sons,
Inc. isbn: 978-0-471-65409-4. url: https :
//doi.org/10.1002/0471654094.

fields using the scattering matrix, or S-matrix. Before we begin, however, it is
necessary to establish a convention on the precise definition of both S- and
T-matrices, as there are several accepted forms. We will follow the definitions
from one of the most known books on RF design, Egan (2003)(2).(

b1
b2

)
=

(
S11 S12
S21 S22

)
·
(
a1
a2

)
(2.3)

The S-matrix is very convenient in that it is easy to measure. Both for RF
devices and optical devices, one simply applies some input to each port and
measures the output signal on all the other ports (including the reflection on
the original port). Phase also has to be measured, but for simple optical de-
vices such as mirrors, we already know the phase response. For RF devices,
phase is measured directly.

The S-matrix, however, is not directly applicable if we want to calculate
the response of a composite system, such as an optical cavity. For this pur-
pose, we define the transfer matrix (or transition matrix, depending on whom
you ask), called T-matrix for brevity. Instead of relating incident fields with
scattered fields, it instead defines the relation between fields in one port to
the fields in the other. In other words, it answers the question "given fields
on the right, what are the fields on the left?". The advantage of such appro-
ach is that now we can simply multiply the T-matrices of several components
together to obtain the T-matrix of the composite system. It is defined as fol-
lows: (

a1
b1

)
=

(
T11 T12
T21 T22

)
·
(
b2
a2

)
(2.4)

Pay close attention to the ordering of a and b terms: it is different on dif-
ferent sides. This is not a mistake: remember that when two components are
"stacked", a field scattered from one component becomes incident on anot-
her component. This arrangement allows us to multiply matrices together
directly when dealing with composite systems.

The T-matrix cannot be measured easily. Fortunately, the S- and T- ma-
trices are related and can be easily converted between one another for the
case of 2-port systems. Given an S-matrix, the corresponding T-matrix can be
obtained as follows (Egan 2003):

T =
1
S21

·
(

1 S22
S11 detS

)
(2.5)

Correspondingly, the S-matrix can be obtained from the T-matrix:

S =
1
T11

·
(
T21 det T
1 −T12

)
(2.6)

These two conversions are what enables us to use this method easily. For
example, we know from optics that a mirror of a given amplitude reflectivity
r and transmissivity tb (Fig. 2.2) will act on its inputs as follows:

Smirror ≡ Sm(r, t) =
(
−r t
t r

)
(2.7)

https://doi.org/10.1002/0471654094
https://doi.org/10.1002/0471654094
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Note the different sign in front of the reflection coefficients. This due
to a phase shift that necessarily occurs when light is bounced off a higher
refractive index at normal incidence, as highlighted in Fig. 2.2.

a1 b2 = ta1 + ra2

a2−ra1 + tb2 = b1

Figure 2.2: Fields around an optical mirror in S-matrix form

The S-matrix of the mirror can then be transformed into the correspon-
ding T-matrix:

Tm =
1
t
·
(

1 −r
−r r2 + t2

)
(2.8)

Note that the T-matrix is undefined for a mirror with t = 0. This is expected,
since if a mirror is not transmitting anything, we cannot know the fields on
one side of it from the fields on the other side.

Similarly, propagation through free space (including uniform dielectrics)
has simple S- and T-representations that show a phase shift:

Sfree space ≡ Sf(kL) = eikL ·
(
0 1
1 0

)
(2.9)

Tf(ϕ) =
(
e−iϕ 0

0 eiϕ

)
(2.10)

where we have defined ϕ = kL to be the phase shift due to propagation. This
lightens up the notation a little bit, as writing "kL" all the time is a bit clunky.

Finally, we can apply all of the above to calculate the properties of a sim-
ple Fabry-Pérot resonator, as shown in Fig. 2.3.

First, multiply the T matrices togeter:

TFabry-Pérot ≡ TFP = Tm(−r1, t1) · Tf(ϕ) · Tm(r2, t2) (2.11)

where we are not writing out the expressions, as it is more conveniently done
using some computer algebra system. Since we want to know the reflection
and transmission given some input, we convert the T-matrix into an S-matrix.
Most of the time, the input comes from only one side only, so we additionally
multiply it by a normalized input vector with only one nonzero component:
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a1

a2

b2

r1, t1 r2, t2

ϕ = kL

b1

Figure 2.3: 2-port approach to solving a Fabry-Pérot resonator

(3) A M Jayich et al. (Sept. 2008). “Disper-
sive Optomechanics: A Membrane inside
a Cavity”. In: New Journal of Physics 10.9,
p. 095008. doi: 2008100103130400. url:
https : / / dx . doi . org / 10 . 1088 / 1367 -
2630/10/9/095008.

SFP ·
(
1
0

)
=

1
1 − e2iϕr1r2

·
(
r1 − r2e

2iϕ(r2
1 + t2

1)
eiϕt1t2

)
(2.12)

The first component of that vector is the reflection of the cavity, while the
second is the transmission. As you can see, that was pretty easy. The same
technique is even more useful when one works with a system that contains
multiple components in addition to the mirrors. The case of a membrane-
in-the-middle system is a bit more involved and requires splitting the cavity
into two sub-resonators, to which we refer the reader to Jayich et al. (2008)(3).
We will continue deriving the results for a simple cavity. First, let’s compute
the power reflection and transmission by multiplying the above expressions
elementwise with their complex conjugates. The power transmission of such
a cavity is:

T =
t2

1t
2
2

1 + r2
1r

2
2 − 2r1r2 cos(2ϕ)

(2.13)

By completing the squares in the denominator and using 2 sin2(ϕ) = 1 −
cos(2ϕ), we obtain a more suggestive and familiar expression:

T =
t2

1t
2
2

(1 − r1r2)2 + 4r1r2 · sin2(ϕ)
(2.14)

which is indeed the correct transmission of a Fabry-Pérot resonator, in accor-
dance with (Ismail et al. 2016).

From the above, we can determine that the transmission function is peri-
odic, with a period of ∆ϕ = π, and reaches its maximum values at ϕ = π · n
for integer n. In case of a free-space resonator, ϕ = kL = 2πL/λ = ωL/c.
Therefore, we get our first definition, that of Free Spectral range, or FSR:

∆ωFSR ≡ πc

L
(2.15)

https://doi.org/2008100103130400
https://dx.doi.org/10.1088/1367-2630/10/9/095008
https://dx.doi.org/10.1088/1367-2630/10/9/095008
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We shall now look more closely at the transmission of the cavity. To
make (2.14) a bit more succinct, let us make a reasonable assumption.In the
majority of experimental cases, the mirrors are low-loss, so typically 1 − r2 <
0.001. Treating r1r2 as a single variable very close to 1 such that r1r2 = 1 − δ,
we can rewrite (2.14) as:

T =
t2

1t
2
2

(1 − r1r2)2
· 1

1 + 4r1r2
(1−r1r2)2 · sin2(ϕ)

(2.16)

≈
t2

1t
2
2

δ2 · 1
1 + 4

δ2 · sin2(ϕ)
(2.17)

Now note that since δ is very small, 4/δ2 will be very large, i.e. the transmis-
sion will be significant only for ϕ ≈ 0, so we approximate sin2(ϕ) ≈ ϕ2 (we’re
ignoring the periodicity for simplicity). Regardless, we obtain the transmis-
sion in a concise form:

T =
t2

1t
2
2

δ2 · 1
1 + 4ϕ2

δ2

(2.18)

Note that the fraction now has the exact shape of a Lorentzian! The full-
width-half-maximum of this Lorentzian is ∆ϕ = δ. Additionally, if we write
that r2 = 1 − l2, where l2 = t2 + a2 for each mirror and define L ≡ l21 + l22,
then we can simplify even further: δ ≈ L/2. If we now remember that the free
spectral range corresponds to ∆ϕ = π, we are able to define Finesse as the
ratio between the FSR and FWHM:

F ≡ FSR
FWHM =

π

δ
=

2π
L

(2.19)

It is important to note that the above treats the field inside of the cavity
as a plane wave. An optical resonator will generally support a multitude of
different optical modes that depend on its particular geometry. These modes
will have an intrinsic geometry-dependent phase shift at the waist (Gouy
shift), which will affect their absolute frequencies. However, the concepts of
finesse and FSR still apply for modes existing in resonators that are much
larger than the wavelength of light used.

2.2 Spectra and spectral densities

In our work, we most often work with signals that are driven by random pro-
cesses. Examples about: mechanical motion of our membrane transduced by
light, RF signals with their intrinsic noise, etc. As it is well-known in expe-
rimental fields, looking at a signal in frequency domain is often much more
enlightening than the picture of the same signal in time. Fourier transforms
are a very useful tool in this regard, but their intrinsically complex output is
often not needed, as we are interested in how much power a certain frequency
band contains.



2.2. Spectra and spectral densities 15

(4) Christoffer Østfeldt (2022). “Quantum
Optomechanics for Hybrid Spin-Membrane
Entanglement”. Niels Bohr Institute, Fa-
culty of Science, University of Copenhagen.

(5) William Hvidtfelt Padkær Nielsen
(2016). “Quantum Cavity Optomechanics
with Phononic Bandgap Shielded Sili-
con Nitride Membranes”. University of
Copenhagen. 160 pp.

Fourier transforms and frequency spectra are a bit of a battleground
when it comes to conventions on normalization. To avoid confusion, we will
follow the same convention as is popular in our field, as evidenced by the
theses of (Østfeldt 2022)(4) and (Nielsen 2016)(5). First, we define the Fourier
transform and its corresponding inverse:

f(ω) ≡
+∞∫
−∞

f(t)e−iωtdt

f(t) ≡ 1
2π

+∞∫
−∞

f(ω)e+iωtdω,

from which the energy spectral density is defined as

Eff ≡
f(ω)

2 . (2.20)

An advantage of our convention is that to obtain the energy of a signal, it is
only necessary to take its energy density’s integral, without the need for a
normalization constant.

Note that the energy spectral density (and power spectral density) can be
equivalently defined as the Fourier transform of the signal’s autocorrelation
function, made possible by Wiener-Khinchin theorem. These definitions
are more useful when a given signal has a finite total energy, but for signals
with which we work (signals without a defined beginning or end), the power
spectral density is a more important metric. First, we define a time-limited
Fourier transform:

fT (ω) ≡
+T/2∫
−T/2

f(t)e−iωtdt, (2.21)

which then leads to our definition of the power spectral density (PSD):

Sff = Sf ≡ lim
T→∞

1
T

fT (ω)
2 . (2.22)

Let us now list some properties of power spectral densities that make them
especially useful:

1. Any real (as in "non-complex") signal will have a symmetric PSD. The
definitions above are so-called "two-sided" power spectral densities,
valid for both complex and real signals. For real signals, one can define
a one-sided PSD simply as 2 · Sf, where integration is done on non-
negative numbers only

2. PSDs lend themselves to easy averaging. Practically, if a stationary sig-
nal becomes decorrelated faster than the acquisition time for the PSD,
one can safely acquire many spectra, and obtain an averaged spectrum
with much less variance. This is possible due to the ergodic theorem.
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Note that complex signals do arise in certain circumstances, such as when
one performs demodulation of an initially real signal. In that case, the power
spectral density will be asymmetric.

In the same spirit, we can define an extension of power spectral densities:
the cross power spectral density or cross spectral density, CSD for short:

Sgf ≡ lim
T→∞

1
T
g∗T (ω)fT (ω). (2.23)

The cross spectral density is a very useful tool to characterize whether two
different signals are related, as it highlights correlated spectral components,
while removing uncorrelated noise. We use CSDs extensively in our work on
characterization of phase noise in delay line phase cancellation. The author
believes that CSDs are underused in our field, and should be explored more
often as a tool to uncover signals otherwise "buried" in noise.

2.3 Photodetection

Needless to say, photodetection is our everything. All the optical processes
that we create in our experiments sooner or later end up in a photodetector,
be it a superconducting single-photon detector, or a humble photodiode. It is
then imperative to ask oneself the question, "given some input, what will the
photodetector produce at its output?". Rigorous treatment of photodetection
is a big topic on itself, for which we refer the reader to existing literature,
such as (Walls and G. Milburn 2008), (Mandel and Wolf 1995), and others.
We will instead list the results most important to us.

2.3.1 Shot noise

One of the simpler states of light, next to no light at all, is the coherent light.
Coherent light is a pure sinusoidal wave at a single frequency, constant inten-
sity, with no beginning or end. From the quantum optics perspective, it is an
eigenstate of the annihilation operator:

â |α⟩ = α |α⟩ , (2.24)

where α is this state’s amplitude, possibly complex. As an experienced rea-
der will know, its average photon number is simply ⟨â†â⟩ = ∥α∥2. However,
it is not an eigenstate of the number operator n̂ = â†â, so its photon number
will be fluctuating, with variance given by:

⟨n̂2⟩ − ⟨n̂⟩2
= ⟨n̂⟩ (2.25)

A little side-note: so far we have referred to operators that operate (sorry
for the tautology) on some kind of mode where a total number of photons
can be computed. It can be either a temporal mode, or a confined mode,
such as one inside of an optical cavity. If one has to deal with rates, i.e. free-
propagating fields that are defined in terms of how many photons per se-
cond arrive at the detector, a similar treatment applies (Mandel and Wolf
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(6) Again, coming from RF, where "local"
means "at home inside your radio"

1995), but with a change of units such that, say, â has units of photons/
√

time ,
and additional care taken to include the fact that the detector is effectively
sampling adjacent temporal modes that closely follow each other as they im-
pinge on the detector(Mandel and Wolf 1995). The signal produced by the
detector is then conceptually a series of "one-shot" measurements of small
temporal segments.

The above variance should also be the result of integrating over the po-
wer spectral density produced by a photodetector (assuming output has been
normalized to represent numbers of photons). Indeed, the PSD of photode-
tected current for a coherent state, which is the quantity that we measure, is
simply:

Si = photon rate. (2.26)

The difference between measuring incoming free-propagating beams, and
the more idealized confined field, is actually somewhat staggering, especially
when representing PSDs of photocurrents. Again, we refer the reader to
(Mandel and Wolf 1995) for a rigorous treatment.

2.3.2 Interferometry

While the main theme of this work is single-photon counting, homodyne
and heterodyne interferometry still play an exceptionally important role
for diagnostics, and past and future measurements that will involve con-
tinuous measurements of mechanical state. The most used kind of linear
detection for us is homodyne interferometry, or homodyning for short. Ho-
modyning allows one to measure extremely weak optical fields using normal
non-photon-counting linear detectors, usually photodiodes. Note that it is
not a substitute for true photon counting, as homodyning detects quadratures
of the incoming field, i.e. linear superpositions of â and â† (properly nor-
malized). Direct detection on the other hand, in particular photon counting,
detects â†â, which is quadratic in the field strength, which can be used for
"more quantum" protocols, such as heralding.

Homodyning and heterodyning both exploit the intrinsic non-linearity
of photodetectors, as their output is quadratic in the field. Historically, both
techniques stem from early advances in radio-frequency design, which are
used even more widely in our information-age society.

And now, onto optics. The canonical version of homodyning or hetero-
dyning consists of combining the signal of interest, possibly very weak, with
a strong coherent drive using a 50:50 beamsplitter. The two beams overlap
geometrically, so there will be interference on the two outputs of the beams-
plitter. We shall call the strong coherent drive as Local Oscillator, or LO(6). In
the regime where LO is much stronger than the signal, as is usually the case,
and the phase between the two beams is known, the photocurrent output of
the balanced photodetector will be (Bowen and G. J. Milburn 2015):

Shom
i (ω) = ∥αLO∥2 S̄Xθ(ω) (2.27)

where the last spectral density is the symmetrized power spectral density of
the signal quadrature:
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X̂θ ≡ 1√
2
(â†eiθ + âe−iθ) (2.28)

This last thing can correspond to phase, amplitude, or any combination of
the two for the signal. θ is the phase angle between the signal and LO, which
of course assumes that the signal has some coherent component. If there
is no phase dependence (like for thermal light states, or number states, for
example), then X̂ will be independent of θ.

In case of heterodyne detection, we can detect all quadratures simultane-
ously, though that comes at the cost of doubling of shot noise’s effect on the
signal (Bowen and G. J. Milburn 2015).

What is important in the above is the increase of PSD of the signal with
increased LO power, which allows one to overcome e.g. electronic noise in
the detection system simply by increasing the LO level.

2.4 Afterword

The topics presented above form a foundation for many of our basic techni-
ques. More specific theory relevant to different experiments of this work is
outlined in the corresponding chapters.
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3
Mechanics

A lot of what we do has a classical description first and foremost, and only
at the end displays quantum properties. This is why I believe that a intro-
duction to good old classical mechanics is needed, especially focusing on
harmonic oscillators. This topic is one of the first to be taught in any classical
mechanics course, so we will not go into extreme details of derivations, as
that is beautifully covered in many textbooks (Landau and Lifshitz 1976; Cas-
siday and Fowles 2005; Goldstein, Poole, and Safko 2001). However it is still
important to cover some practical parts that are particularly useful to our ex-
periment, such as the frequency response of oscillators under external forces,
damping, etc. This will also ensure that we are speaking the same language.
Without further ado, let us begin.

3.1 Harmonic oscillator: time-domain dynamics

Here we are: the humble harmonic oscillator. The workhorse (and someti-
mes scapegoat) of physics. Present, in one form or another, in nearly any
physical phenomenon. From atomic transitions to planetary motion, from
LIGO mirrors to levitated nanoparticles, from electromagnetic fields to civil
engineering. This is all due to it being, perhaps, the simplest system beyond
a system without any forces at all. In simple terms, whenever there is a force
linearly proportional to some displacement, force that tends to bring the
object towards its equilibrium point, a harmonic oscillator appears. Herein
lies its power: most real-world forces, no matter how nonlinear over large
distances, can be linearly approximated when displacements are small. Just
as importantly, "force" need not be of the mechanical kind. Thanks to the
achievements of classical mechanics giants such as Lagrange and Hamilton,
it became possible to vastly generalize the concept of harmonic oscillators(1),
and bring it to a vastness of other phenomena. All one needs is a system
with two conjugate variables q and p (position and momentum, in mechani-
cal terms), that obeys a simple Hamiltonian:
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(2) As promised, we are skipping many
derivation steps

(3) With the benefit of hindsight, as is usual
in mathematics and physics. Somebody sat
down and got that hindsight, so that we
don’t have to...

H =
p2

2m + 1
2kq

2 (3.1)

The constants m and k represent the mass and spring constant of a classical
one-dimensional mass-spring system, but they need not be! As long as a
system has two variables, and an energy quadratic in both, it will behave in
the exact way in which a harmonic oscillator behaves. And just as easily, this
can be generalized to a multi-dimensional case. From this hamiltonian, the
equations of motion arise:(2)

m¥q + kq = 0 (3.2)

The solution to this equation are simples sines and cosines: a peaceful and
undisturbed oscillation. This is where we start adding spoonfuls of tar into
our barrel of honey, as the world is not peaceful, and takes every opportunity
to disturb the harmonic oscillator. The first such force is decay, or damping.
As the harmonic oscillator inevitably interacts with the multitude of things
around it, it starts to feel little kicks and nudges. Not to get too prosaic, many
independent microscopic disturbances tend to drain the system of its energy,
which from the point of view of the oscillator looks like damping: a velocity-
dependent force counteracting its motion. This adds to our previous equa-
tion:

m¥q + Γ ¤q + kq = 0 (3.3)

The new constant Γ is simply a proportionality factor that describes how
strong the damping is. We shall now perform a familiar transformation,
where the equation is divided by m, and some new constants are introduced
to capture the dynamics in a clearer way:(3)

¥q + ηΩ0 ¤q +Ω2
0q = 0 (3.4)

Ω0 is the natural frequency of the oscillator, that is, the frequency at which it
would oscillate in absence of external influences or damping. Also note that
we introduced a unitless constant η, which will characterize the "damping re-
gime" in which the system operates. Making it unitless decouples it from the
timescale, allowing us to compare e.g. oscillators with different frequencies.

We are now in position to look at some solutions of this system. I say
"some" because for the very specific case of critical damping (η = 1/2), the
solutions need a special treatment, which is not particularly useful for this
thesis. But do review, for example, (Goldstein, Poole, and Safko 2001) for a
comprehensive derivation. We will also omit the overdamped case, as we
rarely encounter it in practice. Now, by setting q = exp(λt), the differential
equation becomes a quadratic one, with the following solution:

λ = −ηΩ0
2 ± iΩ0

√
1 − (η/2)2 ≈ −ηΩ0

2 ± iΩ0 (3.5)
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(4) Famous quote by Steve Ross (Bob Ross’
son)

where the latter approximation is due to having a typical scenario in mind:
η ≪ 1. Then the solutions to the equation of motion are:

q = exp
(
−ηΩ0

2 · t
)
· exp(±iΩ0t) (3.6)

The first term is the decay of the oscillator’s amplitude due to damping,
while the second one describes the oscillations. Sidenote: the quantity is
complex, but can be converted into a real physical quantity by taking the
real part of it. This is due to the linearity of our system, which allows any
arbitrary linear combination of its solutions to be a solution as well. Simi-
larly, the solution can be multiplied by any complex number prior to taking
the real part. Complex numbers are often easier to manage than sines and
cosines, which is why we try to stick to them here.

We can now take a look at the energy evolution of the system under such
decay. Now, a correct treatment would consider both the kinetic and poten-
tial energies. However, for the purpose of exposition, we will look only at a
proportionality, which will allow us to make an important definition in a mo-
ment, without cluttering this work with derivations much better explained
in textbooks. By taking the absolute value squared of the position, which is
proportional to the energy, we obtain:

|q|2 = exp(−ηΩ0t) (3.7)

As you can see, the energy of the system simply decays exponentially with
a time constant of ηΩ0. Here comes one of the most used definitions in our
field, the Q-factor (often referred to simply as "The Q"):

Q ≡ 1
η

(3.8)

See, I pulled a sneaky on ya! (4) It has been hiding in plain sight all this time.
The Q is one of the most important parameters in optomechanical systems,
as it quantifies how many oscillations can an oscillator perform, before its
energy decays by a factor of e. All of the above will be enough for nearly
all mechanics-related time-domain discussions in this work, so now we can
proceed to a different view of the same phenomena: the frequency domain.

3.2 Harmonic oscillator: frequency-domain behavour

In our work, most of the time we use spectral techniques to analyze our sy-
stems, as it is undoubtedly convenient. And since we’re dealing with har-
monic oscillators all the time, let us look at how they behave in frequency.
The approach here is very similar to the previous subchapter, except for the
following:

• Instead of substituting complex quantities as a trial solution, we will
start using Fourier transforms.

• We will now introduce an external driving force.
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The equation of motion with an external force takes the following form:

¥q + ηΩ0 ¤q +Ω2
0q = f(t), (3.9)

where f(t) is some time-dependent external force (f(t) = F(t)/m for actual
mechanical oscillators, F being the physical force applied). We now switch to
the Fourier domain in the usual way, t → ω:

−ω2q(ω) − iωηΩ0q(ω) +Ω2
0q(ω) = f(ω) (3.10)

Just as before, we end up with an algebraic equation instead of a differential
equation, readily solvable:

q(ω) = 1
−ω2 − iωηΩ0 +Ω2

0
· f(ω) (3.11)

This form is the complete solution, valid for all frequencies and dampings.
However, most often we deal with high-Q systems, and are only interested
in their behaviour near their resonance frequency. To see what I mean, let us
first rewrite the denominator an a slighly more suggestive way (redefining
again Γ ≡ Ω0η and dropping the subscript in Ω0 while we’re at it):

−ω2 − iωηΩ +Ω2 = −(ω −Ω)(ω +Ω) − iωΓ (3.12)

This is still the previous form, but now let us make some very reasonable
definitions and approximations. First, we define the detuning. It is such an
important concept that it gets its own equation:

∆ ≡ ω −Ω (3.13)

We will be interested in regimes where this detuning is on the order of Γ , and
Γ ≪ Ω. This allows one to approximate ωΓ ≈ ΩΓ , and ω +Ω ≈ 2Ω. Before
mathematicians get angry, let me tell you that a more formal approach with
Taylor expansions yields the same result, it’s just a bit more "visual" to do it
our way. With these approximations and some algebra, Eq. (3.11) becomes

q(ω) = −f(ω)
2Ω∆ + iΓΩ

=
−iΓΩ · f(ω)
1 − 2i∆/Γ (3.14)

See where I’m going? We’re arriving at the definition of a Lorentzian! As
a matter of fact, 1/(1 − 2i∆/Γ ) is the complex Lorentzian, and appears very
often in our work, whenever complex response (i.e. response containing
phase information) is necessary. We shall provide a proper definition of the
complex Lorentzian later, closer to where it’s used. However, The Lorentzian,
its absolute squared relative, is important enough to define here:

L(∆; Γ ) ≡ 1
1 + (2∆/Γ )2 (3.15)



23

(1) Markus Aspelmeyer, Tobias J. Kippen-
berg, and Florian Marquardt (Dec. 2014).
“Cavity Optomechanics”. In: Reviews of Mo-
dern Physics 86.4, pp. 1391–1452. issn: 0034-
6861. doi: 10.1103/RevModPhys.86.1391.
url: https://link.aps.org/doi/10.1103/
RevModPhys.86.1391.

(2) Warwick P. Bowen and Gerard J. Mil-
burn (Dec. 2, 2015). Quantum Optomechanics.
Boca Raton: CRC Press. 376 pp. isbn:
978-0-429-15931-2. doi: 10 . 1201 / b19379.
url: https://doi.org/10.1201/b19379.

C
h

a
p

t
e

r

4
Optomechanics

We have finally reached the point where we can talk about optomechanics,
both in the classical and quantum domains. There exist several excellent
introduction resources on this topic, such as Aspelmeyer, Kippenberg, and
F. Marquardt (2014)(1) and Bowen and G. J. Milburn (2015)(2). Therefore, we
will not list all the derivations, and will instead give priority to results that
shape this work’s approach. However, we will still outline the founding
ideas, as I find them illuminating and pedagogical.

Optomechanics has two meanings: "interaction between optical and me-
chanical phenomena" and "engineering of mechanical devices for control
of light". The two definitions look somewhat alike, but in practice the latter
refers to the manufacture of fixtures, mounts, optical breadboards, etc. The
former, however, is our area of physics, where try to harvest the fundamental
mechanical properties of light and matter, and use them to our advantage.
We will now descibe several ways in which light can interact with a mechani-
cal object, in order of increasing complexity.

4.1 Free-propagating light and free-floating mass

Let us consider a simple scenario: a 1 kg retroreflector mirror floating so-
mewhere in intergalactic space, with no forces to perturb it, in an almost
perfect vacuum. We are floating some distance away, enough for our gravi-
tational attraction not to affect this mirror too much. We can’t quite see the
mirror, as it is dark around. So we fire up our 1 W, 1 µm-wavelength laser
and start sweeping it across the sky, until we suddenly get a reflection on
our detector. We found the mirror! We send a couple of lidar pulses, and
determine that the mirror is not moving to the best of our knowledge. Ho-
wever, we would now like to track it precisely. So we take our continuous
laser, point it precisely at the mirror, and get a return signal that we send to
a homodyne setup, shown in Fig. 4.1. Now we can determine the position
of this mirror quite precisely, with the ultimate limit set by light shot noise
(more on that later). But we soon see that something is happening: the inter-

https://doi.org/10.1103/RevModPhys.86.1391
https://link.aps.org/doi/10.1103/RevModPhys.86.1391
https://link.aps.org/doi/10.1103/RevModPhys.86.1391
https://doi.org/10.1201/b19379
https://doi.org/10.1201/b19379
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ference pattern starts to shift faster and faster, indicating that the mirror is
accelerating away from us. This is the pressure of light, which hits the mirror
and reverses its direction, producing a constant force of F = 2P/c, with P
being the power of the incoming beam, and c the speed of light.

Figure 4.1: Schematic of the thought experiment with a free mass in space

This phenomenon is, of course, nothing new to us, as we are a space-
fairing civilization. So we quickly ask our friends on the other side, opposite
to the mirror, to send a laser beam of their own to first counteract the speed
of the mirror, and then set it to be exactly equal to the power of our beam.
The mirror predictably stops its motion relative to us and our friends, and
now we don’t need to worry about it running away. We then continue our
measurements. Since the equation of motion of a free mass is simply New-
ton’s second law, ¥x = F(t)/m, we know how our light will affect the mirror’s
motion. Let us disregard the effect that our friend’s lasers’ shot noise has
on the mirror for simplicity, and only concern ourselves with our own shot
noise. Remember that the coherent light produced by our laser is not com-
pletely constant: shot noise is present in both its amplitude and phase. The
floating mirror only responds to amplitude, i.e. intensity. If we convert the
equation of motion into its double-sided spectral density form, and use the
spectral density form of shot noise, then we obtain:

Sxx(ω) = 2(hν)P
mc

· 1
ω4 (4.1)

A small caveat: this expression is unbounded for ω = 0. Remember, however,
that we agreed with our friends to keep the free-floating mirror stable, which
effectively translates into cancelling such low-frequency effects below a cer-
tain frequency ϵ. If we now want to know the variance of mirror position,
it’s a simple manner of integrating. Remembering that this is a double-sided
spectral density, we get

2
∞∫
ϵ

Sxx(ω)dω =
12(hν)P
mc · ϵ3 (4.2)

A quick order-of-magnitude estimate with our parameters and ϵ = 10 Hz
leads us to have rms variations in the mirror’s position on the order of femto-
meters. That might sound insignificant, but it is precisely the precision level
at which gravitational wave detectors such as LIGO operate, with spectral
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densities of end-mirror positions of ≈ 1 × 10−16 m/
√
Hz . The important mes-

sage here is that light randomly perturbs the motion of the mechanical object.
And while the shot noise’s influence on the detected signal decreases, the shot
noise increases the position fluctuations themselves! This in itself is rather fas-
cinating, especially given the fact that our experiments routinely observe
effects that stem directly from shot noise perturbations on mechanical mo-
tion, which we shall refer to as backaction.

As a sidenote, we might ask ourselves whether there exists an optimal
optical power if all we want to do is to measure the position of a mechanical
object. That point does indeed exist, and it is famously(3) called the Standard
Quantum Limit, or SQLnot related to Standard Query Language of computer data-
bases for short. At that limit, the backaction (which directly affects the mass)
and the imprecision (which only affects the measurement, and not the mass)
are equal in magnitude. In case of optomechanics with harmonic oscillators,
which covers the regime of the vast majority of current experiments, SQL
results in an effective added energy of ℏΩm/2, of which half is physically ad-
ded to the oscillator, and the other half is due to measurement imprecision
(Aspelmeyer, Kippenberg, and F. Marquardt 2014)(4). Gravitational wave de-
tectors are a notorious exception, where mirror motion is much slower than
the timescale of gravitational waves, so mirrors can be considered to be free
masses, and a modified treatment yields the free-mass SQL of

√
ℏτ/m , with τ

being the measurement interval (Bowen and G. J. Milburn 2015)(5).

4.2 Free light and harmonic oscillator

We’re getting a bit closer to our goal, so let us make another change to our
model. We’re still in outer space, but this time the mirror is on a spring (a
pendulum would work if there was gravity, which there isn’t). Let’s say the
spring is attached to something relatively immovable, like an asteroid that
we conveniently brought with us, or a rock (Fig. 4.2).

Figure 4.2: Schematic of the thought experiment with a harmonic oscillator in space,
attached to a massive rock (Dwaine "The Rock" Johnson).

And let there be a bit of damping, perhaps from the spring itself, but
not too much so that we stay in the weak damping regime (Γ ≪ Ω). As
described in the chapter on mechanical oscillators, the equation of motion of
such an oscillator in frequency domain is as follows:

−ω2x(ω) + iωΓmx(ω) +Ω2x(ω) = F(ω)/m (4.3)

https://doi.org/10.1103/RevModPhys.86.1391
https://link.aps.org/doi/10.1103/RevModPhys.86.1391
https://link.aps.org/doi/10.1103/RevModPhys.86.1391
https://doi.org/10.1201/b19379
https://doi.org/10.1201/b19379
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where we adopt the notation of Aspelmeyer, Kippenberg, and F. Marquardt
(2014) for Γm. Let us introduce the more general concept of mechanical suscep-
tibility, which is nothing else than the response of mechanical position to an
external force in frequency domain (Aspelmeyer, Kippenberg, and F. Mar-
quardt 2014):

χm =
1

m(Ω2
m −ω2) − imΓmω

(4.4)

The driving force, i.e. shot noise, is still as in the previous example of a
free mass. We are also still disregarding the offset produced by the dc part
of the light beam. This time, however, the transduction function has chan-
ged. Additionally, because we have agreed on the condition of very weak
damping, we will approximate the response of the oscillator as a complex
Lorentzian:

χm ≈ i

ΓmΩm
· 1

1 − 2i∆m
Γm

, (4.5)

where we have defined ∆m ≡ ω −Ωm to be the mechanical detuning.
If we now translate the above into the language of power spectral densi-

ties (by multiplying χm by its complex conjugate), it should be evident that
the mechanical motion spectrum under the action of shot noise (which is
entirely flat over the whole frequency range) will be a Lorentzian as well.

For more worked-out examples for the harmonic oscillator and free mas-
ses, we refer the reader to the very thorough work of Bowen and G. J. Mil-
burn (2015).

4.3 Confined light and harmonic oscillator: introduction

One problem with the above approaches is that of waste: light only has one
chance to interact with the mechanical system, necessitating a substantial
optical power for precise measurements. This is where cavity optomechanics
finally enters the picture: we use optical techniques that allow the light to
recirculate, allowing it to interact with the mirror multiple times. In mo-
dern optical devices, this can be done in a multitude of ways, but the core
idea is the same: construct an optical resonator interfaced to the mechanical
object in question. We shall now talk about an exceptionally useful model
that captures the dynamics of most optomechanical systems: the "canonical
optomechanical model".

The canonical optomechanical model consists of a two-mirror optical
cavity, where one of the mirrors is allowed to move as a harmonic oscillator
around its equilibrium position. This motion corresponds to changes in the
length of the cavity, i.e. changes of the resonance frequency of the cavity. In
the vast majority of experimental cases, such changes are only a tiny portion
of the wavelength of light, and we will only consider the following linear
expansion, following notation in Aspelmeyer, Kippenberg, and F. Marquardt
(2014):
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(6) Sometimes called "single-photon
coupling strength". The author prefers
"phonon" in this context, as the definition
specifically uses the mechanical zero-point
motion

(7) essentially length

ωcav(x) = ω
(0)
cav + x · ∂ωcav

∂x
(4.6)

where x is the displacement of the mirror, and ω
(0)
cav is the "default" cavity

resonance frequency. We shall define a quantity called G that characterizes
the changes of cavity frequency with respect to displacement. In the case of
the canonical model:

G ≡ − ∂ωcav
∂x

= − ∂

∂L

cn

2L = ωcav
1
L

(4.7)

where n is the mode number of a particular resonance (although it’s incon-
sequential in the final result). You can see one important point already: for a
canonical system, the coupling strength decreases with an increase of cavity
length. This is one of the reasons why we prefer increasing the mirrors’ re-
flectivities instead of increasing the cavity length, when a narrow linewidth
is required. G is a fine metric for a system, but it’s usually a bit cumbers-
ome to use in case of quantum experiments, as it doesn’t encapsulate any
properties of the mechanical oscillator, and for us has wild magnitudes on
the order of 100 THz/m. For this reason, we define another quantity named
"single-phonon coupling strength"(6) or g0. By remembering that any harmo-
nic oscillator has an associated amplitude of zero-point motion xzpf, we can
arrive at a more relevant definition:

g0 ≡ G · xzpf = G ·
√

ℏ

2meffΩm
(4.8)

we’re using the concept of "effective mass" meff. This definition allows us to
compare different systems, including those where it’s not initially clear what
constitutes a "free mirror" and how to measure displacements, for example
microresonators where it’s the whole structure that is both the optical cavity
and the mechanical oscillator. Contrary to G that has SI units of Hz/m, g0
has units of Hz. Jumping a bit ahead, our membrane-in-the-middle systems
have values of |g0 | ranging between 5 Hz and 100 Hz approximately, depen-
ding on the construction(7) of the cavity used.

4.4 Quantum-optomechanical equations of motion

We shall now dive deeper into a proper description of an optomechanical
system, again following Aspelmeyer, Kippenberg, and F. Marquardt (2014).
First, let us describe the dynamics of an optical cavity, without mechanics for
now. We shall be focusing on only one optical mode (e.g. one of the optical
resonances of a Fabry-Pérot cavity). If the cavity is absolutely lossless, its
Hamiltonian will be rather simple:

Ĥ = ℏωcav · â†â (4.9)
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(8) slight abuse of notation, as âinput and
f̂loss stem from a continuous-mode tre-
atment of travelling fields, and has units
of 1/

√
Hz , while â is a more textbook

operator for a confined mode, and is
unitless

Cavities are unfortunately never lossless. These losses can be "good", for
example those that allow the intracavity field to leak-out and be used for so-
mething else, or allow external laser light to be pumped into the cavity. They
can also be "bad", i.e. irreversible losses due to light absorption, scattering,
and so on. These effects can be used in the Hamiltonian formulation in the
following way:

Ĥtest = ℏωcav · â†â + Ĥbath + Ĥcoupling (4.10)

The common effect of these Hamiltonians is a bit more evident after
using the quantum Langevin approach to open systems outlined in Bowen
and G. J. Milburn (2015), where the bath is assumed to be a large collection
of harmonic oscillators, and is then traced out (as by definition we’re not able
to track the quantum state of such a bath). We then arrive at the following
equation of motion for the intracavity field:

∂

∂t
â = −κ

2 â +√κext âinput(t) +
√
κ0 f̂loss(t), (4.11)

where κ = κext + κ0 is the total decay rate. In the language of optical cavities,
κ is the full-width-half-maximum in radial units, κ0 is the irreversible loss
(bad), and κext is the coupling to the external world, e.g. due to transmission
through the mirrors (good). More often than not, âinput is a strong drive
(typically coherent) with small quantum fluctuations overimposed on it(8).
Without loss of generality, we can write

âinput = eiωLt · (α + δâi), (4.12)

where ωL is the driving frequency of the laser. This is a good moment to
transform our dynamics into a frame rotating with the laser frequency (Bo-
wen and G. J. Milburn 2015), which then converts Eq. (4.11) into:

∂

∂t
â =

(
−κ

2 + i∆
)
â +√κext (α + δâi) +

√
κ0 f̂loss (4.13)

with the usual definition of ∆ = ωL −ωcav.
Let’s spice things up a little by adding the mechanical oscillator. We

will take a step back and look at the hamiltonian again, except this time we
will add the hamiltonian of the harmonic oscillator, and remember than
ωcav = ω0

cav +Gx, with x being the position of the mechanics

ĤOM = ℏ(ωcav +Gx̂) · â†â + ℏΩm · b̂†b̂

= ℏωcav · â†â + ℏΩm · b̂†b̂ + ℏg0(b̂ + b̂†)â†â (4.14)

Note the last term, which is the interaction between mechanics and optics.
One could even call it optomechanics! In any case, that interaction is funda-
mentally nonlinear (which is the reason why an optomechanical system can
scatter photons to different frequencies). With that said, in the vast majority
of experiments, including ours, a large number of intracavity photons is nee-
ded for any measurable interaction. By again writing â = α + δâ, and b̂ = δb̂
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(9) note slight change of notation, as we are
following a different work

(purely notational to highlight the fact that we assume small mechanical
fluctuations), the interaction term above becomes linearized:

ĤI = ℏg0(δb̂ + δb̂†)(α + δâ†)(α + δâ) (4.15)
= ℏg0α

2(δb̂ + δb̂†) + ℏg0α(δb̂ + δb̂†)(δâ + δâ†) (4.16)

where we disregarded higher-order interaction terms, as they are dominated
by second-order terms, and defined α to be real without loss of generality.
The first term is the optical spring effect, which we typically ignore in quan-
tum dynamics. The second term is the important one: it characterizes the
actual photon-phonon processes occuring in the optomechanical system. For
now, this is a general interaction term that does not include the specifics of
either sideband-resolved or unresolved operation, which we will cover next.

4.5 Theory of single-phonon interactions

We shall now closely follow the results of Galland et al. (2014), especially
those presented in its supplementary material. As stated there, and in Wool-
ley and Clerk (2013), we make the following ansatz. This essentially separa-
tes the intracavity field into three components: resonant light â0 (detuning
of 0), and light on either the "red" side of the cavity resonance (â−), or the
"blue" side (â+). We take those sidebands to be Ωm away from the cavity
resonance, as shown in Fig. 4.3, as in the sideband-resolved regime exactly
these detunings will be relevant for all of our operations.

â(t) = â0(t) + â±(t)e∓iΩmt (4.17)

â0â− â+

ω

Ωm Ωm

Figure 4.3: Convention on naming of fields in Galland et al. (2014)

By using the above ansatz with Eq. (4.14), one obtains a set of equati-
ons(9):
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∂â0
∂t

= ig0(â−b̂0 + â+b̂0) −
κ

2 â0 (4.18)

∂b̂0
∂t

= ig0(â0â+ + â−â0) −
γ

2 b̂0 (4.19)

∂â+
∂t

= ig0â0b̂0 − is+ −
(κ
2 − iΩm

)
â+ (4.20)

∂â−
∂t

= ig0â0b̂0 − is− −
(κ
2 + iΩm

)
â− (4.21)

where s± are driving terms. Usually only one of the drives is active (either
red or blue), so we need not worry about them interfering. Just like in Gal-
land et al. (2014), we linearize the above (fundamentally non-linear) equati-
ons, and notice that we drive the system on either the red or the blue side.
Therefore, in the resolved regime we only concern ourselves with the scatte-
ring from the drive into the main mode of the cavity, â0. Additionally, in our
experiment, there are many places where we can disregard the mechanical
decay rate γ as it’s much smaller than any other relevant rate in the system
(γ < 50 mHz). The resulting equations, together with the noise that is dri-
ving the system (optical and mechanical decay) can be rewritten in matrix
form as

∂

∂t
Â = MÂ + N̂ (4.22)

or

∂

∂t

©«
â

â†

b̂

b̂†

ª®®®®¬
=

©«
−κ/2 0 ig− ig+

0 −κ/2 −ig+ −ig−
ig− ig+ −γ/2 0
−ig+ −ig− 0 −γ/2

ª®®®¬ ·
©«
â

â†

b̂

b̂†

ª®®®®¬
+

©«
√
κ âin√
κ â†

in√
γ b̂in√
γ b̂†

in

ª®®®®¬
(4.23)

where we have defined g± ≡ g0s± to be the optomechanical coupling rates.
The system of equations above captures all the relevant dynamics of the
system. Solving it is not trivial, but not impossible either. The sequence of
actions that Galland et al. (2014) use is outlined below:

• Diagonalize the system above to uncouple the equations.

• Symbolically solve the uncoupled equations to express Â in terms of
time integrals of N̂ (with proper change of basis)

• From the noise properties of âin and b̂in, namely:

⟨âin(t1)â†
in(t2)⟩ = κ · δ(t2 − t1) (4.24)

⟨b̂in(t1)b̂†
in(t2)⟩ = γ(n̄th + 1) · δ(t2 − t1) (4.25)

⟨b̂†
in(t1)b̂in(t2)⟩ = γn̄th · δ(t2 − t1), (4.26)

we calculate the corresponding correlations, and cross-correlations, of
â and b̂.

We have performed these calculations, and took into account the simplifica-
tions that our experiment allows. To remind the reader, these simplifications
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are due to the fact that γ ≪ {g−, g+} ≪ κ. Without going into the process of
calculations themselves, we instead will focus on one example.

Assuming that only the read light is active (i.e. g+ = 0), corresponding
the a beamsplitter interaction, we can compute the autocorrelation ⟨â†â⟩.
Note that we’re considering the intracavity field, as the result is slightly dif-
ferent for the field that eventually gets picked up by the detector. Here is the
autocorrelation in the steady-state regime:

⟨â†(t0 + t)â(t0)⟩ = exp(−κ|t|/2) + γn̄th · exp

(
−2g2

− |t|
κ

)
(4.27)

= exp(−κ|t|/2) + γn̄th · exp

(
−
Γopt |t|

2

)
(4.28)

Where in the last equality we used the expression for Γopt in the sideband-
resolved regime. Note the prominent appearance of the mechanical term:
that’s the phonons being transformed into photons!

Let us now skip ahead to the main results of Galland et al. (2014), which
will be the the main guidelines for our single-photon experiments. We will
just change the notation a little bit and define Γ = 4g2/κ, which corresponds
to optical broadening when red-detuned, and to the exponential growth fac-
tor when blue-detuned. With this, we follow Hofer et al. (2011) and Galland
et al. (2014) and introduce temporal optical read modes:

Âr,in(t) =
√

Γ

eΓt − 1

t∫
0

dt′ · eΓt′/2âr,in(t′) (4.29)

Âr,out(t) =
√

Γ

1 − e−Γt

t∫
0

dt′ · e−Γt′/2âr,out(t′) (4.30)

and similarly for the write modes,

Âw,in(t) =
√

Γ

1 − e−Γt

t∫
0

dt′ · e−Γt′/2âw,in(t′) (4.31)

Âw,out(t) =
√

Γ

eΓt − 1

t∫
0

dt′ · eΓt′/2âw,out(t′) (4.32)

All of these modes are based on eigensolutions to the Langevin equations for
this system after adiabatic elimination has been performed. These modes are
also the ones that will contain the photons of interest.

Now we turn our attention to the state evolution in the context of coun-
ting. Our initial conditions are the following:

• Mechanical oscillator in thermal state with occupation n̄th ≪ 1, brought
there by optical cooling.
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• No photons in the cavity.

In this state, the mechanical oscillator is, more specifically, in a mixed state
given by

ρ̂ = (1 − p)
∞∑

n=0
pn |n⟩ ⟨n| (4.33)

where p is defined in a conventional way as

p ≡ n̄th
1 + n̄th

(4.34)

Now we turn on the writing pulse for a time Tw. During that time, a cer-
tain number of photons is emitted into the cavity (and an equal number of
phonons is created in the mechanical oscillator), given by:

Nherald = (eΓTw) · (n̄th + 1) (4.35)

After detecting a photon (that inevitably leaks out of the cavity since κ is
so much bigger than all other rates in the system), the system gets projected
into a (hopefully) non-classical state given by the conditional density matrix

(1 − p̄) ·
∞∑

n=0
p̄2(n + 1) |n + 1⟩ ⟨n + 1| (4.36)

where we have defined p̄ ≡ p · exp(−ΓTw). For small enough p̄, this state
approaches a single-phonon state, which is the reason why whenever we
choose a write pulse strength (and/or duration), we tend to the weaker side
to make p̄ as small as experimentally feasible, with considerations of noise
and acquisition time. More on that in the experimental section, especially in
Chapter 10.

4.6 Practical optomechanical theory

For now, all that is left to do is to present some more results that are very
useful in everyday calculations, but without much proof. As before, we refer
the reader to (Aspelmeyer, Kippenberg, and F. Marquardt 2014) and (Bowen
and G. J. Milburn 2015), from which most of these results were adapted.

One of the most important experimental metrics is the optomechanical
broadening. It is easy to measure both using OMIT (covered later in Chap-
ter 6), or by observing spectral densities. Optomechanical broadening in a
general case is given by the following expression:

Γopt = n̄cavg
2
0

(
κ

κ2/4 + (∆ +Ωm)2 − κ

κ2/4 + (∆ −Ωm)2

)
=

4n̄cavg
2
0

κ
·
(
L (∆ +Ωm; κ) − L (∆ −Ωm; κ)

)
(4.37)

Note an interesting fact: Γopt can be negative or positive. When it’s positive,
which happens when the laser is red-detuned with respect to the cavity, it is
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broadening in the full sense: the measured spectrum of mechanical motion
will be Γeff = Γopt+Γm ⩾ Γm. When it is negative, however, it is possible to reach
regimes where Γeff ⩽ 0. In that case, what happens is an exponential growth
of energy in the mechanical oscillator. In our experimental case, Γm is very
small, so for us it is difficult not to excite the membrane in the blue-detuned
regime, even if the blue detuning is almost negligible.

It is quite useful to distinguish between sideband-resolved (κ ≪ Ωm) and
sideband-unresolved (κ ≫ Ωm) regimes. In the sideband-resolved regime,
when we are red-detuned by Ωm, the broadening takes a simple form:

Γ
(κ≪Ωm)
opt →

4n̄cavg
2
0

κ
(4.38)

Likewise, in the sideband-unresolved regime, when we are red-detuned by
κ/2, the broadening is:

Γ
(κ≫Ωm)
opt →

4n̄cavg
2
0

κ
· 2Ωm

κ
, (4.39)

where the factorization was done to emphasize the parallel to the sideband-
resolved case. An important note to make here is to realize that broadening
does not necessarily reflect the coupling strength, as it is possible to be exactly
resonant with the cavity, where Γopt = 0, but the coupling is still strong. This
regime is where, for example, QND measurements are often done.

Another important quantity for us is the mechanical occupation that we
can reach, given a certain broadening. In a general case, but in absence of
extra noise, this occupation is given by:

n̄m =
Γoptn̄min + Γmn̄th

Γopt + Γm
≈ n̄min + Γmn̄th

Γopt
(4.40)

where in turn n̄min is defined by the sideband resolution regime. It is equal
to (κ/Ωm)2/16 in sideband-resolved regime, where the optimal detuning has
been chosen. In the unresolved regime, the best attainable occupation is, on
the other hand, equal to n̄min = κ/(4Ωm),

On that note, let us look at this optimal detuning. For any regime of
operation, both resolved-sideband and unresolved-sideband, there exists an
optimal detuning that minimizes n̄min, and is given by:

∆optimal =

√
κ2/4 +Ω2

m (4.41)

As a fun little exercise, we can find approximations to this optimal detu-
ning. Remember that in the case of sideband-resolved operation, κ ≪ Ωm. In
the sideband-unresolved regime, the opposite is true. Therefore,

∆optimal ≈ Ωm + κ2

8Ωm
(resolved) (4.42)

∆optimal ≈
κ

2 + Ω2
m
κ

(unresolved) (4.43)
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4.7 Transition rates in equilibrium

In addition to the previous results, it is highly useful to calculate the inten-
sity of sidebands leaving the cavity. This provides intuition on what to ex-
pect during either photon counting, or heterodyne/homodyne detection.
Transition rates can be calculated from the requirement of equilibrium and
detailed balance (Aspelmeyer, Kippenberg, and F. Marquardt 2014). These
requirements lead to the following

(n̄ + 1)(A+ +A+
th) = n̄(A- +A-

th) (4.44)

A+ corresponds to the process of scattering photons towards the red side-
band, i.e. a process that increases the number of phonons (note: it is suppres-
sed in red-detuned resolved sideband regime). Inversely, A- corresponds to
the cooling process. The A coefficients are rates in the quantum mechanical
sense. To obtain the actual numbers of photons in the sidebands, we have to
multiply them by n̄:

n+ = (n̄ + 1)A+ (4.45)
n− = n̄A- (4.46)

For simplicity, we will consider the regime where Γopt ≫ Γm, which is nearly
always the case with the exception of extremely low optical power, practi-
cally irrelevant for us. With some simple algebra, we obtain that:

nBSB =
A-

A- −A+ (A
+ + n̄thΓm) (4.47)

nRSB =
A+

A- −A+ (A
- + n̄thΓm), (4.48)

where nBSB and nRSB are photon rates in the blue- and red-scattered light.
Next, we can introduce the "sideband resolution" parameter r ≡ (A-/A+)
which grows as we approach the resolved sideband regime (given the correct
detuning):

nBSB =
r

r − 1 (A
+ + n̄thΓm) = r

(r − 1)2 Γopt +
r

r − 1 n̄thΓm (4.49)

nRSB =
1

r − 1 (A
- + n̄thΓm) = r

(r − 1)2 Γopt +
1

r − 1 n̄thΓm (4.50)

This parameter lets us clearly see what happens when we go to the resolved-
sideband regime (r ≫ 1):

nBSB → n̄thΓm (4.51)
nRSB → 0 (4.52)
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(10) tediously, that is

4.7.1 Output light field

We have determined the photon flux in each sideband. Since the output flux
of photons from the cavity must be equal to their generation rate (minus
losses), we then know the corresponding output fluxes. For heterodyne de-
tection, this is enough to obtain the measured spectrum. However, for direct
or homodyne detection it is necessary to obtain the phase of these sidebands
with respect to the drive field. This phase is calculated in the Appendix of
(Gorodetsky et al. 2010), and we will just use the normalized result. But first,
we show an auxiliary result.

4.7.2 Intensity for drive + sidebands

We assume an input field amplitude of the form

E = 1 + eiϕm(aei(Ωt+ϕ) + be−i(Ωt+ϕ)) (4.53)

This corresponds to a drive with two sidebands with arbitrary phases. ϕm =

(ϕ1 + ϕ2)/2 is the mean of the two phases, while ϕ = (ϕ1 − ϕ2)/2. a and b are
real. After some algebra, we obtain the resulting intensity. Since we are not
interested in the phase of the intensity oscillations and are only interested in
the DC component and the AC component rotating at Ω, we obtain:

I2
DC = 1 + a2 + b2 (4.54)
I2
Ω = 2(a2 + b2 + 2ab cos(2ϕm)) (4.55)

For example, for the case of phase modulation in free space (such as an
EOM), ϕm = π/2 and a = b, so that

I2
Ω = 0 (4.56)

which is exactly what we would expect: no intensity modulation as every-
thing is in phase quadrature.

4.7.3 Phase of sidebands

According to (Gorodetsky et al. 2010), the sidebands have the following nor-
malized complex multiplier with respect to the drive:

L(ω) = i
√

1 + 4(δ +ω)2
1 − 2i(δ +ω) (4.57)

where we have defined δ = 2∆/κ and redefined ω = 2ω/κ.

4.7.4 Special case: sideband-resolved regime

While the phase for arbitrary values of sideband resolution can be calcu-
lated easily(10) from 4.57, it’s instructive to look at the case of sideband-
resolved regime. There, given the correct detuning (∆ = −Ωm), we obtain
that L(+Ωm) = i, L(−Ωm) = −1, which corresponds to phases ϕ1 = 90◦ and
ϕ2 = 180◦, which corresponds to ϕm = 135◦.
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This phase information is not necessary, as one of the sidebands is highly
suppressed in this regime. The intensity signal in this case is simply (assu-
ming that the sideband is much weaker than the drive)

I2
DC = 1 (4.58)
I2
Ω = 2a2 (4.59)

4.8 Afterword

We have concluded listing the bulk of the most important theoretical results
that are applicable to our system. Needless to say, many other results were
omitted for brevity. As we have mentioned before, there exists a plethora of
excellent literature on optomechanics, and quantum optics in general. The
reader is encouraged to look at the resources cited in the above text.
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(1) These are back-of-the-napkin Fermi
estimates to illustrate the point.

C
h

a
p

t
e

r

5
Optomechanical holder

Arguably the center of our experiments, the optomechanical sample holder
stands tall as the battleground of many discussions on the best way to keep
the optomechanical system in one piece. It’s optomechanics holding opto-
mechanics, after all. The reason why this piece in particular is, perhaps, the
single most important piece of copper in a radius of 10 m around our experi-
ment. It has to satisfy several properties:

1. Mechanical stability. With the finesse of our OM cavity being on the
order of 20 000, a mirror displacement of only 20 pm corresponds to the
width of a whole optical resonance. With a cavity length of, say, 18 mm,
and copper modulus of elasticity of 120 GPa, an equivalent g-force that
would result in such a shrinkage of a solid copper block is merely (1)

0.002 · g. And that is solid copper, mind you. We have to design a system
that is robust to external vibrations, and reduce those vibrations as
much as possible.

2. Good thermalization. As our experiments run at liquid helium tem-
peratures, we need to ensure that our system takes advantage of that,
and remains as thermally coupled to its cryogenic environment. That
includes not only the sample holder itself, but the membrane and the
mirrors as well, which are notoriously difficult to properly thermalize.

3. Ease of assembly and disassembly. With tight requirements on the
beam position with respect to the membrane, angular misalignment,
and stability, this is a formidable task, and discussions stil continue
about the best way to do it.

We will soon see that these requirements are very tight when combined to-
gether, even to the point of being slightly self-contradictory. Being a work-in-
progress, we shall not go into many historical remarks, and will instead focus
on the current design, with its advantages and disadvantages. The topics
of membrane holding, mirrors, thermalization, and stability are somewhat
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(2) P Duthil (2014). “Material Properties at
Low Temperature”. doi: 10 . 5170 / CERN -
2014 - 005 . 77. arXiv: 1501 . 07100. url:
https://cds.cern.ch/record/1973682.

(3) It is used as an thermal insulator in
cryogenic devices for this very reason.

(4) Christoffer Østfeldt (2022). “Quantum
Optomechanics for Hybrid Spin-Membrane
Entanglement”. Niels Bohr Institute, Fa-
culty of Science, University of Copenhagen.

(5) Christoffer Østfeldt (2022). “Quantum
Optomechanics for Hybrid Spin-Membrane
Entanglement”. Niels Bohr Institute, Fa-
culty of Science, University of Copenhagen.

intertwined, so consider reading them in several "passes" to build a better
mental picture.

5.1 Mechanical construction

As we stated, the system needs to be thermally conductive at a cool 4 K.
Many materials that are thermally conductive at room temperature become
much less so at cryogenic temperature. Stainless steel, for example, goes
from a somewhat reasonable 10 W/(m K) to a measly 0.2 W/(m K) at 4 K (Du-
thil 2014)(2),(3). For this reason, our current design uses oxygen-free copper,
which retains its good conductivity in the cryogenic domain.

For the adjustability, we followed the footsteps of Jürgen Appel, Chris-
toffer Bo Østfeldt, and the rest of the folks at the "Hybrid" experiment. The
approach pioneered by them (Østfeldt 2022)(4) consists in using two flexure
stages made out of copper, and based on the Thorlabs CP1XY flexure adjus-
tment plate. These two adjusters allow us to tweak the XY position of both
mirrors in the optomechanical cavity, which in turn enables us to change the
beam offset and tilt, as shown in Fig. 5.1.

Figure 5.1: Adjustment of optical mode position with respect to the membrane. Left
side of the figure shows tilt adjustment where mirrors are moved in opposite directi-
ons, while the right side shows shift adjustment, with both mirrors moved in the
same direction.

Another feature of this design is the piezoelectric actuation of both mir-
rors, which allows one to adjust the relative position of the optical standing
wave with respect to the membrane by driving the piezos in the same di-
rection, and adjustment of the cavity length (i.e. resonance frequency) by
moving them in opposite direction, as shown in Fig. 5.2.

If the reader is interested in more technical details on the cavity con-
struction specifically, we refer them to the relevant PhD thesis (Østfeldt
2022)(5). For us, it will suffice to provide a brief description of the assembly
shown in Fig. 5.3.

• The membrane chip is held against the copper using an appropiately
sized o-ring made of rubber, which provides even pressure.

• The mirrors are held inside of copper cups. To prevent mechanical cou-
pling of their own motion at 1.4 MHz, they are "sandwiched" between

https://doi.org/10.5170/CERN-2014-005.77
https://doi.org/10.5170/CERN-2014-005.77
https://arxiv.org/abs/1501.07100
https://cds.cern.ch/record/1973682


5.1. Mechanical construction 41

Figure 5.2: Adjustment of relative position between membrane and standing wave
(left), or adjustment of cavity length (right).

(a) Isometric view of the cavity assem-
bly, showing the XY stages, the mirror
cups centered on them, and the copper
spacer that increases the cavity length
to our desired levels. On top you can
see the cryostat mounting adapter that
allows us to suspend the cavity from
springs.

(b) Half-section view of the optomecha-
nical cavity assembly. The membrane
(black line next to the green hold-down
piece) is held against the copper. Small
mirrors, located at the ends of the mir-
ror cups, are sandwiched between PTFE
pieces that decouple them from external
mechanical vibrations. On the bottom,
we positioned a strong neodymium
magnet, discussed in the main text.

Figure 5.3: CAD renders of the optomechanical assembly used in our experiment.
Heat straps and springs not shown.

two teflon plates. On top of the mirrors, we place piezotransducers, as
we mentioned before.

• The copper cups themselves are screwed into the XY stages to be able
to adjust their transversal position for optical mode control.

We take a small pause now to provide context to the description that fol-
lows. In contrast to many other membrane-in-the-middle systems, ours is
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significantly larger. This choice was done due to a number of constraints, the
primary being sideband-resolved operation with the set of mirrors that we
had on hand. As a result, the length of our resonator is about 18 mm, which
needed a bigger overall sample holder, with the bulk of it being roughly
a cube with sides of 40 mm. Being so physically large made is much more
susceptible to external vibrations to the point of not being workable. Due to
this, we took the radical decision of suspending it on springs

5.2 Suspension

The decision to put our optomechanical cavity on a spring suspension came
chronologically after our success with spring suspension of the filter cavities
(Chapter 8), and was in part inspired by that success. In the case of optome-
chanics, however, we had a few extra challenges that we didn’t have with the
filters:

1. Thermalization. The optomechanical cavity needs to be thermally lin-
ked to the cryostat to be able to cool down.

2. High-vacuum compatibility. We cannot allow any outgassing material
in our system, as the membrane is very sensitive to both contamination
and gas damping.

The second challenge is not as big of a deal, as we do not require any dam-
ping for very low frequencies of vibrations. However, thermalization is a
beast: we need a thermal link between the systems, but without conducting
vibrations. This last bit is particularly nefarious: mechanical contact can easily
be made without conducting heat, but macroscopic heat conduction always
requires a mechanical contact of some sort, at least in practice. The best we
can do is to make that mechanical contact flexible. Enter heat straps.

Heat straps are simply braids made of thin strands of some conductive
material, usually copper. They are often used in practical applications as flex-
ible low-inductance electrical grounding connections, which is why they are
mostly marketed as such. In our case we use their heat conductivity and flex-
ibility to our advantage, connecting our spring-suspended assembly to the
cryostat with short segments. A balance has to be struck: longer straps are
more flexible, but have a proportionally higher heat resistance. Additionally,
the space constraints in our cryostat prevent us from using any big number
of them, so we settled with one bent strap between the cavity and cryostat, as
shown in Fig. 5.4. The work on heat straps was performed by Georg Enzian,
our former lab member.

The results of our efforts paid off, with the optomechanical cavity finally
being stable enough to be locked. A downside of our constraints was a so-
mewhat low thermalization. We have installed temperature sensors on both
the cold finger and the cavity. While the cold finger would always reach the
target liquid helium temperature of ≈ 4.2 K, the suspended cavity would
usually be a little warmer, with typical temperatures in the range of 7.5 K to
8.5 K. While this is suboptimal, it is still low enough to perform the majority
of our experiments.
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Figure 5.4: Photo of the optomechanical cavity suspended on springs the heat strap
is visible between the suspended cavity and the cryostat mounting adapter. This
assembly was later gold-plated in order to reduce its emissivity, therefore decreasing
the radiative heat transfer from the environment.

(6) Yeghishe Tsaturyan (2019). “Ultracohe-
rent Soft-Clamped Mechanical Resonators
for Quantum Cavity Optomechanics”.
Niels Bohr Institute, Faculty of Science,
University of Copenhagen.

(7) Y. Tsaturyan et al. (Aug. 1, 2017).
“Ultracoherent Nanomechanical Resona-
tors via Soft Clamping and Dissipation
Dilution”. In: Nature Nanotechnology
12.8, pp. 776–783. issn: 1748-3395. doi:
10 . 1038 / nnano . 2017 . 101. url: https :
//doi.org/10.1038/nnano.2017.101.

5.3 Membrane

Ah yes, The Membrane, the undisputed centerpiece of our experiment, pri-
mary source of our joys and sorrows. Anyway, the phononic crystal mem-
brane is the "mechanics" in "optomechanics" for us. Its design and fabrication
are an exceptional achievement. For a detailed and thorough explanation of
its intricacies, we refer the reader to the comprehensive PhD thesis (Yeghishe
Tsaturyan 2019)(6), and (Y. Tsaturyan et al. 2017)(7). Design and fabrication
of soft-clamped membranes were pioneered in our group by Yeghishe Tsa-
turyan, with subsequent work now performed by Anders Simonsen, Eric
Langman, and others. For us it will suffice to quickly motivate this particular
design, and list their most important properties.

The first optomechanical experiments in our group were performed
with commercial membranes manufactured by Norcada Inc. They con-
sist of a layer of silicon nitride (Si3N4) deposited on a silicon chip of about
10 mm × 10 mm. A window is etched in the silicon, but not the nitride, cre-
ating a suspended square "drum", with a thickness of Si3N4 on the order of
hundreds of nanometers. Interestingly, their main application is windows for
x-rays that separate a vacuum system from its surroundings. The remarka-
ble ultimate tensile strength of Si3N4, well over 1 GPa, allows it to withstand
large forces. The fabrication process usually yields tensioned Si3N4 due to
differential thermal contraction between silicon and silicon nitride (the depo-
sition is done at elevated temperatures).

This "drum" will have high-frequency vibrational modes, and the trans-
parency and high refractive index of Si3N4 allow us to interact with them

https://doi.org/10.1038/nnano.2017.101
https://doi.org/10.1038/nnano.2017.101
https://doi.org/10.1038/nnano.2017.101
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(8) Christoffer B. Møller et al. (July 2017).
“Quantum Back-Action-Evading Mea-
surement of Motion in a Negative Mass
Reference Frame”. In: Nature 547.7662,
pp. 191–195. issn: 0028-0836. doi:
10 . 1038 / nature22980. url: http :
/ / www . nature . com / doifinder / 10 .
1038/nature22980.

(9) Yeghishe Tsaturyan (2019). “Ultracohe-
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optically. Due to the large mismatch between the mass of the spacer and
membrane, the drum vibrations are also highly contained, which can lead
to Q factors in excess of 1 × 106. The simplicity of these devices, however,
has downsides. Since the spacer has vibration modes of its own, sometimes
the frequency of these modes overlaps with those of the membrane, which
creates mechanical mode hybridization, the effect of which is an opening of
additional channels through which mechanical energy can escape from the
membrane, effectively damping. The modes of the spacer are also highly de-
pendent on the clamping conditions inside of the assembly, rendering them
somewhat unpredictable.

With this in mind (and skipping a few historical steps), a new design has
emerged. Its concept is to modify the spacer in a way that creates a phononic
shield - a structure that has no mechanical modes in a relevant frequency
range. These devices were fabricated by Yeghishe Tsaturyan specifically
for our application. The size of the membrane was shrunk down so that its
fundamental mode was now the mode with which we worked, instead of
using a higher-order mode as was the case with Norcada membranes. This
membrane, anchored to a small central feature, forms the "defect" of the
phononic crystal.

A little intermezzo on nomenclature. Whenever we use the word "de-
fect" in reference to membranes, we refer to the concept of crystallographic
defects. The "defect" is indeed a very precisely engineered structure, placed
very deliberately where it has to go.

Continuing our discussion, we shall call the structure around the defect
"the phononic shield" or "phononic crystal". Composed of an array of larger
elements connected by thin interlinks, it effectively forms a 2D set of masses
and springs, the parameters of which are tuned such that at the frequency of
oscillation of the defect, the shield has an no modes of oscillation in a range
of frequencies. We shall refer to that range as "phononic bandgap". This new
construction of membranes removed the dependence on clamping condi-
tions by shielding external modes away. This also led to a substantial and
repeatable increase of the Q factor up to previously unprecedented levels of
25 × 106 (Møller et al. 2017)(8), which in turn was instrumental in achieving
exceptional scientific results.

But the progress does not stop here! There was still one outstanding is-
sue that limited the quality factor of the membrane resonators. The root of
this problem lies in the fact that the very thin Si3N4 membrane is rigidly an-
chored to its surrounding silicon frame. At these points of contact, silicon
nitride experiences severe bending forces relative to the rest of the mem-
brane, resulting from its rigid boundary conditions. This bending or, in other
words, curvature, leads to a number of processes that create dissipation. The
exact physics of these process is rather intricate, for which we again refer the
reader to (Yeghishe Tsaturyan 2019)(9).

The breakthrough method of soft clamping allowed the quality factor to
be pushed to levels previously unheard of. The idea is deceivingly simple:
instead of incorporating the phononic shield in the silicon spacer, make it
part of the membrane itself! Not only is this, in author’s opinion, a more ele-
gant and streamlined approach, but it also solves the problem with bending-
induced losses. Now, the central defect is no longer rigidly clamped, but is
instead attached to the same kind of structure: the same thin slab of Si3N4.

https://doi.org/10.1038/nature22980
http://www.nature.com/doifinder/10.1038/nature22980
http://www.nature.com/doifinder/10.1038/nature22980
http://www.nature.com/doifinder/10.1038/nature22980
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This allows its vibrations to softly (evanescently) decay, as shown in simula-
tion in Fig. 5.5, and experimentally in Fig. 5.7.

(b)
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(e)

(a)
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y

Figure 5.5: Simulated displacement color map of localized defect modes in a phononic-
shield membrane. Figure adapted from (Y. Tsaturyan et al. 2017).
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Figure 5.6: Measured mode shapes of localised defect modes (top) with frequencies
{fA, fB, fC, fD, fE} = {1.4627, 1.5667, 1.5697, 1.6397, 1.6432}MHz for a device with
a lattice constant of a = 160 µm. Figure and description adapted from (Y. Tsaturyan
et al. 2017).

This last change is crucial for keeping the quality factor high. The jump
was so significant, that even earlier devices showed
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3m
m

500 µm

Figure 5.7: Phononic structure of our mechanical oscillator (left) and experimentally
measured displacement pattern of the main mode (right), showing the scale of the
device. Adapted from (Zwettler 2019), in turn adapted from (Y. Tsaturyan et al. 2017).

5.4 Mirrors in optomechanics

The mirrors form the optical cavity, which in turn creates the resonance ne-
cessary for our experiments. Mirror selection is a critical choice that dictates
many other choices that have to be made with regards to experimental de-
sign. The requirements are those for any high-finesse optical cavity, but their
use with optomechanics places additional constraints:

1. High reflectivity with low loss. The finesse resulting from the mir-
rors’ reflectivities defines the length of the cavity for a given target
linewidth, which in turns defines the strength of our optomechanical
coupling. Any non-transmission loss results in a decrease of quantum
efficiency, as the signal generated by the optomechanics gets irreversi-
bly attenuated.

2. Low mechanical noise. This is an unusual requirement for mirrors,
but it is yet another factor that is exceptionally important to us. Any
vibrations of the mirrors that couple to the light beam at the frequency
of our main mechanical mode around 1.4 MHz will be transduced into
fluctuations of intra-cavity intensity(Gorodetsky et al. 2010), which
will result in an increased phonon occupation. Additionally, the broad
nature of mirror noise can lead to additional photon counts, even if it is
practically undetectable in a spectral density.

3. Overcoupling of the cavity. This is somewhat related to the first point,
but places additional restrictions on the reflectivities. We want our
optomechanical signal to leave preferentially through one of the two
ports of the cavity, so that we can collect it. While it’s in principle pos-
sible to collect light emanating from both ports, combining it for, say,
single-photon counting would be a big and unnecessary effort.

4. Beam size at the membrane. Since the membrane defect, which hosts
our mode of interest, is relatively small (≈ 200 µm), the beam needs
to be small enough to "fit" without clipping. By "clipping" we refer to
some of the beam power hitting the edges of the defect, which results
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in distorted optical modes, additional loss, lower coupling to the me-
chanical mode due to poor overlap, and possibly additional heating.
This requirement places constraints on the radii of curvature for both
mirrors.

Formidable work (Mathiassen 03/Dec/2019) on simulations of mechanical
motion of mirrors has been performed by one of the members of QUANTOP,
and a former member of our experiment, Jonas Mathiassen. The conclusion
from that work, and many other discussions, was the decision to buy mir-
rors whose dimensions are small enough to space apart mechanical modes,
creating regions with low enough mirror noise level. In practice, their dimen-
sions are a diameter of ≈ 5 mm, and a thickness ≈ 1 mm. We shall refer to
them as "small mirrors" for hopefully obvious reasons.

These mirrors were coated by FiveNine Optics, with substrates provi-
ded by Perkins Precision Developments. Their clamping requires special
attention, as we need to minimize their interaction with the holder. Such in-
teractions typically lead to shifts in the frequency of the mirror’s modes, in
addition to broadening. In the end, the approach that we settled upon was to
use thin plates of PTFE. This approach, while effective at softly holding the
mirror and preventing mechanical coupling, has the disadvantage of severely
reducing the thermal contact between the mirror and its cryogenic environ-
ment, which is one of the hypotheses for explaining spurious heating that we
observe in our system (discussed further in this work). Work is still ongoing
for determining the best practices for mirror holding.
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OMIT

(optomechanically-induced

transparency)

One of the most important experimental techniques for us is the optomechanically-
induced transparency, or OMIT for short. In our experiment, OMIT serves as
a very convenient tool for characterizing the mechanical response of the os-
cillator, together with the optical response of the optomechanical cavity. It is
a close relative to electromagnetically-induced transparency (EIT) pioneered
by Chien Liu and others in Lene Vestergaard’s group (Liu et al. 2001). While
EIT does require a quantum treatment due to the nature of atomic transi-
tions, OMIT can be treated fully classically. At its core lies the interaction
between mechanical motion and two light beams. For a full treatment of
OMIT, we refer the reader to (Nielsen 2016)(1) and (Østfeldt 2022)(2), while we
will describe its core principles and consequences.

Let us start by describing the experimental procedure for obtaining an
OMIT response, as this will later guide our exposition:

1. We begin with a single, relatively strong optical tone applied to the
cavity, typically red-detuned. We will refer to this beam as "carrier", a
standard term in RF circles.

2. A relatively weak phase modulation is applied to this beam, typically
with an EOM, which creates a pair of sidebands separated by ω to
either side of the carrier. The modulation has to be chosen such that
other, higher-order sidebands, are negligible. By extension, this also
guarantees that the sidebands are significantly weaker than the carrier
itself.

3. The transmission of the cavity is being monitored using a detector in
direct detection, i.e. simply observing the intensity signal at the output
of the system.
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4. The frequency of phase modulation is swept in a suitable range. For
characterizing the mechanical response ("narrow OMIT"), such range
is typically between Ωm − 3Γopt to Ωm + 3Γopt. For the overall cavity
response ("broad OMIT"), we usually choose the lower frequency to
be about 200 kHz, and the higher frequency to be ∆ + 2κ, mostly for
technical reasons.

5. Using a vector network analyzer such as NanoVNA, or an equivalent
device (Red Pitaya, for example), the magnitude of coherent intensity
oscillations of the output intensity is recorded for each modulation
frequency ω. This recorded data is later fitted to an analytical model,
from which we recover all parameters of interest.

A little note on notation: in our group, we often refer to "broad OMIT" and
"narrow OMIT". As we stated above, "broad OMIT", strictly speaking, has
nothing to do with mechanics, and is a property of any optical resonator,
with or without a mechanical oscillator inside. "Narrow OMIT", on the other
hand, is the real thing. But since both measurements are practically obtained
in one go, we gave them similar names.

Another important note is that our version of OMIT differs somewhat
from its canonical definition. As introduced in (Weis et al. 2011)(3), the expe-
riment consisted of a probe beam, which we call "carrier", and a single "control
beam", which in our case is replaced by a pair of sidebands. This difference
changes the observed response function somewhat, but the core principle
remains. Another difference from the canonical definition is that we are
observing the output in transmission, not reflection. Indeed, while the experi-
ment of Weis et al. (2011) observes a peak in the reflectivity of their resonator,
corresponding to overall "transparency", our measurements instead show
a rather strong "dip", as the reflection redirects away from the transmission
port. In that sense, we might call our technique "optomechanically-induced
rejection", but that doesn’t pack quite the punch.

The mathematics of OMIT are a bit tedious, if anything. The core prin-
ciple, however, is rather simple: the input sidebands, originally in the phase
quadrature of the incoming carrier, are transduced into intensity fluctuations
inside of the optical cavity. These intensity fluctuations drive the mechani-
cal oscillator. Since the oscillator is now moving, it itself starts to scatter the
carrier into its "own" sidebands, which can interfere destructively or con-
structively with the "original" sidebands inside of the cavity. The net effect is
a change in the amplitude fluctuations as seen on the output of the cavity in
transmission (which effectively amounts to sampling the intracavity field).

When performing a sweep as described above, a signal illustrated in
Fig. 6.1 is obtained, where we take the magnitude squared of the signal, as
phase information is rarely important enough. With a fit of our analytical
model, we obtain the majority of experimentally relevant parameters, in
particular the optomechanical cavity’s decay rate and detuning (κ and ∆),
optical broadening Γopt, and by extension the linearized interaction strength
g, which can be used (with extra calibration) to determine the single-phonon
coupling g0. The almost single-shot measurement of all these parameters is
the reason why we use OMIT very extensively, and it is a routine calibration
procedure.

https://doi.org/10.1109/CLEOE.2011.5943657
21071628
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Figure 6.1: OMIT signal. Top panel: bare cavity (gi = 0, dotted line) and full OMIT
response with three mechanical modes for illustrative purposes. Bottom row: zoom
in on the resonances. All traces are normalized to the maximum response for the
empty cavity. κ/2π = 4 MHz, ∆/2π = −2 MHz, γ0,i/2π = 1 mHz, gi/2π = 200 kHz,
ω0/2π ∈ { 1.4 MHz,

√
∆2 + (κ/2)2 /2π∼2.83 MHz, 5 MHz }. Figure and description

reproduced with permission from Østfeldt (2022)
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7
Phase noise cancellation

with a delay line

“
Noise proves nothing. Often a hen who has merely laid an egg

cackles as if she laid an asteroid.
Mark Twain

This chapter is based on and includes figures from our publication
(Parniak et al. 2021)

7.1 Overview of classical phase noise

To remind the reader, our optomechanical system operates in the sideband-
resolved regime. One of the consequences of that is that phase fluctuations
of input light get transduced almost directly into light intensity fluctuations
inside of the cavity. What this means in practice is that phase noise on the
input light becomes mechanical force noise acting upon our membrane. This
noise is inevitably present in all real lasers, but can also be worsened by ther-
morefractive noise of optical fibers, noisy electro-optic modulators, and any
other device capable of acting on the phase of light. Such noise prevents us
from cooling the mechanical oscillator it to the theoretical limit, and from
performing quantum-limited measurements.

It’s important to note that titanium-sapphire lasers already have a rat-
her low phase noise at our frequencies of interest. For example, the laser
that we are using(1) has a phase noise floor of approximately −155 dBc at an
offset of 1.5 MHz (Parniak et al. 2021). While for many experiments such le-
vel of noise is more than sufficient, our system is a particularly picky eater.
Due to the need for sideband resolution and our technical constraints, our
optomechanical cavity is approximately 19 mm long, which means that the
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optomechanical coupling strength is low (g0 < 10 Hz). That is the same as
saying that perturbations of mechanical position translate to smaller changes
in the frequency of the cavity, when compared to similar MIM systems. The-
refore, to achieve the same broadening and the same interaction strength as
for shorter cavities, we have to increase the laser power, i.e. increase the intra-
cavity photon number. Because classical phase noise increases as laser power
is increased, we’ll see a larger intracavity intensity noise, which will "jiggle"
the mechanical oscillator. If left untreated, this would prevent us from cool-
ing the mechanical mode to desired occupations of less than 0.2 phonons,
necessary for non-classical heralded state preparation (Galland et al. 2014)(2).

There are many ways in which one can counteract phase noise in laser
systems. One such approach is to filter the laser light by passing it through
a dedicated filter cavity. There, the narrow resonance width of the cavity re-
jects noise that of its passband. But as with anything in experimental science,
there are strings attached. Remember that mirrors used in optical cavities are
not completely passive objects: they have a temperature and show thermal
fluctuations in the surface of the mirrors, leading to phase noise, as shown in
Fig. 7.1.
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Figure 7.1: Mirror-dominated phase noise of light exiting a cavity for different lengths
of the resonator. While the mirrors used are different, the general trend of reduced
influence of mirror noise with larger lengths is visible. Figure used with permission
from Zwettler (2019)

Practically, unless one is willing to cryogenically cool the mirrors, they
will be at room temperature, and their noise will be non-negligible. Yep, it’s
optomechanics again. In this case though, light does not affect the motion
of the mirrors (unless you’re LIGO), but the motion of the mirrors does af-
fect light. For example, for a cavity of 15 cm om length, and standard-issue
12.7 mm mirrors, these fluctuations are just as big as the phase noise of the
laser. Therefore, while the phase noise of the laser will get reduced, the fil-
ter itself will imprint its own noise onto the light, and we’re not much better
off, as shown in Fig. 7.2. Of course, one can solve the problem by making
the filter cavity longer and longer (therefore decreasing the strength of these
optomechanical effects). But that’s difficult to maintain, requires continu-
ous locking, and places restrictions on the maximum optical power due to
intracavity intensity build-up.

https://doi.org/10.1103/PhysRevLett.112.143602
24765960
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Figure 7.2: Comparison of laser phase noise before and after being filtered by a
150 mm cavity, and measured by our delay line. Reproduced from Zwettler (2019)

(3) We assume that the interferometer is
operated in the usual Mach-Zehnder way,
with the two output beams being equal in
average optical power

But there is another way! There exist systems that are capable of measu-
ring the phase noise of the laser. We can then use the measured phase noise
and apply a correction using an EOM, for example. One could use a cavity
as a way to transduce phase fluctuations into detectable amplitude fluctuati-
ons. But notice that this has the same problem as a filter cavity there, where
mirror noise will result in additional noise being imprinted onto the output
light, so we’re not gaining anything. Another method involves using a highly
imbalanced Mach-Zehnder interferometer, where one of the arms is "long
enough". "Long enough" means that by the time that the light propagates
through this long arm, the phase of phase noise (yes, it’s a tautology) gets
shifted enough to interfere constructively with the undelayed light. This
sounds a bit convoluted, so let us look at an example that’s oddly similar to
the system that we actually use.

Take a Mach-Zehnder interferometer where one arm is essentially zero
length, while the other is L ≈ 70 m long, equivalent to a time delay τ. At the
input of the interferometer we have our noisy light, with phase fluctuations
φ(t). The light gets split into two beams, where one is delayed by τ, while
and other is not delayed. The two beams are combined again, and measured
on a balanced photodetector, as shown in Fig. 7.3. This produces a signal
proportional to φ(t) −φ(t− τ).(3) This is equivalent to the following frequency-
dependent transduction function, illustrated in Fig. 7.4

G(f) = 1 − exp(−iτω) (7.1)

Looking at the absolute value squared, one can see that |G(f)|2 ∝ sin2(τω/2).
That is, phase fluctuations will be translated into intensity fluctuations,
with maxima of sensitivity occuring at ω = (n + 1/2)π/τ, with integer n.
Then, a 70 m-long delay line will produce its first maximum of sensitivity at
around 2.1 MHz, while at our frequency of interest of 1.4 MHz the sensitivity
is about 76 % of the maximum, which is plenty good. In practice, creating
such long optical delays is practical using optical fibers. In our case, the light
to be delayed propagates through 50 m of fiber, and then returns back to the
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Figure 7.3: Schematic of a single delay-line Mach-Zehnder setup for phase noise
measurements. The piezo on the left is necessary to lock the relative phase of the two
arms and guarantee balanced operation
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Figure 7.4: Magnitude squared of delay line response to phase fluctuations of external
light. Blue color highlights the range of frequencies where our membranes typically
have their main mode, while the pink color shows a band of 60 kHz to demonstrate
the region where a membrane with Ωm = 2π × 1.5 MHz any non-negligible sensitivity
to noise.

interferometer. Common optical fibers have a refractive index of ≈ 1.45 at
our wavelength of 852 nm, which is why were mentioning an optical length
of 70 m.
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(4) When optically broadened

(5) I and Q are standard notation in elec-
trical engineering, where they represent
terms proportional to sin(ωt) and cos(ωt),
respectively. ω is the demodulation
frequency

In the end, we’re capable of measuring the phase noise of the laser quite
well. Next, we use that signal to feedback on the light in order to cancel this
noise. It might seem a bit counterintuitive that something involving the word
"delay" can be used for this purpose at high frequencies, as delays are the
natural enemy of feedback. But there is a catch: for feedback purposes what
matters is the bandwidth of the feedback, and not its absolute frequency. Also
remember that not all light is delayed: the short arm lets half of the light to
reach the detector, and also contains the phase noise. The long arm serves as
a memory of sorts, to "remember" the state of the light as it was "50 meters
of fiber ago". This is even more evident if one looks at the time response of
this system to a step in the phase of the input light, where the instantaneous
response is evident, as shown in Fig. 7.5.
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Figure 7.5: Step response of the delay line setup with respect to a step change of the
input light phase. Notice that the initial response is instantanous.

Note that the shape of the response function is not great for very-broadband
cancellation of phase noise at all frequencies simultaneously. This system dis-
plays a constant group delay of τ/2, so the maximum achievable feedback
bandwidth would be limited by that. Fortunately for our system, it is not ne-
cessary to have fully broadband cancellation, as the main mechanical mode
has a bandwidth on the order of 10 kHz(4). By focusing the cancellation in a
narrow range around Ωm ≈ 1.4 MHz, we can use a scheme that is effectively
a phase-controllable electronic bandpass filter. For this purpose, a Red Pitaya
performs the following actions, all integrated into a single, highly useful, "iq
module":

1. Demodulate the measured phase noise at Ωm, obtaining the I and Q
quadratures.(5)

2. Lowpass both quadratures with a lowpass filter, typically with a 20 kHz
cutoff.
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(6) One can’t complain about physical laws
being as they are.

3. Multiply the resulting filtered quadratures again by their correspon-
ding sin and cos, but shift the phase of these functions by a controllable
amount. This phase shift is determined empirically to produce the best
response.

4. Output the signal.

Finally, the resulting signal is sent to a free-space EOM placed just after
the laser. We use a free-space EOM because it handles well high powers
at the output of the laser and does not require fiber coupling. The high
vπ ≈ 600 V poses no problem for us, as the necessary strength of the feed-
back signal is pretty much negligible. As a matter of fact, we even attenuate
the signal coming from the Red Pitaya by 20 dB. This allows the Pitaya to
generate larger signals, which avoids problems with digital discretization.
Fig. 7.8, later in our exposition, shows the in-loop spectrum with and wit-
hout cancellation.

7.2 Extracting phase noise

To know the performance of our system, we need to compare the phase noise
with and without the feedback enabled. Before, a bit of nomenclature: "in-
loop" means we are measuring the effects of the feedback loop, as seen by
the loop itself. Interestingly, you can see that the measured noise can dip
even below shot noise. "Unfortunately"(6), this does not imply that any light
outside of the loop will be sub-shot-noise. It’s simply a property of feedback.

To actually know that our scheme is working, we have constructed a se-
cond identical setup, using another 50 m fiber delay line, as shown in Fig. 7.6.
This setup, however, is not used in feedback, but simply measures resulting
phase noise externally. There are several hizzards in the way, though:

• The two feedback loops will have different sensitivities due to different
detectors, fiber lengths, optical powers, and acquisition channels.

• The shot noise and electronic noise are uncorrelated between the two
setups.

• The fiber noise (more on that later) is also uncorrelated between the
setups.

Due to all of the above, we created a scheme where we can disregard
sensitivity differences, and get rid of the inevitable uncorrelated noise in
order to see the pure phase noise. Now, we cannot simply make all this noise
go away (unfortunately). However, we can compensate for them during
statistical analysis "post-mortem". This procedure is divided into two parts:
sensitivity calibration, and noise separation via cross-correlation.

7.3 Sensitivity calibration

As we said, the two measurement setups will have slightly different sensitivi-
ties to phase noise, which we need to make equal. This is how we do it:
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Figure 7.6: Schematic of the double system that we use for characterization of phase
noise cancellation.

First, we turn off phase noise cancellation, as we need the "raw" response
of both setups. Then, we apply a small square-wave modulation to the free-
space EOM. Remember that a square wave has many spectral components,
consisting of multiples of its base frequency (harmonics). All these narrow
peaks in the spectrum serve as a "calibration comb", equally affecting light
seen by both setups. Additionally, since each one of these peaks is very nar-
row in the frequency domain, but contain sufficient power, they will "pro-
trude" through the spectrum, as shown in Fig. 7.7. We then look at the how
both setups transduce these peaks, which shows us the differences in their
sensitivity to phase noise, which allows us to compensate for them during
subsequent analysis.

7.4 Cross-correlating signals

We are acquiring both signals simultaneously on our DAQ card and saving
them as time traces, so we can compute a cross-correlation between the two
signals. Cross-correlation has this nice property of removing any kind of
noise that is not common to both systems, i.e. uncorrelated. This includes
light shot noise, fiber noise, and electronic noise. We are then left only with
phase noise. To be more concrete, let us describe the spectral properties of
our measurements. We will follow the approach of our publication, Parniak
et al. (2021). First of all, the spectral density of any one of the systems is,
when feedback is disabled, given by

S = ηP̄2 |G(f)|2Sφφ + ηP̄2Sφfφf + 2hνP̄, (7.2)
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Figure 7.7: Effect of calibration peaks produced by the free-space EOM during the
sensitivity calibration procedure. Blue trace shows the measured noise, while the
orange trace shows background noise, dominated by phase and fiber noise. Notice
the fiber’s mechanical peak at ≈ 8.2 MHz. Figure reproduced from Parniak et al.
(2021)

where we denote the average laser power as P̄, laser phase noise as Sφφ,
detection efficiency due to interferometric visibility as η, and fiber noise as
Sφfφf . Note that fiber noise is transduced at all frequencies, as it originates
only in one arm of the interferometer (delay line). The last term is simply
shot noise of light.

The other delay line will have the same response, as we have already
performed the sensitivity calibration, and assume the same power and effi-
ciency in both setups (in practice we measure and compensate for power and
efficiency differences where necessary). As we have mentioned before, the
only signal "shared" between the systems is the laser phase noise, so if we
compute the cross-correlation of signals obtained simultanously from the
two setups, we obtain:

S12 = ηP̄2 |G(f)|2Sφφ. (7.3)

Note how remarkably simple this expression is, directly proportional
to laser phase noise. From this, we extract that refined cold-pressed extra-
virgin phase noise, as shown in Fig. 7.2 and Fig. 7.1. As a bonus, this allows
us to obtain only the incoherent noise in each setup by simple subtraction,
Sincoh = S − S12, which is useful for determining fiber noise later.

After we have characterized the sensitivity in this way and obtained
spectra without feedback, we can finally turn the feedback back on. As you
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can see, the phase noise measured by the out-of-loop detector is improved
very considerably, almost 10 dB in the region of interest! A comparison of
performance at different feedback gains is shown in Fig. 7.8, as seen both
in-loop and out-of-loop. A wise reader will ask, "why stop there, why not
improve the cancellation even more?". Well, there’s this whole other can of
worms called fiber noise.

����� ��� ����

Figure 7.8: Performance of the delay line noise cancellation, measured both in-loop
and outside of the feedback loop. Reproduced from Parniak et al. (2021)

7.5 Fiber noise

Optical fibers have a phase noise of their own. At our frequencies of interest,
thermal fluctuations in the fiber core and cladding produce minute changes
in the refractive index of the fiber material (Duan 2012), thermoconductive
noise being the dominant for us. We expect our noise to be of the following
form, derived by (Duan 2012) and (Foster, Tikhomirov, and Milnes 2007),
and applied to our scenario in (Parniak et al. 2021):

Sφfφf =
4π2

λ2

[(
dn
dT + nα

)2
L2SδT (ω)

]
(7.4)
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where the last approximation is valid for high enough frequencies (approxi-
mately > 200 kHz), perfectly applicable to our case of ≈ 1.4 MHz, as shown
in Fig. 7.9. The material constants are those of silica, and are listed in Duan
(2012). Notice, however, the inverse dependence on the fourth power of the
mode radius, r−4

0 , and the inverse scaling with frequency squared. Also note
the dependency on T 2. This is not a mistake: fiber noise is driven not only
by bare temperature fluctuations, but by diffusion also. The combination of
these processes yields the quadratic dependence.
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Figure 7.9: Analytical expectation of fiber noise, with full model from (Duan 2012),
and high-frequency approximation from (Foster, Tikhomirov, and Milnes 2007). Note
the vertical unit of dBc/Hz, which characterizes the optical power scattered from
the main laser frequency ("carrier") by phase noise. As it happens, the magnitude
of that scattered spectral density is exactly equal to the carrier power multiplied by
phase noise density expressed in rad2/Hz. From this point, we treat these two units
as synonymous.

Thermoconductive noise is dominant, but we should notice that fibers
also have intrinsic mechanical noise due to longitudinal or bending mechani-
cal modes (at lower frequencies), or transverse mechanical modes (at higher
frequencies). One example of such modes is the first transverse mode, shown
in Fig. 7.7 around 8.2 MHz. We disregard that noise, as in our frequency re-
gime these kinds of noise are not present. Thermoconductive noise, however,
sets a limit to our best achievable phase noise performance, as one can see
in Fig. 7.9. Due to the extreme sensitivity to the radius of the optical mode
(which itself is mostly proportional to the fiber core diameter), if we could
obtain a fiber even with a marginally larger mode diameter, we could reduce
this fiber noise even further. Unfortunately, such fibers are not really avai-
lable, or are rather expensive (photonic air-core fibers). However, 10 dB of
noise reduction is already sufficient for us to not be a strong limitation in our
experiments.

As a sidenote, one possible approach to reducing fiber noise, and there-
fore increasing the phase noise cancellation even further, is to cryogenically
cool the fiber itself. Not only would this reduce the noise simply by virtue of
reducing diffusion and thermal fluctuations, but also the thermo-optic and
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(7) to the best of our knowledge

thermo-refractive coefficients of the fiber, leading to a very substantial re-
duction of overall fiber phase noise. We have attempted this approach briefly
by submerging the fiber loop into liquid nitrogen. Unfortunately, bubbles,
uneven cooling, and other perturbations made the system very unstable,
and we decided to continue working at room temperature, as the current
performance level is completely acceptable.

Related to the fiber noise, the cross correlation technique discussed
above has the curious side effect of allowing us to look at the fiber noise
of each system separately. And an interesting result is that we can see not
only the predicted fiber noise at low frequencies that tapers off when approa-
ching higher frequencies, but also the high-frequency transversal mechanical
modes of the fiber. As can be seen in Fig. 7.7, there is a mechanical peak at
≈ 8 MHz in the one of the setup, with a similar peak in the other setup. The
interesting thing is that their frequency is not exactly the same. We believe
this to be due to differing core sizes of the two fibers, as some variability is
inevitable in manufacture. We therefore chose the fiber that had a lower fre-
quency of this first mechanical mode, which should indicate a larger core
diameter, beneficial to phase noise performance at our frequencies.

7.6 Conclusions and outlook

As we have mentioned before, the results of this chapter were published
(Parniak et al. 2021). Interestingly, before our publication(7) there were no
investigation into this frequency regime of fiber phase noise, with most work
concentrated around low frequencies (relevant for optical metrology, where
fibers are routinely stabilized), or very high frequencies (Brillouin scattering,
relevant for telecommunications).

The main result, of course, was showing that phase noise of an already
quiet laser system can be improved substantially. For us, this is and will
continue to be instrumental in achieving low optomechanical occupation via
sideband cooling. We have achieved a reduction of almost 10 dB of phase
noise at our frequency of interest of 1.4 MHz to 1.5 MHz, which is equivalent
to a reduction of phase noise influence on phononic occupation by a factor of
≈ 3 (if the occupation is completely limited by the laser phase noise).

In our future work, this reduction might prove to be insufficient. Howe-
ver, since the phase noise reduction is essentially limited by fiber noise only,
we should be able to achieve a significanly better result by cryogenically cool-
ing the fiber loop. For this we might need to develop a technique for cooling
that does not affect the overall stability of the fiber loop, but we might be able
to achieve this with better mechanical design that involves an unjacketed
fiber.
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Filter cavities

“
A filter can make anything look good, but it’s what’s

underneath that counts.(a)

Unknown/ChatGPT

(a) Please note what I did here.

We present the history, design, construction, debugging, and performance
of our ultra-narrowband filtering system. These results were one
of the major points of our publication, (I. Galinskiy et al. 2020a),
from which we take several of the figures and some text.

8.1 Introduction

We need filter cavities in our experiment because the photons produced
by the optomechanical system are mixed together with the pump photons,
which is the unscattered laser light. When we send light to the optomecha-
nical system, the probability of scattering is rather low. For a mechanical sy-
stem in the ground state, this probability will be only one in 1 billion, which
means that for every billion photons coming out of the system, only one will
be a signal photon. Moreover, pump and signal photons are very close toget-
her in the frequency domain. Typically, they are separated by the mechanical
frequency, which lies in the range of 1.4 MHz to 1.5 MHz, depending on the
membrane that we’re using. For context, this corresponds to about 1 billionth
of the base laser frequency that we’re using (450 THz for 852 nm light).
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(1) For example Thorlabs FGL780M, used
for daylight suppression

(2) For example Thorlabs FBH850-10,
which we use in our experiment prior to
single-photon counting

(3) Barwicz et al. 2004.

(4) McCuller et al. 2020.

8.2 Overview of filtering techniques

The need to separate the different frequency components is required by the
fact that we are sending them to a single photon counter, a device incapable
of distinguishing different frequencies of light. There are different ways of
filtering light in optics. Some familiar examples are optical filters that one
can buy off the shelf.

A common and well known example are colored glass filters, used for
very rough filtering. For example, if one wants to disregard all the "daylight"
from normal lighting in the lab, while keeping infrared laser light, one can
use an infrared-specific colored glass filter. These filters have the advantage
of being inexpensive and broadband. Unfortunately, this comes at a cost of
a low efficiency, with 90 % transmission in the passband being a common
trait(1).

Dielectric filters are a better option where efficiency matters. These devi-
ces consist of a stack of dielectric materials of different indices of refraction,
where light interference is the main mechanism that creates a well-defined
spectral response. A typical example is a dichroic mirror, a device that lets
selected components of light through, while reflecting other frequencies.
These mirrors can display very high transmission efficiencies, 99 % not being
uncommon in the premium varieties(2). In addition, it is possible to engi-
neer a rather narrow passband. Models exist with a selectivity of only 1 nm
(so-called "line filters"), which are often used in Raman spectroscopy, where
a strong pump laser is scattered in frequency by the molecular motion of a
material under test. A line filter then allows to discard the pump light, while
retaining Raman-scattered signal that might be analyzed by a spectroscope.
Filtering is required in this case, since Raman scattering is a low-probability
process in most materials, necessitating the use of a powerful excitation light
source. If not filtered, the pump light will inevitably saturate or damage
the sensitive spectroscopic equipment downstream. Later, we will see that
optomechanical processes in our experiment are precisely Raman processes.

Bragg gratings are even more selective elements, consisting of a piece of
dielectric material with an internal structure that displays a periodically va-
rying refractive index, akin to the usual dielectric filters. Their performance
comes from their construction, where a physically larger space accomodates
a much greater number of refractive index "layers". This layered structure is
not created by sequential deposition, but rather through a process that allow
one to "record" the structure in an existing piece of material. Notice the simi-
larity to acousto-optic modulation, where an strong acousting wave creates
a varying index of refraction in a crystal. Volume Bragg gratings can can be
made very efficient and selective, with a passband down to tens of gigahertz.
Another advantage is the possibility of tuning the center frequency of the
passband by varying the incidence angle of the incoming light. Nevertheless,
10 GHz of selectivity is still too broad for the requirements of our experiment,
where we require strong rejection of light only megahertz away.

Finally, we come to the category of optical filters that rely on optical
resonance. This category is uniquely rich, with device sizes ranging from
microfabricated ring resonators(3), all the way up to the massive 16 m-long
filter cavities at LIGO that take up entire rooms(4). For our purposes, we
will restrict the attention to Fabry-Pérot free-space optical cavities. As we
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have descibed in the chapter on optical resonator basics, these seemingly
simple contraptions consist of two high-reflectivity mirrors separated by a
precise distance, often finely controlled by a piezo actuator which allows
one to tune that separation on a picometer scale to maintain resonance. Our
requirements typically lead to a construction that is "highly macroscopic"
and employs low-loss mirrors, leading to narrow kHz-scale resonances. For
a concrete example, our system’s resonators have a bandwidth of only ≈
30 kHz.

8.3 From a single cavity to a cascade

8.3.1 Motivation

To reiterate, our experiment needs strong rejection of better than ≈100 dB at
a detuning of 1.5 MHz (and some rejection for the nearby mechanical mo-
des, but more on that later). A first approach would be to use only one filter
cavity, but with a very narrow bandwidth. For example, one could make a
physically large Fabry-Perot resonator with ultra-high-reflectivity mirrors, le-
ading to a linewidth of, say, 10 Hz. Problem solved? Unfortunately, no. Such
narrow response comes with a cost. First of all, experimentally, it’s difficult
to create such devices: the stability of a large mechanical system gets worse
and worse as the size increases. And even if we disregard that limitation,
we’re confronted by the fact that a Fabry-Pérot cavity with a very narrow li-
newidth has, by the very definition, a narrow bandwidth. Optomechanically
scattered light, on the other hand, has its own bandwidth. Typically it’s on
the order of 10 kHz during our experimental runs. This mismatch of band-
widths would lead to severe inefficiency, where we would lose 99.9 % of our
signal and make measurements effectively impossible .

The solution to this problem, as this section’s title suggests, is to have a
cascade of filters, where light passes sequentially through several separate
resonators. What we have in our system is a system of four cavities, each
one having a linewidth of 30 kHz. That linewidth is quite larger than the
bandwidth of the signals that are being generated and processed (10 kHz).
Even more importantly, the rejection of the system as a whole grows expo-
nentially with the number of cavities. Four cavities, each with a rejection of
30 dB, would lead to an overall rejection of 120 dB! And to top it all off, the
time delay introduced by a cascade increases only linearly with the number of
cavities.

All of the above makes the decision to use a multi-cavity filter system a
"no-brainer". Let us now talk about how this system was built.

8.3.2 First generation, or the forgotten bandgap

In this section, we will describe the first version of our filter cavity system
that we dubbed "Fermi’s Paradox" (because one of the solutions to Fermi’s
Paradox is the concept of Great Filters). As we mentioned above, this is not
the version currenly in use in the experiment. Nevertheless, the core ideas
and techniques were transferred almost without change to the next version.
Therefore, a thorough description of this first version will make subsequent
information much easier to grasp. Without furter ado, let us begin.



70 Chapter 8. Filter cavities

As we said earlier, we require approximately 100 dB of attenuation for
the ≈1.5 MHz-detuned pump, as compared to signal. With 4 cavities, this
results in a maximum bandwidth of ≈100 kHz for each cavity. The technical
challenges to be solved can be split into two broad categories, and further
split into subtasks (it’s an engineering fractal all the way down):

1. Design of individual filters:

a) Mirrors: the main components of optical cavities. We require
high-reflectivity, low-loss mirrors to achieve high finesse. "High
finesse" in this case is necessary to be able to construct cavities
with a manageable physical length, as for a given bandwidth, the
length of a cavity is inversely proportional to its finesse.

b) Spacer: the mechanical support for the mirrors. While often omit-
ted from theoretical considerations, having a robust and mecha-
nically stable way of mounting the mirrors is as crucial as the
mirrors themselves. A "shakey" or "driftey" spacer will make the
cavities impossible to stabilize, leading to joy not being sparked.

c) Piezo actuators: the way to maintain resonance. With our finesse
values, a change of merely ≈50 pm of cavity is the difference bet-
ween being on resonance (100 % relative transmission) and being 2
linewidths off-resonance (only 6 % transmission). For this reason,
we need a way to finely tune that length, which is where piezo
actuators come into play.

d) Suspension, crucial for preventing the cavities from succumbing
to the unrelenting force of gravity, and falling onto the floor. A
proper way to fixture the components can make-or-break an opti-
cal system, and our resonators are no exception.

2. Interplay between individual filters in a composite system:

a) Inter-cavity isolation. Contrary to early experiments in the field
of optics, the coherent fields and modes in our work make interfe-
rence a double-sided coin. Interference enables our experiments.
When not accounted for, however, everything wants to be an inter-
ferometer. It is crucial to prevent interference from happening in
non-controlled areas of the experiment, in this case between the
cavities.

b) Mode-matching. To properly propagate through a cavity, its input
light has to match the resonator’s own mode.

c) Multi-cavity locking. While many techniques exist for stabilizing
("locking") a single optical cavities, most of them need to be mo-
dified, or straight-up abandoned, to be useful in a cascaded ar-
rangement. Custom electronics and logical schemes allow us to
maintain the filter cascade locked on a single frequency.

We will tackle these problems one at a time, roughly corresponding to
the chronological order in which they were developed.
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(5) W. Zhang et al. 2017.

8.3.2.1 Mirrors

We have discussed the theory of optical Fabry-Perot resonators before. To
reiterate, a high-finesse, high-transmission cavity requires mirrors with the
following properties:

1. High reflectivity. This directly translates into finesse.

2. Low loss. As we defined before, "loss" is all the light energy that has
not been reflected or transmitted through the dielectric coating. This
includes absorption and scattering.

3. Radius of curvature. This is a design choice more than a property, and
can be selected during a mirror’s fabrication. It is still important to
keep it in mind, as a poor choice of the ROC can, in the worst case, lead
to an impossible cavity geometry. More realistically, a "wrong" mirror
ROC can severely limit one’s ability to change the cavity geometry in
the future, and flexibility is of paramount importance in the experimen-
tal science.

With all that in mind, we have chosen Layertec GmbH as our supplier,
and ordered mirrors with the following specifications:

• Standard "half-inch" substrate with on outer diameter of 12.7 mm, cen-
ter thickness of 6.35 mm, ROC 700 mm

• Transmission of ≈380 ppm at 852 nm. Note: we ordered 600 ppm trans-
mission, and Layertec "overdelivered". While we didn’t expect such a
transmission, this ended up helping us in the long term.

• AR-coated on the other surface, with R <0.05 % at 852 nm.

To confirm the company’s test report, we directly measured the trans-
mission at a series of wavelengths, and obtained matching results, shown in
Fig. 8.1.

More accurate measurements are obtained in a cavity using the Quasi-
Ringdown technique, indicating an intracavity loss of (365 ± 2)ppm per mirror
for the LF01-LF02 mirror pair. An example of such a measurement is shown
in Fig. 8.2.

All of the above shows that the mirrors are performing according to
specifications.

8.3.2.2 Spacer

There is a whole area of research out there dedicated to designing spacers
for optical cavities. A lot of that research is focused on highly sophisticated
reference cavities used in quantum metrology, going as far as fabricating
spacers out of single crystals of silicon, with cryogenic cooling and optical
fiber suspensions(5). Other research looks into making exceptionally stable
and isolated cavities out of ultralow expansion glass with triple thermal
shields in ultrahigh vacuum. We do none of that.

Our cavities require neither year-long stability nor consider thermal
noise effects on the resonance frequency of the filters. We are simple people:
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Figure 8.1: Directly measured transmission of a high-finesse mirror from Layertec.
Minimum transmission is achieved at 852 nm

Figure 8.2: Typical oscilloscope trace during a QuasiRingdown sweep. The transmis-
sion of the cavity oscillates as its internal field interferes with the frequency-swept
incoming light.

we see not shake - we happy. The design we went for is as uncomplicated as
a crowbar. To be a bit more precise, let us list the thoughts we had during
design:

• Mechanical stiffness. With a length of 15 cm, simply using a thick
enough rod of some metal is enough.

• Thermal stability. This is the slighly exotic part of our approach, where
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(6) Different manufactures provide slightly
different numbers, but they are all close
enough for our requirements

we opted for an invar-based design. Invar is a Nobel-prize-winning
alloy of iron and nickel that displays a surprisingly low coefficient
of thermal expansion of less than 1.5 ppm/K. Compare that to steel
(≈15 ppm/K) or aluminium (≈20 ppm/K). Additionally, it is nearly as
stiff as stainless steel(6).

• Ease of fabrication. Metals are worked much more easily than glass, are
much cheaper, and are readily available off-the-shelf.

• Ease of assembly and disassembly (ominous foreshadowing). With so
many unknowns, it is crucial for us to be able to service our cavities for
modifications, cleaning, and other changes.

In the end, our design is mostly an invar tube with a cylindrical bore in
the center, and mounting fixtures on the ends. When assembled and moun-
ted on the table, it looks like shown in Fig. 8.3.

Figure 8.3: A first-generation filter cavity in its natural habitat, mounted by the center
to minimize vibration. One can see the end clamps that hold a mirror on each end,
plus a piezo on one of the ends. Piezo cables are visible. Name "Cucumber" was
chosen as it starts with "C", indicating it’s our third cavity, chronologically speaking.
In the filter system, it’s the first cavity in series.

The mounting ends are simple as well. They are composed of the follo-
wing, left-to-right:

1. Clamp piece made of aluminium. This piece is not part of the cavity
length, and can therefore be made without regard to thermal expan-
sion.

2. Rubber o-ring that evenly distributes the load on the mirror, dampens
the vibrations of the clamp, and prevents scratching of the mirror by
the aluminum.
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(7) citation needed

(9) Jie Zhang et al. (Mar. 7, 2013). “Design
of an Optical Reference Cavity with Low
Thermal Noise Limit and Flexible Thermal
Expansion Properties”. In: The European
Physical Journal D 67.2, p. 46. issn: 1434-
6079. doi: 10 . 1140/epjd/e2013 - 30458 - 2.
url: https://doi.org/10.1140/epjd/e2013-
30458-2 (visited on 02/25/2023).

(9) Also valid for non-static displacements,
as a perfectly centered suspension will not
excite any odd mechanical modes, therefore
not changing the length of the cavity under
idealized conditions.

3. The mirror itself. Due to its radius of curvature, it only contacts the
spacer body on its circumference, which allows us not to worry about
any scratches on the reflective surface.

4. Three mounting holes for screws that keep it all together. Note that
we chose 3 holes instead of the more conventional 4-hole arrangement.
This is due to the fact that 3 mounting points always define a plane.
Therefore, tightening any one of the screws does not lead to any of the
other screws becoming loose

The other end of the cavity is similar, but also includes a piezo actua-
tor "sandwiched" between the spacer and the mirror, therefore allowing for
cavity length tuning. Here, the o-ring plays an additional role: being relati-
vely soft, it does not significanly impede the micrometer-level motion of the
mirror, while applying an even preload that makes the piezo response more
linear.

8.3.3 Suspension of the first generation of filters

As mentioned above, unsuspended cavities tend to fall down under typical
experimental conditions (7). We will now briefly describe the suspension
design for this first generation of filters. Since the suspension for the second
generation of filters is quite different, we shall not go into too much detail
here.

The main considerations when mounting any sort of optical system is
the long-term stability of the mount, and the resistance of this system to vi-
brations and other extraneous perturbations. We have chosen an approach
common in high-stability reference cavities, which is clamping in the middle
of the cavity. Of course, high-stability reference cavities require a much dee-
per understanding of internal stresses, aging, and the precise way in which
external forces affect the system. But as stated before, our needs are not ne-
arly as strict. For our practical purposes, this way of suspending has two
main advantages:

• A single mounting point ensures that external mechanical vibrations
from the optical table are "sampled" only at a single point, therefore
preventing any stretching or bending modes of the table from affecting
the cavity.

• When suspended from the middle, vibrations along the axis of the
cavity result in stretching of one half, but also a corresponding shrin-
king of the other half. This results, under ideal conditions, in a net zero
change of cavity length(8). This is the main reason why this technique is
popular in metrology-grade reference resonators(9).

In practice, cavities mounted in this way displayed great stability and
were easy to operate, even in presence of vibrations on the table due to pe-
ople working with the optical setup at the same time. This suspension is
shown in Fig. 8.3.

https://doi.org/10.1140/epjd/e2013-30458-2
https://doi.org/10.1140/epjd/e2013-30458-2
https://doi.org/10.1140/epjd/e2013-30458-2
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8.3.4 Locking

Finally we come to the crux of the biscuit. A high-finesse optical cavity is not
trivial to stabilize to the laser light. We will reiterate the technical challenges:

1. The high finesse (≈ 8800 in our case) implies that a single resonance
only spans a tiny fraction of the full spectral range (FSR).

2. The absolute length of the cavity can vary over time due to thermal
drifts and other effects. Therefore, we need to be able to adjust the
length by at least half of an FSR. In practice, being able to adjust the
length by several FSRs is necessary for prolonged stability and ease
of operation. This means that a single resonance is an even smaller
proportion of the whole scan range.

3. Cavities with a small linewidth are particularly susceptible to any fre-
quency noise of the laser source, needing prestabilization even for rela-
tively "quiet" lasers.

These challenges require us to be very careful with noise and other spu-
rious signals coming from the outside (more on that later). Additionally,
locking 4 cascaded cavities comes with extra complications:

1. Pound-Drever-Hall locking cannot be used, as the sidebands necessary
for the error signal would be filtered already at the first cavity. Adding
additional modulators between the cavities could be one solution, but
it would increase the losses of the whole system, as well as being rather
expensive and bulky.

2. Side-of-fringe locking cannot be used either, as on-resonance locking
is not really possible. Settling for slightly off-resonance locking would,
again, increase losses substantially.

3. Injecting locking light into each cavity independently would require us
to have many shutters, increasing the complexity.

PID

Figure 8.4: Scheme for locking a single cavity. Adapted from the supplementary
material of (I. Galinskiy et al. 2020b)

Fortunately, there exists a different technique that we call "dither locking",
and it is used in other experiments where external modulation is impractical.
We will first describe its use on a single-cavity lock, since the multi-cavity
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case is a straightforward extension of this method. The concept, illustrated in
Fig. 8.4, is rather simple:

1. A low-frequency, low-amplitude modulation is applied to the cavity’s
piezoactuator. This results in a periodic variation of the cavity length.
The amplitude of this modulation is low enough such that the cavity
does not change its resonance frequency by any significant amount
when compared to the resonance linewidth.

2. This periodic variation results in a variation of cavity reflection (or
transmission). Assuming low enough modulation, we are effectively
sampling the derivative of the transfer function. This derivative is zero
both when on resonance and far away from resonance, while displaying
a steep slope around the resonance, as shown in the figure below.

3. The resulting variation of reflection is measured by a photodetector,
converted to an electronic signal, and then demodulated, therefore
recovering the derivative. This is our error signal used for locking,
which we call "dither signal". Our goal is to maintain this signal as
close to zero as possible

An experienced or attentive reader will notice that this signal cannot be
easily used for locking per-se, since it is close to zero both on resonance, and
far away from it. We are now in position to show the full locking sequence
that addresses this limitation:

1. The cavity’s piezo (for brevity, we will only refer to the "cavity" in sub-
sequent text) is swept across the entire range, while recording the re-
flection as function of control signal. This locates all the resonances,
which appear as narrow spikes in the trace.

2. A target resonance is chosen close to the center of the sweep. This gives
plenty of "wiggle room" for long-term drifts to both sides. The height
of the resonance is recorded.

3. A finer, smaller sweep is performed around this chosen resonance,
and the height of the resonance is corrected, as a fast sweep can make
this height appear smaller due to ring-up/ring-down effects and the
limitations of data acquisition speed.

4. The setpoint is set to half-fringe, with reflection being the error signal.
A slow "catching sweep" is initiated on one side of the resonance, a safe
distance away. The lock then free-drifts ("integrator drift") until the
lock "catches" the side of the fringe.

5. If the successful lock capture is confirmed, and is stable, modulation
is turned on at a frequency between 1 kHz and 2 kHz. The resulting
demodulated signal is recorded, and its strength is used for gain calcu-
lations.

6. Now we are in range of dither-locking. The locking electronics are
commanded to transfer the lock to dither mode, and the cavity is stabi-
lized on resonance. If this condition remains stable, the lock is deemed
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successful. If something goes wrong, the entire sequence is performed
again.

All of the above typically takes about 10 seconds and is fully automated.
Ironing out the dither locking of a single cavity was the most labor-intensive
part of the control electronics, where we tackled noise, resolution, stability.
The codebase, composed of Python for high-level computer control, and
C++ for the embedded counterpart, ended up being more than 1500 lines
of code. Bloody, sweaty code. I’m mentioning that because if I were to redo
the experiment, I would go for a different approach based on Red Pitayas.
However, back in that time I lacked some experience and knowledge, so I
ended up going the long route. Live and learn.

8.3.5 Multi-cavity lock

As we said, the above was the hardest part of the lock design. To lock se-
veral cavities in series, the previous concept is taken almost as-is, but with
following additions:

1. The dither frequency of each cavity has to be different from the other
ones, as otherwise modulations would be indistinguishable from each
other.

2. Locking has to be performed sequentially. All cavities, with the excep-
tion of the first, rely on light already propagating through the previous
filters. Therefore, we wait until a cavity is fully locked before attemp-
ting to lock the next one

Other than that, the locking process is the same. We will now describe
the next generation dubbed "NQLBS", or "Not Quite LIGO, But Still". The
name will be evident soon.

8.4 NQLBS, or the remembered bandgap

Remember how we wanted to reject the pump beam? That is still the case,
but we have forgotten something: the bandgap of the membrane. It is true
that the bandgap is a pretty quiet area around the high-Q mechanical re-
sonance. However, the width of the bandgap is finite. Here’s the problem:
low-Q mechanical modes just outside of that bandgap are too close to the

high-Q mode. This means that when the filter system is centered on the
main mode, they still allow scattered light from the low-Q mode to leak

through the 100 kHz cavities. To be honest, we simply overlooked this fact,
thinking of the membrane as a simple harmonic oscillator (which it absolu-
tely is not, containing a myriad of modes). The result? The photon rates were
way too high and dirty.

The weak signal from the main mode was overwhelmed by the signals
from those other modes. Of course, they are much weaker than the unscat-
tered light of the laser, but they are also much closer in frequency. Since a
single-photon counter, by definition, cannot distinguish between different
light frequencies, we thought for a long time about how we could improve
the situation without building a new set of filter cavities. In the end, howe-
ver, no easy solution was found. And by "simple" I mean a solution that
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would filter the unwanted components without introducing noise. We con-
sidered schemes like EIT, which can be used to produce very narrowband
filtering. Unfortunately, in addition to the complexity of an atomic system
capable of producing EIT, the nature of atomic transitions is such that the
atoms would still create some photons due to decoherence, which would
contaminate our filtered signal, precisely the problem we are trying to avoid.
In the end, we decided to "bite the bullet", and build a system of cavities with
a much narrower linewidth. That is, longer filters.

8.4.1 The long boys

Fortunately, we could reuse the mirrors from the previous system, but now
made the cavities 4 times larger. To remind you, first system had 15 cm long
cavities, and ≈110 kHz of bandwidth. The new cavities are 60 cm long, which
is pretty big by optical bench standards. But the linewidth is now ≈30 kHz.
So they would transmit our signal just as efficiently, while rejecting the ne-
arby out-of-bandgap modes quite well:

A little bonus is that they reject the pump light even more (>155 dB),
though that is completely overkill.

8.4.2 Fabrication

Let us go into the nitty-gritty of actually making NQLBS real. The sheer size
of these filters is such that it was no longer possible for the university’s me-
chanical workshop to make them out of a single piece of material. Imagine
drilling a 60 cm-long hole of only 5 mm in diameter in the steel-like invar.
Sure, it’s possible using some relatively exotic fabrication techniques like
electrical discharge machining, but after consulting with people at KU’s me-
chanical workshop, especially Dennis Westphal Wistisen, we decided to split
each cavity into three pieces. As before, invar is our material of choice. Ho-
wever, the separated segments still need to be assembled, for which we use
threaded connections:

Figure 8.5: Construction of a full-sized 60 cm filter cavity

At the same time, the ends of the cavities remained effectively unchan-
ged, with only a few quality-of-life features for easier positioning of the mir-
rors.
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8.4.3 Mechanical stability: problem and desperate solution

Such long cavities come at a cost. In a nutshell: the longer a beam of material
is, the lower its stiffness, and the lower are the frequencies of the mechanical
eigenmodes of vibration of that system. As a matter of fact, the stiffness of
uniform beam of material(10) is inversely proportional to the square of the
length of that object: making a cavity 4 times longer makes it 16 times less
stiff (more "bendy"). In practice, that means we are suddenly much more
sensitive to vibrations coming from the environment, vibrations of the op-
tical table, fluctuations of air pressure, sounds, and so on. This resulted in
not being able to lock these cavities when they were simply mounted on the
optical bench.

After a bit of unsuccessful attempts at locking them, we realized that we
needed to protect the cavities from the environment, both mechanically and
acoustically. For acoustic protection, we built a system of vacuum tubes, into
which we slide the cavities. Then, we pumped them down to a medium va-
cuum to remove any kind of acoustic coupling. As a somewhat unexpected
bonus, their linewidth improved by 1 kHz to 2 kHz. It turned out that oxygen
has a non-negligible absorption of light at 852 nm. Note that this also remo-
ved the effect of air pressure fluctuations due to atmosphere, wind, and even
as little as closing and opening the door in the lab.

8.4.4 Spring suspension

Turns out acoustic isolation alone was not enough to be able to lock the ca-
vities. There still remained a strong susceptibility to external noise at about
≈ 220 Hz, which was the first bending mode of the very long tube. Therefore,
we needed to isolate them from the mechanical vibrations of the optical table.
But note now that these cavities are quite heavy (about 2 kg each). This is
where harmonic oscillators come into the picture again.

By placing a mass on a spring, vibrations of its support are suppressed
above the resonant frequency. This idea was then to place the individual re-
sonators on soft springs inside of the vacuum tubes. Such an arrangement
forms a low-frequency mechanical oscillator with a frequency of approxima-
tely 10 Hz. Such an approach very effectively suppresses external vibrations
at 200 Hz or above, and prevents them from reaching the filter cavity. As an
attentive reader might expect, however, now we have a new kind of vibrati-
ons: the mass-spring vibrations at 10 Hz. In a way, we traded one problem
for another. However, low frequencies are easier to manage, so we have deci-
ded to dampen them.

We introduced a damping material between the vacuum tube, and the
cavity inside of it. Our first attempt was to use polyurethane foam, which
worked very well in suppressing these vibrations, so we could finally achieve
a stable lock of the cavities. Our joy was short-lived, as we noticed a pro-
gressive degradation of cavity linewidths. As it turned out, polyurethane
outgasses in vacuum, creating a thin film of contamination on the mirrors.

After one week of cleaning the mirrors, which involved us trying five dif-
ferent techniques, including ultrasonic acetone baths, and multiple iterations
of First Contact™, we finally managed to restore their reflectivity. For that,
we used the good old "tissue with acetone and wipe with the finger" techni-
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que. As a matter of fact, this latter approach actually increased the finesse
beyond what the mirrors had "out of the box", likely indicating that there
was some contamination either from the factory, or from our handling (more
likely). We observed linewidths of 28 kHz.

We still needed to find a new material to dampen the 10 Hz vibrations,
but without outgassing in vacuum. Now, there exist materials specifically
engineered for similar purposes (targeted at space applications), but they are
rather exotic and unavailable for many places. In the end, we decided to sim-
ply try a couple of other materials. As expected, we ended up contaminating
the mirrors a few more times, but at least we knew how to clean them.

Finally we found the material that worked, and it came from an unlikely
source. It was simple cotton (cellulose) bought in a pharmacy(11). Before
using it, we washed it with several solvents, to be sure that we removed as
much volatile material as possible. Then we placed the cotton in a dedicated
vacuum chamber to outgas anything that remained, particularly remainders
of solvents from the wash. Finally, we placed little pieces of cotton on top
of our optical resonators and covered them with Kapton tape to prevent
them from getting loose. With this, the cavity system was finally stable and
lockable. The suspension is shown schematically in Fig. 8.6, and each cavity
has two suspension points, positioned at its Airy points to prevent mirror
tilting during vibrations(12)

Figure 8.6: Schematic of damped spring suspension for filters. Adapted from (I. Galin-
skiy et al. 2020b)

8.4.5 Optical arrangement

In the discussions above, we have skipped some details on the actual optical
arrangement of the system. We have several Fabry-Pérot cavities in series,
which means that one has to take care not to create interference between the
cavities, as that will destabilize the whole setup. The issue here lies in the
fact that a system of 4 cavities in series is actually a series of 7 cavities, if one
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counts the inter-cavity spaces. As our mirrors are high-reflectance, and we
strive for as little loss as possible, these inter-cavity spaces form resonances
of their own. In contrast to the actual cavities, however, the inter-cavity spa-
ces are not controlled, and are in open space. Even if they were controlled,
we would find ourselves in a situation where we would have to control 7
coupled resonators, which is a formidable task.

The solution to this issue is to isolate the individual filters. One way to
do it would be to straight-up place Faraday isolators between the cavities,
but that comes at a disadvantage of added loss (isolators are rarely more
efficient than 92 %(13)) and literal cost. The technique we use is simpler and,
though not as "general" as the symmetry-breaking Faraday isolators, is much
more efficient and cheap. We call it "the poor man’s isolator", which consists
of a simple arrangement of a polarizing beamsplitter (PBS for short) and
a quarter-wave plate. It is a well-known technique in quantum optics, but
we shall look at it in the context of inter-cavity application, as illustrated in
Fig. 8.7.
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Figure 8.7: Schematic of inter-cavity coupling and isolation. Assuming light coming
in from the bottom, as indicated by the white arrows, it passes through the bottom
cavity, and is converted into s-polarization, which is reflected by the polarizing
beamsplitter into the second cavity. Any reflections from that second cavity are
converted into p-polarized light, and transmitted though the beamsplitter onto the
photodetector, therefore preventing any inter-cavity interference. Circular polariza-
tions σ+ and σ− are chosen for concreteness, but can be swapped without affecting
functionality.

The principle of operation is based on the fact that upon reflection, a ci-
rcular polarization flips (i.e. changes from right circular to left circular, or
vice-versa), and was discussed previously. The beamsplitter also acts as a
mirror, redirecting the light into the second cavity. As a bonus, polarizing
beamsplitters are typically highly efficient (> 99 %) when operating in re-
flection, which is useful for keeping the overall efficiency as high as possi-
ble. A little sidenote: this high efficiency comes at a lower polarization ex-
tinction, but is of no issue to us, as the incoming light is already rather pure
s-polarized light. With this setup in place, interference between different
cavities disappears and makes them independent, which is a requisite for
locking, and also has the pleasant side-effect of redirecting the reflected light
onto a detector, so there is no need to sample the beam separately, which is
always a lossy process.

Another sidenote for the those interested: this scheme would not work
as well if the cavities had any birefringence in them. Birefringence splits

https://www.thorlabs.com
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the optical resonances, and effectively introduces undesired frequency-
dependent polarization changes, which would compromise the "poor-man’s
isolator" performance. In free-space optical cavities, this birefringence hap-
pens due to birefringence in the mirrors or their coatings, usually due to
some stress produced by the fabrication process. Fortunately for us, we do
not observe such effects, and can consider the cavities to be isotropic with
regards to polarization.

8.4.6 Input to filter system

Before letting the light into the filtering system, we need to make sure that
it has access both to the locking beam, and the signal beam coming from op-
tomechanics. We do it in a simple way, as illustrated in Fig. 8.8. Both beams,
initially in orthogonal linear polarizations, are combined on a polarizing
beamsplitter, where the signal is reflected(14) into the common beam, while
the lock beam is transmitted. The combined beam is then passed through
a half-wave plate, which we adjust such that the polarizations are almost
swapped, such that the signal beam becomes almost completely p-polarized.
On the next PBS, the polarization is collapsed onto its p-state, which allows
most of the signal beam to pass through, while dumping the majority of the
lock light. Since lock light is "cheap", we can always compensate for it by
increasing the level of lock light input. In the end, the combined lock and sig-
nal beams have the same polarization, and can be "fed" into the filter cavity
system.

It is worth noting that this arrangement might seem a bit crude for the
task, as we do not need to have both beams enabled at the same time, so one
could use a scheme using some kind of optical switch, like an acousto-optic
modulator, or a Pockels cell. However, the amount of lock light needed for
our operations is rather low, on the order of 10 µW. That means that by star-
ting with about 1 µW of lock light input, we can obtain an efficiency of 99 %
for the signal beam (apart from other inevitable losses). This is the reason
why we didn’t go with any more involved scheme.

In the single-photon measurement stage, the lock beam is blocked by a
shutter, as shown in Fig. 8.8, after which the signal shutter is open. When the
cavities are being locked, the reverse happens: the signal is blocked, and the
lock is open again. Notice that it is not strictly necessary to block the signal
beam during locking. However, the lock beam has the nasty property of
being exactly resonant with the optomechanical cavity, by definition. If even a
tiny bit of it gets back to the optomechanics (and it does), the membrane gets
excited, which is exceptionally annoying. For this reason, the signal shutter
was installed, and it keeps our systems much more isolated.

8.4.7 Shutters

We have already mentioned that our cavities operate in a sequenced fashion,
with locking "frozen" during single-photon counting, followed by a short
period where the locking light is on, and the lock is restored. Needless to say,
we cannot allow this relatively strong locking light to propagate to the single
photon counters, as it would instantly saturate them (SNSPDS) or destroy
them (APD). The only practical way to reduce a "macroscopic" beam of light
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Figure 8.8: Input to filter system. The switch-like symbols represent optical shutters,
with the default state solid (locking), and counting state as semitransparent. All
beamsplitters are polarizing. The quantity of 90 % is only indicative, as we routinely
operate at higher efficiency levels.
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from its nominal level of ≈ 4× 1012 photons per second to less than one photon
per second, is to use a mechanical shutter.

We based our design heavily on the work of (G. H. Zhang et al. 2015)(15),
who designed a 3D-printed mount and blade, and used a cheap small DC
motor for the actuation. Interestingly, this DC motor is nothing special: if
turned on, it will simply spin normally. Their design incorporates stops in
the 3D-printed mount, stopping the rotation of the blade at determined po-
sitions. During switching, the motor is briefly overdriven to quickly move
it to the other position. In order not to overheat it during idle times, a sim-
ple parallel resistor-capacitor network is used. The capacitor allows for fast
transients necessary for switching, while the resistor maintains a constant
"maintenance" current that keeps the blade in its desired position.

Since our initial experiments with the original design from (G. H. Zhang
et al. 2015), we have adapted the design to be a bit more quiet in the vibra-
tion sense, incorporating a "wiggly leg" that serves as a spring to prevent
kicks of the shutter from propagating to the optical table. Additionally, we
increased the size of the blade, and removed the aperture to allow for easier
alignment, as shown in Fig. 8.9.

We discovered that a simple 3D-printed blade cannot block light in its
entirety, even when printed with a black filament. Therefore, we made the
shutter blade as a scaffold (Fig. 8.9a) onto which we later apply aluminum-
backed blackout tape(16), which solves this problem (shown installed in
Fig. 8.9b).

8.4.8 Lock freezing and passive stability

We have established that having the locking beam on during single-photon
measurements is a big no-no, as it would overwhelm the single-photon coun-
ter. There are ways of going around this:

1. Using a vastly different wavelength of light for locking, allowing it
to be filtered out prior to photon counting. This filtering can be done

https://doi.org/10.1063/1.4937614
https://doi.org/10.1063/1.4937614
https://doi.org/10.1063/1.4937614
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(a) Bare shutter, showing the 3D-printed
structure and blade. No blackout ma-
terial is installed yet to display the
construction of the blade. Ballpoint pen
for scale.

(b) Same version of the shutter in diffe-
rent colour, with blackout tape applied.
Shutter is installed after the output of
the filter cavity system.

Figure 8.9: Photos of the new design of shutters, currently used in the experiment

(17) See e.g. Li et al. (2020)

e.g. dichroic filters. The downside to this solution is the need to keep
the locking light at a constant frequency offset from the desired offset,
with a kHz-scale error at most. This task is highly nontrivial, requiring
either a transfer cavity (17), optical comb, or some other technique. Ad-
ditionally, the filter cavities are not exactly the same length, so their
resonances will overlap very rarely.

2. Simply turning off the lock light. This requires the cavities to stay sta-
ble during this period, which we call "freeze". The disadvantage is that
during that period, we are essentially "blind", and cannot know how
far away these cavities have drifted. Also, they have to be periodically
relocked. We chose this approach.

From here, we will use some text from the supplementary material of
I. Galinskiy et al. (2020a). In the lock-freeze regime, active piezo feedback
is paused and the reference lock light is disabled. The cavities’ length then
evolves freely, and it is crucial that all cavities remain sufficiently close to
their resonances during the relevant timescale. The invar construction and
vacuum environment reduces temperature drifts, and removes air pres-
sure effects. Nevertheless, drifts still happen on a longer timescale. To com-
pensate for these drifts, the electronic locking system not only pauses the
locking, but continues to drift with the same speed as the drift before the
lock freeze, which buys us some more stability time. For this purpose, we
use a double feedback loop consisting of a primary loop that performs the
locking, and a secondary "drift compensation" loop.

Drift compensation works in a rather simple way. The motivation for
its operation is as follows: if there is some constant drift of our system, then
the output of the primary loop will be drifting with it. If we differentiate the
output of the primary loop, we will obtain the rate at which this drift occurs.
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By integrating this drift rate, we recover the drift, which can be added to the
output. Note that we are differentiating and then integrating, so effectively
we are simply multiplying the signal by some constant during continuous
operation. In practice, we add a lowpass filter to this second loop to remove
high-frequency components, as we are only interested in long-timescale
drifts. To perform the freezing, the configuration changes somewhat, as
illustrated in Fig. 8.10

d
dt

Main PID

error ∫ control

Drift compensation

Figure 8.10: Diagram of the full lock for the filter cavities. The drift compensation
section is engaged continously. During a freeze, the "switches" are open, disabling
active locking, while the drift keeps getting compensated. The entirety of this functio-
nality is implemented digitally using an Arduino Due board and an Analog Devices
AD5780 digital-to-analog converter.

The lock beam is turned off by either disabling the AOM drive that pro-
duces it, or by physically closing it with a shutter. The latter was implemen-
ted later in the setup. As the AOM drive was already set up for this opera-
tion, nowadays we do both things, making really sure that no locking beam
reaches the cavities.

As for the stability during lock freeze, we characterized it by simply le-
aving the lock beam on and measuring how the transmission decays as a
function of time. Of course, the single photon counting was closed for this
characterization. We performed the freeze sequence many times to accumu-
late statistics.

As we stated in the supplementary material of I. Galinskiy et al. (2020a),
the relative transmission of the entire filter system decays to 50 % in more
than 4 seconds, as shown in Fig. 8.11, and in 90 % of the cases, the relative
transmission of the full filter system stays above 80 % for approximately 1
second.

8.5 Conclusions and outlook

With all of the above, the reader will hopefully appreciate the effort that
went into the design and construction of our filter systems. They were, per-
haps, the most intricate single setup that the author had to construct, ena-
bling us to do single-photon counting of signals painfully close to their noisy
neighbors. With that said, there is still plenty of room for improvement. We
will list several areas of this setup that still need some love and attention:

• Efficiency. While the current mirrors set an upper bound to the overall
transmission efficiency of our system to approximately 50 %, there are
other limitations at play. Mode matching, locking stability (partially
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Figure 8.11: Transmission of the four-cavity filtering system over 4 s after freezing the
locking feedback loop. Feedback is active for times before 0 s and after 4 s, showing
the high passive stability of the system during lock freeze. The background color plot
corresponds to the probability density of relative transmission. Figure reproduced
from the supplementary material of I. Galinskiy et al. (2020a).

related to the stability of the laser), losses during fiber coupling and in-
terconnections, and mechanical stability all add up quickly when there
are four cavities, such that a realistic transmission is approximately
25 %. This results in longer acquisition times, especially for two-time
and three-time correlations, whose rates degrade as the square and
cube of transmission, respectively.

• Convenience of operation. Even though at the current stage the system
is already quite automated, only requiring a single click to perform
a full lock of all four cavities, better integration into our networked
lab infrastructure will allow us to run the experiment with even less
supervision, which is crucial during long acquisition runs.

Fortunately, all of the above can be solved with a bit of "elbow grease". The
author hopes to get to that task as soon as more pressing and less explained
issues are solved, which are described in subsequent chapters.
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9
Thermal phonon counting

“
Heat has a funny way of making you forget how to count - es-

pecially when it comes to calories and the number of drinks you’ve
had.

Unknown/ChatGPT

This chapter is heavily based on our manuscript (I. Galinskiy et
al. 2020a), and presents results in conversion of phonons into photons
with their subsequent statistical analysis

9.1 Introduction

We shall now talk about our first successful experiment involving phonon
counting. After we have completed the construction and debugging of the
second generation of filter cavities, everything was in place to do some proof-
of-principle work that would show the operational capacity of our overall
system. In this experiment, we did not have pulsing, and our system was
not completely in the sideband resolved regime, with Ωm = 2π · 1.48 MHz
and κ = 2π · 2.75 MHz. Even in this regime, however, ground-state sideband
cooling is possible, although not to the level that sideband-resolved opera-
tion can allow. Instead, we focused on studying the statistics of photons that
are created by the optomechanical system in steady-state read, and on con-
firming the level of "full-stack" performance that we have. The results were
promising, and we published our findings in (I. Galinskiy et al. 2020a). In
this chapter, we will use some of the figures and text of (I. Galinskiy et al.
2020a).



88 Chapter 9. Thermal phonon counting

PI

SPCM

Heterodyne

4 K

(a) (b)

Figure 9.1: Experimental setup showing (a) the optomechanical cavity optically
coupled to (b) four narrowband filtering cavities and subsequently directed to the
single-photon detector (SPCM) or a balanced heterodyne detector. The optome-
chanical cavity is locked using a small portion of transmitted drive light (orange),
with feedback provided by a PI controller connected to a piezo transducer. Filtering
cavities are locked using an auxiliary beam (light blue). The filtered light (green) can
be detected with photon counting (SPCM) or heterodyne detection. Figure adapted
from (I. Galinskiy et al. 2020a).

9.2 Theoretical recap

While we have covered this topic previously in Chapter 4, we shall reiterate
its results, relevant for this set of experimental results.

Thanks to cavity-based engineering of the optomechanical coupling, the
interaction of light and mechanics is effectively dominated by a beamsplitter-
like interaction between phonons and anti-Stokes photons:

ĤBS ∝ b̂â†
AS + b̂†âAS , (9.1)

which leads to an exchange of optical and mechanical quanta, equivalent to
anti-Stokes scattering of pump photons. This strong conversion of phonons
into photons is the mechanism that both cools the mechanical resonator and
maps its state onto light. Due to finite sideband resolution of the optomecha-
nical cavity, there exists a small amount of two-mode squeezing interaction
between phonons and Stokes photons (∝ b̂†â†

S + b̂âS). This process introdu-
ces a small amount of heating that limits the minimum possible occupation
of the mechanical oscillator under optical cooling Peterson et al. 2016. In
practice, however, frequency-resolved detection of Stokes and anti-Stokes
photons, particularly for low-frequency mechanical oscillators, is challenging
due to the presence of numerous nearby mechanical modes and a strong
optical pump field

The transition rates for the mechanical system can be calculated follo-
wing Refs. (Wilson-Rae et al. 2007; F. Marquardt et al. 2007; Aspelmeyer,
Kippenberg, and F. Marquardt 2014) as:

A± = g2
0n̄cav

κ

(∆ ∓Ωm)2 + κ2

4

, (9.2)



9.3. Detection of filtered mechanical sidebands 89

where + (−) denotes upward (downward) transitions in the quantum har-
monic oscillator ladder. The expected Stokes and anti-Stokes rates are then
given by:

ΓAS = n̄A−, ΓS = (n̄ + 1)A+, (9.3)

with the dynamical optical broadening given by Γopt = A− −A+. Remarkably,
in the ground state (n̄ = 0) the rates become highly asymmetric, regardless
of A±. The ratio between Stokes and anti-Stokes count rates is unaffected
by the overall system efficiency, thus we can estimate the residual phonon
occupancy from these rates as:

n̄est =
RA+

A− − RA+

=
R((∆ +Ωm)2 + κ2/4)

((∆ −Ωm)2 + κ2/4) − R((∆ +Ωm)2 + κ2/4) ,
(9.4)

with R = ΓAS/ΓS. Notably, both g0 and the cavity photon number n̄cav cancel
out in the estimator. Other parameters of the cavity are found via OMIT
measurements, as described in great detail in (Nielsen 2016). The theoretical
prediction for the expected final phonon occupancy can be calculated as:

n̄ =
A+ + n̄thΓm
Γopt + Γm

. (9.5)

In our case of Γopt ≫ Γm, two regimes can be distinguished. In the thermally-
dominated regime, corresponding to Cq ≪ 1, the ratio between the rates is
determined only by the cavity response, leading to R → ((∆ −Ωm)2 + κ2/4)/((∆ +Ωm)2 + κ2/4)
and ΓAS = n̄thΓm(1 − 1/R)−1. In the sideband-resolved regime, R → ∞ and the
anti-Stokes rate becomes equal to the phonon flux into the mechanical re-
sonator coming from the thermal bath. In the other extreme (i.e. Cq ≫ 1)
the two rates equalize and we have ΓS ≈ ΓAS → g2

0n̄cavκ/(4|∆|Ωm) ∝ Cq,
which shows that the scattering rates of two processes become equal and are
dominated by quantum back-action.

9.3 Detection of filtered mechanical sidebands

Unfiltered optomechanical spectra can be easily and efficiently measured
using direct detection, i.e. using a single photodiode placed directly at the
output of the optomechanical cavity. This is due to the fact that the cavity
transduces membrane motion into light intensity fluctuations when the op-
tical drive is correctly detuned (Aspelmeyer, Kippenberg, and F. Marquardt
2014). As seen in Fig. 9.3a, the spectrum consists of the main high-Q mode
surrounded by a phononic bandgap and dense regions of modes outside of
the bandgap.

In order to confirm the performance of the filtering system, we apply it
to the output of the OM cavity and detect the filtered light with a heterodyne
measurement. The effect of filtering on the light spectrum is easily seen on
Figs. 9.3b,c, where we tune the filter to be resonant with distinct parts of
the spectrum. When the filter is tuned to the main mechanical mode [Fig.
9.3b], it efficiently isolates it from closely neighboring out-of-bandgap modes,
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which is a necessary condition for single-photon-based measurements. We
can also select a part of the spectrum containing many out-of-bandgap mo-
des, as in Fig. 9.3c, which clearly reveals the envelope of the filter system’s
response.
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Figure 9.2: Rejection of the cascaded filtering system as a function of detuning, where
the L(Ω)4 model (violet) closely follows the measured response (gray). For fre-
quencies above 200 kHz the heterodyne signal becomes too weak to measure, but is
expected to continue following the L(Ω)4 response.

In a different measurement, we direct the output of the filtering system
to the SPCM and lock the center frequency at different detunings across
the bandgap (Fig. 9.4). We observe greatly reduced photon scattering rates
inside the bandgap, and large scattering when approaching low-Q out-of-
bandgap modes that are strongly coupled to the thermal bath. As a consis-
tency check, we estimate the expected count rates by convolving the L(Ω)4 re-
sponse of the filters with a directly measured spectrum, where shot noise has
been subtracted. The predicted and measured rates are in good agreement,
with visible uncertainty only inside of the bandgap, where the scattering is
low and shot noise level estimation errors can lead to increased uncertainties
in the predicted count rate, as shown in Fig. 9.4. The residual discrepancy
at 1.51 MHz is due to one of the higher-order defect modes that is very we-
akly damped by light and prone to mechanical excitation due to e.g. unstable
liquid helium flow through the cryostat. This mode does not affect the mea-
surements of the main mode, as shown on Fig. 9.3b, as it is being suppressed
by the filter systems by 30 dB (see Fig. 9.2). Importantly, when the filters are
tuned to the main mechanical frequency, the relative photon flux contribu-
tion of out-of-bandgap modes is expected to be less than 1% compared to the
photon flux due to the main mechanical mode.

9.4 Raman-ratio phonon thermometry

An asymmetry between Stokes and anti-Stokes sidebands is a direct signa-
ture of near-zero occupation of the mechanical mode responsible for these
sidebands. In particular, the ratio of powers in the two sidebands can be
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Figure 9.3: Filtering verified by heterodyne detection of filtered light. (a) Power
spectral density (PSD) of light emitted directly from the cavity as registered by
the direct-detection photodetector. PSD is calibrated in shot noise (SN) units. The
spectrum shows the bandgap (between roughly 1.42 MHz and 1.59 MHz) provi-
ded by the phononic crystal structure and the high-Q mechanical defect mode
at Ωm = 2π · 1.48 MHz. The overlaid shaded curves are transmission functions
L(Ω − ∆f)4 of the filtering system positioned at ∆f = Ωm = 2π · 1.48 MHz and at
∆f = 2π · 1.69 MHz. (b) and (c) show the PSD of filtered light, with the filter centered
on the high-Q mechanical defect mode frequency, (b) and on the dense out-of-
bandgap part of the spectrum (c). Note the different scale between (b) and (c).

(1) Cohen et al. 2015; Meenehan et al. 2015.

directly used to infer the residual phonon occupation or, equivalently, the
mode temperature. For mechanical resonators in the MHz frequency range,
the most commonly employed method for measuring sideband powers has
been heterodyne detection (Purdy et al. 2015; Peterson et al. 2016; Under-
wood et al. 2015; Chowdhury et al. 2019). In particular, it is fully sufficient to
perform heterodyning of photons scattered from red-detuned cooling light.
In this case, as cooling increases, the two sidebands move from being asym-
metric due to the optomechanical cavity response, to being equally strong,
indicating the balance of Stokes and anti-Stokes scattering in the quantum
back-action dominated regime.

In the GHz mechanical frequency range, a more direct method of measu-
ring sideband power based on photon counting (and thus effectively phonon
counting)(1) has been demonstrated, where Stokes and anti-Stokes photons
are filtered and subsequently detected by a single-photon detector. This
method is not affected by the local oscillator noise (Weinstein et al. 2014),
although it may suffer from dark counts of the photon counting detectors
Cohen et al. (2015). The calibration-free nature of Raman-ratio thermometry,
in both resonant and red-detuned cases, is one of its advantages as compared
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Figure 9.4: Photon counting of anti-Stokes sidebands, as a function of filter detuning,
with count rates registered by the SPCM (blue dots), predicted count rates (solid blue
line) with uncertainty (shaded teal area) and scaled directly-measured PSD (gray)
for visual reference. The bandgap is effectively observed via photon counting. The
shaded gray vertical strip shows the region surrounding the main mechanical mode.

to the more commonly employed technique based on spectral calibration
using external phase modulation (Gorodetsky et al. 2010). In particular, one
does not need to pre-calibrate the optomechanical single-photon coupling
rate strength g0. In the context of our work, phonon counting thermometry
demonstrates the feasibility of efficient counting of single-phonon excitations,
a fundamentally non-Gaussian operation.

Here we apply the phonon counting thermometry technique to our
Ωm = 2π · 1.48 MHz-frequency mechanical mode. A single beam detu-
ned from the optomechanical cavity resonance by approximately optimal
detuning ∆ = 2π · −1.85 MHz, is used to both cool the membrane motion by
dynamical back-action and simultaneously probe the system as it reaches the
quantum back-action dominated regime.

We now proceed to demonstrate this behavior in our experimental set-
ting. Figure 9.5a demonstrates the measured Stokes and anti-Stokes rates
both growing with the intracavity photon number, quantified in terms of
induced optical broadening Γopt measured using OMIT. For the lowest bro-
adening of Γopt = 2π · 255 Hz we observe sideband scattering rates of 20 Hz
for Stokes and 100 Hz for anti-Stokes, corresponding the the ratio R = 5. As
we increase the broadening to Γopt = 2π · 11 kHz, the detected rates arrive
at 215 Hz for Stokes and 260 Hz for anti-Stokes corresponding to a ratio of
R = 1.2. Increased optical broadening also leads to reduced transmission
through the filter setup, as compared with raw rates given by Eq. (9.3), which
is due to the optically-broadened scattered light getting slightly "clipped"
by the filtering system response. We model this loss by integrating a nor-
malized Lorentzian spectrum with a width Γopt centered around Ωm with
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Figure 9.5: Ground-state cooling measured by photon counting. (a) Measured Stokes
(red) and anti-Stokes (blue) scattering rates as a function of optical broadening Γopt of
the mechanical mode and theoretical prediction with calibrated efficiency, as given in
the legend. At lower driving powers, corresponding to smaller broadenings, the rates
are set by the Lorentzian cavity response (left inset). At higher driving powers we
observe that asymmetry is reduced due to the mechanical oscillator approaching the
ground state (right inset), with scattering dominated by the quantum back-action. (b)
Inferred thermal occupation n̄est of the mechanical mode, along with the theoretical
prediction (for bulk thermalization temperature of T = (8.8 ± 0.5)K, which is the only
free parameter in the fit) and the back-action limit n̄ba (dashed horizontal line). Error
bars are inferred from statistical uncertainties from photon counting and fitting of
other parameters used in Eq. (9.4).

L(Ω −Ωm)4:

t(Γopt) =
∫

L(Ω −Ωm)4 2
πΓopt

Γ 2
opt/4

(Ω −Ωm)2 + Γ 2
opt/4

dΩ

=

κf

(
5Γ 3

opt + 20Γ 2
optκf + 29Γoptκ

2
f + 16κ3

f

)
16(Γopt + κf)4

.

(9.6)

This reduction is the same for Stokes and anti-Stokes sidebands, and thus
it does not affect the ratio R. We find that the optical spring effect shifting
the effective mechanical resonance frequency is below 3 kHz has a negligi-
ble effect on count rates for a fixed detuning of the filter system. In all cases
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we subtract the independently measured dark count rate of (15.5 ± 0.5)Hz.
The overall detection efficiency of the entire system is estimated to be η ≈
2.5%, consisting of optomechanical cavity outcoupling (75%), fiber transmis-
sion/coupling (60%), filtering system (30% for cavities and 50% for incou-
pling/outcoupling) and SPCM efficiency (35%). We note that the room for
improvement of these efficiencies lies mostly in optics of the filtering system
and SPCM efficiency.

Finally, we calculate the ratio R and estimate the mean phonon occu-
pancy as given by Eq. (9.4) and plotted in Fig. 9.5b. The estimated phonon
occupation n̄est is accurately described following a fit of Eq. (9.5). The mecha-
nical occupation finally reaches a value of n̄est = 0.23 ± 0.02 at Γopt = 2π · 11.0 kHz
corresponding to Cq ≈ 22, as estimated from calibrated parameters. The only
free parameter of the theory is the the temperature of the phononic bath, de-
termined to be T = (8.8 ± 0.5)K, which is consistent with previous works
involving similar mechanical systems (Rossi et al. 2018). The minimum occu-
pation achievable with sideband cooling, often referred to as the back-action
limit, lies at n̄ba = (A−/A+ − 1)−1 ≈ 0.185 for our case. We thus observe a
strong suppression of the classical sideband asymmetry due to the mechani-
cal oscillator motion being primarily driven by the radiation-pressure shot
noise.

9.5 Phonon correlation interferometry

Lastly, we concentrate on statistical properties of light emitted from the high-
Q mechanical mode. We set Γopt = 2π · 2.1 kHz and park the filter at the
anti-Stokes sideband. We collect a total of 18 × 103 counts at a count rate of
90 Hz, and look at coincidences between counts as a function of the delay
time τ. Since we only use a single detector, we reject the events for which
|τ| < 500 ns, in order to avoid effects of dead time of the SPCM and after-
pulsing. This time is still much shorter than any dynamics present in the
system, and thus we can extrapolate our results on the coincidence rate to
the zero-delay value. We analyze the coincidences in terms of the second-
order Glauber correlation function

g(2)(τ) =
〈
â†(0)â†(τ) · â(0)â(τ)

〉〈
â†(0)â(0)

〉
·
〈
â†(τ)â(τ)

〉 (9.7)

Light scattered by a single mechanical mode in thermal equilibrium has
thermal statistics, as described by the following second-order correlation
function:

g(2)(τ) = 1 +A exp(−2|τ|/τC) = 1 +A exp(−Γopt |τ|), (9.8)

where τC = 2/Γopt is the coherence time of light, with g(2)(0) = 2 for A = 1.
For a multimode thermal state, one would expect a multi-exponential or
oscillatory decay. Our measurement, shown in Fig. 9.6, shows a single-
exponential decay with a decay time matching the optically-broadened li-
newidth and exhibits g(2)(0) = 1.88 ± 0.08 (obtained from a fit of Eq. 9.8 with
A and τC as free parameters), which is close to the theoretical value of 2, in-
dicating the high purity and single-mode behavior of the measured thermal
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state of light. The optical coherence time of τC = (143 ± 18)µs (correspon-
ding to an optical linewidth of (2.2 ± 0.3)kHz), closely matches the optical
broadening of the mechanical oscillator, independently measured by OMIT
to be Γopt = 2π · 2.1 kHz. This feature confirms our system’s potential for
producing non-Gaussian quantum states of light and of motional degrees
of freedom. We attribute the residual discrepancy to the dark counts that
exhibit Poissonian counting statistics.
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Figure 9.6: Second-order autocorrelation measurements of the spectrally-filtered anti-
Stokes photons from the high-Q mechanical mode. We estimate g(2)(0) = 1.88 ± 0.08
and optical coherence time τC = (143 ± 18)µs. Error bars in the plot are inferred
from statistical uncertainties of Poissonian counts, while shading for the fitted curve
corresponds to three s.d. confidence bounds.
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Cauchy-Schwarz violation

“
If it ain’t broke, break it!

George Carlin (a)

(a) Possibly also Bert Lance, true origin unclear.

We describe preliminary results that strongly suggest the nonclassicality
of our system

We have finally arrived to the most recent and non-classical result of our
work: violation of Cauchy-Schwarz inequality. While preliminary, it pro-
mises a much better result in the future, once some experimental issues are
solved. We will quickly reintroduce the main points of Cauchy-Schwarz ine-
quality, and its importance to quantum experiments. Then, we will describe
how it is calculated from the data that we acquire in order to showcase chal-
lenges. Finally, we will look into how we actually perform the experiment,
including details on pulse generation, noise considerations (as usual), and
outlook for future experiments.

It is important to note that in many of our results, we stand on the shoul-
ders of giants who, in our group, have paved the experimental way to many
of the techniques that we use here. Atomic spin ensembles behave rather
similarly to harmonic oscillators, and the work of Dideriksen et al. (2021)(1),
for example, is the inspiration for the statistical and experimental approaches
that you will see shortly.

10.1 Reminder of Cauchy-Schwarz properties of quantum

states

As we have already discussed in the section on theory, Cauchy-Schwarz ine-
quality can show signatures of non-classical systems. This is due to the fact

https://doi.org/10.1038/s41467-021-24033-8
https://www.nature.com/articles/s41467-021-24033-8
https://www.nature.com/articles/s41467-021-24033-8
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(2) Christophe Galland et al. (2014).
“Heralded Single-Phonon Preparation,
Storage, and Readout in Cavity Opto-
mechanics”. In: Physical Review Letters
112.14, pp. 1–6. issn: 10797114. doi:
10 . 1103 / PhysRevLett . 112 . 143602. pmid:
24765960.

that some quantum states cannot be represented as probability distributi-
ons in phase space. Now, the Cauchy-Schwarz inequality has to be true for
any probability distribution, otherwise "something is wrong". If we detect
the "wrongness" in our measurements, we can conclude that our system is
displaying non-classical properties.

More specifically, Cauchy-Schwarz inequality is valid for probability
distributions and their moments. Classical states of light in this case yield
the following inequality:

g(2)12

2
⩽ g

(2)
1 · g(2)2 , (10.1)

where we have defined a shorthand notation of g(2)12 ≡ g(2)(t1, t2), and g
(2)
n ≡

g(2)(tn, tn). It is convenient to define a Cauchy-Schwarz parameter that we will
denote as R, such that

R ≡

g(2)12

2

g
(2)
1 · g(2)2

. (10.2)

Therefore, if R > 1, then the Cauchy-Schwarz inequality of Eq. (10.1) is not
applicable, and we are dealing with non-classical statistics.

We shall present two examples where the Cauchy-Schwarz inequality
holds:

1. Coherent states. For a coherent state, or even a pair of two coherent
states, g(2)1 = 1 = g

(2)
2 , and g

(2)
12 = 1 as well. As is evident, R = 1 in this

case.

2. Thermal states. If we have two independent thermal states, for example
two readouts of the membrane oscillator, separated by more than the
decoherence time, then g

(2)
12 = 1 (indicating cross-independence), but

g
(2)
1 = 2 = g

(2)
2 , therefore R = 1/4, which is well within the inequality.

Note that the knowledge of g(2)12 per se is not enough to guarantee non-classicality,
as there exist classical sources with strong bunching (g(2)1 ≫ 1). It is only the
Cauchy-Schwarz parameter that can establish non-classicality in this case.

Experimentally, the Cauchy-Schwarz violation is a favorable way of pro-
ving nonclassicality, and that has to do with the way that we do our expe-
riments: with photon counting. Our system has a somewhat low detection
efficiency, and a low rate of generation of events. While the heralded prepara-
tion of single-phonon states with subsequent verification requires effectively
acquiring three-time coincidences(2), Cauchy-Schwarz measurements only
need two-time coincidences. This is crucial for systems with low efficiencies
or event rates (or both, like ours). If we want to accumulate statistics in a re-
asonable timeframe, there is a big difference between the coincidence count
rate of order O(p · η3) (heralded) and O(p · η2) (Cauchy-Schwarz), where
p is the probability of excitation during the write pulse, and η is quantum
efficiency of the system. This point requires a more careful consideration.

https://doi.org/10.1103/PhysRevLett.112.143602
24765960
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10.1.1 Error on estimation of correlations

We shall look at the uncertainty of our estimation of g(2). First, let’s consider
the two-mode correlation gab(0) between, say, the read and write pulses (or
rather the output produced by them):

g
(2)
ab

=
⟨â†âb̂†b̂⟩

⟨â†â⟩ · ⟨b̂†b̂⟩
(10.3)

Let’s assume that the process that we are measuring has a known value of
g
(2)
ab

≡ β, which means that the above can be rewritten as:

⟨n̂an̂b⟩ = ⟨n̂a⟩ ⟨n̂b⟩ · β (10.4)

These quantities translate directly into photon counting by using numbers of
photons in each "sequence", i.e. each experimental shot, and then averaging
over all shots. It’s helpful to introduce some simplifications applicable to our
experimental case. First of all, estimating ⟨n̂⟩ is a relatively precise process,
as it does not rely on correlations, so we will assume that any instance of
⟨n̂⟩ is a known constant for either mode. Second, the experimental shots are
statistically independent of each other. Third, and most importantly, given
our relatively low quantum efficiency, we can assume that the value of na · nb

(actual measured number) is Poissonian-distributed. From the properties
of Poissonian distributions we know that, given a distribution with mean λ
and m samples drawn from it, the variance (i.e. uncertainty squared) of the
estimated mean λ̃ is:

Var λ̃ =
1
m

· λ (10.5)

Applying this to our previous definition, we obtain

Var ⟨n̂an̂b⟩ = (⟨n̂a⟩ ⟨n̂b⟩)2 · Varβ =
1
m

· ⟨n̂a⟩ ⟨n̂b⟩ · β0 (10.6)

where we abused the notation a little bit and introduced β0 as the a-priori
known g

(2)
ab

. In the end, we obtain the variance of the estimate of β:

Varβ =
β0
m

· 1
⟨n̂a⟩ ⟨n̂b⟩

(10.7)

If we now remember the proportionality ⟨n̂⟩ ∝ pη, where p is the probability
of blue scattering, and η is the quantum efficiency, we can derive a proportio-
nality:

Varβ ∝ 1
m

· 1
p2η2 (10.8)
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With a similar treatment, the autocorrelation g
(2)
aa(0) ≡ γ can be computed:

Varγ =
1
m

(
γ0

1
⟨n̂a⟩2 + 1

⟨n̂a⟩3

)
≈ 1

m
· 1
⟨n̂a⟩3 , (10.9)

where the latter approximation is due to our low probabilities. Now, it’s
important to remember that we consider this in context of heralded prepa-
ration, i.e. g(2)

aa|b. The probability of a "click" in the heralding pulse is itself
pη, which essentially increases the amount of necessary experimental shots.
On the other hand, since the readout pulse is almost 100 % efficient (before
losses η), we can write that ⟨n̂a⟩ = η. In the end, we get a proportionality as
follows:

Varγcond ∝ 1
m

· 1
p · η4 (10.10)

All of the above shows the advantage of Cauchy-Schwarz statistics in terms
of measurement time for a given level of variance required. While the Cau-
chy-Schwarz inequality does not prove that we have single-photon states, it
does prove the nonclassicallity of a system, which is a good stepping stone
and a proof of concept. Additionally, for more advanced experiments such
as preparation of single-photon states in the context of optomechanics, the
sequence for generating Cauchy-Schwarz violations is almost identically the
same as the sequence of actions necessary for single-photon generation.

10.2 Pulse sequence

I will now describe the pulse sequence that we use when measuring Cau-
chy-Schwarz parameters. The main goals of the sequence are to ground-state
cool the mechanical mode, excite it parametrically, and then read out the
resulting state back into the light so that it can be counted with the photon
counter. Additionally, we need to take care of the idle time between pulse
sequences, as these sequences do not run at "full steam" due to reasons that
we’ll describe later. When talking about the particularities of the sequence
and its individual parts, we’ll provide a detailed explanation for the experi-
mental limitations that lead to them.

10.2.1 Pre-cool (idle)

Let us begin, as many things go, by describing difficulties first, and then
showing our way of going around them. Our new optomechanical assembly
(that is, one involving small mirrors and large length) seems to have an odd
problem that we denote as "strange heating", "extra heating", and "why is this
happening". At the moment of writing, we are not entirely sure of what is
the cause, but the symptoms are as follows:

• With large enough optical powers, we observe a slow temperature
increase of the membrane. The occupation increases, as evidenced by a
larger mechanical peak area and the frequency of the main mode shifts
on a timescale of about 0.1 s.
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Figure 10.1: Idle-cool-write-read-idle sequence. Displayed on logarithmic scale to
emphasize the non-zero idle power. The idle duration is typically much longer than
the sequence to keep the average power low, as detailed in main text.

(3) E. D. Marquardt, J. P. Le, and Ray
Radebaugh (2002). “Cryogenic Material
Properties Database”. In: Cryocoolers 11.
Ed. by R. G. Ross. Boston, MA: Springer
US, pp. 681–687. isbn: 978-0-306-47112-4.
doi: 10 . 1007 / 0 - 306 - 47112 - 4 _ 84. url:
https://doi.org/10.1007/0-306-47112-4_84.

(4) Private communications with Mads
Bjerregaard Kristensen

• The structure of cavity’s resonances slightly changes, with neighboring
FSRs shifting in frequency.

We have several hypotheses of what might be causing the above, but are yet
to prove or disprove them:

• The small mirrors are very poorly thermally coupled to their cryoge-
nic environment. They are "sandwiched" between two thin plates of
PTFE, which is good for mechanical decoupling, but not that great
for thermal conductivity. PTFE is a poor conductor as is at room tem-
perature (0.27 W/(m K)), and only gets worse at low temperatures
(0.046 W/(m K) at 4 K)(3). This can lead to mirrors being very suscep-
tible to heating due to laser absorption. In turn, warm mirrors will
have increased mirror noise, which can be optomechanically coupled to
the membrane motion.

• The large beam diameter impinging on the membrane’s center defect
can be "clipped" by the edges of the defect. Preliminary results(4) sug-
gest that the edges of the defect can lead to increased light absorption,
especially when the beam is offset from the defect’s center.

For now, this heating problem is not resolved, and we continue working
on straightening it out. Nevertheless, we can make some experimental sacri-
fices in order to still operate the system satisfactorily. We noted the slow ti-
mescale of this heating phenomenon, and its dependence on slowly-averaged
total optical power. Therefore, by operating the system in a low-duty-cycle
fashion. "Duty cycle" in this context refers to the ratio between the time that
is spent doing pulse sequences versus the total time. More specifically, this
consists in the following two modifications:

https://doi.org/10.1007/0-306-47112-4_84
https://doi.org/10.1007/0-306-47112-4_84
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Figure 10.2: Red-detuned (top) and blue-detuned (bottom) pulses. Dotted lines are for
comparison, as the blue power is typically much lower, as will be shown below.

(5) Timo Zwettler (Sept. 16, 2019). “Sup-
pression of Heating Mechanisms for Deep
Optomechanical Ground-State Cooling”.
M.Sc. thesis. Copenhagen, Denmark;
München, Germany: Ludwig Maximili-
ans Universität, München; University of
Copenhagen.

1. Between individual sequences, which last on the order of 500 µs, have
long idle periods with only cooling light turned down to about 2 % of
maximum cooling power. This is done to reduce the average optical
power. We do not reduce this power all the way to zero because we
would like to keep the membrane in a relatively low occupation state,

2. Reduce both the length of each sequence, and the rate at which they are
triggered. In practice, we had to drop the rate of triggering from the
maximum of about 2 kHz to a mere 100 Hz or so.

The previous measures of course severely decrease the rate at which events
are generated, but make the system operate without the extraneous heating
getting in the way.

10.2.2 Smooth transitions

One important aspect of pulsing is transient control. As was shown in (Zwett-
ler 2019)(5) , mechanical oscillators ring when the DC force on them changes
abruptly. When optical power is applied to the optomechanical cavity, the
radiation pressure on the mechanics has a certain DC component. If we were
to turn this light on or off abruptly, the sudden change of radiation pressure
would cause the mechanical modes to get coherently excited. As one can
imagine, this is a bad thing, as it would translate to an effective increase in
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(6) Technically it’s still a coherent oscilla-
tion, but controlling it in practice is rather
tricky

(7) in our narrow field

phonon occupation(6). Now, it is possible to shape the transient in a way that
cancels its own effects, but that requires precise knowledge of the system’s
response function. Such compensation is difficult to achieve in our system, as
optical powers are not entirely constant, and the membrane has many modes
of oscillation. Luckily for us, there is an easier way to achieve this: Gaussian
pulse smoothing.

It is widely known(7) that Gaussian functions, when translated into the
frequency domain, are the most "compact". A sufficiently broad Gaussian-
shaped pulse will have a narrow spectral representation, which is what mat-
ters if we want to minimize its interaction with the mechanical modes, espe-
cially the main mode. That being said, pure Gaussian pulses are a bit incon-
venient: the length of the pulse is rigidly tied to its "lead-in" and "lead-out"
length. That is, the longer the pulse, the slower it ramps up and ramps down.
Therefore, we cheat a little bit by creating what we call "pseudo-Gaussians".
This shape, as shown in Fig. 10.3, consists of a rectangular pulse, but with
the transitions replaced by left or right "halves" of a Gaussian of suitable
transition time τ. τ has to be chosen strategically, as we will describe later.
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Figure 10.3: Optical power of smoothed pulses for different levels of Gaussian smoo-
thing. Figure from (Zwettler 2019)

Such transitions still perform admirably, as shown in Fig. 10.4 and Fig. 10.5!
In practice, we typically go with values of τa ≈ 10 · 1/Ωm ≈ 10 µs.

10.2.3 Cooling

The first "real" part of the sequence is the cooling pulse. Its purpose, as
it may be evident, is to cool the main mode of the membrane to its mini-
mum possible occupation. After a long enough idle period, as we descri-
bed above, we increase the red-detuned optical power to its maximum.
The length of this pulse has to be chosen such that the mechanical occu-
pation drops down to its minimum possible value. Strictly speaking, this
would require infinite time, as the phonon number only tends to this ulti-
mate value. However, the dynamics of this cooldown are exponential, i.e.
n(t) = nf + (n0 − nf) · exp(−t/τm), with τm being the broadened decay time
(τm = Γ−1

opt). Under conditions of initial occupation being significanly larger
than the final occupation, we simply take the pulse length that is enough
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Figure 10.4: Experimentally measured effect of Gaussian smoothing on added power
to the main mechanical mode. Figure from (Zwettler 2019)
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Figure 10.5: Time-dependent demodulated signal of the main mode for different
smoothing parameters. Figure from (Zwettler 2019)

to reduce the occupation almost to the target value. For a concrete example,
let us take some realistic numbers: Cq = 10, Γopt = 2π · 2 kHz, nf = 0.1,
n0 = 10. n0 in this case comes from the pre-cooling that we described above.
The required pulse time is then simply τm · log(nf/n0) ≈ 4.6τm ≈ 370 µs. In
practice, we usually add a safety margin of 2τm to make sure that the decay
to final occupation has completed fully, and to compensate for uncertainty in
estimating both the final and initial occupations.

10.2.4 Writing, or excitation

After cooling has been done, it is time to perform the exciting part of the
sequence. First, cooling needs to be switched off, and we do it using the
smooth transitions described above and shown in Fig. 10.3. There is a small
caveat: since the transition is not instantanous, we have to wait for a certain
amount of time until the red-detuned light had decayed enough. It is not
necessary to wait too long here, and we are satisfied with a reduction to a
level of, say, 5 %, which is equivalent to about 3τa. The next step is to turn
on the excitation light, detuned to the blue side of the resonance. As we have
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discussed previously, this is what creates a spontaneous parametric down
conversion process, which in turns creates photon-phonon pairs.

Same as with the cooling pulse, we need to choose a suitable duration
and strength of this pulse. In this case, the area of the pulse determines the
probability of excitation, which has to be "dialed-in" correctly. As you might
remember, our system does not have a high quantum efficiency end-to-end.
Therefore, we are not able to distinguish multiple excitations from single
excitations, as the probability of "losing" one of the photons created in the
process is very high. This is the main reason why we have to reach for the
heralded probabilistic excitation scheme. The excitation probability that we
typically choose ranges between 3 % and 10 %. As usual, there is a balance to
be struck:

• For high excitation probabilities, the success rate is higher. Unfortu-
nately, so is the chance of generating multiple photon-phonon pairs,
which is undesirable in all but the highest-efficiency systems capable of
distinguishing different numbers of photons.

• Low probabilities lead to purer single-phonon states in theory. Howe-
ver, we cannot go with an arbitrary low probability because of several
reasons. One of them are the dark counts in our detection system. It is
true that SNSPDS detectors have remarkably low intrinsic dark count
rates, often below 0.1 Hz. The problem is "the everything else". Stray
light finding its way in the free-space section, and even leaking into the
fiber can easily overwhelm the intrinsic counts. Additional noise from
the laser, both in phase and amplitude, can pass through the optome-
chanical system and filters, and also contribute to non-signal counts.
Noise in mirrors or membrane can also overlap with the system’s trans-
mission band. Therefore, if the quantum signal is arbitrarily small,
these spurious photons will overwhelm the signal and reduce the pu-
rity of statistics.

So far, we have achieved the balance between success rate and good statistics
by performing several runs of the experiment at different levels of excitation
power, and chose ones that provided us with the best statistics. correction.
Therefore, this implies that we need to have a pause between the cooling
and the excitation and likewise between excitation and reading because we
need time for the previous pulse to fully decay and we need time for the
subsequent polls to ramp up to full power.

10.2.5 Reading pulse

Finally, once we have excited the mechanics, it is time to read the prepared
state and convert it into photons that can be detected. This last step is identi-
cal to the cooling pulse actually, as both optomechanical cooling and reading
are the same process (beamsplitter interaction, as shown in Section 4.5). This
time, however, we are interested in the output photon statistics. Just like
before, the first thing is to smoothly turn off the writing pulse. After that
is done, we ramp up the red-detuned light once again to full power. In this
case, the length of the pulse is much less critical, as we will describe shortly.
Additionally, the read-out process is not probabilistic: whatever state is in
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(8) In the middle of the night, of course

the mechanics will be read out at this point. In a way, the reading pulse is
only needed for confirmation of non-classicality, not its generation. This is
especially true for heralded single-phonon generation, where the nonclassi-
cality can be confirmed via other methods, like continuous tomography. For
Cauchy-Schwarz violation, however, this is our only method of observing
the relevant statistics, so it’s still crucial. Let us now describe the important
aspects of choosing the correct pulse length:

• Read-out efficiency. We want to be sure that the state of the mechanics,
whatever it is, is read out completely. The consideration is identical
to the cooling pulse: the previous state has to be completely removed.
And, just like in the case of cooling, we do it by determining the broa-
dened decay time (τm = Γ−1

opt), and setting our required performance.
More concretely, we often choose a read-out efficiency of 95 %. Then,
the required pulse length is ≈ −τm · log(1 − 0.95) ≈ 3τm.

• Extra heating. As we have mentioned above, the "mystery heating" in
our system prevents us from using arbitrarily long cooling powers, as
this would start to increase the temperature of the membrane through
uncertain mechanisms. Therefore, we have to limit ourselves to the
"minimum viable pulse length" in order to avoid increasing the average
optical power.

All in all, 3τm is the usual reading pulse duration that we use. After it has
concluded, the power is smoothly decreased back to the idle level of about
2 % and kept there until the next sequence is triggered.

10.3 Photon cross-correlations

It is time to describe the way to calculate the cross-correlations between write
and read portions of the sequence. In this section, we will not go into the
technicalities of photon detection, recording, and synchronization of time
traces. Instead, we will focus on the specifics of data analysis relevant to
Cauchy-Schwarz and future single-phonon generation. In broad terms, these
steps are required:

1. Starting with a long trace of photon timestamps, extract the individual
sequences ("shots") and align them on a shared timebase.

2. Averaging over all the sequences, obtain average count rates for diag-
nostics.

3. Count coincidences between different time windows. This step is the
one that gives us Cauchy-Schwarz parameters, and is the most impor-
tant.

We shall now describe these steps in detail, with pictures!
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10.4 Sequence extraction

An experimental run with photon tagging usually takes a long time, several
hours not being unusual(8). The run contains hundrends of thousands, or
even millions of repetitions of the sequence that we have described above.
Let’s call them "reps", a concept familiar to fit people. All those reps are
independent from each other in the statistical sense, but have the same un-
derlying pulse sequence. Therefore, the first step of data analysis is to "slice"
them up so that they can be analyzed on an individual footing, followed by
extraction of statistics. To see this process more visually, refer to Fig. 10.6.

Time

Figure 10.6: Illustration of several experimental repetitions with simulated photon
counts shown as circles within the grey band. Red circles correspond to photons
produced by the reading process, while the lonely blue circle is a photon produced
by the low-probability write process. As we have mentioned in the main text, these
photons have the same optical frequency, and are hence indistinguishable.

Our photon traces are synchronized in time with experimental events,
such as trigger edges that start each sequence, shutter open-close events and
filter lock-freeze events. These events are recorded in a timetrace format simi-
lar to that of the photons themselves, which we use to separate the different
experimental events and, in a way, stack them together, as shown in Fig. 10.7.
We call the resulting slices "windows". Typically, we perform additional fil-
tering steps on those windows to get rid of those slices that occured during
closed shutters, optomechanical cavity relocks, etc. With this done, we have
our dataset.

10.5 Averaging count rates

With the windows separated and synchronized, we effectively obtain a list of
lists, or a set of sets:

W = {wi } , with wi = { t(i)0 , t(i)1 , . . . } , (10.11)
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Figure 10.7: Stacked simulated photon traces (top plot), and the corresponding phonon
occupation (bottom plot) during an experimental repetition.

(9) at least to the author

(10) omitting window number for brevity

with t
(i)
n being the n-th photon arrival time in the i-th window. Generally,

windows wi will contain different number of photons. One thing we do
before any analysis is converting absolute timestamps to timestamps rela-
tive to the beginning of each repetition, i.e. relative to the trigger edge. This
places all windows on equal footing. Then, the photon rate can be defined.
Note that working with timestamps is a bit different to the more usual(9)

continuously-sampled data, as counting replaces most operations. Then, for
any given window w, we can define(10) the photon rate as:

rw(T1, T2) ≡
N

{
ti | T1 ⩽ ti < T2, ∀ti ∈ w

}
T2 − T1

, (10.12)

with T1 < T2 and N(s) ≡ number of elements in set s. Note that we need to
specify the range over which we compute this average, in a trade-off between
responsiveness and variance. This concept is easily extended to the whole set
of windows:

r(T1, T2) ≡
N

{
t
(k)
i

| T1 ⩽ t
(k)
i

< T2, ∀t(k)
i

∈ W
}

T2 − T1
, (10.13)

There is a bit of abuse of notation going on here, but the reader will hope-
fully "catch the drift". In practice, such counting is normally done by combi-
ning all the timestamps into one array, sorting it, and then performing fast
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(11) Christophe Galland et al. (2014).
“Heralded Single-Phonon Preparation,
Storage, and Readout in Cavity Opto-
mechanics”. In: Physical Review Letters
112.14, pp. 1–6. issn: 10797114. doi:
10 . 1103 / PhysRevLett . 112 . 143602. pmid:
24765960.

(12) Walls and G. Milburn 2008.

counting. As expected, r has units of inverse time, i.e. photon intensity. Phy-
sically, it corresponds to the expectation value of the number operator for a
travelling field:

⟨â†(t)â(t)⟩ ≈ r(t − δt, t + δt), (10.14)

with the approximation becoming exact when δt → 0

10.6 Coincidence counting

We now turn our attention to a more sophisticated statistical measure: the
two-time correlations between photons. This time, we will start with the
physics first, and then translate them into photon counts. Let us first follow
(Galland et al. 2014)(11) to get our definitions straight. First, we define non-
normalized correlations between operators

G(1)(t) =
〈
â†(t)â(t)

〉
(10.15)

G(2)(t, t′) =
〈
â†(t′)â†(t)â(t)â(t′)

〉
, (10.16)

where normal ordering has been already performed. For conditional single-
phonon preparation experiments, we would also list the third-order corre-
lation G(3), but for Cauchy-Schwarz inequality violation, it will be enough
with the two correlations listed above, as it is not a conditional measurement.
Notice that G(1) is identically the intensity (photon rate) as we outlined be-
fore. The quantity that we are interested in is the normalized second-order
two-time correlation:

g(2)(t, t′) = G(2)(t, t′)
G(1)(t)G(1)(t′)

(10.17)

We already know how to calculate G(1), but the second-order correlation is a
bit more tricky. In plain words, the non-normalized second-order correlation
computes the rate of double coincidences. One way of expressing it, assuming a
continuous signal, is:(12)

G(2)(t, t′) = ⟨I(t)I(t′)⟩ (10.18)

Just to be clear, this is the average of products of intensities at two different
times. We then express it in terms of numbers of pairs of photons:

G
(2)
w (0, t) (10.19)
≈ N

{
{ ti, tj } ∈ w, where ti ∈ [0, δt) and tj ∈ [t, t + δt)

}
/(δt)2

≡ r(2)(0, t; δt)/(δt)2

Note that this quantity has to be computed for each window separately,
and then averaged. We have set the first time point to zero for simpler nota-
tion, but the result is equally valid for any pair of time points t1 < (t2 − δt).

https://doi.org/10.1103/PhysRevLett.112.143602
24765960
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(13) github.com/tritemio/pycorrelate

(14) github.com/Michuu/photonpacket

Note also that during counting, one should not count any given pair twice
((ti, tj) and (tj, ti) are the same pair). Finally, the factor of (δt)−2 is there to
convert the product of integers into a product of intensities (photon rates).

This allows us to finally formulate an expression that specifies how to
use photon counting data to produce the normalized correlation function:

g(2)(t, t′; δt) = r(2)(t, t′; δt)
r(t; δt) · r(t′; δt) (10.20)

There exist efficient software packages capable of computing this kind of
correlations(13),(14), as counting pairs directly is not efficient. We shall not go
into the details of their implementation, but will remark that photocorr-fock,
developed by Michal Parniak and colleagues, is our tool of choice.

10.6.1 Experiment and results

With the theory laid out, we can now describe the experiment that we perfor-
med. Fundamentally it is not that different from the experiment of thermal
phonon counting, with the addition of pulse sequences that perform the idle-
cool-write-read-idle procedure, which we have described in detail above.

During this experiment, as it happens most often, we kept a close eye on
the operation, as unforeseen disturbances can require manual intervention,
even with our highly automated setup (7+ locks at the same time is Serious
Business). Apart from that, our low photon rates require long acquisition
times on the order of hours.

We shall not mention all the test runs that we performed while tuning
and debugging the system. There were two major "physics" runs that culmi-
nated in the results that we will demonstrate.

10.6.1.1 Cauchy-Schwarz run

We set the pulsing sequence to a low probability of preparation of approxi-
mately 5 %. The idle level, as we mentioned, was set to a low enough value
to prevent spurious heating. The photon rate analysis, coupled with a model
of mechanical occupation, showed expected dynamic behaviour, as shown in
Fig. 10.8.

After accumulating the equivalent of about 200 coincidences, data analy-
sis revealed promising results. First of all, refer to Fig. 10.9, which shows cor-
relation between photons at different times. While the figure itself does not
lend itself to simple conclusions, further analysis of photons counts, which
included taking proper sections to maximize the overlap with temporal mo-
des that we discussed in Section 4, we obtained a Cauchy-Schwarz parameter
of R = 1.37 ± 0.26. While it’s not exactly a 6-sigma confidence, it is still highly
suggestive, and is definitely much higher than 0.25, which would be its value
if there were no correlations at all, or 0.5 if there were only thermal correlati-
ons.

10.6.1.2 High-excitation run

Intrigued by the previous result, we decided to increase the probability of
excitation, both to explore a different regime of operation, and hoping that

github.com/tritemio/pycorrelate
github.com/Michuu/photonpacket
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Figure 10.8: Top: averaged photon counts for a series of measurements aimed at
Cauchy-Schwarz inequality violation. Black trace is obtained from a priori knowledge
of the pulsing sequence, and scaled to the experimentally observed rates (green) in
order to obtain estimates on occupation and coupling rates. Red and blue shaded
areas corresponds to regions of the sequence where the reading or writing are the
dominant process, respectively. The initial large spike correspond to the rapid rea-
dout of phonons that were accumulated during the long idle period preceding the
sequence (see main text). Bottom: phonon occupation estimated from counting data
and experimental parameters. Note that the occupation starts to increase slightly be-
fore the marked beginning of the writing pulse (blue shaded area). This is due to the
fact that our model includes delays due to propagation through filter cavities, which
contribute a combined time delay of 4 · 2/κ ≈ 42 µs, in addition to slight smoothing of
the pulses.
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Figure 10.9: Correlation map for an experiment where the preparation probability
was set to low values in order to see non-classical values of the Cauchy-Schwarz
parameter. Off-diagonal regions, corresponding to write-read correlations, show an
indication of non-trivial correlations. While the map itself does not look very indica-
tive, numerical calculations confirmed a level of R compatible with non-classicality
(see main text).

a stronger signal would pierce through the noise and give us further insig-
hts. Predictably, the rates of generation of photons increased, as shown in
Fig. 10.10.

The increased number of events (about 6000 coincidences) allowed us
to compute statistics with less uncertainty. Unfortunately, higher levels of
excitation lead, by their nature, to decreased correlations in schemes such as
ours. Nevertheless, Fig. 10.11 shows off-diagonal regions with increased g(2),
which is a hint that we are on the right track, provided that several outstan-
ding experimental issues can be addressed. With this dataset, we estimate a
Cauchy-Schwarz parameter of 0.78 ± 0.06, which is still significantly higher
than the "thermal-uncorrelated" 0.5.

10.6.2 Conclusion and outlook

Our system strongly suggests that non-classicality is achievable with photon
counting with such a low-frequency system. There are still challenges to be
solved, namely:

• Mystery heating, which limits both our cooling, repetition rate, and
experimental stability.
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Figure 10.10: High-excitation photon rates and estimated phonon occupation. Struc-
ture of this figure is similar to that of Fig. 10.8

• Thermalization of the sample holder, which can possibly be solved by
designing a new, more robust holder with less degrees of freedom.

• Mirror noise. If it proves to be a limiting factor, we shall look into better
ways of thermalizing mirrors.

• Quantum efficiency. At the moment our system does not have one big
bottleneck in terms of optical losses, but improving the transmission
of filter cavities, and streamlining the fiber-based delivery of light to
the single-photon counter should give us a relatively easy boost to
performance.

However, the results are highly encouraging, and the author is looking for-
ward to continuing work in that direction.
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Figure 10.11: Correlation map for an experiment where we increased the preparation
probability to high values. While the Cauchy-Schwarz value was degraded, the
increased amount of statistics allowed us to more clearly see the off-diagonal regions
in the map, where g(2) > 0.5 (the value of 0.5 is chosen for aesthetics, as g(2) per se is
insufficient for conclusions on non-classicality). These regions are indicated by the
dotted lines. The rectangles to the top and right of the intersection are the regions of
interest, which indicate non-trivial values of R.
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11
Conclusion and The Future

“
Prediction is very difficult, especially if it’s about the future.

Niels Bohr (a)

(a) and others, seems to be a very popular saying.

We summarize the main results of this work, the difficulties encountered,
and the outlook for near future.

11.1 Conclusion

The work done, which culminated in this thesis, was a long and interesting
journey. We have solved so many experimental challenges, big and small,
that at this point everything looks like a nail waiting to be hit with our expe-
rimental sledgehammer. First, I will list the principal scientific results of this
work, in a somewhat chronological order:

1. Filter cavity system, our pièce de résistance. Through several design
iterations, tireless work by KU’s mechanical workshop, countless hours
of programming, soldering, noise-hunting, and debugging, we made
an optical filter with a bandwidth of 30 kHz, twice as narrow as the
hearing range of a possum, and with an þ8-order rolloff.

2. We converted mechanical quanta into photons, and studied their ther-
mal statistics, confirming the theoretical expectations, down to the level
of sub-phonon occupations.

3. We established preliminary results on the non-classicality of specially
prepared mechanical states, showing that our system displays(1) quan-
tum memory capabilities.
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(2) with real aurocyanate!

The author and his teammates went through such an experimental fire
baptism in the process of establishing the above results, that we became
thick-skinned, hard-to-kill jacks-of-all-trades. To substantiate the latter, let
me show a non-exhaustive list of technical challenges that we had to over-
come, and skills we had to learn:

• Generation of low-phase-noise RF drives.

• Multi-GHz RF design.

• Suspending half of our experiment on springs.

• Gold-plating of copper(2).

• Acousting modes of the air inside an optical cavity.

• 3D printing, including building a 3D printer.

• Resuscitating a GPS-disciplined oven-controlled crystal oscillator.

• Remote experimental work during COVID lockdowns.

• Reverse-engineering a proprietary USB-Serial protocol for a power
supply.

• Programming of Xilinx Zynq, including both the programmable logic
and processing system.

• Design of low-noise piezo amplifiers, based on Jürgen Appel’s design.

• Putting things on top of other things.

• And many more!

What I want to say is that under the hood of any experimental project,
there is way more than meets the eye.

11.2 The Future

We have already covered future prospects in the relevant sections, so here I
will simply list the most important takeaways, in order of decreasing priority.
First, the problems to solve:

1. Mystery heating and short-time power-induced drift of the optomecha-
nical cavity.

2. Mode hybridization in OM cavity (possibly related to, or causing the
previous point).

3. Continue noise hunting to improve SNR of single-photon signals.

4. Improvement of single-photon detection efficiency, including filter
system efficiency.

5. Thermaliztion of OM cavity, internal (mirrors) and external (coupling
to cryostat). Possibly an improved design of OM sample holder.

6. Further automation of the experiment.
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11.3 Afterword

I am very thankful to everybody in QUANTOP and the "Greater QUANTOP"
(HyQ, including Schliesser lab (SLAB)) for being such a friendly, understan-
ding, and wise crowd. And thank you, dear reader! Galinskiy out.
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ding wave (left), or adjustment of cavity length (right). 41

Fig. 5.3 CAD renders of the optomechanical assembly used in our ex-
periment. Heat straps and springs not shown. 41

Fig. 5.4 Photo of the optomechanical cavity suspended on springs the
heat strap is visible between the suspended cavity and the cryo-
stat mounting adapter. This assembly was later gold-plated
in order to reduce its emissivity, therefore decreasing the ra-
diative heat transfer from the environment. 43

Fig. 5.5 Simulated displacement color map of localized defect modes
in a phononic-shield membrane. Figure adapted from (Y. Tsa-
turyan et al. 2017). 45

Fig. 5.6 Measured mode shapes of localised defect modes (top) with
frequencies {fA, fB, fC, fD, fE} = {1.4627, 1.5667, 1.5697, 1.6397, 1.6432}MHz
for a device with a lattice constant of a = 160 µm. Figure and
description adapted from (Y. Tsaturyan et al. 2017). 45

Fig. 5.7 Phononic structure of our mechanical oscillator (left) and ex-
perimentally measured displacement pattern of the main mode
(right), showing the scale of the device. Adapted from (Zwett-
ler 2019), in turn adapted from (Y. Tsaturyan et al. 2017). 46
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Fig. 6.1 OMIT signal. Top panel: bare cavity (gi = 0, dotted line) and
full OMIT response with three mechanical modes for illustra-
tive purposes. Bottom row: zoom in on the resonances. All tra-
ces are normalized to the maximum response for the empty
cavity. κ/2π = 4 MHz, ∆/2π = −2 MHz, γ0,i/2π = 1 mHz,
gi/2π = 200 kHz, ω0/2π ∈ { 1.4 MHz,

√
∆2 + (κ/2)2 /2π∼2.83 MHz, 5 MHz }.

Figure and description reproduced with permission from Øst-
feldt (2022) 51

Fig. 7.1 Mirror-dominated phase noise of light exiting a cavity for dif-
ferent lengths of the resonator. While the mirrors used are dif-
ferent, the general trend of reduced influence of mirror noise
with larger lengths is visible. Figure used with permission from
Zwettler (2019) 56

Fig. 7.2 Comparison of laser phase noise before and after being filte-
red by a 150 mm cavity, and measured by our delay line. Re-
produced from Zwettler (2019) 57

Fig. 7.3 Schematic of a single delay-line Mach-Zehnder setup for phase
noise measurements. The piezo on the left is necessary to lock
the relative phase of the two arms and guarantee balanced ope-
ration 58

Fig. 7.4 Magnitude squared of delay line response to phase fluctuati-
ons of external light. Blue color highlights the range of frequen-
cies where our membranes typically have their main mode, while
the pink color shows a band of 60 kHz to demonstrate the re-
gion where a membrane with Ωm = 2π × 1.5 MHz any non-
negligible sensitivity to noise. 58

Fig. 7.5 Step response of the delay line setup with respect to a step change
of the input light phase. Notice that the initial response is in-
stantanous. 59

Fig. 7.6 Schematic of the double system that we use for characteriza-
tion of phase noise cancellation. 61

Fig. 7.7 Effect of calibration peaks produced by the free-space EOM
during the sensitivity calibration procedure. Blue trace shows
the measured noise, while the orange trace shows background
noise, dominated by phase and fiber noise. Notice the fiber’s
mechanical peak at ≈ 8.2 MHz. Figure reproduced from Par-
niak et al. (2021) 62

Fig. 7.8 Performance of the delay line noise cancellation, measured both
in-loop and outside of the feedback loop. Reproduced from
Parniak et al. (2021) 63
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Fig. 7.9 Analytical expectation of fiber noise, with full model from (Duan
2012), and high-frequency approximation from (Foster, Tikho-
mirov, and Milnes 2007). Note the vertical unit of dBc/Hz, which
characterizes the optical power scattered from the main laser
frequency ("carrier") by phase noise. As it happens, the mag-
nitude of that scattered spectral density is exactly equal to the
carrier power multiplied by phase noise density expressed in
rad2/Hz. From this point, we treat these two units as synony-
mous. 64

Fig. 8.1 Directly measured transmission of a high-finesse mirror from
Layertec. Minimum transmission is achieved at 852 nm 72

Fig. 8.2 Typical oscilloscope trace during a QuasiRingdown sweep. The
transmission of the cavity oscillates as its internal field inter-
feres with the frequency-swept incoming light. 72

Fig. 8.3 A first-generation filter cavity in its natural habitat, mounted
by the center to minimize vibration. One can see the end clamps
that hold a mirror on each end, plus a piezo on one of the ends.
Piezo cables are visible. Name "Cucumber" was chosen as it
starts with "C", indicating it’s our third cavity, chronologically
speaking. In the filter system, it’s the first cavity in series. 73

Fig. 8.4 Scheme for locking a single cavity. Adapted from the supple-
mentary material of (I. Galinskiy et al. 2020b) 75

Fig. 8.5 Construction of a full-sized 60 cm filter cavity 78
Fig. 8.6 Schematic of damped spring suspension for filters. Adapted

from (I. Galinskiy et al. 2020b) 80
Fig. 8.7 Schematic of inter-cavity coupling and isolation. Assuming

light coming in from the bottom, as indicated by the white ar-
rows, it passes through the bottom cavity, and is converted into
s-polarization, which is reflected by the polarizing beamsplit-
ter into the second cavity. Any reflections from that second ca-
vity are converted into p-polarized light, and transmitted though
the beamsplitter onto the photodetector, therefore preventing
any inter-cavity interference. Circular polarizations σ+ and σ−
are chosen for concreteness, but can be swapped without af-
fecting functionality. 81

Fig. 8.8 Input to filter system. The switch-like symbols represent op-
tical shutters, with the default state solid (locking), and coun-
ting state as semitransparent. All beamsplitters are polarizing.
The quantity of 90 % is only indicative, as we routinely operate
at higher efficiency levels. 83

Fig. 8.9 Photos of the new design of shutters, currently used in the ex-
periment 84

Fig. 8.10 Diagram of the full lock for the filter cavities. The drift com-
pensation section is engaged continously. During a freeze, the
"switches" are open, disabling active locking, while the drift
keeps getting compensated. The entirety of this functionality
is implemented digitally using an Arduino Due board and an
Analog Devices AD5780 digital-to-analog converter. 85
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Fig. 8.11 Transmission of the four-cavity filtering system over 4 s after
freezing the locking feedback loop. Feedback is active for ti-
mes before 0 s and after 4 s, showing the high passive stability
of the system during lock freeze. The background color plot
corresponds to the probability density of relative transmission.
Figure reproduced from the supplementary material of I. Ga-
linskiy et al. (2020a). 86

Fig. 9.1 Experimental setup showing (a) the optomechanical cavity op-
tically coupled to (b) four narrowband filtering cavities and
subsequently directed to the single-photon detector (SPCM)
or a balanced heterodyne detector. The optomechanical cavity
is locked using a small portion of transmitted drive light (orange),
with feedback provided by a PI controller connected to a piezo
transducer. Filtering cavities are locked using an auxiliary beam
(light blue). The filtered light (green) can be detected with pho-
ton counting (SPCM) or heterodyne detection. Figure adap-
ted from (I. Galinskiy et al. 2020a). 88

Fig. 9.2 Rejection of the cascaded filtering system as a function of de-
tuning, where the L(Ω)4 model (violet) closely follows the me-
asured response (gray). For frequencies above 200 kHz the he-
terodyne signal becomes too weak to measure, but is expected
to continue following the L(Ω)4 response. 90

Fig. 9.3 Filtering verified by heterodyne detection of filtered light. (a)
Power spectral density (PSD) of light emitted directly from the
cavity as registered by the direct-detection photodetector. PSD
is calibrated in shot noise (SN) units. The spectrum shows the
bandgap (between roughly 1.42 MHz and 1.59 MHz) provided
by the phononic crystal structure and the high-Q mechanical
defect mode at Ωm = 2π · 1.48 MHz. The overlaid shaded cur-
ves are transmission functions L(Ω − ∆f)4 of the filtering sy-
stem positioned at ∆f = Ωm = 2π · 1.48 MHz and at ∆f = 2π · 1.69 MHz.
(b) and (c) show the PSD of filtered light, with the filter cen-
tered on the high-Q mechanical defect mode frequency, (b) and
on the dense out-of-bandgap part of the spectrum (c). Note the
different scale between (b) and (c). 91

Fig. 9.4 Photon counting of anti-Stokes sidebands, as a function of fil-
ter detuning, with count rates registered by the SPCM (blue
dots), predicted count rates (solid blue line) with uncertainty
(shaded teal area) and scaled directly-measured PSD (gray) for
visual reference. The bandgap is effectively observed via pho-
ton counting. The shaded gray vertical strip shows the region
surrounding the main mechanical mode. 92



List of Figures 125

Fig. 9.5 Ground-state cooling measured by photon counting. (a) Me-
asured Stokes (red) and anti-Stokes (blue) scattering rates as
a function of optical broadening Γopt of the mechanical mode
and theoretical prediction with calibrated efficiency, as given
in the legend. At lower driving powers, corresponding to smal-
ler broadenings, the rates are set by the Lorentzian cavity re-
sponse (left inset). At higher driving powers we observe that
asymmetry is reduced due to the mechanical oscillator appro-
aching the ground state (right inset), with scattering domina-
ted by the quantum back-action. (b) Inferred thermal occupa-
tion n̄est of the mechanical mode, along with the theoretical
prediction (for bulk thermalization temperature of T = (8.8±
0.5)K, which is the only free parameter in the fit) and the back-
action limit n̄ba (dashed horizontal line). Error bars are infer-
red from statistical uncertainties from photon counting and
fitting of other parameters used in Eq. (9.4). 93

Fig. 9.6 Second-order autocorrelation measurements of the spectrally-
filtered anti-Stokes photons from the high-Q mechanical mode.
We estimate g(2)(0) = 1.88 ± 0.08 and optical coherence time
τC = (143 ± 18)µs. Error bars in the plot are inferred from sta-
tistical uncertainties of Poissonian counts, while shading for
the fitted curve corresponds to three s.d. confidence bounds. 95

Fig. 10.1 Idle-cool-write-read-idle sequence. Displayed on logarithmic
scale to emphasize the non-zero idle power. The idle duration
is typically much longer than the sequence to keep the average
power low, as detailed in main text.101

Fig. 10.2 Red-detuned (top) and blue-detuned (bottom) pulses. Dotted
lines are for comparison, as the blue power is typically much
lower, as will be shown below.102

Fig. 10.3 Optical power of smoothed pulses for different levels of Gaus-
sian smoothing. Figure from (Zwettler 2019)103

Fig. 10.4 Experimentally measured effect of Gaussian smoothing on ad-
ded power to the main mechanical mode. Figure from (Zwett-
ler 2019)104

Fig. 10.5 Time-dependent demodulated signal of the main mode for dif-
ferent smoothing parameters. Figure from (Zwettler 2019)104

Fig. 10.6 Illustration of several experimental repetitions with simulated
photon counts shown as circles within the grey band. Red ci-
rcles correspond to photons produced by the reading process,
while the lonely blue circle is a photon produced by the low-
probability write process. As we have mentioned in the main
text, these photons have the same optical frequency, and are
hence indistinguishable.107

Fig. 10.7 Stacked simulated photon traces (top plot), and the correspon-
ding phonon occupation (bottom plot) during an experimen-
tal repetition.108
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Fig. 10.8 Top: averaged photon counts for a series of measurements ai-
med at Cauchy-Schwarz inequality violation. Black trace is obtai-
ned from a priori knowledge of the pulsing sequence, and sca-
led to the experimentally observed rates (green) in order to obtain
estimates on occupation and coupling rates. Red and blue shaded
areas corresponds to regions of the sequence where the rea-
ding or writing are the dominant process, respectively. The ini-
tial large spike correspond to the rapid readout of phonons that
were accumulated during the long idle period preceding the
sequence (see main text). Bottom: phonon occupation estima-
ted from counting data and experimental parameters. Note
that the occupation starts to increase slightly before the mar-
ked beginning of the writing pulse (blue shaded area). This
is due to the fact that our model includes delays due to pro-
pagation through filter cavities, which contribute a combined
time delay of 4 · 2/κ ≈ 42 µs, in addition to slight smoothing
of the pulses.111

Fig. 10.9 Correlation map for an experiment where the preparation pro-
bability was set to low values in order to see non-classical va-
lues of the Cauchy-Schwarz parameter. Off-diagonal regions,
corresponding to write-read correlations, show an indication
of non-trivial correlations. While the map itself does not look
very indicative, numerical calculations confirmed a level of R
compatible with non-classicality (see main text).112

Fig. 10.10 High-excitation photon rates and estimated phonon occupa-
tion. Structure of this figure is similar to that of Fig. 10.8113

Fig. 10.11 Correlation map for an experiment where we increased the pre-
paration probability to high values. While the Cauchy-Schwarz
value was degraded, the increased amount of statistics allowed
us to more clearly see the off-diagonal regions in the map, where
g(2) > 0.5 (the value of 0.5 is chosen for aesthetics, as g(2) per
se is insufficient for conclusions on non-classicality). These re-
gions are indicated by the dotted lines. The rectangles to the
top and right of the intersection are the regions of interest, which
indicate non-trivial values of R.114



127

Bibliography

Ashkin, A. (Jan. 26, 1970). “Acceleration and Trapping of Particles by Radia-
tion Pressure”. In: Physical Review Letters 24.4, pp. 156–159. doi: 10.1103/
PhysRevLett.24.156. url: https://link.aps.org/doi/10.1103/PhysRevLett.
24.156 (visited on 03/07/2023) (cit. on p. 4).

Aspelmeyer, Markus et al. (Dec. 2014). “Cavity Optomechanics”. In: Reviews
of Modern Physics 86.4, pp. 1391–1452. issn: 0034-6861. doi: 10 .1103/
RevModPhys . 86 . 1391. url: https :// link . aps .org/doi/10 . 1103/
RevModPhys.86.1391 (cit. on pp. 5, 23, 25–27, 32, 34, 88, 89).

Barwicz, Tymon et al. (Apr. 5, 2004). “Microring-Resonator-Based Add-Drop
Filters in SiN: Fabrication and Analysis”. In: Optics Express 12.7, pp. 1437–
1442. issn: 1094-4087. doi: 10 . 1364 / OPEX . 12 . 001437. url: https :
//opg.optica .org/oe/abstract .cfm?uri=oe- 12- 7- 1437 (visited on
02/26/2023) (cit. on p. 68).

Bohr, N. (July 1, 1913). “I. On the Constitution of Atoms and Molecules”. In:
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science 26.151, pp. 1–25. issn: 1941-5982. doi: 10.1080/14786441308634955.
url: https : / / doi . org / 10 . 1080 / 14786441308634955 (visited on
03/07/2023) (cit. on p. 3).

Bowen, Warwick P. and Gerard J. Milburn (Dec. 2, 2015). Quantum Optome-
chanics. Boca Raton: CRC Press. 376 pp. isbn: 978-0-429-15931-2. doi:
10.1201/b19379. url: https://doi.org/10.1201/b19379 (cit. on pp. 17, 18,
23, 25, 26, 28, 32).

Braginsky, V. B. and A. B. Manukin (1967). “Ponderomotive Effects of Electro-
magnetic Radiation”. In: Soviet Physics JETP (cit. on p. 5).

Braginsky, Vladimir B. et al. (1980). “Quantum Nondemolition Measure-
ments”. In: Science (New York, N.Y.) 209.4456, pp. 547–557. doi: 10.1126/
science.209.4456.547 (cit. on p. 5).

Cassiday, Grant R. and George L. Fowles (2005). Analytical Mechanics. 6th ed.
Thomson Brooks/Cole. isbn: 978-0-534-49492-6 (cit. on p. 19).

Caves, Carlton M. (1981). “Quantum-Mechanical Noise in an Interferometer”.
In: Physical Review D: Particles and Fields 23.8, pp. 1693–1708. doi: 10.1103/
PhysRevD.23.1693 (cit. on p. 5).

Chowdhury, A et al. (Mar. 2019). “Calibrated Quantum Thermometry in
Cavity Optomechanics”. In: Quantum Science and Technology 4.2, p. 024007.
doi: 10.1088/2058-9565/ab05f1. url: https://doi.org/10.1088%2F2058-
9565%2Fab05f1 (cit. on p. 91).

Cohen, Justin D. et al. (Apr. 2015). “Phonon Counting and Intensity Interfero-
metry of a Nanomechanical Resonator”. In: Nature 520.7548, pp. 522–525.

https://doi.org/10.1103/PhysRevLett.24.156
https://doi.org/10.1103/PhysRevLett.24.156
https://link.aps.org/doi/10.1103/PhysRevLett.24.156
https://link.aps.org/doi/10.1103/PhysRevLett.24.156
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/RevModPhys.86.1391
https://link.aps.org/doi/10.1103/RevModPhys.86.1391
https://link.aps.org/doi/10.1103/RevModPhys.86.1391
https://doi.org/10.1364/OPEX.12.001437
https://opg.optica.org/oe/abstract.cfm?uri=oe-12-7-1437
https://opg.optica.org/oe/abstract.cfm?uri=oe-12-7-1437
https://doi.org/10.1080/14786441308634955
https://doi.org/10.1080/14786441308634955
https://doi.org/10.1201/b19379
https://doi.org/10.1201/b19379
https://doi.org/10.1126/science.209.4456.547
https://doi.org/10.1126/science.209.4456.547
https://doi.org/10.1103/PhysRevD.23.1693
https://doi.org/10.1103/PhysRevD.23.1693
https://doi.org/10.1088/2058-9565/ab05f1
https://doi.org/10.1088%2F2058-9565%2Fab05f1
https://doi.org/10.1088%2F2058-9565%2Fab05f1


128 BIBLIOGRAPHY

issn: 0028-0836. doi: 10.1038/nature14349. url: http://www.nature.com/
articles/nature14349 (cit. on p. 91).

De Broglie, Louis (Oct. 1923). “Waves and Quanta”. In: Nature 112.2815
(2815), pp. 540–540. issn: 1476-4687. doi: 10 . 1038 / 112540a0. url:
https://www.nature.com/articles/112540a0 (visited on 03/07/2023)
(cit. on p. 3).

Dideriksen, Karsten B. et al. (June 17, 2021). “Room-Temperature Single-
Photon Source with near-Millisecond Built-in Memory”. In: Nature Com-
munications 12.1 (1), p. 3699. issn: 2041-1723. doi: 10.1038/s41467-021-
24033-8. url: https://www.nature.com/articles/s41467-021-24033-8
(visited on 03/15/2023) (cit. on p. 97).

Duan, Lingze (Aug. 9, 2012). “General Treatment of the Thermal Noises
in Optical Fibers”. In: Physical Review A 86.2, p. 023817. doi: 10.1103/
PhysRevA.86.023817. url: https://link.aps.org/doi/10.1103/PhysRevA.86.
023817 (visited on 02/01/2023) (cit. on pp. 63, 64).

Duthil, P (2014). “Material Properties at Low Temperature”. doi: 10.5170/
CERN-2014-005.77. arXiv: 1501.07100. url: https://cds.cern.ch/record/
1973682 (cit. on p. 40).

Egan, William (Apr. 2, 2003). Practical RF System Design. John Wiley & Sons,
Inc. isbn: 978-0-471-65409-4. url: https://doi.org/10.1002/0471654094
(cit. on p. 11).

Foster, Scott et al. (May 2007). “Fundamental Thermal Noise in Distribu-
ted Feedback Fiber Lasers”. In: IEEE Journal of Quantum Electronics 43.5,
pp. 378–384. issn: 1558-1713. doi: 10.1109/JQE.2007.894744 (cit. on pp. 63,
64).

Galinskiy, I. et al. (June 2020a). “Phonon Counting Thermometry of an Ul-
tracoherent Membrane Resonator near Its Motional Ground State”. In:
Optica 7.6, pp. 718–725. doi: 10 . 1364 / OPTICA . 390939. url: http :
//www.osapublishing.org/optica/abstract.cfm?URI=optica-7-6-718
(cit. on pp. ix, 67, 84–88).

— (June 20, 2020b). “Phonon Counting Thermometry of an Ultracoherent
Membrane Resonator near Its Motional Ground State”. In: Optica 7.6,
pp. 718–725. issn: 2334-2536. doi: 10 . 1364 / OPTICA. 390939. url:
https://opg.optica.org/optica/abstract.cfm?uri=optica-7-6-718 (visited
on 02/01/2023) (cit. on pp. 75, 80).

Galinskiy, Ivan, Georg Enzian, et al. (5/Sep/2021). “Counting MHz Pho-
nons: Towards Generaton of Non-Gaussian Quantum States of Moton”.
In: Quantum Optics X. Torun, Poland (cit. on p. ix).

Galinskiy, Ivan, Yeghishe Tsaturyan, et al. (2/Dec/2018). “Towards Heralded
Single-Phonon State Generation of an Ultracoherent Nanomechanical
Resonator”. In: Advances in Open Systems and Fundamental Tests of
Quantum Mechanics. Bad Honnef, Germany (cit. on p. ix).

Galinskiy, Ivan et al. (2014). “Counterpropagating Sagnac Optical Tweezers
as an Efficient Method for 3D Trapping in Air”. In: Latin America Optics
and Photonics Conference, LTu4A.31. doi: 10.1364/LAOP.2014.LTu4A.31. url:
https://www.osapublishing.org/abstract.cfm?uri=LAOP-2014-LTu4A.31
(cit. on p. 4).

Galland, Christophe et al. (2014). “Heralded Single-Phonon Preparation,
Storage, and Readout in Cavity Optomechanics”. In: Physical Review Let-

https://doi.org/10.1038/nature14349
http://www.nature.com/articles/nature14349
http://www.nature.com/articles/nature14349
https://doi.org/10.1038/112540a0
https://www.nature.com/articles/112540a0
https://doi.org/10.1038/s41467-021-24033-8
https://doi.org/10.1038/s41467-021-24033-8
https://www.nature.com/articles/s41467-021-24033-8
https://doi.org/10.1103/PhysRevA.86.023817
https://doi.org/10.1103/PhysRevA.86.023817
https://link.aps.org/doi/10.1103/PhysRevA.86.023817
https://link.aps.org/doi/10.1103/PhysRevA.86.023817
https://doi.org/10.5170/CERN-2014-005.77
https://doi.org/10.5170/CERN-2014-005.77
https://arxiv.org/abs/1501.07100
https://cds.cern.ch/record/1973682
https://cds.cern.ch/record/1973682
https://doi.org/10.1002/0471654094
https://doi.org/10.1109/JQE.2007.894744
https://doi.org/10.1364/OPTICA.390939
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-7-6-718
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-7-6-718
https://doi.org/10.1364/OPTICA.390939
https://opg.optica.org/optica/abstract.cfm?uri=optica-7-6-718
https://doi.org/10.1364/LAOP.2014.LTu4A.31
https://www.osapublishing.org/abstract.cfm?uri=LAOP-2014-LTu4A.31


BIBLIOGRAPHY 129

ters 112.14, pp. 1–6. issn: 10797114. doi: 10.1103/PhysRevLett.112.143602.
pmid: 24765960 (cit. on pp. 29–31, 56, 98, 109).

Gere, James M. and Barry J. Goodno (Jan. 1, 2012). Mechanics of Materials. 8th
edition. Stamford, CT: Cengage Learning. 1056 pp. isbn: 978-1-111-57773-5
(cit. on p. 79).

Gil-Santos, Eduardo et al. (June 2020). “Optomechanical Detection of Vi-
bration Modes of a Single Bacterium”. In: Nature Nanotechnology 15.6 (6),
pp. 469–474. issn: 1748-3395. doi: 10.1038/s41565-020-0672-y. url:
https ://www.nature.com/articles/s41565- 020- 0672- y (visited on
03/07/2023) (cit. on p. 5).

Goldstein, Herbert et al. (June 15, 2001). Classical Mechanics. 3rd edition. San
Francisco Munich: Pearson. 664 pp. isbn: 978-0-201-65702-9 (cit. on pp. 19,
20).

Gorodetsky, M. L. et al. (Oct. 2010). “Determination of the Vacuum Optome-
chanical Coupling Rate Using Frequency Noise Calibration”. In: Optics
Express 18.22, pp. 23236–23246. doi: 10.1364/OE.18.023236. url: http:
//www.opticsexpress.org/abstract.cfm?URI=oe-18-22-23236 (cit. on
pp. 35, 46, 92).

Heisenberg, W. (Dec. 1, 1925). “Über quantentheoretische Umdeutung ki-
nematischer und mechanischer Beziehungen.” In: Zeitschrift für Physik
33.1, pp. 879–893. issn: 0044-3328. doi: 10 . 1007 / BF01328377. url:
https://doi.org/10.1007/BF01328377 (visited on 03/07/2023) (cit. on
p. 3).

Hofer, Sebastian G. et al. (2011). “Quantum Entanglement and Teleportation
in Pulsed Cavity Optomechanics”. In: Physical Review A - Atomic, Mole-
cular, and Optical Physics 84.5, pp. 1–10. issn: 10502947. doi: 10.1103/
PhysRevA.84.052327. arXiv: 1108.2586 (cit. on p. 31).

Ismail, Nur et al. (July 25, 2016). “Fabry-Pérot Resonator: Spectral Line Shapes,
Generic and Related Airy Distributions, Linewidths, Finesses, and Perfor-
mance at Low or Frequency-Dependent Reflectivity”. In: Optics Express
24.15, pp. 16366–16389. issn: 1094-4087. doi: 10.1364/OE.24.016366. url:
https://opg.optica.org/oe/abstract.cfm?uri=oe-24-15-16366 (visited on
02/13/2023) (cit. on pp. 10, 13).

Jayich, A M et al. (Sept. 2008). “Dispersive Optomechanics: A Membrane in-
side a Cavity”. In: New Journal of Physics 10.9, p. 095008. doi: 2008100103130400.
url: https://dx.doi.org/10.1088/1367-2630/10/9/095008 (cit. on p. 13).

Jiang, Xiaoshun et al. (Nov. 9, 2009). “High-Q Double-Disk Microcavities for
Cavity Optomechanics”. In: Optics Express 17.23, pp. 20911–20919. issn:
1094-4087. doi: 10.1364/OE.17.020911. url: https://opg.optica.org/oe/
abstract.cfm?uri=oe-17-23-20911 (visited on 03/07/2023) (cit. on p. 5).

Keplero, Iohanne (1619). De Cometis Libelli Tres. Typis Andreae Apergeri,
p. 168 (cit. on p. 4).

Landau, L.D. and E.M. Lifshitz (1976). “Chapter V - Small Oscillations”. In:
Mechanics (Third Edition). Ed. by L.D. Landau and E.M. Lifshitz. Third
Edition. Oxford: Butterworth-Heinemann, pp. 58–95. isbn: 978-0-7506-
2896-9. doi: 10 . 1016 / B978 - 0 - 08 - 050347 - 9 . 50010 - 1. url: https :
//www.sciencedirect.com/science/article/pii/B9780080503479500101
(cit. on p. 19).

https://doi.org/10.1103/PhysRevLett.112.143602
24765960
https://doi.org/10.1038/s41565-020-0672-y
https://www.nature.com/articles/s41565-020-0672-y
https://doi.org/10.1364/OE.18.023236
http://www.opticsexpress.org/abstract.cfm?URI=oe-18-22-23236
http://www.opticsexpress.org/abstract.cfm?URI=oe-18-22-23236
https://doi.org/10.1007/BF01328377
https://doi.org/10.1007/BF01328377
https://doi.org/10.1103/PhysRevA.84.052327
https://doi.org/10.1103/PhysRevA.84.052327
https://arxiv.org/abs/1108.2586
https://doi.org/10.1364/OE.24.016366
https://opg.optica.org/oe/abstract.cfm?uri=oe-24-15-16366
https://doi.org/2008100103130400
https://dx.doi.org/10.1088/1367-2630/10/9/095008
https://doi.org/10.1364/OE.17.020911
https://opg.optica.org/oe/abstract.cfm?uri=oe-17-23-20911
https://opg.optica.org/oe/abstract.cfm?uri=oe-17-23-20911
https://doi.org/10.1016/B978-0-08-050347-9.50010-1
https://www.sciencedirect.com/science/article/pii/B9780080503479500101
https://www.sciencedirect.com/science/article/pii/B9780080503479500101


130 BIBLIOGRAPHY

Lebedew, Peter (1901). “Untersuchungen Über Die Druckkräfte Des Lichtes”.
In: Annalen der Physik 311.11, pp. 433–458. doi: 10.1002/andp.19013111102
(cit. on pp. 2, 4).

Li, Xiufei et al. (Jan. 2020). “Impact Analysis of Cavity Length on Transfer
Cavity Frequency Locking System for Atomic Inertial Measurement De-
vice”. In: AIP Advances 10.1, p. 015340. doi: 10.1063/1.5125604. url:
https://aip.scitation.org/doi/10.1063/1.5125604 (visited on 02/25/2023)
(cit. on p. 84).

Liu, Chien et al. (Jan. 2001). “Observation of Coherent Optical Information
Storage in an Atomic Medium Using Halted Light Pulses”. In: Nature
409.6819 (6819), pp. 490–493. issn: 1476-4687. doi: 10.1038/35054017. url:
https://www.nature.com/articles/35054017 (visited on 03/13/2023)
(cit. on p. 49).

Maiman, T. H. (Aug. 1960). “Stimulated Optical Radiation in Ruby”. In:
Nature 187.4736 (4736), pp. 493–494. issn: 1476-4687. doi: 10 . 1038 /
187493a0. url: https://www.nature.com/articles/187493a0 (visited on
03/07/2023) (cit. on p. 4).

Mandel, Leonard and Emil Wolf (1995). Optical Coherence and Quantum Optics.
Cambridge: Cambridge University Press. doi: 10.1017/CBO9781139644105
(cit. on pp. 16, 17).

Marquardt, E. D. et al. (2002). “Cryogenic Material Properties Database”.
In: Cryocoolers 11. Ed. by R. G. Ross. Boston, MA: Springer US, pp. 681–
687. isbn: 978-0-306-47112-4. doi: 10.1007/0- 306- 47112- 4_84. url:
https://doi.org/10.1007/0-306-47112-4_84 (cit. on p. 101).

Marquardt, Florian et al. (Aug. 2007). “Quantum Theory of Cavity-Assisted
Sideband Cooling of Mechanical Motion”. In: Physical Review Letters 99.9,
p. 093902. doi: 10.1103/PhysRevLett.99.093902. url: https://link.aps.org/
doi/10.1103/PhysRevLett.99.093902 (cit. on p. 88).

Mathiassen, Jonas (3/Dec/2019). “Characterising and Modelling Thermal
Substrate Noise for a Membrane in the Middle Optomechanical Cavity”.
MSc. Niels Bohr Institute, Faculty of Science, University of Copenhagen
(cit. on p. 47).

Maxwell, James Clerk (1873). A Treatise on Electricity and Magnetism. Vol. 1.
Clarendon press (cit. on p. 4).

McCuller, L. et al. (Apr. 28, 2020). “Frequency-Dependent Squeezing for
Advanced LIGO”. In: Physical Review Letters 124.17, p. 171102. doi: 10.
1103/PhysRevLett.124.171102. url: https://link.aps.org/doi/10.1103/
PhysRevLett.124.171102 (visited on 02/26/2023) (cit. on p. 68).

Meenehan, Seán M et al. (2015). “Pulsed Excitation Dynamics of an Optome-
chanical Crystal Resonator near Its Quantum Ground State of Motion”.
In: Physical Review X 5.4, p. 041002. issn: 21603308. doi: 10.1103/PhysRevX.
5.041002. arXiv: 1503.05135. url: https://journals.aps.org/prx/pdf/10.
1103/PhysRevX.5.041002 (cit. on p. 91).

Møller, Christoffer B. et al. (July 2017). “Quantum Back-Action-Evading Me-
asurement of Motion in a Negative Mass Reference Frame”. In: Nature
547.7662, pp. 191–195. issn: 0028-0836. doi: 10.1038/nature22980. url:
http://www.nature.com/doifinder/10.1038/nature22980 (cit. on p. 44).

Nichols, E. F. and G. F. Hull (1903). “The Pressure Due to Radiation”. In:
Proceedings of the American Academy of Arts and Sciences 38.20, pp. 559–
599. issn: 0199-9818. doi: 10 .2307/20021808. JSTOR: 20021808. url:

https://doi.org/10.1002/andp.19013111102
https://doi.org/10.1063/1.5125604
https://aip.scitation.org/doi/10.1063/1.5125604
https://doi.org/10.1038/35054017
https://www.nature.com/articles/35054017
https://doi.org/10.1038/187493a0
https://doi.org/10.1038/187493a0
https://www.nature.com/articles/187493a0
https://doi.org/10.1017/CBO9781139644105
https://doi.org/10.1007/0-306-47112-4_84
https://doi.org/10.1007/0-306-47112-4_84
https://doi.org/10.1103/PhysRevLett.99.093902
https://link.aps.org/doi/10.1103/PhysRevLett.99.093902
https://link.aps.org/doi/10.1103/PhysRevLett.99.093902
https://doi.org/10.1103/PhysRevLett.124.171102
https://doi.org/10.1103/PhysRevLett.124.171102
https://link.aps.org/doi/10.1103/PhysRevLett.124.171102
https://link.aps.org/doi/10.1103/PhysRevLett.124.171102
https://doi.org/10.1103/PhysRevX.5.041002
https://doi.org/10.1103/PhysRevX.5.041002
https://arxiv.org/abs/1503.05135
https://journals.aps.org/prx/pdf/10.1103/PhysRevX.5.041002
https://journals.aps.org/prx/pdf/10.1103/PhysRevX.5.041002
https://doi.org/10.1038/nature22980
http://www.nature.com/doifinder/10.1038/nature22980
https://doi.org/10.2307/20021808
http://www.jstor.org/stable/20021808


BIBLIOGRAPHY 131

https://www.jstor.org/stable/20021808 (visited on 03/07/2023) (cit. on
p. 4).

Nielsen, William Hvidtfelt Padkær (2016). “Quantum Cavity Optomechanics
with Phononic Bandgap Shielded Silicon Nitride Membranes”. University
of Copenhagen. 160 pp. (cit. on pp. 15, 49, 89).

NIR Free-Space Isolators (690 - 1080 Nm) (2023). url: https://www.thorlabs.
com (visited on 02/24/2023) (cit. on p. 81).

Østfeldt, Christoffer (2022). “Quantum Optomechanics for Hybrid Spin-
Membrane Entanglement”. Niels Bohr Institute, Faculty of Science, Uni-
versity of Copenhagen (cit. on pp. 15, 40, 49, 51).

Parniak, Michał et al. (Mar. 1, 2021). “High-Frequency Broadband Laser
Phase Noise Cancellation Using a Delay Line”. In: Optics Express 29.5,
pp. 6935–6946. issn: 1094-4087. doi: 10.1364/OE.415942. url: https:
//opg.optica .org/oe/abstract .cfm?uri=oe- 29- 5- 6935 (visited on
02/01/2023) (cit. on pp. ix, 55, 61–63, 65).

Peterson, R. W. et al. (Feb. 2016). “Laser Cooling of a Micromechanical Mem-
brane to the Quantum Backaction Limit”. In: Physical Review Letters 116.6,
p. 063601. issn: 0031-9007. doi: 10.1103/PhysRevLett.116.063601. url:
https://link.aps.org/doi/10.1103/PhysRevLett.116.063601 (cit. on pp. 88,
91).

Planck, Max (1900). “Entropie Und Temperatur Strahlender Wärme”. In:
Annalen der Physik 306.4, pp. 719–737. issn: 1521-3889. doi: 10.1002/andp.
19003060410. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/
andp.19003060410 (visited on 03/07/2023) (cit. on p. 3).

Purdy, T P et al. (2015). “Optomechanical Raman-Ratio Thermometry”. In:
Physical Review A: Atomic, Molecular, and Optical Physics 92.3, p. 31802. issn:
10941622. doi: 10.1103/PhysRevA.92.031802. url: https://journals.aps.
org/pra/pdf/10.1103/PhysRevA.92.031802 (cit. on p. 91).

Riedinger, Ralf, Sungkun Hong, et al. (2016). “Non-Classical Correlations
between Single Photons and Phonons from a Mechanical Oscillator”. In:
Nature 530.7590, pp. 313–316. issn: 0028-0836. doi: 10.1038/nature16536.
pmid: 26779950. url: http://www.nature.com/doifinder/10.1038/
nature16536 (cit. on p. 5).

Riedinger, Ralf, Andreas Wallucks, et al. (Apr. 2018). “Remote Quantum
Entanglement between Two Micromechanical Oscillators”. In: Nature
556.7702 (7702), pp. 473–477. issn: 1476-4687. doi: 10.1038/s41586-018-
0036-z. url: https://www.nature.com/articles/s41586-018-0036-z (visited
on 03/15/2023) (cit. on pp. 5, 6).

Rossi, Massimiliano et al. (Nov. 2018). “Measurement-Based Quantum Cont-
rol of Mechanical Motion”. In: Nature 563.7729, pp. 53–58. issn: 0028-0836.
doi: 10.1038/s41586-018-0643-8. url: http://www.nature.com/articles/
s41586-018-0643-8 (cit. on p. 94).

Schrödinger, E. (1926). “Quantisierung Als Eigenwertproblem”. In: Annalen
der Physik 384.4, pp. 361–376. issn: 1521-3889. doi: 10 . 1002 / andp .
19263840404. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/
andp.19263840404 (visited on 03/07/2023) (cit. on p. 3).

Shkarin, A. B. et al. (Apr. 15, 2019). “Quantum Optomechanics in a Liquid”.
In: Physical Review Letters 122.15, p. 153601. doi: 10.1103/PhysRevLett.122.
153601. url: https://link.aps.org/doi/10.1103/PhysRevLett.122.153601
(visited on 03/07/2023) (cit. on p. 5).

https://www.jstor.org/stable/20021808
https://www.thorlabs.com
https://www.thorlabs.com
https://doi.org/10.1364/OE.415942
https://opg.optica.org/oe/abstract.cfm?uri=oe-29-5-6935
https://opg.optica.org/oe/abstract.cfm?uri=oe-29-5-6935
https://doi.org/10.1103/PhysRevLett.116.063601
https://link.aps.org/doi/10.1103/PhysRevLett.116.063601
https://doi.org/10.1002/andp.19003060410
https://doi.org/10.1002/andp.19003060410
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19003060410
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19003060410
https://doi.org/10.1103/PhysRevA.92.031802
https://journals.aps.org/pra/pdf/10.1103/PhysRevA.92.031802
https://journals.aps.org/pra/pdf/10.1103/PhysRevA.92.031802
https://doi.org/10.1038/nature16536
26779950
http://www.nature.com/doifinder/10.1038/nature16536
http://www.nature.com/doifinder/10.1038/nature16536
https://doi.org/10.1038/s41586-018-0036-z
https://doi.org/10.1038/s41586-018-0036-z
https://www.nature.com/articles/s41586-018-0036-z
https://doi.org/10.1038/s41586-018-0643-8
http://www.nature.com/articles/s41586-018-0643-8
http://www.nature.com/articles/s41586-018-0643-8
https://doi.org/10.1002/andp.19263840404
https://doi.org/10.1002/andp.19263840404
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19263840404
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19263840404
https://doi.org/10.1103/PhysRevLett.122.153601
https://doi.org/10.1103/PhysRevLett.122.153601
https://link.aps.org/doi/10.1103/PhysRevLett.122.153601


132 BIBLIOGRAPHY

Tsaturyan, Y. et al. (Aug. 1, 2017). “Ultracoherent Nanomechanical Resona-
tors via Soft Clamping and Dissipation Dilution”. In: Nature Nanotechno-
logy 12.8, pp. 776–783. issn: 1748-3395. doi: 10.1038/nnano.2017.101. url:
https://doi.org/10.1038/nnano.2017.101 (cit. on pp. 43, 45, 46).

Tsaturyan, Yeghishe (2019). “Ultracoherent Soft-Clamped Mechanical Reso-
nators for Quantum Cavity Optomechanics”. Niels Bohr Institute, Faculty
of Science, University of Copenhagen (cit. on pp. 43, 44).

Underwood, M. et al. (Dec. 2015). “Measurement of the Motional Sidebands
of a Nanogram-Scale Oscillator in the Quantum Regime”. In: Physical
Review A: Atomic, Molecular, and Optical Physics 92.6, p. 061801. issn: 1050-
2947. doi: 10.1103/PhysRevA.92.061801. url: https://link.aps.org/doi/10.
1103/PhysRevA.92.061801 (cit. on p. 91).

Walls, D.F. and G.J. Milburn (2008). Quantum Optics. Springer Berlin Heidel-
berg. isbn: 978-3-540-28573-1. url: https://books.google.dk/books?id=
LiWsc3Nlf0kC (cit. on pp. 16, 109).

Weinstein, A. J. et al. (Oct. 2014). “Observation and Interpretation of Motio-
nal Sideband Asymmetry in a Quantum Electromechanical Device”. In:
Physical Review X 4.4, p. 041003. issn: 21603308. doi: 10.1103/PhysRevX.
4.041003. arXiv: 1404.3242. url: https://link.aps.org/doi/10.1103/
PhysRevX.4.041003 (cit. on p. 91).

Weis, S. et al. (2011). “Optomechanically Induced Transparency”. In: 2011
Conference on Lasers and Electro-Optics Europe and 12th European Quantum
Electronics Conference, CLEO EUROPE/EQEC 2011 58.22, pp. 23236–23246.
issn: 0036-8075. doi: 10.1109/CLEOE.2011.5943657. pmid: 21071628
(cit. on p. 50).

Wilson-Rae, I. et al. (Aug. 2007). “Theory of Ground State Cooling of a Me-
chanical Oscillator Using Dynamical Backaction”. In: Physical Review
Letters 99.9, p. 093901. doi: 10 . 1103 / PhysRevLett . 99 . 093901. url:
https://link.aps.org/doi/10.1103/PhysRevLett.99.093901 (cit. on p. 88).

Woolley, M. J. and A. A. Clerk (June 28, 2013). “Two-Mode Back-Action-
Evading Measurements in Cavity Optomechanics”. In: Physical Review
A 87.6, p. 063846. doi: 10.1103/PhysRevA.87.063846. url: https://link.aps.
org/doi/10.1103/PhysRevA.87.063846 (visited on 02/18/2023) (cit. on
p. 29).

Zhang, Grace H. et al. (2015). “Note: Fast Compact Laser Shutter Using a
Direct Current Motor and Three-Dimensional Printing”. In: Review of
Scientific Instruments 86.12, p. 126105. doi: 10.1063/1.4937614. eprint: https:
//doi.org/10.1063/1.4937614. url: https://doi.org/10.1063/1.4937614
(cit. on p. 83).

Zhang, Jie et al. (Mar. 7, 2013). “Design of an Optical Reference Cavity with
Low Thermal Noise Limit and Flexible Thermal Expansion Properties”.
In: The European Physical Journal D 67.2, p. 46. issn: 1434-6079. doi: 10.
1140/epjd/e2013-30458-2. url: https://doi.org/10.1140/epjd/e2013-
30458-2 (visited on 02/25/2023) (cit. on pp. 74, 80).

Zhang, W. et al. (Dec. 15, 2017). “Ultrastable Silicon Cavity in a Continuously
Operating Closed-Cycle Cryostat at 4 K”. In: Physical Review Letters 119.24,
p. 243601. doi: 10.1103/PhysRevLett.119.243601. url: https://link.aps.
org/doi/10.1103/PhysRevLett.119.243601 (visited on 02/26/2023) (cit. on
p. 71).

https://doi.org/10.1038/nnano.2017.101
https://doi.org/10.1038/nnano.2017.101
https://doi.org/10.1103/PhysRevA.92.061801
https://link.aps.org/doi/10.1103/PhysRevA.92.061801
https://link.aps.org/doi/10.1103/PhysRevA.92.061801
https://books.google.dk/books?id=LiWsc3Nlf0kC
https://books.google.dk/books?id=LiWsc3Nlf0kC
https://doi.org/10.1103/PhysRevX.4.041003
https://doi.org/10.1103/PhysRevX.4.041003
https://arxiv.org/abs/1404.3242
https://link.aps.org/doi/10.1103/PhysRevX.4.041003
https://link.aps.org/doi/10.1103/PhysRevX.4.041003
https://doi.org/10.1109/CLEOE.2011.5943657
21071628
https://doi.org/10.1103/PhysRevLett.99.093901
https://link.aps.org/doi/10.1103/PhysRevLett.99.093901
https://doi.org/10.1103/PhysRevA.87.063846
https://link.aps.org/doi/10.1103/PhysRevA.87.063846
https://link.aps.org/doi/10.1103/PhysRevA.87.063846
https://doi.org/10.1063/1.4937614
https://doi.org/10.1063/1.4937614
https://doi.org/10.1063/1.4937614
https://doi.org/10.1063/1.4937614
https://doi.org/10.1140/epjd/e2013-30458-2
https://doi.org/10.1140/epjd/e2013-30458-2
https://doi.org/10.1140/epjd/e2013-30458-2
https://doi.org/10.1140/epjd/e2013-30458-2
https://doi.org/10.1103/PhysRevLett.119.243601
https://link.aps.org/doi/10.1103/PhysRevLett.119.243601
https://link.aps.org/doi/10.1103/PhysRevLett.119.243601


BIBLIOGRAPHY 133

Zwettler, Timo (Sept. 16, 2019). “Suppression of Heating Mechanisms for
Deep Optomechanical Ground-State Cooling”. M.Sc. thesis. Copenha-
gen, Denmark; München, Germany: Ludwig Maximilians Universität,
München; University of Copenhagen (cit. on pp. 46, 56, 57, 102–104).


	galinskiy-thesis.pdf (D25301409).pdf
	Abstract
	Acknowledgments
	Prior work and future directions
	Detailed Table of Contents
	I Introduction
	1 Introduction
	1.1 History of light pressure
	1.2 Non-classical mechanical objects
	1.3 Notable previous work on non-classical mechanics


	II Theory
	2 Light
	2.1 Optical cavities
	2.1.1 T-matrix method for optical resonators

	2.2 Spectra and spectral densities
	2.3 Photodetection
	2.3.1 Shot noise
	2.3.2 Interferometry

	2.4 Afterword

	3 Mechanics
	3.1 Harmonic oscillator: time-domain dynamics
	3.2 Harmonic oscillator: frequency-domain behavour

	4 Optomechanics
	4.1 Free-propagating light and free-floating mass
	4.2 Free light and harmonic oscillator
	4.3 Confined light and harmonic oscillator: introduction
	4.4 Quantum-optomechanical equations of motion
	4.5 Theory of single-phonon interactions
	4.6 Practical optomechanical theory
	4.7 Transition rates in equilibrium
	4.7.1 Output light field
	4.7.2 Intensity for drive + sidebands
	4.7.3 Phase of sidebands
	4.7.4 Special case: sideband-resolved regime

	4.8 Afterword


	III Practice
	5 Optomechanical holder
	5.1 Mechanical construction
	5.2 Suspension
	5.3 Membrane
	5.4 Mirrors in optomechanics

	6 OMIT (optomechanically-induced transparency)

	IV Results
	7 Phase noise cancellation with a delay line
	7.1 Overview of classical phase noise
	7.2 Extracting phase noise
	7.3 Sensitivity calibration
	7.4 Cross-correlating signals
	7.5 Fiber noise
	7.6 Conclusions and outlook

	8 Filter cavities
	8.1 Introduction
	8.2 Overview of filtering techniques
	8.3 From a single cavity to a cascade
	8.3.1 Motivation
	8.3.2 First generation, or the forgotten bandgap
	8.3.2.1 Mirrors
	8.3.2.2 Spacer

	8.3.3 Suspension of the first generation of filters
	8.3.4 Locking
	8.3.5 Multi-cavity lock

	8.4 NQLBS, or the remembered bandgap
	8.4.1 The long boys
	8.4.2 Fabrication
	8.4.3 Mechanical stability: problem and desperate solution
	8.4.4 Spring suspension
	8.4.5 Optical arrangement
	8.4.6 Input to filter system
	8.4.7 Shutters
	8.4.8 Lock freezing and passive stability

	8.5 Conclusions and outlook

	9 Thermal phonon counting
	9.1 Introduction
	9.2 Theoretical recap
	9.3 Detection of filtered mechanical sidebands
	9.4 Raman-ratio phonon thermometry
	9.5 Phonon correlation interferometry

	10 Cauchy-Schwarz violation
	10.1 Reminder of Cauchy-Schwarz properties of quantum states
	10.1.1 Error on estimation of correlations

	10.2 Pulse sequence
	10.2.1 Pre-cool (idle)
	10.2.2 Smooth transitions
	10.2.3 Cooling
	10.2.4 Writing, or excitation
	10.2.5 Reading pulse

	10.3 Photon cross-correlations
	10.4 Sequence extraction
	10.5 Averaging count rates
	10.6 Coincidence counting
	10.6.1 Experiment and results
	10.6.1.1 Cauchy-Schwarz run
	10.6.1.2 High-excitation run

	10.6.2 Conclusion and outlook



	V Conclusion
	11 Conclusion and The Future
	11.1 Conclusion
	11.2 The Future
	11.3 Afterword

	List of Figures
	Bibliography



