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Abstract

English

In this thesis, sub-gap states in bottom-gated InAs N–dot–S, N–double
dot–S, and N–dot–S–dot–N devices are investigated, and several differ-
ent theories are developed to model these states. Experimental results
include tracking single levels of the dot in an N–dot–S device as the
tunnel couplings are tuned electrostatically. This includes tuning the
odd occupation of the dot through a quantum phase transition, where
it forms a singlet with excitations in the superconductor. We detail the
fabrication of these bottom gated devices, which additionally feature
ancillary sensor dots connected with floating gates.

A numerical technique is developed, which predicts the position of
Yu-Shiba-Rusinov sub-gap states in the proximitized Anderson model
as well as properties of these states. This theory is valid for all occupa-
tions of the dot and for weak to intermediate coupling. We compare it
to the Numerical Renormalization Group (NRG) process.

The thesis also details an implementation of the NRG process,
which was written for this project and includes an original method
for mapping the discretized hybridization hamiltonian to a chain. We
take significant steps towards a justification of the NRG process, which
is based on the general properties of Krylov subspaces alone, and is
thus not tied to a specific physical system.

Danish

I denne afhandling undersøges sub-gap tilstande i InAs nanowire N–
dot–S, N–dobbelt dot–S og N–dot–S–dot–N komponenter med bun-
delektroder (bottom gates) ved hjælp af transporteksperimenter, og
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flere forskellige teoretiske modeller udvikles for at modellere disse
tilstande. Experimentelle resultater inkluderer, at vi følger specifikke
besætninger af kvanteøen i en N–dot–S komponent, mens vi justerer
koblingsparametre elektrostatisk. Dette inkluderer at bringe kvanteø-
en i ulige besætning gennem en kvantefaseovergange, hvor en singlet
med kvasipartikler i superlederen dannes. Vi beskriver i detaljer hvor-
dan vores kvantekomponenter med bundelektroder fabrikeres.

En numerisk model beskrives, som forudser energierne af sub-gap
Yu-Shiba-Rusinov tilstande i den superledende Anderson model samt
yderligere egenskaber af disse. Denne teori er gyldig for alle besætnin-
ger af øen, samt for svag til middelstærk kobling. Vi sammenligner mo-
dellen med den numeriske renormaliseringsgruppeteori (NRG-teori).

Denne afhandling beskriver også i detaljer en implementation af
NRG-processen, som blev skrevet under projektet, og inkluderer en
original metode til at bringe Hamilton-operatoren for hybridisering
til kædeform. Vi tager skridt imod et bevis for at NRG-processen er
gyldig, som alene er baseret på Krylov-underrum, og derfor ikke er
bundet til et specifikt kvantemekanisk system.
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Chapter 1

Introduction

This is the dissertation for my PhD project, which ran from Febru-
ary 2012 to September 2015. The main goal of the project was the
experimental investigation of half a Cooper pair splitter formed using
InAs nanowires. This project fitted into a larger European collabora-
tion within the Seventh Framework Program (FP7), the SE2ND project,
aimed at optimizing the performance of Cooper pair splitters, and con-
firming that they produce entangled electrons. A Cooper pair splitter
is an N–dot–S–dot–N device designed such that the primary mode of
transport, when electrons flow out of the superconductor, involves the
generation of non-local singlets in the two dots (details in Section 2.4).
Half a Cooper pair splitter, is then simply an N–dot–S device.

1.1 This Thesis at a Glance

In Chapter 2 “Theory” we find an introduction to Yu-Shiba-Rusinov
sub-gap states and two models are presented which capture their be-
havior in certain limits:

1. An effective hamiltonian derived using quasi-degenerate pertur-
bation theory, valid only for U ≪ ∆ where U is the charging
energy of the dot and ∆ is the order parameter of the supercon-
ductor. This was developed with Gediminas Kirs̆anskas.

2. A numerical technique based on a logarithmic discretization of
the superconductor, valid for small coupling (resonably accurate,
almost all the way up to the quantum phase transition).



20 CHAPTER 1. INTRODUCTION

Both these theories can be easily extended to more complex impurity
systems, i.e. to multiple dots. The chapter also holds an introduction
to Cooper pair splitters.

Chapter 3 “Fabrication” details the construction of bottom gated
InAs nanowire devices for this projected. The devices that were con-
structed for this project are complicated, requiring 8 lithography steps
for their production, and feature 15 closely spaced bottom gates un-
der an N–dot–S–dot–N region. These devices could also be tuned with
double dots instead of single dots between the contacts. The devices
also have ancillary bottom gated quantum dots, which are connected
to the main device with floating gates, and were intended to be used
as charge sensors (though they never worked as such).

The worthy data collected for this project is presented in Chapter 4
“Data”, but we leave out everything which is also present in an included
article preprint (Chapter 4). In these chapters, we show how the contact
couplings of a single level of a quantum dot in an N–dot–S device can
be tuned electrostatically, we investigate the dependence of the sub-
gap states on an externally applied magnetic field, and we investigate
various properties of the N–double dot–S system. Lastly we present
preliminary results on non-local signals in the fabricated N–dot–S–
dot–N devices.

Chapter 6 “Numerical Renormalization Group Theory” details an
implementation of Wilson’s Numerical Renormalization Group (NRG)
process, which was written for this project. It also includes theoretical
justifications for the approximations done in the NRG process, which
are based largely on the general properties of Krylov subspaces and are
therefore not strongly tied to a specific system.

1.2 Publications

This thesis work has lead to two completed manuscripts and three in
preparation:

• Anders Jellinggaard, K. Grove-Rasmussen, M. H. Madsen, J. Ny-
gård. “Tuning Yu-Shiba-Rusinov States in a Quantum Dot”. In:
Physical Review B 94.6 (Aug. 29, 2016), p. 064520.

• K. Grove-Rasmussen, T. S. Jespersen, A. Jellinggaard, J. Nygård.
“Hybrid Superconducting Devices Based on Quantum Wires”.
Review chapter for Oxford Handbook of Small Superconductors,
A. Narlikar (ed.), Oxford University Press. In Press
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• Anders Jellinggaard. “The NRG Process as a Krylov Subspace
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• K. Grove-Rasmussen, et. al. “Yu-Shiba-Rusinov States in a Serial
Double Dot Coupled to a Superconductor”. In Preparation.

• K. Grove-Rasmussen, A. Jellinggaard, M. H. Madsen, J. Nygård.
“Sub-gap States and Kondo Effect in a Double Quantum Dot Cou-
pled to a Normal and a Superconducting Lead”. In Preparation.
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Chapter 2

Theory

2.1 Yu-Shiba-Rusinov States

The main focus of this chapter will be a gated N–Dot–S device as
illustrated in Figure 2.1(a). We will generally assume that the normal
contact in this setup is weakly coupled to the quantum dot. As such, it
functions only as a tunnel probe, to extract the local density of states of
the quantum dot. The interesting part of the device is the Dot–S side
side of the system. Here, the interplay between the states of the dot
and the superconductor gives rise to states inside the energy gap of
the superconductor, which behave qualitatively very different from the
original states of the quantum dot. We show these states schematically
in Figure 2.1(b) and in Figure 2.2 from a typical experiment.

Inside the gap, we see excitations between the two states of a dou-
blet, and a singlet state. As the potential of the gate beneath the dot is
adjusted, the energy of these excitations move around, in a way that is
clearly correlated to the expected charge of the quantum dot. But the
excitation always stays inside the gap of the superconductor, and moves
around seamlessly as the charge on the dot changes. This is unlike
the Coulomb diamonds one would expect if the contact was normal
metallic in nature, and is indicative of the superconductor effectively
breaking conservation of charge.

The states that we see, are known as Yu-Shiba-Rusinov states or
Andreev bound states reflecting two different developments (see Fig-
ure 2.3). Yu, Shiba, and Rusinov looked at a spinful impurity coupled
to a single superconductor, and showed that this leads to sub-gap states
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Figure 2.1: An N–Dot–S device with a tunnel coupled normal contact
reveals the formation of sub-gap states. (a) A schematic showing a
quantum dot contacted weakly by a metallic electrode (N) and more
strongly by a superconducting electrode (S). The N contact functions
as a tunnel probe to measure the excitations of the combined dot–S
system. (b) When the quantum dot couples to the superconductor,
its states are hybridized and the excitations of the dot (black lines)
become sub-gap excitations (red lines).
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Figure 2.2: Bias spectroscopy of within the superconducting gap of
an N–Dot–S device showing Yu-Shiba-Rusinov states. Compare this to
the schematic in Figure 2.1. Further details of this measurement are
given in Chapter 4.

always.[66,67,80,99] Here, the impurity has a fixed charge, and only its
spin can be rotated by exchange with the electrons in the superconduc-
tor. In our realizations, a quantum dot acts as the impurity and one of
the electrodes plays the role of the superconductor.

An Andreev bound state, on the other hand, occurs in the normal
scattering region of a Josephson junction. Original developments on
Andreev bound states focused on a normal region with no interactions,[4]

i.e. no quantum dot, so we are in a completely different limit here.
An Andreev bound state can be viewed as an electron in the normal
region, which is Andreev reflected off of first one superconductor (as a
hole) and then the other (back to an electron) forming a standing wave.
The same idea applies if the central region is a quantum dot, as long as
the charging energy is low compared to the size of the gap, and in some
limit the Andreev bound state picture and the picture of Yu, Shiba,
and Rusinov must meet. In our experiments the charging energy dom-
inates, and what we see is best described as Yu-Shabe-Rusinov bound
states.

A simple intuitive picture of the sub-gap states is presented in this
section, as well as two models developed for the project. At the end
of this chapter, non-local Andreev reflections are introduced. For a
broader understanding of the topic, I can recommend the reviews [53]
and [3] and the references within. I also found [39] helpful.



26 CHAPTER 2. THEORY

Josephson junction with
scattering region

Quantum dot /
superconductor hybrid

U ≫ ∆ leads to
Yu-Shiba-Rusinov bound
states

U ≪ ∆ leads to Andreev
bound states

Dot S

S Scattering region S

(a)

(b)

Figure 2.3: Two conceptually different (yet related) ways to form
sup-gap states in devices with superconducting contacts. In (a), an
unpaired electron on the dot forms a singlet correlation with a bo-
goliubon quasiparticle in the supeconducting lead through exchange.
In (b), an electron impinges on a superconductor and is reflected as a
hole, which is then reflected as an electron, forming a standing wave.
Note, that Andreev bound states can also form with only one super-
conductor and with a quantum dot instead of a scattering region, as
long as the charging energy, U, is lower than the gap, ∆.
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2.1.1 The proximitized Anderson model

Central to most of this chapter is the proximitized Anderson model
describing a single spin-full level coupled to a superconductor. This
model is given by the hamiltonian

H � Hd + Hl + Ht (2.1)

where the quantum dot is represented by

Hd � ∑
σ

ǫd†
σdσ +

U

2

(
∑
σ

d†
σdσ − 1

) 2

, (2.2)

the superconducting lead by

Hl � ∑
kσ

ξk c†kσckσ −
(
∑

k

∆k c
k↑c−k↓ + HC

)
, (2.3)

and the coupling between the two by

Ht � ∑
kσ

tkσd†
σckσ + HC. (2.4)

The symbols used in the hamiltonian are:

ǫ The position of the single particle energy level of the dot.

U The charging energy of the dot.

dσ Annihilator for an electron with spin σ.

k A wave-vector.

ξk The excitation energy of a Fermi liquid quasiparticle in the
lead.

ckσ Annihilator of a Fermi liquid quasiparticle in the lead.

∆k The (generally momentum dependent) order parameter of the
superconductor.

tkσ Tunneling coefficients.
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Very often, it is helpful to write Hl in terms of its basic excitations by a
so-called Bogoliubov transformation of the

{
c

kσ

}
and

{
c†

kσ

}
operators.[88]

Specifically (
γ

kσ

γ†−k σ̄

)
�

(
u∗
−k

−σvk

σv∗
−k

uk

) (
c

kσ

c†−k σ̄

)
(2.5)

with uk and vk chosen such that the above matrix is unitary and Hl can
be written as

Hl � ∑
kσ

Ekγkσγ
†
kσ . (2.6)

For this transformation

Ek �

√
ξ2

k
+ |∆k |2. (2.7)

The excitations created by
{
γ†

kσ

}
are called bogoliubons.

As a final note, we will use the concept of a tunneling density of
states, Γ, defined by

Γσ(ξk) � 2πD(ξk) | tkσ |2 , (2.8)

where D(ξk) is the density of states at energy ξk . Often, this quantity
is assumed to be energy independent.

2.1.2 Sub-gap excitations

In this section, we are interested in the question “what are the lowest
energy excitations” of the proximitized Anderson model. Specifically,
we are interested in parity changing excitations, since these are the ones
we observe when we probe a system with a normal contact (which
we intend to do). When all the tunneling coefficients in Ht are zero,
then this question becomes much simpler, and Figure 2.4 shows the
answer. In the figure, we illustrate the three lowest energy singlets
corresponding to the three different charge states of the dot, as well as
the three lowest energy doublets (we show one state of each doublet in
the figure). The illustrated singlets are

|A〉 � |0〉 (2.9)

|B〉 � 1√
2

(
γ†↓d†

↑ − γ
†
↑d†

↓

)
|0〉 (2.10)

|C〉 � d†
↑d†

↓ |0〉 , (2.11)
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Singlets Doublets

|A〉 �

|B〉 �

|C〉 �

|D〉 �

|E〉 �

|F〉 �

Singlet to doublet excitations:

E
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)
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A → D

A → E
B → E

C → E

C → F

Level position (U)

0 11/2−1/2−1
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Figure 2.4: This figure illustrates the formation of sub-gap excitations
in the proximitized Anderson model. Circles represent the quantum
dot, open rectangles represent the superconducting lead, black arrows
are electrons and red arrows are bogoliubons just on the edge of the
gap. The plot in the bottom is a hand-drawn sketch of the excitation
energies as a function of the level position, ǫ, both for vanishing cou-
pling between the dot and lead and for small coupling. Further details
are in the text.
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where we have defined γ†σ as the operator that creates the lowest energy
bogoliubon with spin σ. The illustrated doublet states are

|D〉 � γ†↑ |0〉 (2.12)

|E〉 � d†
↑ |0〉 (2.13)

|F〉 � d†
↑d†

↓γ
†
↑ |0〉 . (2.14)

The figure also shows the energy of relevant low energy singlet to
doublet excitations.

As Ht is turned on, neither the number of bogoliubons nor the num-
ber of electrons will be conserved. Angular momentum is conserved, so
singlet and doublet states do not mix, but within each sector the states
are mixed to form the new eigenstates of the system. For small cou-
pling, the different excitations form an anti-cross and push the sub-gap
excitation nearer the Fermi-level as indicated in the figure.

Here we just considered the lowest energy bogoliubon, but all the
higher energy bogoliubons push the sub-gap excitations in the same
direction. As the magnitude of Ht is further increased, a full description
of the resulting eigenstates will include contributions from states with
more than one bogoliubon and this picture becomes too simplistic.

In the remainder of this chapter, we will slowly ramp up the number
of bogoliubons included in our treatment. First, with only one virtual
bogoliubon using perturbation theory. Then, with one or two actual
bogoliubons using a technique based on a logarithmic discretization
of the lead states. And finally, in Chapter 6, we will pull out the big
guns in the form of Wilson’s numerical renormalization group theory,
and treat any number of bogoliubons. Using this last technique, we
can show how the excitations of Figure 2.4 evolve to merge with the
edge of the superconducting gap in the limit of strong coupling; see
Figure 2.5.

Remarkably, there comes a point where the ground state of the
proximitized Anderson model remains a singlet, as the dot is brought
from an occupancy of 0 to 2 electrons. The odd occupancy of the dot
in between, forms a singlet with bogoliubons in the lead. The change
of ground state from doublet to singlet as Γ is increased, in the middle
of the coulomb valley, is an example of a quantum phase transition.1

1 A quantum phase transition is when the ground state changes between two many
body states which have different quantum numbers with respect to the symmetries of
the system and therefore do not couple. This is arguably less exciting than a real phase
transition where the symmetry of the system is reduced.
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Figure 2.5: The evolution of the lowest energy doublet to singlet
transition energy, as the coupling is increased. Γ is the tunneling
density of state and gives the strength of the coupling. This data is
from NRG simulations, see chapters 4 and 6 for details.



32 CHAPTER 2. THEORY

2.2 Perturbation Theory

To understand the proximitized Anderson model, Cooper pair split-
ters, and double dots coupled to a superconductor, I thought it would
be useful to have an effective low-dimensional hamiltonian of the sys-
tem. I.e. a hamiltonian that looked just like the hamiltonian of the
non-proximitized system, with some small anomalous terms (of the
form d↑d↓), caused by the superconductor. It turns out that this line
of thoughts leads to a poor understanding of sub-gap excitations, the
reason being that they almost always involve a bogoliubon being cre-
ated or destroyed (except near the degeneracy points of the dot, see
Figure 2.8) something which cannot be captured by such a model.

Irrespective of this, I started working on a Schrieffer-Wolff trans-
formation to this end, but was troubled by some diverging integrals,
and brought my work to Gediminas Kirs̆anskas. He showed me
when/why this idea breaks down, and went through all the calcu-
lations for a proximitized dot with two superconducting leads, us-
ing quasi-degenerate perturbation theory instead of a Schrieffer-Wolff
transformation. Quasi-degenerate perturbation theory leads to the
same results (same nasty integrals) in a simpler way. What is pre-
sented here is close to Gediminas work.

2.2.1 Quasi-degenerate perturbation theory

This section is based on quasi-degenerate perturbation theory. Winkler
explains the foundations of this concept well,[93] so we only give the
main result (up to 2nd order) here.

Assume that a hamiltionian can be written as

H � H0 + H′, (2.15)

where the eigenstates of H0 are
{��ψi

〉}
and have eigenenergies {Ei}.

Suppose further, that the eigenstates of H0 can be divided in two weakly
interacting sets, A and B, and we are interested only in the states of
A. Quasi-degenerate perturbation theory is a technique for finding

a unitary transformation H̃ � uHu† of H, such that the coupling,〈
ψm

�� H̃
��ψl

〉
, between any two states m in A and l in B vanishes up to a

desired order in H′. To 2nd order, the matrix elements

〈
ψm

�� H̃
��ψm′

〉
� H

(0)
mm′ + H

(1)
mm′ + H

(2)
mm′ , (2.16)
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of H̃, with m and m′ in A, are given by

H
(0)
mm′ � (H0)mm′ , (2.17)

H
(1)
mm′ � H′

mm′ , (2.18)

H
(2)
mm′ �

1

2 ∑
l

H′
mlH

′
lm′

(
1

Em − El
+

1

Em′ − El

)
, (2.19)

where the sum over l runs over the indicies in B only. Degeneracies
present between the states of A, or between the states of B, are not a
problem for this theory, as long as the two sets are mutually resolved
in energy. In particular, the denominators of Equation (2.19) always
involves one energy from A and one energy from B.

2.2.2 The system

We now return to the problem at hand. Consider an arbitrary collection
of quantum dots coupled to a superconductor. The dots are described
by the hamiltonian Himp in terms of the creation and annihilation op-

erators
{

d†
iσ

}
and

{
d

iσ

}
. The superconductor is described by Hl , and

the two are coupled by Ht . We define H0 � Himp +Hl , and assume that
the hamiltonians Hl and Ht are given by

Hl � ∑
kσ

Ekγ
†
kσγkσ , (2.20)

Ht � ∑
kiσ

tki c
†
kσdiσ + HC, (2.21)

using a standard Bogoliubov transformation[88]

ckσ � ukγkσ + σvkγ
†
−k σ̄ , (2.22)

where

Ek �

√
ξ2

k
+ |∆k |2. (2.23)

2.2.3 The effective hamiltonian

To apply quasi degenerate pertubation theory, we now divide the full
Hilbert space of the system into three sections:

• H− with no bogoliubons in the lead.
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• H+ with one bogoliubon in the lead.

• H++ with more bogoliubons in the lead.

We immediately project away H++. The spaces H− and H+ are not
mixed by H0, and we denote the eigenstates of H0 in H− by S− and
the eigenstates of H0 in H+ by S+. We can now express an effective
hamiltonian, Heff, for H−, to second order in Ht as

Heff ≈ ∑
nm∈S−

(H(0)
nm + H

(1)
nm + H

(2)
nm) |n〉 〈m | (2.24)

H
(0)
nm �

〈
n
��H0

��m〉
� δnmEn (2.25)

H
(1)
nm �

〈
n
��Ht

��m〉
� 0 (2.26)

H
(2)
nm �

1

2 ∑
l∈S+

〈
n
��Ht

��l〉〈l
��Ht

��m〉 (
1

En − El
+

1

Em − El

)
(2.27)

where Ex is the eigenenergy of |x〉 with respect to H0. Unfortunately,
this technique only works if the two sections are non-degenerate. If we
have states outside the gap, we can move an electron between the dot
and the lead, and go between H− and H+ without changing energy.
This is seen as zeroes in the denominators above. We ignore this
problem for now.

A formula for H
(2)
nm

Inserting Equation (2.22) into Equation (2.21) yields

Ht � ∑
kiσ

tki u
∗
kγ

†
kσdiσ + σ∑

kiσ

tki v
∗
kγ−k σ̄diσ

+ ∑
kiσ

t∗ki uk d†
iσγkσ + σ∑

kiσ

t∗ki vk d†
iσγ

†
−k σ̄ .

(2.28)

If we rewrite Equation (2.27) as

H
(2)
nm �

1

2 ∑
ν∈S−

∑
kσ

〈
n
��Htγ

†
kσ

��ν〉〈ν��γkσHt

��m〉

×
(

1

En − Eν − Ek
+

1

Em − Eν − Ek

)
,

(2.29)
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and insert Equation (2.28), we get

H
(2)
nm �

−∑
σi j
ν∈S−

σ

2

〈
n
��diσ̄

��ν〉〈ν��d jσ

��m〉
∑

k

t−ki tk j v
∗
−k u∗

k

(
1

En−Eν−Ek
+

1
Em−Eν−Ek

)

+∑
σi j
ν∈S−

1

2

〈
n
��diσ̄

��ν〉〈ν��d†
jσ̄

��m〉
∑

k

t−ki t
∗
−k j |v−k |2

(
1

En−Eν−Ek
+

1
Em−Eν−Ek

)

+∑
σi j
ν∈S−

1

2

〈
n
��d†

iσ

��ν〉〈ν��d jσ

��m〉
∑

k

t∗ki tk j |uk |2
(

1
En−Eν−Ek

+
1

Em−Eν−Ek

)

−∑
σi j
ν∈S−

σ

2

〈
n
��d†

iσ

��ν〉〈ν��d†
jσ̄

��m〉
∑

k

t∗ki t
∗
−k j uk v−k

(
1

En−Eν−Ek
+

1
Em−Eν−Ek

)
.

(2.30)

Evaluating the k-sums.

To make progress with this expression, we employ the following stan-
dard approximations:

• Constant ∆. We further assume without loss of generality that ∆
is real and positive, and that uk and vk are real.

• The flat band approximation. We assume a constant tunneling
density of states Γa

i j
� 2πD(ξk)tki t

∗
k j

and Γb
i j

� 2πD(ξk)tki t−k j

within an energy band [−D ,D] where D(E) is the density of
states at energy E.

• uk � u−k and vk � v−k , which with the constant ∆ assumption is
equivalent to assuming ξk � ξ−k .

Focusing on the first sum over k in Equation (2.30) above, we have
within the above approximations

∑
k

t−ki tk j v
∗
−k u∗

k

1

E − Ek
�

Γ
b
i j

4π

∫ D

−D

dξk
∆

Ek(E − Ek)
(2.31)

where we used 2uk vk � ∆/Ek .[88] This is the first of the diverging
integrals that I mentioned in the introduction.
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Solving the integrals

To make life easy, we write Equation (2.31) as

Γ
b
i j

2π

∫ d

0

dx
1

R(z − R) (2.32)

where

x � ξk/∆, (2.33)

z � E/∆, (2.34)

d � D/∆, (2.35)

R �

√
x2

+ 1. (2.36)

A partial fraction decomposition transforms

∫ d

0

dx
1

R(z − R) �
1

z

∫ d

0

dx
1

R
+

1

z

∫ d

0

dx
1

z − R
. (2.37)

Focusing on the second term, we make the Euler substitution R � t+ x.
For this substitution

x �
1 − t2

2t
, (2.38)∫ d

0

dx � −
∫ η

1

dt
1 + t2

2t2
, (2.39)

where

η �

√
d2

+ 1 − d. (2.40)

Then, ∫ d

0

dx
1

z − R
�

∫ η

1

dt
1

t
+

∫ η

1

dt
2z

t2
+ 1 − 2zt

. (2.41)

Looking up this integral,[102] we have for |z | < 1

∫ d

0

dx
1

z − R
� ln η +

2z√
1 − z2

[
tan−1 t − z√

1 − z2

] η
t�1

. (2.42)

For z < −1 we could solve the integral using tanh−1 instead of tan−1,
and in this way keep to real numbers, but we get the same result if we
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let what is under the square root go negative. This assumes that we

pick the standard principal branches of
√

, tan−1 and tanh−1. For z > 1
the integral is divergent, but if we allow ourselves to take the Cauchy
principal value of the integral, then this is equal to the real part of the
above expression (still picking standard principal branches).

The ln η term is canceled by a similar term from the other integral
in Equation (2.37), so we can take the η→ 0 limit. Defining

I(z) � P.V.

∫ ∞

0

(
1

z − R
+

1

R

)
dx

� Re

[
2z√

1 − z2

[
tan−1 t − z√

1 − z2

] 0

t�1

] (2.43)

as the solution to these integrals, and

J(z) � 1

z
I(z), (2.44)

we can write Equation (2.31) as

Γ
b
i j

2π

(
J

(
En − Eν
∆

)
+ J

(
Em − Eν
∆

) )
. (2.45)

We now turn to the second term in Equation (2.30).

∑
k

t−ki t
∗
−k j |v−k |2

1

E − Ek
�

Γ
b
i j

2π

∫ D

−D

dξk |v−k |2
1

E − Ek

�

Γ
b
i j

4π

(∫ D

−D

dξk
1

E − Ek
−

∫ D

−D

dξk
ξk

Ek(E − Ek)

) (2.46)

where we used |vk |2 �
1
2

(
1 − ξk

Ek

)
.[88] The second term above is odd

and vanishes, the first term we can solve as above (skipping the initial
decomposition). We can solve the remaining terms in Equation (2.30)
in the same way.
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The final result

H
(2)
nm �

− ∑
σi j
ν∈S−

σ
〈
n
��diσ̄

��ν〉〈ν��d jσ

��m〉 Γ
b
i j

4π

(
J
(

En−Eν
∆

)
+ J

(
Em−Eν
∆

) )

+ ∑
σi j
ν∈S−

〈
n
��diσ̄

��ν〉〈ν��d†
jσ̄

��m〉 Γ
a
i j

4π

(
I
(

En−Eν
∆

)
+ I

(
Em−Eν
∆

)
+ const

)

+ ∑
σi j
ν∈S−

〈
n
��d†

iσ

��ν〉〈ν��d jσ

��m〉 Γ
a
ji

4π

(
I
(

En−Eν
∆

)
+ I

(
Em−Eν
∆

)
+ const

)

− ∑
σi j
ν∈S−

σ
〈
n
��d†

iσ

��ν〉〈ν��d†
jσ̄

��m〉 (
Γ

b
i j

) ∗
4π

(
J
(

En−Eν
∆

)
+ J

(
Em−Eν
∆

) )

(2.47)

with I(z) and J(z) as in equations (2.43) and (2.44).
The constants above diverge for large D, but they do not depend

on energy levels. They represents trivial hybridization of the dot states
through the lead, and can be absorbed into Himp. The σi jν-sums are
finite, and can be summed by brute force once H0 has been diagonal-
ized.

Figure 2.6 shows the theory applied to the proximitized Anderson
model. With NRG results for comparison.

2.2.4 Applicability

In deriving the effective hamiltonian (Equation (2.47)) we ignored pos-
sible degeneracies between H− and H+ which would render perturba-
tion theory invalid in principle. In the case where ∆ ≫ U, there are
no such degeneracies around the center of the coulomb valley, and the
above theory is valid. This makes intuitive sense, we allow only virtual
bogoliubons, which is a good approximation if the bogoliubons are ex-
pensive (if ∆ is large). However, in our experiments this is not the case,
in fact U is a few times larger that ∆.

Blindly applying the above theory to the regime of our experiments
leads to the results shown in Figure 2.7. A very generous person might
say that this theory correctly predicts that the sub-gap excitations bend
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Figure 2.6: This plot shows the developed theory applied to the
proximitized Anderson model. The theory is expected to be valid
for small Γ near the center of these plots. Plotted with NRG results for
comparison.
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Figure 2.7: Applying the developed perturbation theory outside the
realm of applicability yields somewhat disappointing results. When U
is this large, there will always be degeneracies between the two sectors
used for quasi degenerate perturbation theory.
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inwards to stay inside the gap, and that it further predicts that the
zero-crossings move close together stabilizing the singlet occupation
of the dot, but it is a bit of a stretch.

2.2.5 Odd occupation sector

We could instead have chosen to divide the Hilbert space into Ha

and Hb , where all states in Ha have the dot in odd occupation, and
all states in Hb have the dot in even occupation, and then found
an effective hamiltonian on Ha . This is equivalent to a standard
Schrieffer-Wolf transformation to a proximitized Kondo-hamiltonian.
The proximitized Kondo-hamiltonian was the focus of Yu, Shiba, and
Rusinov.[66,67,80,99] Today, theories based on this hamiltonian and vari-
ous extensions are very well developed, so this is well trotted territory.
Unlike what is presented here, this Schrieffer-Wolf transformation is
valid in the middle of the Coulomb valley, but it fails as one comes
nearer the zero crossings.

2.3 Projection via Discretization

In this section, we explore a simple numerical method that uses a
logarithmic discretization of the superconducting lead, to reduce the
dimensionality of the proximitized Anderson model (Equation (2.1)
on page 27), such that a projection onto a low energy subspace can
be done directly. This appealing technique covers the entire range of
occupations of the dot in one setting, and is (at least) valid whenever
the methods based on the previously described perturbation theory is
valid.

The discretization we employ, is the same as the logarithmic dis-
cretization Wilson used in the context of the NRG process,[92] which
we will return to in Chapter 6.

2.3.1 Discretization

To make the exposition clear, we will develop the method of logarith-
mic discretization in the context of the ordinary (not proximitized)
Anderson model defined by

H � Hd + Hl + Ht (2.48)
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where

Hd � ∑
σ

ǫd†
σdσ +

U

2

(
∑
σ

d†
σdσ − 1

) 2

, (2.49)

Hl � ∑
kσ

ξk c†kσckσ , (2.50)

and

Ht � ∑
kσ

tkσd†
σckσ + HC, (2.51)

using the same definitions of symbols as in Equation (2.1) on page 27.
We define a sequence of disjoint energy intervals {I0 , I1 , ...}, such

that the union of these intervals covers the conduction band of the lead.
Also, we use the symbolΛn for the set of all k-vectors such that ξk ∈ In .

For each interval, n, and spin, σ, we now define the operator

fnσ0 � anσ ∑
k∈Λn

ckσ , (2.52)

where anσ is a normalization factor given by a−2
nσ � { f †nσ0 , fnσ0}. Then

we arbitrarily define fnσi for all i in N, such that { fnσi |i ∈ N0} is an
orthonormal basis for the operators {ckσ |k ∈ Λn}.2 Orthonormal, in
this context, means that {

f †nσi , fnσ j

}
� δi j . (2.53)

In terms of these new operators,

∑
k∈Λn

ckσ � a−1
nσ fnσ0 , (2.54)

which is just Equation (2.52) rewritten, and

∑
k∈Λn

c†kσckσ � ∑
i∈N0

f †nσi fnσi , (2.55)

which is the statement that the total number of fermions in the interval
is independent of the choice of single-particle basis.

2The existence of such a basis follows from the fact that the operators {ckσ |k ∈ Λn}
of a interval form an inner product space, with the inner product (a , b) defined as the

anticommutator {a† , b}. More on this in Chapter 6. Also, we will look at a specific basis
soon.



2.3. PROJECTION VIA DISCRETIZATION 43

Now for the crucial bit: We assume that ξk and tkσ within each
interval can be approximated by constants, i.e. within the interval n,
we set ξk to some appropriate ξn independent of k and likewise for tkσ.
This allows us to rewrite, Hl and Ht , as

H′
l � ∑

nσ
∑

k∈Λn

ξn c†kσckσ � ∑
nσi

ξn f †nσi fnσi , (2.56)

and

H′
t � ∑

nσ
∑

k∈Λn

tnσd†
σckσ + HC � ∑

nσ

a−1
nσ tnσd†

σ fnσ0 + HC, (2.57)

using equations (2.54) and (2.55). We will justify this approximation in
a specific context later.

Within the above approximation, the dot completely decouples
from all states fnσi with i ≥ 1, so these states can be ignored for
the purpose of computing the hybridization of the dot states. What we
have accomplished, is a significant reduction of the number of multi-
particle states in the system.

As a final note, within the flat band approximation, we can simplify H′
t

of Equation (2.57) a bit. In the flat band approximation, the tunneling
density of states,

Γkσ � 2πt2
kσD(ξk), (2.58)

is assumed to be a constant irrespective of k. Here D is the function
giving the density of states. The quantity a−1

nσ tnσ appearing in H′
t can

then be written as

a−1
nσ tnσ �

√
∑

k∈Λn

1 × tnσ �

√
ζnΓσ/(2π), (2.59)

where ζn is the energy width of the n’th interval. To summarize:

H′
� Hd + H′

l + H′
t (2.60)

H′
l � ∑

nσi

ξn f †nσi fnσi , (2.61)

H′
t � ∑

nσ

Γ
′
nσd†

σ fnσ0 + HC (2.62)

Γ
′
nσ �

√
ζnΓσ/(2π) (2.63)
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2.3.2 Logarithmic cuts

When performing the discretization, we have to make a choice of energy
intervals. To this end, we define the logarithmic energy cuts

e±n � ±DΛ−n , (2.64)

for all n in N0 and for both positive and negative excitation energies.
Here, D is a bandwidth that we assume for the lead, andΛ is a unitless
discretization factor, which is usually on the order of 2 to 4.

We now define intervals bounded by the cuts. Let ν be the combi-
nation of a sign s and an integer n, then the interval Iν , containing the
set of wavenumbers Λν , is bounded by the excitation energies e s

n and
e s

n+1. We further define

ξν �
1
2

(
e±n + e±n+1

)
� ±DΛ−n × 1

2

(
1 +Λ

−1
)
, (2.65)

ζν �
�� e±n − e±n+1

�� � DΛ−n ×
(
1 −Λ−1

)
, (2.66)

which corresponds to the average excitation energy and the energy
width of the interval.

To make the number of states finite, we pick an infrared cutoff, nmax ,
based on the longest length-scale in the system, and only keep intervals
with n < nmax .

2.3.3 Why logarithmic?

We used a discretization scheme with logarithmicly spaced energy
cuts, that is e±n � ±DΛ−n . But is this the best choice? To tackle this
question, we use perturbation theory, with the deviation from the exact
hamiltonian as our perturbation. Specifically, we write

H � H′
+ He (2.67)

where H′ is the discretized hamiltonian given by H′
� Hd + H′

l
+ H′

t ,
and He is an error term

He
� He

l + He
t , (2.68)

with

He
l � ∑

ν
∑

k∈Λν
(ξk − ξν)c†k ck , (2.69)
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and

He
t � ∑

ν
∑

k∈Λν
(tk − tν)dck + HC (2.70)

where we dropped the spin indices for the sake of clarity. In terms of
the discretized operators, an operator ck where k ∈ Λν can be expanded
as

ck � aν fν0 + ∑
i>0

bkνi fνi , (2.71)

where aν and bkni are expansion coefficients. Inserting these into the
error terms, we get

He
l � ∑

νi

K∗
νi f †νi fν0 + ∑

νi

Kνi f †ν0 fνi + ∑
νi j

Lνi j f †νi fν j (2.72)

He
t � ∑

νi

Mνi d fνi + HC, (2.73)

where

Kνi � ∑
k∈Λν

(ξk − ξν)bkνi a
∗
ν (2.74)

Lνi j � ∑
k∈Λν

(ξk − ξν)b∗kνi bkν j (2.75)

Mνi � ∑
k∈Λν

(tk − tν)bkνi , (2.76)

and we assumed that

∑
k∈Λν

(ξk − ξν) � ∑
k∈Λν

(tk − tν) � 0, (2.77)

which can be arranged by proper choice of ξν and tν . Note, that
ξk − ξν is not larger than the width of the n’th band and is therefore

proportional to ξν(1 −Λ−1), and similarly tk − tν ∝
√
ξν(1 −Λ−1).

Ignoring He
l

for a moment, and considering only He
t , the above

calculations show that an excitation created by f †
nσi

, which has energy

ξν , couples to the impurity with a coefficient proportional to
√
ξν . If

we are concerned with the dynamics of the impurity near the Fermi
level, and we drop this state, then perturbation theory tells us that the
mistake we make is proportional to (1 − Λ−1) and does not depend
on n in any asymptoticly bad way. This is not true of, say, a linear
discretization.
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He
l

ruins our day a little bit, since it couples near degenerate states,
and therefore defies perturbation theory. This is not so surprising. In
the absence of an impurity, the excitations of the lead are localized in
energy, and there is no smooth way for these excitations to evolve into
the delocalized excitations represented by the discretized operators.
Note, that if the lead is strongly coupled to the dot, then a delocalized
excitation will be “picked out”, which couples directly to the impurity,
in which case we could proceed with perturbation theory.

Let us leave this discussion slightly unresolved and proceed to the
matter at hand: Proximitized dots.

2.3.4 Discretizing a proximitized dot

We are now in a position to tackle the proximitized Anderson model
given in Equation (2.1) on page 27. The discretization is much the same
as above, but we discretize the bogoliubons instead of Fermi liquid
quasiparticles. Specifically, we define

fνσ � aν ∑
k∈Λν

γkσ (2.78)

where each ν is the index of a logarithmic energy interval as defined
above, and aν is a normalization constant. We still discretize based on
the Fermi liquid excitation energies, ξk , not the bogoliubon excitation
energies, therefore we have bands at both positive and negative ener-
gies. The fully discretized hamiltonian is given by

H � Hd + Hl + Ht (2.79)

where

Hd � ∑
σ

ǫd†
σdσ +

U

2

(
∑
σ

d†
σdσ − 1

) 2

, (2.80)

Hl � ∑
νσ

Eν f †νσ fνσ , (2.81)

and

Ht � ∑
νσ

tνd†
σ

(
uνσ fνσ − vνσ f †

νσ

)
+ HC, (2.82)
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and we used the constants

Eν �
√
ξ2
ν + ∆

2 , (2.83)

tν �
√
Γζν/(2π), (2.84)

uνσ �

√
(1 + ξν/Eν)/2, (2.85)

vνσ � σ ×
√
(1 − ξν/Eν)/2. (2.86)

2.3.5 Projecting onto low energies

The next step of the procedure is to project the hamiltonian, H, of
Equation (2.79) onto a low-energy subspace and diagonalize. This we
do in a very straightforward way. We let l be 1 or 2, and define a basis{��ψn

〉}
, for all Fock states with l or less bogoliubon excitations in the

lead. We then construct the matrix

Hnm �

〈
ψn

�� H
��ψm

〉
(2.87)

and diagonalize numerically. The only slightly tricky bit here, is how to
generate all these matrix elements, keeping track of the different Fock
states. Here, we use a library written for Haskell, and this library is
described later in Section 2.3.7.

It would be nice if we could include states with more bogoliubons,
but the time and space complexity of the procedure scales exponentially
with l, and for l > 2 it becomes impractical to run.

2.3.6 Analyzing the results

For the plots in Figure 2.8, we ran the described process simulating the
proximitized Anderson model. We fixed ∆ � 1 and U � 5 and varied
Γ to show the effect of hybridization.

The first column of plots show excitation energies. Here,
��ψ〉

with

energy Eψ is the lowest energy singlet state of the system, and
��φ〉

with energy Eφ is the lowest energy doublet state, and we plot both

the energy of the transition from
��ψ〉

to
��φ〉

and from
��φ〉

to
��ψ〉

. In
addition, we also plot results from simulating the same system using
the NRG process (Chapter 6). The second and third column shows
expectation values of ndot and nlead, where ndot counts the number
of electrons on the dot and nlead counts the number of bogoliubon
excitations in the lead. Both

〈
ψ
��ndot

��ψ〉
and

〈
φ
��ndot

��φ〉
are plotted and

likewise for nlead.
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Figure 2.8: Excitation energies and other key parameters of sub-gap
states obtained using the technique described in Section 2.3.

��ψ〉
is the

lowest energy singlet state of the system, and
��φ〉

is the lowest energy
doublet state. Details in text.
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Let us compare the results from this technique to the ones derived
from the NRG process. We see that for strong coupling, this technique
predicts excitation energies higher that ∆ whereas the NRG process
does not. Clearly, it is not physical for the lowest parity changing
excitation to have an energy higher than ∆, as we can always just excite
a bogoliubon far from the impurity to change the parity.

When a superconductor is coupled to an impurity, the number of
bogoliubons is no longer a good quantum number, and there is no limit
to how many bogoliubons the new eigenstates of sytem can involve.
Therefore, it is not surprising that projection onto a ≤ 2 bogoliubon
subspace becomes a bad approximation for strong coupling. The NRG
process does not suffer from this problem because it does not involve
this projection.

For small coupling, the two techniques yield similar results, and
this technique is much simpler to understand and implement.

2.3.7 Implementation

The execution time of any good implementation of this process is dom-
inated by the time required to find the eigenvectors of Equation (2.87),
but as this is handled by a dedicated linear algebra library3 the main
complexity of the implementation therefore lies in generating the co-
efficients of this matrix. The solution we adopt, allows for the hamil-
tonians of the system to be expressed in essentially the same way as
you would on paper. That is, a hamiltonian is written by combining
creation and annihilation operators using the standard operations of
the corresponding operator algebra.

Consider a system that has already been discretized, then it will
have a finite set of creation and annihilation operators corresponding
to the single particle states of the system (i.e. those of the dot and of
the discretized states). Let I be the set of labels used for these single-
particle states, which we give an arbitrary total order.

Let H be the many-particle states of the system, and let S � P(I) be
the set of all subsets of I. We now define the function fock : S → H
such that

fock s �

(
∏
i∈s

c†i

)
|0〉 (2.88)

where c†
i

creates a fermion in state i, |0〉 is the vacuum state, and the
product runs over the elements of s in order.

3We use the LAPACK wrapper hmatrix.
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Clearly, fock is injective and the range of fock is an orthonormal
basis forH . In our software, we identify states inH with sparse vectors
of these basis states, implemented as associative arrays using S as the
key type and C as the value type. This allows us to work with states in
H even though H has a staggering number of dimensions.

Haskell (like many other high-level languages) has first class func-
tions and closures.4 Therefore, having found a representation for H ,
we can just use the type of functions (H → H) to represent operators
on H . We now define functions plus, multiply, scale, etc. corre-
sponding to the algebra of operators on H ,

(plus( f , g))(x) � f (x) + g(x), (2.89)

(multiply( f , g))(x) � f (g(x)), (2.90)

(scale(λ, f ))(x) � λ f (x). (2.91)

To complete the goal of being able to write hamiltonians like on
paper, we define two functions raise, lower : I → (H → H) which
constructs c†

i
and c

i
from a given label i. Because of the representations

we are using, this is fairly straightforward, and these functions are
specified by 11 reasonably clear lines of code in total (that we will not
show here).

As an example of how this works out in practice, consider the
hamiltonian

Hd � ǫq + Uq2 (2.92)

where

q � n↑ + n↓, (2.93)

nσ � d†
σdσ . (2.94)

This becomes the following Haskell code:

h_d epsilon u =

plus (scale epsilon charge) (scale u (square charge))

where

charge = plus (n up) (n down)

n spin = multiply (raise spin) (lower spin)

square x = multiply x x

4A closure is a nested function that depends on local variables at the point of definition.
The run-time representation of a closure includes a function pointer as well as copies of
the local variables referenced by the function.
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S

N N

Figure 2.9: A schematic of a Cooper pair splitter.

In practice, we define operators corresponding to plus, multiply,
scale, etc. with the expected precedence to make the translation of
more complex expression straightforward.

What has been presented here is an example of an Embedded De-
main Specific Language (EDSL), which Haskell is well known for easily
accommodating.[50]

2.4 Non-local Andreev Reflections

An Andreev reflection is a process where an electron from a metal
or a semiconductor impinges on a superconductor and is reflected as
hole, or in the opposite direction, if a hole is reflected as an electron.
We rarely uses holes as the quasiparticles when describing quantum
dots, so for a proximitized dot, it is helpful to reformulate the above as
process involving only electrons. Then, an Andreev reflection is when
two electrons from a dot enter a superconductor, without leaving any
bogoliubons (this is possible because charge is not conserved).

As a virtual process, one can imagine first one of the electrons
entering the superconductor, then the second enter, and then the two
electrons interact with the order parameter to destroy each other (via
the term ∆ck↑c−k↓ of the hamiltonian). Going in the other direction, in

a virtual process, two electrons are created by the term ∆c†−k↓c†
k↑, then

one tunnels out, then the other.
If the two electrons go into (or come from) different structures, for

example two different dots, then this is known as a non-local Andreev
reflection.

2.4.1 Cooper pair splitters

A Cooper pair splitter, or Andreev entangler,[64] is a clever device mak-
ing use of non-local Andreev reflections to construct non-local singlet-
entangled electron pairs. Figure 2.9 shows a schematic of the device.
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The idea is to suppress local Andreev reflections by the charging en-
ergy of the dots. Specifically, two dots are coupled to the same central
superconductor and to individual normal leads. To describe the opti-
mal regime to be in, we define the following entities:

µ1, µ2, µS The chemical potential of the two normal leads and the
superconductor. We assume µ1 � µ2 and call the both
µN .

δµ The bias of the device δµ � µS − µN .

Γ1, Γ2, ΓS The tunneling density of states to each lead.

δǫ The approximate level spacing of the two dots.

The two dots are brought to resonance with the superconductor and
the device is forward biased (δµ > 0), so that the dots are filled by the
superconductor and emptied by the normal leads. The superconductor
creates only pairs of singlet entangled electrons because it has SU(2)
rotation symmetry and its hamiltonian must conserve spin, and since
these electrons cannot go into the same dot because of U, they must go
into different dots creating a non-local singlet.

Above we discussed resonant transport, but this competes with
higher order process, that can involve local Andreev reflections instead.
The two dominant (to lowest order in Γ1) virtual processes, by which
both electrons are injected into dot number one are:

A: Two electrons are spawned in the superconductor. One electron
exits into the dot. The dot is emptied through the normal lead.
The second electron enters the same dot.

B: Two electrons are spawned in the superconductor. One electron
exits into the dot. The second electron exits into the same dot,
bringing it to double occupancy. One of the two electrons leave
the dot through the normal lead.

Process A has an intermediate state with an electron in the supercon-
ductor and will be suppressed if ∆ is big compared to Γ1, whereas
Process B has an intermediate state with a doubly occupied dot and
will be suppressed if U is large compared to Γ1. The regime we are
ultimately interested in is given by[64]

∆,U, δǫ > δµ > Γ1 , Γ2 , kBT and Γ1 , Γ2 > ΓS . (2.95)

Cooper pair splitters have been realized experimentally and with very
high efficiency (the ratio of non-local transport to local transport).[11,25,27,28,75,76]
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Chapter 3

Fabrication

There are many approaches to forming and proximitizing quantum
dots, each with associated strengths and weakness. In a short 3-year
project, only few of these approaches can be seriously pursued, and
therefore all devices fabricated for this thesis are bottom gated InAs
nanowire devices as shown in Figure 3.1. In the literature, one finds a
zoo of other options, and we begin this chapter with an overview.

One of the first clear signatures of a Yu-Shiba-Rusinov bound state in
an N–dot–S device was recorded by Deacon et al. using self-assembled
InAs quantum dots.[14,15] However, due to their shape, these dots are
not very amenable to electrostatic tuning of contact barriers, making
them less ideal for our N–dot–S study. For more complicated devices,
such as proximitized double dots and Cooper pair splitters, this prob-

Contacts (Au/Al)

Nanowire (InAs)

Dielectric

Bottom gates

Substrate (SiO2)

. . .

Figure 3.1: The general make-up of a bottom gated InAs nanowire
device. This is a side view, and not to scale. The substrate is a piece of
silicon with an SiO2 layer grown on top. There is also a scale rendering
of a particular device in the data section (Figure 5.1 on page 116).
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300 nm

Au

InAs dot

Al

300 nm
Au

Pb

Graphene

300 nm300 nm

Al

PdPd

Nanotube

Au Au
Al

Nanowire

Au
Pb

Figure 3.2: A small selection of the many systems containing quantum
dots that have been proximitized to a superconductor in the literature.
Going clockwise from the top right, we have a self-assembled InAs dot
in an N–dot–S configuration,[14] a proximitized graphene ribbon,[17] an
InAs nanowire Cooper pair splitter,[11] and a carbon nanotube Cooper
pair splitter.[75]



3.1. FABRICATED DEVICES 57

lem is exacerbated.
An option that is actively pursued by other members of the Source

of Entangled Electrons in Nano Devices (SE2ND) project is nanopat-
terned graphene, mainly for the possibility of adjoining a beam-mixer
directly to a Cooper pair splitter as a means to test for entanglement.
Working with graphene, especially patterning graphene, and keeping
it clean in the process is a tricky business, so unless the need for com-
plex branching devices is present, a nanowire or nanotube is a simpler
option than a patterned graphene sheet.

Many hybrid devices based on carbon nanotubes, including N–
dot–S devices, have been reported in the literature (e.g. [25, 61]). Like
nanowires, carbon nanotubes can easily be made gateable, and unlike
nanowires, have no insulating oxide to penetrate before contacting.
But, perhaps the biggest advantage nanotubes have over nanowires is
that, in many cases, the exact nature of the electron orbitals in a nano-
tube can be accounted for with a simple theoretical model motivated
from first principles.[34,41,55] Nanotubes have less spin-orbit coupling
than e.g. InAs or InSb nanowires, but it can still be sizable, and the
direction of the coupling is predictably along the direction of the nano-
tube. Nanowires, in contrast, have g-factors and spin-orbit couplings
that vary wildly and unpredictably between levels, both in magnitude
and direction, inhibiting theoretical modeling.

To their detriment, carbon nanotubes are hard to clean, as oxygen
plasma ashing readily removes the nanotubes themselves, and sonica-
tion is suspected to cause defects. In order to take advantage of the
predictability of nanotubes mentioned above, it is therefore necessary
to use an ultra-clean process[41] where the nanotube is grown in the very
last fabrication step, or at least limit the amount of processing done
after nanotube growth. This can make complicated devices tricky to
implement.

3.1 Fabricated Devices

All devices fabricated for this PhD project are based on InAs nanowires
contacted with gold, aluminium, and niobium titanium nitride. The
devices fell into three categories, Cat. I, Cat. II, and Cat. III.

Cat. I devices are simple Au–nanowire–Al or Al–nanowire–Al de-
vices using the substrate for gating. These devices were fabricated us-
ing sulfur-passivation before contacting (see Protocol 2), which worked
very unreliably for me. The devices that did make it through to a cryo-
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stat exhibited a lot of switching noise and did not show clear single-dot
behavior.

Cat. II devices are bottom gated (see Figure 3.1) nanowire devices.
They have a central aluminium contact and two adjacent gold contacts,
with enough space to tune up either a single dot or a double dot on
either side of the aluminium contact. These devices also feature ancil-
lary quantum dots, which are supposed to be capacitively connected
to the central region through floating gates (but this never worked).
More details about the geometry will be given in Section 3.7. Unless
otherwise noted, everything in this thesis pertains to a Cat. II device.
Protocol 1 gives a complete protocol for the fabrication of such a device
and Figure 3.3 shows a SEM micrograph and schematic.

Cat. III devices are bottom gated InAs nanowire devices in mi-
crowave resonators. The wires had half-covering NbTiN contacts.
These were fabricated for the group of Takis Kontos who supplied
the microwave resonators absent devices. Unfortunately, I did not get
any of these devices to work (see Section 3.9), but they were intended
to implement the proposal in [9].

3.2 Fabrication Protocols

Fabrication protocols are scattered throughout this chapter. There is
an index on page 13. In the protocols, to ash means to clean with
an oxygen plasma asher. The exact timing will depend on the asher
used, but ours removes Poly(methyl methacrylate) (PMMA) at a rate
of about 12 nm/min. Likewise, the Kaufmann mills in our evaporation
chambers remove SiO2 at a rate of 2.5 nm/min. However, as the milling
rate varies significantly over time, we occasionally measure it using an
SiO2 sample and a profilometer and adjust the timing in the protocols
accordingly.

In the following sections, the main steps and non-trivial elements
in the developed protocols will be addressed one by one.

3.3 Bottom Gates

The bottom gates were fabricated in gold using E-beam lithography.
A positive resist was used; the gold was deposited in vacuum and
lifted off. Since the bottom gates are very closely spaced—with a
center to center distance of down to 50 nm—and are relatively long
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Al

Au Au

Floating gate (Au) Floating gate (Au)

300 nm

Schematic

SEM Micrograph

Au Au

Figure 3.3: The above micrograph and schematic show a device viewed
from above. Later devices had more space between the contacts than
shown here.
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Protocol 1: Bottom gated devices

Steps:

1. Create bonding pads and
alignment marks.

2. Follow Protocol 3 on the next
page to create bottom gates
and additional alignment
marks.

3. Follow Protocol 5 on page 65
to create dielectrics.

4. Suspend nanowires in IPA
using sonication.

5. Deposit nanowire suspension
on sample until you have
enough.

6. Follow Protocol 6 on page 72
to create gold contacts and
additional alignment marks.
Use 10 nm Ti and 90 nm Au.

7. Follow Protocol 6 on page 72
to create aluminium contacts.
Use 5 nm Ti and 95 nm Al.

8. Follow Protocol 3 on the next
page to create floating gates.

Notes:

The bottom gates should be
covered with dielectric soon after
formation (cf. Section 3.3.1).

Protocol 2: Sulfur passivation

Chemicals:

Solution: S(NH4)2 20% in H2O.

Preparation:

1. Locate a small vial with an
air-tight lid.

2. Clean the vial thoroughly.

3. Add 480 mg sulfur and 5 mL
solution.

4. Dissolve sulfur by heating to
35 ◦C.

Steps:

1. Heat vial to 35 ◦C (keep the
lid on).

2. Submerge sample in solution
for 5s.

3. Immediately submerge in
H2O for 30 s.

4. Transfer to metal evaporation
chamber quickly.

Notes:

Originally from [84]. Do not
expose passivated chip to strong
light. Yield was low for me. H2S
gases are deadly and reek. Not
recommendable.
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Protocol 3: Fine lithography

Chemicals:

Developer: Mix 70 vol% IPA with
30 vol% H2O.

A2: MicroChem NANO 950
PMMA, 2% sol. in Anisol.

Steps:

1. Rinse sample with H2O,
acetone, and IPA.

2. Ash for 60 s.

3. 4 min on a 185 ◦C hot-plate.

4. Spin-coat A2 at 5000 RPM.

5. 4 min on a 185 ◦C hot-plate.

6. Expose using a 500 pA beam
at 100 kV. Use 4200 pC/cm
for lines, 2600 µC/cm2 for
areas.

7. Submerge in 2 ◦C developer
for 20 s with sonication.

8. Submerge in 2 ◦C IPA for 5 s
with sonication.

9. Dry with nitrogen.

10. Ash for 20 s.

11. Pump down in evaporation
chamber for 15 min.

12. Deposit 5 nm Ti and 12 nm
Au.

13. Follow Protocol 4 on the
following page.

Notes:

This protocol should give you
parallel bottom gates at 55 nm
center to center distance
consistently.

(microns), the resist structure is prone to collapse and delamination
during development. To mitigate this problem, a thin single-layer
resist should be used. Is is also important, that the sample is rinsed in
Isopropanol (IPA) before it is dried, as a liquid with a higher surface
tension, such as water, pull at the structure when it dries. Since the
resist layer is thin and has no overhang, the metal film has to be thin
also to get a good lift-off, and sonication during lift-off is a good idea.

As resist are developed, the developer dissolves into the partly ex-
posed resist, forming a gel. The extent to which this happens, depends
on the type of developer used, and the temperature of the process.
Since the gel causes rough edges that could cut the fine gates, I do
development using a 2 ◦C mixture of IPA and H2O, followed by a 2 ◦C
IPA bath as a stopper. Sonication is used during development to help
lift away dissolved material. These techniques are from [8, 31, 94]. See
protocols 3 and 4 for the complete protocol.
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Protocol 4: Lift-off

Chemicals:

NMP: N-Methyl-2-pyrrolidone.

Steps:

1. Submerge in NMP at 85 ◦C
for 1 min with sonication.

2. Leave in NMP at 85 ◦C for
1 hour with no sonication.

3. Optionally, take the NMP
beaker with the sample out of
the hot bath and leave
overnight. Warm up NMP
again before proceeding.

4. Use pipette with NMP to
remove metal film.

5. Submerge in NMP (second
bath) at 85 ◦C for 1 min with
sonication.

6. Use a needle and syringe
with NMP to clear the sample
completely.

7. Rinse with IPA.

8. Dry with nitrogen.

Notes:

Using two baths is essential when
doing a lift-off with NMP.
Do not let sample dry between
steps.
NMP is a polar aprotic solvent
with a high boiling point: 200 ◦C.

3.3.1 Gold migration

An interesting effect happens to the bottom gates during later process-
ing or aging, which is shown in Figure 3.4. The depicted sample was
subjected to 3 layers of lithography after forming the bottom gates,
which entails a total of 24 min on a 185 ◦C hot-plate, and approxi-
mately 10 min in an N-Methyl-2-pyrrolidone (NMP) bath with sonica-
tion. Whether this is caused by surface migration and sintering of the
gold, or by mechanical removal during sonication is hard to tell, but
the cure is simple: Just cover all thin sections of the bottom gates with
the dielectric.

3.4 Dielectric

The objective of the dielectric is to galvanically isolate the bottom gates
from the nanowire, while still allowing the potential of the gates to
be felt on the wire. The obvious questions are “How thick should the
dielectric be?” and “What should the dielectric be made of?”. In this
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1 µmBefore After

Figure 3.4: Two SEM micrographs of the same sample, before and
after 3 layers of lithography. The lower half of each picture is covered
with HfO2 which protects the gold gates.

section we will try to answer these questions in a rational way.
The maximal potential that can be applied between the individual

bottom gates, and between the gates and the leads running on top of the
dielectric, is limited by two effects: First, the dielectric may experience
break-down, a catastrophic event that blows the device to smithereens
with no warning. Alternatively, the dielectric may start leaking, with
resistances on the order of a GΩ. This sounds harmless but it causes
severe switching noise in the device. A possible explanation is that
shot noise in the leakage current, multiplied by the resistance of the
leakage path, causes a fluctuating potential that is felt by the device.

We will be applying comparable voltages between two bottom gates
and between a bottom gate and the leads running on top of the di-
electric. This suggests that the dielectric should be at least as thick
as the distance between the gates. This is an oversimplification, since
there is a material boundary between the substrate and dielectric, so
the lateral breakdown will likely occur earlier. I chose a thickness of
24 nm for the dielectric in all my devices, which is roughly comparable
to the distance between gates.

Table 3.1 shows a selection of commonly used dielectrics that we
can fabricate in our lab. For each dielectric is given: The breakdown
field, Eb , which is the maximal voltage per distance that the material
can hande, and the dielectric constant, εr . The breakdown field of each
dielectric is measured at room temperature, and since breakdown is a
thermally activated process, I expect my dielectrics to perform better.
On the other hand, my dielectrics are very thin, and are more likely to
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Table 3.1: Commonly used dielectrics

Dielectric Refs. EB (V/nm) εr (d.u.)

Al2O3 [59, 98] 0.7 9
HfO2 [59, 98] 0.5 25
Si3N4 [59, 98] 1.2 7
SiO2 [59, 78] 0.8 3.9

Details: EB is the electrical field the material can handle before break-
ing down, and εr is the relative permittivity of the material. EB is
measured at room temperature.

VwVg Vl

Cdi Cscr

Figure 3.5: Circuit used to model a gated wire screened by a lead. Cdi is
the capacitance of the dielectric, Cscr is the capacitance to the screening
lead, and Vg , Vw , and Vl are the potentials of the gate, nanowire, and
lead respectively.

have defects spanning a significant portion of the dielectric.

To make a choice of material, consider a simplified electrostatic
model of a bottom gate, a dielectric, a nanowire, and a screening lead,
given by the circuit in Figure 3.5. If we assume the charge on Cdi and
Cscr are in balance, then Vw is simply the average of Vg and Vl weighed
by Cdi and Cscr respectively. If we set Vl to 0, then maximal potential,
Vmax

w , we can get before the gate gets in trouble is

Vmax
w �

Cdi

Cdi + Cscr
EBD (3.1)

where D is the thickness of the dielectric. Assuming Cscr ≫ Cdi which
is usually the case, we see that Vmax

w is proportional to the product εrEB

of the dielectric. From this simple consideration, HfO2 is the most
promising dielectric of Table 3.1.



3.4. DIELECTRIC 65
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Figure 3.6: Fencing of a 24nm HfO2 layer caused this lead to fail.

Protocol 5: Dielectric

Chemicals:

A4: MicroChem NANO 950
PMMA, 4% sol. in Anisol.

Steps:

1. Spin-coat A4 at 4000 RPM.

2. Do your exposure and
develop.

3. Ash 2 min.

4. Deposit 80 layers of HfO2
using ALD. Sample should
be 100 ◦C.

5. Follow Protocol 4 on page 62.

6. Repeat steps 1–5.

7. Repeat steps 1–5 again.

Notes:

In each iteration, shrink the
exposed pattern by 200 nm.
If the lift-off was not complete,
just try again with more
sonication. It will work
eventually.

3.4.1 Fencing

The way we deposit HfO2 in our lab is with Atomic Layer Depositioning
(ALD), which creates a conformal coating. This creates a nasty problem
when used with standard lift-off lithography, as the oxide covering
the walls of the resist are often left behind (see Figure 3.6). The effect
is called “fencing”, and can be combated to a certain degree with lots
of sonication during lift-off, but to my best efforts the yield is still low
when depositing sizeable layers. To circumvent this problem, I deposit
HfO2 in three lithography steps, with only 8 nm deposited in each step.
A crude but effective solution.
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Figure 3.7: I/V curves for 5 different bottom gates that experienced
breakdown. “g12” was traced before and after breakdown. The slope
at 0 V for some of the gates is due to leakage in the breakout box of the
setup. Note the changing scale of the x-axis.

3.4.2 Breakdown and leakage measurements

While I did no systematic testing of dielectrics in this PhD, one of the
samples I fabricated had a lithography problem in one of the last steps
(the aluminium contacts) rendering it otherwise useless, and therefore
created a good opportunity to test dielectric breakdown. The sample
was tested at 30 mK by hooking up a source measure unit to each gate
in succession, keeping the other gates at ground potential. Blowing
up one gate in this way, is likely to have an effect on adjacent gates,
so I tried to spread out the order in which the gates were measured.
Some results are shown in Figure 3.7 and the aftermath in Figure 3.8.
Some gates leaked before breaking down, others broke down with no
warning. Most of the gates could take around 30 V before breaking
down.
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1 µm

Figure 3.8: This 7×8 mosaic of SEM micrographs shows the aftermath
of tests done to device “A” of sample “N1”. The aluminium leads
on this sample are broken due to underexposure of this lithography
step, so the sample was instead used to test how high fields the HfO2
dielectric can withstand before breakdown.
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Figure 3.9: (a) SEM micrograph of InAs nanowires from the same batch
used for this project. The nanowires are still on the growth substrate
and are imaged at a 15° inclination. The nanowires are perpendicular
to the surface of the substrate and they point in the [111] direction. (b)
TEM micrograph of a nanowire from the sample, where crystal defects
can be seen as dark bands or lines across the sample.[52] Micrographs
courtesy of Morthen Hannibal Madsen.

3.5 Nanowires

All data presented in this thesis was collected from devices based
on one batch of InAs nanowires, NBI813, grown within our group
by Morten Hannibal Madsen in collaboration with Peter Krogstrup,
Claus B. Sørensen and Erik Johnson.

These nanowires (see Figure 3.9) were grown using a two step pro-
cess which reduces the number of stacking faults in the wire:[52,82] First,
a gold film is deposited on an InAs(111)B substrate and annealed to
yield gold droplets with a radius of approximately 20 nm. The sub-
strate is placed in an Molecular Beam Epitaxy (MBE) chamber, and
InAs is deposited under conditions that favor the growth of nanowires
in the [111] direction from the gold seeds. These nanowires adopt the
radius of the gold droplets, and because the wires are thin, they grow
to form pure wurtzite crystals with few stacking faults. In the second
stage of the growth, the conditions in the chamber are changed so that
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radial growth is favored. Now, the nanowires are increased in diam-
eter to a practical ≈ 70 nm, keeping the low number of stacking faults
present in the thin templates.

To get these nanowires onto a sample for the purpose of making
devices, sonication in IPA is used to liberate the nanowires from the
growth substrate and form a suspension. This suspension is then
deposited on the sample and left to dry. This technique is known as
wet depositioning, and gives a mostly random distribution of nanowires
on the sample. In contrast, dry depositioning of nanowires involves
using a clean-room wipe to to transfer nanowires directly from the
growth substrate to the device sample, and should not be used when
fabricating bottom gated devices, or the gates and dielectric may be
damaged.

3.6 Contacts

For the superconducting contacts I mainly used aluminium, a super-
conductor with a small superconducting gap (∆ � 180 µeV[63]). This
is a common choice, but many researchers swear to superconductors
like niobium, niobium titanium nitride, and lead, with a larger gap.
A larger gap would hypothetically make it easier to resolve sub-gap
states, but there are many differences between these materials that
make direct comparisons difficult.

An overview of commonly used superconductors is given in Ta-
ble 3.2, but note that thin films can have a much higher critical field, es-
pecially in the plane of the film. The high critical field of all the large gap
superconductors makes it difficult to do control experiments, where the
superconductor is brought normal with a magnetic field. There is also
the issue of how hard the gap of the supercondcutor is, where a hard
gap has fewer excitations possible inside the gap. Devices made from
aluminium are generally consider to have a harder gap than devices
made from niobium and other type II superconductors. A last point
in favor of aluminium as a contacting material is its large coherence
length, which is important for Cooper pair splitters.

Speaking of Cooper pair splitters, there has been some debate over
how wide the central superconductor can be before crossed Andreev
reflections are suppressed. In particular, when the wire is well coupled
to the superconductor, one would expect the central system to behave
as the three-dimensional superconductor constituting the contact (and
not as a 1D proximitized segment of the wire), and in this case destruc-
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Table 3.2: Commonly used superconductors

Material Refs. ∆ Bc1 Bc2 ξ Notes
(meV) (mT) (T) (nm)

Al [63] 0.18 10 ∗ 1600
Mo [30] 0.14 5.5 ∗
Nb [63] 1.6 250 0.4 40
NbN [63] 2.6 16 20 5 b
Nb0.63Ti0.37 [63, 83] 1.5 14 4
Nb0.15Ti0.85N [96] 2.4 14
Pb [63] 1.3 75 ∗ 100 c, d
Re [63] 0.26 20 ∗ a
Ti [63] 0.061 5.6 ∗ e
V [79] 0.83 140 0.27 40

Details: Data is for bulk materials. ∆ is the order parameter, Bc1 is
the thermodynamic critical field, Bc2 is the upper critical field (of type
II superconductors), and ξ is the coherence length. Entries with “∗” in
the Bc2 column are type I superconductors, the rest are Type II. Many of
the tabulated values show a large spread in the literature, so consider
these ball-park estimates. Note, BCS theory predicts ∆ ≈ 1.76kBTc

[88]

where Tc is the critical temperature and ξ � ~vF/(π∆)[63] where vF is
the Fermi velocity.
Notes: a: Hard to evaporate (boiling point: 5600 ◦C, the highest of
any element). b: Reacts with water. c: Tarnishes in air. d: Sublimes.
e: Universally used as a sticking layer.
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1 µm

Figure 3.10: CAD design file for a typical device fabricated for this
project. The wire is marked in the center. Also seen are 4 gold contacts,
1 aluminium contact, 17 bottom gates, and 2 floating gates.

tive interference may limit the range of crossed Andreev reflection to
be on the order of the Fermi wavelength.[49] We make the central su-
perconductor about 100 nm wide which is narrow compared to most
devices in the literature.

Since InAs is covered with a layer of native oxide, contacting can
be difficult. In the beginning of my project, I used a polysulfide solu-
tion to etch away the oxide layer and passivate the surface of the wire
(see Protocol 2). The yield of good contacts (less than 50 kΩ contact
resistance at room temperature) was terrible. Later, we got new evapo-
ration chambers with in-situ argon ion milling (specifically Kaufmann
mills). Using these to remove the oxide is much more reliable, and I
have not gotten any bad contacts with this technique.

The details of the contact formation is given in Protocol 6. A bi-
layer resist stack improves the lift-off process.
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Protocol 6: Contacting InAs nanowires

Chemicals:

A4: MicroChem NANO 950
PMMA, 4% sol. in Anisol.

EL6: MicroChem NANO
Copolymer, 6% sol. in Anisol.

Developer: 25 vol% Methyl
isobutyl ketone (MIBK) :
75 vol% IPA.

Steps:

1. Spin-coat EL6 at 4000 RPM.

2. 4 min on a 185 ◦C hot-plate.

3. Spin-coat A4 at 4000 RPM.

4. 4 min on a 185 ◦C hot-plate.

5. Expose at 100 kV. Use a
500 pA beam for fine
structures. Dose:
1700 µC/cm2.

6. Submerge in 2 ◦C developer
for 2 min.

7. Submerge in 2 ◦C IPA for 30 s.

8. Dry with nitrogen.

9. Ash for 2 min.

10. Pump down sample in
evaporation chamber for 30
min.

11. Warm up Kaufmann mill for
2 min with sample facing
away.

12. Mill for 1 min 45 s (enough to
remove 4 nm SiO2).

13. Deposit metals.

14. Follow Protocol 4 on page 62.

Notes:

Increase dose when exposing
isolated structures. 70% of
electrons are back-scattered to a
50 µm radius, there is little
forward-scattering.[32]
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3.7 Lead and Device Design

The design for a typical device fabricated for this project is shown in
Figure 3.10. Going down the nanowire from left to right, you will find

• Au contact

• 1 bottom gate under a 200 nm wide nanowire segment.

• Au contact.

• 7 bottom gates under a 330 nm wide nanowire segment.

• Al contact with 1 bottom, the contact is 110 nm wide.

• 7 bottom gates under a 330 nm wide nanowire segment.

• Au contact.

• 1 bottom gate under a 200 nm wide nanowire segment.

• Au contact.

The ancillary segments with just one bottom gate each are meant
for sensor dots. These are coupled capacitively to the central region
through floating gates, and are meant to be used as charge sensors.

Each contact is connected through two leads (i.e. with Kelvin con-
nections), bringing the total number of leads up to 23 for such a device.
Figure 3.11 shows how these are routed. It is easy to accidentally short
two leads through rouge nanowires or some of the many bottom gates
on the sample, so to alleviate this, leads a primarily routed either di-
rectly vertical or directly horizontal on the sample, see Figure 3.12.

3.7.1 The plague

Gold has a tendency to alloy with aluminium and form plethora of dif-
ferent stochiometric intermetallic compounds, including Au5Al2 and
AuAl2.[60] In the semiconductor industry, this causes problems because
the intermetallics have a much lower conductivity than either con-
stituent and because their poorer mechanical properties cause wire-
bonds to fail, which is why these compounds are known as “white
plague” and “purple plague” respectively. For us, the main problem
is that the intermetallics formed have a lower volume than their con-
stituents, and can cause a disconnection if gold and aluminium leads
are incorrectly joined. Figure 3.13 shows what this reduction in volume
looks like. Obviously, you also do not want a situation where your sup-
posedly superconducting aluminium contact is suddenly transformed
into one of the intermetallics. To get around both problems, aluminium
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10 µm

Figure 3.11: Consistent 45° angles make routing leads easier in narrow
spaces. The green horizontal stripes below the leads are the HfO2
dielectric. The leads make lots of little detours around nanowires that
are now no longer present on the substrate.
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0.5 mm

Figure 3.12: A mosaic of microscope images shows a completed sample
containing two devices. The large lettering in the corners is almost
legible with no magnification.
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Figure 3.13: SEM micrograph of a pair of alignment marks abutting
each other, where one is made from 95 nm thick gold and one is 95 nm
aluminium. The marks were once completely square, but it appears
that the two are alloying where they touch, with the gold doing most
of the migration.

leads and gold contact pads have to meet each other far from the device
with a big contact area.

3.7.2 Automatic alignment of images

The complicated devices fabricated late in the project had enough leads
that only two devices could fit on a sample. Earlier in the PhD project,
however, I made simpler devices, and had consequently many more
devices per sample. I was spending hours aligning microscopy images
to alignment marks on the sample for all these devices, a very tedious
process in the not so great design software (DesignCAD) I used at the
time.

To escape from this bore, I wrote a small C++ program to automate
the process. The sample design features a regular grid of alignment
marks, such that each microscopy image has at least 4 marks in it (see
Figure 3.14). The program takes a reference image of an alignment
mark, and convolves it with the image to align, finding points of max-
imal overlap. It then applies an affine transformation to the image, to
move each of the detected alignment marks as close as possible to its
correct location within a unit-cell of the grid. 2d barcodes on the sample
are used to place each image in the correct cell of the grid automatically.

Computer vision is surprisingly hard, and the simple overlap de-
tecting algorithm just described does not work too well. Often, marks
would be detected where there are none, with a better overlap than the
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10 µm

Figure 3.14: Inverted dark-field microscopy image of a single cell of
the grid of alignment marks on a typical sample. The numbers next
to each alignment mark are used by humans to navigate the sample,
the 2d barcodes are used by the automatic alignment software. The
sample has 81 repetitions of this unit cell in a 9 × 9 grid.
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real marks. To get around this, the program deliberately detects too
many marks, and then selects three or four of them using a heuristic
based on how badly the image has to be stretched to accommodate the
selection of marks. This worked well, and typically aligns every image
as well as a human could. The algorithm is slow, taking 10 minutes or
so to align the 81 images covering a single sample.

The barcodes use Hamming error correction codes to correct single
bit errors (and detect two bit errors), so that stray nanowires and dust
does not confuse the software. This worked well in practice, as two bit
errors turned out to be pretty rare.

Towards the end of the PhD project, our lab acquired a motorized
stage for our microscope, making it very easy to image a complete
sample. The precision of the imaging process is limited by slipping of
the sample as the stage moves, so the automatic alignment software is
still needed to get good accuracy without lifting a finger. When instead
doing alignment manually, I strongly recommend using the excellent
program LayoutEditor over AutoCAD or DesignCAD, which has a nifty
tool to aid in aligning images to a design.

3.8 Bonding

The devices are bonded directly to a printed circuit board as shown in
Figure 3.15. This is a sample holder designed with on-board resonant
circuits for fast resistance measurements, details in Chapter 4. When
bonding devices with many bonding pads, it is very important to make
a complete scale sketch of all the bonding wires beforehand to make
sure they will fit, and then use this as a plan when bonding.

3.9 Half covering NbTiN

The devices fabricated for the collaboration with the group of Takis
Kontos called for half covering NbTiN. I only fabricated a single com-
plete (but broken) sample for this collaboration. Since NbTiN is de-
posited in our lab using sputtering, a process that coats the sample
conformally, I could not use the usual bi-layer resist stack for this step.
I expected this to manifest as an incomplete lift-off in the worst case,
and was happy to see that this was not the case. However, an unex-
pected problem occurred where the NbTiN pulled the nanowire off
the sample as it was lifted off. Figure 3.16 shows the situation. This
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≈ 5 mm

Figure 3.15: A bonded sample.
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500 nm

Figure 3.16: The wire was pulled of the sample during lift-off of the
half covering NbTiN film. SEM micrograph by Matthieu Desjardins.

problem is not visible optically. To combat the problem, I suggest any
future takers use a thinner NbTiN layer (for instance 50 nm).







83

Chapter 4

Data

This chapter, and the following discusses measurements done in col-
laboration with Kasper Grove-Rasmussen. This chapter consist mainly
of a preprint for an article published in Physical Review B (starting
from Section 4.2) discussing measurements done on a single bottom
gated InAs device fabricated as discussed in the fabrication chapter.
This device is a two-sided N–Dot–S–Dot–N device with a short in one
side, making that side unusable. As the main goal of the project was to
investigate N–dot–S devices, this was not a huge calamity. In the next
chapter we discuss briefly ongoing measurements on later two-sided
devices were both sides are functional.

4.1 Measurement Setup

We performed low-temperature measurements in two different Oxford
Triton cryofree dilution refrigerators, both with a base temperature
lower than 35 mK. For measuring the differential conductance of N–
dot–S devices, as a function of device bias and bottom gate potentials,
we use the setup shown in Figure 4.1. The ports VI and VS of the figure
are sampled by lock-in amplifiers which also provided the excitation
signal, Vsi g , for the lock-in measurement. We also measure VI and VS

at DC using Digital Multi-Meters (DMMs). The instruments we used
are tabulated in Table 4.1. When measuring N–dot–S–dot–N devices,
we simply mirror the circuit of Figure 4.1, adding one more voltage
preamplifier and one more current preamplifier (and two more lock-in
amplifiers and DMMs).
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Table 4.1: Instruments used in our setup

Usage Instrument

Lock-in amplifiers SR830
DMMs Keysight 34401A
Current preamplifiers DL1211
Voltage preamplifiers NF LI-75A and SR560
DAC DecaDAC (in-house Harvard model)
Signal generator Rohde & Schwarz SMF100A
Arbitrary waveform
generator

Tektronix AWG7000

Note: Incidentally, the 34401A, SR560, and the DecaDAC all have ded-
icated sections in the third edition of the Art of Electronics.[29]

4.1.1 High-frequency Measurements

In addition to the DC and low-frequency lock-in measurements, our
setups also supported applying high-frequency signals to the bottom
gates. We used this feature to do (unfruitful) pulsing and Electric-Dipole
Spin Resonance (EDSR) experiments. Bias tees on the sample holder
allowed superimposing the high-frequency signals, brought into the
cryostat through coaxial lines, onto a DC bias supplied by the low-
frequency lines of the cryostat. The coaxial lines have about 20 dB
attenuation each, depending on the line and cryostat, with a flat fre-
quency response. The DC lines are low-pass filtered.

Finally, the cryostats and the sample holders we used had a feature
we did not get to play with, which is intended for fast resistance mea-
surements of the sensor dots (originally from [65]). Figure 4.2 shows
the circuitry (which is multiplexed at different resonant frequencies)
and the idea is that a high-frequency input signal is applied to a reso-
nant circuit involving the sensor dot, and the reflected signal is ampli-
fied in the cryostat and brought out. Referring to Figure 4.2, and using
basic circuit analysis, we find that the input impedance of the sample
holder as seen from the coupler is

z � (iωC1)−1
+ R |

(
Rs | (iωC2)−1

+ iωL
)
, (4.1)

at a frequency of f � ω/2π, where we defined the operator x | y �

(x−1
+ y−1)−1 and gave it a higher precedence than addition. The line
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Figure 4.1: A schematic of the DC wiring of the cryostat. Filters on the
DC lines down the cryostat are not shown. The current preamplifier
and voltage divider are grounded to the cryostat through the BNC
shrouds.
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into the sample holder has a characteristic impedance of 50 Ω, so the
reflection coefficient is

r �
z − 50Ω

z + 50Ω
. (4.2)

In Figure 4.3 we plot this quantity as a function of frequency using
realistic component values (L � 500 nH, C � 100 pF, and R � 5 kΩ),
for three different tunings of the varactor. We plot for Rs � 20 kΩ and
Rs � 100 kΩ which we assume are reasonable values of resistance for
a quantum dot on resonance and off resonance respectively. The plots
give an idea of how sensitive the reflected signal is to the level position
of the sensor dots.

The rationale for doing this measurement at a such a high frequency,
comes from the following reasoning: Suppose we do a lock-in mea-
surement of the sensor dot (to get away from 1/ f noise) at 10 kHz, then
we need a time constant of almost a millisecond. If we are interested in
measuring fast changes, then we obviously have to go to a much higher
frequency. The same principle applies to this circuit, and the design-
ers of the sample holders we use1 came to the conclusion that a few
hundred MHz was a good compromise between practicality and speed.

While we spent some time installing amplifiers and modifying cryo-
stat coax lines to set this up, the ancillary dots never even worked as
sensors at DC, so we did not try to use the fast readout circuit.

1 These are known as Mayo boards in our group and were designed by Mike Shea
with input from the old Marcus Lab. But I do not know the details.
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Figure 4.2: A simplified schematic of the AC wiring of the cryostat
and sample. Rs is the resistance of a sensor dot, and C2 can be adjusted
from 0.2 to 1.1 pF by biasing. A directional coupler is a magical device: A
signal incident on a goes directly to c with heavy attenuation, whereas
a signal incident on c is split with most going into b.
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Figure 4.3: The response of the circuit in Figure 4.2. Here, “dot on
resonance” means that the sensor dot has a resistance of 20 kΩ, whereas
“off resonance” is 100 kΩ. The capacitances above are tunings of the
varactor. Further details are in the text.
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4.2 Tuning Yu-Shiba-Rusinov States in a Quan-

tum Dot

The remainder of this chapter contains the preprint for [33] which was
written with Kasper Grove-Rasmussen, Morten Hannibal Madsen, and
Jesper Nygård. This article concerns data collected from device N2A
and was published in Physical Review B.

Abstract:

We present transport spectroscopy of sub-gap states in a bottom gated
InAs nanowire coupled to a normal lead and a superconducting alu-
minium lead. The device shows clearly resolved sub-gap states which
we can track as the coupling parameters of the system are tuned and
as the gap is closed by means of a magnetic field. We systematically
extract system parameters by using numerical renormalization group
theory fits as a level of the quantum dot is tuned through a quantum
phase transition electrostatically and magnetically. We also give an in-
tuitive description of sub-gap excitations.

4.3 Introduction

Hybrid superconductor-quantum dot devices[13] are heavily employed
in recent experimental programs. For instance, quantum dots serve
as an integral component of proposals to form[48,73], manipulate[2,19,46],
and probe[6,47,51] Majorana bound states[58,74]. In Cooper pair splitters,
the dynamics of quantum dots filter local Andreev reflections from the
desired non-local Andreev reflections to form a source of entangled
electrons.[25,27,64]

In a dot-superconductor system, where the charging energy is
larger than the order parameter, quasiparticles in the superconduc-
tor bind to the dot by the exchange interaction and give rise to sub-gap
excitations.[40] When these quasiparticles form a singlet with electrons
on the dot, the resultant states are called Yu-Shiba-Rusinov states[66,80,99]

and have historically been investigated primarily through scanning
tunneling microscopy[21,95]. Only recently, have these excitations been
observed in transport experiments.[7,14–17,23,38,42–44,61,62,76] We will give
an intuitive description of sub-gap excitations in the following section.

To experimentally investigate sub-gap excitations, we fabricated
a bottom gated normal metal/nanowire/superconductor device (N-
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NW-S), which allows for the formation of a gate defined quantum dot
proximitized to the superconductor. The device shows clearly resolved
sub-gap states that we can track as the device is electrostatically tuned.
In this way we follow a single charge state of the dot, through the
doublet to singlet quantum phase transitions occurring as the barrier
to the superconductor is lowered. We fit measured excitations energies
to a simulation developed for this purpose using the non-perturbative
NRG method[5,62,92], and in this way systematically extract physical
parameters of the device.

The system investigated is in many ways similar to N-NW-S devices
where Majorana bound states have been examined,[1,12,56] and a good
understanding of the magnetic field behavior of proximitized nanowire
quantum dots is necessary to understand transport data of these similar
devices. We probe in detail the magnetic field behavior and observe
excitations apparently clinging to zero bias as the gap is about to close,
consistent with a recent experiment[44].

4.3.1 Sub-gap states

We consider a quantum dot described by the Anderson model (full
hamiltonian in Appendix. 4.8) with a single level at ǫ and a charging
energy of U, coupled to a normal lead and to a superconducing lead
with order parameter ∆. The strength of the coupling to lead α (α �

N, S), is governed by the corresponding tunneling density of states,
Γα � 2π |tα |2νF , where tα is the tunneling coefficient of lead α and
νF is the density of states of lead α near the Fermi level. Our data is
collected in a regime where ΓN is small compared to the other energies
of the system, so we consider the normal lead to be a tunnel probe2
which is used to probe the quantum dot/superconductor system.

The nature of sub-gap excitations in such a system depends on the
relative size of ∆ and U.[40] If ∆ is large, the system can be understood
in terms of repeated Andreev reflections giving rise to Andreev bound
states.[54] When U is large, Andreev reflections are supressed, and
instead we need to think in terms of quasiparticles (bogoliubons) in the
superconducting lead. We will here develop an intuition for excitations
in this case.

First, for vanishing ΓS, we know exactly what the eigenstates of the
model are, and we will be focusing, in particular, on the states shown

2Recent numerical work suggest that the normal lead may have a non-pertubative
effect on the system, so this approximation may not be entirely justified.[101]
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Figure 4.4: Excitations between states in a quantum dot/superconduc-
tor system. (a) The states under consideration with arrows in circles
representing electrons in the dot and arrows in open rectangles repre-
senting bogoliubons. The dashed shape in the diagram for |B〉 depicts
a singlet correlation. The arrows annotated with + e– show dominant
sequential tunneling processes for transport going from N to S at the
level position marked x in (b). (b) A schematic diagram showing sub-
gap excitations in the system, with and without anti-crossings induced
by the coupling between the dot and superconductor. (c) NRG simula-
tions of the lowest doublet to singlet transitions for different values of
the coupling density of states, ΓS. For all curves in (c), we have U � 5∆.
The curve going across the traces mark an excitation energy of zero.
Traces have been offset for clarity as indicated on the right-hand axis.
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in Fig. 4.4. These are the lowest energy singlets and doublets (only half
the doublets are shown) for different values of ǫ. The illustrated states
are

|A〉 � |0〉 |D〉 � γ†↑ |0〉
|B〉 � 1√

2

(
γ†↓d†

↑ − γ
†
↑d†

↓
)
|0〉 |E〉 � d†

↑ |0〉

|C〉 � d†
↑d†

↓ |0〉 |F〉 � d†
↑d†

↓γ
†
↑ |0〉 ,

where we have defined γ†σ as the operator that creates the lowest energy
bogoliubon[88] with spin σ, and d†

σ as the operator which creates an
electron on the dot with spin σ. The figure also shows the energy of
relevant excitations between these states.

As ΓS is turned up, the singlet states are mixed resulting in avoided
crossings, and the same happens for the different doublet states. For
instance, the coupling between |A〉 and |B〉 causes the excitation energy
inside the gap to move down towards the center of the gap. The
other bogoliubons (those of higher energy) will all move the sub-gap
excitation in the same direction.

Eventually, this simple picture breaks down, as states with more
than one bogoliubon become a significant factor in forming the low
energy eigenstates. For higher ΓS, it is not possible to find a simple the-
ory that covers the entire range of ǫ and lends itself to a clear physical
understanding, and one has to resort to numerical procedures. In this
vein, Fig. 4.4(c) shows the lowest energy doublet to singlet excitation as
a function of the level position and ΓS as found using NRG simulations.
In the middle of the Coulomb valley the doublet to singlet excitation
energy decreases with increasing ΓS, indicating a stabilization of the
singlet state, and eventually the energy crosses zero, which is an ex-
ample of a second order quantum phase transition.[44,69] For larger ΓS,
the ground state remains a singlet for all level positions, even as the
expected number of electrons on the dot changes by 2.

The NRG method has been applied to the proximitized Kondo
model,[70,71] the proximitized Anderson model,[97] and to the normal
metal/quantum dot/superconductor system[85,101] in the literature,
and generally recreates the features seen in real systems fairly accu-
rately, as our fits below also indicate. Note, that we are using a newly
developed NRG program which does not exploit symmetries in the
system to speed up the algorithm.3 Consequently, we only keep 160

3A. Jellinggaard et al. (in preparation).
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states from each link of the chain. In the supplementary information
we compare result from our program to the phase diagram in Ref. [101]
to show that there is reasonable agreement between the output from
our program and that of an established program running a simulation
with more states retained.

4.3.2 Transport

We imagine that transport in the device is primarily sequential in elec-
trons tunneling from the N electrode to the dot–S system. This is
possible once states with different numbers of fermions are mixed. In
Fig. 4.4(a) we have tried to illustrate the dominant sequential transport
processes moving electrons from N to S when the level position is near
1/2 U, i.e. at x in 4.4(b). In this case, considering again—artificially—
only one bogoliubon state, the lowest energy singlet, |s〉 , is a linear
combination of primarily |A〉 but with some weight on |B〉 and |C〉 ,
and the lowest energy doublet, |d〉 consist mainly of |E〉 with some
weight on |D〉 and |F〉 . Transport occurs by repeatedly swapping the
state between |s〉 and |d〉 by adding electrons to the dot from the N
lead.

Fermi’s golden rule tells us that the rate at which we go from |s〉
to |d〉 is proportional to

��〈d | d†
↑ |s〉

��2 which, for low ΓS, is close to what
we would expect for a non- proximitized dot. Going from |d〉 to |s〉
occurs at a rate proportional to

��〈s | d†
↑ |d〉

��2, which is smaller because
only terms involving |B〉 and |D〉 or |C〉 contribute, c.f. Fig. 4.4(a).
Intuitively, we have to move two electrons across the barrier to S in this
transport process.

4.4 Experimental results

The device is a bottom gated 70 nm diameter InAs nanowire with one
Ti/Au contact and one Ti/Al contact approximately 330 nm apart. The
bottom gates have a 55 nm center-to-center distance and are separated
from the nanowire by a 24 nm HfO2 dielectric. The contacts are both
well coupled to the nanowire compared to the deliberate transport
barriers we impose with the bottom gates to form the dot, and the Ti/Al
contact is superconducting with ∆ � 0.14 mV. Further fabrication
details can be found in Appendix 4.7.
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Figure 4.5: (a) Artist impression of a 0.6 µm × 0.4 µm cutout of the
device, to scale. The model shows the surface of the SiO2 substrate,
bottom gates, insulating HfO2 (shown in green), InAs nanowire, gold
contact, and aluminium contact. Details are in Appendix 4.7. We
assign names to two of the gates as shown. (b) SEM micrograph of a
lithographically similar device. Note, that only the part of the device
between the gold electrode, N, and the aluminium electrode, S, is used.
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Figure 4.6: Differential conductance at 35 mK with and without an ex-
ternally applied 150 mT in-plane field. The field drives the aluminium
contact normal in (b). Regions that show heavily tunnel-broadened
Coulomb diamonds also show sub-gap excitations far inside the gap
when the Al contact is superconducting.
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Figure 4.5(a) shows a scale model of our device and our designa-
tion of a “tuning gate”, VT , and a “plunger gate”, VP . A SEM mi-
crograph of a similar device is shown in Fig. 4.5(b), where only the
nanowire segment between the N and S electrodes is probed by trans-
port. In all plots, we apply a bias, Vsd to the aluminium contact and
measure differential conductance, dI/dV , through the device at a tem-
perature of 35 mK. Figure 4.6(a) shows typical transport data with the
aluminium contact driven normal by a field, and Fig. 4.6(b) shows cor-
responding bias spectroscopy at zero field where the superconducting
gap is visible as a horizontal band of low differential conductance be-
tween Vsd � −0.14 mV and 0.14 mV. The normal state data shows the
usual Coulomb diamonds for VP < 1.6 V, but for VP > 1.6 V these dia-
monds become difficult to resolve, as the excitations are heavily tunnel
broadened by the coupling the aluminium contact. In regions where
the excitations are broadened in the normal state data (cf. Fig. 4.6(a)),
which we attribute to a strong coupling to the aluminium contact, we
see that the sub-gap excitations in Fig. 4.6(b) are pushed far inside the
gap. In the remainder of this article, we investigate how these sub-gap
excitations respond to gate tuning and to small (less than Bc) magnetic
fields.

4.4.1 Gate tuning

Figure 4.7 shows the zero bias differential conductance of the device
as a function of the potential, VP and VT , of the plunger and tuning
gate. Both gates couple to the dot; the plunger gate at a capacitance of
CP ≈ 6 aF and the tuning gate at CT ≈ 3 aF. We define V′

P � VP + (VT −
0.3 V) × 0.57 to compensate for this cross capacitance, and will use this
for all subsequent figures instead of VP . Note the overall increase in
conductance for increasing VT , which we ascribe to a lowering of the
barrier to the normal lead consistent with the position of the tuning
gate. Later, we shall see that ΓN depends on VT exponentially, which
supports this assertion. Also evident in these plots is a quantum phase
transition (at the ∗), which will become clearer in later plots.

Figure 4.8 shows how the sub-gap excitations respond to tuning,
and a few trends are apparent going from low (a0) to high (a6) VT .
First, we see again the overall increase in conductance with higher VT .
Secondly, as VT is changed, the sub-gap excitations of Fig. 4.8 shift
in energy, with no overall trend, which we interpret as mesoscopic
fluctuations of ΓS as the wavefunctions of the dot states are perturbed



96 CHAPTER 4. DATA

0.22

0.30

0.38

0.46

0.54

0.0

0.5

a0

a1

a2

a3

a4

a5

a6

1.4 1.5 1.6 1.7 1.8
0.22

0.30

0.38

0.46

0.54

∗

0.0

0.5

a0

a1

a2

a3

a4

a5

a6

dI/dV (e2/h)

T
u
n
in
g
g
a
te

(V
)

Plunger gate (V)

B = 150 mT

B = 0 mT

Figure 4.7: Conductance at zero bias as a function of the tuning gate
and the raw plunger gate potential, with and without a magnetic field
driving the aluminium contact normal. The lines in these plots shows
the cuts done by a0-a6 of Fig. 4.8. For certain configurations of the
tuning gate, the ground state remains a singlet as a dot level is brought
past the fermi-level with the plunger gate, and this is evident at the ∗.
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Method 2, see text for details.
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Figure 4.9: Coupling strengthsΓS andΓN of each level transition shown
in Fig. 4.8. We extract ΓS from our NRG fits, and use the conductance
on resonance in the B � 150 mT data of Fig. 4.8 to find ΓN . There is one
trace in the plot for each level transition, and the roman numerals refer
back to the labels in Fig. 4.8.

by the changing VT and VP . The quantum phase transition is very
clear in this plot, occurring for the charge state labeled IV around
VT � 0.44 V, i.e. between a3 and a4. The other charge states do not
undergo this kind of quantum phase transition in the data shown. We
point out, that the transitions are not significantly tunnel-broadened
compared to the size of the gap, so we can assume that normal lead is
weakly coupled to the dot.

To extract quantitative parameters for the system, we fit a model to
the data consisting of single levels independently interacting with the
superconductor, such that each level is described by the proximitized
Anderson model. In this model, each level is described by the following
parameters: The charging energy U, the potential of the plunger gate
at the center of the corresponding Coulomb valley V0, the plunger gate
capacitance CP , and the coupling strengths ΓS and ΓN . We will find
quantitative estimates for all these parameters.



4.4. EXPERIMENTAL RESULTS 99

Specifically, we find U from the height of the corresponding Coulomb
diamond in Fig. 4.6(a), and we find V0 by looking at Fig. 4.8. We initially
assume ΓN is weak, in which case it has little effect on level positions
and does not drive the NW-S system out of equilibrium, and we find
CP and ΓS using one of two methods both involving a fit based on the
NRG method: for Method-1, we find CP from the normal state data in
Fig. 4.7 and use ΓS as a fitting parameter to fit the observed level posi-
tions. For Method-2, we use both CP and ΓS as fitting parameters. Fits
to two of the datasets are shown in Fig. 4.8 for both methods, the rest
are included in the supplementary information.

Generally both methods reproduce the gate dependence of the sub-
gap state excitations well. The most significant divergence is around
V′

P � 1.70 V and V′
P � 1.76 V, where additional excitation lines are

present inside the gap. The presence of these lines suggest that the
levels are not independent in this region.

Having found the values of ΓS at each level crossing from our NRG
fits, we extract ΓN from the conductance at each Coulomb peak when
the superconductor is driven normal by an external magnetic field, i.e.
from the data in Fig. 4.7. Specifically

Gpeak �
e2

h

4ΓSΓN

(ΓS + ΓN )2 , (4.3)

where Gpeak is the maximal conductance of the device at the Coulomb
peak.[36] The values of ΓN and ΓS that we extract are shown in Fig. 4.9.
ΓN shows an exponential dependence on the tuning gate potential,
as expected for an electron tunneling through a potential barrier. In
contrast, ΓS varied non-monotonically and did not have a systematic
dependence on gate. Therefore, we attribute the variations we do see
in ΓS to mesoscopic fluctuations caused by perturbations of the dot
wavefunctions, rather than a changing potential barrier.

4.4.2 Results: Behavior at Field

We now turn to the magnetic field dependence of the sub-gap states.
Figure 4.10 shows what happens to the plot a1 in Fig. 4.8 as a field
is applied in the plane of the sample in a direction perpendicular to
the nanowire. As the field increases, the doublet states Zeeman split,
which is clear where the ground state is a singlet. When the ground
state is a doublet, only one excitation is possible from the ground state,
and only one peak is seen in transport.[44] When analysing our data,
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Figure 4.10: Evolution of the sub-gap states as the gap closes upon
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dicular to the nanowire. The tuning gate is set to VT � 0.34 V in all
these plots, and the bias range is ±125 µV. The roman numerals on odd
charge states refer back to the labels in Fig. 4.8.
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we will augment the Anderson model hamiltonian of the dot from the
introduction with a Zeeman term of the form

HZ � gµBB · S, (4.4)

where g is the g-factor of the level, µB is the Bohr magneton, B is the
strength of the magnetic field, and S is the spin of the dot; note that
we always align the z-axis of the spin basis with the magnetic field. In
our quantum dot, the effective g-factor varies significantly between
levels,[10] and even within a single level. For instance, in the charge
state labeled II in Fig. 4.10, the splitting of the excitations line left of
center (near more negative VP) is very different from the splitting right
of center.

At the charge state labeled IV in Fig. 4.8 we are able to induce a
quantum phase transition by a applying a magnetic field, so we focus
on this level crossing. Figure 4.11 shows the dependence of transport
at the center of the crossing both as the field magnitude is increased
and as the field is rotated. As in our other dataset, we again note the
absence of a transition from the excited member of the doublet to the
singlet, which is what causes the peaks in Fig. 4.11 for VT > 0.42 V to
only move in one direction instead of splitting.

As is apparent in the plots c0 through c5 of Fig. 4.11, the g-factor of
our system shows a high degree of anisotropy. This is a common prop-
erty of quantum dots in InAs nanowires[10,77] and was also addressed
by Lee et al. for YSR states.[44]

In the bias vs. field strength plots of Fig. 4.11, specifically plots b0,
b1, and b2, we note that the excitation of the doublet that moves down
in energy has an apparent tendency to stick to zero bias. This effect
has been observed before and can be understood in terms of a level
repulsion from the gap states as the gap closes, pinning the excitations
near zero energy.[44]

We estimate the level positions from the data plotted in c1 of
Fig. 4.11, and fit the g-factor at angles of 0 rad, 0.9π rad, and 1.4π rad us-
ing our NRG model. The latter two angles correspond to minimal and
maximal Zeeman splitting, note that the splitting at 0.9π rad is hard to
estimate precisely. For these angles, we find g-factors of approximately
22, 8, and 23 respectively.

We use the g-factor at 0 rad along with the values of ΓS found for
each tuning gate value earlier, to simulate how the states split with
applied field, i.e. to recreate the level positions seen in the plots b0

through b5. The resulting level transitions are plotted in the figure
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Figure 4.11: Magnetic field dependence of sub-gap transport in the
center of a level transition for different values of the tuning gate poten-
tial. In the data sets b0 through b5 the field was applied in the plane
of the sample perpendicular to the nanowire, and in the data sets c0

through c5 the field was held at 60 mT and rotated in the plane of the
sample with a direction of 0 radians being perpendicular to the wire.
The data has been corrected for a drifting zero-bias across the device as
detailed in the supplementary information. The plots also show data
from an NRG simulation, specifically the allowed excitations from the
ground states of the system (red lines). The black lines show a phe-
nomenological model of the gap closing used as an input to the simu-
lation. Additional input to the simulation includes the ΓS values from
Fig. 4.9 and a g-factor found by fitting the plot c1 at 0 radians.
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and show good agreement with the data. We plot excitations from the
ground state only, but in the plot b2, transport is also possible from the
doublet state, presumably because the doublet is thermally excited.

4.5 Conclusion

The device presented in this paper had two features that complement
each other: Transparent contacts and well coupled bottom gates with
a large admissible voltage range. This made it feasible to make com-
pletely gate defined contact barriers in the device, and tune coupling
parameters over a large range while keeping mostly single-dot be-
havior. In combination with well resolved sub-gap states, the device
provided an excellent platform to study the dependence of Yu-Shiba-
Rusinov states to ΓS-tuning and to magnetic fields. Future studies
may involve testing the recent theoretical predictions that the singlet-
doublet phase diagram is modified by the normal metal coupling.[101]

For the data presented in this paper, we used a gate between the
quantum dot and the normal contact to tune our device. This had
a large effect on ΓN which in turn has only a small effect on level
positions. On the other hand, mesoscopic fluctuations of ΓS (on the
other side of the device) caused by this tuning, has a large and, a-
priori, unpredictable effect on ΓS. Effects like this can appear in gated
quantum dot devices, whether it involves a superconducting contact or
not, but this device is an interesting example as the two contact barriers
influence transport in very dissimilar ways.

Modeling the device using the proximitized Anderson model by
means of the NRG method yielded excitation energies in good agree-
ment with our data, and the coupling parameters extracted from these
fits follow the potentials of the bottom gates in a physically reasonable
way. The behavior under magnetic field is entirely consistent with a
simple Zeeman splitting in combination with the gap closing. This
behavior has been described before.[44] However, here we model this
scenario quantitatively using the NRG method starting from parame-
ters determined at zero field, and show good agreement with observed
data.
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Appendix

4.7 Fabrication details

The bottom gates were fabricated on a Si substrate with 500 nm oxide,
and are composed of 5 nm Ti and 12 nm Au. These gates have a center
to center distance of 55 nm. The gates are covered with 24 nm HfO2
deposited by atomic layer depositioning. This HfO2 is deposited in
three 8 nm layers of successively smaller extent to avoid fencing, where
the oxide does not break off cleanly where it meets resist walls and
instead stand proud off the surface after lift-off.

70 nm diameter InAs nanowires were deposited from a suspension
in isopropanol. In the evaporation chamber, immediately prior to
metalization of each contact, argon ion milling was used to remove the
native oxide from the nanowire. The Au contact uses a 10 nm Ti sticking
layer, and the Al contact uses a 5 nm Ti sticking layer. Compared to the
data shown in this article, the device is significantly more conductive
when a higher potential is applied to the bottom gates, suggesting that
the tunnel barriers seen in the data are gate defined as opposed to
contact defined.

Tuning the potentials of the gates allow the device to be operated
in different regimes; in this paper we focus on single dot behavior by
forming a central potential dip (see Fig. 4.12). We note that bottom gates
under a contact, for instance the second bottom gate from the right
in Fig. 4.5, generally do not show any significant effect on transport
through the device. This suggest that the gates are strongly screened,
or that the contacts—by diverting current out of the wire already very
near the edge of the contact—make it a moot point whether the sections
of nanowire above these gates are depleted or not.

The device investigated in this paper forms part of a larger two-
sided device. To avoid complications from the other side of the de-
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Figure 4.12: Electric potentials applied to each relevant bottom gate.
The gates are numbered starting from the gold side of the device (left
side in Fig. 4.5). Gate nr. 2 we call the tuning gate and gate nr. 5, which
is more strongly coupled to the energy levels of the dot, we call the
plunger gate.

vice, this part of the nanowire was electrostatically depleted during
measurements.

4.8 Model details

For the discussions in the article and in our models, we use the follow-
ing hamiltonian

H � Hd + HS + Hts + Htn , (4.5)

with each part given below. The quantum dot has the hamiltonian

Hd � ∑
σ

ǫσc†σcσ +
U

2

(
∑
σ

c†σcσ − 1
) 2

(4.6)

where c†σ creates an electron with spin σ on the dot, U is the charging
energy of the dot, and ǫ is the the single particle energy of the dot. The
dot is coupled to the two leads by

Hts � ∑
kσ

ts c†σckσ + HC (4.7)

Htn � ∑
kσ

tnc†σ fkσ + HC, (4.8)
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where c†
kσ

creates an ordinary fermion in the superconducting lead with
momentum k and spin σ, f †

kσ
creates a quasiparticle in the normal lead,

and the t’s are tunneling coefficients assumed spin and momentum
independent. The hamiltonian of the superconductor is

HS � ∑
kσ

ξkσckσc†kσ + ∑
k

(
∆c

k↑c−k↓ + ∆c†−k↓c†
k↑

)
(4.9)

where ∆ is the order parameter of superconductor which we assume is
real.

For our NRG simulations, we assume that tn and the temperature
of the system are negligible, we discretize the leads logarithmically
using a discretization factor, ∆, of 2.5, and map the system to a chain
of fermions starting with the quantum dot. We add sites of the chain
one at a time, and at each step retain the lower 160 eigenstates. The
sub-gap excitation energies converge quickly,[71] so we only extend the
chain to 25 sites. To simulate the gap closing with applied field, we
created, by hand, a table of gap size as function of applied field based
on the data in Fig. 4.11.

When calculating the peak conductance with the superconductor
driven normal, in Eq. (4.3), we assume kBT ≪ ΓS + ΓN consistent with
our findings, and use a result from the supplementary information of
Ref. [36].

4.9 Evaluating the NRG program

Since we are not exploiting symmetries in our NRG program, we cannot
keep as many states as others do in the calculations. Therefore we
compared the output of our program to a plot in Žitko et al, Physical
Review B 91, 045441 (2015) (our Ref. [101]) showing the quantum phase
transition in a proximitized dot. See Fig. 4.13. Žitko et al. also include
simulations for a small coupling to the normal lead, we reproduce this
here to show that that the error made by using our program is small
compared to the error made by not considering finite ΓN . Note, that
our definition of ΓS differs from the one used in Žitko et al. by a factor
of two, so we scaled ours for this plot.
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Supplementary
information

The remaining fits

In Fig. 4.14 we plot the NRG fits that were omitted in Fig. 4.8 of the
article.

Fixing a fluctuating zero bias offset

The data in Fig. 4.11 of the article had some issues with a fluctuating
offset bias as the magnet was ramped. To fix this, we located in each
column of the datasets the bias potential where the DC current is zero
and used this as an offset (see Fig. 4.15).
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the article (just like the fits shown for a0 and a6 in the article in Fig. 4.8).
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Figure 4.15: Raw DC current data and dI/dV data for each plot in
Fig. 4.11 of the article. The red line in each plot shows shows the zero
bias offset found by zeroing the DC current.
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Chapter 5

Additional Data

The main experimental results from the project were included in the
article presented in the previous chapter. This data came for measure-
ments performed on a single device, N2A, but not all interesting data
made it into the article. This chapter also includes data from two other
devices named G1B and N3B.1 The three devices were all bottom gated
InAs nanowire devices as described in the fabrication chapter (cf. Fig-
ure 3.3 on page 59). Here is an overview of the devices and their
differentiating features:

G1B: Used SiO2 for the dielectric.

N2A: Had a short on the right side.

N3B: Shows a non-local signal. Measurements are ongoing at the
time of writing.

Device N2A is illustrated in Figure 5.1, along with the numbering
we will use for the bottom gates in this chapter. Note, that the potentials
of all gates at the beginning of each measurement run is shown in figure
Figure 5.17 at the end of the chapter (on page 136).

1 Samples with bottom gates were fabricated in batches of four all on one substrate,
they were then diced and two devices were fitted on each sample. N3B is the second
device on the third sample from the N’th batch.
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Figure 5.1: Artist impression of a 0.6 µm×0.4 µm cutout of device N2A,
showing the substrate, bottom gates, insulating oxide (shown in green),
InAs nanowire, a gold contact, and the aluminium contact. Also illus-
trated, is the numbering we use for the bottom gates. Note, that the
numbering starts at 2 because gate 1 is under a sensor dot to the left of
the N–Dot–S device. This rendering is to scale.
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Figure 5.2: Bias spectroscopy of the N–dot–S system. This plot shows
the differential conductance dI/dVsd through the device as a function
of the potential of gate 6, Vg6, and the bias, Vsd . The bias is positive
when the superconducting electrode is at a higher potential than the
normal electrode. The features visible in the plot are described in detail
in Figure 5.3.

5.1 N–Dot–S

It was possible, through different tunings of the bottom gates, to create
either one or two quantum dots in the nanowire segment of N2A. In this
section we revisit single dot behavior, and describe a few phenomena
that we did not cover in [33].

5.1.1 Inelastic cotunneling through sup-gab states

Inelastic cotunneling through an N–Dot–S device can involve populat-
ing or emptying a Shiba state. This results in copies of the shape of
sup-gap excitations at higher bias. Figure 5.2 shows data where this
behavior is evident. On this plot, one level is particularly well coupled
to the normal electrode,2 corresponding to the Coulomb valley in the
center of the plot, and inelastic transport involving this level can be
tracked through several Coulomb valleys on either side. In Figure 5.3
the tranport process is explained focusing on this level.

2 We know that the state is strongly coupled to one of the electrodes because the peak
in differential conductance is high, and it cannot be the superconducting electrode since
the sub-gap excitations are not that far inside the gap.
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Figure 5.3: (a) The Dot–S system before and after an inelastic cotunnel-
ing event. During the event, an electron is excited from Level A which is
hybridized with the superconductor to Level B. The excitation energy
is the level spacing of the dot, plus the energy required to change the
parity of the Level A/Superconductor system. Do not take these draw-
ing to serious, it is hard to illustrate many-body states, especially when
charge is not conserved. (b) The lines in this cartoon plot corresponds
to the major features of Figure 5.2. In the gap, we see the usual sub-
gap excitations discussed in the previous chapter. The red line is due
to cotunneling where an electron is excited from Level A to Level B,
where Level A is whatever level is closest to the superconductor fermi
level, µS, for the given gate potential and Level B is a level which is
particularly well coupled to the normal side. Note, that when Level A
aligns with the superconductor then the energy required to change the
parity of the Level A/superconductor system drops to zero.
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Figure 5.4: Current through the N–dot–S device at low bias as the
potential of two of the bottom gates are varied. The diagonal lines
in the plot are due to sub-gap excitations. We labeled three involved
levels A, B, and C, with the annotations given at the top of the plot.
For Vg3 � 0 V, the levels cross the fermi level in the order A, B, then
C as Vg6 is increased. Note that level C is so strongly coupled to the
superconductor that the sub-gap excitations do not cross zero bias for
this value of Vg3, and therefore we do not see two peaks for this level
(we looked at similar plots in Chapter 4). As Vg3 is decreased, level B
and C swap positions.

5.1.2 Level swapping

Having lots of gates underneath the dot makes it possible to probe the
spatial profile of each energy level. In Figure 5.4, the potentials of two
gates are swept against each other, and the current through the device
is plotted. We were aiming for zero bias to do a lock-in measurement,
but there is still a few µV of DC bias across the device, and the DC
current measurement is actually clearer than the lock-in measurement,
so this is what we plot.

The diagonal lines in the plot show where sub-gap excitations cross
zero bias. Therefore, when an energy level of the dot is well coupled
to the superconductor, and the excitations move up nearer the gap, the
pairs of lines corresponding to that level will move closer together and
eventually disappear (see Chapter 4).

The energy levels of the dot couple electrostatically to both gate 3
and gate 6, but the gate capacitances are not exactly the same for each
level. For this reason, the lines slope slightly against or away from each
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Figure 5.5: An alternative tuning of the bottom gates gives rise to
two quantum dots in the nanowire. The figure at the top shows the
nanowire, the two contacts, the dielectric, and the bottom gates (not
to scale). Below the bottom gates, the electrical potential of each is
plotted. We also indicate where we expect the quantum dots to form.

other, something which is hardly visible in this plot. What is visible, is
the action taking place at the end of the arrow in the figure, which we
will argue is a consequence of the same effect.

Let us consider an axis VT in the space of Vg3 and Vg6 that is collinear
to the diagonal lines of the plot. Then, going along the axis VT will not
change the occupation of the dot significantly. Let Level 1 and Level 2
be the two levels associated with the situation at the arrow, then going
along VT , the two levels change order in the energy landscape of the
dot, so that Level 1 comes before Level 2 above the arrow and Level 2
comes before Level 1 below the arrow. This is a consequence of the
difference in gate capacitance of the two dots. Level 2 has the strongest
coupling to the superconductor, which is why the lines merge in this
plot, whereas Level 1 has the strongest coupling to the normal lead,
which is why this peak is stronger in the plot (the barrier to the normal
lead dominates the barrier to the superconductor in this region of gate
space).

5.2 N–Double Dot–S

Instead of having a single dot between the normal lead and super-
conductor, we were interested in studying what happens if you have
two dots, i.e. as in Figure 5.5. Our interest in this system came from
a desire to use a pair of double dots with charge sensors to perform
spin to charge conversion[35,65] in each arm of a Cooper pair splitter.
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We had hoped that this would be an avenue for entanglement detec-
tion. While not all parts of device N2A was functional, it could still
serve as practice for dealing with superconductor/double dot hybrid
systems. Double quantum dots, with only one of the dots directly con-
nected to a superconductor, has received some theoretical focus,[86,87]

but there is to our knowledge no experimental papers focusing on this
exact configuration.

We use gate 3 and gate 5 to change the occupation of the two dots,
but there is significant cross capacitance. To simplify measurements,
we define two new axes in gate space, Vα and Vβ, such that(

Vg5

Vg3

)
�

(
1.000 −0.222

−0.085 1.000

) (
Vα
Vβ

)
. (5.1)

Figure 5.6 shows what data recorded along these gate axes look like.
The plot shows differential conductance at zero bias with no external
field. Therefore, the lines in the plot, are the sub-gap states crossing
zero bias. If an external field is applied, to drive the aluminium con-
tact normal, then the lines are tunnel broadened significantly by the
aluminium contact which is well coupled to the right dot. The zero
crossings occur close to where they would occur for a normal contact
in this plot, so it is okay to think in terms of a regular non-proximitized
double dot when analyzing this stability diagram.

Note, that there is some inconsistency in how we define the axes
Vα and Vβ. Specifically, as we sweep Vα over a large range, keeping Vβ
constant, the occupation of the left dot is not changed. However, as we
sweep Vβ over a large range, the occupation of the right dot does change.
On the other hand, vertical lines in the figure are truly vertical, whereas
horizontal lines drop a little to the right. What we compensated is the
cross capacitance in one case, and in the other case we compensated
the combination of cross capacitance and the mutual charging energy.
This is perhaps more clear in Figure 5.8, it has completely vertical lines
corresponding to degeneracies in the right dot (for instance, between
10 and 11), but sloped lines corresponding to degeneracies in the left
dot (for instance, between 01 and 11).

Bias spectroscopy along horizontal lines (constant Vβ) of Figure 5.6
is shown in Figure 5.7. This corresponds to doing bias spectroscopy
of the right dot, keeping the occupation of the left dot fixed. We will
discuss these plots one at a time starting with Plot A. Here we see
sloping lines (e.g. at the arrows) inside the gap that do not look like the
usual sub-gap states (cf. Figure 5.2). These lines slope linearly outwards
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Figure 5.6: Double dot stability diagram. See Figure 5.7 for bias
spectroscopy along the indicated lines.
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Figure 5.7: Bias spectroscopy along the lines in Figure 5.6. Note, that
there is some overloading of the lock-in amplifier in Plot A.
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as Vα is increased, and return to where they started each time the
occupation of the right dot changes. This suggest that they are caused
by the levels in the left dot, as these are expected to move linearly with
Vα and stepwise as the occupation of the right dot changes, making no
overall movement (by the discussion in the last paragraph).

In Plot B we see only the usual sub-gap states associated with the
right dot (e.g. at the arrow). In Plot C, we see a combination of the
lines in Plot A and in Plot B. Additionally we see negative differential
conductance which we shall have more to say about in Section 5.2.1.

Figure 5.8 contains data from a similar regime. Here, we zoomed
in to look at just a few charge states. Plot A shows zero bias differential
conductance and looks like the usual honeycomb lattice of a double dot.
In this plot, we labeled the different charge states using two digits,
where the first digit refers to the occupation of the left dot and the
second digit refers to the occupation of the right dot. Note, a 0 does not
mean that the dot is empty, but we did make sure that even numbers
correspond to even filling of the dot by looking at even/odd behavior
over a larger range of gate values. In Plot B we applied 50 µV of bias, and
the vertical lines split into three, which does not happen for a double dot
with normal contacts. Plot C and D contains bias spectroscopy along
the line in Plot B and show what is going on. The vertical lines that
split away, are the sub-gap excitations, which have a much shallower
slope than regular coulomb peaks. These only show up for the right
dot which is the one contacted to the superconductor. The third line
in the middle of each split vertical line is a bit of a mystery, it is very
clear in Plot D, and is seen in many of our measurements and in other
peoples experiments3.

5.2.1 Kondo–Dot–S

When the left dot has odd occupation, we often see negative differential
conductance at bias. We already saw an example of this in Figure 5.7,
but Figure 5.9 shows a more striking experiment. Here, the right dot
is swept through 3 level crossings by the action of Gate 5, but it is
so strongly coupled to the superconductor that the system remains a
singlet through the last two level crossings instead of showing the usual
even/odd behavior of a quantum dot. The dot on the left is strongly
coupled to the gold contact. Note the presence of negative differential
conductance beyond the sub-gap excitations. This effect persists at

3 From personal communications with Andreas Baumgartner.
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Figure 5.8: Stability diagram with and without 50 µV bias, and bias
spectroscopy along indicated lines. Details in text.
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Figure 5.9: Differential conductance through a double dot. Gate 5 on
the x-axis is beneath the right dot.
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Figure 5.10: This plot is similar to Figure 5.9 but it shows a different
gate range, and a 150 mT magnetic field drives the aluminium contact
normal in this plot. We increased the bias range compared to Figure 5.9
to show a full coulomb diamond. The splitting in the center is not the
superconducting gap.
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fields above the critical field of aluminium so it has nothing to do
with superconductivity; in Figure 5.10 where the aluminium contact is
driven normal, we see negative differential conductance on the edge of
every sequential tunneling line. These plots were both taken with the
left dot in the middle (roughly) of a Coulomb valley, so transport is via
cotunneling through the left dot. We only see this effect when the left
dot has odd occupancy.

One interpretation is this: When the left dot has odd occupancy, it
forms a Kondo singlet with the normal lead, and this leads to a spectral
function for the left dot which is strongly peaked at the Fermi level of
the lead. We are then using this spectral function, to probe the system
comprised of the right dot and the superconductor. This turns peaks
in transport, into the “peaks followed by dips” which we see.

5.2.2 Spin orbit coupling

Figure 5.11 shows bias spectroscopy vs. field with the double dot in two
different charge configurations. These correspond to the middle of the
“02” and “12” hexagons of Figure 5.8. The two plots are visually similar,
but Plot B shows an additional (very faint) feature corresponding to
the splitting of the Kondo peak of the left dot. The anti-cross at about
2 T gives the spin-orbit coupling directly,[37] and we find

∆SO ≈ 50 µV. (5.2)

We did not measure this elsewhere, but based on how we saw the g-
factor vary (see Chapter 4), we expect the spin-orbit coupling to vary
significantly between different levels.

5.3 High-Frequency Experiments

This section describes briefly two unsuccessful experiments we did
with Device N2A. The top plot in Figure 5.12 shows the usual sub-gap
excitations in the presence of 60 mT out of plane field. The field cause
the sub-gap excitations to Zeeman split, but one line is invisible when
the ground state is a doublet. This is easy to undersand: When the
ground state is a singlet, then it is possible to excite to both the doublet
states, but when the ground state is one of the doublet states, then only
an excitation from that state to the singlet is possible. This is described
in more details and with more plots and simulations in Chapter 4. For
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Figure 5.11: Bias spectroscopy vs. field for the double dot in two charge
configurations correspond to “02” and “12” of Figure 5.8. The plateaus
in differential conductance are due to inelastic transport processes. The
arrow points to the splitting of a Kondo peak in the left dot, which is
visible as faint edges meeting at zero field. This feature is only present
when the left dot is occupied by an odd number of electrons.
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Figure 5.12: Sub-gap excitations of the proximitized dot in the pres-
ence of a 60 mT field in a direction perpendicular to the plane of the
sample. In the lower plot, we pulsed Gate 7. The arrow points to one
place where we would expect to see a faint line if we could turn up the
frequency without driving the system normal. More details in the text.

the experiments described in this section, we tried to “reignite” the
missing doublet to singlet transition by attempting to put the dot in the
excited spin state of the lowest energy level.

5.3.1 Pulsing

Consider the dot with n electrons where n is odd, sitting at a place
where transport would occur, if it was possible from the excited doublet
(which it is not, normally). We now apply a square pulse the gate to
temporarily drive the dot to n+1 or n−1 electrons and back, and when
it returns, the dot will reestablish n electrons but now with a random
spin. This should cause the missing transport line to light up, if the
pulsing was done repeatedly with a high enough frequency.

Figure 5.12 shows one of our attempts at doing this experiment,
where we applied a square pulse with 50 % duty cycle at 1 MHz to
Gate 7. This measurement had two problems: First, you would expect
to see an effect only where the occupation of the dot changes between
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the high pulse and the low pulse, which in this plot is a small region on
either side of each level crossing, and these regions are already quite
crowded with excitations. Second, in an ideal case, the current will
be on the order of f × e where f is the pulsing frequency and e is the
charge of an electron, but a frequency of 1 MHz then gives a current of
only 0.2 pA which is very difficult to detect.

These problems could be mitigated by increasing the pulse ampli-
tude and frequency respectively, but doing either quickly leads to the
gap closing, either through heating or because the instantaneous mag-
netic field is above the critical field of aluminium.

5.3.2 Electric-dipole spin resonance

In the same vein, we tried to use the EDSR effect to rotate the spin of
the blocked state. Here, we tried to apply a sine wave to the same
gate, on resonance with the Zeeman splitting of the state. Here we
would expect a current proportional to spin-flip rate, which again is
proportional to the amplitude of the applied signal. We could not see
anything before the applied signal drove the system normal.

5.4 More tuning data

The results in the article preprint (Chapter 4) and the data presented
above for is all from one device, Device N2A, but an earlier device on
a different sample also made it all the way to a dilution refrigerator.
It was fabricated using a SiO2 dielectric, but was otherwise similar to
Device N2A. The highlight of this measurement series was the data
presented in figures 5.13 and 5.14, and is somewhat similar to what is
presented in Chapter 4.

In these plots, the device is tuned as an N–dot–S system with
strong coupling between the quantum dot and the superconductor
and weaker coupling to the normal contact. Each plot in Figure 5.13
shows bias spectroscopy of the dot–S system using the normal elec-
trode as the probe, as a plunger gate brings a level of the dot past
the superconductor Fermi level. The plots can be directly compared to
Figure 2.2 for instance. Just as in Chapter 4 we tune a barrier gate —
while adjusting for cross capacitance — to effectively tune the coupling
to the superconductor, and we see quantum phase transition as we did
for Device N2A in Figure 4.8.
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Figure 5.14 shows bias spectroscopy of the same gate ranges, but
in a magnetic field which drives the superconductor normal. Here we
see how the levels of the dot get tunnel broadened by the Al electrode
as the potential of the barrier gate is increased.

The device blew up during a thermal cycle caused by a blockage in
the dilution refrigerator. It also had more switching noise than Device
N2A, which was especially apparent as the potentials on the gates were
high, which made tuning difficult.

5.5 N–Dot–S–Dot–N

Device G1B and Device N3B were both double sided devices which
could potentially exhibit non-local Andreev reflections and Cooper
pair splitter operation. We did not manage to find any cross correla-
tion between transport in the two sides in G1B, and in N3B we have
so far only seen tiny non-local signals. Figure 5.15 shows transport in
N3B as a function of gate 4 and gate 12. A bias of −60 µV is applied
to the superconducting contact. The plots show a faint signal which
can be enhanced if we subtract a background signal where we aver-
aged either vertically or horizontally as appropriate. In Figure 5.16
we investigate the bias behavior of this signal. The current pream-
plifiers we use in the setup have a quite high zero bias offset which
fluctuates throughout the day, making it difficult to ground both the
normal contacts accurately. Therefore, we ordered new current pream-
plifiers for the setup, which have stable and adjustable (via an analog
voltage input) zero bias offsets; these are the SP 983 amplifiers from the
Electronic Lab of Physics Basel.

The parameter space created by all the gates of N3B is immense,
and measurements are ongoing (currently the device is operated by
Morten Canth Hels and Kasper Grove-Rasmussen).

5.6 Device Configurations

Our data acquisitioning code took a snapshot of all the gate potentials
at the start of each measurement. We plot these values in Figure 5.17
for reference.
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Figure 5.13: This figure shows bias spectroscopy on Device G1B. The
barrier gate (held at potential Vb) is between the plunger gate and the
superconductor.
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an 80 mT out of plane field.
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Figure 5.15: Differential conductance of the two sides of the device
as a function of the potential of gate 4 under the left dot and gate 12
under the right. A bias of 60 µV was applied. A horizontal or vertical
average has been subtracted from each of the lower two plots.
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5.7 Perspectives for Further Research

Many of the measurements we performed were aimed at getting good
control of proximitized double dots. In addition to the data shown,
we spent a good deal of time looking for a regular spin-blockade in
our system, but did not have any luck. This, combined with the fast
charge sensing circuits—assuming we could get them to work also—
and non-local Andreev reflections, would have opened up the door for
interesting experiments combining the spin-physics of the non-local
Andreev reflection with spin to charge conversion and fast readout.
The hope was to have all the following elements present at once:

• Spin to charge conversion using spin blockades in the double
dots, with fast readout using the sensor dots.

• The generation of non-local singlets via non-local Andreev reflec-
tions.

• Spin manipulation using EDSR.

For instance, such a system would allow for the manipulation of a non-
local singlet-triplet qubit, with readout via the superconductor.
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Figure 5.1.
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Chapter 6

Numerical
Renormalization Group
Theory

6.1 Introduction

The Numerical Renormalization Group (NRG) process,[5,92] pioneered
by Kenneth Wilson in the 70’s, is a powerful numerical technique
capable of solving many systems, where a low dimensional impu-
rity couples to a large, effectively non-interacting system. This tech-
nique was designed to solve the Kondo model, but has since been
applied to many systems where a low-dimensional system couples to
a continuum. This includes the superconducting proxmitized Kondo
model,[70,71] the proxmitized Anderson model,[97] the complete N–dot–
S system,[45,85,101] and more exotic systems such as the S–dot–dot–S
system,[100] the N–dot–dot–S system in the large ∆ limit,[87] and the
N–dot–S–dot–N system.[62] Free open-source implementations of the
NRG process exist, capable of handling superconducting leads.[20,57]

In this chapter, we take a look on the theoretical foundation of
the NRG process. In doing so, we develop a formalism that we use
to describe a simple implementation of the NRG process, which can
automatically map a diverse set of Hamiltonians to chain form (a crucial
part of the NRG process). This version of the algorithm, is applicable



140 CHAPTER 6. NRG THEORY

to any system described by a hamiltonian

H � Himp + H′ (6.1)

where Himp can be expressed using a small number of creation and
annihilation operators, and H′ is quadratic in fermionic creation and
annihilation operators. Himp may contain arbitrary interactions, and
anomalous terms (like ck↑c−k↓) in H′ are fine. Using the Anderson
model as an example, Himp would contain the Coulomb interaction
and the level energy of the dot, and H′ would include the hamiltonian
of the lead and the hybridization to the dot.

6.2 Notation

We will be using the following fairly standard notation in this chapter:

〈a , b〉 A general inner product, anti-linear in a.

PS The orthogonal projection onto a subspace S.

A|S The restriction of an operator to S. Note that A|S has domain S.

6.3 Formalism

We will be working extensively with annihilation and creation oper-
ators in somewhat non-standard ways in this chapter, so it is worth
spending some time looking at the structure of these objects.

Let H be the many-body states of the full system, and define H as
the set of all linear combinations of creation and annihilation operators
of the lead and impurity (H is a subset of the operators on H ). Clearly,
this set is a vector space, but it can further be consider an inner product
space, if we define an inner product in terms of the anti-commutator.

Definition 6.1. Let
〈

f , g
〉
�

{
f † , g

}
for all f , g ∈ H.

Note that this definition satisfies all the usual properties of an in-
ner product including positive definiteness, and thus makes H an in-
ner product space. We will use all the standard vocabulary of linear
algebra—orthogonal, normalized, basis, etc.—in relation to creation
and annihilation operators, with this inner product implied. Note,
that we use the convention that

〈
f , g

〉
is conjugate linear in the first

argument and linear in the second.
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The inner product space H is given an additional interesting struc-
ture by the operation of complex conjugation (the operation f 7→ f †).
We will be considering especially, two classes of subsets of H, having
to do with this operation.

Definition 6.2 (Fermionic subsets of H). A set F ⊆ H is fermionic if it is
orthonormal and

∀ f ∈ F, f , f † ∧ f † ∈ F. (6.2)

Definition 6.3 (Hermitian subsets of H). A set G ⊆ H is hermitian if all
its elements are hermitian, that is

∀g ∈ G, g†
� g. (6.3)

The fermionic subsets of H are those that obey fermionic anti-
commutation relations. Inspired by the split between creation oper-
ators and annihilation operators, we split every fermionic subset, F,
arbitrarily into two disjoint sets F− and F+, such that

f ∈ F− ⇔ f † ∈ F+. (6.4)

We can go between fermionic and hermitian bases using the next
two lemmas (all bases are considered orthonormal in this chapter).

Lemma 6.1. If F ⊆ H is fermionic, then there exists an orthonormal hermitian
basis for the span of F.

Proof. For each fi in F−, define

gi ,1 �
1√
2

(
fi + f †i

)
(6.5)

gi ,2 �
i√
2

(
fi − f †i

)
(6.6)

The set of all these operators constitute the prerequisite basis. ✈

Lemma 6.2. Let G be a hermitian subset of H, then there exists a fermionic
basis for the span of G if and only if the span of G has even dimension.

Proof. Suppose G has even dimension and let
{

gi

}
be an orthogonal

basis for G of size N . We now define

fi �
1√
2

(
g2i + i g2i+1

)
(6.7)

f †i �
1√
2

(
g2i − i g2i+1

)
(6.8)
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for all integers up to N/2, The set of all these operators constitute the
prerequisite basis. For the “only if”: A fermionic basis necessarily has
an even dimension. ✈

Finally, the operation of complex conjugation—being an anti-linear
involution—imposes what is known as a real structure on H, which we
will make use of in this chapter.

Lemma 6.3. If g , h ∈ H are hermitian, then the inner product
〈

g , h
〉

is real.

Proof. From the definition, clearly
〈

g , h
〉
�

〈
h , g

〉
�

〈
g , h

〉∗
. ✈

Corollary 6.3.1. Let G be an orthonormal hermitian basis of a subspace S of
H, and let A be an operator on S. If A maps hermitian operators to hermitian
operators, then the matrix of A, written in the basis G, is real.

6.4 Outline

Wilson’s NRG process consists of three separate phases: In phase one,
the lead is discretized, we will cover this in the next section. In phase
two, the hamiltonian is mapped to a chain. By “mapping to a chain”,
we mean finding a new single-particle basis for the system, such that
it looks like a string of separate sites with only nearest neighbor inter-
actions. We will see how to do this in Section 6.6. Phase three is the
renormalization group, where the chain is extended, one link at a time,
starting with the impurity.

The renormalization group of phase three consist of repeated iter-
ation of the following procedure, starting with a system consisting of
only the impurity.

1. Add one site of the chain to the system.

2. Diagonalize numerically.

3. Project out high energy states.

In Section 6.7 we will look at how this procedure can be carried out
in practice, and in Section 6.8 we will reason why the projection in each
iteration does not influence the eigenstates near the Fermi-level.
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6.5 Discretization

We discussed logarithmic discretization in a previous chapter (Sec-
tion 2.3 on page 41) in relation to a different technique. Since the
discretization procedure is the same, we will not go through all the
details again.

In the remainder of this chapter, we will let H, Himp, and H′ denote
the already discretized hamiltonians. At this point, H will include a
finite number of creation and annihilation operators numbering around
a hundred. The set of operators needed to write Himp we call Fimp

and would usually not contain any of the discretized operators, only
operators specific to the impurity.

Example 6.1 (Superconducting leads). When discretizing a supercon-
ducting lead for the purpose of the NRG process, it does not matter
whether the bogoliubon excitations or the fermi-liquid excitations are
discretized, as the NRG process is perfectly capable of finding the cor-
rect excitations by itself. In one case H′ will look like (Ht + Hl) of
Section 2.3.4, and in the other it would look like

H′
� ∑

νσ

ξν f †νσ fνσ +

(
∑
ν

∆ f
ν↑ f

ν↓ + ∑
νσ

tνσ f †νσdσ + HC

)
(6.9)

where the f -operators are the discretized lead operators, and the d-
operators are dot operators (members of Fimp). Here, ∆ is unchanged
by the discretization, and ξν and tνσ are as in Section 2.3.4. In either
case Himp is just Hd of Section 2.3.4.

6.6 Mapping to a Chain

This section is concerned with phase two of the NRG process as de-
scribed in the outline, where we “map the system to a chain”.

Definition 6.4 (Chain form). A sequence, {F0 , F1 , . . . , FN }, of disjoint
fermionic subsets of H, bring H to chain form if Fimp ⊆ span (F0) and H′

can be written as

H′
�

N

∑
n�0

(
∑
i j

ani j fn ,i fn , j + ∑
i j

bni j fn−1,i fn , j

)
(6.10)

for some sequence of coefficient {ani j} and {bni j}, where { fn ,i}i are the
elements of Fn .
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The existence of such a construction is not obvious, let alone how
to find the operators { fn ,i}. In this section, an algorithm is presented
which can be applied to any quadratic H′ and fermionic F0 to mechan-
ically generate suitable {F1 , F2 , . . . }, effecting the transformation.

We will be studying the function Ω on H defined as

Ωp � i[H′, p]. (6.11)

Since H′ is quadratic, the image of H under Ω is again a subset of H,
and Ω is in fact an anti-hermitian linear operator on H. Importantly,
we can recover H′ from knowledge of Ω, as the next lemma shows.

Lemma 6.4. Let { fi} be any fermionic basis of H, then H′ can be written as

H′
� ∑

i j

hi j fi f j (6.12)

where hi j � −i
〈

fi ,Ω f †
j

〉
if i < j and hi j � 0 otherwise.

Proof. Clearly, H′ can be written as ∑i j hi j fi f j for some choice of hi j ,
and since we can always just anticommute the operators where i > j,
we are free to assume hi j � 0 for i > j. The rest of the lemma follows
from inserting H′ into

〈
fi ,Ω f †

j

〉
. ✈

Corollary 6.4.1. If a sequence, {F0 , F1 , . . . }, of disjoint fermionic subsets of
H, bringΩ to block tridiagonal form, and Fimp ⊆ span (F0), then {Fi} brings
H to chain form.

By the last corollary, it seems that mapping H to chain form will
be straightforward. All we have to do is block tridiagonalize Ω. But
the requirement, that all the bases {Fi} be fermionic, is a little tricky
to enforce in the light of electron/hole mixing. It turns out that it is
a little easier if we first transform to a hermitian basis, e.g. using the
construction in the proof of Lemma 6.1.

If we write Ω as a matrix using a hermitian basis for H, then all its
coefficients will be real. This is a consequence of Lemma 6.3 and the
fact that Ω maps hermitian operators to hermitian operators. Sec-
tion 6.9.1 describes an algorithm that block tridiagonalizes any real
skew-symmetric matrix using only real basis vectors. Let (G0 ,G1 , . . .)
be the block bases constructed by this algorithm. Since a real vector
into a hermitian basis represents a hermitian operator, the basis Gn is
hermitian for all n, and we can use Lemma 6.2 to construct fermionic
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bases, (F0 , F1 , . . .), for the blocks. By Corollary 6.4.1, we have now
mapped H to a chain.

We see, that using a hermitian basis for H, turns the non-standard
problem implied by Corollary 6.4.1, into a well studied problem in
numerical linear algebra. Specifically, the problem of block tridiag-
onalizing a real matrix using real basis vectors. The algorithm we
use (Section 6.9.1) is based solely on numerically stable Householder
reflections.

6.6.1 Details of the transformation

Here is a specific way to do the chain form transformation. Assume
thatΩ has been brought to block tridiagonal form using the hermitian
bases (G0 ,G1 , . . . ,GN ) each of size k as in Section 6.6, where k is an
even number. Then

Ω �

©­­­­«

Ω0,0 Ω0,1

Ω1,0 Ω1,1 Ω1,2

Ω2,1 Ω2,2 . . .
. . . . . . ΩN−1,N

ΩN,N−1 ΩN,N

ª®®®®¬
. (6.13)

where each Ωi , j is a matrix of size k × k. We order the operators in Gn

as
(
gn ,1 , gn ,2 , . . . , gn ,k

)
, and for all j in {1, 2, . . . , k} we set

fn , j �
1√
2

(
gn ,2 j−1 − i gn ,2 j

)
j ≤ k/2, (6.14)

fn , j � f †
n , j−k/2

j > k/2. (6.15)

We define Fn for all n as the (clearly fermionic) basis
{

fn , j

} k

j�1
, and

write H with these operators as,

H � Himp +

N

∑
n�0

Hd
n +

N

∑
n�1

H t
n , (6.16)

where

Hd
n � ∑

i< j

ωn ,n
i , j

fn ,i fn , j , (6.17)

H t
n � ∑

i j

ωn−1,n
i , j

fn−1,i fn , j , (6.18)
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and

ωn ,m
i , j

� −i
〈

fn ,i ,Ω f †m , j

〉
. (6.19)

The sum in Equation (6.17) runs over all i and j where i < j. This
concludes the transformation to chain form.
Ω has other interesting properties. In particular we will later need

the following lemma.

Lemma 6.5. H′ can be written as

H′
� ∑

i

Eiγ
†
i γi (6.20)

where every γi is an element of F+ for some fermionic basis, F, of H, where
{Ei} are the positive eigenvalues of iΩ.

Proof. On a hermitian basis, Ω is a skew-symmetric real matrix, there-
fore a real orthogonal matrix U exists such that UT

ΩU is block diagonal
with the blocks

Ai �

(
0 λi

−λi 0

)
(6.21)

where each λi is a (real) positive eigenvalue of iΩ.[18] Since U is real
and orthogonal, the columns of U form another hermitian basis of H.
Let

{
gi

}
be the operators in H corresponding to the columns of U, and

construct the fermionic basis for H given by equations (6.7) and (6.8),
then the construction of Lemma 6.4 is exactly Equation (6.20). ✈

6.7 The renormalization group

After transforming the hamiltonian to chain form, we are ready to run
the renormalization group part of the NRG process. Here we describe
how this is implemented. Note, that this is a fairly simplistic (toy)
implementation, which does not make use of symmetries to speed up
the algorithm. We will discuss this further in Section 6.10.

6.7.1 Choosing a basis

The most important decision when implementing this part of the algo-
rithm is choosing what basis to use for each step. Then, the rest follows
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naturally. For a sequence of operators F �

(
f1 , f2 , . . . , fn

)
in H we de-

fine

subseq(F) �
(
1, f1 , f2 , f2 f1 ,
f3 , f3 f1 , f3 f2 , f3 f2 f1 , . . .

)
.

(6.22)

which enumerates all the subsequences of F in a particular order. For a
sequence F as before, and for a sequence of states U � (u1 , u2 , . . . , um)
in H , we now define B(F,U) as the concatenation of

(qu1 , qu2 , . . . , qun) (6.23)

for each q in subseq(F). As an example, let

F �

(
f †1 , f †2

)
(6.24)

U �

(
|u1〉 , |u2〉

)
, (6.25)

then
B(F,U) �

(
|u1〉 , |u2〉 ,

f †1 |u1〉 , f †1 |u2〉 ,
f †2 |u1〉 , f †2 |u2〉 ,

f †2 f †1 |u1〉 , f †2 f †1 |u2〉
)
.

(6.26)

If the states in U do not contain any of the fermions annihilated by
the operators in F, the it is easy to apply the operators in F and F† to a
vector written in the basis B(F,U).

6.7.2 Running the process

We assume that H′ has been brought to chain form with the fermionic
bases (F0 , F1 , . . .) and Ωi , j as in Equation (6.13), and define

H′
n � Hd

n + H t
n (6.27)

with Hd
n and H t

n as in equations (6.17) and (6.18).
We will be adding one link of the chain at a time, keeping only the

lowest k eigenstates at each step; obviously the very first step stands
out a bit, and this is what we look at here. At this step, we work
with vectors and matrices in the basis B(F0 , {|0〉}). We now make the
following definitions

H0 is the matrix of Himp.
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H′0 is the matrix of H′
n which we calculate from Ω0,0.

U0 are the lowest k eigenvectors of H0 + H
′
0.

E0 are the corresponding eigenenergies.

M0 is a sequence of matrices in the basis of U0 for each operator
in F+

0 .

For step n > 1, we work in the basis B(Fn , Un−1), and we make the
following definitions

Hn is a diagonal matrix with the eigenenergies of En−1 in the
main diagonal, repeated so that we get to the dimensions of
B(Fn , Un−1).

H′n is the matrix of H′
n which we calculate fromΩn ,n ,Ωn ,n−1, and

Mn−1.

Un are the lowest k eigenvectors of Hn + H′n .

En are the corresponding eigenenergies.

Mn is a sequence of matrices in the basis of Un for each operator
in F+

n .

That is it. To find the excitation energies of the sub-gap states of a
proximitized dot, we only have to run this process to some reasonable n
(until the energies are stable) and look at the lowest three eigenenergies.
In sections 6.10 and 6.11 we look at what is missing from this fairly
naïve implementation. Finally, Figure 6.1 shows profiling data from a
typical run.

6.8 Energy Scale Separation

In this section, we will tackle a somewhat difficult question: To what
extent does the projection done in each iteration of the renormalization
group affect the eigenstates near the Fermi level? We will see that the
answer to this question depends crucially on an energy scale separation
that manifests itself in all aspects of the NRG process, starting with the
logarithmic discretization of the lead. The way this property carries
over between the phases of the NRG process, is what makes Wilson’s
work genius.



6.8. ENERGY SCALE SEPARATION 149

0 20 40 60 80 100

The QR algorithm

Garbage collection

Other

Calculating H′
n

Calculating Mn

Finding Un and En

0.0

0.3

1.3

1.5

3.8

93.0

Time spent (in %)

Figure 6.1: Typical profiling data.

6.8.1 Krylov subspaces

We begin this section by looking at an interesting construction that we
will make extensive use of.

Definition 6.5 (Krylov subspaces). The order-n Krylov subspace, of a
vector v and an operator A, is given by

Kn(A, v) � span
({

v ,Av ,A2v , . . . ,An−1v
} )
. (6.28)

Krylov subspaces are interesting, because they contain vectors that
approximate eigenvectors on the periphery of an operators spectrum.
This is illustrated by the following bound on the tangent of the angle
between Kn(A, v) and an eigenvector of A. The bound is due to Saad,1
but we restrict it to operators on finite spaces with simple eigenvalues.

Definition 6.6 (Angle to a subspace). The angle between a subspace
S ⊆ H and a vector v ∈ H is the angle between v and PSv.

Proposition 6.1 (Saad’s Error Bound). Let A ∈ CN×N be a hermitian
matrix with simple eigenvalues. Let λ1 > λ2 > · · · > λN be the eigenvalues
of A, and wi the eigenvector corresponding to λi .

1 The proof given by Saad in [68] is based on the following idea: The subspace
Kn(A, v) can be written as

{
q(A)v |q ∈ Pn−1

}
where Pn−1 is the space of polynomials of

degree no larger than n − 1. Let {wi} be eigenvectors of A and {λi} the corresponding
eigenvalues, and write v as v � ∑ ui wi . Then, every vector w ∈ Kn(A, v) can be written
as w � ∑ ui q(λi)wi for some q ∈ Pn−1.

The Chebyshev polynomials are uniquely good at being small on the interval [-1,1]
and large elsewhere, and by choosing q based on these polynomials, we can single out
peripheral eigenvectors for w.
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Let v ∈ CN be a vector such that 〈v , wi〉 , 0, and let θn(wi) be the angle
between wi and Kn(A, v). Then, for n > i,

tan θn(wi) ≤
Ki

Tn−i(γi)
tan θ1(wi), (6.29)

where the constants γi and Ki are given by

γi � 1 + 2
λi − λi+1

λi+1 − λN
(6.30)

and

Ki �

i−1

∏
j�1

λ j − λN

λ j − λi
. (6.31)

Here, Tk(x) is the Chebyshev polynomial of the first kind of degree k,

Tk(x) �
1

2

( (
x +

√
x2 − 1

) k

+

(
x −

√
x2 − 1

) k
)
. (6.32)

Saad’s Error Bound shows that tan θn(wi) decays exponentially for
large n, with a rate that depends on how isolated and close to the
periphery the eigenvalue corresponding to wi is in the spectrum of
A. We will informally say that Kn(A, v) approximates wi if θn(wi)
decreases reasonably fast as n increases.

We will be especially interested in Saad’s bound for the case of log-
arithmically spaced eigenvalues, where the Krylov subspace approxi-
mates eigenvectors remarkably well.

Lemma 6.6. Let A ∈ CN×N be a hermitian matrix with the eigenvalues
{λ1 , λ2 , . . . , λN } where λi � Λ

−i . Then, for n > i+1 andΛ > 1, and using
the same notation and assumptions as in Proposition 6.1,

tan θn(wi) ≤ cr i−n tan θ1(wi) (6.33)

where

c � r/φ(Λ−1), (6.34)

r � 2
(
Λ +

√
Λ2 −Λ

)
− 1. (6.35)

Here, φ(q) is the Euler function,

φ(q) �
∞
∏
k�1

(
1 − qk

)
. (6.36)

Note, 4Λ − 3 < r < 4Λ − 1.
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Figure 6.2: These plots shows the Λ dependent constants r and
1/φ(Λ−1) of Equation (6.33) as Λ ranges over typical values (as used in
the NRG process). The left plot also shows 4Λ− 3, in a red dashed line,
which is a lower bound on r.

Proof. From inserting λi into the defining equations of γi and Ki ,

γi � 2Λ − 1 (6.37)

Ki �

i−1

∏
j�0

(
1 −Λ j−i

) −1
. (6.38)

Note, we count λi from 0 in this lemma and from 1 in Proposition 6.1.
We now reverse the numbering of the product,

Ki �

i

∏
j�1

(
1 −Λ− j

) −1 ≤ 1/φ(Λ−1). (6.39)

We insert γi into Equation (6.32) and keep only the first term

Tn−i−1(γi) ≤ 1
2 rn−i−1. (6.40)

Inserting this into Equation (6.29) finishes the calculation. ✈

To illustrate these bounds, we plot various values of interest in
figures 6.2 and 6.3.

6.8.2 Block Krylov subspaces

Before moving on to apply these bounds to the NRG process, we need
to extend them to cover matrices with eigenvalues that are not simple.
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Figure 6.3: This plot shows the behavior of the pre-factor Ki/Tn−i(γi)
of Equation (6.29) for logarithmically spaced eigenvalues, λi � 3−i . The
same notation as in Proposition 6.1 is used. λN is set to 0. Red dashed
lines show the right hand side of Equation (6.33).

First, by showing how Proposition 6.1 behaves if applied to a matrix
with multiple eigenvalues, and then by extending it to block Krylov
subspaces.

The important point of this chapter is that block Krylov subspaces
(Definition 6.7) are not fooled by multiple eigenvalues or clusters of
close eigenvalues, if the starting block is large enough to “distinguish”
the vectors of the cluster.

First we will look at the behavior of Kn(A, v) if A contains multiple
eigenvalues.

Lemma 6.7. Let E be the set of all eigenspaces of a hermitian matrix A ∈
CN×N , and v a vector in CN . Set

S � span ({Pe v | e ∈ E}) . (6.41)

Then v ∈ S, and Kn(A|S , v) � Kn(A, v). The eigenvalues of A|S are all
simple and are a subset of the eigenvalues of A.

Furthermore, if w is an eigenvector of A with a simple eigenvalue, then
w ∈ S and w is still an eigenvector of A|S with the same eigenvalue.

Proof. The eigenspaces of a hermitian matrix span the entire domain
of the matrix, so

v � ∑
e∈E

Pe v (6.42)
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which shows that v ∈ S, and Kn(A|S , v) � Kn(A, v) follows from in-
serting this decomposition of v.

The last too statements in the lemma are just different ways of
saying that we single out one vector from each eigenspace. Note that
APe v � Pe AV for all e in E. ✈

The above lemma shows that the Krylov subspaces Kn(A, v) will
always approximate exactly one eigenvector from each eigenspace, s,
of A which is not orthogonal to v, namely the eigenvector Ps v. More
importantly for the present context, it means that Proposition 6.1 can
be applied to matrices with multiple eigenvalues, as long as the eigen-
vector you are trying to approximate is associated with a simple eigen-
value.

To approximate more than one vector from an eigenspace, we need
to use block Krylov subspaces instead.

Definition 6.7 (Block Krylov subspaces). The order-n block Krylov sub-
space, of a set of vectors V and an operator A, is given by

Kn(A,V) � span
(
V ∪ AV ∪ A2V ∪ · · · ∪ An−1V

)
, (6.43)

where AS is the image of S under A.

The following lemma shows why block Krylov subspaces are inter-
esting.

Lemma 6.8. Let A ∈ CN×N be a hermitian matrix, V a set of vectors in CN ,
and W a set of eigenvectors of A. If a vector v ∈ span (V) is orthogonal to W ,
then

Kn(A|W⊥ , v) ⊆ Kn(A,V) (6.44)

for all n.

Proof. Clearly, Kn(A, v) ⊆ Kn(A,V). Since v is an element of W⊥, and
W⊥ is an invariant subspace, we have Kn(A, v) � Kn(A|W⊥ , v). ✈

Suppose A is a hermitian matrix with a cluster of degenerate or
nearly degenerate eigenvectors, W . Then regular Krylov subspaces
will have a hard time simultaneously approximating all of the vectors
in W . Block Krylov subspaces, on the other hand, can simultaneously
approximate all the eigenvectors in W , but we must pick the starting
block to be large enough, such that for each wi ∈ W , there exists a
vector in the starting block which is orthogonal to all the other vectors
in W .

Note, Saad elaborates significantly on these concepts in his article.[68]
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6.8.3 In the blocks of Ω

As we shall soon see, it is important that the energy scale of the blocks
Ω fall of exponentially as one moves down the matrix. Equivalently,
it is important that the coefficients of the chain hamiltonian fall of
exponentially. In Wilson’s original article,[92] he showed that this was
the case for the Kondo hamiltonian, by giving explicit formulas for the
coefficients. This is not practical for other problems than the Kondo
hamiltonain, so we need a more general argument.

Throughout this section, we assume that Ω has been brought to
block tridiagonal form using the hermitian bases (G0 ,G1 , . . . ,GN ).

Lemma 6.9. For any operator A and basis V ,

Kp(A,V) ⊆ Kn(A2 ,V′) (6.45)

where V′
� V ∪ AV , and p �

⌊
n
2

⌋
.

Proof. This is clear. ✈

Proposition 6.2. Suppose the eigenvalues of Ω are ±iDΛ− j for all j in
(0, 1, . . . ,m), with corresponding eigenvectors

{
w±

j

}
, such that

∀i. PGw+

i ⊥ PGw−
i , (6.46)

where

G � span (G0 ∪ G1) . (6.47)

Suppose further, that b , t ∈ R+ exists, such that t > Λ−1 and

∀i. tan θ(w±
i ,G) ≤ bt−i . (6.48)

Then, for any

Q � span (Gn ∪ Gn+1 ∪ · · · ∪ GN ) , (6.49)

the operator norm of Ω|Q satisfies



Ω|Q

 ≤



k1Λ
−n

+ k2r−n
2 r1 > r2

k1Λ
−n

+ k3nr−n
1 r1 � r2

k1Λ
−n

+ k4r−n
1 r1 < r2

(6.50)
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where the constant are

r1 � 2
(
Λ +

√
Λ2 −Λ

)
− 1 (6.51a)

r2 � Λt (6.51b)

k1 � 2D2 Λ

1 −Λ−2
(6.51c)

k2 � 2D2b2 c2r2

(r1/r2)2 − 1
(6.51d)

k3 � D2b2c2r1 (6.51e)

k4 � 2D2b2 c2r1

1 − (r1/r2)2
(6.51f)

c � r1/φ(Λ−1). (6.51g)

Note. This shows that


Ω|Q

 falls of exponentially with n. The constant

k1 is of the order of D2, and k2, k3, and k4 are on the order of D2b2.

Proof. Let Q′ be the set of vectors in Q of norm 1. By definition,

Ω|Q

 � sup
q∈Q′



Ωq


 . (6.52)

For all q, 

Ωq


 �

√〈
Ωq ,Ωq

〉
�

√〈
q ,−Ω2q

〉
, (6.53)

where the last equality is because iΩ is hermitian.
Set Φ � −Ω2, then Φ has the eigenvalues λi � (DΛ−i)2 for i in

(0, 1, . . . ,m), with the same eigenvectors as Ω. Let q be any vector in
Q′. We assume without loss of generality that all

{
w±

i

}
are normalized,

and resolve q into eigenvectors of Φ, then



Ωq


2

�

〈
q ,−Ω2q

〉
�

m

∑
i�0

∑
s∈{±}

λi

〈
q , ws

i

〉〈
ws

i , q
〉
. (6.54)

We will now put a bound on each
〈
q , ws

i

〉
. Fix i, set w � w+

i
or w � w−

i
,

and let v be any vector in Q⊥. Since q ∈ Q′ and is therefore orthogonal
to v, we have��〈q , w

〉�� � ��〈q , w − v
〉�� ≤ 

q



 × 

w − v


 �



w − v


, (6.55)
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where we used the Cauchy-Schwarz inequality, and noticed that q is
normalized (because it is in Q′ which was defined as the normalized
elements of Q).

Since Q⊥
� Kn(Ω,G0), we have from Lemma 6.9 that Kp(Φ,G) ⊆

Q⊥ with p �

⌊
n
2

⌋
. Set

u � PGw. (6.56)

Then, by Lemmas 6.7 and 6.8,

Kp(Φ′, u) ⊆ Kp(Φ,G), (6.57)

for some Φ′ which:

1. Has the same eigenvalues as φ.

2. Has simple eigenvalues.

3. Has w as an eigenvector with eigenvalue λi .

We now fix v to be the projection of w onto Kp(Φ′, u). Since w is
normalized, we have from basic trigonometry and from Definition 6.6,

w − v



 � sin θp(w) ≤ tan θp(w). (6.58)

where θp(w) is the angle between Kp(Φ′, u) and w. We can now apply
Lemma 6.6, to show that, for p > i,��〈q , w

〉�� ≤ cr i−p tan θ(w ,G), ≤ cr i−p bt−i (6.59)

where

r > 4Λ2 − 3, (6.60)

c � 2/φ(Λ−2). (6.61)

Splitting the sum in Equation (6.54) into i < p and i ≥ p, and using
Equation (6.59) and

��〈q , w
〉�� ≤ 1, we have



Ωq


2 ≤ 2

p−1

∑
i�0

(
DΛ−i

) 2 (
cr i−p bt−i

) 2
+ 2

m

∑
i�p

(
DΛ−i

) 2
. (6.62)

Performing these sums (and loosening the bound by extending m to
∞), we get



Ωq


2 ≤




2D2

(
(bc)2
1 − x2

1 − x2p

r2p
+

1
1 −Λ−2

1
Λ2p

)
x , 1

2D2

(
(bc)2 p

r2p
+

1
1 −Λ−2

1
Λ2p

)
x � 1

(6.63)
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where we defined x � r/(Λt).
Since this holds for all q we have a bound on the operator norm.

Equation (6.50) is just a relaxed version of the above bound. ✈

Example 6.2 (Logarithmically discretized Anderson model). Consider
the lead and hybridization part of the logarithmically discretized An-
derson model (see Section 2.3),

Hl � ∑
aσ

ξa f †aσ faσ , (6.64)

Ht � ∑
aσ

ta d†
σ faσ + HC. (6.65)

We label each of the f operators by a tuple, (s , i), of sign s in {−1,+1}
and an integer i in {0, 1, . . . ,N}; sums over “a” runs over all such
tuples. The energies ξa are logarithmically spaced as

ξ(s ,i) � s × DΛ−i , (6.66)

and

ta �

√
Γ′ |ξa | (6.67)

where

Γ
′
�
Γ

2π

2(1 −Λ−1)
1 +Λ−1

. (6.68)

We want to show that Ω satisfies the assumptions of Proposition 6.2.
Since Ω neither couples electrons and holes nor different spin, we can
remove the spin indices of the basis operators (dσ, and

{
faσ

}
) and look

at only annihilation operators, for which

Ωd � −i ∑
a

ta fa , (6.69)

Ω fa � −iξa fa − ita d. (6.70)

Without loss of generality, let

wb � xd + ∑
a

ya fa (6.71)

be an eigenvector of iΩwith eigenvalue λb , then

ya �
xta

λb − ξa
, (6.72)

λb x � ∑
a

ya ta . (6.73)
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We set b � (s , i) for some s and i, and use the ansatz λb � ξb + δ.
Assuming δ is small compared to ξb , then yb tb is very large compared
to the other terms in Equation (6.73), and

∑
a

ya ta ≈ yb tb . (6.74)

Inserting this into Equation (6.73) the system is easy to solve. Since
wb is localized on fb , it will be approximately normalized if we just set
yb � 1. With this we get

x � tb/ξb , (6.75)

δ � Γ
′. (6.76)

The approximation in Equation (6.74) is valid when ξb ≫ Γ
′ corre-

sponding to small i.
For large i, we set b � (s , i) as before, and use the ansatz

λb � s × DΛ−
(
i+ 1

2+δ
)

(6.77)

chosen so that y(s ,i) + y(s ,i+1) � 0 for δ � 0. We insert Equation (6.72)
into Equation (6.73), and obtain

λb � Γ
′

N

∑
j�0

q( j) (6.78)

where

q( j) � 2s

Λ j−i−1/2−δ −Λ−( j−i−1/2−δ) . (6.79)

We now rewrite the sum in Equation (6.78) so that we sum terms
pairwise around i + 1/2 and extend it to infinity in both directions, so
that

λb ≈ Γ′
∞
∑
j�0

q(i − j) + q(i + 1 + j) (6.80)

which is valid when 0 ≫ i ≫ N . Now, using the approximation
Λ

z±δ ≈ Λz(1 ± δ logΛ) valid to lowest order in δ,

q(i − j) + q(i + 1 + j) � 4s

Λ j+1/2 −Λ−( j+1/2)
( j + 1/2)δ logΛ

1 + (( j + 1/2)δ logΛ)2 . (6.81)

If δ is small, then

q(i − j) + q(i + 1 + j) & 4s

Λ j+1/2

(
( j + 1/2)δ logΛ

)
. (6.82)
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We now insert this into Equation (6.78) and solve the sum by reffering
to a table [102],

λb � Γ
′4sΛ3/2 logΛ

(Λ − 1)2 δ. (6.83)

This equation says, that if λb ≪ Γ′, then δ ≈ 0 (since the constant is of
order 1), and the ansatz is good. This time, wb is localized on f(s ,i) and
f(s ,i+1), so we set y(s ,i) � 1/

√
2 to normalize wb approximately, then

x � s
1 −

√
Λ√

2Λ
× tb

Γ′
. (6.84)

Let θ(wb , d) be the angle between wb and d. If this angle is small,
then tan θ(wb , d) ≈

(
1/cos θ(wb , d)

)
� |x |−1 (if wb is normalized).

Having approximately bounded x for both small and large eigenvalues,
we are now in a position to approximate this tangent,

tan θ(w(s ,i) , d) .
{
(Γ′)−1/2 ×Λ−i/2 DΛ−i ≫ Γ′,
(Γ′)1/2

√
2Λ

1−
√
Λ
×Λi/2 DΛ−i ≪ Γ′. (6.85)

In Figure 6.4 we plot these bounds and compare to numerical simula-
tions.

Note that these calculations show that assumptions of Proposi-
tion 6.2 are satisfied in this case2 with t �

√
Λ.

6.8.4 In the chain hamiltonian

Assume that Ω has been brought to block tridiagonal form using the
hermitian bases (G0 ,G1 , . . . ,GN ) each of size k. For each n, define Rn

as the span of Gn ∪ Gn+1 ∪ . . . ∪ GN . We use the same notation as in
Section 6.6.1 and define

Hn � Himp +

n−1

∑
m�0

Hd
m +

n−1

∑
m�1

H t
m , (6.86)

That is, for each n, Hn is the hamiltonian of the first n links of the chain
including the impurity, and Hn → H for n → N . Clearly

Hn+1 � Hn + Hd
n + H t

m . (6.87)

2In fact, they are not exactly satisfied, since the eigenvalues are slightly perturbed
from ξb , and there is an extra eigenvector with an eigenvalue of 0 that we did not talk
about. But, all the proofs are insensitive to these deviations.
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Figure 6.4: These plots show how the bounds of Equation (6.85) com-
pare to numerical simulations. We used Λ � 3, D � 1, Γ′ � 10−4, and
N � 25, and found the eigenvectors of iΩnumerically. The eigenvectors
fall into three sets: The first set corresponds to the eigenvalues λ ≈ Λ−i

for i in (0, . . . , 25). The second set corresponds to just the eigenvalue
λ � 0 which we left out of the discussion. The last set corresponds to
λ ≈ −Λ−i and behaves just like the first set. Lines between points are
guides to the eye. Red dashed lines are the bounds of Equation (6.85),
and the green dashed line just shows the value of Γ′.
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Suppose that for some n we know the full many-body eigenstates
of Hn . Consider two (full many-particle) eigenstates of Hn with dif-
ferent eigen-energies E1 and E2. Since these do not involve any of the
operators of the rest of the chain, these states will be part of two larger
degenerate eigen-spaces s1 and s2. Let us consider using degenerate
perturbation theory to add one link to the chain, that is, we add to Hn ,
the operator Hd

n + H t
m .

Each degenerate subspace s1 and s2 is split by Hd
n , and since Hd

n is
quadratic in creation and annihilation operators, and involves only op-
erators from the span of Gn , we can in principle calculate this splitting
exactly. Specifically Hd

n can be written as

Hd
n � ∑

i

eiγ
†
i γi (6.88)

using a suitable basis for Gn . Lemma 6.5 shows how, and we shall see
that the excitation energies, ei , can be taken to be the positive eigenval-
ues of iΩn ,n and are thus bounded by the operator norm



Ω|Rn



. The
splitting of the eigenstates of s1 and s2 are then bounded by k ×



Ω|Rn




where k is the size of the starting block.

H t
n involves operators from span (Gn ∪ Gn+1) and its coefficients are

therefore bounded by


Ω|Rn−1



. H t
n will mix the states of s1 and s2;

ignoring all states that are not in s1 or s2, and to lowest order in H t
n , a

state
��ψ〉

∈ s1 will be perturbed to

��ψ′〉
�

��ψ〉
+ ∑��φ〉

∈s2

〈
φ
�� H t

n

��ψ〉
eψ − eφ

��φ〉
, (6.89)

where eψ and eφ are the unperturbed (by H t
n , still with the splitting of

Hd
n ) energies of

��ψ〉
and

��φ〉
. Suppose E1 ≈ 0 and E2 >



Ω|Rn



, then

〈
φ
��ψ′〉 ≤



Ω|Rn−1




E2 − k ×



Ω|Rn



 . (6.90)

for all
��φ〉

in s2.
If we simply ignore all states in s2, when calculating the eigenstates

of Hn+1 near 0, then this is approximately the error we will make. If
we can tolerate at most a certain error e, then

E2 ≥


Ω|Rn−1



/e +


Ω|Rn



 (6.91)
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Figure 6.5: The splitting of the energy levels as sites are added to the
chain. High energy states are discarded at each step of the NRG process.

We have already seen when we can take


Ω|Rn



 to be an exponential
decaying function of n. Then, the above equation shows that if we are
ready to accept a certain error at each step, then the energy above
which we can throw away states at each step, is also exponentially
decaying. Since the splitting at each step causes the density of states to
increase exponentially, this means that if we keep a constant number
of states at each step, we will be making the same small error at each
step. Figure 6.5 shows the procedure graphically.

6.8.5 Superconducting leads

Our arguments above depend crucially on the exponential fall-off of

Ω|Rn



, which again depends on Ω having eigenvalues that decay ex-
ponentially to zero. For a superconducting lead, all the eigenvalues of
Ω are larger (in magnitude) than ∆, so this will not be the case. In prac-
tice, there will come a point where further steps cannot be expected to
improve an NRG simulation of a proximitized dot.[5,70,71]



6.9. IMPLEMENTATION 163

6.9 Implementation

Since I felt I came up with some interesting ideas while studying the
NRG process, I had to write my own implementation of the process to
test them out in practice. This section covers some details of how the
program is implemented.

6.9.1 Block tridiagonalization

In Section 6.6, we needed to bring a real anti-symmetrix matrix to block
tridiagonal form. There are several choices of algorithms available,[91]

however the one we use has the advantage of being easy to make nu-
merically stable. Given a real anti-symmetric matrix A of dimension
n × n and an integer, k, this algorithm finds a real orthogonal transfor-
mation Q, such that QTAQ is block tridiagonal with a blocks of size
k.

First, we write A as a block matrix

A �

(
A0 −B∗

1
B1 C1

)
(6.92)

where A0 is a k × k matrix. We then compute a condensed QR-
decomposition of B1 based on Householder reflections,[91]

B1 � Q1

(
R1

0

)
(6.93)

where R1 is k × k and Q1 is (n − k) × (n − k) and orthogonal. We write

Q̃1 �

(
1k×k 0

0 Q1

)
, (6.94)

and transform A as

Q̃T
1 AQ̃1 �

©­«
A0

(
−RT

1 0
)(

R1

0

)
C′

ª®¬
(6.95)

where C′
� QT

1 CQ1. The algorithm is then applied recursively to C′ to
generate Q2 , R2 ,A2 then Q3 , R3 ,A3 and so on. In the end, we have

QTAQ �

©­­­­«

A0 −RT
1 0 · · ·

R1 A1 −RT
2

0 R2 A3

...
. . .

ª®®®®¬
(6.96)
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where
Q � Q̃1Q̃2Q̃3 · · · (6.97)

and

Q̃m �

(
1mk×mk 0

0 Qm

)
. (6.98)

Note, that since Qm is a product of k Householder transformations,
it can be stored as just k vectors of length (n −mk). Efficient algorithms
also exists for working with these transformations. Lastly, we note
that computing a condensed QR-decomposition based on Householder
reflections is inherently numerically stable, if done correctly.[91]

6.9.2 Other tridiagonalization techniques

There are other ways to bring a matrix to block tridiagonal form. In
particular, the Lanczos algorithm would have been an obvious choice.
It has the advantage of generating the blocks using constant time per
block, whereas the algorithm above has to apply progressively more
Householder transformation to the bottom right corner of the matrix.
Lanczos algorithm also maintains the sparsity of a matrix as the algo-
rithm runs.

If one writesΩ in the basis of the discretized excitation (i.e. without
first transforming to a hermitian basis), for the Anderson model, and
then perform Lanczos algorithm, then one recovers the conventional
recursion relation for the chain hamiltonian (given in [5, 92]). So, Lanc-
zos method is the de-facto standard method for the NRG process, even
if few authors makes it explicit and many instead find the coefficients of
the chain hamiltonian by means of an anzats. There are exceptions, and
some have even looked at using a block Lanczos algorithm explicitly
to bring more general systems to chain form, similar to what is done
here.3

The main drawback of the Lanczos method is that it is numerically
unstable. Other NRG programs circumvent this problem by computing
the coefficients of the chain hamiltonian using arbitrary precision math.
The algorithm presented above does not suffer from this problem in the
first place. In principle only, more testing needs to be done to confirm
this.

3 E.g. [81], though they do not have a superconductor and do not have to worry about
ensuring fermionic anti-commutation relations.
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6.9.3 Inputting the hamitonians

We use the technique described in Section 2.3.7 for inputting the hamil-
tonian of the impurity (in fact, the same library is used for both). I.e.
one creates values with the functions raise and lower corresponding
to creation and annihilation operators, and then these are combined
using the operations of an operator algebra.

For inputting the lead and hybridization hamiltonians, H′, a slightly
different mechanism is used. Instead of the functions raise and lower,
functions are used which create values representing quadratic terms,
i.e. terms like d†

σcnσ, or cn↑cn↓, etc.. These values can then be combined
using to operations of a vector space. This ensures that H′ is quadratic
by construction.

To the Haskell savvy, the return type of raise and lower is in a type-
class VectorSpace representing a vector spaces and furthermore in a
type-class Algebra which adds a multiplication operation. The type
used for H′ is only a member of the VectorSpace type-class.

6.10 Using Symmetries

Figure 6.1 shows profiling data for the program. Clearly, performance
is dominated by the diagonalization procedure done at each step of the
algorithm. This is good, as it means that overheads are low, but the
implementation has a glaring omission. It does not exploit the symme-
tries inherit to the system to improve on the time this diagonalization
takes. To explain why this matters, let us look at how Wilson’s original
algorithm made use of the conservation of spin of the Kondo hamilto-
nian.

Let us assume that the eigenstates, Un−1, from step n−1 of the NRG
process can be organized in the following fashion: Un−1 is divided
into multiplets, each labeled by a number, i. The multiplet labeled i
contains only states with total spin si , and we assume that the states of
each multiplet form an irreducible representation of the SU(2) rotation
group and have a well defined total spin z-component. In other words,
we can enumerate the states in multiplet i as

{|ui ; si ,−mi〉n−1 , |ui ; si ,−mi + 1〉n−1 , . . . , |ui ; si ,mi〉n−1} (6.99)

where |ui ; si ,m〉n−1 has a total spin of si , and a spin z-component of
m, and we can get from one state in the multiplet to any other state
by rotating every spin in the system. Because the Kondo hamiltonian
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is symmetric under these rotations, each multiplet is an invariant sub-
space of the Kondo hamiltonian.

In Wilson’s work, after transforming to chain form, every site in the
chain behaves as a spin-1/2 state. Specifically, the creation operators
of site n, let us call them f †↑ and f †↓ , are constructed such that f †σ is a
linear combination of only spin-σ creation operators. Therefore, when
forming a basis to use at step n of the process, we can ensure that every
basis element still has a well defined total spin and spin z-component
quantum numbers. I.e. for each i, s′, and m′ we define new basis states
of the form

|ui ; s′,m′〉n � ∑
mσ

Csi s
′

σmm′ f †σ |ui ; si ,m〉n−1 (6.100)

where Csi s
′

σmm′ are the usual Clebsch-Gordan coefficients[22] and this state
will then have total spin s′ and spin z-component m′. The basis for step
n also includes states of the form f †↑ f †↓ |ui ; si ,m〉n−1 and |ui ; si ,m〉n−1

which keep their quantum numbers.

Since all these new states have well defined total spin and spin
z-component, and since the Kondo hamiltonian preserves these val-
ues, the Kondo hamiltonain will be block diagonal in this basis (if
ordered correctly). Since practical algorithms approximately diagonal-
izing general hermitian matrices have a time complexity of O(N3) in
the size of the matrix, and this can be done for each block individu-
ally, using this basis will lead to a very significant improvement of the
run-time of the algorithm.

The main obstacle impeding an implementation of a similar mech-
anism in the present NRG implementation, is that the chain creation
operators are not of this simple form. Note, that if (F0 , F1 , . . . ), each of
size k, bring H′ to chain form, andΩFi is linearly independent for each
i up to some N , then the subspaces spanned by each Fi is unique (i.e.
independent of how H′ was brought to chain form). So Wilson’s nice
creation operators should only be a basis transformation away. But,
until something like this is implemented, this implementation will not
be able to compete with the other NRG implementations out there on
speed.

For more details on the use of symmetries in the NRG process see
for example [89].
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6.11 Processing the Output

In our program we do absolutely no processing of the output of the
NRG process. We can get away with this, since we are using it to find
Yu-Shiba-Rusinov sub-gap excitation, and these are isolated in energy
from all other excitations of the system. There is a wealth of literature
on this topic; see [5] and the references therein.

6.12 Results

In Figure 6.6 we plot output from applying the program to the proxim-
itized Anderson model. Since our program lacks any kind of sophis-
ticated processing of the output states, all we can plot are the eigen-
energies. But since the proximitized Anderson model only has three
states inside the gap, it is fairly easy to interpret this data; this is un-
like the case of the Kondo model, where you would need broadening
techniques to derive a density of states for instance.

6.13 Previous Work

Many others have applied NRG theory to various proximitized systems.
In particular, in [70, 71] to the proximitized Kondo model, in [97] to the
proximitized Anderson model, and in [85, 101] to the N–dot–S system,
to name a few.

The primary reason I developed this program was to experiment
with the mechanism introduced in Section 6.6.

6.14 Why Haskell

I get the question “Why Haskell” a lot, and this section attempts to
explain the primary motivation for me. In a purely function program-
ming language like Haskell, all variables are constants, and functions
can have no side-effects (i.e. a function cannot write to a file or print
anything on the screen). As such, functions in Haskell are very differ-
ent from in conventional imperative programming languages like C++,
Python, Fortran, etc., and are more like functions in mathematics.4 In a

4 But functions in Haskell are not total, i.e. they do not need to be defined on all of
their domain. For example, a Haskell function can go into infinite recursion or give up
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Figure 6.6: This figures shows the sub-gap excitation of the prox-
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∆.
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purely functional programming language, the result of a function can
depend only on the input parameters, and this means that there is no
global state to consider when analyzing a piece of code for correctness.
In particular, the order of evaluation is inconsequential for the result
of a computation in Haskell.

Haskell has an expressive type system means that the compiler can
check more aspects of a program at compile time. More bugs become
automatically spotted type errors. Haskell has many other interesting
features that set it apart from the bulk, and I encourage anyone with
an interest in programming to learn more about it.

The flagship Haskell compiler, GHC, produces fairly fast machine
code, with program run-times typically only a few times slower than
equivalent programs written in C/C++, so Haskell suffices for writing
the bulk of the program. However, the main performance bottleneck
of the NRG process is the diagonalization procedure used at each step
of the process, and here one must call out to a highly optimized linear
algebra library for good performance. Our implementation uses the
hmatrix library which is a Haskell wrapper around various libraries
sporting the LAPACK API.

For comparison, the Wolfram Language used by Mathematica,
which seems to have a hold in the NRG community, is an untyped
multi-paradigm language with good support for functional program-
ming (though it is impure, and the way expressions are evaluated is
entirely confusing5). Like Haskell, this is a good language for writing
EDSLs, and as such is a good choice for the front-end of an NRG pro-
gram, and several NRG programs use it as such. For the back-end, most
other implementations use C++, which is uncompromisingly fast, but
can be a bit painful to code in. Also, having your code split between
two languages is a detriment, all else being equal.

and throw an exception.
5The official Wolfram Language tutorial has a section called “Evaluation” which

includes a description of the 12 point “Standard Evaluation Sequence”, to which there
are countless exceptions. This introduction only scratches the surface.
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Chapter 7

Conclusions and Outlook

7.1 Experimental Results

In this PhD project, we demonstrated extensive control over the pa-
rameters of a quantum dot/superconductor hybrid device. In the
regimes that we focused on, where the charging energy is somewhat
larger than the superconducting gap and the coupling to the normal
lead is small, we can fully understand the system in terms of Yu-Shiba-
Rusinov bound states. We find excellent agreement with this model,
even in the presence of a magnetic field up to the closing of the super-
conducting gap. Having a thorough understanding of the data allows
us to do a quantitative study of the system where we extract coupling
constants and other system parameters unambiguously from the mea-
sured data.

For the N–double dot–S system, we can generally capture the main
features by assuming that only the adjacent quantum dot hybridizes
significantly with the superconductor.

The device we made in the Cooper pair splitter geometry does not
exhibit a strong non-local signal, despite each quantum dot/super-
conductor unit working as intended, suggesting that crossed Andreev
reflections do not occur easily in systems such as this.

7.1.1 Outlook

A double dot spin blockade in each arm of a Cooper pair splitter,
would allow efficient spin filtering of the Cooper pairs ejected from
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the superconductor. This would make Bell-type measurements possi-
ble, and could potentially confirm that non-local entanglement can be
generated with such devices.

In the project, we attempted manipulation of the spin on the quan-
tum dot using Electric-Dipole Spin Resonance (EDSR) as well as charge
sensing using an ancillary dot. The goal was to combine non-local
Andreev reflections with spin-manipulation and fast readout, as this
would allow for the operation of a non-local singlet/triplet qubit, with
readout using the superconductor. Attaining this level of control over
nanowire/superconductor hybrid systems would be an important step
towards realizing the many theoretical proposals1 involving this class
of devices.

7.2 Fabrication

In this PhD project, the single biggest piece of work has been the de-
velopment of the fabrication protocols. Therefore, conclusions drawn
with respect to fabrication are particularly hard earned. During the
project, especially the design of the gates and the dielectric changed in
several important ways.

To get a quantum dot localized near the superconductor with suf-
ficiently high barriers, a very high field must be applied to the InAs
nanowire, and we initially struggled to reach these fields while keep-
ing potentials at safe levels (i.e. without blowing up the devices). To
solve this, we used HfO2 for the dielectric, which has a high dielectric
constant and large breakdown voltage. For depositing this dielectric,
we used an approach were several thin layers are deposited on top of
each other until a reasonable size is reached. We found that this ap-
proach avoids all problems associated with lift-off, while still resulting
in a robust dielectric with a high breakdown voltage.

We were surprised to learn how readily gold moves around on
the surface of SiO2 when very small nanostructures are formed. In
response to this, we had to modify the design so that the bottom gates
are immediately and completely encapsulated by the dielectric with no
thin sections of the gates uncovered.

Finally, we note that in-situ argon ion milling gave consistently good
contacts to the nanowire with room temperature contact resistances on
the order of a few kΩ.

1 For instance, [24, 49, 72, 90].
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7.2.1 Further Challenges

So far, devices based on the design presented in this thesis have not
shown a strong and unambiguous signal of non-local Andreev reflec-
tions. With the tuning of each individual quantum dot and contact bar-
rier well under control, the next focus should be the piece of nanowire
underneath the superconductor or the superconductor itself.

One hypothesis for the absent signal, is that interference in a 3-
dimensional superconductor prohibit non-local processes over a large
range.[49] If this is the case, then ideally the piece of nanowire covered
by the superconductor should be coupled just enough to induce super-
conductivity without merging completely with the bulk of the contact.

Controlled oxidation immediately before depositing the supercon-
ductor might offer some measure of control over the coupling strength,
but this involves significant trial and error. Furthermore, electrostatic
screening by the superconductor makes it hard to control the occupa-
tion of the nanowire. A thin stripe of superconductor deposited on the
wire[26] could perhaps solve both problems. A device geometry that
allows electrostatic control over the coupling between a 1-dimensional
system and a superconductor is difficult to imagine, but it would be im-
mensely useful in the field. A single, fully tunable Cooper pair splitter
would solve many open questions about non-local Andreev reflections

The study of Majorana bound states in nanowire hybrid devices
would equally benefit from a device of this type if it was based on
material with high spin-orbit coupling, such as InSb.

7.3 Theoretical results

The devices we investigated in this project all had charging energies
larger than the superconducting gap. Trying to describe such devices
in term of Andreev bound states, or equivalently by projecting out bo-
goliubon quasi-particles in the superconductor, is not fruitful because
these quasi-particles are a significant contribution to the sub-gap states
in the system. Therefore, one has to employ a theory that includes bo-
goliubons correctly in the solution.

When the charging energy and the size of the gap is larger than the
coupling energy, we find that the system can be described well using
a simple numerical theory based on a logarithmic discretization of the
superconducting lead. This theory allows for a simple interpretation
that forms the basis for the intuitive description of Yu-Shiba-Rusinov
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states that we give in Section 4.3.1. In contrast, the NRG process which
inspired this theory, is applicable to the full range of coupling constants.

In this project, we made extensive use of an inner product defined
on the space of linear combinations of creation and annihilation oper-
ators (see Definition 6.1), to analyze the convergence properties of the
NRG process. We also used properties of this space to automate the
transformation to chain form for a large class of Hamiltonians.

7.3.1 Outlook

Due to the presence of a fixed energy (the superconducting gap) in
quantum dot/superconductor hybrid systems, the NRG process cannot
be run indefinitely.[5,70,71] While it appears that the properties of at
least the Quantum Dot/Superconductor hybrid system converges as
this energy scale is reached, it is not clear if this is always the case,
for instance in systems that incorporate a normal lead. It would be
interesting to find a pathological system if it exists, and try to find the
limits of the technique.

In the context of the NRG process, the use of a logarithmic dis-
cretization is well established, but it is not something that is often
encountered elsewhere. I could not find a rigorous analysis of the
process, and specifically, what bounds the error made by this approxi-
mation. This analysis could perhaps lead to further applications of the
technique.
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Appendix A

Measuring techniques

A fair amount of time of any physicist engaged in experimental quan-
tum transport will go towards hunting down noise in the setup. This
section details the solutions that worked for our setup.

A.1 What is ground

Figure A.1 shows three different ways to measure the voltage in the
central pin of a breakout box. In A, there is an unknown electromotive
force (emf) in the wire which cannot be accounted for. In B, a shielded
cable and a differential measurement is used to sample and cancel that
very same emf (which depends on the path taken through space). In
C, we spoiled it again, by introducing a ground loop and consequently
a current in the shield of the cable. The moral here is to avoid ground
loops, but if one just cuts the ground, we would go all the way back
to A. Inserting a 50 Ω resistor somewhere on the shield of the cable is
also a non-solution, as it just takes us back to A (assuming 50 Ω is large
compared to the ground impedance).

A.2 Fixing a ground loop at the lock-in

The output of the signal generator of the lock-in amplifier is not dif-
ferential. And it was the cause of a ground loop in our system. To
get around this, one common solution used in the lab is to insert an
audio frequency signal transformer, which provides full ground isola-
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Figure A.1: Three different ways to do a voltage measurement. For
the equivalent circuits. E(t) is the instantaneous electrical field caused
by electromagnetic interference, which is the reason for the emf, E,
in the cable, similarly Eg is the emf in the grounding wires. R is the
resistance of the shield of the cable.
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INA105

+
−

50 Ω

Vin Vout

Figure A.2: Ground isolation built from a differential amplifier. Not
shown are the supply rails and two 0.1 µF bypass capacitors on those.
Note that an instrumentation amplifier would work much better for
this application (we did not have any lying around). The resistors
inside the INA105 are nominally 25 kΩ and are very well matched.
Note that Vout � −Vin . The 50 Ω resistor spoils the matching of the
resistors, details in the text.

tion. This works well, but it is slightly frequency dependent (lock-ins
are typically run in the low end of audio bandwith), and we were out
of signal transformers. Instead, I found a box of differential amplifiers
and wired one up in a small box such that I could power it with an
ordinary lab power supply (see Figure A.2). The differential amplifier
is an INA105 with excellent performance when input impedances are
balanced. Since impedances are not balanced in this setup, it would
have been much better to use an instrumentation amplifier for this pur-
pose, but we did not have any lying around.1 This solution was good
enough to suppress the 50 Hz and 100 Hz noise peaks we were seeing
in our measurements.

A.3 “Fixing” ground loops at the DAC

The outputs of the DecaDAC are not differential, which creates a prob-
lem since all the lines between the breakout box and the DAC creates
little ground loops. Building dozens of isolating amplifiers like above
is not a good solution since they do not match the precision of the DAC
(though with some improvements, this could be an option, note that
they can run of the same supply). So instead we did two things: First,
we braided all the cables between the DAC and the breakout box to

1 I tried balancing the 50 Ω output impedance of the “sine out” port of the lock-in
amplifier with an extra resistor here, but it is obviously not as well matched as the
resistors inside the INA105 are to each other. An instrumentation amplifier is basically
a differential amplifier with ×1 amplifiers on each input to bring both impedances to 0.
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reduce the flux picked up. Second, we moved all equipment with a
transformer (which radiate like crazy at low frequencies) away from
the vicinity of the breakout box and DAC. These simple efforts reduced
noise at 50 Hz and its harmonics by orders of magnitude.
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Appendix B

Data Acquisitioning

I developed an object-oriented data acquisitioning framework for run-
ning our measurements during this project. This section describes
briefly how this turned out. The software was used on four cryostats
by at least eight students and researchers in the period 2013–2016.

The software was developed in Matlab (for mostly political rea-
sons1), and provides three things:

1. A library of drivers for our instruments, which are designed to
play well with the framework (but can be used individually also).

2. An Embedded Demain Specific Language (EDSL) for setting up
and running measurements.

3. A somewhat unpolished GUI application for plotting and pro-
cessing data live and browsing old data sets (I use Python and
matplotlib for plotting normally, so little effort went into making
this GUI useful for preparing publications).

The EDSL allows simple (to intermediate) measurement to be set up
very quickly from the command line (or in a script), here are some
simple examples:

% An IV−curve:
q = qd.q.Q(my_data_store, my_setup);

1 The choice of language was made at a group meeting. I had never used Matlab at
the time, so I did not object. Today I would advise people to stay away from it unless
there is a Matlab-only library that they desperately need. Python is a better language
fitting the same role as Matlab.
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q.add_input(’keithley/i’);

q.sw(’keithley/v’, 0, 10, 100).go(’IV curve’);

% Bias spectroscopy :
q.sw(’gate4’, 3, 5, 300). ...

sw(’bias’, -1, 1, 60). ...

email(). ... % Send an email when done.
go(’Bias vs gate’);

B.1 Core concepts

A channel is an object with a get and/or set method, which could for
instance correspond to a DAC output, a lock-in amplifiers input, or one
axis of a vector magnet.

Channels can be combined and transformed with channel combina-
tors, which construct new channels out of old channels, for instance to
offset a channel, switch from polar to cartesian coordinates, or create a
linearly tranformed set of axis to compensate cross capacitance in gates.

Each type of instrument that drivers exist for has its own instrument
sub-class. An instrument is an object that holds a set of named chan-
nels. For instance, a source/measure unit would have an I and a V
channel named “i” and “v” respectively.

To organize all the instruments of setup, there is a setup class which
merely hold a list of named instruments. Instruments, channels, and
the setup, all have a describe method which returns a data-structure
representing the current state of that object. For instance, a lock-in
amplifiers description would include the current time-constant, the
description of a DAC would include all current output values, and the
description of a setup includes the descript of all instruments in the
setup. The value returned by the decribe method is JSON serializeable.2
Whenever a measurement is run with the EDSL illustrated above, the
setup is described using this method and the description is stored
alongside the collected data.

2JSON is a simple data interchange format designed to be human readable. It has
very widespread support, with libraries for every programming language under the sun.
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B.2 Asynchronous operation

The speed of a measurement benefits if certain operations are executed
concurrently. For instance, a Keysight 6.5 digit DMM takes 0.2 s to take
one sample with an integration time of 10 power line cycles. If a setup
has 4 DMMs, then it makes sense that all these DMMs be instructed
to take the measurement at the same time instead of one at a time.
As another example, since quantum devices can become switchy if a
gate is stepped abruptly, it is common practice to ramp DAC outputs
gradually between values. If a measurement involves ramping several
DAC output between data points, then the speed will improve if they
are ramped in parallel.

The channels in the framework all have get_async and set_async
methods corresponding to get and set, which return futures. A future
represents the promise to complete an operation at some point later,
they have a force method which blocks until the operation is complete
(and returns the resulting value if it is get-operation), and futures can
be combined.3

The EDSL and many of the channel combinators use the asyn-
chronous interface under the hood so the user transparently gets all
the benefits without having to do anything special.

3 If one does not implement one of these methods, then the default implementation
returns trivial futures that call the synchronous methods when they are forced.
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