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Abstract

Plasmons, collective excitations of free charge carriers, have manifestations in both infinite

and bounded systems. The application of an external magnetic field or the use of a material

exhibiting non-zero anomalous Hall conductivity allows for a chiral dispersion of the plasmon

edge modes in finite systems. For this reason, they are interesting both as an object of study

and for their potential application in information transmission. The system of study is that

of a two-dimensional disk of charge fluid with a Hall conductance resulting from either a

magnetic field or Berry curvature normal to the plane of the disk and with screening plates

placed symmetrically above and below the disk-plane. A discretization scheme of modelling

the disk as a set of concentric rings is used to numerically solve for the resonant modes and

their associated density wave-forms. The resulting dispersions are then compared to those

of the infinite half-plane. Screening has a profound effect on the electron interaction and

the effect of extreme screening on the dispersions is shown. The dependence of the density

wave-forms on angular momentum and excitation is briefly explored. Turning off the free

carrier density, akin to setting the chemical potential in the gap of an insulator, is shown

numerically to lead to one surviving unidirectional mode.
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Figure 1: Schematic drawing of a simple 3-port (red) circulator with chiral signal propagation.

Any signal going in through port 1 will go out through port 2, a signal going in through 2 will

exit through 3 and one entering through port 3 will exit through port 1. The ports need not

touch the disk; a capacitive coupling to the edge of the disk is another possibility.

1 Introduction

Throughout the past few decades, major areas of research have intertwined and helped shape

the field of condensed matter physics. The discovery of topological effects and the advent of

the possibility of a quantum computer have motivated the study of how to utilize the former to

realize the latter. The construction of such a quantum computer poses major difficulties, among

others being the problems of keeping the quantum states isolated from, or robust against, noisy

suroundings and upscaling such a system to a size needed for computational purposes.

One way to help prevent accidentally destroying the quantum states is to ensure that for any data

measurement made, no signal is reflected back into the system to disturb the remaining states.

For this to be feasible, we need to make a device that allows for one-way signal propagation.

One such contraption is known as the ”circulator” [1], which consists of a disk and 3 or more

ports through which signals can be emitted and absorbed. Figure 1 shows a primitive model

of an ideal 3-port circulator. Any signal, for example the result of a measurement, will enter

through one port, follow the edge of the disk in the one allowed direction, and enter the first

port it encounters (the detector). Any reflection will then continue along the edge to the last

port where it is drained out of the system, for example by grounding that port. Such a system,

where reversing the starting- and end-points provides different results is called non-reciprocal.

For this to happen, it is imperative that time reversal symmetry be broken somehow.

The challenge lies in devising a system that allows for this unidirectionality or, more specif-

ically, non-recoprocity of the signal propagation. To achieve this, a capacitive coupling has

been proposed[1] and utilized [2][3], where the ports are coupled to the disk through forming

a capacitor, with the edge of the disk constituting one of the capacitor plates and the port
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constituting the other, in such a way that there is, in addition to the coupling between port and

disk, a capacitative coupling between the capacitor plates of the ports through which signals can

propagate. These signals propagate with the speed of light while those propagating along the

edge of the disk do so with significantly reduced velocity. Given a way to tune the velocity of

signal propagation in each direction (on the disk), one can utilize this setup as an interferometer

where propagation in one direction is killed while allowing it in the other.

This is where the plasmon becomes interesting. Plasmons are collective excitations of free charge

carrying particles living in a rigid grid of opposite charge. When displaced from their equilibrium

state the restoring force will attempt to return them to the rest state. If there is no dissipation

then the particles will oscillate harmonically around the unperturbed state. When edges are

present in the medium, then, as we shall see, plasmon modes that can propagate along this edge

exist.

This non-recoprocity can be realized through the Hall effect which induces chirality in the modes

of edge plasmons by supplying the system with an inherent direction. Traditionally, a tunable

magnetic field has been used to induce this Hall effect, but the discovery of the anomalous Hall

effect, resulting from the presence of a net Berry curvature, has introduced another option. It is

the characteristics and workings of the anomalous Berry plasmons with which this paper will be

concerned, in the hope that these plasmons will help to further the progress made in quantum

computing or other unforeseen endeavours.

An outline of how the topics in this paper will progress is as follows: Firstly the Berry phase is

introduced and some of its consequences are explored. Afterward we will take a look at the un-

derlying physics of magnetoplasmons in the most approachable geometries. This is then followed

by an introduction to the disk system, which is the main system of concern in this paper, and a

detailed guide of the quantization scheme utilized for the numerical results shown throughout.

Numerical results for magnetoplasmon phenomena on the disk are briefly considered before the

main topic of anomalous Berry plasmons is approached.

2 The Berry phase and Anomalous Phenomena

This chapter will primarily follow the work of Xiao, Chang and Niu [8] and we will use mostly the

same notation. In it, we will introduce the core concepts of the Berry phase, its interpretation

as a result of Berry curvature, and some direct consequences of its presence.

2.1 Berry: Phase, Connection & Curvature

The concept of the Berry phase is one that appears when a quantum system undergoes an

adiabatic change that causes one or more parameters to make a closed loop in their respective

parameter spaces. The adiabatic theorem [9] [10] tells us that a system, described by a Hamil-

tonian, H, initially prepared in an eigenstate, |n〉, will stay in the instantaneous eigenstates of

the system as it evolves adiabatically in time. An easily visualizable example is that of a single
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Figure 2: A classical spin aligning parallel with a magnetic field and keeping its alignment even

as the magnetic field undergoes an adiabatic change.

classical spin in a magnetic field. The ground state will have the spin aligning (or anti-aligning)

with the magnetic field. If the direction of this magnetic field changes slowly in time, then the

eigenstate of the spin will change with it, keeping its alignment as seen in figure 2. Another

example is the harmonic oscillator with slowly changing steepness of the potential, mω2x2. If

the change is too rapid, then we get quantum quench phenomena where suddenly an eigenstate

of one Hamiltonian has to fit and be resolved by the eigenstates of another Hamiltonian.

Now, if the system and Hamiltonian depends on a set of parameters,

M(t) = {M1(t),M2(t),M3(t), ...}, which itself depends on time, then for every time t there will

be an eigenstate |n(M(t))〉 such that

H(M(t)) |n(M(t))〉 = εn(M(t)) |n(M(t))〉 . (2.1)

The eigenstates |n〉 are not uniquely defined, however. Any arbitrary phase factor would leave

equation (2.1) unaltered. As time passes, the state accumulates a dynamical phase factor pro-

portional to temporal integral of the eigenenergy. We will also allow it to have a second time-

dependent (and band-dependent) phase, γn(t). This means that the full state at a given time,

t, is

|ψn(t)〉 = eiγn(t) exp

(
− i
~

∫ t

0
dt′εn(M(t′))

)
|n(M(t))〉 . (2.2)

From here the Schrödinger equation,

i~
∂

∂t
|ψn(t)〉 = H(M(t)) |ψn(t)〉 , (2.3)

will give us an expression for the time evolution of the additional phase, γn(t). The LHS gives

i~
∂

∂t
|ψn(t)〉 = (−~γ̇n + εn(t)) |ψn(t)〉+i~eiγn(t) exp

(
− i
~

∫ t

0
dt′εn(M(t′))

)
∂M(t)

∂t
· ∂
∂M
|n(M)〉 .

(2.4)

The RHS just gives us the eigenenergy,

H(M(t)) |ψn(t)〉 = εn(M(t)) |ψn(t)〉 . (2.5)

Equating the two, multiplying by 〈ψ| from the left and cancelling the εn |ψ〉 terms and factors

of ~ leaves us with
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γ̇n = i 〈n| ∂M(t)

∂t
· ∂

∂M
|n〉 ⇔

γn = i

∫ tf

ti

dt 〈n| ∂M(t)

∂t
· ∂

∂M
|n〉 = i

∫ M(tf )

M(ti)
dM · 〈n| ∂

∂M
|n〉 .

(2.6)

Equation (2.6) is often written in terms of the Berry vector potential, similar to that used in

electromagnetism, or the Berry connection, analogous to connections from differential geometry

and used in general relativity,

γn =

∫ M(tf )

M(ti)
dM · An(M), (2.7)

where the Berry connection (which shall be the nomenclature used throughout this thesis) is

given by

An(M) = i 〈n(M)| ∂

∂M
|n(M)〉 . (2.8)

Just like the electromagnetic vector potential, the Berry connection is gauge dependent; Chang-

ing the eigenstates by an overall M-dependent phase, |n〉 → eiφ(M) |n〉, changes the Berry

connection by an extra term,

An → An −
∂φ(M)

∂M
. (2.9)

Inserting equation (2.9) into equation (2.7) shows that the Berry phase will then be changed by

an additional term of (let ti = 0)

γn → γn − [φ(M(tf ))− φ(M(0))] . (2.10)

When φ(M(0))−φ(M(tf )) is non-zero we can make a choice of gauge that causes this additional

term to cancel with the original Berry phase. If the phase is single-valued in M (as it will if the

parameter space is simply connected) then this is not possible when M(tf ) = M(0), i.e. when

traversing a closed loop in parameter space, which then means that

φ(M(0))− φ(M(tf )) = 0, (2.11)

where c is an integer.

We can now write the ”physical part” of the Berry Phase as

γn = i

∮
d
M · An(M). (2.12)

Also similarly to electromagnetism, we can define a tensor in parallel to the force tensor,

Ωµν(M) =
∂

∂Mµ
Aν(M)− ∂

∂Mν
Aµ(M) = i

[
〈∂n(M)

∂Mµ
|∂n(M)

∂Mν
〉 − 〈∂n(M)

∂Mν
|∂n(M)

∂Mµ
〉
]
, (2.13)
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called the Berry curvature. Here we have suppressed the band index, n. For three-dimensional

parameter spaces equation (2.13) reduces to a regular curl,

Ω(M) = ∇M ×A(M). (2.14)

The Berry curvature is, much like the electric and magnetic fields it mirrors, gauge independent,

which can be seen from either the above expression or equation (2.13).

A rewriting of equation (2.13) can be done to shift the differentiations from the eigenstate

vectors to the Hamiltonian of the system, which is often advantageous when there could be

ambiguity regarding the relative phase of the eigenstates. One case with such an ambiguity

could be when doing numerical computations where one risks the eigenvectors having different

phases.

For this rewriting we first note that for two different (orthonormal) eigenstates of the Hamilto-

nian, |n〉 and |n′〉 with n 6= n′, we have

∂

∂M

(
〈n|H |n′〉

)
= 〈 ∂n

∂M
|n′〉 εn′ + 〈n|

∂H

∂M
|n′〉+ 〈n| ∂n

′

∂M
〉 εn = 0, (2.15)

where the last equality comes from the orthogonality of the eigenstates. From here we can

partially integrate the last term,

〈n| ∂n
′

∂M
〉 =

∂

∂M

(
〈n|n′〉

)
− 〈 ∂n

∂M
|n′〉 = −〈 ∂n

∂M
|n′〉 (2.16)

and use that to rewrite equation (2.15) to

〈 ∂n
∂M
|n′〉 =

1

εn − εn′
〈n| ∂H

∂M
|n′〉 . (2.17)

Finally, using equation (2.17) we can rewrite equation (2.13) to

Ωn
µν = i

∑
n′ 6=n

1

(εn − εn′)2

[
〈n| ∂H

∂Mµ
|n′〉 〈n′| ∂H

∂Mν
|n〉 − 〈n| ∂H

∂Mν
|n′〉 〈n′| ∂H

∂Mµ
|n〉
]
, (2.18)

where we have reintroduced the band index, and the summation is over n 6= n′ because the

n′ = n term dies (as already evident when inserting a complete set of basis states in equation

(2.13) and noting that equation (2.16) works even for n′ = n). Furthermore, equation (2.18)

shows that the total sum of the Berry curvature of all bands cancels,
∑

n Ωn
µν = 0.

2.2 First Order Adiabatic Evolution of a State

In this chapter we will, following the lead of the appendix of [8], attempt to shed some light

on how a quantum state evolves in time when the Hamiltonian (the system), which depends on

a set of parameters, changes adiabatically in time. The result will be tied together with the

concept of the Berry curvature to show how it can affect the movement of charged particles.

8 page 8 of 62



Mads A. Jørgensen Chiral Berry Plasmons in a Disk October 17, 2017

The evolution of a state |ψ〉 is governed by the Schrödinger equation (see equation (2.3)).

We can write |ψ〉 as a sum of eigenstates of the hamiltonian, |l〉, each with energy El,

ψ(t) =
∑
l

exp

[
− i
~

∫ t

t0

dt′El(t
′)

]
al(t) |l(t)〉 . (2.19)

Inserting this into the Schrödinger equation and mutiplying 〈n| from the left gives a differential

equation for the time evolution of the expansion coefficients, al,

d

dt
an = −

∑
l

al 〈n|
∂

∂t
|l〉 exp

(
− i
~

∫ t

t0

dt′[El(t
′)− En(t′)]

)
. (2.20)

Just like previously mentioned, these eigenstates of the Hamiltonian could have an additional

phase factor. Instead of requiring this phase to be single-valued we will instead require the

eigenstates to fulfill the parallel transport condition,

〈n(M(t))| ∂
∂t
|n(M(t))〉 = Ṁ(t) 〈n| ∂

∂M
|n〉 = 0, (2.21)

which ensures that the change in each eigenstate is orthogonal to the eigenstate itself. Any

global (non-physical, arbitrary) time-dependent phase that we might add to the eigenstates will

stay ”constant” between two temporally close states, 〈n(t)|n(t+ δt)〉 ≈ 1, as can be seen by

letting |n〉 → eiθ(t) |n〉 in equation (2.21). This leads to d
dtθ(t) = 0.

The states that fulfill equation (2.21) we call |ñ〉. After a trip through different values of M(t)

the state |ñ〉 will have acquired a phase. If M(tf ) = M(t0) then the acquired phase is the Berry

phase, |ñ(tf )〉 = eiγn |ñ(t0)〉.
For adiabatic change we are in the limit Ṁ → 0 which means that d

dtan ≈ 0. For small,

but non-zero, Ṁ we can prepare our system in an eigenstate, |n〉, at time t = 0, such that

an(0) = 1 and an′ 6=n(0) = 0. According to equations (2.20)-(2.21) we have ȧn = 0 (the l = n

term in equation (2.20) is killed off by the parallel transport requirement) and, for n′ 6= n the

only contribution we get from the sum comes from the l = n term,

d

dt
an′ = −〈ñ′| ∂

∂t
|ñ〉 exp

(
− i
~

∫ t

t0

dt′[En(t′)− En′(t′)]
)
. (2.22)

In the adiabatic limit the non-exponential factor changes slowly compared to the oscillation of

the phase factor. Likewise, the energy difference, En − En′ is much larger than the change in

the energies, and so the solution can be written as

an′ = −i~
〈ñ′| ∂∂t |ñ〉

En(t)− En′(t)
exp

(
− i
~

∫ t

t0

dt′[En(t′)− En′(t′)]
)
. (2.23)

Differentiating the solution w.r.t. time and killing terms proportional to d
dt(〈ñ

′| ∂∂t |ñ〉) and
1

(En(t)−En′ (t))2 returns equation (2.22). This means that the first order time evolution of the

state |ψ〉, initially prepared in the state |ñ〉, is given by
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Figure 3: Visualization of the phase accumulation of a state after undergoing an adiabatic loop

in a curved parameter space. Picture taken from https:en.wikipedia.org/wiki/Parallel transport,

created by user Fred the Oyster.

|ψ(t)〉 =
∑
l

exp

(
− i
~

∫ t

t0

dt′El(t
′)

)
(a0thorder
l + a1storder

l ) |l̃(t)〉

= exp

(
− i
~

∫ t

t0

dt′En(t′)

)|ñ(t)〉+ i~
∑
n′ 6=n

〈ñ′| ∂∂t |ñ〉
En(t)− En′(t)

|ñ′(t)〉

 . (2.24)

This result will be used in the next chapter to show the implications of the presence of Berry

curvature.

2.3 Adiabatic Electron Transport Interpreted as a Result of the Berry Phase

We can use equation (2.24) to get a picture of how electrons move in a crystal exposed to a

Hamiltonian that changes cyclically and adiabatically in time. We imagine a one-dimensional

insulator (for simplicity) governed by a Hamiltonian, H(q, t) = H(q, t + T ), where T is one

period of the cycle, with regular bloch eigenstates, eiqx |un(q, t)〉, and eigenenergies εn. These

states will, when initially prepared in the n’th state and to first order in the time evolution, be

(here we have omitted the phase; it will cancel for our results in the end)

|ψ(t)〉 ≈ |un(t)〉 − i~
∑
n6=n′

〈un′ | ∂∂t |un〉
εn − εn′

|un′(t)〉 . (2.25)

The expectation value of the velocity operator, as given by Hamilton’s equations, vn(q, t) = ∂H
~∂q ,

is then, to first order
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〈vn(q, t)〉 = 〈ψ(t)| ∂H
~∂q
|ψ(t)〉

=
∂εn
~∂q
− i

∑
n′ 6=n

[
〈un|

∂H

∂q
|un′〉

〈un′ |∂un∂t 〉
εn − εn′

−
〈∂un∂t |un′〉
εn − εn′

〈un′ |
∂H

∂q
|un〉

]
.

(2.26)

This can be rewritten to something more palatable by using equations (2.16) and (2.17) and the

fact that the eigenstates, |un〉, make up a complete set,
∑

n |un〉 〈un| = 1 ,

〈vn(q, t)〉 =
∂εn
~∂q
− i

∑
n′ 6=n

[(
∂

∂q
〈un|

)
|un′〉 〈un′ |

∂

∂t
|un〉 −

(
∂

∂t
〈un|

)
|un′〉 〈un′ |

∂

∂q
|un〉

]

=
∂εn
~∂q
− i
[
〈∂un
∂q
|∂un
∂t
〉 − 〈∂un

∂t
|∂un
∂q
〉
]
.

(2.27)

The last term is just what appears in equation (2.13), and so we can finally simplify to

〈vn(q, t)〉 =
∂εn
~∂q
− Ωn

qt, (2.28)

which gives us the first taste of the physically observable nature of Berry phenomena.

2.4 Anomalous Velocity in Perturbed Crystal

Finally, for our purposes we will want to examine the situation in which we have an induced

electric field due to an excitation of a plasmon in a material with non-zero Berry curvature.

Imagine a crystal where we apply a weak uniform electric field through a time dependent

vector potential (remember that E = −∇φ − ∂A
∂t ), such that it does not break the discrete

translational invariance of our hamiltonian. The perturbation enters the hamiltonian in the

usual way and we get

H(t) =
(p̂+ eA(t))2

2m
+ V (r). (2.29)

We can make a unitary transformation on this Hamiltonian to bring it to the form of a Bloch

Hamiltonian,

H̃ = ei
e
~A·rHe−i

e
~A·r =

p̂2

2m
+ V (r). (2.30)

This hamiltonian just has the usual Bloch eigenstates,

|ψn(t)〉 = eiq·r |un(t)〉 . (2.31)

In momentum space it has the usual Bloch eigenenergies

H̃(q, t) |ψn(q, t)〉 = εn(q) |ψn(q, t)〉 , (2.32)

so that
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〈ψn(t)|H̃|ψn(t)〉 = 〈un(t)|e−i(q−
e
~A)·rH(q)ei(q−

e
~A)·r|un(t)〉 = εn(q, t), (2.33)

where we have suppressed that the vector potential is time-dependent (and linear in time for a

uniform electric field). Making a change of variables, q′ = q − e
~A and renaming q′ → q gives

us a Hamiltonian, H(q, t), that depends only on the term q + e
~A(t) ≡ k with eigenenergies

εn(q + e
~A(t)) = εn(k).

The temporal derivative of the new crystal momentum is

k̇ = − e
~

E (2.34)

Using the chain rule on ∂
∂t |un(k)〉 we get from equation (2.34) that

∂

∂t
= − e

~
Ej

∂

∂kj
, (2.35)

where we sum over the repeated indices, and this, combined with the observation that ∂
∂kj

= ∂
∂qj

,

leads to the fact that equation (2.27) for a 3-dimensional system (recall that this was for a one-

dimensional system; each component of a three-dimensional system can be treated like (2.27))

can be rewritten to the form

vn(k) =
∂εn(k)

~∂k
− e

~
E×Ωn(k), (2.36)

where

Ωn(k) = i 〈∇kun| × |∇kun〉 . (2.37)

What we see here is that an electric field applied to a crystal with non-zero Berry curvature

causes the appearance of a velocity component transverse to the electric field. An analogy can be

made to the Hall effect where a similar transverse velocity is induced by a magnetic field rather

than a Berry curvature. The Hall effect caused by a Berry curvature is called the Anomalous

Hall Effect.

Equation (2.36) also completes the ”symmetry” of the time evolution of the position and mo-

mentum coordinates of a charged particle in an electromagnetic field by providing a counterpart

to the Lorentz force, where ṗ has a term proportional to v ×B.

2.5 The Quantum Anomalous Hall Effect

Equation (2.36) tells us that an electric field will cause a transverse current to flow, and from

that thought it is not far fetched to expect a Hall-like effect. The current is proportional to the

average of the velocity of all the filled states,

j = −e
∑
n

∫
BZ

d2k

(2π)2
fn(k)vn(k) = −e

∫
BZ

d2k

(2π)2
fn(k)

[
∂εn(k)

~∂k
− e

~
E×Ωn(k)

]
, (2.38)
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where fn is a filling function. For an insulator these states correspond to the filled valence

band, so that fval(k) = 1 for the valence band and fcon(k) = 0 for the conduction band. Let us

examine the transverse conductivity for the simple case of an insulator (with only one valence

and conductance band) with a constant electric field in the y-direction, E = Eyŷ. The insulator

has a net Berry curvature pointing in the z-direction, Ω(k) = Ω(k)ẑ. The periodicity (in crystal

momentum) of the valence band makes the integral of the first term over the entire Brillouin

zone vanish. In this case there will only be one component of the current that survives, namely

the x-component, because of the cross product.

What we are left with is

jx =
e2

~

∫
BZ

d2k

(2π)2
Ω(k)Ey, (2.39)

which means, from ji = σijEj , that the transverse conductivity is given by

σxy =
e2

h

∫
BZ

d2k

2π
Ω(k) ≡ e2

h
c, (2.40)

where c =
∫

BZ
d2k
2π Ω(k) is an integer called the Chern number. This quantity has been shown to

be inherent to the topology of the system, and therefore impervious to continuous deformations

of the system, only changeable by a discrete deformation, such as closing of an energy gap [15].

If the system is not an insulator, but rather a conductor with a partially filled conductance

band, then the integration over all k-values should include these states which will result in a

different, non-integer, contribution to the Hall conductivity.

2.6 Materials Exhibiting Anomalous Phenomena

For a crystal to have non-vanishing Berry curvature it must have broken either time reversal

symmetry or inversion symmetry. This can be seen by applying the symmetry considerations to

equation (2.36) and noting that velocity, v, and crystal momentum, k, both change sign under

either either inversion, while the electric field is unchanged by time reversal but changes sign

under spatial inversion. Time reversal symmetry can be broken by the presence of a magnetic

field, either intrinsic or external. Alternatively, a gap can be induced by a broken spatial

inversion symmetry. This can be achieved through strong spin-orbit interaction (SOI) or by

having an A-B lattice, where nearest neighbouring atoms are different. An example of a system

with strong SOI is the HgTe-CdTe quantum well structure[14] and an example of one such

lattice is hexagonal Boron-Nitride, hBN. This has the hexagonal honeycomb lattice structure of

graphene (which has the characteristic Dirac cones with massless fermion states), but with two

different atoms in the unit cell. With identical atoms (like graphene) the on-site energy of the

atoms contribute only a constant to the (linearized around k = 0, centered on a Dirac point)

2×2 Hamiltonian (in a ”site-spinor” formalism) and we are left with off-diagonal hopping terms

so that the Hamiltonian can be written as a parameterized ”magnetic” Hamiltonian,

H(k) ∝ D(k) · σ, (2.41)
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where D(k) is a vector with Dz = 0 and σ is the ”vector” of Pauli matrices,

σx =

(
0 1

1 0

)

σy =

(
0 −i
i 0

)

σz =

(
1 0

0 −1

)
.

(2.42)

Hamiltonians on the form of that of equation (2.41) are called Bloch Hamiltonians and in section

2.6.1 we will explore more in depth how such a Hamiltonian can arise. The eigenstates will align

along the vector D, which acts as a ”magnetic field”. Translating this in-plane magnetic field

to the Bloch sphere, we see that this limits the states to lie in the plane of equiprobable states,
1√
2

(
|A〉+ eiφ |B〉

)
, because Dz = 0 ⇔ cos(θ) = 0 ⇔ θ = ±π

2 . This is described in more detail

in [13, Hasan and Kane, Rev. Mod. Phys., No. 82 (2010)].

Breaking either symmetry opens a gap in the Dirac cone allowing for massive states to exist.

For example, the difference in energy on the atomic sites adds a term proportional to the third

Pauli matrix, σz, the existence of which allows the state to live on different latitudes of the

Bloch sphere than just the equator. When the system undergoes a closed loop in one or more

parameters it allows the state to trace out a closed loop on the Bloch sphere, acquiring in the

process a phase proportional to the solid angle traced out, see figure 3.

For this all to work it is necessary to be able to excite specifically the electrons in one valley

(the now gapped Dirac cone) to be the sole source of the Berry curvature, as exciting both leads

to mutual cancellation (applying the time-reversal operator to both sides of equation (2.36)

shows that the Berry curvature is odd in momentum, Ω(−k) = −Ω(k)).

2.6.1 The Haldane Model and the Valley Hall Effect

One model that leads to physics as described above is the Haldane model [16]. The following

shows how to get a Hamiltonian on the form of equation (2.41). The Haldane model is very

similar to the one of hexagonal Boron-Nitride described above. In fact, the Boron-Nitride model

is a special case of the Haldane model. It contains the honeycomb lattice with two different

sublattices with different on-site energy. Where it differs is in that it includes next-nearest

neighbour hopping (inter-sublattice hopping, i.e. hopping to the same species of atom in another

primitive unit cell) and a local magnetic flux penetrating the plane of the 2D lattice in such a

way that there is no net flux through the Wigner-Seitz unit cell. A way to do this is to have

a periodic vector potential with a maximum in the middle of the Wigner-Seitz cell, equidistant

to each inhabitant in that unit cell. With this setup the magnetic flux is arranged such that a

jump to a next-nearest neighbour incurs a phase phactor, e±iφ, with the sign depending on the

direction of the jump, see figure 4, while a jump to nearest neighbour will be phaseless.
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Figure 4: The Haldane lattice, consisting of 2 atom species, A (blue) and B (red), arranged

in a honeycomb lattice. The nearest- and next-nearest neighbour hopping vectors, ai and bi

respectively, are indicated and the direction of positive phase gain due to the local magnetic flux

is drawn as a (clockwise) circular arrow.

The A and B atoms will be taken to have on-site energies of ±M , and the nearest- and next-

nearest neighbour hopping energies will be t1 and t2, respectively. The different on-site energies

break inversion symmetry while the magnetic field breaks time reversal symmetry. The vectors

from a B-atom to its nearest A-atoms are called ai (with the distance between neighbouring

particles a0) and the vectors starting from one atom and pointing to another of the same species

within the same Wigner-Seitz unit cell are called bi. Both sets are indicated on figure 4 and

they are given by

a1 =
1

2

( √
3

1

)
a0, a2 =

1

2

(
−
√

3

1

)
a0, a3 =

(
0

−1

)
a0 (2.43)

and

b1 =
1

2

(
−
√

3

3

)
a0, b2 =

1

2

(
−
√

3

−3

)
a0, b3 =

( √
3

0

)
a0. (2.44)

Each atom has 3 nearest neighbours and 6 next-nearest neighbours.

With all these building blocks, we get a Hamiltonian (on a ”site-spinor” form) that looks like

15 page 15 of 62



Mads A. Jørgensen Chiral Berry Plasmons in a Disk October 17, 2017

H =
∑
λ

{
M (|Aλ〉 〈Aλ| − |Bλ〉 〈Bλ|)

+t1

[
|Aλ〉 〈Bλ|+ |Aλ+ b2〉 〈Bλ|+ |Aλ− b3〉 〈Bλ|

+|Bλ〉 〈Aλ|+ |Bλ− b2〉 〈Aλ|+ |Bλ+ b3〉 〈Aλ|
]

+t2

[(
(|Aλ+ b1〉+ |Aλ+ b2〉+ |Aλ+ b3〉)e−iφ

+ (|Aλ− b1〉+ |Aλ− b2〉+ |Aλ− b3〉)e+iφ
)
〈Aλ|

+
(

(|Bλ+ b1〉+ |Bλ+ b2〉+ |Bλ+ b3〉)eiφ

+ (|Bλ− b1〉+ |Bλ− b2〉+ |Bλ− b3〉)e−iφ
)
〈Bλ|

]}
,

(2.45)

where λ is a vector indicating the unit cell in question. The first line represents the difference

in on-site energy. The first square bracket, proportional to t1, are the hoppings from a site

to its 3 nearest neighbours (of different atom species). The last square bracket, with terms

proprtional to t2, account for the next-nearest neighbour hopping, all to atoms of the same

species, but within different primitive unit cells. This fearsome expression can be tamed a bit

when we Fourier transform it using |Xλ〉 =
∑

k |Xk〉 eik·λ; every single term will have its only

dependence on λ of the form e±i(k−k
′)·λ, and completing the λ and k′ sums (the first of which

yields a delta function in k and k′) leaves us with

H =
∑
k

{
M (|Ak〉 〈Ak| − |Bk〉 〈Bk|)

+t1 |Ak〉 〈Bk|
(

1 + eib2·k + e−ib3·k
)

+ t1 |Bk〉 〈Ak|
(

1 + e−ib2·k + eb3·k
)

t2

[
|Ak〉 〈Ak|

∑
j

(
e−iφ+ibj ·k + eiφ−ibj ·k

)
+ |Bk〉 〈Bk|

∑
j

(
eiφ+ibj ·k + e−iφ−ibj ·k

)]} (2.46)

The terms in parentheses proportional to t1 can be written as exp(∓ia1 ·k)
∑

j exp(±iaj ·k) by

using the fact that the next-nearest jump vectors can be created from a combination of nearest

neighbour jump vectors. The first phase factor can be gauged away by applying a unitary

transformation (rotation) that commutes with the rest of the Hamiltonian, u = exp(ia1 ·kσz/2),

where σz is the third Pauli matrix (see equation (2.42)) in our site-spinor space. Applying this

”operator” from the right and its hermitian conjugate from the left, writing out the exponentials

as cosines and sines and using the trigonometric identity for sums of angles we get

H(k) = 2t2 cos(φ)
∑
j

cos(bj · k)1 + t1
∑
j

(cos(aj · k)σx + sin(aj · k)σy)

+

M − 2t2 sin(φ)
∑
j

sin(bj · k)

σz.

(2.47)
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When written on this form the dispersion follows readily,

ε(k) = 2t2 cos(φ)
∑
j

cos(bj · k)

±

√√√√√t21
∑
ij

[cos(bi · k) cos(bj · k) + sin(bi · k) sin(bj · k)] +

M − 2t2 sin(φ)
∑
j

sin(bj · k)

2

.

(2.48)

This shows a two-band structure with a gap that closes when the term under the square root

disappears. There are two such points where this is possible, the Dirac points, corresponding

to the two points in the Brillouin zone where bj · k = ±2π
3 , and it only happens if M =

±3
√

3t2 sin(φ). The Dirac points are placed at k = K±, where

K± = ±

(
4π

3
√

3a0

0

)
. (2.49)

If there is no magnetic flux then the phase gained when making a next-nearest neighbour jump is

0, which means that the gap closes for M = 0 (note that this specifically kills the coefficients of

σz and has the consequences discussed in chapter 2.6). The Dirac points are placed in opposite

corners of the Brillouin zone which itself takes the form of a rotated (by π/2) honeycomb

structure. Let the choice of Dirac point be indicated by α = ±1 in the following. A linearization

around a Dirac point Kα with a new, small deviation from the cone of choice, k = k′ −Kα,

where k′ is the full k-vector, gives us (after discarding the term proportional to 1)

Hα = −v (pxσx + αpyσy) +Dσz, (2.50)

where v = 3a0t1
2~ , pi = ~ki and D = M − 3

√
3αt2 sin(φ). Here we could make a spatial inversion

to make the sign in front of the term in parentheses to become positive, but, since it has no

physical consequences, we will keep it.

Equation (2.50) has the split energies

ε(k)± = ±
√
v2p2 +D2 (2.51)

and the eigenstates

|±〉 =
1√

v2p2 + (D − ε±)2

(
v(px − ipy)
D − ε±

)
. (2.52)

The energies are plotted with and without the gap opening in figure 5.

Rote insertion into equation (2.18) gives an expression for the kx-ky-component of the Berry

curvature (equivalent to the z-component of the Berry curvature, see equation (2.14)) for the

valence band,
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Figure 5: A 2D cross-section of a Dirac cone centered at Kα, before and after a gap opens due

to either of the two mentioned mechanisms.

Ωkxky = −α
2

v2~2D

(v2p2 +D2)3/2
, (2.53)

where, as before, α = ±1 indicates the choice of Dirac cone. We see here that when neither

inversion symmetry nor time reversal symmetry are broken (D = 0) then the Berry curvature

vanishes everywhere except for |k| = 0, where the gap closes. At this point the Berry curvature

diverges. Opening the gap allows for a finite Berry curvature throughout k-space.

To get the conductivity we should use equation (2.40) together with the Berry curvature from

the exact expression for the Hamiltonian, equation (2.47), and its eigenstates, but integrating

across a hexagonal Brillouin zone is tedious work. Instead, we can calculate the contribution

to the conductivity in the vicinity of the Dirac cone and make use of the fact that the Chern

number is conserved under smooth deformation to significantly simplify this integration; by

making the gap small (D << v~/a0) we can make equation (2.53) similar to a delta function,

making the integration easy. In other words, when the gap is small then the area around the

gap is the main contributor to the Berry curvature.

By making the substitutions g
a0

= D
v~ and |y| = |k|a0 we get

σxy = −α
2

e2

h

∫
d2y

2π

g

(y2 + g2)3/2

g→0
≈ −sgn(D)

α

2

e2

h
, (2.54)

where the limits of integration are large enough to capture the bulk of the contributions and

the sign of D determines whether the Berry curvature resembles a positive or negative delta

function.

We see here that the sign of D = M − 3
√

3αt2 sin(φ) is important when considering both Dirac

cones. We will, for simplicity, just outline the two simplest cases:

If t2 sin(φ) = 0, i.e. there is no change in phase when hopping to a next-nearest neighbour or

no hopping at all, then the contributions from the two cones cancel. It is still possible to get a

non-zero transverse conductivity by only exciting the particles in one cone across the gap to the

respective conduction cone, with methods specific to the material at hand.

On the contrary, if M = 0 and t2 sin(φ) 6= 0, i.e. there is no difference in on-site energy, but next

nearest neighbour hopping is allowed and the phase gained from such a hop is different from

an integer number of π, then we get the same sign for the two cones and the resulting Chern

number for the two cones add up to 1, resulting in a transverse conductivity σxy = ± e2

h .
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3 Magnetoplasmons in 3-Dimensional Charge-Fluid

This chapter follows the progression of the works of Alexander Fetter, [4], with additional steps

shown to better illustrate the methods used to obtain the results found.

Before we enter the realm of Berry plasmons it would be wise to first examine the simpler (and

better understood) case of zero-field plasmons and (chiral) magnetoplasmons. Plasmons are

collective excitations of charge carriers that manifest themselves as charge density waves in the

material in which they live. These plasmons generally come in two flavors; the bulk modes and

the edge modes. The bulk modes have the charge carriers in the bulk of the material moving

according to the given mode, while the edge modes, as we will see, are confined to the edge,

their amplitudes decaying exponentially further toward the bulk.

The simplest case to consider where both bulk and edge modes are present is that of a

semi-infinite three-dimensional half-space, infinite in the y- and z-directions and inhabiting the

x < 0 half. We will first consider a small toy model just to introduce the idea of plasmons, then

follow up with the fully infinite three-dimensional bulk system and finally add the edge to make

it a half-space when we want to examine the edge modes. Other geometries will be considered

further on in this analysis.

3.1 A Toy Model for Bulk Plasmons

The ”infinite” wave-length bulk plasmon is both easy to visualize as a thought experiment and

leads to the famous plasmon bulk frequency which we will see in many iterations throughout this

thesis, so we will let this be the starting point of our introduction to plasmons. This will be done

by imagining a box with side lengths (Lx, Ly, Lz) of ”jellium”, an electron fluid resting on a static

positive background with density n0. The entire negative charge density is displaced a distance

χ in the x-direction compared to the positive background (for example with an external electric

field), as pictured in figure 6, where χ is small compared to the length of the box, χ << Lx. If

the distance between the two regions of positive and negative charge is small compared to the

height and width of the box, Lx << Ly, Lz, then the electric field between the two regions is

similar to that of a plate capacitor, E = V/Lx. The voltage difference is dependent on the total

charge stored on the plates, Q, and the geometry, V = 4πQLx
εLyLz

. The total charge is the charge

density integrated over the geometry of the box, made easy by the constant density, so that

Q = −en0χLyLz, which leads to an electric field E = −4πen0χ
ε . The equation of motion for the

displacement is then finally χ̈ = eE
m = −4πe2n0

mε χ, which has harmonic solutions with frequency

Ωp =
√

4πn0e2

mε . This result is independent of the system size, so scaling the system to an infinite

size then yields the infinite wave-length bulk plasmon.
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Figure 6: Visualization of the toy model or a cutout of the bulk plasmon in 3 dimensions. It

is a collective mode of the electron fluid, and in the long wavelength limit and in the absence

of magnetic field it moves in unison at frequency ω = Ωp. A magnetic field would cause the

movement to be elliptical rather than unidirectional.

3.2 Bulk Plasmons in 3D

We will quickly outline the method of getting the dispersion of a zero-field, finite wave-length

bulk plasmon in 3D before we gradually add elements that complicate the calculation. We model

our system as material consisting of a rigid positive background density, en0, with −e < 0 the

electron charge, and an electron fluid of local charge density −e(n0 + n), where n is the density

perturbation. Two main equations govern the motion of our fluid; The continuity equation,

∂

∂t
n+ n0∇ · v = 0, (3.1)

keeps track of charge conservation by relating the change of the local (charge) density at a point

with the associated velocity, v, while the Euler equation,

∂

∂t
v = − s

2

n0
∇n+

e

m
∇Φ, (3.2)

keeps track of the force on charge elements from the electrostatic potential, Φ, caused by the

displacement of charges from their unperturbed state. v is the velocity field of the charge

elements and m is the effective collective excitation mass of the plasmon. Here we have added

a dispersion term caused by mechanical pressure where s2 = 1
m
∂p
∂n is the squared effective wave

speed when no magnetic field is active. In the long wavelength limit this will, as we will see, be

negligible compared to the other contributions to the dispersion.

The Poisson equation provides a relation between the potential and the charge density,

∇2Φ = 4πen, (3.3)

where we, for simplicity, have assumed that the dielectric constant of the background is the

identity, ε = 1. The system has translational invariance and we are looking for solutions after the

system has reached a steady state so that the solution will be of a plane-wave form, n ∝ ei(q·r−ωt).

We can take the divergence on both sides of equation (3.2), insert equation (3.1) and (3.3) and

use that ∇2n = −q2n to get
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ω2 n

n0
=

e

m
4πen+

s2

n0
q2n. (3.4)

Here we can cancel factors of n and multiply by n0 on both sides and introduce the bulk 3-

dimensional plasma frequency (with dielectric constant ε = 1) Ωp =
(

4πe2n0
m

)1/2
to rewrite this

as a final expression

ω2 = Ω2
p + s2q2. (3.5)

In the long wavelength case where Ω2
p >> s2q2, this simply reduces to ω = ±Ωp. Figure 6 can

be seen as a cutout of a small section of a bulk plasmon, featuring one wave top and one wave

valley in the density.

3.3 Bulk Magnetoplasmons in 3D

From here we want to complicate things a bit. A magnetic field is placed along the z-direction,

B = Bẑ. The particles are acted on by the magnetic field through the cyclotron frequency,

ωc = eB
mc (the inclusion of c is only in Gaussian units, which we will be using for now, and not

in SI units). The electromagnetic force will be treated completely non-relativistically (instant

propagation, no retardation) so that the Euler equation takes on the form

∂

∂t
v +

v

τ
= − s

2

n0
∇n+

e

m
∇Φ + ωcẑ × v. (3.6)

In equation (3.6) we have included a decay term with mean collison time, τ , that allows for a finite

lifetime of the mode due to scattering on impurities. Both the decay term and the mechnical

pressure terms will, in general, be neglected further on for simplicity. The relationship between

electrostatic potential and charge density is still governed by equation (3.3). The effect of the

magnetic field will primarily be felt in the x-y-plane and so we will let q live in this plane.

Taking the divergence (∇·) on both sides of equation (3.6), inserting equations (3.1) and (3.3)

and using the fact that ∇ · (ẑ × v) = −ẑ · ∇ × v we get

(ω2 +
iω

τ
)
n

n0
= s2q2 n

n0
+

4πe2

m
n− ωcẑ · ∇ × v. (3.7)

To find an expression for the curl of the velocity, apply ∇× from the left to equation (3.6) and

use that ∇× ẑ × v = ẑ(∇ · v)− (ẑ · ∇)v together with equation (3.1) to get

∇× v
1

i

(
ω +

i

τ

)
= ωc∇× (ẑ × v)

⇔ ∇× v = −ωωc
(
ω +

i

τ

)−1 n

n0
ẑ.

(3.8)

Combining equations (3.7) and (3.8) and multiplying through by n0
n we get
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ω

(
ω +

i

τ

)
= s2q2 +

4πe2n0

m
+ ω2

cω

(
ω +

i

τ

)−1

. (3.9)

Introducing the effective colission-corrected frequency ω̃ =
(
ω + i

τ

)
we can rearrange to get a

final dispersion relation,

ω

ω̃

(
ω̃2 − ω2

c

)
= s2q2 + Ω2

p. (3.10)

If the average collision time is large, such that ω >> 1
τ , then equation (3.10) simplifies nicely to

ω2 = s2q2 + Ω2
p + ω2

c , (3.11)

where we see that the squared frequency grows linearly with the squared magnitude of the mag-

netic field and the squared crystal momentum.

3.4 Surface Plasmons in 3D

When we introduce the edge at x = 0 we break translational invariance along the x-direction.

Let x < 0 be the space occupied by the material and x > 0 be vaccuum. We will still have plane

waves propagating along the y-z-plane, but the effects of the magnetic field, B = Bẑ, will only

be felt in the y-direction due to the transverse nature of the Lorentz force. For that reason we

will limit q to lie along the y-direction.

Equations (3.1) and (3.6) still hold, but we will now have two Poisson equations, one for

each region;

∇2Φ< = 4πen, (3.12)

and

∇2Φ> = 0, (3.13)

where the subscript < indicates that we are in the x < 0 region where our material lives and the

subscript > indicates that we are in the empty region of x > 0. With q along the y-direction

the Laplacian now has the form ∇2 = ( ∂2

∂x2 − q2).

To ensure that there is no potential to be felt infinitely far away from the material, we will

need to enforce the condition that Φ → 0 as x → ∞, and we will also need it to be bounded

deep in the material which means that as x → −∞ the potential should trend toward a finite

value. We also need to ensure that the potential and the x-component of the electric field are

continuous across the boundary.

Equation (3.13) then has a solution of the form

Φ>(x) = Φ0e−qx. (3.14)
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Equation (3.12) is non-trivial to solve because of the appearance of the function n(x) on the

right hand side. We will assume that the solutions are of an exponential form. This means that

inside the material we have two solutions, one for the homogenous equation and one particular

solution. The particular solution is eκx, for some κ, which can be either real or imaginary,

that we will solve for. If κ is real the modes that survive our boundary conditions will decay

exponentially away from the surface, and we have our localised surface modes. If κ is imaginary

then the situation is very reminiscent of that of a bulk plasmon; it acts as plane waves bouncing

off the surface, with a dispersion similar to that of bulk plasmons with q2 → q2 − κ2, as we will

see in equation (3.15) in a bit. The homogeneous solution is eqx, reminiscent of what we see

from the other side of the boundary, but with the sign of the exponent flipped because we are

in the region of negative x. It shows how the potential resulting from the charge density wave is

very evident close to the surface where the mode lives, but it gets washed out as you move into

the bulk and the potential from the alternately charged regions at the edge starts averaging out

to zero.

Inserting the particular solution in equation (3.12) gives a relation between κ and q and

applying the Laplacian operator again shows that we now have ∇2n = (κ2 − q2)n. The method

is the exact same as in section 3.2 above except for the new term, κ, arising from the fact that

the x-direction is treated differently from the y-direction. Repeating the steps of eliminating the

potential and density in equation (3.6) above leaves us with

κ2 = q2 +
1

s2

(
Ω2
p −

ω

ω̃
(ω̃2 − ω2

c )
)

(3.15)

We are interested in the surface modes and will therefore treat κ as real and positive (to keep

the pontential bounded) and so the potential has an x-dependence of the form

Φ<(x) = Φ1eqx + Φ2eκx. (3.16)

Equations (3.15) and (3.16) show that the confinement of the potential scales with q, with large

q, corresponding to short wavelength, leading to a highly confined potential. To determine the

coefficients we need to get an expression on which we can impose our boundary condition. Let us

first combine equations (3.12), (3.15) and (3.16) to express the density in terms of the potential,

n =
Ω2
p + ω

ω̃

(
ω2
c − ω̃2

)
4πes2

Φ2eκx. (3.17)

From here we can look at the x- and y-components of equation (3.6). The magnetic field mixes

the terms, so isolating vy and inserting it in the expression for vx, multiplying by 4πen0 and

recognising terms that include 4πe2n0
m = Ω2

p and rearranging leaves us with

4πen0vx =
iqΩ2

p

ω̃ − ωc
Φ1eqx + i (κω̃ + qωc)

ω

ω̃
Φ2eκx. (3.18)

Imposing our boundary conditions of continuous potential across the boundary leads to

Φ0 = Φ1 + Φ2, (3.19)
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and the condition of continuous electric field (or, equivalently, -∂Φ
∂x ) leads to

qΦ1 + κΦ2 = −qΦ0 = −q (Φ1 + Φ2) . (3.20)

These two conditions along with imposing the regular fluid dynamical boundary condition that

there should be no flow through the edge, that vx(x = 0) = 0, on equation (3.18) leads to the

expression

0 =

(
−i

Ω2
p(κ+ q)

2(ω̃ − ωc)
+ i(κω + qωc)

ω

ω̃

)
Φ2, (3.21)

which, if the term on the right is to be equal to that on the left, leads to the dispersion relation

for the surface modes,

2 (κω̃ + qωc) =
ω̃

ω

(κ+ q)Ω2
p

ω̃ − ωc
. (3.22)

This is significantly simplified when considering the case of no damping (collisionless limit) where

ω̃ = ω, and even moreso when considering the long wave-length limit1, where q << Ωp/s, in

which case equation (3.22) reduces to

ω2 − ωcω −
Ω2
p

2
= 0. (3.23)

The solutions can be written as a positive mode (assuming positive ωc, otherwise just reverse

directions) travelling along the y-direction toward increasing y, and a negative mode, travelling

toward decreasing y,

ω+ =
1

2
sgn(ωc)

[√
2Ω2

p + ω2
c + |ωc|

]
(3.24a)

ω− = −1

2
sgn(ωc)

[√
2Ω2

p + ω2
c − |ωc|

]
. (3.24b)

When the magnetic field is turned off we get degenerate modes with frequency ω = ±Ωp√
2

as

initially predicted by Ritchie [7].

Note that the frequency of the ”plus-mode” grows with increasing magnetic field strength while

the ”minus-mode” shrinks with increasing field strength, see figure 7. Given knowledge of the

parameters of the system the modes are distinguishable solely by their direction or magnitude.

This is our first glimpse of the chiral nature of the surface modes and it will be a reoccurring

phenomenon throughout this examination of the edge plasmon phenomenon.

4 Magnetoplasmons on a Semi-Infinite (Half-)Plane

In this chapter we will, similarly to chapter 3, follow the works of Fetter, references [4] and [5],

with additional steps shown, as this gives a good introduction to the new challenges that arise

from being limited to two dimensions.

1These assumptions will be made repeatedly throughout this paper.
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Figure 7: The un-signed frequencies of the 3D surface plasmon mode as a function of magnetic

field, given in units of the bulk plasmon frequency, Ωp.

Figure 8: Infinite half-space occupying the negative x-region. The dark blue indicates the edge

mode and the opaqueness/density indicates the amplitude. The plasmon mode is exponentially

confined to the edge.

Bulk magnetoplasmons in two dimensions can be treated very similarly to the bulk plasmons

in three dimensions, with the small change that the Poisson equation needs a delta function in

one direction (preferably the same direction as the magnetic field; only the part of the magnetic

field that is perpendicular to the plane will affect the behaviour of the plasmon mode), ∇2Φ =

4πenδ(z), for a plane in the x-y-plane with background dielectric constant ε = 1. Integration

across a small gap in the z-direction together with the requirement that the potential vanish

infinitely far away from the plane allows us to solve for an in-plane expression for the potential.

On either side of the disk, we just have the familiar Poisson equation,
(
∂2

∂z2 − q2
)

Φ = 0 with the

familiar solutions, Φ = Φ0e±qz, with q the in-plane wave-vector. The integration across z = 0

gives us a jump condition for the potential,

∂

∂z
Φ|0+ − ∂

∂z
Φ|0− = 4πen, (4.1)

which can be used to find the constant Φ0. Using the derivatives above and below gives us the z-

depence of the potential, Φ(z) = −2πen
q e−q|z|, which has in-plane component Φ(z = 0) = −2πen

q .

Taking the in-plane Laplacian then gives us a more easily insertable Poisson equation,

∇2
2Φ(z = 0) = −q2Φ(z = 0) = 2πnq, (4.2)

where ∇2
2 is the in-plane Laplacian. Applying the steps detailed in chapter 3.2 then yields a

dispersion relation that is strikingly similar, namely
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ω2 = Ω2
q + ω2

c + s2q2, (4.3)

where q is the in-plane wavevector and

Ω2
q =

2πe2n0

m
q, (4.4)

is the new q-dependent bulk plasmon frequency.

The case of the edge magnetoplasmons in the geometry of a two-dimensional half-plane

(infinite in the y-direction but finite in x) is covered in the same article by Fetter as described

above, [4], as well as in [5]. In the two papers he employs different methods with different

boundary conditions, and we will here briefly introduce the considerations made, the methods

used, and the results obtained.

In [4] Fetter approaches the problem of the two-dimensional half-plane very similarly to the

approach he used to get the dispersion of plasmons in the three-dimensional half-space. The

magnetic field is still pointed in the z-direction (orthogonal to the plane) and the same boundary

condition of having no velocity in the x-direction (perpendicular to the edge) near the edge is

used to lead to the final dispersion relation. Where the two cases differ is when considering the

Poisson equation, since we now have yet another limit to our charge density: it lives only on the

negative-x half. This is represented with a Heaviside step function,

∇2Φ =

(
∂2

∂x2
− q2 +

∂2

∂z2

)
Φ = 4πen(x)δ(z)Θ(−x). (4.5)

Fourier transforming the x-component of this expression gives(
−k2 − q2 +

∂2

∂z2

)
Φ̄(k, z) = 4πeδ(z)

∫ 0

−∞
dxe−ikxn(x) ≡ 4πeδ(z)n̄(k), (4.6)

which can be treated in a manner identical that of the bulk, with a jump condition akin to

equation (4.1), followed by an inverse Fourier transformation. This, however, leads a problem

for further analytical analysis.

When considering the connection between the in-plane electrostatic potential and the charge den-

sity in two dimensions, one gets a non-local relation with a kernel, Φ(x) = −4πe
∫ 0
−∞ dx

′K(x−
x′)n(x′). This kernel is the usual 2D Coulomb interaction kernel,

K(x) =
1

2

∫ ∞
−∞

dk

2π

eikx√
k2 + q2

=
1

2π
K0(q|x|), (4.7)

where k is the wavevector in the direction that has been cut off, which, in this case, is x, and

K0 is the 0th modified Bessel function of the second kind. To deal with the nonlocality of the

kernel (the fact that the potential needs ”information” about the density at all points instead

of just at the point at which we are evaluating the potential) an approximate kernel resulting

in a Coulomb interaction with longer range than usual is introduced,

K ′(x) =

∫ ∞
−∞

dk

2π

qeikx

k2 + 2q2
= 2−3/2e−

√
2q|x|. (4.8)
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This has the benefit of significantly simplifying the potential-density relation, since the new

kernel is the Green’s function of a simple operator,
[
∂2
x − 2q2

]
K ′(x − x′) = −qδ(x − x′), such

that

(∂2
x − 2q2)Φ< = 4πeqn(x) (4.9)

inside the material (x < 0) and

(∂2
x − 2q2)Φ> = 0 (4.10)

outside the material (x > 0). This has the same form as equations (3.12) and (3.13) and the

solution method is the same. Following those same steps results in a dispersion relation of the

form

ω+ =

√
2

3
sgn(ωc)

[√
3Ω2

q + ω2
c + |ωc|

]
(4.11a)

ω− = −
√

2

3
sgn(ωc)

[√
3Ω2

q + ω2
c − |ωc|

]
, (4.11b)

very reminiscent of that found in equations (3.24a)-(3.24b), but with the bulk frequency of

equation (4.4), where we also see one mode growing with increasing magnetic field and the other

decreasing with increasing magnetic field. For large fields we can expand the square root to see

that the minus mode becomes inversely proportional to the magnetic field (which we will assume

is positive),

ω−
Large field
≈ − 1√

2

Ω2
q

ωc
. (4.12)

When the magnetic field is turned off we get the degenerate relation

ω
B=0
= ±

√
2

3
Ωq. (4.13)

In [5] Fetter employs a similar, albeit slightly different, approach to the case of the half-

plane. Here he formulates the problem in terms of currents and conductivities where he imposes

a step-function behaviour on the conductivity in the x-direction rather than forcing the current

into the boundary to be 0. This causes the electron density to get an edge term, localised on

the edge via a delta function. The consequence of this is that a non-zero current flowing into

the edge builds up instead of escaping the system, such that the continuity equation is still

valid, essentially letting n(x) → n(x) + n∗δ(x). This pile-up of charge on the edge will cause a

discontinuity in the derivative of the potential, ∂Φ(x)
∂x |x=0, see figure 9. This boundary condition

will be used we we approach the problem of plasmons in the disk geometry, as the alternative

seems unphysical; we consider Hall systems, whether regular or anomalous, and so any electric

field normal to the edge must surely push charge into or out of the edge.
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Figure 9: An illustration of the potential at the edge of the material arising due to the build-up

of charge and the exponential decay outside the material.

Figure 10: A schematic illustration of the disk-plate setup.

5 The Disk System

In real life infinite systems are expensive, hard to keep clean and adequate storage is hard to

come by. Another system that rectifies this, and is suitable for practical use, is that of a two-

dimensional disk. It provides a symmetry not dissimmilar to the one-dimensional translation

symmetry (up to a phase) along the edge of the infinite half-plane, namely rotational symmetry.

In addition, it brings the advantage of being useful in circulator systems since (as the name

suggests it should) the edge loops around and meets itself. This means that in a multi-port

system, such as those discussed in chapter 1, a signal emerging from one port will traverse the

edge and, along the way, possibly meet all the other ports, contrary to the edge of a half-plane

where a signal will only potentially meet the ports in the direction of the wave-propagation.

Throughout the remainder of this paper we will consider variants of the following system: We

imagine a disk of radius R lying in the x-y-plane, with relative background dielectric constant

ε, with the possibility of having a magnetic field or Berry curvature pointing in the z-direction.

Grounded planes are placed symmetrically a distance h above and below the disk to allow for a

change in the behaviour of the Coulomb interaction. This setup is pictured in figure 10.

We assume complete rotational symmetry so, when combined with our desire to find steady-state

solutions, we let all angular and temporal dependences be of the form ei(lθ−ωt).

5.1 The Relation Between Electrostatic Potential and Charge Density

This chapter builds on the works of [6], expanding the calculations by showing more in-between

steps to make for a clearer derivation.

The disk stretches through the x-y-plane at z = 0. Above and below the disk there is no charge

and so the potential fulfills equation (3.13), with ∇2 the cylindrical Laplacian, so the Poisson
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equation can be written as

∇2Φ =
4πe

ε
n(r)Θ(R− r)δ(z), (5.1)

with Θ(r) the Heaviside step function. The charge being at z = 0 means that we can make

a ”jump-condition” for the derivative of the potential across the disk in the z-direction by

integrating a vanishingly small part across z = 0, lim
µ→0

∫ µ
−µ dz.

This gives the folowing relation that needs to be fulfilled (in CGS-units),

∂Φ

∂z
| z=0+ −

∂Φ

∂z
| z=0− =

4πe

ε
nΘ(R− r), (5.2)

where we have used that ∇2
2Φ = 0 for z 6= 0, where ∇2

2 is the in-plane Laplacian.

The next step is to try to find the z-dependence of the potential to ultimately get an in-plane

expression for the potential. Outside the disk there is no charge, so the Poisson equation can

be written as

∇2Φ(r, θ, z) =

[
1

r

∂

∂r
r
∂

∂r
+

1

r2

∂2

∂θ2
+

∂2

∂z2

]
Φ(r, z)eilθ

=

[
1

r

∂

∂r
r
∂

∂r
− l2

r2
+

∂2

∂z2

]
Φ(r, z)eilθ = 0.

(5.3)

We can expand Φ(r) as an infinite sum of Bessel function by doing a Hankel transformation.

Φ̄(p, z) =

∫ ∞
0

drrJl(pr)Φ(r, z), (5.4)

where l is the angular momentum of the relevant mode. This has the inverse transformation

Φ(r, z) =

∫ ∞
0

dppJl(pr)Φ̄(p, z). (5.5)

Inserting this in equation (5.3) and using u = pr we get

∫ ∞
0

dpp

[(
u
∂Jl(u)

∂u
+ u2∂

2Jl(u)

∂u2
− l2Jl(u)

)
p2 + u2Jl(u)

∂2Φ̄(p, z)

∂z2

]
= 0. (5.6)

The Bessel functions are the solution to the Bessel equation,

u2 ∂
2

∂u2
Jl(u) + u

∂

∂u
Jl(u) + (u2 − l2)Jl(u) = 0, (5.7)

and from this we see that the term in parentheses is equal to −u2Jl(u) and so we get

∫ ∞
0

dppJl(u)u2

[
∂2

∂z2
− p2

]
Φ̄(p, z) = 0, (5.8)

and so we must have the Φ̄ fulfilling the condition that[
∂2

∂z2
− p2

]
Φ̄(p, z) = 0. (5.9)
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This is a second order equation with solutions of exponential form. We will have different

coefficients in the two regions, z > 0 and z < 0,

z> 0 : Φ̄>(p, z) = Aepz +Be−pz (5.10a)

z< 0 : Φ̄<(p, z) = Cepz +De−pz. (5.10b)

The presence of the grounded plates means that the potential vanishes at z = ±h, which gives

us two equations for the coefficients,

Φ̄> |z=h = 0⇔ A = −Be−2ph

⇒ Φ̄>(p, z) = B
(

e−pz − e−2ph+pz
) (5.11a)

Φ̄< |z=−h = 0⇔ C = −De2ph

⇒ Φ̄<(p, z) = D
(

e−pz − e2ph+pz
)
.

(5.11b)

We want the potential to be continuous across the disk, which means that we must have

Φ̄>(p, 0) = Φ̄<(p, 0), from which it follows that B = −De2ph and so

Φ̄>(p, z) = D
(

e+pz − e2ph−pz
)

(5.12a)

Φ̄<(p, z) = D
(

e−pz − e2ph+pz
)
, (5.12b)

which can be written as one expression, the same as (5.12a), but with z → |z|. These we can now

insert into the Hankel transformed jump condition, equation (5.2). If we let there be different

materials with different dielectric constants on either side of the disk, then taking an average of

the dielectric constants ε1+ε2
2 across the disk gets us

D =
4πen̄

(ε1 + ε2)p(1 + exp(2hp))
, (5.13)

where n̄ is the Hankel transform of the radially limited density,

n̄(p) =

∫ ∞
0

drrJl(pr)n(r)Θ(R− r) =

∫ R

0
drrJl(pr)n(r). (5.14)

Inserting this in the expression for the potential on either side and setting z = 0 gives us the

in-plane potential,

Φ̄(p, z = 0) =
−4πen̄(p) tanh(ph)

p(ε1 + ε2)
. (5.15)

To recover the real-space in-plane potential we just take the inverse transform as described in

equation (5.5),

Φ(x) = −
∫ 1

0
K(x, x′)x′N(x′), (5.16)

where x = r/R is a dimensionless radial coordinate,
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N(x) =
4πeR tanh( hR)

ε1 + ε2
n(x), (5.17)

and

K(x, x′) = coth(
h

R
)

∫ ∞
0

dp tanh(p
h

R
)Jl(px)Jl(px

′). (5.18)

This kernel simplifies in either extreme limit of screening. When the screening planes are in-

finitely far away, i.e. there is no screening, then both hyperbolic tangent and cotangent approach

unity, and so we get

KUnscreened(x, x′) =

∫ ∞
0

dpJl(px)Jl(px
′). (5.19)

In the case where the screening is absolute we get a local kernel, because lim
h→0

tanh(ph/R) = p/R

and

KFullScr(x, x
′) =

∫ ∞
0

dppJl(px)Jl(px
′) =

1

x
δ(x− x′), (5.20)

where density and potential become directly proportional for any given x. This result is easy to

make sense of, both intuitively and mathematically. Mathematically, h was the vertical distance

from the plane where we chose to kill off the potential. Putting this point in the plane means

that the potential everywhere is zero except for right on top of the sources of potential, the

density. Intuitively, the screening planes affect long-range interactions more strongly than it

does close-range interactions. This is because a charge at a point x0 will see a spatially close

charge at a point x1 with the screening plates (which can be seen as mirror charges 2h vertically

from the charge at x1) comparatively far away making the potential felt at point x0 dominated

by the close charge at x1. On the other hand, it will feel the potential induced induced by

a far-away point, x2, very little, as the screening plates are comparatively close to the plane.

Therefore the average charge at x2 seen by a charge at x0 will be close the neutral. Letting the

screening plates close in on the plane makes x0 see both x1 and x2 as a sandwich of charges and

mirror charges, totalling no net charge.

6 Magnetoplasmons in a Discretized Disk

This chapter aims to provide a method with which we can, in a transparent way, apply the

boundary condition of letting charge flow into the last site in a numerically solvable way.

We will let the system be set on a lattice, with M sites in the radial direction (radius R),

rather than considering a continuous blob. I will presently assume the azimuthal direction to be

continuous, so that our lattice is, in fact, a set of concentric rings with edges a distance ∆ = R
M

from the edges of the rings immediately inside and outside the given ring. The velocity will

dictate flow of charge between rings, see figure 12.

The equations that we will we consider are the two fluid equations, the continuity equation
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(a) (b)

Figure 11: The effect of screening on the Coulomb interaction. (a) Low screening means that

interactions between charges far apart are weaker as all they see is akin to a smeared out charge

distribution that, on average, is neutral. (b) When the screening planes approach the disk plane

our test charge is barely able to make out the negative charge of the blob closest to it, while the

far charge blob is effectively non-existent as seen from the test-charge.

Figure 12: A set of M concentric circles of charged matter. Electric fields are formed and a

stream of charged matter (current) runs between each consecutive ring.
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− iωn+ n0∇ · ~v = 0, (6.1)

and the Euler equation,

− iω~v − e

m
∇Φ− ωcẑ × ~v = 0, (6.2)

where we have omitted the term proportional to the compressional wave velocity, s. This can

readily be done when in the long wave-length limit where s2

R2 is negligible compared to the bulk

frequency.

We can consider each component of the vector equation (6.2) and isolate and eliminate the

azimuthal component of the velocity (this was continuous, so we can do this before discretizing).

From the first component we get

−iωvr −
e

m
∂rΦ + ωcvθ = 0

⇔ vr =
i

ω

[ e
m
∂rΦ− ωcvθ

]
.

(6.3)

The second component gives us

−iωvθ −
iel

mr
Φ− ωcvr = 0

⇔ vθ =
i

ω

[
iel

mr
Φ + ωcvr

]
.

(6.4)

If we then insert this into the equation for the first (radial) component we get an equation

containing only n, Φ, and vr, (the angular dependence of all our quantities are assumed to be

of the form exp(ilθ)),

vr =
i

ω2 − ω2
c

[
ω∂r +

lωc
r

]
e

m
Φ, (6.5)

after multiplying through by ω2.

We can also insert our expression for vθ into the continuity equation, (6.1),

−iωn+ n0∇ · ~v = −iωn+ n0

[
∂rvr +

vr
r

+
il

r
vφ

]
= −iωn+ n0

[
∂rvr +

vr
r
− l

rω

(
iel

mr
Φ + ωcvr

)]
= 0.

(6.6)

From here on out, we will drop the r-index on the radial velocity; since the azimuthal velocity

has now been eliminated there will be no confusion and it will be less crowded when we start

adding site indices.

The, perhaps, most natural way to think of the flow of charge along the radial direction is

through the velocity that lives inbetween the sites, describing the flow from site j to site j + 1,
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vj,j+1.2 These offset ”sites” need to be treated in a way so that they can be compared to the

quantities that live on the previously constructed sites, as needed for the Lorentz force. This we

will do by connecting the velocity at a given site with the average of the velocities going into

the site and out of the site, with positive velocity going from the center of the disk to the edge.

In this way, the velocity at site j will be

vj =
vj−1,j + vj,j+1

2
. (6.7)

It is natural to think of the potential as living on the sites since the potential is generated by

the charge density living on the site. The velocity and the radial derivative of the potential

are most naturally defined as living on the bonds between sites. Such a bond-derivative will be

done with the standard discretized form of the derivative, ∂
∂rq|j,j+1 =

qj+1−qj
∆ . Equation (6.5)

therefore has a quantity living on the bonds between sites on the LHS and a quantity living on

the bonds (derivative of potential) and one living on-site (potential) on the RHS. For this reason

we will make use of averages when we mix bond and on-site terms, so that for a point in the

bulk, j 6= M , we will have

vj,j+1 = i
e

m

1

ω2 − ω2
c

(
ω

Φj+1 − Φj

∆
+
lωc
2

(
Φj+1

rj+1
+

Φj

rj

))
, (6.8)

and, using equations (6.8) and (6.7) we can get an expression for the on-site velocity,

vj =
vj−1,j + vj,j+1

2
= i

e

m

1

ω2 − ω2
c

[
ω

Φj+1 − Φj−1

2∆
+
lωc
4

(
Φj+1

rj+1
+ 2

Φj

rj
+

Φj−1

rj−1

)]
. (6.9)

Although it is not needed quite yet, for consistency we will take a natural candidate for differ-

entiation of an on-site quantity Q at site j to be

∂

∂r
Qi =

Qi+1 −Qi−1

2∆
, (6.10)

while the onsite velocity derivative will be taken to be the difference between flow into and out

of a site,

∂vj
∂r

=
vj,j+1 − vj−1,j

∆
= i

e

m

1

ω2 − ω2
c

[
ω

Φj+1 − 2Φj + Φj−1

∆2
+
lωc
2∆

(
Φj+1

rj+1
− Φj−1

rj−1

)]
. (6.11)

We see that, although we did not impose it directly, the term in parentheses in equation (6.11)

is already on the form of equation (6.10).

Inserting equations (7.14) and (6.11) into equation (6.6) gives

2When a velocity appears with a site index it is implicit that it is velocity in the radial direction, as we treat

the angular direction continuously and not discretely.
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0 = −iωnj + n0 (
vj,j+1 − vj−1,j

∆
+

(
1

rj
− lωc
rjω

)
vj )− in0el

2

ωmr2
j

Φj ⇔

−iωnj + i
n0e

m

1

ω2 − ω2
c

[(
ω

Φj+1 − 2Φj + Φj−1

∆2
+
lωc
2∆

(
Φj+1

rj+1
− Φj−1

rj−1

))]
+i

n0e

rjm

1

ω2 − ω2
c

(
1− lωc

ω

)[
ω

Φj+1 − Φj−1

2∆
+
lωc
4

(
Φj+1

rj+1
+ 2

Φj

rj
+

Φj−1

rj−1

)]
− in0el

2

ωmr2
j

Φj = 0

(6.12)

Multiplying the above equation by −i(ω2−ω2
c )

4πeR tanh(h/R)
1+ε and using our dimensionless radial

coordinates, x = r/R and dx = ∆/r, we can rewrite it slightly to

−(ω2 − ω2
c )ωNj + Ω2

0

[(
ω

Φj+1 − 2Φj + Φj−1

dx2
+
lωc
2dx

(
Φj+1

xj+1
− Φj−1

xj−1

))]
+

1

xj
Ω2

0

(
1− lωc

ω

)[
ω

Φj+1 − Φj−1

2dx
+
lωc
4

(
Φj+1

xj+1
+ 2

Φj

xj
+

Φj−1

xj−1

)]
− (ω2 − ω2

c )
Ω2

0l
2

ωx2
j

Φj = 0,

(6.13)

where Nj = 4πeR tanh(h/R)
1+ε nj , Ω2

0 = 4πe2n0 tanh(h/R)
mR(1+ε) and the connection between particle density

and electromagnetic potential is given by equations (5.16)-(5.18).

6.1 On the Edge

It is on the edge that we want to impose our boundary condition, disallowing flow out of the

last site, vM,M+1 = 0. To do this we can just adjust equation (6.13) for the last site to reflect

this change. Certain averages and derivatives will now look different. Setting these ”beyond-

the-edge” terms to 0 gives

−(ω2 − ω2
c )ωNM + Ω2

0

[
ω
−ΦM + ΦM−1

dx2
− lωc

2dx

(
ΦM

xM
+

ΦM−1

xM−1

)]
+

1

xM
Ω2

0

(
1− lωc

ω

)[
ω

ΦM − ΦM−1

2dx
+
lωc
4

(
ΦM

xM
+

ΦM−1

xM−1

)]
− (ω2 − ω2

c )
Ω2

0l
2

ωx2
j

Φj = 0.

(6.14)

Equations (6.13) and (6.14) together with equations (5.16) and (5.18) show the behaviour of sin-

gle components of the density ”potential”, N , as a homogeneous eigenvalue equation, A ·N = 0.

The allowed modes are those that ensure that the determinant of the combined matrix, A,

vanishes. These modes have an associated eigenvector, N, that describes the density potential,

as given by equation (5.17), at every site. When solving for the eigenvectors of equations (6.13)

and (6.14) for different parameters we risk getting different global phases. For that reason it is

not educational to compare a difference in sign between cases. Rather, it is the relative shape

35 page 35 of 62



Mads A. Jørgensen Chiral Berry Plasmons in a Disk October 17, 2017

of the edge mode that is of interest.

Before we can proceed to the numerical solution for the plasmon modes, we need to discretize

the kernel of the potential-density relation.

6.2 Discretization of the Kernel

As is to be expected for the Coulomb interaction, k(x, x′) blows up when x′ → x, i. e. when two

charged density elements lie on top of each other. To circumvent this in the numerical calcula-

tion, we use a smearing procedure; each small discretized density element does not correspond

to a single electron, but rather a distribution of electrons withing the element, and electrons

interacting within the same density element would correspond to x = x′. For that reason we

will approximate the ”diagonal” parts of the kernel by assuming that the ”density”, N(x′), does

not change drastically for values of x′ in a small region close to x as compared to the kernel.

The diagonal will be assigned an averaged value across the soft divergence (integrating across

the divergence yields a finite value),

K̃(x′ = x) =
1

dx

∫ dx
2

− dx
2

d(∆x)K(x̄,∆x), (6.15)

where x̄ = x+x′

2 , ∆x = x− x′, and dx = 1
M is the grid-spacing.

This approach works wonderfully when considering the two cases of extreme screening, but

when considering arbitrary screening it may be necessary to employ the well-known asymptotic

behaviour of the Bessel functions of the first kind to separate the p-integral in two parts,

K(x, x′) = Kbody(x, x
′) +Ktail(x, x

′) = coth(
h

R
)

∫ C

0
dp tanh(p

h

R
)Jl(px)Jl(px

′)

+ coth(
h

R
)

∫ ∞
C

dp tanh(p
h

R
)

[√
2

πpx
cos(px− Lπ/2− π/4)

√
2

πpx′
cos(px′ − Lπ/2− π/4)

]
,

(6.16)

where C is an appropriate cut-off, such that the asymptotic behaviour of the Bessel functions

has set in and the substitution is valid. Expressing Ktail in terms of x̄ and ∆x simplifies the

expression greatly,

Ktail(x̄,∆x) = coth(
h

R
)

∫ C

0
dp tanh(p

h

R
)

(
pπ

√
x̄2 − ∆x2

4

)−1 [
cos(p∆x) + cos(2px̄− Lπ − π

2
)
]
.

(6.17)

In all numerical computations using this cut-off method the cutoff has been set at C = 2 · 105.
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6.3 Relation to the Case of the Infinite Half-Plane

Although the two cases are different it is still possible to draw parallels between the results

for the infinite half-plane and the disk. During the discussion above we have assumed that the

disk has an angular symmetry such that f(r) = f(r)eilθ which results in the angular derivative

always being of the form 1
r
∂
∂θ →

il
r . The 1

r comes naturally from the cylindrical nature of our

coordinate system but is not part of the actual derivative. In the case of the infinite half-plane

we considered a system in which we had a translational symmetry along the y-direction, each

point along the y-axis differing only from the next by a phase eiq∆y, resulting in the spatial

derivative along the y-direction to be of the form ∂
∂y → iq.

Conceptually one can imagine that a very large disk, as compared to the wavelength, so large

that there is no appreciable curvature to the edge during a full wavelength of the mode, would

exhibit behaviour similar to that of an infinite half-plane. This corresponds to modes with large

angular momenta.

The angle θ goes from 0 to 2π as we go around the perimeter of the disk. The circumference of

a disk of radius R is 2πR, and so we can imagine that if we were to map the half-plane to the

disk using y as the coordinate around the perimeter of the disk, we could use the small angle

approach (a full wavelength on a very large disk traces out a small angle), sin(θ) = sin( yR) ≈ y
R .

This goes from 0 to 2π as we go all the way around the disk (y goes from 0 to 2πR), just as θ

does.

Both phases, lθ and qy, go from 0 to 2π × integer depending on how many wavelengths we

sweep out. From the discussion above we can now make the rough estimation that lθ ≈ l( yR) ≈ qy
for large l, such that l ≈ qR.

Alternatively, one can just compare the wavelengths of the two systems; on the half-plane,

the wavelength is λplane = 2π
q and on the disk it the circumeference of the disk divided by the

number of wavelengths we fit on it, λdisk = 2πR
l , which means that we will have q ≈ l

R . This

comparison is most accurate when λdisk
R << 1.

6.4 Results for the Magnetoplasmon - Density Profile, 3D Profile and Dis-

persion

We will in general use M = 160 sites, meaning we have modelled the disk as consisting of 160

concentric rings. From this we can find the ground state modes, going either way around the

disk, and see how they evolve with increasing angular momentum. Writing all frequencies in

units of the bulk frequency, Ω0, we see in figure 13a that in the limit of no magnetic field the

dispersion for large l has a shape similar to that of the half-plane, ω± =
√

2l
3 Ω0, as predicted

by equation 4.13 , where we have let Ωq →
√
lΩ0, as argued in chapter 6.3 above, though there

is a discrepancy between the results. This discrepancy is discussed in chapter 7.4, where it is

argued that the cause may be the difference between using the local kernel approximation and

the exact kernel.
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(a) The zero-field (ωc = 0) dispersion of the now degenerate groundstate, along with the line

showing ω/Ω0 =
√

2
3L. Note that the plot points of the two modes overlap because of this

degeneracy.

(b) The ground state energies of the two counterdirectional modes, ω+ and ω− for different

angular momenta at a magnetic field corresponding to ωc/Ω0 = 1.

Figure 13: The dispersion of the ground state of the two modes in different cases, plotted against

the abolute value of the angular momentum, L = |l|.
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(a) Density profile for l = 1. (b) Density profile for l = 3.

(c) Density profile for l = 10.

(d) 3D plot of the density for the first excited

plus mode for l = 3.

Figure 14: (a)-(c):The density profiles for the three lowest plus modes for (a) l = 1, (b) l = 3

and (c) l = 10 at ωc
Ω0

= 2.Note that the first two points are off in (a). This may be due to the

potential being linear at small x for l = 1 (this is described in more detail in chapter 7.2). (d)

3D plot of the density of the first excited plus mode with l = 3, ωc
Ω0

= 2. All frequencies are

measured in units of Ω0.

Turning on the magnetic field, we get for ωc/Ω0 = 1 and no screening, h/R = 0, the evolution

seen in figure 13b. We see that the splitting, the chirality, of the ground state stays somewhat

constant (although slightly decreasing) with increasing angular momentum. For ωc = Ω0 and

the lowest angular momentum considered, l = 1, we get the splitting to be ∆ω = ω+−abs(ω−) =

0.92Ω0. Comparing this to the result from the infinite half-plane gives, as predicted by equations

(4.11a) and (4.11b) with ωc = Ω0, ∆ω = 2
√

2
3 ωc ≈ 0.94Ω0. Qualitatively this looks quite similar

to what we might expect but the decreasing splitting may be another consequence stemming

from the use of the exact kernel as opposed to the approximate kernel that was used to derive

the result in equations (4.11a) and (4.11b).

Figure 14 gives an overview of the evolution of the density near the edge as we go to higher

angular momenta and higher modes of excitation for ωc
Ω0

= 2. Examining the density profiles of

the few lowest modes we see that increasing the angular momentum, aside from just fitting in l
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full wavelengths around the perimeter of the disk, pushes the mode toward the edge, decreasing

the decay length and thereby increasing the confinement. This is to be expected based on the

x-dependence of the potential of the modes of the half-space and half-plane of chapters 3.4 and 4,

for example through equation (3.16), and the connection between l and q as discused in chapter

6.3. Along the same lines, higher modes tend to delocalize the state, increasing the amplitude

toward the center of the disk. Each higher mode needs to fit in an additional node, so that

for a mode n, with n = 1 being the ground state, there are n − 1 nodes in the density in the

radial direction. Figure 14d shows how a snapshot of the density field of the entire disk looks

for the first excitation above the ground state of the l = 3 mode. Note that the nodal points

stay nodes all the way around the disk. It is important to note the shortcomings of the model

however, because a resolution of 160 radial points may not be conducive to an examination of

cases where l ≈ 50− 60. When approaching angular momenta so large that the density changes

rapidly near the edge because of the stricter confinement, for example when considering a highly

excited mode at large angular momentum, one has to make sure that the resolution used is dense

enough to reflect this.

The main topic of this paper will be a different kind of plasmons, the framework for which

will be introduced below.

7 Anomalous Berry Plasmons in Disk Geometry

When you have a material with non-zero Berry curvature it is possible to realize edge states

similar to those of the magnetoplasmons, due to the transverse nature of the anomalous veloc-

ity. If the material is two-dimensional and the parameter from which we get the curvature is

momentum, then the Berry curvature vector, as given by equation (2.14), points out of plane,

enabling us to realize an anomalous Hall system with the charge pushed to the edge forming a

collective excitation. The shifting positive and negative net charge along the edge causes electric

fields to form orthogonal to the equipotential lines, and so parallel to the edge, which in turn

causes shifting orthogonal anomalous velocity into or out of the edge. The result is that the

negative charge at the ”tail” of one wavefront jumps back to the front of the one behind it (see

figure 15), or vice versa, causing the wave propagation to speed up or slow down, respectively.

This chiral behaviour arises from the front of the wavefront ”sucking” in charge from the tail

ends of the nearest adjacent wavefronts, so to speak. In this chapter we will try to establish the

basic framework for these collective excitations on a disk.

7.1 The system

The system to be examined here is, like that for the magnetoplasmon, that of a two dimensional

disk of charged particle-soup on a grid of oppositely charged background, with angular symmetry

(such that a spatially dependent quantity f will be of the form f(~r) = f(r) exp(ilθ)). The

electron density is the sum of the unperturbed density, n0, and the perturbation, denoted n.

40 page 40 of 62



Mads A. Jørgensen Chiral Berry Plasmons in a Disk October 17, 2017

(a) (b)

Figure 15: The workings behind the ”up-stream” and ”downstream” directions caused by the

presence of outward pointing Berry curvature and the resulting anomalous velocity. The anoma-

lous velocity is parallel to the equipotential lines and the direction is given by the arrows. The

movement of negatively charged density elements causes the wavefronts to move to the left, mak-

ing the left moving mode flow downstream (faster) and the right-moving mode flow up-stream

(slower). (a) The workings of the anomalous contribution to the propagation of plasmon modes

in relation to the crystal. (b) 2 snapshots of the wave fronts at times t1 and t2 (t2 > t1).

The solutions that we search for will be steady-state solutions (all transient behaviour will be

gone), such that our two governing equations for individual conduction band electrons, the

continuity equation and the Euler (force) equation, can be written as

−iωn+ n0∇ · v = 0⇔ (7.1)

and

− iω p

m
− e

m
∇Φ = 0. (7.2)

In our model we will not be considering the motion of individual electrons. Instead we will be

concerned with the associated density fields, denoted by a bar, Q. Such a density field is gotten

by integrating across the phase space density, f(r,p, t), so that

Q =
∑
i

∫
d2pQ(r,p)fi(r,p, t)/(2π~)2, (7.3)

where i runs over the different energy bands.

Because of the nature of the anomalous velocity we also have take into account the electron

transport of the valence band, as seen in the example of the one-dimensional insulator. If the

chemical potential lies in the lower part of the conduction band we will have some conventional

current from the conduction electrons and some anomalous current from both the valence and

conductance electrons (this will only make a small contribution and if we only have those two

bands it will have opposite sign because the Berry curvature summed over all bands is zero).

The associated equations for the density fields are
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−iωn+∇ · v = 0⇔

−iωn+

[
1

r
vr +

∂

∂r
vr +

il

r
vθ

]
= 0

(7.4)

and

− iω p

m
− (n0 + n)

e

m
∇Φ = 0, (7.5)

where v and p are the velocity and momentum density fields, respectively.

We only want to consider the first order corrections, so terms like n∇Φ will be discarded as

they are second order in the perturbation.

We can write the components of equation (7.5) individually to get expressions for the com-

ponents of the momentum. The radial component gives

−iωpr
m
− n0

e

m

∂

∂r
Φ = 0⇔

pr
m

= i
n0e

mω

∂

∂r
Φ

(7.6)

while the angular component gives us

−iωpθ
m
− n0

eil

mr
Φ = 0⇔

pθ
m

= − n0el

mωr
Φ.

(7.7)

Given the presence of non-zero Berry curvature in our material, we get anomalous terms that

are just the combinations of equations (2.36) and (7.3),

va =
eF
~
∇Φ× ẑ, (7.8)

with F =
∑

i

∫
d2pΩ(p)fi(r,p, t)/(2π~)2 (called the Berry flux) and we have assumed that

1
~
∂εn(k)
∂k = p

m . Since F always appears accompanied by the induced electric field, ∇Φ, the first

order contribution comes from the equilibrium phase space density, f 0
i .

The individual components of the velocity field are of the form

vθ =
pθ
m

+ va,θ = − n0el

mωr
Φ− eF

~
∂

∂r
Φ (7.9)

and

vr =
pr
m

+ va,r = i
n0e

mω

∂

∂r
Φ +

ileF
~r

Φ, (7.10)

where, again, we have assumed that 1
~
∂εn(k)
∂k = p

m .

Straight insertion of these into equation (7.4) shows that the anomalous velocity has no effect

on the bulk of the material where there are no edges to be concerned about. This is because
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the continuity equation is concerned only with the relation between what runs into and what

runs out of a given point. Adding a term to the velocity that contains the transverse electric

field (derivative of the potential in the direction normal to the component in question) does not

cause a pile-up in the bulk. It can, however, cause a pileup at the edge.

Inserting equation (7.9) into equation (7.4) gives us an equation containing only quantitites

that we intend to discretize,

− iωn+

[
1

r
vr +

∂

∂r
vr +

il

r
vθ

]
= −iωn+

vr
r

+
∂vr
∂r
− i l

2n0e

mωr2
Φ− i leF

~r
∂

∂r
Φ = 0. (7.11)

7.2 Discretization of the Berry Plasmon

The discretization procedure will resemble that of the discretization of the magnetoplasmon

case, so we will merely make a summary of the points to consider.

We treated the azimuthal direction continuously, eliminating all angular components of the

velocity, vθ, in equation (7.11) above, which is the equation that we wish to discretize. We cut

the disk, of radius R, up into M concentric rings (labelled with an index j), with neightbouring

rings spaced a distance ∆ = R/M apart. We picture certain quantities living on the sites. These

are the density, nj and the potential induced by the density, Φj . On the bonds between the

sites live the electric field, proportional to the radial derivative of the induced potential, and the

radial velocity flowing into site j from site j − 1, vj−1,j .

Equation (7.11) consists of quantities both on-site and on the bonds. Therefore we need to

evaluate on-site versions of the velocity by taking averages of the flow into and out of the site

using equation (6.7). Equation (7.10) has the velocity living on the bonds between sites on the

LHS and the potential and its derivative on the RHS. We will again make use of averages of the

on-site potential when considering the bond velocity. When considering the derivative of the

potential on a given site j, then we will be using equation (6.10), such that

∂Φj

∂r
=

Φj+1 − Φj−1

2∆
. (7.12)

Finally we want to impose the boundary condition that current is allowed to run into the last

site, but not out of the disk, so that vM,M+1 = 0.

Starting from equation (7.10) and averaging the potential, the bond velocity flowing from

site j into site j + 1 becomes

vj,j+1 = i
n0e

mw

Φj+1 − Φj

∆
+ i

elF
2~

(
Φj+1

rj+1
+

Φj

rj

)
. (7.13)

The on-site velocity at site j can be determined using equation (6.7),

vj =
vj,j+1 + vj−1,j

2
= i

n0e

mω

(Φj+1 − Φj−1)

2∆
+ i

elF
4~

(
Φj+1

rj+1
+ 2

Φj

rj
+

Φj−1

rj−1

)
. (7.14)
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and the on-site derivative can be found just as in equation (6.11),

dvj
dr

= i
n0e

mω∆2
(Φj+1 − 2Φj + Φj−1) + i

elF
~

(
Φj+1

rj+1
− Φj+1

rj−1

)
. (7.15)

Now we have all the ingredients for equation (7.11) and putting all together gives us an equation

valid in the bulk,

−ωnj +
n0e

mω

Φj+1 − Φj−1

2∆rj
+
elF
4~rj

(
Φj+1

rj+1
+ 2

Φj

rj
+

Φj−1

rj−1

)
+

n0e

mω∆2
(Φj+1 − 2Φj + Φj−1) +

elF
2~∆

(
Φj+1

rj+1
− Φj−1

rj−1

)
− l

2n0e

mωr2
j

Φj −
elF
~rj

Φj+1 − Φj−1

2∆
= 0.

(7.16)

For large r (that is not on the edge) we see that the anomalous part vanishes. This is so because

when rj/∆ >> 1 we have

elF
4~rj

(
Φj+1

rj+1
+ 2

Φj

rj
+

Φj−1

rj−1

)
≈ elF

~r2
j

Φj , (7.17)

and

elF
2~∆

(
Φj+1

rj+1
− Φj−1

rj−1

)
=
elF
2~∆

(
rj(Φj+1 − Φj−1)−∆(Φj+1 + Φj−1)

r2
j −∆2

)

≈ elF
~

(
Φj+1 − Φj−1

2∆rj
− Φj+1 + Φj−1

2r2
j

)
≈ elF

~

(
Φj+1 − Φj−1

2∆rj
− Φj

r2
j

)
,

(7.18)

which causes all terms proportional to F to vanish.

Now we want to let vM,M+1 = 0 and evaluate equation (7.11) on site M . Combining all our

ingredients with the above condition gives us an equation valid on the edge,

−ωnM +
n0e

mω

ΦM − ΦM−1

2∆rM
+

elF
4~rM

(
ΦM

rM
+

ΦM−1

rM−1

)
+

n0e

mω∆2
(−ΦM + ΦM−1)

+
elF
2~∆

(
−ΦM

rM
− ΦM−1

rM−1

)
− n0el

2

mωr2
M

ΦM −
elF
~rM

(
ΦM+1 − ΦM−1

2∆

)
= 0,

(7.19)

where rM = R, but we have kept the subscript for clarity and ease of transition between the

expressions.

Multiplying through by 4πeR tanh(h/R)
1+ε (and ω) and introducing the dimensionless radial co-

ordinate, x = r
R , the density with dimensions of potential, N , and the frequency Ω0, where

Nj =
4πeR tanh(h/R)

1 + ε
nj , (7.20)

Ω2
0 =

4πe2n0 tanh(h/R)

mR(1 + ε)
(7.21)
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and the new Berry frequency,

ΩB =
4πe2 tanh(h/R)

~R(1 + ε)
F , (7.22)

we get for the bulk,

−ω2Nj + Ω2
0

Φj+1 − Φj−1

2dx · xj
+
lΩBω

4xj

(
Φj+1

xj+1
+

Φj

xj
+

Φj

xj
+

Φj−1

xj−1

)
+

Ω2
0

dx2
(Φj+1 − Φj − Φj + Φj−1) +

lΩBω

2dx

(
Φj+1

xj+1
− Φj−1

xj−1

)
− l

2Ω2
0

x2
j

Φj −
lΩBω

xj

Φj+1 − Φj−1

2dx
= 0,

(7.23)

and for the edge,

−ω2NM + Ω2
0

ΦM − ΦM−1

2dx · xM
+
lΩBω

4xM

(
ΦM

xM
+

ΦM−1
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)
+

Ω2
0

dx2
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+
lΩBω

2dx

(
−ΦM

xM
− ΦM−1
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)
− Ω2

0l
2

x2
M

ΦM −
lΩBω

xM

(
ΦM+1 − ΦM−1

2dx

)
= 0.

(7.24)

We expect there to be no anomalous contribution in the bulk as mentioned earlier. It seems,

however, that there is a contribution near the center where the appoximations made in the

above chapters do not hold, in regions where ∆
rj
<< 1 is not true. To ease concerns over the

legitimacy of the discretization we will below try to demonstrate what happens near the center

of the disk.

We will focus solely on the terms that are proportional to Ω, and by extension, F , in this

part, so let us start by rewriting them as follows,

cΩ

[
1

4rj

(
Φj+1

rj+1
+ 2

Φj

rj
+

Φj−1

rj−1

)
+

1

2∆

(
Φj+1

rj+1
− Φj+1

rj−1

)
− Φj+1 − Φj−1

2∆rj

]
= cΩ

1

r2
j

[
1

4

(
Φj+1

1 + ∆
rj

+ 2Φj +
Φj−1

1− ∆
rj

)
+

rj
2∆

(
Φj+1

1 + ∆
rj

− Φj+1

1− ∆
rj

)
− rj

2∆
(Φj+1 − Φj−1)

]
,

(7.25)

where cΩ = n0elΩ
~ and we have used that rj+1 −∆ = rj = rj−1 + ∆.

Due to the symmetry of the system the potential is always 0 at the center of the disk. It is

connected to the two Bessel functions through equations (5.16) and (5.17) and (5.18). The

Bessel functions at argument 0 go as l’th order polynomials, Jl(x)|x≈0 ∝ xl. This means that

for large l the potential is essentially flat and equal to 0 near the center. The worst case scenario

we could imagine is the one where the potential is linear near the center, Φj = Arj = A∆j,

for j/M << 1, which seems to happen for l = 1 based on the zero-field numerical results,

see B.2. Let us now examine what happens for j=1 in this scenario. In this case potential

near the center fulfills Φj−1 = 0 and, by assumption, approaches this value linearly, so that

lim
j→1

Φj−1

1− ∆
rj

= lim
j→1

A∆(j−1)

1− 1
j

= A∆ = Φ1 and Φ2 = 2Φ1. With these relations we can now write
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cΩ
1

∆2

[
1

4

(
Φ2

2
+ 2Φ1 + Φ1

)
+

1

2

(
Φ2

2
− Φ1

)
− 1

2
(Φ2 − 0)

]
= cΩ

1

∆2

[
Φ1 +

1

2
(Φ1 − Φ1)− Φ1

]
= 0,

(7.26)

which shows that there is no anomalous contribution at the center for l = 1. For larger l the

potential is very flat and essentially zero near the center, and so providing no anomalous terms

before the approximation starts to be applicable.

7.3 Numerical Results for the Anomalous Berry Plasmon

Figure 16: The density profiles of the first few Berry plasmon modes for F = 1 and l = 1

(left)and l = 30 (right). The fast modes for l = 30 each have a ”shoulder” that shows that it is

merging with the bulk, ceasing to be an entirely confined edge mode.

When solving for the anomalous Berry plasmon modes using the discretization scheme outlined

above we used a grid of M = 160 points to simulate our set of concentric circles. As a standard

we will be using a disk of radius R = 5 ·10−6m, with unperturbed carrier density n0 = 1016m−2,

with vacuum above and below, so that ε = 1, and with a plasmon mass m = 0.03me, with me

being the electron mass. This allows us to find the eigenmodes and corresponding densities,

yielding results similar to those of the magnetoplasmon case; we still see the confining effects of

high angular momentum, the delocalizing (less confining to the edge) effect of exciting higher

modes and the nodes that follow from excitations beyond the ground state. These features are

displayed in figure 16 where the density profiles are shown for different excitations at angular

momenta l = 1 and l = 30. New to the Berry plasmon is the advent of the merge between

the fast edge mode and the bulk mode above a certain threshold, as predicted by Song and

Rudner[11] for the infinite half-plane. By utilizing the local kernel approximation, they predict

that the threshold frequency for the infinite half-plane is given by ωthreshold = ~n0√
2m|F| , as found

by setting the frequency of the mode equal to the bulk frequency for a given q. Using the physi-

cal quantities above, together with F = 1, the threshold frequency becomes ωth = 2.73 · 1013Hz,

which yields a corresponding angular momentum of around l ≈ 7 when comparing this to the

dispersion in figure 18a, where Ω0 = 1.03 · 1013Hz. This merging manifests itsef as the bump
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in the density profile of the fast modes. It is especially evident in the density profile of the fast

ground state mode; It has a peak before the edge of the disk and no longer behaves monotoni-

cally as it was wont to do before the merge.

Contrary to the case of the magnetoplasmons where the splitting was predicted to be con-

stant (equations (4.11a)-(4.11b)) we see from figure 18a that the gap grows with the angular

momentum and almost closes for low l (l = 0 has not been examined). This is to be expected

as the anomalous terms never show up in equations (7.23) and (7.24) without a factor of l. The

implicit dependence of the kernel on the angular momentum and that one term proportional to

l2 make the substitution of ΩBl to some new variable impractical, but nevertheless the splitting

rises almost linearly with l, see figure 24 in appendix B.1.

The modes are highly dependent on the amount of screening done by the plates, both in

the absolute energy of the plasmon modes, but also in their dispersions. Figure 19 shows the

evolution of the degenerate ground state mode for F = 0 as the screening is varied. As the

screening increases (h/R becomes smaller) the value of the lowest plasmon frequency increases

in units of Ω0, but decreases in absolute terms (note that Ω0 scales with screening). This is

indicative of the weakening of the electron long-range interaction. Below, in figure 17, we will

see the manifestation of this in the wave-forms of these screened modes, with the caveat that

this does not provide a full picture of the physics that would realistically be in play at this level

of screening.

That the energy increases with the stiffness of the medium is a result that one might intuitively

expect. Additionally, when the disk is fully screened and the interaction becomes local, the

induced electric field between the concentrations of positively and negatively charged areas on

the edge of the disk is quenched, and so the anomalous term, proportional to E×Ω, no longer

causes either direction around the disk to be favoured, thereby killing the chirality of the modes

as seen from the almost complete lack of splitting in figure 18b.

Furthermore, when the disk is subjected to full screening the particles behave like billiard

balls, only exchanging momentum on impact. The linear dispersion of the fully screened (local)

kernel can be explained through the following non-rigorous argument that begins with the com-

bination of the continuity and Euler equations (equations (3.1) and (3.2)) in the zero-field, long

wavelength limit,

ω2n = −en0

m
∇2Φ. (7.27)

In q-space, ∇2 goes as q2 while, in 2 dimensions, Φ goes like q−1, as argued in chapter 4 right

after equation (4.1). This leads to a dispersion that goes as a square root, ω ∝ √q. When

the potential completely screened and becomes local in real space, being proportional δ(x− x′),
then it is constant in fourier space. This leads to a linear dispersion, ω ∝ q, as we see in figure
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(18b). Experimental study of a screened plasmon system has been shown to yield a similar linear

dispersion [12]. It is important to note than in this limit we ought to include the previously

discarded pressure term containing s2. Since it affects the dispersion linearly when there is no

edge, as seen in equations (3.11) and (4.3) these two effects compete in this limit, whereas before,

for small l or q, a square root evolution beat out a linear evolution for comparable prefactors.

In this case the Coulomb interaction and the pressure term are on the same footing in the Euler

equation, both being linear in n and go (at least in the absence of an edge) as q2, so that the

s-term will enter the dispersion through a modification to the slope. This can be seen by noting

that, since the density and potential are directly proportional, we will get a term in the Euler

equation of the form −
(

Ω2
0 + s2

R2

)
∇2n.

For purely demonstrative purposes, the wave-forms of these fully screened modes are shown

in figure 17. These are just to show how changing the behaviour of the Coulomb interaction

affects the density distribution and is not to be taken as quantitative results to be compared

with others. To get these, h/R = 0.0001 was used for the bulk and Berry frequencies, as these

would be killed off if we set h/R = 0 directly. On the other hand, an actual delta function

was used as kernel to calculate the wave-forms. This is reasonable when h/R << l−1, as it

is in this case. To faithfully model an, at least slightly, realistic system, one should keep the

pressure term as discussed. With this in mind, we see that, contrary to what we have seen

previously, the maximal densities appear not on the edge, but in the bulk (with the exception

of the groundstates of the l = 1). Furthermore, it is apparent that the charge pile-up on the

edge, that we explicitly allowed through the boundary condition, seems to not happen when the

Coulomb force is local. The explanation for this is probably two-fold: The first is an extension

of the explanation for why the chiral splitting disappears for a fully screened Berry plasmon.

When the Coulomb interaction is screened, then any displacement of charge is not felt by the

surrounding charges and therefore no potential is induced. This means that there is no transverse

current (the anomalous velocity is proportional to E×Ω) to push charge into the edge, which

ought to alter the charge distribution near it. However, we still see charge pushed into the

edge, even when we turn off any chirality-inducing field (see figures 25 and 26 in the appendix),

so this cannot be the full reason. The second is that the electrons (charge elements) become

”friendlier” to each other as the mutual repulsion is weakened, possibly making them less likely

to push each other outward from the center.

7.4 Comparison of the Exact and Approximate Kernels

As we saw from figure 13a, and can see from figure 21, the correspondence between the dispersion

for the disk and for the infinite half-plane is not astounding, even though there is a resemblance.

To try to get a better agreement we will compare the disk dispersion with that of the infinite

half-plane using the zero-field modes, numerically calculated with the exact kernel as given

in equation 4.7 and equations (22a-b) of Fetter’s first paper on the half-plane [4], where (the
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Figure 17: The density profiles of the first few fully screened Berry plasmon modes for F = 1

and l = 1 (left)and l = 30 (right). Note that on the right the two ground states and the two

first excited modes lie on top of each other.

(a) The dispersion of the fast and slow ground

state modes of the unscreened Berry plasmon.

The splitting allows for determination of the

unique counter-propagating modes.

(b) The dispersion of the fast and slow ground

state modes of the fully screened ( h
R = 0.0001)

Berry plasmon. The splitting is likely due to

the finite screening used.

Figure 18
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Figure 19: Value of the degenerate ground state modes for various amounts of screening in the

no-field, no Berry flux case with l = 1. Note the offset of the second axis. The two graphs show

the absolute frequency (blue) and the relative frequency as compared to the screening-dependent

bulk frequency (orange).

medium lies in the negative half of the x-y-plane)

Φ(x) = −4πe

∫ 0

−∞
dx′ L(x− x′)n(x′) (7.28a)

L(x) =
1

2

∫ ∞
−∞

dk

2π

eikx√
k2 + q2

=
1

2π
K0(q|x|), (7.28b)

and using the same smearing procedure as detailed in chapter 6.2. Here we have renamed

the kernel in the hopes of minimizing confusion with the Bessel function. The method of

discretization is wholly analogous to that detailed in chapter 7.2 but in a half-plane geometry

with translational invariance (up to a phase) along y (as counterpart to the angular direction),

rather than a disk geometry. The plane will have a depth of a few disk radii to ensure that the

edge modes have decayed properly to capture the full behaviour of the mode.

The resulting dispersion for q ≈ l/R corresponding to angular momenta l = 1...30 is plotted

alongside the dispersion resulting from the approximated kernel and the disk plasmons, which

utilize the exact kernel for that geometry, in figure 21, all for both F = 0 and F = 1. We

see that the dispersion resulting from the exact kernel much more closely resembles the disk

scenario when there is no net Berry flux, but that there is still a discrepancy when the Berry

flux is added, the discrepancy being smaller for small angular momenta. This phenomenon is

contrary to what one might have expected and further study is needed to determine the cause.

That the local kernel approximation results in lower energy modes, and the difference scaling

with (anguar) momentum, can be explained directly through the shape of the local kernel

potential; it sacrifices close range interaction strength for long-range interaction, essentially

stretching and flattening the potential, see figure 20. This means that when we are in the

long wavelength regime, where we have small l or q, the distance between the induced charge

valleys and peaks is big and so the long range part of the interactions play the largest role. For
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Figure 20: A graph of the two kernels for increasing argument, q|x|. We see that the kernels are

vastly different for short-range interactions, indicating that they will lead to different dispersion

behaviour as the momentum increases.

smaller wavelengths, corresponding to larger l or q, the short-range interaction plays a bigger

and bigger role, and it is in this regime where the two kernels truly differ (as extreme as a

diverging interaction versus a finite interaction for q|x− x′| = 0).

(a) Comparison of the dispersion of the degen-

erate ground states for the disk and the infinite

half-plane with approximate and exact kernel,

respectively.

(b) Comparison of the dispersion of the now

split ground states for the disk and the infinite

half-plane with approximate and exact kernel,

respectively, for F = 1. This has a discrepancy

still, but it is improved compared to the disper-

sion resulting from the approximate kernel.

Figure 21: A comparison of the dispersions of the disk and the infinite half-plane. Circles

indicate the quantized nature of the disk dispersion while solid lines refer to the continuous

half-plane dispersions.

7.5 Edge Modes in Insulator Disk

In a regular 2-band conductor with a partially filled conductance band, F = 1 will not usually

be possible because the Berry curvature of different bands cancel, because, as we recall from

chapter 2.1, the sum of the Berry curvature over all bands vanishes,
∑

n Ωn
µν = 0, so in a 2-band

system any particles excited to the conduction band will cancel some of the contribution from

the valence band. In an insulator, where the chemical potential is placed in the band gap and
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Figure 22: An illustration of a set of edge states connecting the valence and conduction bands

in a 1D insulator, where dark green indicates filled states and pale green indicates vacant states.

The derivative of the energy w.r.t. the wave vector, k,is positive on average, so that the group

velocity is positive, leading to an edge current.

the conduction band is empty, we can have F = 1 . In this case, however, there are no free

charge carriers which means that n0 = 0 ⇒ Ω0 = 0, and so it is safe to assume that there is

no density perturbation in the bulk and, by extension, no induced electromagnetic potential.

When the bulk potential is zero then the approximation made in equation (7.18) holds. Using

this on equation (7.23) kills all the terms proportional to F in the bulk and n0 = 0 kills the

remaining terms such that

− ωNj = 0, (7.29)

which means that there will be no density perturbation in the bulk. On the edge of the disk

(which is governed by equation (7.24)), with the boundary condition that allows charge to pile

up, but not flow out of the disc, we get terms that survive. These terms allow for a mode that

is localized on the edge. The need for the existence of these edge modes can be explained by

considering a two-dimensional slab of insulating crystal, infinite in the x-direction and finite in

the y-direction, with non-zero Berry curvature. The non-zero Berry curvature means that an

electric field applied along the x-direction, while unable to accelerate the inert electrons in the

valence band of the insulator, will cause a current to run in the y-direction (see equation (2.36)),

thereby causing charges to pile up on the edge. The particles on the edge all have a velocity

close to the ”Fermi velocity”, ∂εn(k)
~∂k ≈ vF , and so a current runs along the edge, see figure 22.

An alternative argument posed in [17] illustrates the need for such an edge mode by consid-

ering the case where two topological insulators with differing Chern numbers are placed next to

each other. If the Chern number, and through equation 2.40, the anomalous Hall conductivity,

cannot be changed without closing the insulating gap, then there MUST be a gap-closing, and

subsequent reopening to regain the insulating properties, on the intersection between the two
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topologically different and non-trivial (non-zero Chern number) areas.

We expect such an edge state that will host plasmon excitations to exist in the disk geometry.

An electric field, applied or induced, in the radial direction will cause the disk to have a current

running around the edge, while one applied in the angular direction will force charge into, or out

of, the edge. Exciting an edge plasmon in this case will have it living alongside the edge current

of the insulator, as proposed above. This current will give a boost to the propagation velocity of

the anomalous edge Berry plasmon but we will have to manually assign a velocity, vedge ≈ vF ,

where vF is the Fermi velocity, to these edge states. Since the edge velocity is constant and

n0 = 0 we will merely have an (uncharged) density current jθ = nvedge. This we will add to vθ

in the continuity equation, (7.4), and with

∂

∂θ
jθ =

(
∂

∂θ
n

)
vedge = ilnvedge (7.30)

and the discretization scheme and definitions above, we get a final equation to be solved for the

edge mode,

−ωNM +
lΩB

4xM

(
ΦM

xM
+

ΦM−1

xM−1

)
− lΩB

2dx

(
ΦM

xM
+

ΦM−1

xM−1

)
− lΩB

xM

(
ΦM+1 − ΦM−1

2dx

)
+
lvedge
xMR

NM = 0,

(7.31)

which is just equation (7.24) with Ω0 = 0 and the new term added after dividing through by

ω. xM = 1 but we have written it explicitly for ease of comparison. Here we could follow the

tradition of hiding the factors of R in frequencies, so let us define a new frequency, Ωedge =
vedge
R .

Since equation (7.31) is linear in ω we can see that we will only get one solution (together with

the ω = 0 solution) and so only one mode survives. This is the unidirectional plus mode that

makes this system seemingly fit for the role of a circulator as discussed in chapter 1. This is not

entirely unexpected as decreasing Ω0 (through n0) is decreasing the parts that the fast and slow

modes have in commmon, while leaving the splitting be.

By making the substitution ω′ = ω− lΩedge we get the exact same equation but without the

added term, and so we see that ω′ is just the original mode with a boost proportional to the

speed (the sign determines the direction) of the individual electrons at the edge of the disk.

The resulting dispersion is seen in figure 23a. Notably the dispersion tends more toward

being linear than that of the conductor and reminiscent of the dispersion of the fully screened

disk, as seen in figure 18b. This is likely because the bulk of the disk is effectively fully screened

by the presence of the postive background, so that the charge on the edge only sees the charge

elsewhere on the edge, reminiscent of a plasmon in 1 dimension, which has a linear dispersion

[18].

On the other hand, when one allows for the edge velocity to be present in the regular conductor

(figure 23b) then the effect is hardly noticeable, as
Ωedge

Ω0 ≈ 10−3.
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(a) (b)

Figure 23: The dispersion for (a) the lone unidirectional edge mode of the topological insulator

(n0 = 0) and (b) the split modes of the conductor, (n0 = 1016m−2 = 1012cm−2), both with an

edge velocity vedge = 105 m
s .

8 Conclusion

The case of the bulk and surface (magneto-)plasmons in 3D is well known and the underlying

physics understood. When delving into the physics of 2D systems an analytical solution for the

dispersion requires an approximation of the Coulomb interaction; an approximation which we

have seen to consistently underestimate the energy/frequency of the modes. Edge plasmons in

2D systems can acquire a chiral energy splitting through the application of an external magnetic

field or through the use of a material with non-vanishing Berry curvature. Such a splitting, with

tunable resonances in the case of magnetoplasmons, has the potential to be useful in applications

such as circulators and its derivative devices.

Using the concentric ring discretization scheme allowed for a numerical solution for the (chiral)

modes and wave-forms of edge plasmons on the disk. For example, the zero-field 2D mode was

predicted in chapter 4 to grow as ω± = ±
√

2l/3Ω0, whereas numerical calculation with the

exact kernel, as given in equation (5.18), leads to a dispersion that grows faster than that, as

we saw from figure 13a. When the curvature of the edge of the disk is small on the scale of

a full wavelength, then it is possible to make comparisons to the results for the infinite half-

plane, often solved with the local kernel approximation. Such a comparison reveals that the

local kernel approximation fundamentally changes the electron interactions, especially for large

(angular) momentum. Numerical computation of the half-plane system with the exact Coulomb

interaction made the dispersion in the two situations much more comparable, although work is

still needed to see the similarity in the chiral splitting of the modes.

We saw in chapters 6.4 and 7.3 that for both magneto- and Berry plasmons that the confinement

to the edge of the edge modes increased with angular momentum while higher excited modes

stretched further into the bulk than low excitations. Additionally, higher excitations come with

a node for every excitation above the ground state. Above a certain threshold in angular mo-

mentum, we start to see the fast mode of the Berry plasmon seeping into the bulk through a
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hump in the wave-form of the density perturbation. The behaviour of the plasmons depends

strongly on the induced potential. Weakening the long-range interactions of the electrostatic

potential via screening plates causes a lowering of the frequency of the modes and makes the

dispersion linear when the interaction is fully screened. In such a situation we can no longer

claim to be in the long wavelength limit and extra precautions have to be taken.

Non-vanishing Berry curvature affects the behaviour of plasmons only on the edge of the medium,

causing a splitting which grows (almost linearly) with angular momentum, as contrary to mag-

netoplasmons whose splitting is (near) constant. Finally, we detailed how this leads to the fact

that the fast mode exists even when the bulk of the medium is an insulator, i.e. when the

charge carrier density, n0, is set to 0, and how the resulting system can be seen to have only one

surviving unidirectional mode.

The possibilities of further study are numerous. An immediate extension of the presented work

would be to examine the various cases with intermediate, non-extreme screening and to find the

reason for the mismatch between half-plane and disk results for high angular momentum for

the chiral Berry modes. The reaction of the plasmon mode to a probing electric field would in-

crease the usability of theoretical predictions in comparisons with those of experiments, as would

keeping the finite lifetime of the mode to better model a realistic scenario, and so this is worth

considering implementing. An alternative pursuit would be to more closely try to model the

circulator theoretically. Recent experimental studies that realize and study the nonreciprocity

of both the magnetoplasmon and chiral Berry plasmon circulators, [2][3], allow for comparison

with theoretically predicted results.

A Edge Magnetoplasmons in Disk Geometry

In [6] Fetter examines the edge magnetoplasmons on a disk of finite radius. He does this, however,

with the method of restricting the flow into the edge of the disk and thereby potentially throttling

the transverse part of the current caused by the presence of the magnetic field; current which

would otherwise flow around the perimeter of the disk, jθ | r=R, gets a radial component due

to the Lorentz force. Without edge states this charge has nowhere to go and so it seems an

unrealistic boundary condition.

In this chapter we will try to combine the works of Fetter in his two articles, [5] and [6], to

impose the condition of a finite edge flow onto the magnetoplasmon problem in disk geometry

and reach an analytical expression to be solved for the allowed frequencies and their density

distributions. There will be many straightforward parallels and therefore, unless otherwise is

stated, all references to outside equations are to the equations in [5].
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A.1 Analytical Eigenvalue Equation

In this chapter we will derive an analytical equation to determine the modes of the disk mag-

netoplasmons. The disk will have radius R, rest on a material with dielectric constant ε, with

vacuum (εvacuum = 1) above it. We will again be looking for steady state solutions and utilize

the rotational symmetry of the system to simplify time and angular derivatives.

We start out with the usual fluid equations governing our material in cylindrical coordinates,

− iωn+ n0∇ · v = 0 (A.1)

− iωv +
s2

n0
∇n− e

m
∇Φ|z=0 − ωcẑ × v = 0. (A.2)

In cylindrical coordinates we have (though we only consider the polar parts in the plane of the

disk)

v =

(
vr

vθ

)
, (A.3)

ẑ × v =

(
−vθ
vr

)
, (A.4)

and

∇ =

(
∂r
∂θ
r

)
. (A.5)

We can now consider the first and second components of this vector equation seperately. For

the first component we get

iωvr + ∂r

(
e

m
Φ− s2

n0
n

)
− ωcvθ = 0⇔ vθ =

1

ωc

(
iωvr + ∂r

(
e

m
Φ− s2

n0
n

))
, (A.6)

and from the second component we get

iωvθ +
1

r
∂θ

(
e

m
Φ− s2

n0
n

)
+ ωcvr = i

(
ω

ωc
∂r +

l

r

)(
e

m
Φ− s2

n0
n

)
− ω2

ωc
vr + ωcvr = 0

⇔i
[
ω∂r +

lωc
r

](
e

m
Φ− s2

n0
n

)
+
(
ω2
c − ω2

)
vr = 0.

(A.7)

We will now change variables to x = r
R , L = |l| and Ωc = |ωc|.

i

[
ω

R
∂x +

LΩc

xR

](
e

m
Φ− s2

n0
n

)
+
(
Ω2
c − ω2

)
vr = 0. (A.8)

Rather than setting vr = 0 at the boundary we will instead make use of the boundary condition

that the current into the boundary is the change in density on the edge, so for x = 1− we have

−en0vr = −e∂tn∗ = eiωn∗ such that vr = −iω n∗n0
. Let us evaluate (A.8) at x = 1− to use this

boundary condition,
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i

[
ω

R
∂x +

LΩc

xR

] (
e

m
Φ− s2

n0
n

)∣∣∣∣
x=1−

+ i
(
ω2 − Ω2

c

)
ω
n∗

n0
= 0

⇔
[
∂x +

LΩc

ω

] (en0

m
Φ− s2n

)∣∣∣
x=1−

=
(
Ω2
c − ω2

)
Rn∗

. (A.9)

Now we can multiply both sides by
4πe tanh( h

R
)

R(1+ε) to get[
∂x +

LΩc

ω

] (
Ω2

0Φ− s2

R2
N

)∣∣∣∣
x=1−

=
(
Ω2
c − ω2

)
N∗, (A.10)

where

Ω2
0 =

4πn0e
2 tanh( hR)

mR(1 + ε)

N(x) =
4πeR tanh( hR)

1 + ε
n(x)

N∗ =
4πe tanh( hR)

1 + ε
n∗.

(A.11)

Here there are quite clear parallels to equations (6a-b), (9b), (10a) in [5] with the substitution

q ∼ 1
R . Equation (A.10) above is the new boundary equation that is to replace equation (12) in

[6]. The bulk equation is found as before by combining the continuity equation, (A.1), with the

Euler equation, (A.2), using (3.8) and expressing everything in terms of (A.11), which gives[
1

x
∂xx∂x −

L2

x2

] [
Ω2

0Φ− s2

R2
N

]
= −

(
Ω2
c − ω2

)
N. (A.12)

We will make use of the same Green’s functions as used in [6] that obey the conditions[
1

x
∂xx∂x −

L2

x2

]
G(x, x′) = −1

x
δ(x− x′), (A.13)

and [
∂x +

LΩc

ω

]
G(x, x′)

∣∣
x=1−

= 0, (A.14)

which is fulfilled for

G(x, x′) =
ω − Ωc

ω + Ωc
γ(x, x′) + g(x, x′), (A.15)

where

γ(x, x′) =
1

2L
(xx′)L

g(x, x′) =
1

2L

x<
x>

(A.16)

and x< and x> are the smaller and larger of x and x′ respectively.
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With these Green’s functions we can use equation (A.13) to rewrite equation (A.12),

[
1

x
∂xx∂x −

L2

x2

] [
Ω2

0Φ− s2

R2
N

]
=
(
Ω2
c − ω2

) ∫ 1

0
dx′x′

[
1

x
∂xx∂x −

L2

x2

]
G(x, x′)N(x′). (A.17)

This must mean that if we integrate out the operators the functions operated on must differ

only up to a function that itself is the solution to[
1

x
∂xx∂x −

L2

x2

]
h(x) = 0. (A.18)

The correct term is calculated in appendix A.2 and the full expression becomes

[
Ω2

0Φ− s2

R2
N

]
=
(
Ω2
c − ω2

) ∫ 1

0
dx′x′G(x, x′)N(x′) +

(
Ω2
c − ω2

)
G(x, 1)N∗, (A.19)

which has a straight parallel to equation (18) in [5] if we substitute the new term using the new

boundary equation, equation (A.10) above. To take into account the charge on the edge and its

effect on the whole disk the potential gets an additional term,

Φ(x) = −
∫ 1

0
K(x, x′)x′N(x′)→ −

∫ 1

0
K(x, x′)x′N(x′)−K(x, 1)N∗. (A.20)

From here we can collect all terms on one side, insert G(x, x) and Φ(x) on their respective

spots to get the equation to be solved,

s2

R2
N + Ω2

0

∫ 1

0
dx′x′K(x, x′)N(x′)− (ω − Ωc)

2
∫ 1

0
γ(x, x′)N(x′)−

(
ω2 − Ω2

c

) ∫ 1

0
dx′x′g(x, x′)N(x′)

+
[
Ω2

0K(x, 1)− (ω − Ωc)
2 γ(x, 1)−

(
ω2 − Ω2

c

)
g(x, 1)

]
N∗ = 0,

(A.21)

where the term in parenthesis is the new contribution from the edge. The rest is exactly like

equation (22) from [6].

This is the equation that must be solved to determine the allowed modes and their corre-

sponding radial density distributions. The most natural way to solve such an equation that, in

most cases, does not have an analytical answer is to discretize would be to solve this numerically.

Unfortunately this method seemingly provides no way to determine N∗, nor do most numeri-

cal approaches deal well with delta functions. It is for that reason that we have attempted to

discretize the system from an earlier point and apply the boundary condition to the discretized

system.

A.2 Calculating the Additional Term in Equation (A.19)

Here we show how to get to equation (A.19) from

[
1

x
∂xx∂x −

L2

x2

] [
Ω2

0Φ− s2

R2
N

]
=
(
Ω2
c − ω2

) ∫ 1

0
dx′x′

[
1

x
∂xx∂x −

L2

x2

]
G(x, x′)N(x′), (A.22)
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by integrating out the operator on both sides.

The two functions can differ up to a term that obeys[
1

x
∂xx∂x −

L2

x2

]
h(x) = 0. (A.23)

This is the Euler-Cauchy equation. One solution can be found by inserting a power law trial

function, xm, which gives the equation (m2 − L2)xm−2 = 0⇔ m = ±L, so that

h(x) = AxL +Bx−L (A.24)

is a solution. Now, we want our potential and densities to be bounded, so the B-term will have

to go to avoid blowing up at the center of the disk, at x=0. This leaves us with h(x) = AxL.

To find A we will now apply the operator ∂x + LΩc
ω to both sides of equation (A.22) and invoke

our two boundary equations, equations (A.10) and (A.14), which means we must have

[
∂x +

LΩc

ω

]
AxL

∣∣
x=1−

=
(
Ω2
c − ω2

)
N∗

⇔ A =

(
1

L

1

1 + Ωc
ω

)[
Ω2
c − ω2

]
N∗.

(A.25)

The function that we we have left in equation (A.22) is then AxL. We can rewrite the term in

parenthesis in the expression for A to get

A =
1

2L

(
ω − Ωc

ω + Ωc
+ 1

)[
Ω2
c − ω2

]
N∗, (A.26)

such that we can finally write the revised equation (A.22),

[
Ω2

0Φ− s2

R2
N

]
−
(
Ω2
c − ω2

) ∫ 1

0
dx′x′G(x, x′)N(x′) = AxL

=
1

2L

(
ω − Ωc

ω + Ωc
+ 1

)
xL
[
Ω2
c − ω2

]
N∗.

(A.27)

The term on the RHS is exactly the edge-term in equation (A.19),

G(x, 1)

[(
∂x +

LΩc

ω

)[
Ω2

0Φ− s2

R2
N

]]∣∣∣∣
x=1−

= G(x, 1)
[
Ω2
c − ω2

]
N∗

=
1

2L

(
ω − Ωc

ω + Ωc
+ 1

)
xL
[
Ω2
c − ω2

]
N∗,

(A.28)

which can be seen by direct insertion of the form of G(x, x′).
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B Auxillary plots

B.1 The Splitting of Berry Modes

Figure 24: The splitting of the chiral Berry plasmon modes, ∆ω = |ω+| − |ω−| in units of the

bulk frequency, Ω0. The splitting is almost linear. The deviation is likely due to the Coulomb

kernel’s dependence on angular momentum, l, but not the Berry curvature, Ω.

B.2 Zero-Field Wave-Forms

Figure 25: The wave-form of the first few zero-field modes for l = 1. Note that in the zero-field

case the modes are completely degenerate and only differ in their angular dependence, ±l, and

so the negative and positive modes overlap completely.
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Figure 26: The wave-form of the first few zero-field modes for l = 30. Note that in the zero-field

case the modes are completely degenerate and only differ in their angular dependence, ±l, and

so the negative and positive modes overlap completely.
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