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Dansk resume

Opsplitningen af sammenfiltrede kvantetilstande er en betingelse for

mange algoritmer inden for kvanteinformation. En superleder er en na-

turlig kilde til Cooper par som er sammenfiltrede par af elektroner. Dette

speciale beskriver fabrikation og lav-temperatur-m̊alinger af et kulstof-

nanorør Cooper par splitter-apparat som best̊ar af to parallelle kvante-

prikker med en fælles superledende kontakt.

Bias spektroskopi-m̊alinger viser, at apparatet er af høj kvalitet s̊adan

at individuelle kvantetilstandes karakter kan identificeres i prikkerne.

Excitationsspektroskopi-data viser, at spin-bane koblingen delvist do-

minerer spektret og at spin-bane magnetfelterne p̊a to forskellige sider

af en krumning i nanorøret er ikke-collineære. Ved at gøre den superle-

dende film tynd øges det kritiske magnetfelt i planen med omkring 70

gange dets normale værdi. Stærk kobling mellem prikkerne og kontak-

terne reducerer muligheden for at anvende dette specifikke apparat til

at opsplitte Cooper par.

Resultaterne som præsenteres i dette speciale tegner lovende for at

udføre en m̊aling af sammenfiltringen i Cooper par som beskrevet i et

nyligt teoretisk forslag.

Abstract

Splitting entangled quantum states is a requirement for many quantum

information algorithms. A superconductor is a natural source of Cooper

pairs which are entangled pairs of electrons. This master thesis describes

the fabrication and low-temperature measurement of a carbon nanotube

Cooper pair splitter device which consists of two parallel quantum dots

with a common superconducting lead.

Bias spectroscopy measurements show that the device is of high qual-

ity such that the character of individual quantum states can be identified

in the dots. Excitation spectroscopy data reveal that spin-orbit interac-

tion partially dominates the spectrum and that the spin-orbit magnetic

fields on opposite sides of a bend in the nanotube are non-collinear. By

making the superconducting film thin the critical in-plane magnetic field

is increased to about 70 times its bulk value. Strong coupling between

the dots and the leads reduces the use of this specific device as a Cooper

pair splitter.

The results presented in this thesis shows promise for conducting

an entanglement detection measurement following a recent theoretical

proposal.
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Chapter 1

Introduction

As Moore’s law is starting to fail due to fundamental constraints candi-

dates are being considered as replacements for traditional silicon com-

puting. Quantum computing is one of these candidates.

Classical computers come up short when dealing with problems of

a certain size or complexity like simulating superconductors or protein

folding. A quantum computer replaces the classical bit with a qubit

(quantum bit). By doing so it enables the use of new and faster algo-

rithms that are capable of dealing with larger and more complex prob-

lems than are classical computers.

A key element for these algorithms is the entangled state and being

able to reliably generate entangled states is key to building a quantum

computer. Given two qubits and two states |0〉 and |1〉 an entangled

state is one which can not be written as a product of two single-qubit

states. For instance,

|ψ〉 = |0〉 |0〉+ |1〉 |1〉 (1.1)

is an entangled state because products of single-particle states |φ〉 =
|0〉+ |1〉 inevitably includes cross-terms like |0〉 |1〉.

A natural source of entangled pairs is the superconducting conden-

sate. Cooling a metal to cryogenic temperatures causes its conduction

electrons to rearrange into so-called Cooper pairs which have opposite

momentum and spin. The wave function of a Cooper pair can be ex-

pressed as

|ψ〉BCS = u |0〉 |0〉+ v |k ↑〉 |−k ↓〉 , (1.2)

that is, the states |k ↑〉 and |−k ↓〉 must be simultaneously occupied. A

Cooper pair is an entangled state which is hinted at by the similarity of

its wave function above with (1.1). If the Cooper pair can be split into

its constituent electrons we have, in principle, our entangled state.

In a quantum dot electrons are made to tunnel one-by-one through

a constricted region by utilizing their mutual repulsion. A Cooper pair
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Figure 1.1: A schematic of the Brau-

necker proposal (Braunecker et al. [1]).
Cooper pairs are ejected from a central

superconductor (SC) and cause a non-

local current in the two nanotube quan-
tum dots. The current depends on the

overlap between the spin of the Cooper

pair electrons (horizontal arrows) and
the spin of the nanotube states (slanted

arrows). Measuring the current for all

16 combinations of the states in the
nanotube segments reveals whether the

particles responsible for the current are

entangled. In order to obtain dissimilar
splittings of the levels in the two nan-

otube segments the nanotubes must be
at an angle.

is not allowed in quantum dots because of this repulsion. Thus, if the

Cooper pair electrons were to leave the superconductor through a quan-

tum dot they would have to separate and tunnel through different dots.

Figure 1.1 shows this situation where carbon nanotubes play the role as

quantum dots.

Experiments of this type have already been done by measuring a

correlation in current between the two quantum dots. Also, Cooper pair

splitting (CPS) in both carbon nanotubes [2, 3] and nanowires [4–6] has

been demonstrated. What remains to be seen is that the electrons are

actually entangled when they leave the superconductor.

This question is addressed in the proposal by Braunecker et al. [1]

shown schematically in Figure 1.1. The idea is to use kinked carbon

nanotubes with spin-orbit coupling as spin-filters so that the current

is suppressed for certain filter configurations. For instance, splitting a

Cooper pair through two spin-up states in the nanotubes should yield a

lower current than splitting it through states with opposite spin. This

type of correlation test is called a Bell test. Carbon nanotubes are

especially well suited for this purpose since the coupling between spin

and orbital motion gives rise to a built-in magnetic field oriented parallel

to the tube axis. When an external magnetic field is applied we can

calculate the spin direction of the states in the nanotube and orient

the “filter” as we choose, thus enabling us to do controlled correlation

measurements. It is essential the the nanotubes are at an angle so that

their built-in magnetic fields are non-collinear.

We can sum up the requirements for the Braunecker proposal as fol-

lows:

1. The states in the carbon nanotube should be identifiable, that is, the

quantum dot should exhibit four-fold periodicity.
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2. A superconducting gap must be present in a bias spectroscopy plot

to indicate that the central lead is superconducting.

3. The critical magnetic field BC of the superconductor must not be

much lower than the spin-orbit magnetic field. Otherwise the super-

conductor will be made normal before the field can appreciably alter

the nanotube spectrum at a value of about B ∼ BSO.

4. In order to have reasonably well-defined spin states we require that

spin-orbit interaction dominates disorder: ∆SO > ∆KK′ .

5. The spin-orbit magnetic fields must not be parallel to ensure that

the spin bases are not parallel. Consequently, the nanotube segments

themselves must be at an angle.

6. Finally, the current should exhibit non-local correlations in a specific

pattern.

Several of the requirements above have already been demonstrated

previously in separate devices. Carbon nanotubes quantum dots exhibit-

ing four-fold symmetry and with superconducting gaps are common and

can be seen in, e.g., [7]. Getting a high critical magnetic field is a mat-

ter of choosing the right material or making the superconducting film

thin. Spin-orbit dominated nanotubes have been mostly demonstrated

in so-called “clean” devices [8], but also in a regular non-clean device

[9]. Some bent (or kinked) nanotubes have been measured previously,

e.g., [10]. Cooper pair splitting has been shown only recently but the

mechanisms behind the splitting are not well understood.

Outline of this thesis

This 60 ECTS points thesis is written as part of an integrated (4+4)

PhD program. The problem statement of the work leading to this thesis

is the following:

Fabricate and measure a carbon nanotube Cooper pair splitter (CNT-

CPS) device which satisfies the requirements for the Braunecker proposal.

In Chapter 2 relevant theory about carbon nanotubes and quantum

dots will be reviewed. Chapter 3 concerns describes fabrication consid-

erations and measurement setup for a specific CNT-CPS device. Note

that detailed fabrication recipes are available in the appendix. Chapter

4 presents data and analysis of the device described in Chapter 3.



Chapter 2

Theory

2.1 Carbon Nanotubes

In this section we present an overview of the electronic structure of

carbon nanotubes. Focus will be on the effects that will be discussed in

the data which means that, e.g., strain and torsion effects will not be

considered. A more complete treatment can be found in [11] which also

serves as inspiration for the present section.

2.1.1 Physical Structure

A carbon nanotube (CNT) is a cylinder made of carbon atoms bonded

in a hexagonal structure.

For analyzing both physical and electronic properties the nanotube

can be thought of as a rolled-up graphene sheet as shown in Figure 2.1.

The graphene unit cell consists of two inequivalent carbon atoms, A and

B. The translation vectors are a1 and a2. We can form a cylinder from

the sheet by defining the chiral vector

Ch = na1 +ma2 (2.1)

and rolling the sheet along it until the start and end points of the chiral

vector touch. Examples of the resulting cylinder are shown in Figure

2.2. In the general case the tube will be chiral so that its mirror image

represents a different structure which can not be obtained from rotation.

Using the short-hand notation Ch = (n,m) we see that two cases have

a special symmetry: (n, 0) (zig-zag) and (n, n) (arm-chair). These tubes

are non-chiral, i.e., mirroring yields an equivalent structure.
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Figure 2.1: A nanotube is obtained

from a sheet of graphene by “rolling”
the sheet along C. The area defined

by the T and C vectors define the sur-

face of the nanotube. The chiral vector
C determines various properties of the

nanotube through the angle θ. Since

a nanotube exhibits cylindrical symme-
try the graphene coordinates x, y, z are

transformed into t, r, c coordinates for

the nanotube, denoting the axial, ra-
dial and circumferential direction, re-

spectively. Figure adapted from Laird

et al. [11].

Figure 2.2: The chiral vector Ch de-

fines the chirality of the CNT as either
armchair, zigzag or chiral. Armchair:

Ch = (n, n), zigzag: Ch = (n, 0).
All other vectors give chiral nanotubes.
Adapted from [12].

The angle θ between a1 and the chiral vector Ch is important for the

properties of the CNT. It is given by

cos θ = Ch · a1

|Ch||a1|
= 2a+ b

2
√
a2 + ab+ b2

(2.2)

For the zig-zag and armchair structures θ = 0◦ and 30◦, respectively.

In graphene the distance between nearest neighbors aCC = 0.142 nm.

The diameter D of the CNT can be calculated with

D =
√

3aCC

π

√
a2 + ab+ b2 (2.3)

which also equals |Ch|/π. Typical nanotube diameters are 1-6 nm.

2.1.2 Electronic Structure

The starting point for the CNT band structure is the graphene spectrum

which we’ll review first, before going into the corrections necessary for

nanotubes. The important part of the graphene spectrum are the Dirac

cones which are located at the Dirac points K,K′ = (0,∓)4π/3aCC. The

Dirac points K and K′ are a time-reversed pair, so by Kramers theorem

they must have the same energy as long as time-reversal symmetry is

not broken. Near the Dirac points the dispersion is approximately linear

so with EF as the zero-point of energy and measuring κ from a Dirac

point we can write

E = ±~vF|κ|. (2.4)
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(b), (d). If the red quantization lines
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nanotube is nominally metallic, while

a band gap EG opens in the opposite

case. Figure adapted from Laird et al.
[11].

Here vF is the Fermi velocity of graphite which is about 8× 105 m/s.
For the purposes of this thesis we consider the following perturbations

to the graphene spectrum:

1. Quantization of the circumferential k-component k⊥ which confines

the spectrum to lines in the graphene spectrum.

2. Curvature-induced shift of the Dirac cones.

3. Application of an external magnetic field.

4. Spin-orbit coupling between the spin of an electron and its motion

around the nanotube.

5. A disorder term ∆KK′ which mixes the circumferential modes K and

K ′.

Quantization of k⊥ Rolling up a graphene sheet puts restrictions on

k⊥ which is unrestricted in graphene. For the wave function to be single-

valued we require that it does not change its value upon completing one

revolution around the nanotube:

exp(ikr) = exp(ik(r + C))⇒ k ·C = 2πp⇒ k⊥ = 2p/D (2.5)

where p is an integer. Restricting k⊥ in this way yields a spectrum

consisting of line cuts through the graphene spectrum as shown in Figure

2.3.

Depending on whether the cuts miss the Dirac points or pass through

them the low-energy dispersion will be either linear or hyperbolic. In

the latter case a gap opens up since the conduction and valence bands

don’t touch at |κ‖| = 0. When k⊥ is quantized the dispersion takes the

form

E = ±
√

~2v2
Fκ

2
‖ + E2

G/4 (2.6)

Metallic nanotubes have linear dispersions and are gapless while semi-

conducting nanotubes have hyperbolic dispersions and show gaps of

EG = 4~vF/3D ≈ 700 meV/D[nm]. (2.7)

Anticipating its use for quantum dots we replace ~vFκ‖ in (2.6) by

the confinement energy Econf:

E = ±
√
E2

conf + E2
G/4 (2.8)

In quantum dots the longitudinal motion is confined which leads to quan-

tized values for κ‖ and hence Econf. States that have the same Econf are

said to belong to the same shell.
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In Figure 2.3 we see that a quantization line that passes close to a

K point will also pass close to a K′ point in the same distance. The

states on these lines close to the K and K′ points constitute the low-

energy dispersion. It is convenient to classify them as K or K ′ states

according to which type of point they are close to. This enables us to

make the intuitive interpretation that K and K ′ states in the same band

(conduction or valence) circulate the nanotube in opposite directions

because they are time-reversal conjugates. The direction of circulation

is opposite for states in the conduction and valence bands since v⊥ ∝
∂E/∂k⊥ has opposite signs in the conduction and valence bands.

The K and K ′ points are collectively known as the valley quantum

number. We’ll use τ = ±1 to refer to the valley quantum number where

τ = +1 (−1) corresponds to K (K ′).
The K states are time-reversed partners of the K ′ states so they are

degenerate when time-reversal symmetry is not broken. This makes the

total degeneracy in nanotubes equal to four since the states are also

spin-degenerate.

Curvature-induced displacement of Dirac cones Another con-

sequence of rolling up a graphene sheet is that the orbital overlaps of

the carbon atoms change. This displaces the Dirac cones by a vector

∆κcv which is opposite for K and K ′. In some metallic nanotubes this

displacement causes the quantization line to no longer go through the

Dirac points. These nanotubes are thus no longer gapless but exhibit

gaps of [11]

Ecv
G = 2~vF|∆κcv⊥ | (2.9)

where the cv superscript stands for curvature. Nanotubes that change

character in this way are called narrow-gap nanotubes. The magnitude

of the curvature band gap is about

Ecv
G ∼

50 meV
D[nm]2

cos 3θ (2.10)

which is always smaller than the quantization band gap in (2.7) so that

semiconducting nanotubes remain semiconducting. Armchair nanotubes

remain metallic with the curvature perturbation since in their case ∆κcv

is parallel to the quantization lines and kcv⊥ = 0.

Behavior in Magnetic Fields A magnetic field interacts with an

electron orbiting a CNT in two ways: By coupling to the electron spin

(Zeeman effect) and by coupling to the circumferential motion around

the nanotube.

The Zeeman energy in a magnetic field oriented parallel to the nan-
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B‖

Figure 2.4: Schematic showing orbital

angular momentum (purple), spin an-
gular momentum (green) and applied

B‖-field. Adapted from [8].

1 Sometimes gorb is defined as gorb =
2µorb/µB so that we get the same fac-
tor of 1/2 as in (2.11) in the expression

for Eorb.

Figure 2.5: Nanotube spectrum with-

out spin-orbit coupling or disorder ef-
fects. In a parallel magnetic field the

states split up according to their com-

bined g-factor sgs ∓ τgorb. A perpen-
dicular field only affects the spin be-

cause the orbital motion is perpendic-

ular to the field. Figure adapted from
Laird et al. [11].

otube axis is

EZ = 1
2gsµBsB‖ (2.11)

where s = ±1 denotes spin parallel or anti-parallel to the nanotube axis.

To find the energy of the coupling between the circumferential motion

and the magnetic field we use the following classical argument: The

nanotube cross-section has an area A = πD2/4 and the electron carries a

current I = |e|vF/πD by orbiting the tube. This gives for the magnitude

of the orbital magnetic moment

µorb = IA = |e| vF
πD
· πD2/4 = |e|vFD/4. (2.12)

To obtain the orbital magnetic moment for a specific state we multiply

by τ which determines the direction of circulation. Applying a magnetic

field parallel B‖ as in Figure 2.4 thus increases the energy of the electron

by

Eorb = ∓τµorbB‖. (2.13)

where the minus (plus) is for the conduction (valence) band. This equa-

tion fixes our convention regarding valley interaction with a magnetic

field: K states (τ = +1) in the conduction band decrease in energy with

increasing parallel magnetic field. By defining an orbital g-factor1

gorb = µorb/µB = 1
4DevF ≈ 3.5×D[nm] (2.14)

we can write

Eorb = ∓τgorbµBB‖ (2.15)

so that the total energy Emag due to a parallel magnetic field is given

by

Emag = EZ + Eorb = (sgs ∓ τgorb)µBB‖. (2.16)

A rigorous derivation of the orbital interaction involves the Aharonov-

Bohm flux through the nanotube cross section. The result obtained in

this way is the same as the one above, though.

In a magnetic field with arbitrary orientation the spin-up and spin-

down states are mixed by the perpendicular field, but only within a

valley.

The nanotube spectrum as a function of perpendicular and parallel

magnetic field is shown in Figure 2.5. In a parallel field sgs and τgorb

add to give four slopes. Two doubly-degenerate lines are visible for a

perpendicular field because it does not break the valley degeneracy.
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Figure 2.6: Nanotube spectrum includ-
ing spin-orbit interaction. The nan-

otube states split according to their

combined g-factor as before, but the
spin-orbit coupling now acts to align or-

bital and spin magnetic moments, even

at zero field. The zero-field splitting
∆SO motivates the definition of a spin-

orbit magnetic field BSO = ∆SO/gsµB.

By slanting the magnetic field away
from parallel spin-up and spin-down

states are mixed as shown by the anti-

crossing in the inset. Figure adapted
from Laird et al. [11].

Spin-orbit Coupling The interaction between the spin of an elec-

tron and the orbit in which it moves is called spin-orbit coupling. For

instance, an electron moving with velocity v in the electric field E of an

atomic nucleus will experience a magnetic field

B = − 1
c2

(v×E). (2.17)

This magnetic field then couples with the electron spin. For this electron

the “orbit” in spin-orbit coupling is an actual orbit around the atomic

nucleus.

In carbon nanotubes the “orbit” is the motion around the circum-

ference of the tube. In cylindrical coordinates this motion is in the

azimuthal direction while the average electric field from the nanotube

atoms is in the radial direction for symmetry reasons. Thus, an electron

orbiting a nanotube experiences a magnetic field which is directed paral-

lel to the nanotube axis. This property is important for the Braunecker

proposal.

A closer theoretical treatment reveals that there are two types of spin-

orbit coupling in carbon nanotubes: A Zeeman-like contribution which

shifts the Dirac cones up or down by an amount

∆ESO,Z(τ, s) = ∆0
SOτs, (2.18)

and an orbital-like contribution which shifts the Dirac cones horizontally

by an amount

∆κSO,orb
⊥ (s) = −s∆1

SO

~vF
. (2.19)

The Zeeman-like term is simply added to the Hamiltonian while the

orbital-like contribution is added to the curvature shift of the Dirac

cones.

At zero magnetic field with only spin-orbit coupling present the split-

ting of the four states is given by

∆SO ≡ 2
(

∆0
SO ∓∆1

SO

gorb
g0
orb

)
. (2.20)

The data presented in this thesis does not allow distinguishing the two

types of spin-orbit coupling so we will be using only the ∆SO parameter.

We can also define a spin-orbit magnetic field BSO by taking ∆SO as the

Zeeman splitting of this field:

∆SO = gsµBBSO ⇒ BSO = ∆SO

gsµB
. (2.21)

The spin-orbit magnetic field is directed along the axis of the nanotube.

Figure 2.6 shows the spectrum with spin-orbit coupling included.

Comparing to Figure 2.5 we see the zero-field degeneracy of 4 is split
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Figure 2.7: Nanotube spectrum includ-

ing both spin-orbit coupling and disor-
der. Neither spin nor valley are good

quantum numbers if spin-orbit and dis-

order effects are taken into account.
Disorder ∆KK′ causes an anti-crossing
of the K′↑ and K↓ states and also con-

tributes to the zero-field splitting. Fig-
ure adapted from Laird et al. [11].
2 Recall that the graphene unit cell con-

tains two inequivalent carbon atoms, A

and B.

into 2: a pair which has spin and orbital magnetic moments aligned (K ′↑
and K↓) and one that has them anti-aligned. The slopes are the same

as before.

Note that the state labels have been removed from the perpendicular

part of the spectrum because valley and spin are not good quantum

numbers in this case.

The inset shows how misaligning the magnetic field relative to the

nanotube axis changes the spectrum. A considerable change is seen in

the perpendicular part since the magnetic field now also couples to the

orbital motion. For a parallel field the K ′↓ and K ′↑ states exhibit an

anti-crossing due to their spins being mixed. This gap has a magnitude

∆Θ = |∆SO| tan Θ (2.22)

where Θ is the misalignment angle.

Disorder in the nanotube Impurities and dislocations are included

in the spectrum by a disorder term ∆KK′ which mixes K and K ′ states

with the same spin. It is a phenomenological parameter that is not

derived from first principles.

Figure 2.7 shows the spectrum with both spin-orbit coupling and

disorder. The crossing of the K↑ and K ′↑ states is now an anti-crossing

due to K and K ′ being mixed. Neither spin nor valley are good quantum

numbers.

The complete Hamiltonian Combining the contributions above in-

volves setting up a Hamiltonian in A−B subspace2 for parallel magnetic

field and without disorder and diagonalizing it. While it does provide

some physical insight it is outside the scope of this thesis. We simply

give the result in the approximation

E0
G � |∆1

SO|, µ0
orb|B‖| (2.23)

where µ0
orb is the orbital magnetic moment of the (electron or hole) shell

closest to the band gap. This is justified for typical semiconducting and

narrow-gap nanotubes. It does not hold for true metallic nanotubes,

though, since they have no band gap.

We will use the definition

E±τ,s ≈ E±0 + sτ
∆SO

2 +
(
∓τgorb + 1

2sgs
)
µBB‖ (2.24)

where

E±0 = ±
√
E2

conf + (E0
G)2/4 (2.25)

and E0
G is the combined quantization and curvature band gap. The

magnetic field is expressed as

B = (B‖, B⊥) = B(cos θ, sin θ) (2.26)
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where θ is the angle between the nanotube axis and the magnetic field.

In the basis (K↑,K ′↓,K↓,K ′↑) we end up with

H =


E±1,1 0 0 ∆KK′/2

0 E±−1,−1 ∆KK′/2 0
0 ∆KK′/2 E±1,−1 0

∆KK′/2 0 0 E±−1,1



+1
2gsµBB


0 0 sin θ 0
0 0 0 sin θ

sin θ 0 0 0
0 sin θ 0 0

 . (2.27)

Note that in this basis the Hamiltonian is diagonal if no perpendicular

magnetic field is applied and no disorder is present. In this case the

energies can simply be obtained from (2.24).

The E±0 term does not change within a shell. If we define this quantity

as the zero of energy for a given shell we should be able to reproduce its

spectrum using only the parameters ∆SO, gorb, ∆KK′ and the angle of

the nanotube axis.

For the N = 2 state electron-electron interactions can be included

which are sometimes important. Hence, the N = 2 states include an

additional parameter J for the exchange coupling. We will not discuss

the spectrum for N = 2 states here, but refer to [13].

2.2 Quantum Dots

In this section we will briefly review the basics of quantum dots before

describing cotunneling processes in more detail. The latter will play an

important role for data analysis in the Results and Discussion section.

2.2.1 Quantum dot basics

A quantum dot consists of a microscopic region typically of the order

of hundreds of nanometers in which electrons are confined by potential

barriers. Two requirements are made of the barriers: They must be

high enough that the number of electrons is a good quantum number

and they must not be so high as to prevent tunneling altogether.

In the following we will use the constant interaction model for the

quantum dot. The energy of the quantum dot E is determined by the

number of electrons on the dot N , the voltages and capacitances of

nearby gates Vi, Ci and the energies of the quantum mechanical levels

εi

E = 1
2C

(
−|e|(N −N0) +

∑
i

CiVi

)2

+
N∑
i

εi (2.28)
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3 E.g., nanowires, 2-dimensional elec-

tron gases etc.

where C is the self-capacitance of the dot, typically approximated by

C =
∑
i Ci.

Using E we can get an expression for the addition energy Eadd, i.e.,

the energy for adding an electron given N electrons already on the dot:

Eadd = µN+1 − µN = (EN+1 − EN )− (EN − EN−1)

= e2

C
+ ∆E ≡ U + ∆E (2.29)

where µN is the chemical potential for adding the N ’th electron. The

charging energy U and the level spacing ∆E are key quantities for the

quantum dot.

We can approximate these quantities specifically for a nanotube: The

capacitance should be linear in L if the nanotube is much longer than it

is wide. Thus, the charging energy can be estimated for a nanotube of

length L by making the crude assumption

C ≈ ε0εrL (2.30)

so that

U ≈ e2

ε0εrL
≈ 4.5 meV

L[µm] . (2.31)

where we have used the SiO2 value for εr of 4.

The level spacing is only added to the charging energy when a lon-

gitudinal level in the dot is filled. In the simplest case the energy of

the longitudinal levels is simply given by a particle-in-a-box calculation.

Taking E(k‖) = ~vFk‖ for a Dirac cone and k‖,n = nπ/L for a 1D

particle in a box with hard-wall boundary conditions we get

∆E = ~vF(k‖,n − k‖,n−1) = hvF
2L ≈

1.7 eV
L[µm] (2.32)

Longitudinal levels are often called shells to emphasize the similarity

between quantum dots and atoms. As discussed in the previous section

carbon nanotube shells are four-fold degenerate in contrast to most other

system3 which only exhibit two-fold degeneracy.

2.2.2 Transport in a quantum dot

To describe transport through the quantum dot we define the Hamilto-

nian H for the system consisting of a dot and two metal leads

H = HD +HL +HR +HT (2.33)

where the first three terms determine the energy levels of the dot and

the left and right leads. We denote this non-interacting part of the

Hamiltonian by H0. The last term is the transfer term which transfers
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Figure 2.8: Sequential tunneling in a

quantum dot. This type of transport is
first-order in the lead couplings Γi and

is only possible when a transition in the

dot is in the bias window defined by the
leads. (1)-(3) Transporting an elec-

tron across the dot requires two sequen-

tial tunneling events. (4) By increasing
the bias window excited states can also

be used for transport. Adapted from

Ihn [15].
4 They may also transport electrons
from a lead onto the dot and then into

the initial lead again, but these pro-
cesses do not contribute to the current.

electrons between the leads and dot. It can be split into parts concerning

either lead

HT = HTL +HTR (2.34)

Transport through the quantum dot can be described by using a trans-

fer matrix T which is given self-consistently as [14]

T = HT +HT
1

Ei −H0
T (2.35)

where Ei is the energy of the initial state.

The transition rate of electrons Γβα from state α to state β is then

given by

Γβα = 2π
~
|〈β|T |α〉|2 δ(Eβ − Eα) (2.36)

where the delta function δ ensures energy conservation. Sequential tun-

neling is the first-order contribution to this rate. Take, for instance, the

first-order term of the rate for the transition between α and β which

moves one electron from the left lead onto the dot:

Γ1st,L
βα = 2π

~
|〈β|HTL |α〉|2 δ(Eβ − Eα) (2.37)

To transport an electron from the left lead to the right lead we need two

of the above processes: left lead → dot and dot → right lead. That is,

transport occurs in separate steps. This is shown in Figure 2.8.

Sequential tunneling is also possible through excited states as shown

in panel 4 in the same figure.

If only sequential tunneling is considered a current can only flow when

the chemical potential of a transition (say, µN↔N+1 from N to N + 1)

is positioned between the Fermi energy of the leads:

µL > µN↔N+1 > µR. (2.38)

Transitions that are between the chemical potentials of the two leads

are said to be in the bias window. In this situation the dot occupation

oscillates like N → N + 1→ N . If no transition satisfies this condition

no current flows, i.e., the dot is in Coulomb blockade.

Cotunneling is the second-order contribution to Γβα. Second-order

processes transport electrons all the way from the left to the right lead4.

Consider a second-order process that takes an electron from the left lead

and puts it in the left lead via the intermediate state HTL |α〉.

Γ2nd
βα = 2π

~

∣∣∣∣〈β|HTR
1

Eα −H0
HTL |α〉

∣∣∣∣2 δ(Eβ − Eα) (2.39)

Here, the states α and β differ by one electron in the leads.
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Figure 2.9: Cotunneling in a quan-
tum dot. These second-order processes

transport an electron across the dot via

an intermediate state with a classically
forbidden energy. (5) In elastic cotun-

neling processes the initial and final en-

ergy of the dot are the same, although
the state of the dot electrons need not

be. (6) If the final and initial states

of the dot do not have the same energy
the process is inelastic. The extra en-

ergy must be provided from somewhere
else, in this case the source-drain bias.

Adapted from Ihn [15].
5 We’re using |t|2 ∝ 2π|t|2d = Γ ∼ h/τ

where d is the density of states which is

assumed constant. In a rigorous treat-
ment the density of states is obtained

from integration over initial and final
states. τα′ = h/(εL − µN+1) is the

characteristic time that the system is

allowed to virtually occupy the inter-
mediate state α′.

Cotunneling processes are shown in Figure 2.9. They are either elastic

or inelastic: In elastic cotunneling the initial and final state of the dot

have the same energy, i.e. an electron transfers onto the dot and the

same electron tunnels out again. In inelastic cotunneling an electron is

removed from a level that is different from the one that was tunneled

into by the first electron. In the latter case the energy difference between

the initial and final state of the dot is provided by, e.g., the source-drain

voltage or microwave radiation. In this project we will only consider

source-drain voltage as the energy provider for cotunneling.

Let’s rewrite (2.39) a bit to gain some intuition. Letting H0 act on

|α′〉 ≡ HTL |α〉 gives Eα′ so the fraction above becomes

1
Eα −H0

|α′〉 = 1
Eα − Eα′

|α′〉 (2.40)

The transfer Hamiltonians HL,R contain the tunneling amplitudes tL,R

between the leads and the dot, so, leaving out the details, Γ2nd
βα becomes

Γ2nd
βα ∝

|tR|2|tL|2

(Eα − Eα′)2 (2.41)

The quantity Eα−Eα′ is the difference between the initial configuration

and the configuration in which one electron in moved from the lead onto

the dot. If state α has N electrons on the dot this energy difference is

Eα − Eα′ = εL − µN+1 (2.42)

where εL is the energy of the electron in the lead that was transferred.

Let’s restate (2.41) as5

|tR|2|tL|2

(εL − µN+1)2 ∝
τ2
α′

τRτL
(2.43)

This fraction sets the amplitude for the cotunneling process. In order

to have an appreciable amplitude τRτL should be of the same order or

smaller than τ2
α′ . Intuitively this means that the electron must be able

to tunnel through the left and right barriers in a time comparable to

or smaller than the time τα′ it’s allowed to be in the virtual state α′.

Thus, cotunneling is expected to be stronger in dots with strong tunnel

couplings.

Elastic cotunneling is only limited by the amplitude (2.43) so it can

occur even when the dot is in Coulomb blockade. Inelastic cotunneling

has the further limitation that the source-drain voltage must match the

energy difference between two levels in the quantum dot. Thus, when

the current is dominated by cotunneling (i.e., in Coulomb blockade) the

current increases sharply when the source-drain voltage matches the en-

ergy difference between two energy levels in the dot. Using this property

of cotunneling to gain knowledge about the spectrum of the dot is called
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excitation spectroscopy. We will use this technique to determine the

parameters of the nanotube in the Results and Discussion section

The condition above also means that no inelastic cotunneling current

is possible before |e|VSD is equal to the energy difference between the

lowest two levels in the dot ∆1. For |VSD| > ∆1/|e| the current depends

linearly on source-drain bias because increasing VSD allows more states

in the leads to participate in the transport.

Finally, when the leads are superconducting and not metallic we

should take into account the superconducting gap ∆SC and the fact

that the superconducting density of states is different from that in a

metal. In the absence of in-gap states no transport is allowed before

the source-drain bias is raised above ∆SC since no quasiparticle states

are available in the leads. This superconducting density of states may

change the magnitude of the inelastic cotunneling current, but we will

not consider such effects here.

2.2.3 Kondo physics in a quantum dot

The conventional Kondo effect arises from a magnetic impurity embed-

ded in a metal [16]. Conduction electrons interact with the spin of the

impurity and form a many-body state with a characteristic energy kBTK.

This causes scattering between conduction electrons and increases the

resistance once the temperature drops below TK.

A quantum dot with an odd number of electrons has a net spin- 1
2 .

The occupied state with the highest energy will be doubly degenerate if

time-reversal symmetry is not broken. We can now imagine cotunneling

processes like above in which the dot electron with, say, spin up tunnels

out and a conduction electron with spin down tunnels in. The net result

is a spin flip of the dot electron. Combining all processes of this type

again results in a many-body “Kondo” state between conduction elec-

trons in the lead and the dot electron. Rather than suppress current as

in a metal the Kondo state actually enhances current since it provides

a spatially extended state at zero bias. For a degeneracy of 2 this effect

is known as the SU(2) Kondo effect which again has a characteristic en-

ergy of TK (if we drop the kB). Its effect is to increase the conductance

at zero bias to a maximum of 2e2/h rather than the standard e2/h for

sequential transport through a single level. The Kondo effect is only

observed when the lead couplings are large since it involves cotunneling

processes.

We can imagine the same processes in a carbon nanotube, but in

this system the level degeneracy is four rather than two. If the carbon

nanotube levels are not too split relative to the lead couplings we get the

SU(4) Kondo effect which involves all four levels. This naturally gives

rise to a maximum conductance at zero bias of 4e2/h. Thus, depending
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on the value of the lead couplings we can observe both the SU(2) and

SU(4) Kondo effect in a carbon nanotube.



400 nm

Figure 3.1: Scanning electron micro-

scope (SEM) image of the nanotube in
devA with metal leads overlaid digi-

tally. The gold areas are 50 nm Au and

the dark grey area is 5/15 nm Ti/Al.
The image was taken before metal leads

were deposited which is why they are

overlaid instead. To avoid the risk of
damaging the nanotube no SEM image

has been taken of the device after metal

leads were deposited.

Chapter 3

Fabrication and

Experimental setup

3.1 Fabrication

Device fabrication on the nano scale requires use of multiple advanced

techniques, all of which have a number of tunable parameters that must

be just right in order for the fabrication to be successful. Part of the

present project has been to figure out the right combination of param-

eters for the fabrication of carbon nanotube devices with arbitrary ge-

ometries, i.e. figuring out the fabrication recipe. An overview of this

development process as well as the final recipe are available in Appendix

A.1.

The general fabrication goal was carbon nanotube devices with arbi-

trary geometries and specifically devices with Cooper pair splitter (CPS)

geometries. One such device is shown in Figure 3.1. The CPS geometry

consists of a central superconducting lead with two normal leads placed

symmetrically on either side of it. The side gates can be on either side

of the nanotube. This geometry defines two quantum dots in the carbon

nanotube that can be tuned with the side gates. Several of such devices

have been fabricated in this project but all the data presented in this

thesis is taken for the device shown in Figure 3.1 which will be called

devA in this work (in fabrication it is known as cnt_gen5_FI).

The normal (i.e., non-superconducting) leads on devA consist of 50 nm
Au (thermal evaporation). Typically, a thin layer (∼ 5 nm) of titanium

or chromium is deposited below the Au to “stick” the Au to the surface

of the chip since Au peels off easily by itself. Due to fabrication irregu-

larities this sticking layer was not deposited on devA which means that

the nanotube is in direct contact with the Au.

The superconducting lead on devA is 5/15 nm Ti/Al (e-beam evapo-

ration). A thin layer was chosen for the aluminium to give a high critical
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in-plane field in the superconducting state. The standard value for the

critical magnetic field of bulk aluminium at 0 K is 10.5 mT [17]. This

value is too low to change the energy levels in a typical carbon nanotube

appreciably which is required for the Braunecker proposal.

One concern about the fabrication process was the necessity of imag-

ing the carbon nanotubes with a SEM after growth in order to design

device geometries on them. We were concerned that SEM electron beam

would damage the nanotubes and alter its electronic properties. Al-

though several devices with carbon nanotubes of high quality have been

fabricated in this project it is unknown whether the yield would have

been higher if the nanotubes had not been imaged. It is the impression

of this author, though, that the adverse effects of imaging are negligible

compared to the type of metal used in the leads, the width of the metal

leads, and how well resist is removed in the development step before

depositing metal leads.

3.2 Experimental Setup

All measurements were done in a Oxford Instruments Triton200 dilution

refrigerator at a base temperature of 34 mK unless otherwise specified.

The base temperature is calibrated at installation by Oxford Instruments

engineers using 60Co nuclear orientation thermometry. During standard

operation the base temperature is measured using a RuO2 sensor. The

electron temperature was not measured in this project but it is typically

∼ 100 mK.

Temperatures in the tens of millikelvins range are achieved by dilu-

tion refrigerators by letting 3He cross a phase boundary between a pure
3He phase (the concentrated phase) and a 3He-4He phase (the dilute

phase). In doing so the 3He extracts energy from the system. This

process occurs continuously in a mixing chamber. Pumping on the di-

lute phase preferentially removes 3He which prevents the phases in the

mixing chamber from reaching equilibrium. The 3He is then recycled

and eventually enters the concentrated phase again where the process is

repeated.

The Triton200 refrigerator is cryogen free, meaning that the 3He-4He

mixture is kept in a closed loop. Having a closed loop is advantageous

because liquid 4He and especially 3He are rather expensive.

The refrigerator is fitted with a superconducting vector magnet pow-

ered by a Mercury iPS. The magnet can reach (nominally) 3 T in the

x-direction and 8.5 T in the z-direction. The magnet is unable to set a

field in the y-direction. Cylindrical polar coordinates can also be used

which allows the magnetic field to be set at an arbitrary angle within

(nominally) 3 T in the x-z plane.

The electrical setup is as shown in Figure 3.2. All DC lines in the
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Figure 3.2: Setup for measuring devA.

A DC+AC bias is applied to the cen-
tral superconducting lead and the cor-

responding DC+AC current through

each nanotube segment is measured
two-terminally. Couplings Γi, mag-

netic field B and spin-orbit magnetic

fields BSO,i are shown on the device.
The global angle Bθ is measured from

an extracted average of the shells in the

right segment. The makes of the instru-
ments is specified in the main text.

cryostat go through an RF filter to prevent high frequency noise. All

lines also go through an RC filter for low-frequency filtering, but only

the lines connecting the side gates have resistances in the RC filter. For

the remaining lines the resistance was removed from the RC filter to

make correlation measurements easier. The specific instrument models

used are as follows: DAC: DecaDAC custom-built by Jim MacArthur at

Harvard. Lock-in amplifiers: Stanford Research Systems SR830. Mul-

timeters: Agilent 34401A. Current amplifiers: Ithaco DL1211. Voltage

source: Keithley 2614B.

The figure also shows the couplings between the normal leads and the

nanotube ΓNL and ΓNR, and the coupling between the superconducting

lead and the nanotube ΓSL and ΓSR.

Note that the magnetic field B is constrained to the plane of the
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1 The framework is available here

https://github.com/qdev-dk/

matlab-qd. Special thanks go to
Anders for supplying this code which

simplified data acquisition immensely.

device so that Bθ is also in the plane of the device.

The current amplifier has two inequivalent output connections. One

which passes the signal through a low-pass filter with a variable time

constant and one in which the signal is not filtered. The first output is

configured to a time constant of ∼ 100 ms and sent to a multimeter for

measuring DC current. The second signal is sent to a lock-in amplifier

for measuring differential conductance using standard techniques.

The differential conductance dI/dVSD is obtained using either the

lock-in signal or numerically differentiated DC current which is in some

cases less noisy. The second derivative of the current d2I/dV 2
SD is always

obtained by numerically differentiating the lock-in signal by VSD.

Data acquisition was done with the matlab-qd framework for Matlab

written by Anders Jellinggaard1.

https://github.com/qdev-dk/matlab-qd
https://github.com/qdev-dk/matlab-qd
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Figure 4.1: Room temperature DC con-
ductance as a function of backgate volt-

age VBG for devA. This measurement
was conducted in a probe station by
DC-biasing one lead with VSD = 10 mV
and grounding another by using probe
needles. Thus, the setup is much sim-

pler than shown in Fig 3.2 and the nan-

otube segments are not measured in
parallel. The right side is very hys-

teretic, but also remarkably symmetric

in its hysteresis. The dips in conduc-
tance around VBG ≈ 0 would generally

be interpreted as indicating the pres-

ence of a band gap in the nanotubes.

Chapter 4

Results and Discussion

In this section we will present data from devA and assess its utility as

a CNT-CPS based on the requirements given in the introduction. We

measure devA as two quantum dots in parallel as shown in Figure 3.2: A

bias VSD is applied to the superconducting lead and the normal leads are

grounded. We will use “dot” and “side” interchangeably to refer to the

nanotube segments on either side of the superconductor. Measurements

are done at 34 mK unless otherwise noted.

Non-local conductance measurements on devA have been conducted

but since they are inconclusive they are not presented here.

4.1 Basic characterization

Room temperature gate traces for the left and right side are shown in

Figure 4.1. The traces are taken in vacuum at a pressure of about

1× 10−3 mbar. From the dip in conductance at VBG ≈ 0 V we expect

the nanotube to have a narrow gap. The right side conductance has a

hysteretic, but perfectly symmetric behavior when sweeping the gate in

opposite directions.

Figure 4.2 shows bias spectroscopy plots at 34 mK of the left and right

sides of devA. The plots do not show the same backgate range, but are

zoomed in on the shells that will be analyzed later. The 4-fold symmetry

characteristic of carbon nanotube quantum dots is clearly visible.

Naming of the shells is indicated at the top of the plots with lowercase

(uppercase) letters counting down (up) for increasing backgate voltage.

In the left side the letter numbering starts at the first shell which shows a

minimum of Coulomb blockade. Shells at higher backgate voltages than

this are not Coulomb blockaded but exhibit conductance fluctuations

that do not go to zero anywhere. In the right side the letter numbering

starts at the best guess for the band gap (the position of the band gap is

discussed below). Note that some shells, e.g. shell O, can be referred to
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Figure 4.2: Bias spectroscopy of devA.

Both sides show clear 4-fold symmetric
behavior characteristic of carbon nan-

otubes. The lead couplings are gener-

ally stronger in the left side as indicated
by higher conductance and Kondo reso-

nances. Letters show the naming of the

shells. Note that the backgate range is
different for the two sides. However,

the size of the range is the same so
widths are comparable in the two plots.

1 A switch denotes the situation where

the voltage felt by the nanotube
changes abruptly although all user-
controlled voltages are varied continu-

ously. It can be caused by, e.g., charge
traps.

without specifying which side they are in because they are only defined

in one side.

In order to do the entanglement measurement in the Braunecker pro-

posal we must use a shell from each side. It is convenient that these shells

are not too far from each other in VBG since the side gates are limited

in how much they can tune the dots individually. This was not possible

in devA because the left side is not sufficiently Coulomb blockaded for

VBG > −6 V. It still shows a regular electronic structure but the shells

are too strongly coupled. In the right side the shell structure becomes

gradually more disordered at negative VBG so we can’t use those shells

either.

Some shells appear to consist of 5 or 6 peaks rather than 4, e.g., left

shells b and g and right shells F and I. In the left side this is typically

caused by switching1. The shells in the right side do not have obvious

switches. Shells F and G also appear less symmetrical than, say, shell

J. These two observations could be an indication that the electronic

structure of some shells on the right side is disturbed by disorder.

What appears to be the band gap in the right side between VBG =
−1 and 1 V is actually a weakly coupled region. It is shown in more

detail in Figure 4.3. In fact, the band gap is not easily identifiable in

either side, probably because it has about the same magnitude as the
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Figure 4.3: Zoom in of bias spec-

troscopy plot in the weakly coupled re-
gion around VBG ≈ 0. What appears to

be a band gap in the previous figure is

shown to be a weakly coupled region in
this plot. The larger coulomb diamond

between shells a and A can be conjec-

tured to represent a band gap, although
its size may just as well be caused by

a switch. The numbers in shell C is

indicates the filling. An arrow denotes
the onset of inelastic cotunneling with

its characteristic circular appearance in

shell a. Addition energies for N = 0
and N = 1 fillings in shell a are indi-

cated by lines.

charging energy. The largest separation between two shells in the weakly

coupled region is between shells a and A. This was chosen as the best

guess for the band gap and the zero-point for numbering with the hope

that lowercase shells would correspond to holes exclusively. Due to its

small magnitude and the conductance feature inside it, this gap is not

convincing as a band gap, though. Also, there is no band gap at this

backgate position on the left side. These observations mean that we

can’t make the unambiguous identification about holes above.

Also shown in Figure 4.3 is the occupation within shell C. The occupa-

tion is specified as N mod 4. In the following we will mean N mod 4 = a

when we write the occupation as N = a except when we describe a filled

shell explicitly as N = 4. When the dot is not Coulomb blockaded the

filling oscillates which is specified as N = a ↔ a + 1. In shell A in

the same figure an arrow shows the position of onset of inelastic cotun-

neling current which is most prominent as a circular feature at N = 2
occupation.

We can find the charging energies UL, UR and the level spacings ∆EL,

∆ER from the bias spectroscopy. For the right side this is most easily

done in Figure 4.3 because the Coulomb diamonds are clearer here. We

obtain

UR ≈ 9 meV, ∆ER ≈ 4 meV.

The left side charging energy is harder to extract due to the Kondo
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Figure 4.4: Bias spectroscopy zoom of

shell n. The diagonal lines in the data
are caused by a strongly asymmetric

coupling while the horizontal line is an

SU(4) Kondo resonance. Dashed lines
indicate the additional lines that would

be expected in the absence of a Kondo
resonance.

Γ1 Γ2

|VSD|

Figure 4.5: Schematic of an electron

tunneling into a quantum dot with four
degenerate levels. If the levels all have

the coupling ΓS to the lead the overall

transition rate for the electron will be
4Γ1. Once the electron is on the dot
the transition rate for going into the

right lead is just Γ2. The situation is
reversed for opposite bias.
2 The same argument can be made for

a superconducting lead by simply tak-
ing into account that all features are

pushed away from zero bias by the su-

perconducting gap ∆SC.

resonances. We estimate UL ≈ 6 meV and

UL ≈ 6 meV, ∆EL ≈ 0− 4 meV.

The left side level spacing does show variation, almost going to zero be-

tween shells f and e. The varying levels spacings mean that the particle-

in-a-box approximation is not accurate and they indicate that the po-

tential landscape is disordered.

Rough estimates for U and ∆E for dots with L = 0.4 µm are

U est ≈
4.5 meV
L[µm] ≈ 11 meV, ∆Eest ≈

1.7 meV
L[µm] ≈ 4 meV (4.1)

valid for both left and right side since they have the same nominal length.

The estimates agree reasonably well with our measurements. The larger

estimated U est can be attributed to the crudeness of our assumption for

the capacitance.

Given the lower charging energy in the left dot we would expect it to

be larger than the right dot. Since the coupling to at least one of the

leads is always strong in the left side the wave function on the dot must

have a sizable overlap with the strongly coupled lead. Thus, the effective

size of the dot is larger than in a situation where the wave function is

concentrated in the middle of the nanotube segment. Even with this

argument the size of the dot should not be more than 0.4 µm, though.

4.2 Asymmetric couplings

A prominent feature on the left side is the difference in intensity between

conductance resonances at positive and negative bias. For instance,

in shell n (see Figure 4.4 and disregard the dashed lines for now) the

conductance for N = 0 is higher for VSD < 0 than for VSD > 0. For N =
4 the situation is opposite. The overall visual effect is a diagonal line on

either side of the shell. These diagonal features can be explained by a

very large or very small coupling asymmetry ΓNL/ΓSL by the following

argument:

Consider a negatively biased (VSD < 0) quantum dot with two normal

leads2 as in Figure 4.5. Assume that the level splitting of the four

levels in a nanotube shell is smaller than VSD and that the dot chemical

potential is tuned so that four levels are in the bias window. For a filling

of N = 0 ↔ 1 the rate of transfer for an electron tunneling from the

left lead to the dot is 4Γ1 since there are four levels to tunnel into. The

rate of transfer for tunneling from the dot into the right lead is just Γ2

since no more than one state can be occupied at a time. Now, using the

typical estimate for the height of the Coulomb peaks in a quantum dot

[15]

I ∝ 4Γ1Γ2

4Γ1 + Γ2
≈ 4Γ1 (4.2)
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where the approximation is made for Γ1 � Γ2. Similarly, if the bias

is reversed then the rate for tunneling from the right lead onto the dot

includes the factor of 4 and we get

I ∝ Γ14Γ2

Γ1 + 4Γ2
≈ Γ1 (4.3)

which is a factor of 4 smaller than in the first case. Thus, if the lead

couplings are very dissimilar (their ratio is far away from 1) and the

dot has degenerate levels the current will differ by the degeneracy on

reversing the bias. As the shell is filled the degeneracy factors for positive

and negative bias change. For N = 4 filling they are switched completely

compared to the N = 0 case which means that that maximum current

now occurs for the opposite sign of VSD.

In short, the conductance at N = 0 will be highest (lowest) at positive

VSD if the coupling to the source lead (always the superconductor in our

case) is much stronger (weaker) than the coupling to the drain lead.

With this argument we would expect the dashed lines in Figure 4.4

to be as strong as the diagonal conductance lines in the data. This

discrepancy can be explained by the presence of Kondo resonances which

are explained below. The presence of Kondo resonances does not change

the conclusion of the argument above. Note that the shells in Figure 4.3

exhibit the expected diagonal pattern caused by asymmetric coupling

since no Kondo resonances are present in these shells.

We can now deduce the coupling asymmetry in shells with diagonal

lines. We observe a strong coupling dependence on VBG in the left side.

For instance, the coupling asymmetry changes from ΓNL/ΓSL � 1 in

shells o, n, m, l to ΓNL/ΓSL � 1 in shells j, i, h. The right side generally

has coupling asymmetries closer to unity. In the weakly coupled region

around VBG = 0 we do see ΓNR/ΓSR � 1, though.

4.3 Kondo physics

Kondo resonances are visible in many shells, e.g., O and f. They are

visible as resonances at zero bias for odd occupations of the dot. In

some shells, notably o, n, m, l, the coupling to the leads is so strong that

the Kondo resonance involves all four nanotube level. In this case the

conductance increases beyond 2e2/h.

For our purposes this is not ideal. The Braunecker proposal requires

well-resolved spin states and the Kondo state is exactly a mixture of spin

states with the lead electrons. Also, it impedes excitation spectroscopy

measurements since the conductance due to the Kondo effect dominates

that due to inelastic cotunneling.

In shells with Kondo resonances the current onset at the edges of the

N = 1, 2, 3 Coulomb diamonds is not obvious because at these points
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Figure 4.6: Bias spectroscopy zoom of
shell a (right side). Due to the absence

of a Kondo resonance this shells shows

more clearly that the current is asym-
metric on reversing the bias as expected

for strongly asymmetric lead couplings.

the current is almost at its maximum value already at VSD ≈ 0. Con-

trast this with, e.g., shell a in the right side (Figure 4.6) which is more

weakly coupled and does not have Kondo resonances. In this shell the

edges of the N = 1, 2, 3 Coulomb diamonds are more clearly visible.

The asymmetric coupling effect is more clearly seen to be reversed in

bias, although the negative bias conductance is generally lower than at

positive bias. The asymmetric coupling argument does not account for

this.

4.4 Superconducting features

Figure 4.7 shows bias spectroscopy of six specific shells at both medium

and low bias. In the latter plot the superconducting gap is visible as the

middle region in which the Coulomb peaks change character and become

curved. This effect is more obvious in the left dot which indicates that it

is more strongly coupled to the superconductor than the right dot. We

can estimate the superconducting gap at about 60 µeV as the point in

bias where the Coulomb peaks become vertical. Resonances inside the

superconducting gap correspond to transport via Andreev reflections or

Shiba states.

4.5 Parameter estimation

To find the parameters for the nanotube we use inelastic cotunneling

spectroscopy. Fixing the backgate value in the middle of a Coulomb

diamond we sweep VSD and step the magnetic field strength or angle.

Abrupt increases in the differential conductance dI/dVSD occurs when

|e|VSD is equal to the energy difference between two levels. These in-

creases show up as peaks or dips in d2I/dV 2
SD. Energy level differences

are calculated using (2.27) and overlaid on the cotunneling data. The

parameters are fitted manually until correspondence with the data is

achieved.

A total of 10 shells have been measured as a function of magnetic field

oriented (approximately) parallel and perpendicular to the nanotube

axis and as a function of magnetic field angle at B = 2 T.

We introduce the global Bθ angle which measures angles relative to

the average of the shell angles on the right side (see Figure 3.2). This

quantity is useful for comparing angles between shells and between the

left and the right side. The angle θ has the same meaning as in (2.27).

Note that the zero-point of θ is a parameter in itself and thus changes

from shell to shell.

One representative and well-behaved shell from each side is shown

in Figures 4.8 and 4.9 (shells h and N) while the rest are shown in the

appendix. The fitted parameters for all shells are shown in Table 4.1
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Figure 4.7: Bias spectroscopy at

medium and low bias voltages. The su-
perconducting gap is visible in the top

row as a narrow line around VSD = 0.

In the zoom-in in the bottom row we
can read off the value of the gap of

about ∆SC ≈ 60µeV (taking bias off-

set into account).

and plots of the parameters with uncertainties are shown in Figure B.9

in the appendix.

Figure 4.8 shows cotunneling spectroscopy in shell h. This shell is

dominated by disorder, i.e., ∆KK′ > ∆SO which is true for all four

shells in the left side. In the right side the shells generally have less

disorder and larger spin-orbit values. These two regimes yield qualita-

tively different spectra. In particular, the parallel sweeps for N = 1 and

N = 3 are very different for spin-orbit dominated shells while they are

almost identical in the disorder dominated case. The spin-orbit values

are comparable to what has been found previously [8–10, 18–20], except

for the anomalously large values found by Steele et al. [21].

From (2.21) we calculate BSO,L ≈ 0.6 − 1.2 T and BSO,R ≈ 1 −
1.6 T. These spin-orbit magnetic fields are about the same as the in-

plane critical field of the superconductor of BC ≈ 0.6 − 0.8 T which is

required by the Braunecker proposal.

Generally, the correspondence between data and theory is excellent.

One transition which is predicted by theory but is not observed is the top

(and bottom) transition for the N = 2 sweeps. This can be explained
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Figure 4.8: Excitation spectroscopy

of shell h on the left side. The two
top rows are parallel and perpendicular
magnetic field sweeps. In the bottom

row are sweeps of the magnetic field an-

gle θ measured from the angle which is
determined by fitting as being parallel

for this particular shell. The correspon-
dence between data and theory is good.
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Figure 4.9: Excitation spectroscopy

of shell N on the right side. The two
top rows are parallel and perpendicular
magnetic field sweeps offset by −11◦ as

indicated on the plots. In the bottom

row are sweeps of the magnetic field an-
gle θ measured from the angle which is

determined by fitting as being parallel
for this particular shell. The correspon-
dence between data and theory is good.
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Side Shell ∆SO (µeV) ∆KK′ (µeV) gorb J (µeV) Bθ (degrees) VBG (V) for N=2

Right b 140 220 1.4 0 15 -0.9

Right c -120 430 1.6 0 -5 -1.2

Right d 160 50 1.3 0 5 -1.5

Right M 140 220 2.1 0 -5 4.2

Right N 150 70 2.6 120 3 4.5

Right O 180 70 4.6 0 -13 4.8

Left d -70 530 5.2 0 18 -9.2

Left g -90 425 2.6 0 15 -10.1

Left h -50 370 5.2 0 22 -10.5

Left i -140 570 2.5 0 30 -10.8

Table 4.1: Table of parameters ob-

tained from model fits. All fits also
include the superconducting parame-

ters ∆SC,0 = 60µeV and BC =
0.8 T through the function ∆SC =
∆SC,0

√
1− (B/BC)2.

3 Strictly, if the electron-electron inter-

action parameter J 6= 0 the eigenstates
are not simple products. In our data

J is so small that the argument is still
approximately true.

4 See, e.g., the carbon nan-

otube periodic table https:

//www.quantumwise.com/documents/

CNT_PeriodicTable.pdf

as follows: In a shell with occupation N = 2 the eigenstates are prod-

ucts of single-particle states3. Suppose the two-electron ground state

in a non-degenerate shell is |τs〉 |τs′〉. The highest energy state we can

construct from single-particle states from the same shell is |τ ′s′〉 |τ ′s〉.
To go from one of these states to the other both electrons must change

states. This makes the transition fourth, rather than second-order, in

the intermediate state energy. Thus, the amplitude of this transition is

reduced relative to cotunneling (second-order) processes and we don’t

observe the transition.

A common feature for all the magnetic field strength sweeps is the dip

and peak around zero bias for B < 0.8 T. This reflects the suppression

of current caused by the superconducting gap. The closing of this gap

can be fitted to [22]

∆SC(B) = ∆SC,0

√
1− (B/BC)2 (4.4)

where the superconducting gap ∆SC,0 ≈ 60 µeV and the critical in-plane

field BC ≈ 0.6− 0.8 T with reasonable correspondence. The fit is shown

in Appendix B.3. The critical field is some 70 times higher than the bulk

value of 10 mT [17] which is explained by the fact that the aluminium

film is only 15 nm tall. We do not observe a superconducting feature

in the angle sweeps since the constant magnetic field strength is higher

than the critical field.

Using (2.14) we convert gorb-values to diameters in the range 0.37-

1.5 nm which is reasonable for the diameters expected for a nanotube4.

A large variation is observed with adjacent shells in the left side differing

by a factor of 2. In comparison with values found in the literature (cite

cnt review) this is a small diameter, though. A correction to the estimate

for the diameter can be made: The Fermi velocity is constant for the

states we are considering and since we’re filling states with increasing

k‖ the k⊥ component must decrease correspondingly. Thus, k⊥ and gorb

should be largest at the band gap where k‖ is smallest. If we assume that

https://www.quantumwise.com/documents/CNT_PeriodicTable.pdf
https://www.quantumwise.com/documents/CNT_PeriodicTable.pdf
https://www.quantumwise.com/documents/CNT_PeriodicTable.pdf
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Figure 4.10: Fitted angles of the two

sides as a function of backgate volt-
age. The error bars represent the range

within which manual fitting of the pa-

rameters yielded a reasonable corre-
spondence to data. Thus, they are

somewhat subjective quantities. The

large error bars on shells b and c are
caused by low gorb-values and hence

small slopes in excitation spectroscopy

data. Shell d has a very low value for
∆KK′ which ensures low uncertainty in

fitting despite having a low gorb-value.

Some data is missing in shell i which
increases its uncertainty.

The dashed lines indicate the aver-
age of the angles in the corresponding

nanotube segment.

the band gap is around VBG = 0 but is simply too small to be readily

observed we should see larger gorb-values for the b, c, d shells than the

other shells. This is in contrast to our observation and so the correction

does not help explain the small diameter.

4.6 Angle comparison

The fitted angles for all shells are tabulated in Table 4.1. Initially, all

angles are measured relative to the magnet axes in the cryostat. After

parameter fitting the average of the angles of the right side is subtracted

from all angles. We see from the table that the angles in the left side

are larger than the right side by 21◦ on average.

Uncertainties on the angles are shown in Figure 4.10.

The angle difference is visualized in Figure 4.11. The angle of the

blue line is the average of the angles in the right side. The red line is

drawn as the tangent of the middle of the red side and thus illustrates

the expected angle if the wave function in the left side is centered in the

dot. Since the average angle of the left side shells of 21◦ is somewhat

smaller than the 32◦ in the image we would expect the wave function in

the left side shells to be closer to the superconductor. Supporting this

expectation is the fact that the coupling to the superconductor in shells

g, h and i is much stronger than to the normal lead as explained above.

Shell d does not show this correspondence, although it also has an angle

below 32◦. From their angles we would expect shell O to be strongly

coupled to the normal lead and shell b (right side) to be strongly coupled

to the superconductor. This is in agreement with the bias spectroscopy
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Figure 4.11: Left: SEM image showing
the angle between the nanotube seg-

ments. The line on the right segment

is defined by the average angle on the
right side. The line in the left segment

is drawn as the tangent at the middle

of the left segment. Thus, Bθ ≈ 32◦
represents the angle one would expect

given the location of the dot in the right

segment.
Right: Comparison of excitation

spectroscopy of shells h and N for filling

N = 1. The magnetic field is oriented
perpendicular to the nanotube at the

point where the first excitation in shell
N and the second excitation in shell h

are lowest in energy. This is shown to

happen at 93◦ for shell N and 112◦ for
shell h which are representative values

for the average angle in the left and

right segments.

in Figure 4.2 in which the diagonal pattern of these shells show that

they are asymmetrically coupled like we expect. However, from the bias

spectroscopy we would also expect shell d to have a large Bθ which is not

the case. Measuring shells o, n, m, l which have the opposite coupling

asymmetry from g, h and i would give further insight into a possible

correlation between coupling and angle.

An example of the angle difference can be seen in Figure 4.11 which

shows the excitation spectra of shells h and N at N = 1 side by side.

The first excitation in shell N and the second excitation in shell h are

at lowest energy at the angle at which the magnetic field is oriented

perpendicular to the tube axis because it couples minimally with µorb

at this angle. We see that this minimum splitting occurs at 93◦ for shell

N and at 112◦ for shell h with a difference of 19◦ which is representative

of the average angle difference.



Chapter 5

Conclusion and Outlook

In conclusion, a carbon nanotube Cooper pair splitter device was fab-

ricated successfully. Measurements on the device at low temperature

showed that it satisfies almost all the requirements for conducting an

entanglement detection test, namely:

1. The device has clearly identifiable states owing to its four-fold sym-

metric appearance in a bias spectroscopy plot. In some places Kondo

resonances mix the spin states which prevents or complicates entan-

glement detection.

2. A superconducting gap is present in the device.

3. The critical in-plane field of the superconductor is measured to 0.6-

0.8 T which is approximately the same value as the spin-orbit mag-

netic field.

4. In the right nanotube segment the electronic spectrum is dominated

by spin-orbit interaction in some shells. In the left dot spin-orbit

interaction is observable in the spectrum, but it is dominated by dis-

order effects.

5. An average angle of 21◦ is determined between the spin-orbit mag-

netic fields of the left and right nanotube segment.

6. Non-local conductance measurements have been conducted, but they

are inconclusive.

Due to fabrication challenges specific to carbon nanotubes, the most

difficult requirement to satisfy (apart from the non-local measurements

themselves) is obtaining a bent carbon nanotube which is dominated

by spin-order in both its segments. The device presented in this thesis

almost meets this requirement and preliminary measurements on subse-

quent devices indicate that similar high-quality devices may be obtained

in reasonable yield.
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Cooper pair splitting in a “basic” device without local magnetic fields

or bends is still difficult. It is not well understood how parameters

such as lead couplings, the superconducting gap or the charging energy

influence the probability of Cooper pair splitting. Even with the re-

quirements above satisfied the presence of a non-local signal depends

on parameters that are not understood and in the case of a CNT-CPS

also not controlled. Thus, although the advances presented in this thesis

are promising entanglement detection following the Braunecker proposal

remains a significant challenge.



Appendix A

Fabrication

A.1 Overview of fabrication

Four generations of samples were fabricated prior to gen5. A generation

constitutes a single chip fabricated using a specific recipe. It contains a

maximum of 48 potential CPS devices, fewer if bonding pads are used for

4-terminal measurements. Between generations the recipe was updated

with whatever insights the previous generation offered.

The outline of the recipe (excluding the gen1 recipe) is as follows:

1. Make alignment marks.

2. Apply nanotube catalyst.

3. Grow nanotubes.

4. Use SEM to take images of nanotubes and design devices based on

those images.

5. Make metal contacts.

A brief description of the generations is given below.

gen1 2-terminal devices were fabricated on one part of gen1 and char-

acterized at low temperature. These devices were fabricated using the

“blind” method where metal leads are put down to randomly contact

nanotubes. Thus, no complex device geometries were possible on this

part of gen1.

Another part of gen1 was used for fabricating CPS devices but those

devices all turned out underexposed. A dose test determined the proper

dose for subsequent generations.

gen2 Catalyst application problems ruined this chip during fabrica-

tion. A new method for catalyst application had to be developed be-
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1 The ELS-7000 operates at an acceler-
ation voltage of 100 kV while the min-

imum energy required to knock out a
carbon atom of the nanotube is esti-
mated at 86 keV [23]. Thus, the Raith

eLine (variable acceleration voltage,

but typically 20 kV) was used exclu-
sively after nanotube growth to avoid

damaging the nanotubes.

cause smaller catalyst islands than those used in gen1 are practical for

CPS devices.

gen3 The nanotube concentration was very high on this chip so it was

only used for testing lift-off of NbTiN. 2-terminal devices were fabri-

cated with successful lift-off but they were not measured due to the high

nanotube concentration.

gen4 CPS devices were completed without fabrication issues but no

devices showed electric contact to the nanotubes. The width of the

contacts and/or the type of the contacting metal were hypothesized to

be the problem.

gen5 Devices were completed without fabrication issues and low tem-

perature measurements were conducted successfully. The contacts were

made wider (∼ 100 nm to ∼ 350 nm) and the contacting metal changed

(accidentally, from Ti/Au to pure Au) to address the issues in gen4. The

fabrication recipe for gen5 is given in detail in the next section.

A.2 Fabrication recipe for devA

devA was known as cnt_gen5_FI during fabrication.

1. Cut out 1.1 cm× 2.0 cm chip with a 500 nm SiO2 top layer.

2. Sonicate chip in acetone. Flush with IPA and dry with nitrogen.

3. Bake chip on hot plate at 185 ◦C for 4 minutes.

4. Spin resists EL-6 and A4 at 4500 rpm for 1 minute. Bake chip at

185 ◦C for 4 minutes between spinning EL-6 and A4 and after spinning

A4.

5. Expose alignment mark pattern in the resist using an Elionix ELS-

70001 and settings: Field size: 300 µm, dots: 20000, dose time:

0.22 µs, dose: 922 µC/cm2, current: 10 nA, aperture 120 µm.

6. Develop chip in MIBK:IPA 1:3 for 90 seconds at room temperature,

then 55 seconds in IPA at room temperature.

7. Ash 30 seconds before evaporating Ti/Pt (5/60 nm) in AJA evapo-

ration chamber.

8. Lift-off in NMP at 80 ◦C in water bath for 25 minutes. Sonicate in

NMP for 2 minutes and flush with transfer pipette.

9. Apply carbon nanotube catalyst to chip. See section below for details.

10. Grow CNTs at 910 ◦C for 18 minutes. See section below for details.
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2 This is even more of a problem when

using leads made of Pd which adheres
very poorly to the chip surface.

11. Take images of carbon nanotubes in SEM at an acceleration voltage

of 1.5 kV. Use the following image properties: Size: 100 µm× 100 µm,

resolution: 2000 points× 2000 points, point average: 1.

12. Design devices based on SEM images. DesignCad 23 was used for

this purpose.

13. Flush chip in acetone and then IPA. Dry with nitrogen. Sonication

should be avoided when CNTs are on the chip.

14. Spin resist EL-6 and A4 as in point 4.

15. Expose pattern for normal contacts in the resist using Raith eLine.

Settings for inner contacts: Area step: 4 nm, dose: 390 µC/cm2,

Write field size: 100 µm, Aperture: 30 µm, Acceleration voltage: 20 kV.

Settings for outer contacts: Area step: 20 nm, dose: 390 µC/cm2,

Write field size: 200 µm, Aperture: 120 µm, Acceleration voltage:

20 kV.

16. Develop chip in MIBK:IPA 1:3 for 55 seconds at room temperature,

then 55 seconds in IPA at room temperature.

17. Evaporate Au on the chip using Edwards Auto 306 thermal evapo-

rator.

18. Spin resist EL-6 and A4 as in point 4.

19. Expose pattern for superconducting contacts in the resist using

Raith eLine. Settings for inner contacts: Area step: 4 nm, dose:

390 µC/cm2, Write field size: 100 µm, Aperture: 30 µm, Acceleration

voltage: 20 kV. Settings for outer contacts: Area step: 20 nm,

dose: 390 µC/cm2, Write field size: 200 µm, Aperture: 120 µm, Ac-

celeration voltage: 20 kV.

20. Develop chip in MIBK:IPA 1:3 for 55 seconds at room temperature,

then 55 seconds in IPA at room temperature.

21. Evaporate Ti/Al on the chip in AJA evaporation chamber.

If the metals used for the device are not suitable for bonding an addi-

tional lithography step is required to define bonding pads. This was the

case for the fabrication of devA where an additional lithography step of

Ti/Au 10/90 nm was done. Generally, the Au lithography step (point

15) should be last because Au doesn’t adhere well to the chip surface.2

The reason that it’s not the last step in the recipe above is that the in-

tention was to deposit titanium as a sticking layer below the gold. This

did not work out for various reasons.
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3 The catalyst itself was presented in
Kong et al. [24].

4 This step was crucial.

A.3 Deposition of carbon nanotube catalyst

It took a few tries to figure out an efficient way of depositing the CNT

catalyst on the wafer. The below recipe was found to work consistently

for the catalyst consisting of iron nitrate (Fe(NO3)3) molybdenum ac-

etate and alumina support particles3. Note that this recipe is designed

for dot exposures in a Raith eLine. It consistently yielded catalyst dots

with radii of 2 µm with little to no catalyst contamination on the rest

of the chip. It might not work with area exposures below a certain size

unless the exposure parameters are changed.

1. Spin A6 PMMA at 4500rpm for 1 minute.

2. Bake at 185 ◦C for 1 minute.

3. Spin another layer of A6 PMMA at 4500rpm for 1 minute to yield a

double-layer of A6.

4. Bake at 185 ◦C for 1 minute.

5. Expose catalyst pattern using dot exposure with parameters: Dose:

350 µC/cm2, area step: 10 nm, dot dose: 0.1 pA, write field: 200 µm,

acceleration voltage: 20 kV, aperture: 30 µm. It is important in this

step that you scan as little as possible on the chip when finding align-

ment marks and aligning. If possible you should know the distance

from an alignment mark to the corner of your chip and jump directly

to it rather than searching for it. Accidentally exposing resist pro-

motes sticking of catalyst to the chip in that spot. Catalyst that sticks

accidentally to the chip is typically more prone to being scattered on

the chip in subsequent steps.

6. Develop for 55 seconds in MIBK:IPA 1:3, then 55 seconds in IPA.

7. Stir catalyst solution for 2 minutes or more.

8. For a 1 cm× 2 cm chip apply 4 drops of catalyst using a transfer

pipette.

9. Let the chip dry under a petri dish for about 11 minutes. The dura-

tion is probably not important as long as the chip is completely dry.

The purpose of the petri dish is to avoid stray drops of liquid hitting

the chip.

10. Bake the chip for 7 minutes4 at 185 ◦C.

11. Lift-off in 100 mL NMP for two hours at 76 ◦C.

12. At this point the chip can be sonicated if it is absolutely necessary.

Sonication is efficient in removing catalyst resting on resist, but it
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5 Conversion to the percentages used

in the lab on the Brooks controller:

gas flow = percentage×max flow. Max
flows are: Ar: 2, H2: 0.5, and CH4:

5 nL/min N2. For instance the Ar flow

of 0.8 nL/min N2 corresponds to 40%.

also shakes loose and scatters catalyst resting on the chip. Typically,

sonication is not necessary if the chip has been soaking in NMP long

enough at 76 ◦C.

13. Spray the chip thoroughly with acetone to remove unwanted catalyst

residues before moving the chip to IPA and drying it.

A.4 Growth of carbon nanotubes

Carbon nanotubes were grown in a Carbolite MTF 12/25/400 CVD

oven. A “prebake” step is done with the oven empty before doing an

actual growth. The purpose of the prebake step is to flush the oven of

contaminants. The gas flow was configured as follows5:

Gas flow (nL/min N2)

Time (minutes) Tset (◦C) Toven (◦C) Ar H2 CH4

0 900 23 0.8 − −
65 0 900 0.8 − −

After the second step in the table above the oven is cooled to a couple

of hundred degrees Celsius before loading the chip and doing the growth:

Gas flow (nL/min N2)

Time (minutes) Tset (◦C) Toven (◦C) Ar H2 CH4

0 900 376 2 − −
5 900 665 0.8 0.1 −
20 900 900 − 0.1 −
30 900 900 − 0.1 0.65

49 0 900 0.8 − −

The concentration of nanotubes after the first growth was considered

to be too low for designing devices. Therefore, the chip was ashed for 1

minute to remove the nanotubes and a second growth was done:

Gas flow (nL/min N2)

Time (minutes) Tset (◦C) Toven (◦C) Ar H2 CH4

0 910 246 2 − −
5 910 ? 0.8 − −
21 910 910 − 0.1 −
31 910 910 − 0.1 0.65

49 0 910 0.8 − −

In the second growth the H2 gas was inadvertently not turned on in

the second step. Also, the temperature was increased from 900 ◦C to

910 ◦C to increase the concentration of nanotubes. This decision was

based on a gut feeling, though, since no obvious correlation between

temperature and nanotube concentration was found in this project. The
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variability in nanotube concentration was found to be very large, from

about 1 to ∼ 100 per 100 µm× 100 µm for the same type of growth.

Quite often, the second growth in a sequence like the one above yielded

good nanotube concentrations. Ashing between the first and second

growths may play a role for this effect.

A.5 Material considerations for CNT devices

Since carbon nanotubes are grown at high temperatures the choice of

materials for devices is not unlimited. In this project the structures that

had to withstand CNT growth were mostly alignment marks but prefer-

ably also bonding pads and part of the device leads because it simplifies

fabrication. To speed up the fabrication process we preferred to use a

the same material combination for all structures. When subjected to

CNT growth the material combination should

1. maintain its shape (important for alignment marks and leads),

2. not cause back gate leaks (important for bonding pads and leads),

3. allow for bonding (important for bonding pads).

Our starting point of Ti/Pt on SiO2 (which is used on devA) wasn’t

able to maintain its shape and it also caused back gate leaks. Given

both metals’ rather high melting points of about 1700 ◦C this was sur-

prising. This characteristic agglomeration of Ti/Pt has also been found

elsewhere, though[25].

After trying various combinations of metals and substrates we decided

to use a stack of SiO2/W/Pt which has previously been found to work

well [26]. Even this metal stack does not work consistently enough that

we could use it for bonding pads and leads. At the time of writing we’re

only using it for alignment marks for which it serves it purpose well.



Appendix B

Supplemental data

B.1 Supplemental data

Data used for fitting parameters in some table.
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Figure B.1: Excitation spectroscopy of

shell b on the right side. Not all com-

binations of filling and magnetic field
were measured. The top rows are paral-

lel magnetic field sweeps offset by −23◦
as indicated on the plots. In the bot-

tom row are sweeps of the magnetic

field angle θ measured from the angle
which is determined by fitting as being

parallel for this particular shell.
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Figure B.2: Excitation spectroscopy

of shell c on the right side. The two
top rows are parallel and perpendicular
magnetic field sweeps offset by −3◦ as

indicated on the plots. In the bottom

row are sweeps of the magnetic field an-
gle θ measured from the angle which is

determined by fitting as being parallel
for this particular shell.
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Figure B.3: Excitation spectroscopy

of shell d on the right side. The two
top rows are parallel and perpendicular
magnetic field sweeps offset by −13◦ as

indicated on the plots. In the bottom

row are sweeps of the magnetic field an-
gle θ measured from the angle which is

determined by fitting as being parallel
for this particular shell.
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Figure B.4: Excitation spectroscopy

of shell M on the right side. The two
top rows are parallel and perpendicular
magnetic field sweeps offset by −3◦ as

indicated on the plots. In the bottom

row are sweeps of the magnetic field an-
gle θ measured from the angle which is

determined by fitting as being parallel
for this particular shell.
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Figure B.5: Excitation spectroscopy

of shell O on the right side. Data
for N = 1 is not available. The two
top rows are parallel and perpendicu-

lar magnetic field sweeps offset by 5◦ as

indicated on the plots. In the bottom
row are sweeps of the magnetic field an-

gle θ measured from the angle which is
determined by fitting as being parallel
for this particular shell.
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Figure B.6: Excitation spectroscopy of

shell d on the left side. The data which
supposedly represents N = 3 is taken
at the wrong gate voltage, probably due

to a switch. The two top rows are par-

allel and perpendicular magnetic field
sweeps offset by 4◦ as indicated on the

plots. In the bottom row are sweeps
of the magnetic field angle θ measured
from the angle which is determined by

fitting as being parallel for this partic-
ular shell.
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Figure B.7: Excitation spectroscopy

of shell g on the left side. The two
top rows are parallel and perpendicu-
lar magnetic field sweeps offset by 7◦ as

indicated on the plots. In the bottom

row are sweeps of the magnetic field an-
gle θ measured from the angle which is

determined by fitting as being parallel
for this particular shell. The cause of
the high noise level is unknown.
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Figure B.8: Excitation spectroscopy

of shell i on the left side. The data
which supposedly represents N = 3 is
either taken at the wrong gate voltage

or inelastic cotunneling is suppressed at

this particular filling. The two top rows
are parallel and perpendicular mag-

netic field sweeps offset by −8◦ as indi-
cated on the plots. In the bottom row
are sweeps of the magnetic field angle

θ measured from the angle which is de-
termined by fitting as being parallel for
this particular shell.
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B.2 Uncertainties for fitted parameters
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Figure B.9: Overview of fitted param-

eters with uncertainties. The error bars

represent the range within which man-
ual fitting of the parameters yielded

a reasonable correspondence to data.
Thus, they are somewhat subjective
quantities.
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B.3 Closing of superconducting gap with magnetic

field

Magnetic field in the z-direction The z-direction is approximately

parallel to horizontal in Figures 3.1 and 4.11.

−1.0 −0.5 0.0 0.5 1.0

Magnetic field strength B (T)

−0.10

−0.05

0.00

0.05

0.10

V
S
D

(m
V

)

0.000

0.015

0.030

0.045

0.060

0.075

0.090

0.105

0.120

d
I
/
d
V

(e
2
/h

)

Figure B.10: Closing of supercon-

ducting gap with magnetic field in
the z-direction. The line represents

∆SC(B) = ∆SC,0

√
1− (B/BC)2 with

∆SC,0 ≈ 60µeV and BC ≈ 0.8 T.

Magnetic field in the x-direction The x-direction is approximately

perpendicular to horizontal in Figures 4.11 and 3.1.
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Figure B.11: Closing of supercon-

ducting gap with magnetic field in

the x-direction. Closing of supercon-
ducting gap with magnetic field in

the z-direction. The line represents

∆SC(B) = ∆SC,0

√
1− (B/BC)2 with

∆SC,0 ≈ 60µeV and BC ≈ 0.6 T.
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