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Abstract
It was recently discovered that a family of compounds, AV3Sb5 (A = K,Rb,Cs), becomes super-
conducting at low temperature. All three compounds feature layers of vanadium atoms organized
in a two-dimensional kagome lattice. At present, there is no full consensus regarding the symmetry
of the superconducting order parameter. Motivated by this, the aim of the current thesis is to
study superconductivity on a kagome lattice with an emphasis on modelling impurity probes. We
focus on the effects of impurities since, in many cases, they act as phase-sensitive probes.

Within mean-field theory we systematically classify all symmetry-allowed superconducting states
on a two-dimensional kagome lattice up to third nearest neighbor interactions. The pairing states
are illustrated both in real and momentum space, and the pairing matrices are explicitly written.
The classification reveals two main findings: first of all we find that (in addition to the regular s-
wave case) an order parameter with d-wave symmetry can arise from on-site interactions. Secondly,
at the level of nearest neighbor interactions, a set of pairing states which corresponds exclusively
to interband pairing is allowed on the kagome lattice.

Proceeding with the intraband pairing states as they open up a gap at the Fermi energy, we
study the response to single point-like potential and magnetic impurities. Due to the fact that a
point-like potential impurity is located on a lattice site which has lower symmetry than the lattice
itself, the electronic wave functions on the kagome lattice are found to only give non-zero weight
to certain portions of the Fermi surface. This, combined with an even-parity order parameter
like a d-wave gap, leads to a d-wave condensate reacting to impurities effectively like an s-wave
superconductor. Consequently, no low-energy bound states are found within the full gap of a system
with d + id superconductivity. This is the case although a d-wave superconductor conventionally
would be sensitive to potential impurities. For comparison with the results on the kagome lattice,
a single-impurity study on the square lattice is additionally presented.

Furthermore, the suppression of the critical temperature by an impurity average is studied and
shows that an unconventional singlet order parameter with d-wave symmetry is less sensitive to
potential impurities while unconventional triplet order parameters remain sensitive. This result is
in agreement with our single-impurity study. Lastly, we discuss the simplifying assumptions made
and the implications of our findings for other systems.

The study presented in the thesis nuances the discussion of impurity effects in superconductors,
and it shows that conventional results may not always apply if the site symmetry is smaller than
the point group symmetry of the lattice.
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Chapter 1

Introduction

“Kwik nagenoeg nul.”

Dutch physicist Heike
Kamerlingh Onnes, April 8, 1911

in his laboratory notebook

Before 1908 the lowest achievable temperature in a laboratory was 14 K [1]. Back then, it was
understood that electrons cause electrical conductance, but one of the questions physicists of the
time were trying to answer was what would happen to the resistivity of a metal upon cooling
it to absolute zero. One of the theories brought forward by Lord Kelvin in 1902 was that the
mobility of the electrons would be reduced at low temperatures such that the resistivity eventually
would go to infinity at absolute zero [1]. Other than this, it was expected that the resistivity
would decrease until reaching a constant level, the value of which would depend on the purity of
the sample. A breakthrough for low-temperature physics happened in 1908 when Dutch physicist
Heike Kamerlingh Onnes together with his coworkers in their laboratory in Leiden succeeded in
liquefying helium. Following this, they started experimenting with cooling of platinum wires and
found that the resistivity became constant below 4.25 K, thus ruling out the theory by Kelvin
[1]. They then started experimenting with mercury, and in a laboratory notebook from April
1911 the words ”Kwik nagenoeg nul” were scribbled down. Loosely translated, the phrase means
”Quick[silver] close-enough to zero” [1]. Maybe not as poetic as the first words spoken by the first
person on the moon, but nevertheless they heralded a new era: the era of superconductivity.

At present time, superconducting materials still only enter their superconducting phase at rather
low temperature as compared to room-temperature. Figure 1.1 shows a timeline of a selection of
discovered superconducting materials and their critical temperatures. The highest achieved critical
temperatures, Tc, at ambient pressure are for copper-oxide superconductors (cuprates), represented
by blue diamonds in Figure 1.1, where Tc ∼ 140 K. One important present application of supercon-
ductors is for magnetic resonant imaging (MRI), where superconductors are used to generate the
high magnetic fields necessary for the technology which has allowed doctors to image structures
deep within a living body. Another application is in the development of quantum computers where
superconducting materials are used in many cases as the basis for building quantum bits. Further-
more, if superconductors were to work at room-temperature and ambient pressure, an important
application would be to use them for efficient electrical transportation, since currently a lot of
energy is being lost to heat over the large distances that electricity might have to travel.

After the discovery of superconductivity it would take nearly 50 years before a microscopic
theory describing a possible mechanism for superconductivity was put forward. Bardeen, Cooper
and Schrieffer formulated what is now known as BCS theory in 1957 [3]. BCS theory explains how a
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Figure 1.1: A timeline of the discovery of superconductivity in a selection of materials. The critical
temperature Tc is given on the left axis. Notice that some of the critical temperatures are reported
at high pressure. For comparison the Standard Atmospheric Pressure (defined at sea-level and at
273◦ K) is ∼ 10−4 GPa. Additionally, notice that the intervals on the axes change at Tc = 50 K and
at approximately year 1980. Finally, it should be remarked that the article on superconductivity in
the CSHx compound has been retracted. The marker colours have the purpose of grouping different
compounds: the dark green circles represent materials which are known to have properties described
well by BCS theory, heavy-fermion based superconductors are represented by light green stars, the
cuprates by blue diamonds, iron-based superconductors by orange squares, etc. The illustration is
not original, but from [2].

superconducting phase is favorable when the attractive phonon-driven interaction between electrons
(with a small energy difference) exceeds the screened repulsive Coulomb force. The theory laid the
foundation for our current understanding of superconductivity as a condensate of electrons, the so-
called Cooper pairs, forming due to an effective attraction between them [4]. Through BCS theory
it is possible to understand and model numerous properties of many superconducting materials,
but not all.

In the preface of the book Superconductivity: Volume 2, R. D. Parks writes ”During the prepa-
ration of this treatise one of the authors commented that it would be ”the last nail in the coffin
[of superconductivity].” While we may hope this is unduly pessimistic, it is clear that the field is
well advanced in maturity and sophistication.” [5]. As it turned out, this was by far the last nail
in the coffin of superconductivity. By the end of the 1970s, superconductivity was discovered in
heavy-fermion materials, and another development was made by Bednorz and Müller in 1986 with
their discovery of superconductivity in copper-oxide materials [6]. This second discovery led to a
historical March meeting in 1987, later known to condensed matter physicists as ”the Woodstock
of physics”, where discussions went on late into the night [7]. The discussions revolved around the
discovery of cuprates: a discovery which started a new era of ”high Tc” superconductivity (high Tc
compared to former materials but still not room-temperature superconductivity).
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Today, one of the big goals of the condensed matter physics community still is to understand
what ingredients are necessary to make a room-temperature superconductor. In the search for it,
hopefully a lot of useful knowledge is obtained. The present master thesis studies the supercon-
ducting phase of a group of materials called AV3Sb5. These compounds become superconducting
only at Tc ∼ 1 − 3 K, which would place them at a very low position in Figure 1.1. Surely, these
compounds are not high Tc superconductors so what is the rational behind studying them? One
motive is that there are still many insights to be gained from ”low Tc” superconductors. Several
aspects of the superconducting phase of AV3Sb5 are not yet well understood, and understanding
the mechanism of superconductivity in currently known superconductors is presumably a good
stepping stone in the effort of understanding high Tc superconductivity.

As indicated above, there are still many open questions to be answered. In this thesis we present
a theoretical study of superconductivity on the kagome lattice, motivated by the superconducting
AV3Sb5 compounds. The thesis is structured in the following manner: In Chapter 2 we introduce
some of the experimental results which have motivated our studies on the AV3Sb5 compounds. In
Chapter 3 we introduce a simple tight-binding model on the kagome lattice, and in Section 4.3 we
do a full classification of the symmetry-allowed mean-field superconducting order parameters on
the kagome lattice up to third nearest neighbor interactions. Furthermore, in Chapter 5 an analysis
of the response of the different allowed order parameters to single-impurities is carried out, both
on the kagome lattice and on the square lattice for comparison. Finally, in Chapter 6 the response
to a density of impurities is examined and compared to Abrikosov-Gor’kov theory.

Note: Figures 3.1, 3.3(a), 3.4(c), 5.1, 5.9, 5.10, 5.11, 5.12 and 6.2, and tables 4.2 and 4.3 appear
in a similar form in [8]. They are originally made by S. C. Holbæk.





Chapter 2

The kagome metals AV3Sb5,
A = K,Rb, Cs

“Man kan ikke bruge så lang tid
på så lidt.”

Berit Lykke Holbæk aka. mor

In 2019 three new members of a broader group of kagome materials were synthesized and char-
acterized [9]. The three compounds have the same crystalline structure comprised of an alkali
(A) atom: either potassium (K), rubidium (Rb) or cesium (Cs), together with vanadium (V ) and
antimony atoms (Sb). They are commonly referred to by their chemical name AV3Sb5. Following
their synthesis, it was discovered in 2020 that the kagome metal CsV3Sb5 enters a superconducting
phase at a critical temperature Tc ∼ 2.5 K [10]. Shortly following this, superconductivity was also
discovered in the K- and Rb-variants ([11], [12]). These discoveries introduced a new challenge
to the superconductivity-community, namely to determine the type of superconductivity present
in the materials and to understand its interplay with other competing orders. In this section we
give a brief overview of some of the experimental results on the AV3Sb5 compounds. We will not
attempt to cover all aspects of the discussion, in which case we refer to review papers available on
the topic, e.g. [13]. Here, we only cover experimental results which are most essential for our later
analysis.

Figure 2.1(a) illustrates the crystalline structure of the AV3Sb5 compounds. The crystal consists
of alternating layers of alkali atoms (K,Rb,Cs) and V -Sb atoms. The vanadium-atoms make up a
kagome lattice and the antimony-atoms make up two sublattices, Sb1 and Sb2. The Sb1 sublattice
is positioned in the plane of the kagome lattice and makes up a triangular lattice with Sb atoms
centered in the hexagons of the kagome lattice. The Sb2 atoms are positioned above and below
the V -Sb1 layer and form honeycomb lattices. Low temperature measurements of the electrical
resistivity shows that the resistivity drops to zero around a critical temperature of Tc ∼ 2.5 K
for CsV3Sb5 which, together with other experimental results, demonstrates the occurrence of a
second-order phase transition into a superconducting phase, see Figure 2.1(b). Superconductivity
sets in at critical temperatures of ∼ 0.93 K [11] and ∼ 0.92 K [12] for the K- and Rb-variants,
respectively.

Measurements of the electrical resistivity and heat capacity at higher temperatures show an
additional phase transition occurring at T∗ ∼ 94 K for the Cs-variant [10], T∗ ∼ 78 K for K [11]
and T∗ ∼ 103 K for Rb [12]. Figure 2.2(a) shows the electrical resistivity for CsV3Sb5 with a visible
kink appearing at T ∼ 94 K. The resistivity measurements show that the out-of-plane (along the
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(a) (b)

Figure 2.1: (a) The crystalline structure of the AV3Sb5 compounds viewed from above (left) and
from the side (right). The alkali atom is either K, Rb or Cs but the three compounds are isostruc-
tural. The ab-plane is defined to be parallel to the vanadium kagome layer (red) while the c-axis is
perpendicular to it. Image from [14]. (b) Low-temperature measurements of the electrical resistiv-
ity for single crystals of CsV3Sb5. The curves are field-dependent as illustrated in colours. Image
from [10].

(a) (b) (c)

Figure 2.2: (a) Electrical resistivity as a function of temperature for single crystals of CsV3Sb5.
The resistivity is measured in the ab-plane (black) and in the direction of the c-axis (red). The
former is a factor of α ∼ 600 times smaller than the latter and has thus been multiplied by α for
enhanced visibility. Image from [10]. (b) Atomically resolved STM topography of an Sb-surface
in the normal phase. The data is for a KV3Sb5 crystal which enters the CDW phase at ∼ 78 K.
Image from [16]. (c) Topography of Sb-surface of KV3Sb5 in the CDW phase which compared to
(b) shows a 2× 2 charge modulation. Image from [16].

c-axis, see the inset of Figure 2.2(a)) resistivity is approximately 600 times larger than the in-plane
(the ab-plane) resistivity. The instability at T∗ causes a reordering of the electronic charges which
expands the in-plane unit cell twice in each direction making a 2 × 2 modulation. This phase is
identified as a charge density wave (CDW). Figure 2.2(b) and (c) show topographic data of an
Sb-surface in the normal phase and in the CDW phase, respectively, where the charge modulation
is visible. The interplay between CDW and superconductivity has been examined by applying
pressure which decreases T∗ of the CDW. A study shows that the CDW is entirely suppressed at
a pressure of ∼ 2 GPa, above which superconductivity persists [15].

The Fermi surface of the materials has been mapped out by angle-resolved photo-emission spec-
troscopy (ARPES) measurements. ARPES data for CsV3Sb5 at 80 K is shown in Figure 2.3(a) and
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(a) (b) (c)

Figure 2.3: (a) ARPES data for CsV3Sb5 at 80 K and E = 0 eV. The hexagonal Brillouin zone is
illustrated in white. Image from [10]. (b) DFT calculations for comparison with (a). Image from
[10]. (c) Illustration of the 2D Fermi surface of CsV3Sb5 highlighting its different orbital character.
Image from [17].

(a) (b)

Figure 2.4: (a) The bands close to the Fermi surface have contributions mainly from vanadium d-
orbitals and antimony pz-orbitals. The orbital character is found from projecting the wave functions
onto the orbitals shown in the legend. Image from [19]. (b) The Brillouin zone of the P6/mmm
space group which the AV3Sb5 compounds belong to. Image from [10].

a comparison to Figure 2.3(b) shows good agreement with density-functional theory (DFT) calcula-
tions [10]. The 2D Fermi surface has different orbital character as illustrated in Figure 2.3(c): The
circular pocket (red) around the central point, called Γ, of the hexagonal Brillouin zone consists of
Sb p-orbitals, and the hexagonal Fermi surface also centered at Γ consists of vanadium d-orbitals.
The circular and triangular Fermi pockets around the K points (blue and green) both consist of
vanadium d-orbitals.

A DFT calculation of the bands close to the Fermi surface is shown in Figure 2.4(a), and it
illustrates the domination of the vanadium d-orbitals and antimony pz-orbitals [18] in this range.
The band just below the Fermi energy at the M-point is dominated by vanadium dz2-orbitals and
it has a saddle point structure which gives rise to a van Hove singularity in the density of states.
In Figure 2.4(b), the high-symmetry points used to generate Figure 2.4(a) are illustrated.

To uncover what type of superconducting order is present in AV3Sb5, the effect of impurities
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(f)

Figure 2.5: (a)-(e) STM scans along the green lines shown in the insets across different impurities
in a CsV3Sb5 sample. (a) Non-magnetic intrinsic Sb vacancy, (b) non-magnetic hole-like defect on
a V site, (b) non-magnetic Cs adatom, (d) non-magnetic Zn adatom evaporated onto the sample
and (e) magnetic Cr cluster evaporated onto the sample. The red lines indicate positions close
to the impurity. Image from [20]. (f) Evolution of the critical temperature as a function of a
dimensionless scattering rate g for thin flakes (pink) and crystals (blue) of CsV3Sb5. The black
curve depicts the suppression within Abrikosov-Gor’kov theory. Image from [21].

have been studied. This is due to the fact that impurity-effects conventionally are able to reveal
whether the order parameter has sign-changes or not. Figure 2.5(a)-(e) shows scanning tunneling
microscopy (STM) scans across different impurities on a CsV3Sb5 sample. The plots show the
differential conductance dI/dV which under certain circumstances (such as an essentially constant
density of states of the scanning tip in the energy range of interest) probes the density of states
of the material under examination. In the case of Figures 2.5(a) and (b) the impurities have been
characterized as being intrinsic hole-like defects on an Sb1 site and a V -site, respectively [20].
These defects are regarded as non-magnetic and no effect on the density of states is visible in
the region close to the impurity. In particular, no in-gap bound states are observed. The same
conclusion applies for the case of a non-magnetic Cs adatom seen in Figure 2.5(c). Non-magnetic
Zn atoms and magnetic Cr atoms were independently evaporated onto the surface, and if the
adatoms interact weakly with the underlying crystal, it can be assumed that the adatoms retain
their (non-)magnetic nature after the evaporation [20]. In the case of the Zn adatom, Figure 2.5(d),
the gap is not affected. The story is different for the Cr cluster, where in-gap peaks appear close
to the cluster but disappear away from it. In [20] this result is interpreted as an indication of a
pairing state which is non-sign-changing as a function of momentum.

Measurements of the critical temperature as a function of scattering rate have additionally been
carried out in CsV3Sb5, see Figure 2.5(f). The data indicates that the superconducting condensate
is insensitive to disorder as compared to the full black line in Figure 2.5(f) corresponding to the
curve of Abrikosov-Gor’kov theory. The latter is expected to model the suppression of Tc for
an s-wave superconductor in the presence of magnetic impurities as well as the suppression of
unconventional superconductivity in the presence of potential impurities.

As a final remark, there has been some indications of the breaking of time-reversal symmetry
(TRS) within the CDW phase [22], and thus the superconducting state is possibly forming within
a TRS broken state.



Chapter 3

Features of the tight-binding model
on the kagome lattice

“Ut af mit køkken.”

Manuel Castro Pacheco aka. papa

Real materials, such as the AV3Sb5 metals, are complex systems containing numerous electrons
which might interact strongly with each other and with the vibrational degrees of freedom of the
lattice. Other properties such as the three-dimensional nature of a material, spin-orbit coupling,
multiple orbitals crossing the Fermi level etc. may further complicate the modelling of real world
systems. Nevertheless, specific effects are in some cases weak, and to capture the main aspects of
a material it might serve as a good approximation to neglect them. Inspired by literature on the
AV3Sb5 compounds, we briefly motivate some of the approximations made before introducing a
simple tight-binding model on the kagome lattice and discussing its features.

In the case of the AV3Sb5 metals, it was shown that there is a strong anisotropy in the electrical
conductivity, as mentioned in Chapter 2, which means that the electrons mainly move on a two-
dimensional plane. This motivates the approximation of modelling the system as two-dimensional.
Furthermore, DFT calculations show that the inclusion of spin-orbit coupling does not alter the
energy bands significantly close to the van Hove singularities [23] and hence spin-orbit coupling is
omitted in the following description. This approximation is of course not valid for any material.
For example, in another material of great interest since it was considered to be a possible candidate
for unconventional superconductivity, Sr2RuO4, spin-orbit coupling is strong and therefore cannot
be ignored [24]. The hexagonal part of the Fermi surface, shown in Chapter 2, is dominated by
electrons located on the vanadium kagome lattice, and while some studies indicate the importance
of the Γ-pocket Fermi surface which has its main contribution from Sb atoms [25], in this work we
study superconductivity on the kagome lattice. Our starting point is to write up a simple model
describing electrons moving around on a lattice. We later add superconductivity to the model.
Apart from fixing the electronic filling to a value which seems to agree with that of the AV3Sb5
compounds, the following results are general and could apply to other kagome materials than the
AV3Sb5 compounds.

3.1 The tight-binding model

In this section we introduce a tight-binding (TB) model for the two-dimensional kagome lattice.
The TB model describes electrons moving around on a lattice by hopping to nearest neighbor sites.

9
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LATTICE

t1

t2

B

C A

a1

a3

a2

Figure 3.1: Illustration of a finite section of the kagome lattice with the primitive lattice vectors,
t1 and t2, and the sublattice vectors, a1, a2 and a3, shown. The grey parallelogram illustrates the
unit cell with the three sites denoted A (blue), B (orange) and C (green).

The unit cell of the kagome lattice contains three atomic sites which, as will be detailed in the
following, give rise to three energy bands. Before writing up the TB Hamiltonian, we need to make
a few definitions. The three sites within a unit cell are connected by the vectors

a1 ≡
1

2

(
1 0
)T

, a2 ≡
1

2

(
1
2

√
3
2

)T
, a3 ≡

1

2

(
−1

2

√
3
2

)T
, (3.1)

The primitive lattice vectors which span the lattice in real space are given by

t1 ≡
(
1 0
)T

= 2a1 , t2 ≡
(
−1

2

√
3
2

)T
= 2a3 . (3.2)

With these definitions we have set the distance between unit cells to 1. An illustration of the
kagome lattice, the unit cell and the lattice vectors is seen in Figure 3.1.

The primitive reciprocal lattice vectors are

g1 ≡ 2π
(
1 1√

3

)T
, g2 ≡ 2π

(
0 2√

3

)T
. (3.3)

The reciprocal lattice vectors are defined such that ti · gj = 2πδi,j and in turn eiti·gj = 1. Since all
distances between neighboring sites are equivalent, we set all of the hopping coefficients equal to
the same value t = 1. This corresponds to modelling an s-orbital per site, or equivalently in the 2D
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B

C A

R R + 2aACR + 2aCA

R + 2aABR + 2aCB

R + 2aBCR + 2aBA

aAB

aAC

aBC

Figure 3.2: The naming convention adopted for the unit cells referred to in equation (3.4). The
nearest neighbor bonds for the three atoms in the unit cell denoted by R are illustrated. Further-
more, the grey areas show the different unit cells.

case a dz2-orbital per site, since an s/dz2-orbital does not have any preferred direction in the plane
of the lattice. This is motivated by DFT calculations, presented in Chapter 2, which show that
the energy band with a van Hove singularity (vHs) closest to the Fermi energy (at the M-point)
corresponds to vanadium-dz2 orbitals [19], although other d-orbitals also contribute. The kinetic
part of the Hamiltonian given by the TB model is then [26]

HTB = −t
∑

R,s,s,σ

[c†s,R,σcs,R,σ + c†s,R+2ass,σ
cs,R,σ]− µ

∑
R,s,σ

c†s,R,σcs,R,σ , (3.4)

where the fermionic operator c†s,R,σ (cs,R,σ) denotes the creation (annihilation) of an electron with
spin σ ∈ {↑, ↓}, located at site s ∈ {A,B,C} in the unit cell denoted by R. Furthermore, s ∈
{A,B,C} \ s. The first and second terms describe intra- and inter-unit cell hoppings, respectively,
and the third term accounts for the filling of electrons in the system, where µ is the chemical
potential. With this notation we have introduced a quantum number s to account for the degrees
of freedom within a unit cell, while the quantum number R is only sensitive to inter-unit cell
degrees of freedom. We have defined the vectors aAC ≡ a1, aBC ≡ a2 and aAB ≡ −a3 to write the
Hamiltonian in a compact form. The nearest neighbors for the three atomic sites in unit cell R are
illustrated in Figure 3.2.

A Fourier transformation by cs,R,σ = 1
N

∑
k∈BZ e

ik·rcs,k,σ, where N is the number of unit cells,
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or, equivalently, the number of points in the Brillouin zone (BZ), leads to

HTB =
∑

k∈BZ,σ

(
c†A,k,σ c

†
B,k,σ c

†
C,k,σ

)
HTB(k)

(
cA,k,σ cB,k,σ cC,k,σ

)T
, (3.5)

with the matrix HTB(k) written in sublattice and momentum space

HTB(k) =

 −µ −2t cos k3 −2t cos k1
−2t cos k3 −µ −2t cos k2
−2t cos k1 −2t cos k2 −µ

 , (3.6)

where kn ≡ k · an. It is possible to choose a different gauge (equivalently, to make a different
Fourier transform) in which the Hamiltonian is periodic in momentum space, such that H̃TB(k) =
H̃TB(k+Q), where Q = ng1 +mg2 with n,m ∈ Z. We determine a unitary transformation such
that H̃TB(k) = UHTB(k)U

†. This momentum dependent unitary transformation is given by

U(k) =

e−ik1 0 0
0 e−ik2 0
0 0 1

 , (3.7)

which results in

H̃TB(k) =

 −µ −t(1 + e2ik3) −t(1 + e−2ik1)
−t(1 + e−2ik3) −µ −t(1 + e−2ik2)
−t(1 + e2ik1) −t(1 + e2ik2) −µ

 . (3.8)

Diagonalization of the 3× 3 matrix gives the three eigenvalues

ξ3(k) = 2t− µ , (3.9)

ξ2(k) = t
(
−1 +

√
2 [cos(2k1) + cos(2k2) + cos(2k3)] + 3

)
− µ , (3.10)

ξ1(k) = t
(
−1−

√
2 [cos(2k1) + cos(2k2) + cos(2k3)] + 3

)
− µ , (3.11)

where ξ3 denotes the flat, upper energy band and ξ2 and ξ1 the middle and lower energy bands,
respectively. The bands are plotted as a function of momentum, for µ = 0, in Figure 3.3(a). The
momentum on the x-axis traces out a path in the Brillouin zone starting from the high-symmetry
point Γ =

(
0 0
)T , going to the center of an edge of the BZ given by M1 =

(
π π√

3

)T
= 1

2g1, where
g1 is the reciprocal lattice vector defined in equation (3.3), then to a corner of the BZ given by
K =

(
4π
3 0

)T and finally back to Γ (see the inset in Figure 3.3(a)). The energy bands have a
few special features: the middle and lower bands, ξ2 and ξ1, have a van Hove singularity at the
M-point, and at the K-point there is a Dirac cone. Van Hove points are saddle points in the band
structure giving rise to singularities in the density of states as seen in Figure 3.3(b). For a chemical
potential of µ = 0 the states below the upper van Hove singularity will be filled. Around the
K-point the bands have a conical shape and they meet at a Dirac point. Furthermore, the upper
band is completely dispersionless throughout the entire Brillouin zone.

The density of states describes the number of electronic states the system possesses within a
small energy window. The local density of states (LDOS), ρss′(R, ω), is obtained by taking the
imaginary part of the retarded Green function in real space basis

ρss′(R, ω) = − 1

π
Im(GR

ss′(R, ω)) . (3.12)
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Figure 3.3: (a) Tight-binding energy bands ξn(k) plotted along the path in the BZ shown in the
inset. There is an upper flat band and two lower dispersive bands, both of which feature a van
Hove singularity at the M-point in addition to meeting at a Dirac point at K. (b) The normal state
DOS diverges at the flat band energy and at the two van Hove singularities.

In the following, we will omit the superscript R (for retarded) in the Green function. The Green
function in momentum and energy basis is easily computed since the Hamiltonian is diagonal in
this basis

G(k, ω) = ((ω + iη)1 −HB
TB(k))

−1 =


1

ω+iη−ξ3(k)
0 0

0 1
ω+iη−ξ2(k)

0

0 0 1
ω+iη−ξ1(k)

 , (3.13)

where η is an infinitesimal positive number included in the transformation from time to frequency
for convergence and HB

TB(k) is obtained from diagonalizing HTB(k), as detailed in the next section.

3.2 Sublattice interference

In the following we show that the upper van Hove singularity has a special feature known as
sublattice interference. Sublattice interference is the property that electronic wave packages with
certain momenta only have weight at one of the three sublattice sites. To illustrate this feature we
make a unitary matrix transformation of the tight-binding matrix HTB(k) from sublattice space
into band space HB

TB(k) = UHTB(k)U
−1, where HB

TB(k) is a matrix containing the eigenenergies
on the diagonal. Thus by insertion of U−1U = 1 the Hamiltonian can be rewritten as

HTB =
∑

k∈BZ,σ

c†k,σU
−1HB

TB(k)Uck,σ , (3.14)

where we have defined c†k,σ =
(
c†A,k,σ c

†
B,k,σ c

†
C,k,σ

)
. The Hamiltonian is thus diagonal in the

operators given by γk,σ = Uck,σ, and the relation between the c- and γ-operators can be written
cs,k,σ =

∑3
n=1 u

∗
sn(k)γn,k,σ, where the sum is over the band index n. The unitary matrix that

diagonalizes HTB(k) consists of the eigenvectors of HTB(k). In Figure 3.4(a) the absolute square
of the three entries of the eigenvector corresponding to the middle band n = 2, |uA2(k)|2, |uB2(k)|2
and |uC2(k)|2, are plotted along the Fermi surface corresponding to µ = 0 (electron filling at
the upper van Hove singularity, nel = 5/12 [23]). The weight |uA2(k)|2 provides information on
how much of the wavefunction occupies sublattice site A relative to sites B and C. The weights
periodically alternate around the Fermi surface and the wavefunction is found to be localized at
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(c)

(b)(a)

Figure 3.4: (a) The sublattice weights |us2(k)|2 at the upper van Hove singularity, corresponding
to µ = 0 and a hexagonal Fermi surface as illustrated in the inset of (b). At the M-points the
weight is entirely localized on a specific sublattice. (b) The sublattice weights at the lower van Hove
singularity, µ = −2. In this case the weight is distributed on at least two of the three sublattice
sites. (c) The absolute square of the entries of the eigenvector corresponding to the middle band
plotted on the first BZ (full grey line) showing the non-zero weight on only certain portions of the
Fermi surface (full black line).

one type of sublattice site for momenta corresponding to M-points. The M-points are given by

M1 ≡
(
π π√

3

)T
, M2 ≡

(
0 2π√

3

)T
, M3 ≡

(
−π π√

3

)T
, (3.15)

and M4 ≡ −M1, M5 ≡ −M2 and M6 ≡ −M3. For comparison, the weights |us3(k)|2 are also
plotted along the Fermi surface for a chemical potential of µ = −2, which corresponds to filling
at the lower van Hove singularity (nel = 3/12 [23]), see Figure 3.4(b). In this case the weight
is distributed on at least two of the three sublattice sites. This difference in the two van Hove
singularities (vHs) has led to the upper one being named a ”pure”-type vHs while the lower one
is called a ”mixed”-type vHs. The ”pure”- and ”mixed”-type features are not only present in the
kagome tight-binding model but are also revealed by ARPES experiments and DFT calculations on
the AV3Sb5 compounds [27]. Sublattice interference has been explored in the literature ([28], [29])
as it could have an impact on the type of possible Fermi surface instabilities. The work presented
in this thesis is not dependent on the more fine-tuned case of sublattice interference but rather on
a general property of the kagome lattice, namely that each sublattice site s, and also the entry
usn(k), has a lower symmetry than the lattice itself. The sublattice sites have a two-fold rather
than six-fold rotational symmetry which is visible in the weight |us2(k)|2 plotted on the BZ in
Figure 3.4(c) in the case of the middle band.



Chapter 4

Superconductivity

“You know
Every now and then I think you
might like to hear something
from us
Nice and easy
But there’s just one thing, you
see
We never ever do nothin’
Nice and easy
We always do it nice and rough”

Tina Turner intro to Proud Mary

In this chapter we introduce the mean-field (or effective non-interacting) Hamiltonian used to
describe superconductivity on the kagome lattice. Subsequently, we use techniques from group
theory to classify the symmetry-allowed order parameters. The superconducting order parameter
is related to the Cooper pair wavefunction, and it is a function which can in general be complex
and depend on momentum k. The symmetry-allowed order parameters will be classified according
to what is called irreducible representations, which, for our purpose, can be understood as the basis
functions in which we decompose the order parameter. The allowed basis functions, or irreducible
representations, are dictated by the point group of the lattice. Simply put, the point group is a set
of symmetry-operations which leave the lattice sites unchanged after the transformation.

Linguistically, different superconducting states can be categorized in multiple ways. The terms
”conventional” and ”unconventional” superconductivity are often used when referring to the mi-
croscopic mechanism driving the superconducting instability: if it is phonon-driven it is called
conventional, and if it is driven by some other mechanism it is referred to as unconventional.
Phonon-mediated superconductivity, described by the framework of BCS theory, gives rise to an
isotropic order parameter. Unconventional pairing states, on the other hand, have a non-trivial
momentum-dependence which can lead to additional spontaneous symmetry breaking at the su-
perconducting phase transition. For example, a two-dimensional order parameter can result in
the breaking of rotational or time-reversal symmetry. Time reversal symmetry is broken when the
order parameter consists of two (or more) components where one of the components has a complex
coefficient [30].

In many cases the mechanism responsible for the superconducting phase is not known, and
consequently it is often the symmetry properties of the order parameter which are discussed in the
literature. In what follows, we do not provide any microscopic mechanism for the superconducting

15
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instability but rather use a symmetry-based phenomenological approach, and we only refer to
the symmetry properties of the order parameter. We distinguish between order parameters which
transform trivially or non-trivially under the symmetry operations of the point group of the kagome
lattice. The first kind is referred to as trivial superconductivity, and the latter as non-trivial or
unconventional. This categorization includes higher angular momentum (not only l = 0, i.e. s-
wave) states in the trivial group, called A1, although these are not ”BCS states” in the sense that
the BCS order parameter is constant in momentum.

4.1 The model

The applied model consists of a tight-binding model outlined in Section 3.1 along with a general
interaction described by

H =
∑

µµ′νν′

Vµµ′νν′c
†
µcµ′c†νcν′ , (4.1)

where µ, µ′, ν, ν ′ are general quantum numbers. In order to study a system with the given interac-
tion, it is necessary to make simplifying assumptions. By assuming that the fluctuations of a given
operator are small, we can put the interaction on Gaussian form by expanding the Hamiltonian
to first order in the fluctuations. This introduces an effective background potential defined by the
mean of a set of field operators, and hence we obtain a mean-field theory which can be solved
exactly. By this we mean that it is possible to diagonalize the Hamiltonian, since it is quadratic
in the electron operators. Since we are interested in studying superconductivity, we expand the
Hamiltonian in the Cooper channel, where the expansion is performed in fluctuations of two cre-
ation or two annihilation operators [26]. Before continuing with the mean-field decoupling we
introduce the BCS Hamiltonian. In BCS theory it is assumed that the superconducting conden-
sate is formed by time-reversed partners, i.e. pairs of electrons with opposite momenta and spin.
The BCS Hamiltonian takes the form

HBCS =
∑
k,σ

ξkc
†
k,σck,σ +

∑
k,k′

Vkk′c†k,↑c
†
−k,↓c−k′,↓ck′,↑ . (4.2)

In BCS theory it is assumed that the interaction strength due to electron-phonon coupling, Vkk′ ,
becomes attractive for electrons close to the Fermi energy, i.e. Vkk′ = −V < 0 for states with
energies |ξk| , |ξk′ | < ωD and zero otherwise. ωD is the Debye frequency which sets an energy
cut off for the electrons participating in the superconducting condensate [31]. The assumption
that the pairing interaction is constant results in the mean-field order parameter ∆ having no
momentum dependence. In our model we allow for the interaction, and thus the order parameter,
to be momentum dependent. The interaction in the case of a kagome lattice takes the following
form, where we have introduced sublattice indices s1, s2, s3, s4:

Hint =
1

N2

∑
k,k′,s1,s2,s3,s4

V s1,s2,s3,s4
k,k′ c†s1,k,↑c

†
s2,−k,↓cs3,−k′,↓cs4,k′,↑ . (4.3)

The mean-field decoupling of this interaction is shown in detail in Appendix F. Here, we sketch the
approach more generally. From equation (4.1), we define the fluctuation of the operator A†

µν ≡ c†µc
†
ν ,

δA†
µν = A†

µν − 〈A†
µν〉 , (4.4)

and similarly for Aµν ≡ cµcν . Rearranging the operators in the interaction yields Vµµ′νν′c
†
µ(δµ′νcν′+

c†νcν′cµ′). In the following, µ′ and ν will correspond to quantum numbers with different spin such
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that δµ′ν = 0. An expansion of the interaction to first order in the fluctuations of A†
µν and Aν′µ′

results in∑
µµ′νν′

Vµµ′νν′A
†
µνAν′µ′ ≈

∑
µν

∆µνA
†
µν +

∑
µ′ν′

∆†
µ′ν′Aν′µ′ −

∑
µµ′νν′

Vµµ′νν′ 〈A†
µν〉 〈Aν′µ′〉 , (4.5)

where we defined the complex mean-fields

∆µν ≡
∑
µ′ν′

Vµµ′νν′ 〈Aν′µ′〉 , ∆†
µ′ν′ ≡

∑
µν

Vµµ′νν′ 〈A†
µν〉 , (4.6)

and where the last term will contribute to an offset in the energy. Following the same approach, a
mean-field decoupling of the interaction in equation 4.3 together with the TB model leads to the
Bogoliubov-de Gennes (BdG) Hamiltonian

HBdG =
∑

k∈BZ,σ
c†k,σHTB(k)ck,σ −

∑
k∈BZ

(c†k,↑∆kc
†
−k,↓ + c−k,↓∆

†
kck,↑) . (4.7)

By introducing the so-called Nambu spinor Ψ†
k ≡

(
c†k,↑ c−k,↓

)
, the Hamiltonian is rewritten on the

form

HBdG =
∑
k∈BZ

(
c†k,↑ c−k,↓

)(HTB(k) −∆k

−∆†
k −HTB(k)

)(
ck,↑
c†−k,↓

)

=
∑
k∈BZ

Ψ†
k

(
HTB(k) −∆k

−∆†
k −HTB(k)

)
Ψk =

∑
k∈BZ

Ψ†
kHBdG(k)Ψk , (4.8)

where both HTB(k) and ∆k are 3×3 matrices in sublattice space, which are momentum dependent.
We can now define the Nambu Green function

G(0)(k, τ) ≡ −〈TτΨk(τ)Ψ
†
k(0)〉 = −〈Tτ

(
ck,↑(τ)

c†−k,↓(τ)

)
⊗
(
c†k,↑(0) c−k,↓(0)

)
〉

= −

(
〈Tτ ck,↑(τ)c†k,↑(0)〉 〈Tτ ck,↑(τ)c−k,↓(0)〉
〈Tτ c†−k,↓(τ)c

†
k,↑(0)〉 〈Tτ c†−k,↓(τ)c−k,↓(0)〉

)
, (4.9)

and introduce the so-called normal and anomalous Green functions. The normal Green function is
defined by

G(0)(k, τ) ≡ −〈Tτ ck,↑(τ)c†k,↑(0)〉 , (4.10)

while the anomalous (anomalous because it couples different spin) Green function is

F (0)(k, τ) ≡ −〈Tτ ck,↑(τ)c−k,↓(0)〉 . (4.11)

The normal and anomalous Green functions, G(0)(k, τ) and F (0)(k, τ), are 3× 3 matrices and thus
the Nambu Green function, G(0)(k, τ), is a 6 × 6 matrix. In Chapter 5 we return to the Nambu
Green function, which will be used to calculate the density of states, but the remainder of this
chapter centers on the derivation of expressions for the symmetry-allowed superconducting order
parameters ∆k on the kagome lattice.
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D6 E 2C6 2C3 C2 3C ′
2 3C ′′

2

A1 1 1 1 1 1 1
A2 1 1 1 1 -1 -1
B1 1 -1 1 -1 1 -1
B2 1 -1 1 -1 -1 1
E1 2 1 -1 -2 0 0
E2 2 -1 -1 2 0 0

Table 4.1: The character table of the D6 point group [32].

C2'

C2''

C2

Figure 4.1: Illustration of the rotation axes denoted C2, C ′
2 and C ′′

2 relative to the kagome lattice.

4.2 Lattice harmonics

To classify the allowed superconducting states on the kagome lattice we make use of techniques
from group theory. The central point of the hexagons in the kagome lattice exhibits D6 point group
symmetry. In Table 4.1 the character table of the D6 point group is presented [32].

The point group D6 contains 12 elements. The set denoted by E contains the identity, 2C6

contains rotations by ±π
3 around the principal axis (the axis perpendicular to the plane of the

lattice), 2C3 contains rotations by ±2π
3 around the principal axis, and C2 denotes a rotation by π

around the principal axis. The 3C ′
2 and 3C ′′

2 sets each contain three elements which are rotations
by π around the in-plane axes in each set. By convention, the 3C ′

2 set has the x-axis as a member,
while the y-axis is a member of the 3C ′′

2 set. There exists a degree of freedom in the orientation
of the lattice with respect to the rotation axes. We align the hexagon according to the orientation
shown in Figure 4.1, but an option that is equally valid would be to rotate the lattice by π

2 around
C2.

The D6 point group has six irreducible representations (irreps): four of the irreps (A1, A2, B1
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and B2) are one-dimensional and two of the irreps (E1 and E2) are two-dimensional. The A1 irrep
is referred to as trivial because it remains unchanged under a transformation by any of the elements
in D6. If no crystal symmetry is broken, the Hamiltonian should transform as the A1 irrep, since
the energy should be independent of transformations belonging to the point group of the lattice. To
illustrate the irreducible representations, we use a set of basis functions fa(k) = eik·a to generate
one-dimensional functions fΓa (k)µν that transform like one of the irreducible representations Γ of
D6. Expressed alternatively, we project eik·a onto the irreps of D6. The functions are constructed
by

fΓa (k)µν =
dΓ

NG

∑
g∈G

DΓ(g)∗µνe
ik·(D(g)a) , (4.12)

where g denotes an element in the point group G, NG is the number of elements in G (NG = 12
for the D6 point group), Γ is one of the irreducible representations and dΓ is the dimension of
the Γ irrep. The above equation is based on projecting fa(k) onto ΠΓ

µν = dΓ

NG

∑
g∈G D

Γ(g)∗µνPR,
where PR is an operator working on functions such that PD(g)f(D(g)k) = f(k) [33]. In the case
of a one-dimensional irrep, DΓ(g)∗µν = χΓ(g) is the character of the element g in the Γ irrep,
and in the case of a two-dimensional irrep, DΓ(g)∗µν is the (µ, ν) entry of the two-dimensional
matrix representation of the element g written in the Γ irrep. D(g) is a two-dimensional matrix
representation of the element g written in one of the 2D irreps, and we arbitrarily choose the E1

irrep. The matrix representations D(g) employed in equation (4.12) are provided in Appendix A.
In the case of Γ = A1, equation (4.12) becomes

fA1
a (k) =

1

12

∑
g∈D6

χA1(g)eik·(D(g)a) , (4.13)

where χA1(g) is the character of the element g in the A1 irrep. The functions fΓa (k)µν are called
lattice harmonics, and the lattice vector a indicates the extent of the interaction/pairing necessary
to generate a certain harmonic. The length of a then indicates the order: the shorter the vector,
the lower the order. This formalism does not account for the sublattice degree of freedom, which
will be included in Section 4.3. For the two-dimensional irreps we set ν = 1 (selecting the first
column of DΓ(g)) and then calculate fΓa (k)µ1 where µ denotes the row of the matrix DΓ(g). fΓa (k)µ1
with µ = 1 (µ = 2) then transforms as the first (second) component of Γ, which we denote with
subscripts Γ11 (Γ21). The lowest-order, non-constant lattice harmonics fA1

a (k) are illustrated in
Figure 4.2 for the A1 irrep and in Appendix E for the remaining irreps. From Figure 4.2 it is
evident that the function fA1

a (k) does not change sign under any of the transformations in the D6

point group.

At lowest order, i.e. for a = 0 (not shown in Figure 4.2), the A1 irrep is constant in momentum
and corresponds to an s-wave order parameter. Before proceeding, a small note on terminology is in
place, since this point can be confusing for first-time learners: Referring to an order parameter as s-
wave when it transforms as the A1 irrep (as p+ip when it transforms as the complex combination of
the components of the 2D E1 irrep: (E1)11+i(E1)21, as d+id when it transforms as (E2)11+i(E2)21
or as f -wave when it transforms as the B1 irrep) is common terminology in the literature, although
naming according to spherical harmonics can be misleading since it is only to lowest order that the
orbital component has angular momentum l = 0 (s) (l = 1 (p), l = 2 (d) or l = 3 (f)). Nevertheless,
in what follows we will use the two naming conventions interchangeably. The subscript in, for
example, dx2−y2 denotes the momentum dependence of the order parameter, in the sense that a
function transforming as the first component of the E2 irrep, (E2)11, depends on k2x − k2y. As is
evident from the lattice harmonics, some order parameters change sign as a function of momentum.
It is therefore possible to have an order parameter which changes sign and crosses zero somewhere
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t1 2t1+t2 2t1 3t1+t2

Figure 4.2: fA1
a (k) plotted for four different vectors, a = t1, 2t1 + t2, 2t1, 3t1 + t2, yielding the

four lowest order, non-constant lattice harmonics transforming as the A1 irrep. There is also a
contribution from fA1

a=0(k) which is non-zero but constant over the Brillouin zone. The hexagonal
Brillouin zone is superimposed in red.

on the Fermi surface, and consequently the energy gap closes at this location. An order parameter
with crossings through zero is called nodal. Whether the order parameter has nodes, depends
not only on the irrep it transforms as but also on the fermiology, i.e. the shape and size of the
Fermi surface. The Fermi surface nodes can have different topology, i.e. either be nodal points or
nodal lines. Experimentally, specific heat measurements can differentiate between different nodal
topology as the low temperature dependence of the specific heat will be either ∝ T 2 or ∝ T 3,
depending on whether the order parameter has nodal lines or nodal points, respectively [4]. As an
example, the A1 and E2 irreps to lowest order are illustrated for the case of a circular Fermi surface
in Figure 4.3. We see that while the s-wave order parameter is completely isotropic, the dx2−y2

((E2)11) and dxy ((E2)21) order parameters are anisotropic and are equal to zero at four points on
the Fermi surface.

The existence of nodes leaves an experimental fingerprint on the local density of states which can
be measured through scanning tunneling microscopy. If there are no nodes on the Fermi surface it
means that for every Fermi momentum there will always be a full gap and thus no states to occupy
within the gap. This will yield a full or ”U-type” gap, for which there is a finite energy range where
the LDOS is zero. On the contrary, if there are nodes on the Fermi surface the gap becomes smaller
and smaller close to the node until it closes and becomes zero at a certain nodal point. This will
result in a soft or ”V-type” gap. In terms of excitations, a finite amount of energy is always needed
to create an excitation when there are no nodes, whereas it will cost an exceedingly small amount
of energy to create excitations close to a node. The time-reversal symmetry breaking combinations
px + ipy and dx2−y2 + idxy do not have any nodes on the Fermi surface, although the individual
components do. For example, px and py individually have nodal lines (px along kx = 0 and py
along ky = 0), but since these lines are not parallel and since the contribution from px cannot
cancel with the contribution from py due to the imaginary combination, the px + ipy gap function
will not have any nodes. Thus, the time-reversal symmetry breaking gap functions will result in a
U-type gap. This will be shown in Chapter 5 where the local density of states is plotted.

4.3 Classification of superconducting states

In this section we present a systematic classification of the possible pairing symmetries on the
kagome lattice. To obtain the best understanding of the pairings, our starting point will be the
real space order parameter which we expand in terms of a range of interactions. Subsequently,
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Order parameters evaluated on the Brillouin zone

Order parameters on a circular Fermi surface

A1 (E2)11 (E2)21

Figure 4.3: Top panel: Illustration of s-wave (left), dx2−y2-wave (middle) and dxy-wave (right)
order parameters on the hexagonal Brillouin zone of the kagome lattice. The colour depicts the
phase of the order parameter (red: +1, blue: -1). An example of a Fermi surface is imposed (grey,
dashed). Bottom panel: The order parameter illustrated on the Fermi surface where the segment
height represents the amplitude of the order parameter. The s-wave order parameter is isotropic in
all directions, where, for example, the dxy-wave order parameter is maximum (or minimum) along
the diagonals and zero on the horizontal and vertical axes.

a Fourier transformation of the given expression yields the momentum dependence of the order
parameter. The order parameter describes either singlet or triplet pairing and takes the general
form

∆Γ
ss′(k) = ∆0f

Γ
OS(k) + ∆1f

Γ
NN(k) + ∆2f

Γ
NNN(k) + ∆3f

Γ
3rd(k) , (4.14)

where ∆Γ
ss′(k) transforms as the Γ irrep and depends on sublattice indices s, s′ and momentum k.

The proportionality factor of each term cannot be determined from group theory, and they will be
free parameters. The derived pairing matrices in sublattice space form the groundwork of our later
analyses where they are used as the mean fields in our Nambu Hamiltonian used to plot the local
density of states, see Chapter 5, or as an initial guess in a self-consistent algorithm which solves
for the order parameter, see Chapter 6.

4.3.1 On-site pairing

To begin with, we determine the possible on-site pairing states, and then we proceed to identify
the possible nearest neighbor states, next nearest neighbor states etc. There are three in-equivalent
sites on the kagome lattice, the sublattice sites A, B and C. If we determine the possible pairings
on these three sites, the rest will be given by translational symmetry of the lattice. As a basis for
the on-site mean-field values we use ê1 =

(
1 0 0

)T , ê2 =
(
0 1 0

)T and ê3 =
(
0 0 1

)T . We name
the sites A, B and C as in Section 3.1. The method we will employ is based on the idea of starting
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from a general vector von-site =
(
A B C

)T and projecting the vector onto the irreps, thus finding
an orthogonal basis where each basis vector transforms as the µth row of the corresponding irrep.
To accomplish this we define the projection matrices [33]

ΠΓ
µν =

dΓ

NG

∑
g∈G

DΓ(g)∗µνD(g) , (4.15)

where, as before, dΓ is the dimension of the irrep Γ and NG is the number of elements in the point
group G. D(g) is a matrix representation of the element g in the vector space spanned by ê1, ê2
and ê3, and DΓ(g)µν is the (µ, ν) entry of the matrix representation of the element g in the Γ irrep.
Thus, for a set of labels (Γ, µ, ν) the matrix ΠΓ

µν will be of the same rank as the matrix D(g) [33].
The projection matrix onto, for instance, the A1 irrep is

ΠA1 =
1

12

∑
g∈G

D(g) (4.16)

where D(g) for g ∈ D6 is defined in Appendix B in the case of on-site pairing. The matrices in
Appendix B are determined by applying the elements of D6 to the Γ point and determining how
the sublattices transform. Projecting von-site onto the A1 irrep results in

ΠA1von-site =
1√
3
(A+B + C)êA1 , where êA1 ≡ 1√

3

(
1 1 1

)T
. (4.17)

The E1 and E2 irreps are two-dimensional. We construct projectors ΠE1
µν and ΠE2

µν for (µ, ν) = (1, 1)

and (µ, ν) = (2, 1). The projection of von-site onto ΠE2
11 and ΠE2

21 yields

ΠE2
11 von-site =

1√
6
(A− 2B + C)êE2

11 , where êE2
11 ≡ 1√

6

(
1 −2 1

)T
. (4.18)

and

ΠE2
21 von-site =

1√
6
(−A+ 2B − C)êE2

21 , where êE2
21 ≡ 1√

2

(
1 0 −1

)T
. (4.19)

The rest of the projections yield zero. Thus, we have derived a set of three mutually orthogonal
vectors {êA1 , êE2

11 , ê
E2
21 }. The basis is illustrated in Table 4.2 on the six lattice sites making up the

hexagons in the kagome lattice. Since the pairing interaction occurs on-site, the three matrices
describing the form factor fΓOS(k) will be diagonal and hence symmetric in sublattice space. Fur-
thermore, the form factor will be even under the transformation k → −k. It follows from Pauli’s
exclusion principle that the total wavefunction of a pair of particles should change sign after their
permutation [34], and we thus categorize the on-site pairings as spin-singlets. The form factor
derived from on-site interactions can hence be decomposed as [8]

fsOS = A1 ⊕ E2 . (4.20)

The full classification of possible on-site pairings on the kagome lattice is seen in Table 4.2 and the
corresponding mathematical expressions can be found in Appendix C.

While the tight-binding Hamiltonian in band space is given by HB
TB(k) = U(k)HTB(k)U

†(k),
the order parameter transforms from sublattice to band space as

∆B
k = U(k)∆kU

T (−k) . (4.21)

A derivation of the transformation is given in Appendix D. The right column of Table 4.2 is obtained
by setting the chemical potential µ = 0 and plotting the entry of ∆B

k corresponding to the middle
band, n = 2, over the Brillouin zone. We denote this entry by ∆n=2,k. Notice that on the kagome
lattice there is an on-site contribution not only from the A1 irrep but also from the two-dimensional
E2 irrep. In comparison, the square lattice only has an on-site contribution from the A1 irrep.
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Irrep Spin state Real space Momentum space ∆n=2,k

A1 singlet

(E2)11 singlet

(E2)21 singlet

Table 4.2: Summary of the different on-site pairing states on the kagome lattice. The colour in
the real space illustrations symbolizes the sign of the pairing interaction (red: 1, blue: -1), and
the size symbolizes the relative strength (small: 1, big: 2). The real space pairing interactions and
momentum space pairing matrices are written in Appendix C.

4.3.2 Nearest neighbor pairing

Cooper pairs between nearest neighbor sites can form as both spin-singlet and spin-triplet pairs.
The general wavefunction of a pair of particles in Dirac notation is

|Ψ(s,R, ; s′,R′)〉 ∝ (|(s,R); (s′,R′)〉 ± |(s′,R′); (s,R)〉)⊗ (|↑↓〉 ∓ |↓↑〉) , (4.22)

where the upper (lower) equation is for spin-singlet (spin-triplet) pairs. Rewriting equation (4.22)
in second quantization leads to the following expressions for a spin-singlet pair

cs′,R′,↑cs,R,↓ + cs,R,↑cs′,R′,↓ , (4.23)

and a spin-triplet pair

cs′,R′,↑cs,R,↓ − cs,R,↑cs′,R′,↓ , (4.24)

between an electron located at (s,R) and an electron located at (s′,R′). Notice that the triplet pair
expression is not equal to the one where (s,R) ↔ (s′,R′). This is accounted for by representing
the above expression by an arrow from site (s,R) to site (s′,R′), see e.g. the second column in
Table 4.3. There are six nearest neighbor links on the kagome lattice which are not related to
each other through translations by primitive lattice vectors. The links are named according to
Figure 4.7(d) and the general vector takes the form vNN =

(
a b c d e f

)T . The matrices D(g)
used to generate the projectors (ΠΓ

µν)s/t for spin-singlet (subscript s) and spin-triplet (subscript
t) are given in Appendix B. For spin-singlet pairing between nearest neighbor sites the projection



24 CHAPTER 4. SUPERCONDUCTIVITY

onto the irreps of D6 yields

ΠA1
s vNN ∝ 1√

6

(
1 1 1 1 1 1

)T ≡ êA1
NN,s

ΠB2
s vNN ∝ 1√

6

(
1 −1 1 −1 1 −1

)T ≡ êB2
NN,s

(ΠE1
11 )svNN ∝ 1√

4

(
0 1 1 0 −1 −1

)T ≡ (êE1
11 )NN,s

(ΠE1
21 )svNN ∝ 1√

12

(
2 1 −1 −2 −1 1

)T ≡ (êE1
21 )NN,s

(ΠE2
11 )svNN ∝ 1√

12

(
2 −1 −1 2 −1 −1

)T ≡ (êE2
11 )NN,s

(ΠE2
21 )svNN ∝ 1√

4

(
0 1 −1 0 1 −1

)T ≡ (êE2
21 )NN,s (4.25)

whereas ΠA2
s vNN = ΠB1

s vNN = 0. We notice that, for example, êA1
NN,s · ê

B2
NN,s = 0 because the

irreps A1 and B2 correspond to orthogonal subspaces. Thus we have derived a set of six mutually
orthogonal unit vectors, and this basis is illustrated in Table 4.3. We have established that the
illustration of nearest neighbor spin-triplet pairs should include a bond direction which represents
a specific order of the fermion operators. Bond directions are accounted for by multiplying all of
the matrices D(g) representing a reflection (or rotation by π around the C ′

2 or C ′′
2 axis) by −1.

The projectors for spin-triplet pairs are constructed from these matrices, given in Appendix B, and
we find six mutually orthogonal vectors illustrated in Table 4.3. In conclusion, the form factors
deriving from nearest neighbor interactions are found to have the following contributions [8]

fsNN = A1 ⊕B2 ⊕ E1 ⊕ E2 , (4.26)

f tNN = A2 ⊕B1 ⊕ E1 ⊕ E2 . (4.27)

4.3.3 The sublattice-odd pairing states

In addition to six symmetry-allowed sublattice-even pairing states, we find six sublattice-odd pairing
states. The allowed symmetry properties of a superconducting order parameter on a kagome lattice
is shown in Table 4.4.

Upon plotting the nine entries of the order parameters ∆Γ
n(k), where Γ is one of the allowed irreps,

in band space (3× 3 matrices), we find that while the sublattice-even states have non-zero entries
on the diagonal (they might also have some off-diagonal contribution), the sublattice-odd states
only have off-diagonal contributions. As the matrix is in band basis, the diagonal corresponds
to intraband pairing, i.e. in quasiparticle basis a gap opens up between an electron band and
its associated hole band counterpart, while the off-diagonal components correspond to interband
pairing. The difference between these two notions is illustrated in Figure 4.4.

For example, the singlet A1 order parameter (with contributions up to and including NN bonds)
only has non-zero entries on the diagonal in band space, whereas the singlet B2 order parameter
only has one of the three upper off-diagonal components different from zero. As such, it was found
that some of the pairing states arising at the NN level lead to interband or finite energy Cooper
pairing. Intraband Cooper pairs are formed between electrons occupying states in the same energy
band, and thus their energy levels will be similar. On the other hand, interband Cooper pairs form
between electrons of different energy bands, and the energies of the electrons will in general differ.
It is thus less energetically favorable for the interband pairs to form. Interband pairing is a type
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Irrep Real space Momentum space ∆n=2,k

Singlet Triplet Singlet Triplet

A1

A2 Interband pairing

B1

B2 Interband pairing

(E1)11 Interband pairing

(E1)21 Interband pairing

(E2)11 Interband pairing

(E2)21 Interband pairing

Table 4.3: Summary of the different nearest neighbor pairing states on the kagome lattice. For the
singlet states the colour in the real space illustrations symbolizes the sign of the pairing interaction
(red: 1, blue: -1), and the size symbolizes the relative strength (small: 1, big: 2). The real space
pairing interactions and momentum space pairing matrices are written in Appendix C. Notice that
A1 and the components of E2 have a hexagonal node corresponding to the shape of the Fermi
surface for µ = 0. This is a plausible explanation of the small gaps observed in [35], where only
nearest neighbor contributions were included. The chemical potential in [35] was set to µ = 0.4,
thus moving away from the upper van Hove singularity.
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Singlet Triplet
σ −1 +1
k +1 −1 +1 −1

Sublattice +1 −1 −1 +1

Total −1 −1 −1 −1

Table 4.4: Allowed symmetry properties of the superconducting order parameter ∆σσ′,ss′(k). The
symmetry property is symbolized by +1 (−1) for symmetric (anti-symmetric) under spin permuta-
tion, sublattice permutation or a parity transformation. In two dimensions, a parity transformation,
k → −k, is equivalent to a rotation by π around the principal axis (a C2 operation).

Figure 4.4: The distinction between intra- and interband pairing. For illustrative purposes two
parabolic electron bands are considered. (a) The bands in Nambu space: two electron bands (blue)
and their associated hole band counterparts (red). (b) An intraband order parameter opens a gap
between an electron band and its hole band counterpart while (c) an interband order parameter
opens a gap between an electron band and a hole band different from its counterpart.

of pairing that happens away from the Fermi surface. This more exotic type of pairing arises from
the sublattice degree of freedom of the kagome lattice: the exact origin is detailed below.

The quasiparticle bands for a system with superconductivity are plotted (black) on top of the
tight-binding bands (grey) for different pairing states up to NN order: see Figures 4.5 and 4.6 for
intra- and interband results, respectively. The chemical potential µ = 0, which corresponds to a
hexagonal Fermi surface that touches the Brillouin zone boundary at the M-points. To make the
effects more clear, the proportionality factors in equation (4.14) have been set to ∆0 = 0.5t and
∆1 =

∆0
2 for the states with both on-site and NN contributions, and ∆1 = 0.5t for the states with

only NN contributions.

We now turn our attention to the question of why these interband states from NN pairing appear
on the kagome lattice, and whether they would appear on other familiar lattices such as the square,
triangular or honeycomb lattice. The honeycomb lattice, for one, also contains multiple (two) sites
in a single unit cell and therefore also has a sublattice degree of freedom. We will argue that there
is a subtle feature of the kagome lattice which results in additionally allowed pairing states, which
would not be allowed on the aforementioned lattices. This feature leads to the possibility of having
superconducting order parameters that are, for instance, even-parity, spin-triplet, sublattice-odd.
In two dimensions a parity transformation is equivalent to a rotation by π around the principal axis
(a C2 operation). Focusing on nearest-neighbor pairing, the special feature of the kagome lattice
does not originate from the fact that it is a non-Bravais lattice (i.e. has lattice sites which are non-
equivalent and thus the unit cell contains multiple lattice sites, introducing a sublattice index),
which is also the case for the honeycomb lattice. Rather, it originates from the fact that on the
kagome lattice the nearest-neighbor bonds connected by a C2 transformation are not connected
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Figure 4.5: The quasiparticle energy bands for the intraband pairing states, namely the (a) singlet
A1 state, (b) triplet B1 state, (c) triplet (E1)11, (d) triplet (E1)21, (e) singlet (E2)11, (f) singlet
(E2)21, (g) complex (E1)11+i(E1)21 and (h) complex (E2)11+i(E2)21 state. The chemical potential
µ = 0.

Figure 4.6: The quasiparticle energy bands for the interband pairing states, namely the (a) triplet
A2 state, (b) singlet B2 state, (c) singlet (E1)11 state, (d) singlet (E1)21 state, (e) triplet (E2)11
state and (f) triplet (E2)21 state. The chemical potential µ = 0.

by a translation by a primitive lattice vector. This is contrary to the square, triangular and
honeycomb lattices where the bonds connected by a C2 transformation are also connected by a
lattice translation. The latter restricts the possible pairing states and leads to the connection
between the character of the C2 transformation and the spin-singlet/-triplet nature of the pairing
well-known from the square lattice.

On the square lattice (with one site per unit cell) it is sufficient to fix the sign of only two
bonds: then the rest are given by translations. Thus the square lattice has two independent bonds.
More importantly, the C2 bond partners (the bonds connected by a C2 transformation) are not
independent, since these are restricted to be equal to the initial bonds (pre-rotation) through
lattice translations. On the triangular lattice (with one atom per unit cell) one needs to fix the
sign of three bonds. The remainder of the bonds are given by translations. The bonds obtained
by a C2 transformation of the three independent bonds are not independent from the initial ones
since these are also connected by translations. On the honeycomb lattice (with two atoms per
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x

y

Figure 4.7: The (a) square, (b) triangular, (c) honeycomb and (d) kagome lattice. The independent
nearest neighbor bonds are illustrated with a full black line.

unit cell) one needs to fix the sign of three bonds. In this case, the C2 bond partners are also
not independent for the same reason as the preceding instances. Finally, on the kagome lattice
one needs to fix the sign of six bonds and the C2 bond partners cannot be obtained through
translations by one of the primitive lattice vectors. Figure 4.7 illustrates the independent nearest
neighbor bonds on the square, triangular, honeycomb and kagome lattices. If another lattice has
the same feature as the kagome lattice, then it is expected that pairing states which are more
complex than the traditional even-parity spin-singlet and odd-parity spin-triplet would be allowed.
Although it would be interesting to study under which conditions (if any) it would be possible
to stabilize an interband pairing state on the kagome lattice, the physically relevant states for
the AV3Sb5 compounds are most likely the more conventional intraband pairing states. We study
impurity effects on those in Chapters 5 and 6.

4.3.4 2nd and 3rd nearest neighbor pairing

For completeness, we also provide the pairing matrices for next nearest neighbor (NNN) and third
nearest neighbor (3rd) pairing states, see Tables 4.5 and 4.6. In the case of third nearest neighbor
pairings, there are not six but nine bonds in total: there are bonds that couple sites across the
hexagon (denoted in-hexagon) and bonds that couple sites along the lattice links (denoted out-
of-hexagon). Since these two bond categories do not transform into each other under any of the
elements of the D6 point group, the problem can be decomposed into two separate problems of
dimension three and six.

In the following chapters we will only include interactions up to and including nearest neighbors.
The proportionality factors are chosen to be ∆0 = 0.2t and ∆1 = 0.1t in the cases where the order
parameter has an on-site contribution, and ∆1 = 0.2t otherwise.
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Irrep Real space Momentum space ∆n=2,k

Singlet Triplet Singlet Triplet

A1

A2 Interband pairing

B1 Interband pairing

B2

(E1)11 Interband pairing

(E1)21 Interband pairing

(E2)11 Interband pairing

(E2)21 Interband pairing

Table 4.5: Summary of the different next nearest neighbor pairing states on the kagome lattice.
For the singlet states the colour in the real space illustrations symbolizes the sign of the pairing
interaction (red: 1, blue: -1), and the size symbolizes the relative strength (small: 1, big: 2). The
real space pairing interactions and momentum space pairing matrices are written in Appendix C.
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Irrep Real space Momentum space ∆n=2,k

Singlet Triplet Singlet Triplet

A1

B1

(E1)11

(E1)21

(E2)11

(E2)21

Table 4.6: Summary of the different 3rd nearest neighbor in-hexagon pairing states on the kagome
lattice. For the singlet states the colour in the real space illustrations symbolizes the sign of the
pairing interaction (red: 1, blue: -1), and the size symbolizes the relative strength (small: 1, big: 2).
The real space pairing interactions and momentum space pairing matrices are written in Appendix
C.
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Irrep Real space
Singlet Triplet

A1

A2

B1

B2

(E1)11

(E1)21

(E2)11

(E2)21

Table 4.7: Summary of the different 3rd nearest neighbor out-of-hexagon pairing states on the
kagome lattice. For the singlet states the colour in the real space illustration symbolizes the sign
of the pairing interaction (red: 1, blue: -1), and the size symbolizes the relative strength (small:
1, big: 2). The six bonds that are independent have an opaque colour as compared to the more
transparent colours of the remaining bonds obtained from translations of the original six. In this
case only the real space illustrations are provided.





Chapter 5

Adding an impurity: The T-matrix
approximation

“...lined by resonant states like
cypress trees along a Tuscan
driveway.”

Brian M. Andersen

In this chapter we examine the effect of impurities on different superconducting states on the
kagome lattice. We introduce two types of impurity potentials: one modelling a potential impurity,
and one modelling a magnetic impurity which interacts differently with different spin. The local
density of states (LDOS) is obtained through the T-matrix method. The LDOS is an interesting
property since it can be probed experimentally by scanning tunneling microscopy experiments.
We furthermore model the suppression of the critical temperature Tc as a function of the rate of
scattering on potential impurities, another property which can be measured experimentally.

In Chapter 4 we introduced different superconducting orders on the kagome lattice, some of
which feature sign changes on the Fermi surface and others which do not. Sign-changing and non-
sign-changing superconducting states are both sensitive to the presence of magnetic impurities.
This is evidenced by the appearance of low-energy impurity bound states in the LDOS and a
strong suppression of the critical temperature. Magnetic impurities have local magnetic moments
which interact with and perturb the paired electrons. An electron, constituting one-half of a
Cooper pair, can occupy the bound state introduced by the magnetic impurity, and as a result the
Cooper pair breaks. Due to the similar behaviour of sign-changing and non-sign-changing states to
magnetic impurities, this type of impurity is not well-suited to distinguish between different types
of superconductivity in real materials. On the other hand, it is a well-known result that s-wave
superconductivity is not as sensitive to potential impurities as the sign-changing states are. Here,
we thus mainly focus on the effect of potential impurities. The main result of this chapter is the
discovery of a mechanism on the kagome lattice which renders a d-wave order parameter effectively
behaving as an s-wave order parameter, in the sense that it is more robust to potential impurities
than expected. We calculate an approximate Green function to understand and explain the effect
with simple calculations.

5.1 The T-matrix method
The T-matrix method is used to determine the full Green function of a system with an impurity as
described by a full Hamiltonian on the generic form H = H(0)+Himp, where H(0) is the Hamiltonian

33
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of the system without an impurity and Himp is the Hamiltonian of the impurity. The operators of
the system depend on a set of quantum numbers which we arbitrarily denote by indices {a, b, c, ...}
in the following derivation. We denote the Green function of the system without an impurity by
G(0)(a, b) and of the full system by G(a, b). With the introduced notation, the equations of motion
of the two Green functions G(0)(a, b) ≡ −〈Tτ cac†b〉0 and G(a, b) ≡ −〈Tτ cac†b〉 are given by [36]

(−∂τa −H(0)(a))G(0)(a, b) = δa,b , (5.1)

(−∂τa −H(a))G(a, b) = δa,b . (5.2)

Setting the two equations equal to each other yields

(−∂τa −H(a))G(a, b) =

(−∂τa −H(a) +Himp(a))G
(0)(a, b) =

(−∂τa −H(a))G(0)(a, b) +Himp(a)G
(0)(a, b) =

(−∂τa −H(a))G(0)(a, b) +
∑
c

δa,cHimp(c)G
(0)(c, b) . (5.3)

We obtain the so-called Dyson integral equation for the full Green function by multiplying with
the matrix (−∂τa −H(a))−1 on the left and using equation (5.2)

G(a, b) = G(0)(a, b) +
∑
c

G(a, c)Himp(c)G
(0)(c, b) . (5.4)

In Nambu formalism G(a, b) and Himp(c) denote 6 × 6 (2 × 2) matrices for the kagome (square)
lattice. Choosing a position and energy basis, (r, ω), and setting the location of the impurity at
the origin, c = 0, we obtain

G(r, r′, ω) = G(0)(r− r′, ω) +G(r,0, ω)Himp(0)G
(0)(0− r′, ω) , (5.5)

where it was used that the system without the impurity is translationally invariant and thus the
Green function only depends the difference in positions. Evaluating G(r, r′, ω) at r′ = 0 yields

G(r,0, ω) = G(0)(r, ω) +G(r,0, ω)Himp(0)G
(0)(0, ω) . (5.6)

We can thus iterate to obtain

G(r,0, ω) = G(0)(r, ω)

∞∑
n=0

(Himp(0)G
(0)(0, ω))n = G(0)(r, ω)(1−Himp(0)G

(0)(0, ω))−1 , (5.7)

where convergence of the geometric series is assumed. The exact solution of the full Green function
is thus

G(r, r′, ω) = G(0)(r− r′, ω) +G(0)(r, ω)(1−Himp(0)G
(0)(0, ω))−1Himp(0)G

(0)(−r′, ω) , (5.8)

which is only dependent on the Green function of the clean system. We can define a matrix, called
the T-matrix, as

T (0, ω) ≡ (1−Himp(0)G
(0)(0, ω))−1Himp(0) ≡ D(ω)−1Himp(0) . (5.9)

where we have also defined D(ω) ≡ 1 − Himp(0)G
(0)(0, ω) for later convenience. This definition

simplifies the expression for the full Green function which becomes

G(r, r′, ω) = G(0)(r− r′, ω) +G(0)(r, ω)T (0, ω)G(0)(−r′, ω) . (5.10)
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This equation describes the propagation of a particle from site r′ to site r containing contributions
from the free propagation from r′ to r in addition to scatterings off the impurity located at the
origin. It follows that the study of a single impurity in a system simplifies to the study of the
properties (or poles) of the T-matrix [36].

In equation (4.7) of Chapter 4 we introduced the BdG Hamiltonian from which we can calculate
the retarded Nambu Green function

G(0)(k, ω) = ((ω + iη)1 −HBdG(k))
−1 . (5.11)

This is the Green function of our system without an impurity and it is referred to as the free Green
function. As was also mentioned before, it is a 6× 6 matrix in the case of the kagome lattice and
the constituents are denoted

G(0) =

(
G(0) F (0)

F̄ (0) Ḡ(0)

)
, (5.12)

where the function dependencies have been suppressed. In the case of the square lattice, G(0) is a
2× 2 matrix. The spin-summed electronic local density of states of the clean system is calculated
from the free Green function in the following manner

ρss′(r, ω) =
−1

π
Im(G

(0)
ss′ (r, ω) + Ḡ

(0)
ss′ (r,−ω)) , (5.13)

where G(0)
ss′ (r, ω) = 1

N

∑
kG

(0)(k, ω)eik·r. The local density of states of the full system with an
impurity is similarly found from

ρss′(r, ω) =
−1

π
Im(Gss′(r, r, ω) + Ḡss′(r, r,−ω)) . (5.14)

A peak in the LDOS will appear if either G(r, r, ω) or Ḡ(r, r,−ω) diverges [37].

5.2 The local density of states of the clean system
The local density of states at sublattice site s = s′ = A and r = 0, corresponding to ρAA(0, ω), for
the intraband order parameters found in Chapter 4 is plotted in figure 5.1. In all figures, the x-axis
has been scaled by ∆c, where c stands for coherence peak. ∆c is obtained from ∆c = max(∆k∈kF)
where kF denotes the set of momenta corresponding to the two-dimensional Fermi surface. An
explanation of this equation is as follows: a momentum-dependent superconducting order parameter
∆k opens up a momentum-dependent gap on the Fermi surface. If we locate the momentum at
which the order parameter is maximum, then moving away from that momentum along the Fermi
surface will lead to a decrease in the gap and thus the energy band will decrease along this direction.
On the other hand, perpendicular to the Fermi surface the energy band will increase and this saddle
point behaviour of the energy band will lead to a coherence peak.

Figure 5.1(a) depicts the full, U-type gap in the LDOS from the singlet s-wave order parameter,
and Figure 5.1(b) shows the gap obtained from different singlet d-wave order parameters. The time-
reversal breaking combination d+ id (black) leads to a full gap, while the individual components,
dx2−y2 (light green) and dxy (blue), lead to V-type gaps. Since the individual components break
rotational symmetry, which is visible from the real space depictions of the order parameters in
Chapter 4, the LDOS obtained from these order parameters will depend on the sublattice site.
More specifically, the LDOS on sites A and C will be the same while it will change on sublattice
site B. To understand this one can compare the weights in Figure 3.4(c) of Chapter 3 with the order
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(a)

(b)

(c)

(d)

Figure 5.1: The local density of states on site A, ρAA(0, ω), at energies close to the Fermi energy
ω = 0 for a clean system with different superconducting order parameters. (a) An s-wave order
parameter leads to a full, U-type gap. (b) The TRSB order parameter d+ id has a full gap (black),
and the individual components, dx2−y2 (light green) and dxy (blue), have a V-type gap. (c) A nodal
f -wave order parameter leading to a V-type gap. (d) The TRSB order parameter p + ip (black)
and the individual components px (light green) and py (blue). p+ ip features a full gap while the
py gap is of the V-type. Sublattice A has zero weight on the location of the Fermi surface where px
has a node, and thus it has more of a U-type gap. For the singlet order parameters the chemical
potential was set to µ = 0.0, and for the triplet order parameters it was set to µ = 0.08. The plots
are made with 15002 momentum values in the first BZ and a smearing of η = 0.002, except for the
py order parameter which was run with η = 0.0025 for smoothness of the curve.
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parameters in momentum and energy space depicted in Section 4.3 of Chapter 4. The chemical
potential for the singlet order parameters was set to µ = 0.

Figure 5.1(c) depicts the gap from an f -wave order parameter which is of the V-type. Next to
the coherence peaks, remnants of the van Hove singularity are visible. Figure 5.1(d) shows the
LDOS of a system with a p-wave gap. The p+ ip combination leads to a full gap (black) and the
individual components, px (light green) and py (blue), are superimposed. The py component has
a V-type gap, but the px component is more similar to a U-type gap. This is due to the fact that
we are plotting the LDOS at site A, and it has zero weight on the part of the Fermi surface which
is nodal for the px component. Instead, if the LDOS on site B was plotted, the gap would appear
more V-shaped since the majority of the weight would now be located exactly on top of the node.
The LDOS for the px component has two coherence peaks since it has two local maxima on the
parts of the Fermi surface which have weight: one close to the M3 point and another between the
M3 and M4 point. The chemical potential for the triplet order parameters was set to µ = 0.08
(just above the upper van Hove singularity), since the triplet order parameters only have nearest
neighbor contributions and these contributions have a node along the hexagonal Fermi surface
corresponding to µ = 0, as seen in Section 4.3.

5.3 Single-impurity study on the square lattice

To fully appreciate the results obtained on the kagome lattice we briefly go through the results
of a single-impurity study on the square lattice. The mean-field BdG Hamiltonian on the square
lattice in Nambu formalism is

Hsquare
BdG =

∑
k∈BZ

(
c†k,↑ c−k,↓

)( ξk −∆k

−∆∗
k −ξk

)(
ck,↑
c†−k,↓

)
, (5.15)

and the Nambu Green function is given by

G(0)(k, iωn) =
iωnτ0 + ξkτz −∆k

τ+
2 −∆∗

k
τ−
2

(iωn)2 − E2
k

, (5.16)

where τ+ = τx + iτy =

(
0 2
0 0

)
and τ− = τx − iτy =

(
0 0
2 0

)
with τx, τy, τz being Pauli matrices

representing Nambu space, and τ0 = 12×2. Furthermore, Ek =
√
ξ2k + |∆k|2 where

ξk = −2t(cos(k · t1) + cos(k · t2))− µ (5.17)

is the energy band derived from a tight-binding model on the square lattice with the intersite
distance set to a = 1, such that the primitive lattice vectors are t1 =

(
1 0
)T and t2 =

(
0 1
)T .

As shown in Chapter 4 for the kagome lattice, one can decompose the mean-field superconducting
order parameter in terms of the point group form factors. The point group of the two-dimensional
square lattice is D4. From interactions up until nearest neighbor distance the superconducting
order parameter can transform as the one-dimensional A1 irrep (s-wave at lowest order), the one-
dimensional B1 irrep (dx2−y2-wave at lowest order) or the two-dimensional E irrep (components
are px- and py-wave at lowest order). Here, the A1 and B1 irreps are even under parity, k → −k,
while the E irrep is odd. Assuming that the interaction potential is translationally invariant, the
order parameter can take the following forms [38]

∆A1
k = ∆0 +∆1(cos(kx) + cos(ky)) , (5.18)
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∆B1
k = ∆1(cos(kx)− cos(ky)) , (5.19)

or

∆
Ex+iEy

k = ∆1(sin(kx) + i sin(ky)) , (5.20)

where the two-dimensional order parameter is written in the time-reversal symmetry breaking
complex combination. At an interaction distance of

√
2, i.e. second neighbor pairing, it is possible

to form a singlet B2 (or dxy-wave) pairing state which has an order parameter of the form [38]

∆B2 = ∆2 sin(kx) sin(ky) . (5.21)

Although the B1 and B2 pairing states are in general not degenerate in energy, we can construct
the time-reversal symmetry breaking complex combination of the two irreps in order to be able to
compare with our kagome results. The dx2−y2 + idxy-wave order parameter is

∆B1+iB2 = ∆(cos(kx)− cos(ky) + i sin(kx) sin(ky)) . (5.22)

The retarded Green function is found by analytical continuation of equation (5.16) letting iωn →
ω + iη, and the full Green function in the T-matrix approach is found by equation (5.10). Finally,
the homogeneous LDOS is calculated from equation (5.13), where, in the case of the square lattice,
the constituents of the Nambu Green function do not have any sublattice dependence. The local
density of states at r = 0 for some of the different order parameters is seen in Figure 5.2. As
expected, the s-wave, d + id and p + ip order parameters feature a full, U-type gap whereas the
dx2−y2-wave order parameter is of the V-type.

The impurity Hamiltonian for a non-magnetic impurity is

Hp
imp = V τz , (5.23)

while the Hamiltonian for a magnetic impurity takes the form

Hm
imp = V τ0 . (5.24)

We wish to study for which energies Det(T−1) = 0, since this would correspond to a pole in the
T-matrix. The T-matrix is not well-defined if T−1 is singular (i.e. has a determinant equal to zero).
In the case where V 6= 0 and H−1

imp is well-defined, we can calculate T−1(0, ω) = H−1
imp(0)−G(0)(0, ω)

[37]. Calculating the determinant for a potential/magnetic (p/m) impurity, Hp/m
imp , and setting it

equal to zero yields the following quadratic equation in V

±V −2 + V −1(−Ḡ(0) ∓G(0)) +G(0)Ḡ(0) − F (0)F̄ (0) = 0 , (5.25)

where ± and ∓ is for a magnetic/potential impurity, and position and energy dependencies have
been suppressed. The two solutions for a potential impurity are

(V p
±)

−1 =
1

2

(
G(0) − Ḡ(0) ±

√(
G(0) + Ḡ(0)

)2 − 4F (0)F̄ (0)

)
. (5.26)

For a magnetic impurity they are

(V m
± )−1 =

1

2

(
G(0) + Ḡ(0) ±

√(
G(0) − Ḡ(0)

)2
+ 4F (0)F̄ (0)

)
. (5.27)

The right-hand side of these equations can be calculated numerically for both G(0)(0, ω) and
G(0)(0,−ω) and plotted as a function of ω. Furthermore, superimposing horizontal lines corre-
sponding to V −1 and determining the intersections with the right-hand side yields energy values
where bound states can appear.
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Figure 5.2: The local density of states ρ(0, ω) for an energy range close to the Fermi energy for (a)
an on-site s-wave gap with ∆0 = 0.2t, (b) a nearest neighbor dx2−y2-wave gap with ∆1 = 0.4t, (c)
a time-reversal symmetry breaking dx2−y2 + idxy-wave gap with ∆ = 0.4t and (d) a px + ipy-wave
gap with ∆1 = 0.2t.

With few simplifications it is possible to derive a simple expression for the bound state positions
in the case of a magnetic impurity in an s-wave superconductor. The following derivation is
inspired by one in [36]. First, the expression in equation (5.16) is continued to the real axis
(setting iωn → ω+ iη, but the small complex term is only included to perform integrals over ω and
afterwards it is assigned a value of zero. Since there will not be an integration over ω, we set η = 0
immediately). Fourier transforming to real space yields the following diagonal components of the
Green function G(0)(r = 0, ω)

∑
k∈BZ

ω ± ξk

ω2 − ξ2k − |∆|2
=

∫ ξmax

ξmin

dξρ(ξ)
ω ± ξ

ω2 − ξ2 − |∆|2
. (5.28)

On-site s-wave pairing is only considered in the above expression. The sum over all states, organized
by the k-vector, has been changed to a sum over all states, organized by energy and weighed by the
density of states at each energy. We assume that the density of states ρ(ξ) (which is the normal
state DOS) is approximately constant over the integration range, and it is fixed to its value at the
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Fermi surface ρ(0)

ρ(0)

∫ ξmax

ξmin

dξ
ω ± ξ

ω2 − ξ2 − |∆|2
= ρ(0)

(
ω

∫ ξmax

ξmin

dξ
1

ω2 − ξ2 − |∆|2
±
∫ ξmax

ξmin

dξ
ξ

ω2 − ξ2 − |∆|2

)

= ρ(0)

−ω

arctan(
ξ√

|∆|2−ω2
)√

|∆|2 − ω2


ξmax

ξmin

∓ 1

2

[
ln(
∣∣∣ω2 − ξ2 − |∆|2

∣∣∣)]ξmax

ξmin


= ρ(0)

−ω
(arctan( ξmax√

|∆|2−ω2
)− arctan( ξmin√

|∆|2−ω2
))√

|∆|2 − ω2

∓ 1

2
ln(

∣∣∣ω2 − ξ2max − |∆|2
∣∣∣∣∣∣ω2 − ξ2min − |∆|2
∣∣∣ )
 , (5.29)

using
∫

du
a2+u2 = 1

a arctan
(
u
a

)
+ C and

∫ f ′(x)
f(x) dx = ln(|f(x)|) + C. It is now assumed that

|ξmax| , |ξmin| � |∆| and ω < |∆|. Remembering that the limit of arctan(x) for x → ∞ is π
2

(and for x→ −∞ it is −π
2 ) we obtain the diagonal elements of the Green function

G(0)(0, ω) = Ḡ(0)(0, ω) ≈ − πρ(0)ω√
|∆|2 − ω2

, (5.30)

where the logarithm has been approximated as zero. The off-diagonal element of the Green function
is similarly computed to be

F (0)(0, ω) =
∑

k∈BZ

−∆

ω2 − ξ2k − |∆|2
≈ −ρ(0)∆

∫ ξmax

ξmin

dξ
1

ω2 − ξ2 − |∆|2
≈ πρ(0)∆√

|∆|2 − ω2

. (5.31)

Now the condition for a possible bound state can also be written using the denominator of the
T-matrix

Det(D(ω)) = Det(12×2 −Himp(0)G(0)(0, ω)) = 0 , (5.32)

which for a magnetic impurity yields

(1− V mG(0)(0, ω))(1− V mḠ(0)(0, ω))− (V m)2F (0)(0, ω)F̄ (0)(0, ω) = 0 . (5.33)

Solving for ω yields the result

ω(V m) = ±∆
1− (V mπρ(0))2

1 + (V mπρ(0))2
. (5.34)

This is the well-known result that a magnetic impurity in an s-wave superconductor is a pair
breaker and will lead to in-gap bound states symmetrically centered around the Fermi energy. For
a given impurity strength V m there is a solution at ±ω(V m), see Figure 5.3(a). Since we wish to
compare this with equation (5.27), we solve for (V m)−1 and get

(V m)−1 =
π
√
∆2 − ω2ρ(0)

ω ±∆
. (5.35)

This solution is plotted alongside equation (5.27) in Figure 5.3(b). A slight discrepancy between
the curves is apparent but the overall trend is similar.

If we examine the term inside the square-root of equation (5.26), namely

(G(0) + Ḡ(0))2 − 4F (0)F̄ (0) , (5.36)
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Figure 5.3: (a) Bound state energy ω as a function of the magnetic impurity strength V m. (b) Right-
hand side of equation (5.27) (solid black line) versus approximate analytical solution, equation
(5.35) (dashed black line). Furthermore, the imaginary part of G(0)(0, ω) is plotted (dashed grey).
The solution is obtained with a chemical potential of µ = −3 corresponding to a circular Fermi
surface. The on-site contribution to the order parameter ∆0 = 0.2t and no nearest neighbor
contribution is added in this example.

which holds for a potential impurity, we find

(G(0) + Ḡ(0))2 − 4F (0)F̄ (0) ≈ −4π2ρ(0)2 (5.37)

upon insertion of the approximate expression for the Green function on the square lattice. This
thus yields a complex solution for (V p)−1. In the case of a sign-changing order parameter, where∑

k∈BZ ∆k = 0 and thus F (0) = 0, the term in the square-root will be positive.

Figure 5.4 shows the on-site response of the LDOS to a potential and magnetic impurity. A
potential impurity does not yield any bound states but suppresses the LDOS at the site of the
impurity. A magnetic impurity, on the contrary, leads to in-gap bound states which cross the
Fermi energy as a function of impurity strength in the case of both repulsive (positive) and at-
tractive (negative) impurity potentials. Additionally, notice that the gap has a size of 2∆0, where
∆0 = 0.2t, which is exactly what is expected of the gap size from the inclusion of on-site s-wave
superconductivity. The LDOS along the t1 direction for a potential and magnetic impurity of
strength V p/m = 4 is shown in Figure 5.5(a) and (b), respectively. The height of a bound state
peak changes as a function of distance from the impurity site. The parameters used to generate
Figures 5.3, 5.4 and 5.5 are a chemical potential of µ = −3 (i.e. a circular Fermi surface), a su-
perconducting order parameter ∆k = ∆0 = 0.2t, 5002 momentum points within the first Brillouin
zone, 600 energy points within [−0.22, 0.22], and a smearing of η = 0.0022. The inclusion of the
nearest neighbor term ∆k = ∆0 + ∆1(cos(kx) + cos(ky)) does not alter the results qualitatively
except for altering the gap size. The set of impurity strengths in Figure 5.4 is V p/m ∈ {1, 2, 3, 4}.

The response of dx2−y2-wave superconductivity to a potential impurity is seen in Figure 5.6. In
5.6(a) the location of resonant states is found by the intersection between the solid black line and
the horizontal blue lines. 5.6(b) shows the LDOS for a set of impurity strengths V p ∈ {−3,−4}
with resonant states appearing at low energy. In 5.6(c) a scan of the LDOS along the t1 direction
for a potential impurity strength V p = −4 is shown.

The response of d+id superconductivity to a potential impurity is seen in Figure 5.7. Low-energy
bound states can be obtained as is seen in Figures 5.7(a) and (b). The pair of bound state peaks
resulting from a potential impurity is symmetrically positioned on each side of the Fermi energy.
This symmetry is evident in the scan plot of Figure 5.7(c) although it is not apparent in Figure
5.7(b) due to the suppression of the weight of one bound state peak.
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Figure 5.4: An on-site s-wave superconducting order parameter on the square lattice: (a) The
spin-summed electronic LDOS ρ(0, ω) = −1

π Im(G(0,0, ω) + Ḡ(0,0,−ω)) at the site of a repulsive
potential impurity of varying strength. Increasing the impurity strength results in shifting the
states towards higher energies and thus suppressing the LDOS at the site of the impurity. (b) The
LDOS at the site of a repulsive magnetic impurity. The magnetic impurity creates in-gap bound
states.

Figure 5.5: An on-site s-wave superconducting order parameter on the square lattice: A scan of the
LDOS ρ(r, ω) along the x-axis or t1 vector (equivalent to the direction given by the t2 vector due to
the C4 symmetry of the square lattice) for (a) a potential impurity and (b) a magnetic impurity both
of strength V p/m = 4. The weights of the bound states change as a function of position, r, due to the
different weights the Green functions can carry in the product δρ(r, ω) = G(0)(r, ω)T (0)G(0)(−r, ω).
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Figure 5.6: A dx2−y2-wave superconducting order parameter on the square lattice: (a) The energies
given by intersections between horizontal lines of (V p)−1 and the right-hand side (RHS) of equation
(5.26) (solid black line) correspond to possible bound state peaks. (b) The resonant states for
potential impurity strength V p ∈ {−3,−4}. (c) A LDOS scan along the t1 axis for an impurity
strength of V p = −4. Figures are generated with superconducting strength ∆1 = 0.4t and smearing
η = 0.01.

Figure 5.7: A dx2−y2+idxy superconducting order parameter on the square lattice: (a) The energies
given by intersections between horizontal lines of (V p)−1 and the right-hand side of equation (5.26)
(solid black line) correspond to possible bound state peaks. (b) The in-gap bound states for
potential impurity strength V p ∈ {−4,−3,−2,−1, 1, 2, 3, 4}. (c) A LDOS scan along the t1 axis for
an impurity strength of V p = −3. Figures are generated with superconducting strength ∆1 = 0.4t.

The response of p + ip superconductivity to a potential impurity is qualitatively similar to the
d+ id case, see Figure 5.8.

5.4 Single-impurity study on the kagome lattice
In this section we first examine the situation of a potential impurity localized on one of the three
sublattice sites of the kagome lattice. Subsequently, we examine how the results change when
the impurity is located on all three sites. We arbitrarily locate the impurity on sublattice site A.
Written in Nambu formalism, the impurity Hamiltonian for a non-magnetic (or potential) impurity
located at sublattice site A is given by

Hp
imp = V τ z ⊗

1 0 0
0 0 0
0 0 0

 = V hpimp . (5.38)

In this case, (Hp
imp)

−1 is not well-defined, and we therefore study the denominator of the T-matrix,
D(ω) = 1−Hp

impG(0)(0, ω). The equation Det[D(ω)] = 0 leads to

V 2(G
(0)
AAḠ

(0)
AA − F

(0)
AAF̄

(0)
AA) + V (G

(0)
AA − Ḡ

(0)
AA)− 1 = 0 . (5.39)
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Figure 5.8: A px + ipy superconducting order parameter on the square lattice: (a) The energies
given by intersections between horizontal lines of (V p)−1, where V p ∈ {−4,−3,−2,−1, 1, 2, 3, 4},
and the right-hand side of equation (5.26) (solid black line) correspond to possible bound state
peaks. (b) Positive impurity potentials give rise to bound state solutions close to the coherence
peaks while negative potentials lead to low-energy bound states. (c) A LDOS scan along the t1
axis for an impurity strength of V p = −4. Although only one peak is visible at the impurity site,
the symmetrically positioned counterpart on the opposite side of the Fermi energy manifests at the
nearest neighbor site and beyond. Figures are generated with superconducting strength ∆1 = 0.2t.

The real and imaginary parts of Det(D(ω)) are plotted for a d + id order parameter in Figure
5.9(a) and (b), respectively. The crossings through zero in (a) show the locations of possible bound
states and it is seen that regardless of the impurity strength, the bound states do not move into
the full gap. Thus no low-energy bound states are found. The imaginary part within the full gap
is zero, and the non-zero part is only due to a finite smearing. The color represents the strength
of the impurity which is between V = −10 and V = 10. The local density of states has been
superimposed in red to show the extent of the full gap. The results are different for a p+ ip order
parameter, see Figures 5.9(c) and (d). In this case, the locations of the bound states depend on
the impurity strength, and they can move into the full gap towards ω = 0.

The absence (presence) of low-energy bound states for a d+ id (p+ ip) order parameter is also
evident in LDOS plots. In Figure 5.10(a) and (b) a potential impurity of strength V = −4 is
located on sublattice site A (black line), and the LDOS is shown for the four nearest neighbors
in the ±t1 direction (see the inset figures) for systems with d + id and p + ip superconductivity,
respectively. The local density of states is symmetric in both directions but its shape changes
depending on whether we are probing sublattice site A or C. The LDOS on top of the impurity is
shown in black while the LDOS on sites A and C are shown in blue and green, respectively. As
expected, no peaks are found inside the full d+id gap shown in Figure 5.10(a). Instead, the full gap
is ”lined by resonant states like cypress trees along a Tuscan driveway”. As was also anticipated,
bound state peaks are visible inside the full p+ ip gap for a potential impurity strength V = −4,
see Figure 5.10(b).

Interestingly, the ”protection” of the full d+ id gap from bound state peaks is no longer present
when the impurity is located on all three sublattice sites, i.e. is of the form

Hp
imp = V τ z ⊗ 13×3 . (5.40)

This result is evidenced in the LDOS scan of Figure 5.10(c) for V = −2. It can be explained from
the fact that now the impurity potential allows for scattering between all segments of the Fermi
surface. We will elaborate further on this in the following section.

Similar LDOS scans, but for different order parameters, are shown in Figure 5.11, where the
potential impurity of strength V = −4 is again located on sublattice site A. The LDOS for an
order parameter with f -wave symmetry is shown in (a), and in (b) it is for a px order parameter.
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(a)

(b)

(c)

(d)

Figure 5.9: (a) Re(Det[D(ω)]) and (b) Im(Det[D(ω)]) for a d+id order parameter in the presence of
a potential impurity located on sublattice site A. The color represents the strength of the impurity
ranging from V = −10 to V = 10. Bound state solutions are only found on the edge of the full gap.
The LDOS is superimposed in red. LDOS calculated with 15002 momentum points and smearing
η = 0.002. (c) Re(Det[D(ω)]) and (d) Im(Det[D(ω)]) for a p+ ip order parameter in the presence
of a potential impurity. The bound state solutions appear inside the full gap and move towards
zero for increasing/decreasing impurity strength. LDOS calculated with 20002 momentum points
and smearing η = 0.001.

In both cases, the LDOS is clearly affected by the presence of a potential impurity, and resonant
and bound state peaks are visible in the first and latter case, respectively. A LDOS scan is shown
for a dx2−y2 order parameter in (c), and for a dxy order parameter in (d). In these cases, the LDOS
at the impurity site is suppressed, but no peaks appear.

5.5 Effective Green function
To understand the results obtained in the former section, we calculate an approximate Green
function in sublattice space. It was already shown in section 3.2 that the tight-binding matrix is
diagonalized by a unitary transformation U(k), while the transformation of the order parameter
to band space is given by ∆B

k = U(k)∆kU
T (−k). In general, the order parameter in band space

will have both intra- and interband contributions. Since the interband contributions occur at large
energies away from the Fermi surface, an approximation at low energies ω ≤ |∆| is to assume that
∆B

k is diagonal. Thus assuming that only intraband contributions are important we can rewrite
HB

BdG as

HB
BdG ≈



ξ1 0 0 −∆B
1 0 0

0 ξ2 0 0 −∆B
2 0

0 0 ξ3 0 0 −∆B
3

−(∆B
1 )

∗ 0 0 −ξ1 0 0
0 −(∆B

2 )
∗ 0 0 −ξ2 0

0 0 −(∆B
3 )

∗ 0 0 −ξ3

 , (5.41)
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(a) (b)

(c)

Figure 5.10: (a) The LDOS plotted on the four nearest neighbors of the impurity site (black) along
the direction shown in the inset. The order parameter is d + id, and the impurity strength is
V = −4. (b) LDOS scan on the same sites as in (a) for a p+ ip order parameter and for V = −4.
Bound state peaks appear inside the full gap. (c) LDOS scan for a d+ id order parameter and for
an impurity potential Hp

imp = V τ z ⊗ 13×3 with V = −2, which models an impurity extending to
all three sublattice sites. In this case bound states appear inside the gap.

(a) (b) (c) (d)

Figure 5.11: Same type of LDOS scan as in Figure 5.10 but for the cases of (a) an f -wave, (b) a
px, (c) a dx2−y2 and (d) a dxy order parameter. The potential impurity strength is V = −4 in all
cases. In (a) and (b) the LDOS is clearly affected by the presence of the impurity. Cases (c) and
(d) are less sensitive.
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where momentum dependence has been suppressed, and ∆B
1 is the gap function corresponding to

band 1 in band basis. We can use this approximate Hamiltonian to calculate the Green function
for each band, and it will be on the same form as the Green function on the square lattice

GB(k, iωn) =

iωn+ξ1
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−∆B
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−∆B
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(iωn)2−ξ23−
∣∣∆B

3
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1 )∗
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1

∣∣2 0 0 iωn−ξ1
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1

∣∣2 0 0

0
−(∆B

2 )∗

(iωn)2−ξ22−
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2

∣∣2 0 0 iωn−ξ2
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2
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(iωn)2−ξ23−
∣∣∆B

3

∣∣2 0 0 iωn−ξ3

(iωn)2−ξ23−
∣∣∆B

3

∣∣2
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.

(5.42)

We now make the approximation that only the Green function corresponding to the band which
crosses the Fermi surface is important. This band has band number 2 in our notation, and thus

FB(k, iωn) ≈

0 0 0

0
−∆B

2

(iωn)2−ξ22−
∣∣∆B

2

∣∣2 0

0 0 0

 . (5.43)

Finally, we transform this expression back into sublattice space using the inverse transformation

F (k, iωn) = U−1(k)FB
n (k, iωn)(U

T (−k))−1 . (5.44)

The reason we initially transform away from sublattice space to finally transforming back into
sublattice space is that the Green function is easily calculated in energy basis (given the approx-
imations we make). For a d + id order parameter we find that, although

∑
k∈BZ ∆B

2 (k) = 0,
then ∑

k∈BZ

U−1(k)∆B
2 (k)U

∗(−k) 6= 0 . (5.45)

The real and imaginary parts of FB
22(k, ω), calculated by equation (5.43), is shown in Figure

5.12(1.a) and (1.e), respectively, for ω = 0, µ = 0 and with d + id superconductivity. In this
case, the anomalous Green function sums to zero. The real and imaginary parts of the A, B and
C entries of the anomalous Green function, calculated by equation (5.11), are plotted in Figure
5.12(1.b)-(1.d) and (1-f)-(1.h). The diagonal entries of the anomalous Green function in sublattice
space do not sum to zero, since there is only weight on certain parts of the Fermi surface. It is
now possible that for certain energies ω, the solutions for V in equation (5.39) become complex,
thus disallowing any bound states at these energies. Physically, the D2 symmetry of the electronic
wave functions at the sublattice sites, combined with the even-parity of the d-wave order parameter
renders d-wave superconductivity on the kagome lattice more robust to potential impurities. The
origin of the robustness of a d-wave order parameter on the kagome lattice thus stems from the
non-trivial momentum-dependence of the electronic wave functions. The effect is more general and
not tied to a specific filling, although it is most pronounced for a chemical potential of µ = 0.
The anomalous Green function in band and sublattice space for a p + ip superconducting order
parameter is shown in Figure 5.12(2.a)-(2.h), and in all cases the anomalous Green function sums
to zero.
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We now proceed to do a simple calculation to show why FAA(k, 0) is non-zero at the M-point
M3 =

(
−π π√

3

)T
, while it is zero at the M-point M2 =

(
0 2π√

3

)T
. The unitary matrix from

sublattice to band space takes the form (the eigenvectors corresponding to lowest, middle, upper
band are given by the rows, in that order, from top row to bottom row)

U(M3) =

 0 − 1√
2
− 1√

2

−1 0 0
0 − 1√

2
1√
2

 , (5.46)

while

UT (−M3) =

 0 −1 0
− 1√

2
0 − 1√

2

− 1√
2

0 1√
2

 . (5.47)

As such, we see that the eigenvector corresponding to the band which crosses the Fermi surface is
completely localized on site A. For simplicity, let us assume an on-site order parameter, and let
us just look at the real part which corresponds to dx2−y2 . The order parameter is then (setting
∆0 = 1)

∆
(E2)11
OS =

1 0 0
0 −2 0
0 0 1

 . (5.48)

The simple calculation to get the (2, 2) entry of the order parameter in band space is to take the
eigenvector corresponding to band 2 and calculate

(
−1 0 0

)1 0 0
0 −2 0
0 0 1

−1
0
0

 = 1 . (5.49)

The other entries are assumed to be zero by the arguments given above. Now we transform the

order parameter ∆
(E2)11,B
OS ≈

0 0 0
0 1 0
0 0 0

 back to sublattice space. We want to look at the A entry,

so we use the corresponding eigenvectors

(
0 −1 0

)0 0 0
0 1 0
0 0 0

 0
−1
0

 = 1 , (5.50)

and we see that it is non-zero. On the contrary, the unitary matrix at the M-point M2 =
(
0 2π√

3

)T
takes the form

U(M2) =

− 1√
2
0 − 1√

2

0 1 0
1√
2

0 − 1√
2

 , (5.51)

while UT (−M3) is the transpose of this. Thus transforming into band space (focusing on the (2, 2)
entry)

(
0 1 0

)1 0 0
0 −2 0
0 0 1

0
1
0

 = −2 . (5.52)
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Figure 5.12: (1.a) and (1.e) shows the real and imaginary part, respectively, of the anomalous
Green function in energy band basis for a d+ id order parameter. (1.b)-(1.d) and (1.f)-(1.h) show
the real and imaginary part of the diagonal of the anomalous Green function in sublattice space. In
band basis the anomalous Green function sums to zero, but in sublattice basis the Fermi surface is
weighed such that it sums to something non-zero. Figures (2.a)-(2.h) are similar to (1.a)-(1.h) but
for a p+ ip order parameter. Here the order parameter sums to zero both in band and in sublattice
basis. The notation in the figure is different from that used in the text: G22̄(k, 0) → FB

22(k, 0) and
Gss̄(k, 0) → Fss(k, 0).

And transforming

0 0 0
0 −2 0
0 0 0

 into sublattice space

(
− 1√

2
0 1√

2

)0 0 0
0 −2 0
0 0 0


− 1√

2

0
1√
2

 = 0 , (5.53)

we get zero. We can thus in a simple way understand the momentum dependence of the anomalous
Green function in sublattice space, as shown in Figure 5.12.

As a final remark, the enhanced robustness to potential impurities applies to a singlet, even-
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parity d-wave order parameter but not to a singlet, even-parity A2 order parameter, which will
appear at third nearest neighbors. One can see from the lattice harmonics plots of Appendix E
that even with the weighted Fermi surface, the anomalous Green function would sum to zero.



Chapter 6

Suppression of the critical
temperature Tc: Abrikosov-Gor’kov
theory

“Man skal sammenligne æbler
med æbler.”

Heard in meetings with Brian,
Andreas and Morten

An important experimental measure, which can give further insights into the superconducting
phase of AV3Sb5, is how the critical temperature is suppressed by impurities in the sample. To
model the suppression of Tc, we will in the following assume that the density of impurities is much
smaller than the density of electrons, i.e.

n

nel
� 1 , (6.1)

where n is the density of impurities and nel is the density of electrons [31]. In the simple case
of an s-wave superconductor, the critical temperature Tc should be robust to potential impurities
present in the sample [39]. On the other hand, in the case of an s-wave superconductor with
magnetic impurities, or an unconventional order parameter with potential impurities, the critical
temperature should follow the solutions of the equation [40]

ln

(
Tc
Tc0

)
= ψ

(
1

2

)
− ψ

(
1

2
+
ρ(0)nV 2

2Tc

)
, (6.2)

where Tc0 is the critical temperature of the clean superconductor, ψ(x) is the digamma function,
and the scattering rate is modelled by nV 2, where V is the impurity strength. The resulting curve
is referred to as the Abrikosov-Gor’kov curve. In what follows, we examine the suppression rates
of Tc for various order parameters on the square and kagome lattices and compare the results to
the Abrikosov-Gor’kov curve.

6.1 Suppression of Tc on the kagome lattice
For different superconducting order parameters, we wish to compare the suppression rates of the
critical temperature Tc with standard Abrikosov-Gor’kov theory. Initially, we determine how the
order parameter depends on the temperature and consequently, we can infer the critical temperature

51



52
CHAPTER 6. SUPPRESSION OF THE CRITICAL TEMPERATURE Tc:

ABRIKOSOV-GOR’KOV THEORY

Tc from this. Upon averaging over random distributions of impurities, the Green function recovers
translational invariance. The full Green function is generically obtained from [41]

(G(k, iωn))
−1 = (G(0)(k, iωn))

−1 − Σ(k, iωn) , (6.3)

where G(0)(k, iωn) is the Green function of the system without any impurities and Σ(k, iωn) is the
self-energy. The electrons in the material are affected by their environment. Interactions with the
environment contribute to the energy of the electrons and this contribution is given by the self-
energy. In mean-field theory the superconducting order parameter in a kagome lattice is determined
by (see Appendix F)

∆s1s2
k = − 1

N

∑
k′s3s4

V s1s2s3s4
kk′ 〈cs3−k′↓cs4k↑〉 , (6.4)

where N is the number of momentum values in the sum and si, i ∈ {1, 2, 3, 4}, denotes sub-
lattice indices. We assume that the pairing potential can be factorized and put on the form
V s1s2s3s4
kk′ = −V (fs2,s1k )∗fs3,s4k′ , where fs1,s2k and fs3,s4k′ are form factors which transform as the irrep

we are interested in examining. In the form factors, we have included harmonics stemming from
interactions up to and including nearest neighbors, both in the case of the square and kagome
lattice. Now consider the anomalous Green function evaluated at τ = 0−

F (k, 0−) = −〈Tτ ck↑(0−)c−k↓(0)〉 = 〈c−k↓(0)ck↑(0
−)〉 . (6.5)

We can write

〈cs3−k↓cs4k↑〉 = Fs3s4(k, 0
−) , (6.6)

and thus the order parameter can be rewritten in terms of the anomalous Green function. Fourier
transforming to Matsubara frequency space yields the final expression

∆s1s2
k =

VSC
N

1

β
(fs2s1k )∗

∑
k′s3s4ωn

fs3s4k′ Fs3s4(k
′, iωn) , (6.7)

where β = 1
kBT and the exponential factor e−iωn0− has been set to one. The fermionic Matsubara

frequencies are given by ωn = (2n+1)π
β with n ∈ Z. Notice that with increasing temperature the

spacing between each Matsubara frequency increases. The latter product in the expression is an
entry-wise multiplication of the matrices fk′ and F (k′, iωn) and then summing the entries of the
resulting matrix. The self-energy is in general defined as [31]

Σk ≡ {The sum of all irreducible diagrams in 〈Gk〉imp without the two external fermion lines G(0)
k }

= + +

 +

+

 + ...

+ ... (6.8)

The simplest non-trivial low-order approximation to the self-energy is called the first-order Born
approximation (1BA) [31]. Diagrammatically, it is given by

Σ1BA
k =

k′

k− k′ k′ − k

(6.9)
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where a dashed line symbolizes a scattering amplitude U(k′−k), and the crossed dot symbolizes an
impurity-averaged factor which conserves momentum. Thus, in the first-order Born approximation
the self-energy is calculated including only a specific type of diagram. The approximation is valid
in the limit given by equation (6.1). In mathematical notation, the self-energy in the first-order
Born approximation is

Σ1BA(k, iωn) = n

∫
d2k′

(2π)2
U(k− k′)G(0)(k′, iωn)U(k′ − k) , (6.10)

where n denotes the density of impurities. The impurity Hamiltonians are the same as given in
Chapter 5. Replacing the integral with a sum over momenta we obtain

Σ1BA
p/m (iωn) =

nV 2

N

∑
k′

h
p/m
imp G

(0)(k′, iωn)h
p/m
imp . (6.11)

It is now clear that we have two interdependent equations: the full Green function G(k, iωn) given
by equation (6.3) depends on the superconducting order parameter ∆k, in turn, ∆k depends on
the anomalous Green function F (k, iωn) which is part of the full Green function. The numerical
procedure employed to solve both equations self-consistently, referred to as the AG algorithm, is
as follows

1. Assume an initial ∆i
k.

2. Compute G(0)(k, iωn) = U(k)−1 1
iωn16×6−HB

BdG(k)
U(k).

3. Compute the self-energy from equation (6.11).

4. Compute the full Green function from equation (6.3).

5. Select the element corresponding to F (k, iωn) and use this to determine a new value for the
order parameter ∆f

k through equation (6.7).

6. Set ∆i
k = ∆f

k.

7. Repeat the procedure until a predefined convergence criteria is satisfied.

In the above, HB
BdG(k) denotes the Hamiltonian in band space and i(f) in ∆

i(f)
k stands for initial

(final). The algorithm solves for the order parameter given a temperature T and an impurity
density times impurity strength squared nV 2. We benchmark the result of our algorithm for
nV 2 = 0 against a self-consistent solution of the gap equation using a Bogoliubov-de Gennes
(BdG) transformation (the details of which are found in Appendix F), which should yield the same
result given that the parameters are the same. The only difference between the BdG curve and the
result of the AG algorithm is that, in order to obtain the order parameter in the AG algorithm,
a numerical Matsubara sum is carried out. If there are not enough values in the Matsubara sum,
i.e. if n in ωn = (2n + 1)πT (with kB = 1) is not large enough, the AG result will deviate
from the BdG curve at small temperatures since, as noted before, the distance between each
Matsubara frequency scales with T . To be able to compare results between the square and the
kagome lattice, we have visually aligned the critical temperatures of the BdG results by altering
the superconducting coupling strengths VSC of each order parameter. The BdG results for the
square and kagome lattices are seen in Figures 6.1(a) and (b), respectively. In these plots, we have
plotted the value |∆|, where

∆ ≡ VSC
N

1

β

∑
k′s3s4ωn

f s3s4k′ Fs3s4(k
′, iωn) , (6.12)
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(a) (b)

Figure 6.1: (a) The solution of the BdG gap equation for different irreps on the square lattice to
show the matching of the critical temperatures of each irrep. (b) Same as (a), but for different
irreps on the kagome lattice.

A high number of iterations of the algorithm is needed to capture the sharp transition between
∆ = 0 and ∆ 6= 0. More details on the convergence of the BdG (and AG) algorithm is found
in Appendix F. The AG algorithm has been solved for a dx2−y2 + idxy order parameter on the
kagome lattice, and the result is seen in Figure 6.2(a) where the color denotes the value of nV 2.
To determine the critical temperature the data has been fitted, and the fit curves are shown in
full lines. Initially, the data was fitted with a function y = A

√
|T − Tc|. This function is a good

approximation close to the critical temperature, but an even better fitting function, which is the
one used in Figure 6.2(a), is obtained by numerically finding solutions of the mean field equation
y = tanh(y/T ) for a set of temperatures T . The data from the AG algorithm is then interpolated to
obtain values of ∆ at the same set of temperatures. Finally, the difference between the mean-field
equation and the AG data is minimized to yield the initial order parameter ∆0 = ∆(T = 0) and
the critical temperature Tc. For transparency: The code for the fitting procedure was originally
made by A. Kreisel in Matlab. Subsequently, S.C. Holbæk adjusted it to Python and used it to fit
the AG data.

In Figure 6.2(b) the critical temperatures of an s-wave (blue), a dx2−y2 (red) and a px (light
green) order parameter are depicted, both for the square lattice (symbolized by a square) and
kagome lattice (symbolized by a triangle). Furthermore, Tc for a d+ id (purple) and a p+ ip (light
green) order parameter on the kagome lattice is plotted. We obtained curves on the kagome lattice
for a set of nV 2 values, but in the comparison to the square lattice we had to take into account
that (setting V = 1 for simplicity) n = 1 in the kagome algorithm corresponds to one impurity
on every A site, which means that 1/3 of the total sites of the lattice are occupied by impurities.
Whereas on the square lattice n = 1 corresponds to all sites occupied by impurities. Thus, in
order to compare the two results we should scale the nV 2 values of the kagome lattice by 1/3 when
plotting them together with the square lattice results.

Since the order parameters that correspond to one component of a two-dimensional irrep, such
as dx2−y2 and px, break rotational symmetry, they do not yield the same result on each sublattice,
and therefore we have run the algorithm with impurities located on each of the sublattice sites,
and taken an average of the resulting critical temperatures.

Importantly, we notice that the suppression of Tc for a dx2−y2 order parameter on the square
lattice follows the universal AG curve, while on the kagome lattice it is less sensitive. The d + id
order parameter on the kagome lattice follows the same trend as the dx2−y2 one. While they are
not as robust to potential impurities as an s-wave order parameter, they are also not as sensitive
as usually expected. The curves for the s-wave order parameter on the square and kagome lattices
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(a) (b)

Figure 6.2: (a) The temperature dependence of the dx2−y2 + idxy order parameter on the kagome
lattice in the presence of potential impurities. The color denotes the value of nV 2. (b) The
suppression of Tc of an order parameter with s-wave (blue), dx2−y2 (red), d+ id (purple), px (dark
green) and p + ip (light green) symmetry from scattering on potential impurities with density n
and strength V . The squares symbolize results on the square lattice and triangles results on the
kagome lattice.

follow each other and only decrease slightly with increasing nV 2. The p + ip order parameter on
the kagome lattice is sensitive to impurities and lies closer to the AG curve.





Chapter 7

Conclusion and outlook

“So at the age of thirty-three and
with an h-index of 1 (latest
papers not yet published), I
entered the Western job market
for postdocs.”

Nobel lecture by Andre K. Geim,
one of the discoverers of graphene

The aim of this thesis was to examine superconductivity on a kagome lattice with a focus on
modelling impurity effects. Impurity effects have been studied thoroughly in the literature, espe-
cially on the square, triangular and honeycomb lattices which are relevant to many materials. The
latter, for example, to twisted bilayer graphene. It was not clear from the outset whether any of
the properties special to the kagome lattice, sublattice interference for instance, would have any
influence on the impurity results, but it was more likely that we would obtain qualitatively similar
results to the well-known results on the square lattice.

Luckily, it turned out that there was still new knowledge to be gained from studying supercon-
ductivity on the kagome lattice. First, different from the square lattice, we found that on-site
interactions on the kagome lattice can lead to a gap with d-wave symmetry. Secondly, additional
to intraband states we found that interband pairing states are possible from nearest neighbor
interactions.

The main finding of this thesis is the robustness of a sign-changing d-wave superconducting
condensate to highly localized impurities on the kagome lattice. Due to the non-trivial momentum
dependence of the electronic wave functions on the kagome lattice, the order parameters only have
weight on certain subsets of the Fermi surface. This results in the sign-changing d-wave order
parameter summing to a non-zero value, rendering it more robust to scattering off of potential
impurities. The robustness of the d-wave order parameter was shown by the absence of low-energy
bound states in the local density of states and by a smaller than expected suppression of the critical
temperature. This result is valid in the idealized case of an impurity localized on only one sublattice
site. Impurities in real materials presumably extend to more lattice sites, which would ruin the
mechanism described here. Nevertheless, it could have some relevance on the interpretation of
STM results on the kagome lattice.

There are many questions which would be interesting for further studies. Relevant to the AV3Sb5
compounds, this work omitted the interplay between superconductivity and the charge density wave
phase. At ambient pressure, the charge density wave probably has a relevance to the supercon-
ducting phase, and including it in our model would be an interesting further study. Furthermore,

57



58 CHAPTER 7. CONCLUSION AND OUTLOOK

generalizing the concepts of this thesis to other systems would also be an interesting study. A
cousin of the kagome lattice is called the Lieb lattice. This lattice also has three atoms in the unit
cell and features a flat energy band and van Hove singularities, and two of the three sublattices
have a D2 symmetry. An example of atoms arranged in a Lieb lattice is the CuO2 planes of cuprate
superconductors. It would be interesting to see if similar results apply to the Lieb lattice.

After this work was concluded, we became aware of some fairly new literature of relevance to
our study. Specifically, one paper experimentally shows the robustness of the anisotropic pairing
in the polar phase of superfluid 3He to oriented columnar defects [42]. Although the system is
quite different from the one examined in this thesis, the underlying mechanism of the robustness,
namely scattering which only mixes subsystems of the Fermi surface, is similar. This indicates that
the mechanism described in this thesis has a relevance for experiments. Other studies examining
robustness of unconventional order parameters are [43], [44] and [45]. In these, a ”generalized
Anderson’s theorem” is introduced, and they discuss scattering which does or does not mix extra
internal degrees of freedom, such as orbitals or, as in our case, sublattice index. Our study has a
different perspective, and the intraband d-wave order parameter examined in this thesis also has
non-zero interband contributions.

In conclusion, this thesis work has brought a new outlook on impurity effects in kagome su-
perconductors with possible importance for other systems as well, and it opened up many new
questions for further studies.



Appendix A

2× 2 matrix representations of the E1
and E2 irreps of the D6 point group

The two-dimensional matrix representations corresponding to the E1 irrep are

DE1(E) =

(
1 0
0 1

)
, (A.1)

DE1(C+
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3
2√

3
2

1
2

)
, DE1(C−
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(
−1 0
0 −1

)
, (A.4)

DE1(σ1v) =

(
1
2 −

√
3
2

−
√
3
2 −1

2

)
, DE1(σ2v) =

(
1
2

√
3
2√

3
2 −1

2

)
, DE1(σ3v) =

(
−1 0
0 1

)
, (A.5)

DE1(σ1d) =

(
−1

2 −
√
3
2

−
√
3
2

1
2

)
, DE1(σ2d) =

(
1 0
0 −1

)
, DE1(σ3d) =

(
−1

2

√
3
2√

3
2

1
2

)
. (A.6)

The trace of a matrix DE1(g) yields the character of the element g in the E1 irrep. The two-
dimensional matrix representations corresponding to the E2 irrep are

DE2(E) =

(
1 0
0 1

)
, (A.7)
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, (A.8)
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APPENDIX A. 2× 2 MATRIX REPRESENTATIONS OF THE E1 AND E2 IRREPS OF THE

D6 POINT GROUP

DE2(C+
3 ) =

(
−1

2

√
3
2

−
√
3
2 −1

2

)
, DE2(C−

3 ) =

(
−1

2 −
√
3
2√

3
2 −1

2

)
, (A.9)

DE2(C2) =

(
1 0
0 1

)
, (A.10)

DE2(σ1v) =

(
−1

2 −
√
3
2

−
√
3
2

1
2

)
, DE2(σ2v) =

(
−1

2

√
3
2√

3
2

1
2

)
, DE2(σ3v) =

(
1 0
0 −1

)
, (A.11)

DE2(σ1d) =

(
−1

2

√
3
2√

3
2

1
2

)
, DE2(σ2d) =

(
1 0
0 −1

)
, DE2(σ3d) =

(
−1

2 −
√
3
2

−
√
3
2

1
2

)
. (A.12)

We know that E1 transforms as {x, y} and E2 as {x2 − y2, 2xy} [32].



Appendix B

Matrix representations of the
elements in the D6 point group

B.1 3× 3 matrices for on-site pairing

3 × 3 matrices representing the elements of the D6 point group (the identity matrix is omitted).
The matrices are written in a basis where ê1 =

(
1 0 0

)T represents site A, ê2 =
(
0 1 0

)T represents
site B and ê3 =

(
0 0 1

)T represents site C, see Figure 3.1.

D(C+
6 ) =

0 1 0
0 0 1
1 0 0

 , D(C−
6 ) = D(C+

6 )T , (B.1)

D(C+
3 ) =

0 0 1
1 0 0
0 1 0

 , D(C−
3 ) = D(C+

3 )T , (B.2)

D(C2) =

1 0 0
0 1 0
0 0 1

 , (B.3)

D(σ1v) =

1 0 0
0 0 1
0 1 0

 , D(σ2v) =

0 1 0
1 0 0
0 0 1

 , D(σ3v) =

0 0 1
0 1 0
1 0 0

 , (B.4)

D(σ1d) =

0 1 0
1 0 0
0 0 1

 , D(σ2d) =

0 0 1
0 1 0
1 0 0

 , D(σ3d) =

1 0 0
0 0 1
0 1 0

 . (B.5)

B.2 6× 6 matrices for nearest neighbor pairing

6 × 6 matrices representing the elements of the D6 point group (the identity is omitted). The
matrices are written in a basis where ê1 =

(
1 0 0 0 0 0

)T represents spin-singlet link a in Figure
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APPENDIX B. MATRIX REPRESENTATIONS OF THE ELEMENTS IN THE D6 POINT

GROUP

4.7(d) of Chapter 4, ê2 =
(
0 1 0 0 0 0

)T represents spin-singlet link b etc.

D(C+
6 ) =



0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0

 , D(C−
6 ) = D(C+

6 )T , (B.6)

D(C+
3 ) =



0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0

 , D(C−
3 ) = D(C+

3 )T , (B.7)

D(C2) =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 , (B.8)

D(σ1v) =



0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1

 , D(σ2v) =



0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0

 , D(σ3v) =



1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0

 , (B.9)

D(σ1d) =



0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

 , D(σ2d) =



0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 , D(σ3d) =



0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0

 . (B.10)

The matrices used to generate the projectors for spin-triplet pairing are obtained by multiplying
all of the reflection matrices by −1.



Appendix C

Pairing expressions

Irrep Spin state Real space interaction Momentum space pairing matrix

A1 singlet

2√
3

∑
R[cB,R−a1,↑cB,R−a1,↓

+cA,R−a2,↑cA,R−a2,↓
+cC,R−a3,↑cC,R−a3,↓]

(fA1
OS)

†
s ∝ 1√

3

1 0 0
0 1 0
0 0 1


(E2)11 singlet

2√
6

∑
R[−2cB,R−a1,↑cB,R−a1,↓

+cA,R−a2,↑cA,R−a2,↓
+cC,R−a3,↑cC,R−a3,↓]

(fE2
11,OS)

†
s ∝ 1√

6

1 0 0
0 −2 0
0 0 1


(E2)21 singlet

2√
2

∑
R[cA,R−a2,↑cA,R−a2,↓

−cC,R−a3,↑cC,R−a3,↓]
(fE2

21,OS)
†
s ∝ 1√

2

1 0 0
0 0 0
0 0 −1


Table C.1: Summary of the different on-site pairing states on the kagome lattice. The pairing ma-
trix is written in Nambu formalism

(
cA,−k,↓ cB,−k,↓ cC,−k,↓

)
(∆Γ)†s/t

(
cA,k,↑ cB,k,↑ cC,k,↑

)T , where
subscript s/t refers to singlet/triplet pairs. The matrices are written in a gauge which is non-
periodic in momentum space.
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64 APPENDIX C. PAIRING EXPRESSIONS

Irrep Spin state Real space interaction Momentum space pairing matrix

A1 singlet

1√
6

∑
R[(cC,R−a3,↑cB,R+a1,↓ + cB,R+a1,↑cC,R−a3,↓)

+(cC,R+a3,↑cB,R−a1,↓ + cB,R−a1,↑cC,R+a3,↓)
+(cA,R−a2,↑cC,R−a3,↓ + cC,R−a3,↑cA,R−a2,↓)
+(cA,R+a2,↑cC,R+a3,↓ + cC,R+a3,↑cA,R+a2,↓)
+(cB,R−a1,↑cA,R−a2,↓ + cA,R−a2,↑cB,R−a1,↓)
+(cB,R+a1,↑cA,R+a2,↓ + cA,R+a2,↑cB,R+a1,↓)]

(fA1
NN)

†
s ∝ 1√

6

 0 cos(k3) cos(k1)
cos(k3) 0 cos(k2)
cos(k1) cos(k2) 0



B2 singlet

1√
6

∑
R[(cC,R−a3,↑cB,R+a1,↓ + cB,R+a1,↑cC,R−a3,↓)

−(cC,R+a3,↑cB,R−a1,↓ + cB,R−a1,↑cC,R+a3,↓)
−(cA,R−a2,↑cC,R−a3,↓ + cC,R−a3,↑cA,R−a2,↓)
+(cA,R+a2,↑cC,R+a3,↓ + cC,R+a3,↑cA,R+a2,↓)
+(cB,R−a1,↑cA,R−a2,↓ + cA,R−a2,↑cB,R−a1,↓)
−(cB,R+a1,↑cA,R+a2,↓ + cA,R+a2,↑cB,R+a1,↓)]

(fB2
NN)

†
s ∝ i√

6

 0 − sin(k3) sin(k1)
sin(k3) 0 sin(k2)
− sin(k1) − sin(k2) 0



(E1)11 singlet

1
2

∑
R[(cC,R−a3,↑cB,R+a1,↓ + cB,R+a1,↑cC,R−a3,↓)

−(cC,R+a3,↑cB,R−a1,↓ + cB,R−a1,↑cC,R+a3,↓)
−(cB,R−a1,↑cA,R−a2,↓ + cA,R−a2,↑cB,R−a1,↓)
+(cB,R+a1,↑cA,R+a2,↓ + cA,R+a2,↑cB,R+a1,↓)]

(fE1
11,NN)

†
s ∝ i

2

 0 sin(k3) 0
− sin(k3) 0 sin(k2)

0 − sin(k2) 0



(E1)21 singlet

1√
12

∑
R[−(cC,R−a3,↑cR+a1,B,↓ + cB,R+a1,↑cR−a3,C,↓)

+(cC,R+a3,↑cB,R−a1,↓ + cB,R−a1,↑cC,R+a3,↓)
−2(cA,R−a2,↑cC,R−a3,↓ + cC,R−a3,↑cA,R−a2,↓)
+2(cA,R+a2,↑cC,R+a3,↓ + cC,R+a3,↑cA,R+a2,↓)
−(cB,R−a1,↑cA,R−a2,↓ + cA,R−a2,↑cB,R−a1,↓)
+(cB,R+a1,↑cA,R+a2,↓ + cA,R+a2,↑cB,R+a1,↓)]

(fE1
21,NN)

†
s ∝ i√

12

 0 sin(k3) 2 sin(k1)
− sin(k3) 0 − sin(k2)
−2 sin(k1) sin(k2) 0



(E2)11 singlet

1√
12

∑
R[−(cC,R−a3,↑cB,R+a1,↓ + cB,R+a1,↑cC,R−a3,↓)

−(cC,R+a3,↑cB,R−a1,↓ + cB,R−a1,↑cC,R+a3,↓)
+2(cA,R−a2,↑cC,R−a3,↓ + cC,R−a3,↑cA,R−a2,↓)
+2(cA,R+a2,↑cC,R+a3,↓ + cC,R+a3,↑cA,R+a2,↓)
−(cB,R−a1,↑cA,R−a2,↓ + cA,R−a2,↑cB,R−a1,↓)
−(cB,R+a1,↑cA,R+a2,↓ + cA,R+a2,↑cB,R+a1,↓)]

(fE2
11,NN)

†
s ∝ 1√

12

 0 − cos(k3) 2 cos(k1)
− cos(k3) 0 − cos(k2)
2 cos(k1) − cos(k2) 0



(E2)21 singlet

1
2

∑
R[−(cC,R−a3,↑cB,R+a1,↓ + cB,R+a1,↑cC,R−a3,↓)
−(cC,R+a3,↑cB,R−a1,↓ + cB,R−a1,↑cC,R+a3,↓)
+(cB,R−a1,↑cA,R−a2,↓ + cA,R−a2,↑cB,R−a1,↓)
+(cB,R+a1,↑cA,R+a2,↓ + cA,R+a2,↑cB,R+a1,↓)]

(fE2
21,NN)

†
s ∝ 1

2

 0 cos(k3) 0
cos(k3) 0 − cos(k2)

0 − cos(k2) 0



A2 triplet

1√
6

∑
R[(cC,R−a3,↑cB,R+a1,↓ − cB,R+a1,↑cC,R−a3,↓)

+(cC,R+a3,↑cB,R−a1,↓ − cB,R−a1,↑cC,R+a3,↓)
+(cA,R−a2,↑cC,R−a3,↓ − cC,R−a3,↑cA,R−a2,↓)
+(cA,R+a2,↑cC,R+a3,↓ − cC,R+a3,↑cA,R+a2,↓)
+(cB,R−a1,↑cA,R−a2,↓ − cA,R−a2,↑cB,R−a1,↓)
+(cB,R+a1,↑cA,R+a2,↓ − cA,R+a2,↑cB,R+a1,↓)]

(fA2
NN)

†
t ∝ 1√

6

 0 − cos(k3) cos(k1)
cos(k3) 0 − cos(k2)
− cos(k1) cos(k2) 0



B1 triplet

1√
6

∑
R[(cC,R−a3,↑cB,R+a1,↓ − cB,R+a1,↑cC,R−a3,↓)

−(cC,R+a3,↑cB,R−a1,↓ − cB,R−a1,↑cC,R+a3,↓)
−(cA,R−a2,↑cC,R−a3,↓ − cC,R−a3,↑cA,R−a2,↓)
+(cA,R+a2,↑cC,R+a3,↓ − cC,R+a3,↑cA,R+a2,↓)
+(cB,R−a1,↑cA,R−a2,↓ − cA,R−a2,↑cB,R−a1,↓)
−(cB,R+a1,↑cA,R+a2,↓ − cA,R+a2,↑cB,R+a1,↓)]

(fB1
NN)

†
t ∝ i√

6

 0 − sin(k3) − sin(k1)
− sin(k3) 0 sin(k2)
− sin(k1) sin(k2) 0



(E1)11 triplet

1√
12

∑
R[−(cC,R−a3,↑cB,R+a1,↓ − cB,R+a1,↑cC,R−a3,↓)

+(cC,R+a3,↑cB,R−a1,↓ − cB,R−a1,↑cC,R+a3,↓)
−2(cA,R−a2,↑cC,R−a3,↓ − cC,R−a3,↑cA,R−a2,↓)
+2(cA,R+a2,↑cC,R+a3,↓ − cC,R+a3,↑cR+a2,A,↓)
−(cB,R−a1,↑cA,R−a2,↓ − cA,R−a2,↑cB,R−a1,↓)
+(cB,R+a1,↑cA,R+a2,↓ − cA,R+a2,↑cB,R+a1,↓)]

(fE1
11,NN)

†
t ∝ i√

12

 0 sin(k3) −2 sin(k1)
sin(k3) 0 − sin(k2)

−2 sin(k1) − sin(k2) 0



(E1)21 triplet

1
2

∑
R[(cC,R−a3,↑cB,R+a1,↓ − cB,R+a1,↑cC,R−a3,↓)

−(cC,R+a3,↑cB,R−a1,↓ − cB,R−a1,↑cC,R+a3,↓)
−(cB,R−a1,↑cA,R−a2,↓ − cA,R−a2,↑cB,R−a1,↓)
+(cB,R+a1,↑cA,R+a2,↓ − cA,R+a2,↑cB,R+a1,↓)]

(fE1
21,NN)

†
t ∝ i

2

 0 sin(k3) 0
sin(k3) 0 sin(k2)

0 sin(k2) 0



(E2)11 triplet

1
2

∑
R[−(cC,R−a3,↑cB,R+a1,↓ − cB,R+a1,↑cC,R−a3,↓)
−(cC,R+a3,↑cB,R−a1,↓ − cB,R−a1,↑cC,R+a3,↓)
+(cB,R−a1,↑cA,R−a2,↓ − cA,R−a2,↑cB,R−a1,↓)
+(cB,R+a1,↑cA,R+a2,↓ − cA,R+a2,↑cB,R+a1,↓)]

(fE2
11,NN)

†
t ∝ 1

2

 0 − cos(k3) 0
cos(k3) 0 cos(k2)

0 − cos(k2) 0



(E2)21 triplet

1√
12

∑
R[−(cC,R−a3,↑cB,R+a1,↓ − cB,R+a1,↑cC,R−a3,↓)

−(cC,R+a3,↑cB,R−a1,↓ − cB,R−a1,↑cC,R+a3,↓)
+2(cA,R−a2,↑cC,R−a3,↓ − cC,R−a3,↑cA,R−a2,↓)
+2(cA,R+a2,↑cC,R+a3,↓ − cC,R+a3,↑cA,R+a2,↓)
−(cB,R−a1,↑cA,R−a2,↓ − cA,R−a2,↑cB,R−a1,↓)
−(cB,R+a1,↑cA,R+a2,↓ − cA,R+a2,↑cB,R+a1,↓)]

(fE2
21,NN)

†
t ∝ 1√

12

 0 cos(k3) 2 cos(k1)
− cos(k3) 0 cos(k2)
−2 cos(k1) − cos(k2) 0



Table C.2: Summary of the different nearest neighbor pairing states on
the kagome lattice. The pairing matrix is written in Nambu formalism(
cA,−k,↓ cB,−k,↓ cC,−k,↓

)
(∆Γ)†s/t

(
cA,k,↑ cB,k,↑ cC,k,↑

)T , where subscript s/t refers to singlet/triplet
pairs. The matrices are written in a gauge which is non-periodic in momentum space.
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Irrep Spin state Real space interaction Momentum space pairing matrix

A1 singlet

1√
6

∑
R[(cC,R+a3,↑cB,R+a1,↓ + cB,R+a1,↑cC,R+a3,↓)

+(cB,R−a1,↑cC,R−a3,↓ + cC,R−a3,↑cB,R−a1,↓)
+(cB,R−a1,↑cA,R+a2,↓ + cA,R+a2,↑cB,R−a1,↓)
+(cA,R−a2,↑cB,R+a1,↓ + cB,R+a1,↑cA,R−a2,↓)
+(cC,R−a3,↑cA,R+a2,↓ + cA,R+a2,↑cC,R−a3,↓)
+(cC,R+a3,↑cA,R−a2,↓ + cA,R−a2,↑cC,R+a3,↓)]

(fA1
NNN)

†
s ∝ 1√

6

 0 cos(k · (a1 + a2)) cos(k · (a2 + a3))
cos(k · (a1 + a2)) 0 cos(k · (a3 − a1))
cos(k · (a2 + a3)) cos(k · (a3 − a1)) 0



B1 singlet

1√
6

∑
R[(cC,R+a3,↑cB,R+a1,↓ + cB,R+a1,↑cC,R+a3,↓)

−(cB,R−a1,↑cC,R−a3,↓ + cC,R−a3,↑cB,R−a1,↓)
−(cB,R−a1,↑cA,R+a2,↓ + cA,R+a2,↑cB,R−a1,↓)
+(cA,R−a2,↑cB,R+a1,↓ + cB,R+a1,↑cA,R−a2,↓)
−(cC,R−a3,↑cA,R+a2,↓ + cA,R+a2,↑cC,R−a3,↓)
+(cC,R+a3,↑cA,R−a2,↓ + cA,R−a2,↑cC,R+a3,↓)]

(fB1
NNN)

†
s ∝ i√

6

 0 sin(k · (a1 + a2)) sin(k · (a2 + a3))
− sin(k · (a1 + a2)) 0 sin(k · (a3 − a1))
− sin(k · (a2 + a3)) − sin(k · (a3 − a1)) 0



(E1)11 singlet

1√
12

∑
R[−(cC,R+a3,↑cB,R+a1,↓ + cB,R+a1,↑cC,R+a3,↓)

+(cB,R−a1,↑cC,R−a3,↓ + cC,R−a3,↑cB,R−a1,↓)
+(cB,R−a1,↑cA,R+a2,↓ + cA,R+a2,↑cB,R−a1,↓)
−(cA,R−a2,↑cB,R+a1,↓ + cB,R+a1,↑cA,R−a2,↓)
−2(cC,R−a3,↑cA,R+a2,↓ + cA,R+a2,↑cC,R−a3,↓)
+2(cC,R+a3,↑cA,R−a2,↓ + cA,R−a2,↑cC,R+a3,↓)]

(fE1
11,NNN)

†
s ∝ i√

12

 0 − sin(k · (a1 + a2)) 2 sin(k · (a2 + a3))
sin(k · (a1 + a2)) 0 − sin(k · (a3 − a1))

−2 sin(k · (a2 + a3)) sin(k · (a3 − a1)) 0



(E1)21 singlet

1
2

∑
R[(cC,R+a3,↑cB,R+a1,↓ + cB,R+a1,↑cC,R+a3,↓)

−(cB,R−a1,↑cC,R−a3,↓ + cC,R−a3,↑cB,R−a1,↓)
+(cB,R−a1,↑cA,R+a2,↓ + cA,R+a2,↑cB,R−a1,↓)
−(cA,R−a2,↑cB,R+a1,↓ + cB,R+a1,↑cA,R−a2,↓)]

(fE1
21,NNN)

†
s ∝ i

2

 0 − sin(k · (a1 + a2)) 0
sin(k · (a1 + a2)) 0 sin(k · (a3 − a1))

0 − sin(k · (a3 − a1)) 0



(E2)11 singlet

1√
12

∑
R[−(cC,R+a3,↑cB,R+a1,↓ + cB,R+a1,↑cC,R+a3,↓)

−(cB,R−a1,↑cC,R−a3,↓ + cC,R−a3,↑cB,R−a1,↓)
−(cB,R−a1,↑cA,R+a2,↓ + cA,R+a2,↑cB,R−a1,↓)
−(cA,R−a2,↑cB,R+a1,↓ + cB,R+a1,↑cA,R−a2,↓)
+2(cC,R−a3,↑cA,R+a2,↓ + cA,R+a2,↑cC,R−a3,↓)
+2(cC,R+a3,↑cA,R−a2,↓ + cA,R−a2,↑cC,R+a3,↓)]

(fE2
11,NNN)

†
s ∝ 1√

12

 0 − cos(k · (a1 + a2)) 2 cos(k · (a2 + a3))
− cos(k · (a1 + a2)) 0 − cos(k · (a3 − a1))
2 cos(k · (a2 + a3)) − cos(k · (a3 − a1)) 0



(E2)21 singlet

1
2

∑
R[−(cC,R+a3,↑cB,R+a1,↓ + cB,R+a1,↑cC,R+a3,↓)
−(cB,R−a1,↑cC,R−a3,↓ + cC,R−a3,↑cB,R−a1,↓)
+(cB,R−a1,↑cA,R+a2,↓ + cA,R+a2,↑cB,R−a1,↓)
+(cA,R−a2,↑cB,R+a1,↓ + cB,R+a1,↑cA,R−a2,↓)]

(fE2
21,NNN)

†
s ∝ 1

2

 0 − cos(k · (a1 + a2)) 0
− cos(k · (a1 + a2)) 0 cos(k · (a3 − a1))

0 cos(k · (a3 − a1)) 0



A2 triplet

1√
6

∑
R[(cB,R+a1,↑cC,R+a3,↓ − cC,R+a3,↑cB,R+a1,↓)

+(cB,R−a1,↑cC,R−a3,↓ − cC,R−a3,↑cB,R−a1,↓)
+(cA,R+a2,↑cB,R−a1,↓ − cB,R−a1,↑cA,R+a2,↓)
+(cA,R−a2,↑cB,R+a1,↓ − cB,R+a1,↑cA,R−a2,↓)
+(cC,R−a3,↑cA,R+a2,↓ − cA,R+a2,↑cC,R−a3,↓)
+(cC,R+a3,↑cA,R−a2,↓ − cA,R−a2,↑cC,R+a3,↓)]

(fA2
NNN)

†
t ∝ 1√

6

 0 − cos(k · (a1 + a2)) cos(k · (a2 + a3))
cos(k · (a1 + a2)) 0 − cos(k · (a3 − a1))
− cos(k · (a2 + a3)) cos(k · (a3 − a1)) 0



B2 triplet

1√
6

∑
R[(cB,R+a1,↑cC,R+a3,↓ − cC,R+a3,↑cB,R+a1,↓)

−(cB,R−a1,↑cC,R−a3,↓ − cC,R−a3,↑cB,R−a1,↓)
−(cA,R+a2,↑cB,R−a1,↓ − cB,R−a1,↑cA,R+a2,↓)
+(cA,R−a2,↑cB,R+a1,↓ − cB,R+a1,↑cA,R−a2,↓)
−(cC,R−a3,↑cA,R+a2,↓ − cA,R+a2,↑cC,R−a3,↓)
+(cC,R+a3,↑cA,R−a2,↓ − cA,R−a2,↑cC,R+a3,↓)]

(fB2
NNN)

†
t ∝ i√

6

 0 − sin(k · (a1 + a2)) sin(k · (a2 + a3))
− sin(k · (a1 + a2)) 0 − sin(k · (a3 − a1))
sin(k · (a2 + a3)) − sin(k · (a3 − a1)) 0



(E1)11 triplet

1
2

∑
R[(cB,R+a1,↑cC,R+a3,↓ − cC,R+a3,↑cB,R+a1,↓)

−(cB,R−a1,↑cC,R−a3,↓ − cC,R−a3,↑cB,R−a1,↓)
+(cA,R+a2,↑cB,R−a1,↓ − cB,R−a1,↑cA,R+a2,↓)
−(cA,R−a2,↑cB,R+a1,↓ − cB,R+a1,↑cA,R−a2,↓)]

(fE1
11,NNN)

†
t ∝ i

2

 0 sin(k · (a1 + a2)) 0
sin(k · (a1 + a2)) 0 − sin(k · (a3 − a1))

0 − sin(k · (a3 − a1)) 0



(E1)21 triplet

1√
12

∑
R[−(cB,R+a1,↑cC,R+a3,↓ − cC,R+a3,↑cB,R+a1,↓)

+(cB,R−a1,↑cC,R−a3,↓ − cC,R−a3,↑cB,R−a1,↓)
+(cA,R+a2,↑cB,R−a1,↓ − cB,R−a1,↑cA,R+a2,↓)
−(cA,R−a2,↑cB,R+a1,↓ − cB,R+a1,↑cA,R−a2,↓)
−2(cC,R−a3,↑cA,R+a2,↓ − cA,R+a2,↑cC,R−a3,↓)
+2(cC,R+a3,↑cA,R−a2,↓ − cA,R−a2,↑cC,R+a3,↓)]

(fE1
21,NNN)

†
t ∝ i√

12

 0 sin(k · (a1 + a2)) 2 sin(k · (a2 + a3))
sin(k · (a1 + a2)) 0 sin(k · (a3 − a1))
2 sin(k · (a2 + a3)) sin(k · (a3 − a1)) 0



(E2)11 triplet

1
2

∑
R[−(cB,R+a1,↑cC,R+a3,↓ − cC,R+a3,↑cB,R+a1,↓)
−(cB,R−a1,↑cC,R−a3,↓ − cC,R−a3,↑cB,R−a1,↓)
+(cA,R+a2,↑cB,R−a1,↓ − cB,R−a1,↑cA,R+a2,↓)
+(cA,R−a2,↑cB,R+a1,↓ − cB,R+a1,↑cA,R−a2,↓)]

(fE2
11,NNN)

†
t ∝ 1

2

 0 − cos(k · (a1 + a2)) 0
cos(k · (a1 + a2)) 0 cos(k · (a3 − a1))

0 − cos(k · (a3 − a1)) 0



(E2)21 triplet

1√
12

∑
R[−(cB,R+a1,↑cC,R+a3,↓ − cC,R+a3,↑cB,R+a1,↓)

−(cB,R−a1,↑cC,R−a3,↓ − cC,R−a3,↑cB,R−a1,↓)
−(cA,R+a2,↑cB,R−a1,↓ − cB,R−a1,↑cA,R+a2,↓)
−(cA,R−a2,↑cB,R+a1,↓ − cB,R+a1,↑cA,R−a2,↓)
+2(cC,R−a3,↑cA,R+a2,↓ − cA,R+a2,↑cC,R−a3,↓)
+2(cC,R+a3,↑cA,R−a2,↓ − cA,R−a2,↑cC,R+a3,↓)]

(fE2
21,NNN)

†
t ∝ 1√

12

 0 cos(k · (a1 + a2)) 2 cos(k · (a2 + a3))
− cos(k · (a1 + a2)) 0 cos(k · (a3 − a1))
−2 cos(k · (a2 + a3)) − cos(k · (a3 − a1)) 0



Table C.3: Summary of the different next nearest neighbor pairing states
on the kagome lattice. The pairing matrix is written in Nambu formalism(
cA,−k,↓ cB,−k,↓ cC,−k,↓

)
(∆Γ)†s/t

(
cA,k,↑ cB,k,↑ cC,k,↑

)T , where subscript s/t refers to singlet/triplet
pairs. The matrices are written in a gauge which is non-periodic in momentum space.



66 APPENDIX C. PAIRING EXPRESSIONS

Irrep Spin state Real space interaction Momentum space pairing matrix

A1 singlet

1√
3

∑
R[cB,R+a1,↑cB,R−a1,↓ + cB,R−a1,↑cB,R+a1,↓

+cA,R+a2,↑cA,R−a2,↓ + cA,R−a2,↑cA,R+a2,↓
+cC,R+a3,↑cC,R−a3,↓ + cC,R−a3,↑cC,R+a3,↓]

(fA1
3rd)

†
s ∝ 1√

3

cos(2k2) 0 0
0 cos(2k1) 0
0 0 cos(2k3)


(E2)11 singlet

1√
6

∑
R[2(cB,R+a1,↑cB,R−a1,↓ + cB,R−a1,↑cB,R+a1,↓)

−(cA,R+a2,↑cA,R−a2,↓ + cA,R−a2,↑cA,R+a2,↓)
−(cC,R+a3,↑cC,R−a3,↓ + cC,R−a3,↑cC,R+a3,↓)]

(fE2
11,3rd)

†
s ∝ 1√

6

− cos(2k2) 0 0
0 2 cos(2k1) 0
0 0 − cos(2k3)


(E2)21 singlet

1√
2

∑
R[cA,R+a2,↑cA,R−a2,↓ + cA,R−a2,↑cA,R+a2,↓

−(cC,R+a3,↑cC,R−a3,↓ + cC,R−a3,↑cC,R+a3,↓)]
(fE2

21,3rd)
†
s ∝ 1√

2

cos(2k2) 0 0
0 0 0
0 0 − cos(2k3)


B1 triplet

1√
3

∑
R[cB,R+a1,↑cB,R−a1,↓ − cB,R−a1,↑cB,R+a1,↓

+cA,R−a2,↑cA,R+a2,↓ − cA,R+a2,↑cA,R−a2,↓
+cC,R+a3,↑cC,R−a3,↓ − cC,R−a3,↑cC,R+a3,↓]

(fB1
3rd)

†
t ∝ 1√

3

− sin(2k2) 0 0
0 sin(2k1) 0
0 0 sin(2k3)


(E1)11 triplet

1√
6

∑
R[2(cB,R+a1,↑cB,R−a1,↓ − cB,R−a1,↑cB,R+a1,↓)

+cA,R+a2,↑cA,R−a2,↓ − cA,R−a2,↑cA,R+a2,↓
+cC,R−a3,↑cC,R+a3,↓ − cC,R+a3,↑cC,R−a3,↓]

(fE1
11,3rd)

†
t ∝ 1√

6

sin(2k2) 0 0
0 2 sin(2k1) 0
0 0 − sin(2k3)


(E1)21 triplet

1√
2

∑
R[cA,R+a2,↑cA,R−a2,↓ − cA,R−a2,↑cA,R+a2,↓

+cC,R+a3,↑cC,R−a3,↓ − cC,R−a3,↑cC,R+a3,↓]
(fE1

21,3rd)
†
t ∝ 1√

2

sin(2k2) 0 0
0 0 0
0 0 sin(2k3)


Table C.4: Summary of the different 3rd nearest neighbor in-hexagon pairing
states on the kagome lattice. The pairing matrix is written in Nambu formalism(
cA,−k,↓ cB,−k,↓ cC,−k,↓

)
(∆Γ)†s/t

(
cA,k,↑ cB,k,↑ cC,k,↑

)T , where subscript s/t refers to singlet/triplet
pairs. The matrices are written in a gauge which is non-periodic in momentum space.



Appendix D

Transformation of the
superconducting order parameter
from sublattice to band space

Our objective is to perform a transformation of the order parameter from sublattice and momentum
space to band and momentum space. For this purpose we will employ the unitary transformation
that diagonalizes the normal state, tight-binding Hamiltonian HTB and thus transforms from sub-
lattice to band basis

cn,k,σ =
∑
s

usn(k)cs,k,σ , (D.1)

where cn,k,σ and cs,k,σ are fermionic annihilation operators in band and sublattice space, respec-
tively. Equivalently, the transformation written in matrix notation isc1,k,σc2,k,σ

c3,k,σ

 = U(k)

cA,k,σ

cB,k,σ

cC,k,σ

 , (D.2)

or

c̃k,σ = U(k)ck,σ , (D.3)

where

c̃k,σ ≡
(
c1,k,σ c2,k,σ c3,k,σ

)T
, (D.4)

with n = 1, 2, 3 indexing the energy bands, and

ck,σ =
(
cA,k,σ cB,k,σ cC,k,σ

)T
, (D.5)

while

c̃†k,σ = c†k,σU
†(k) (D.6)

Utilizing the definition of a unitary matrix U †U = 1, the transformation of the tight-binding
Hamiltonian takes the form

c†k,↑HTB(k)ck,↑ = c†k,↑U
†(k)U(k)HTB(k)U

†(k)U(k)ck,↑ = c̃†k,↑H
B
TB(k)c̃k,↑ (D.7)
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APPENDIX D. TRANSFORMATION OF THE SUPERCONDUCTING ORDER

PARAMETER FROM SUBLATTICE TO BAND SPACE

where c†k,σ = (c†A,k,σ, c
†
B,k,σ, c

†
C,k,σ). On the other hand, the transformation of the order parameter,

which is on the off-diagonal of the mean-field BdG Hamiltonian (see equation (4.7) of Chapter 4),
is

−c†k,↑∆k(c
†
−k,↓)

T = −c†k,↑U
†(k)U(k)∆k(c

†
−k,↓)

T = −c̃†k,↑U(k)∆k(c
†
−k,↓)

T (D.8)

From equation (D.6) we deduce

(c̃†−k,↓)
T = (U †(−k))T (c†−k,↓)

T (D.9)

and therefore

−c̃†k,↑U(k)∆k(U
†(−k)U(−k))T (c†−k,↓)

T = −c̃†k,↑U(k)∆k(U(−k))T (c̃†−k,↓)
T (D.10)

Thus, in accordance with [46], we find that while the normal state Hamiltonian in band space is
given by HB

TB(k) = U(k)HTB(k)U
†(k) (the superscript B denoting energy band basis), the order

parameter transforms as

∆B
k = U(k)∆kU

T (−k) (D.11)

The gap matrix connects particle and hole spaces. If there is only intraband pairing ∆B
k is block

diagonal. A non block-diagonal gap matrix indicates interband pairing [46].



Appendix E

Illustrations of lattice harmonics of
the irreps in the D6 point group

The lowest order lattice harmonics for the A2, B1, B2, E1 and E2 irreps are shown in Figures E.1,
E.2, E.3, E.4 and E.5, respectively.

Figure E.1: fA2
a (k) plotted for four different vectors, a = 3t1+t2, 4t1+t2, 5t1+2t2, 5t1+t2, yielding

the four lowest order lattice harmonics transforming as the A2 irrep. The hexagonal Brillouin zone
is superimposed in red.
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APPENDIX E. ILLUSTRATIONS OF LATTICE HARMONICS OF THE IRREPS IN THE D6

POINT GROUP

Figure E.2: fB1
a (k) plotted for four different vectors, a = t1, 2t1, 3t1 + t2, 4t1 + t2, yielding the

four lowest order lattice harmonics transforming as the B1 irrep. The hexagonal Brillouin zone is
superimposed in red.

Figure E.3: fB2
a (k) plotted for four different vectors, a = 2t1+t2, 3t1+t2, 4t1+2t2, 4t1+t2, yielding

the four lowest order lattice harmonics transforming as the B2 irrep. The hexagonal Brillouin zone
is superimposed in red.
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Figure E.4: fE1
a (k) plotted for four different vectors, a = t1, 2t1 + t2, 2t1, 3t1 + t2, yielding the

four lowest order lattice harmonics transforming as the E1 irrep. The upper row corresponds to
fE1
a (k)11 and the lower row to fE1

a (k)21. The hexagonal Brillouin zone is superimposed in red.

Figure E.5: fE2
a (k) plotted for four different vectors, a = t1, 2t1 + t2, 2t1, 3t1 + t2, yielding the

four lowest order lattice harmonics transforming as the E2 irrep. The upper row corresponds to
fE2
a (k)11 and the lower row to fE2

a (k)21. The hexagonal Brillouin zone is superimposed in red.





Appendix F

Self-consistent solution of
Bogoliubov-de-Gennes gap equation

In this section we derive the gap equation for the kagome lattice which has the additional sublattice
degree of freedom. The starting point is the following interaction between an electron and its time-
reversed partner

Hint =
1

N2

∑
k,k′,s1,s2,s3,s4

V s1,s2,s3,s4
k,k′ c†s1,k,↑c

†
s2,−k,↓cs3,−k′,↓cs4,k′,↑ . (F.1)

Diagrammatically, the interaction is shown in Figure F.1. To obtain a mean-field theory, it is
assumed that fluctuations of the form

δc†s1,k,↑c
†
s2,−k,↓ = c†s1,k,↑c

†
s2,−k,↓ − 〈c†s1,k,↑c

†
s2,−k,↓〉 (F.2)

are small and we define (As1,s2
k )† ≡ c†s1,k,↑c

†
s2,−k,↓ (As3,s4

k′ ≡ cs3,−k′,↓cs4,k′,↑) to simplify the expres-
sions. The interaction to first order in fluctuations then becomes

Hint =
1

N2

∑
k,k′,s1,s2,s3,s4

V s1,s2,s3,s4
k,k′ (δ(As1,s2

k )† + 〈(As1,s2
k )†〉)(δAs3,s4

k′ + 〈As3,s4
k′ 〉)

≈ 1

N2

∑
k,k′,s1,s2,s3,s4

V s1,s2,s3,s4
k,k′ (δ(As1,s2

k )† 〈As3,s4
k′ 〉+ δAs3,s4

k′ 〈(As1,s2
k )†〉+ 〈(As1,s2

k )†〉 〈As3,s4
k′ 〉)

=
1

N2

∑
k,k′,s1,s2,s3,s4

V s1,s2,s3,s4
k,k′ (〈As3,s4

k′ 〉 (As1,s2
k )† + 〈(As1,s2

k )†〉As3,s4
k′ − 〈As3,s4

k′ 〉 〈(As1,s2
k )†〉)

=
−1

N

∑
k

(
∑
s1,s2

∆s1,s2
k c†s1,k,↑c

†
s2,−k,↓ +

∑
s3,s4

(∆s3,s4
k )†cs3,−k,↓cs4,k,↑) + C = HMF

int + C , (F.3)

V s1,s2,s3,s4
k,k′

↓ ↑

↓ ↑

−k′

−k

k′

k

Figure F.1: The interaction in equation (F.1).
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APPENDIX F. SELF-CONSISTENT SOLUTION OF BOGOLIUBOV-DE-GENNES GAP

EQUATION

where C is a constant term and

∆s1,s2
k =

−1

N

∑
k′,s3,s4

V s1,s2,s3,s4
k,k′ 〈cs3,−k′,↓cs4,k′,↑〉 =

VSC
N

(fs2,s1k )∗
∑

k′,s3,s4

f s3,s4k′ 〈cs3,−k′,↓cs4,k′,↑〉 . (F.4)

Here it was assumed that the pairing potential can be divided into two functions which transform
according to the irrep of our interest, thus V s1,s2,s3,s4

k,k′ = −VSC(f
s2,s1
k )∗fs3,s4k′ . Solving the equation

by a Bogoliubov transformation which we choose to define as(
cs,k,↑
c†s,−k,↓

)
=

(
us,n(k) vs,n(k)
v∗s,n(k) −u∗s,n(k)

)(
γn,k,↑
γ†n,−k,↓

)
. (F.5)

The detailed form of the unitary matrix is

uA,1 uA,2 uA,3 vA,1 vA,2 vA,3

uB,1 uB,2 uB,3 vB,1 vB,2 vB,3

uC,1 uC,2 uC,3 vC,1 vC,2 vC,3

v∗A,1 v∗A,2 v∗A,3 −u∗A,1 −u∗A,2 −u∗A,3

v∗B,1 v
∗
B,2 v

∗
B,3 −u∗B,1 −u∗B,2 −u∗B,3

v∗C,1 v∗C,2 v∗C,3 −u∗C,1 −u∗C,2 −u∗C,3

 , (F.6)

where we have suppressed the momentum dependence. Additionally(
c†s,k,↑ cs,−k,↓

)
=
(
γ†n,k,↑ γn,−k,↓

)(u∗n,s(k) vn,s(k)

v∗n,s(k) −un,s(k)

)
. (F.7)

Thus
N

VSC
∆s1,s2

k =

(f s2,s1k )∗
∑

k′,s3,s4

fs3,s4k′ 〈[
∑
n

vn,s3(k
′)γ†n,k′,↑ − un,s3(k

′)γn,−k′,↓][
∑
n

us4,n(k
′)γn,k′,↑ + vs4,n(k

′)γ†n,−k′,↓]〉

= (fs2,s1k )∗
∑

k′,s3,s4

f s3,s4k′ [
∑
n

vn,s3(k
′)us4,n(k

′) 〈γ†n,k′,↑γn,k′,↑〉 − un,s3(k
′)vs4,n(k

′) 〈γn,−k′,↓γ
†
n,−k′,↓〉]

= (fs2,s1k )∗
∑

k′,s3,s4

f s3,s4k′ [
∑
n

vn,s3(k
′)us4,n(k

′)nF (En,k′)− un,s3(k
′)vs4,n(k

′)(1− nF (En,−k′))]

= (fs2,s1k )∗
∑
k′

[
∑
n

nF (En,k′)
∑
s3

vn,s3(k
′)
∑
s4

fs3,s4k′ us4,n(k
′)

− (1− nF (En,k′))
∑
s3

un,s3(k
′)
∑
s4

fs3,s4k′ vs4,n(k
′)] (F.8)

where n = 1, 2, 3 is a sum over bands, and it was used that since H(k) = H(−k) then En(k) =
En(−k) (this is easily proved by using the fact that if the Hamiltonian is invariant under a C2

operation, i.e. commutes with the C2 operator, then, transforming into band space, the diagonal
Hamiltonian is also invariant under the corresponding C2 operation in the band space basis).
Furthermore, it was used that in the diagonal Hamiltonian, the bogoliubons are free fermions and
therefore their distribution follows the regular Fermi-Dirac distribution 〈γ†n,k′,↑γn,k′,↑〉 = nF (En,k′).
The final expression of equation (F.8) is written such that the matrix form is clear: the n sum is
a trace and the s3 and s4 sums are matrix multiplications. An algorithm which self-consistently
solves for ∆s1,s2

k is the following

1. Guess an initial ∆i
k.
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(a) (b)

Figure F.2: (a) Example of a gap calculated from equation (F.8) and plotted for a range of tem-
peratures T (red). For the numerical calculation, a momentum grid containing 3600 k-points in
the first Brillouin zone was used. The chemical potential µ = 0.4 and VSC = 2 in equation (F.8).
The number of iterations required for convergence (blue) increases at the critical temperature. (b)
The (logarithm of the) absolute difference between the order parameter calculated in the current
iteration step, ∆n, and the former, ∆n−1.

2. Diagonalize HBdG = HTB +HMF
int .

3. Calculate a new ∆f
k using equation (F.8).

4. Set ∆i
k = ∆f

k.

5. Repeat until a predefined convergence criteria is satisfied.

The algorithm is run for a set of temperatures T to obtain the result in Figure F.2. Since we use
the absolute difference between the order parameter calculated in the current iteration step, ∆n,
and the former, ∆n−1, to conclude convergence it was checked whether this difference smoothly
decreases or whether it has jumps. In the latter case it could be more advantageous to update the
order parameter according to ∆i = α∆i + (1−α)∆f with α ∈ (0, 1). The convergence criteria was
in general set be a difference of maximally 10−5. As the initial guess of ∆i for all temperatures
different than the first one we used the final value of ∆ from the former temperature. This generally
decreases the number of iterations needed but it only works if the code can run in series and not
if one wants to run for each temperature in parallel.
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