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Summary in English

This thesis presents a measurement of the tau polarization in Z decays in proton-proton
collision at

√
s = 7 TeV. The measurement is based on 4.6 fb−1 data that was collected

in 2011 with the ATLAS experiment situated at the Large Hadron Collider.
The tau polarization in Z decays describes the degree of parity violation by the neutral

weak current in the electroweak theory of particle physics. It describes furthermore how
strongly the electroweak theory mixes quantum electrodynamics and the weak theory.

A key parameter in the extraction of the tau polarization result is the knowledge of
the tau helicity in simulation on an event by event basis. Unfortunately, the tau helicity
was not saved in the ATLAS simulations. To be able to measure the tau polarization, a
method for re-establishing the tau helicity event by event has been developed.

To separate Z → ττ from background, a selection has been performed. Events
containing a muon and a hadronically decayed tau was selected, and the tau polarization
was measured on the hadronic tau decay. All the electroweak backgrounds, except the
W → `ν background, were estimated from Monte Carlo simulations. Due to an imprecise
description in the simulation of the probability of QCD jet be identified as a tau, the
W → `ν background estimated from simulation was normalized by a data driven study.
The multijet background was estimated with a completely data driven technique.

The polarization was measured in one prong hadronic tau decays, by use of a variable
that measures the energy asymmetry between charged and neutral pions. Templates
from right- and left-handed taus were fitted to the data. A measurement of the tau
polarization was performed and the systematic uncertainties on background and signal
were investigated. The result of the measurement was

Pτ = −0.258± 0.048(stat.)± 0.028(MC)± 0.073(sys.)

where (stat.) refers to the statistical uncertainty of the fit, (MC) refers to the uncertainty
arising from limited statistics in the simulations, and (sys.) refers to the systematic
uncertainty.
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Resumé p̊a Dansk

Denne afhandling omhandler m̊alingen af polarisationen af tauer i Z-henfald i proton-
proton-sammenstød ved kollisionsenergien

√
s = 7 TeV. Målingen er baseret p̊a 4.6 fb−1

data indsamlet i 2011 af ATLAS eksperimentet, der er en del af Large Hadron Collider-
komplekset p̊a CERN.

Polarisationen af tauer i Z-henfald beskriver, hvor kraftigt paritet brydes af den
neutrale, svage strøm i partikelfysikkens elektrosvage teori. Derudover beskriver tauernes
polarisationen, hvor meget den elektrosvage teori mikser kvanteelektrodynamik og den
svage teori.

En af de vigtigste parametre, n̊ar man m̊aler polarisation af tauer, er kendskab til
tauens helicitet i hver enkelt begivenhed i simuleringerne. Tauernes helicitet blev desværre
ikke gemt i simuleringerne fra ATLAS. For at kunne m̊ale polarisationen af tau blev der
udviklet en metode til at gendanne og tildele helicitet af tauerne i hver enkelt begivenhed.

For at kunne adskille Z → ττ -begivenheder fra baggrundsbegivenheder lavedes en
udvægelsesproces. Begivenheder med en muon og en hadronisk henfaldet tau blev udvalgt,
og polarisationen af tauerne blev m̊alt p̊a den hadronisk henfaldne tau. Alle elektrosvage
baggrundsbegivenheder p̊a nær W → `ν blev estimeret ud fra Monte Carlo simuleringer.
P̊a grund af en upræcis beskrivelse i simulering af sandsynligheden for at en QCD jet ville
blive identificeret som en tau, blev W → `ν-baggrunden estimeret ud fra simuleringer og
normaliseret ved hjælp af et studie drevet af data. Multijetbaggrunden blev estimeret
med en teknik fuldstændigt drevet af data.

Polarisationen af tauer blev m̊alt i et-prong hadroniske tauhenfald ved hjælp af en
variabel, som m̊aler asymmetrien af energi af ladede og neutral pioner. Fordelinger af
højre- og venstreh̊andede tauer blev fittet til data. Målingen af tauernes polarisation
blev udført, og de systematiske usikkerheder fra b̊ade baggrund og signal blev undersøgt.
Resultatet af m̊alingen var

Pτ = −0.258± 0.048(stat.)± 0.028(MC)± 0.073(sys.)

hvor (stat.) angiver den statistiske usikkerhed af fittet, (MC) usikkerheden som følge af
den begrænsede datamængde i simuleringerne og (sys.) den systematiske usikkerhed.
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Introduction

Particle physics describes the smallest known particles of the Universe and their inter-
actions. The theory of particle physics, the Standard Model, describes three out of
the four fundamental forces excluding the gravitational force. The combination of the
electromagnetic and the weak theory into one, the electroweak theory, describes four force
carrying particles , W±, Z0, and the photon.

Since its discovery in 1983, the properties of the Z boson have been studied in detail at
several collider experiments. Observations have shown that the Z boson has an asymmetric
behavior, where it favors the fermion to have its spin opposite to its direction of flight,
left-handed, over the spin in the direction of flight, right-handed. Hence, the fermions
will be polarized. The Z couplings violates the symmetry where the entire Universe is
mirrored, parity, and the polarization is a measure of the degree of violation.

The spin orientation can be measured in case of taus. Through the kinematics their
decay products, information of the spin orientation of the taus can be derived. Especially
the hadronic decay channels of the tau lepton are sensitive to the spin orientation of the
taus they originated from.

The latest measurement of the tau polarization from Z decays was performed at
the Large Electron-Positron collider (LEP) and published in 2005[1]. The result of
the combined measurement of the tau polarization from all four LEP experiments was
Pτ = −0.1439± 0.0043[1]. The tau polarization in Z decays has never been measured at
a hadron collider.

In 2009, the Large Hadron Collider (LHC) at CERN commenced its data taking. The
LHC has exceeded its predecessors in both collision energy and amount of data and is
thus the most powerful particle accelerator as of today.

One of the main priorities for the first part of the LHC data taking is the search for
the Higgs boson. The Higgs boson is associated with the proposed Higgs mechanism that
gives the particles of the Standard Model their mass. The coupling of the Higgs boson
depends on the mass of the particles to which it decays. Since the mass of a particle is
independent of the spin orientation, the spin of the Higgs boson will be a zero.

Since the Higgs is a scalar, taus originating from it will be unpolarized. It has been
discussed whether the tau polarization could be used as an extra separator between Higgs
and Z. This thesis contributes to this study by showing that it is possible to measure the
tau polarization in Z decays at a hadron collider.

1



2 CHAPTER 1. INTRODUCTION

The thesis is divided into four parts, Theory, Experiment, Analysis, and Appendix.
Theory consists of Chapters 2-4, Experiment of Chapter 5, and Analysis of Chapters
6-9. Chapter 2 describes the Standard Model of particle physics with emphasis on the
electroweak theory and the couplings of the gauge bosons. In Chapter 3, the polarization is
introduced and a description of kinematic variables of tau decay products sensitive to the
tau polarization is provided. Chapter 4 describes particle collisions at hadron colliders and
the event generators used to simulate collisions, particle decays, and detector response in
this thesis. Chapter 5 provides a description of the Large Hadron Collider, the sub-detector
system of the ATLAS experiment, and how particles are reconstructed and identified with
ATLAS. Chapter 6 presents the selection criteria for Z → ττ events used to study the tau
polarization. In Chapter 7, a method for re-establishing tau helicity in Monte Carlo is
presented. The effect of the selection and sensitivity loss due to the detector is studied for
right-handed and left-handed taus. The measurement of the tau polarization is presented
in Chapter 8. The impact of systematic uncertainties on the measured tau polarization
are evaluated. Chapter 9 summarizes the study and measurement of the tau polarization.



Part I

Theory
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2

The Standard Model

In this chapter the theory of elementary particle physics, the Standard Model, will be
presented. The emphasis will be on the couplings to right-handed and left-handed particles
in the electroweak theory.

2.1 Particles of the Standard Model

The Standard Model of particle physics describes the smallest known particles of the
Universe, the elementary particles, together with their interactions. The Standard Model
was founded in 1960’s with the combination of electromagnetism with the weak force. It
was expanded in the following two decades to include the Higgs mechanism and the strong
force.

There are two types of particles in the Standard Model, the matter particles and the
force carrying particles.

Matter Particles

The matter particles of the Standard Model are all fermions (spin-12 particles). As their
name indicate these particles build the matter of the Universe. They can be divided into
two groups, the leptons and the quarks. The quarks are never observed individually, but
form observable collections named hadrons. The leptons on the other hand are observed
in isolation.

Among the leptons is the electron which has an electrical charge of −1e, where e is
the positive unit charge, and is known for orbiting the atomic nuclei. There exists two
other types of leptons like the electron, only heavier, the muon, µ, and the tau lepton,
τ . The electron, muon and tau each has a corresponding neutrino, ν. Measurement of
the neutrino masses have been consistent with zero and they are therefore assumed to be
massless in this thesis1. Along with their electric charge the leptons have a weak charge
indicating that they are affected by the weak force.

The quarks have weak and electric charge as the leptons, but cannot be observed
directly due an additional type of charge, the strong (color) charge. Therefore they are
bound together to form hadrons consisting of two or three quarks known as mesons and
baryons respectively. The quarks carry a fraction of elementary electrical charge, e. The

1Observations of neutrino oscillations lead to the conclusion that neutrinos are massive. Until now
only upper limits of neutrino masses exist.

5
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Particle Name Symbol EM Charge Weak Charge Strong Charge Mass
[e] (Isospin) (Color) [MeV]

electron e −1 −1/2 0 0.511
electron neutrino νe 0 +1/2 0 < 2.2 · 10−6

muon µ −1 −1/2 0 106
muon neutrino νµ 0 +1/2 0 < 0.170

tau τ −1 −1/2 0 1777
tau neutrino ντ 0 +1/2 0 < 15.5

up u +2/3 +1/2 R/G/B ∼ 3
down d −1/3 −1/2 R/G/B ∼ 5

charm c +2/3 +1/2 R/G/B ∼ 100
strange s −1/3 −1/2 R/G/B ∼ 1.3 · 103

top t +2/3 +1/2 R/G/B 173 · 103

bottom b −1/3 −1/2 R/G/B ∼ 4.2 · 103

Table 2.1: The matter particles of the Standard Model and their charges.[3]

lightest quarks are the up and down quarks who form the proton (two ups and one down)
and the neutron (two downs and one up). There exist four other quarks, charm, strange,
top and bottom.

All of the leptons and quarks have a corresponding anti-particle with opposite electric,
weak and color charges. The charges of the fermions are listed in Table 2.1.

The fermions are arranged in three generations consisting of two leptons and two
quarks. The number of generations of light neutrinos has been studied at the Large
Electron-Positron collider (LEP) and has been measured to be 3.27 ± 0.30[2] consistent
with the existence of three generations.

Forces and Interactions

There exist four types of fundamental interactions or forces in Nature. These are grav-
itation, the electromagnetic force, the weak, and the strong nuclear forces. While the
Standard Model describes three of the four fundamental forces it does not even attempt
to describe the gravitational, because no quantum mechanical description of gravity has
yet been formulated.

In the Standard Model interactions between elementary particles are described by an
interchange of force particles between the affected particles. All the force carrying particles
are spin-1 bosons and each fundamental force has one or more particles associated with
it.

The most well known fundamental force is the electromagnetic force. That is the force
that provides electricity, magnetism and light. The force particle of electromagnetism is
the light particle, the photon, γ. It is massless and has infinite range. Only particles with
electric charge can interact via the electromagnetic force, hence from Table 2.1 we see that
all matter particles, except the neutrinos, are affected by electromagnetism.

The weak nuclear force is the force responsible for radioactive β-decays. There are
three force particles associated with the weak force, W+, W− and Z0. These particles
are all massive and therefore they have a very short range (∼ 10−17-10−16 m). The weak
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Particle Name Symbol EM Charge Weak Charge Strong Charge Mass
(Isospin) (Color) [MeV]

photon γ 0 no no 0
Z-boson Z0 0 no no 91.188 · 103

W-boson W± ±1 yes no 80.4 · 103

gluon g 0 no yes 0

Higgs H0 0 yes no > 114.4 · 103

Table 2.2: The force particles and the Higgs boson of the Standard Model and their
charges.[3]

force particles couples to weak charge and hence all the matter particles. Furthermore
they couple to themselves and the W± couples to the photon.

The last force described by the Standard Model is the strong nuclear force which
holds the quarks together in protons and neutrons and furthermore holds the neutrons
and protons together to form nuclei. As opposed to the other fundamental forces which
decrease in strength as the distance between the particles grows, the strong force is
constant for large distances holding the quarks together almost like a rubber band. The
boson associated with the strong force is the gluon, g, which is massless and has, as the
photon, infinite range. The gluon only couples to particles with color charge and therefore
only to quarks and itself.

In Table 2.2 the force particles are listed along with their masses and charges.

Masses of the Particles

In its simplest form the Standard Model treats all the particles as being massless, which
is clearly not in agreement with observations. For the particles to acquire mass a new
field, the Higgs field, is introduced. Through interactions between the Higgs field and the
particles, mass is generated and a new particle is introduced, the Higgs boson.

Despite the large effort put into the search for the Higgs boson it is still undiscovered.
In Table 2.2 the Higgs particle is listed with the other bosons of the Standard Model

2.2 Quantum Field Theory

The theoretical framework of the Standard Model is Quantum Field Theory. Quantum
field theory is a combination of Einstein’s theory of special relativity, quantum mechanics
and field theory as for example Maxwell’s equations of electromagnetism. Particles are in
quantum field theory excitations of the quantum fields.

Local Field Theory

The quantity that describes all the dynamics and kinematics of a classical field is the
action, S, defined as

S =

∫
Ldt =

∫
(T − V )dt =

∫
L(φ, ∂µφ)d4x (2.1)
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with L being the Lagrangian, T the kinematic energy, V the potential energy, and L the
Lagrange density which from now on will be denoted as the Lagrangian. The Lagrangian,
L, is a function of one or several fields φ and their derivatives ∂µφ. In relativistic
quantum field theory the Lagrangian is as well used as the description of the dynamics
and kinematics. The individual terms in the Lagrangian are Lorentz-invariant and thus a
Lorentz-invariant description of quantum field theory.

According to the principle of least action the action must be minimized in a time
interval δt leading to the Euler-Lagrange equations of motion

∂µ

(
∂L

∂ (∂µφ)

)
− ∂L
∂φ

= 0 (2.2)

In classical field theory the dynamics of a system will always follow the paths satisfying
the classical equations of motion. In quantum field theory, however, the system will follow
all paths, also the ones not described by the classical equation of motion. This is known
as quantum fluctuations that for example can cause a momentarily creation of two new
particles even if there is not a sufficient amount of energy. [4]

Symmetries in Quantum Field Theory

A system is said to be symmetric if it is left “unchanged” for an observer under a
given transformation. Symmetries can be split into several categories, local or global,
continuous or discrete. A global symmetry is as the name might suggest a symmetry
that is independent on location in space time. A local or a gauge symmetry on the other
hand depends on the space time coordinates of the system. A continuous symmetry is for
example the rotation of a sphere which is symmetric under any angle of rotation whereas
a hexagon has discrete symmetries since it can only be rotated a multipla of 60◦.

What holds for all types of symmetries is that for a given symmetry a physical quantity
is conserved. This is described by Noether’s theorem[5] which states that for a symmetric
transformation of the system there exists a current which is conserved. We know this for
example from rotation of space time which gives us angular momentum conservation.

The Symmetries of the Standard Model

The Standard Model is build up by many symmetries, both local, global, continuous and
discrete symmetries.

A group of symmetries of the Standard Model is the Lorentz-transformations which
are symmetries of the flat Minkowski spacetime. The Lorentz covariance states that the
system, i.e. the Lagrangian, must be invariant under translation, rotation and boost.
The group of symmetries of the Lorentz transformation conserves angular momentum,
momentum, and energy. The Lorentz covariance symmetry group is global and continuous.

In the Standard Model three discrete transformations are included, Charge conjugation
(change of sign on all charges, c → −c), Parity inversion (change of sign on all spatial
coordinates, xi → −xi), and Time reversal (change of sign on time, t→ −t). These three
discrete transformations are not symmetries by themselves, i.e. the Standard Model is not
invariant under C, P, or T transformations, nor is it invariant under a combination of two
of transformations (CP, PT or CT). However, it is invariant when all three transformations
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are performed. It is therefore said that the Standard Model is CPT invariant. As a matter
of fact it must be CPT invariant since it is not possible to create an invariant quantum field
theory with a hermitian hamiltonian if it is not invariant under CPT transformations[5].
In a CPT transformed universe we will se antiparticles going backwards in time which for
us would look like particles moving forward in time.

The last type of symmetries in the Standard Model is Gauge or local symmetries. The
gauge symmetries gives rise to the gauge bosons or the force particles of the Standard
Model. The Standard Model is invariant under the following gauge transformations,
SU(3) × SU(2) × U(1). The transformation group SU(3) describes the interaction of
the gluon and SU(2) × U(1) describes the weak and electromagnetic interactions of the
Standard Model.

As an example it will be described how the photon is introduced to the Standard
Model by imposing local U(1) symmetry on the Lagrangian of a free fermion given by

L = ψ(x) (i6∂ −m)ψ(x). (2.3)

Here ψ(x) is the anti-fermion, ψ(x) the fermion, and 6∂ is a contraction of γµ∂µ where γµ

refers to the 4 × 4 Dirac gamma matrices composed of the 2 × 2 Pauli spin matrices, σi

as

γ0 =

(
0 1
1 0

)
, γi =

(
0 σi

−σi 0

)
(2.4)

The U(1) symmetry is simply a rotation of the wave function of the particle, ψ, with
the spacetime dependent phase α(x).

ψ(x)→ ψ′(x) = e−iα(x)ψ(x) , ψ(x)→ ψ
′
(x) = ψ(x)eiα(x) (2.5)

It is easily seen that the mass term of the Lagrangian, mψ(x)ψ(x), is invariant under

the U(1) transformation, i.e. mψ
′
(x)ψ′(x) = mψ(x)ψ(x). The derivative term is, on the

other hand, not invariant under the U(1) transformation and therefore a new derivative
must be introduced.

Dµ = ∂µ + ieAµ(x) (2.6)

where Aµ(x) is a new field called the Gauge Field and must transform as

Aµ(x)→ A′µ(x) = Aµ(x)− 1
e∂µα(x) (2.7)

In order for Aµ(x) to propagate a term of FµνF
µν , (Fµν = ∂µAν − ∂νAµ) is added to

the Lagrangian in eq (2.3). This leads to the final Lagrangian

LQED = ψ(x) (i6D −m)ψ(x)− 1
4FµνF

µν (2.8)

As seen in Equation 2.8 there is no AµA
µ term and therefore no mass term for the

Aµ(x) field hence the particle of the Aµ field will be massless. The interaction term,
FµνF

µν , describes the Maxwell equations and the particle of the Aµ field is the photon.[5]
From the assumption that the Lagrangian should be invariant under the local Gauge

transformations of U(1) the Lagrangian of Quantum Electric Dynamics has been derived
and a new gauge field, Aµ(x), representing a massless gauge boson, the photon.
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2.3 The Electroweak Theory

The Electroweak Theory describes both the the weak force and the electromagnetic force.
It is invariant under the gauge group SU(2)T × U(1)Y of weak isospin, T , and weak
hypercharge, Y . The hypercharge and the third component of the weak isospin are related
to the electrical charge, Q, of a particle through

Y ≡ Q− T 3 (2.9)

Helicity and Chirality

Experiments show that the W± bosons only decay to left-handed particles. Right-handed
and left-handed particles must therefore be treated differently and a clear definition of
right-handedness and left-handedness is necessary.

A fermion and its antiparticle is described by a four-component bi-spinor and can be
written as two two-component spinors.

ψ =




ψ1

ψ2

ψ3

ψ4


 =

(
φ
χ

)
, φ =

(
φ1
φ2

)
, χ =

(
χ1

χ2

)
(2.10)

In quantum mechanics the two two-component spinors correspond to spin +1 and -1.
When particles are moving at relativistic velocities the notion of spin-up and spin-down
is no longer useful and a new classification of the two-component spinors is needed.[6]

The helicity of a particle is the spin projected onto the momentum of the particle.

λ =
1

2

~σ · ~p
|~p| . (2.11)

The helicity operator commutes with the Hamiltonian and helicity is therefore a good
quantum number. In fact, no other combination of the Pauli spin matrices will com-
mute with the Hamiltonian, leaving helicity as the only good spin dependent quantum
number.[7]

The eigenvalues of the helicity operator are +1
2 and −1

2 . Since the helicity depends on
the direction of motion of the particle it is not Lorentz-invariant for massive particles. If
one accelerates from a velocity below that of the massive particle to a velocity above the
particle, the particle will appear to have flipped its helicity. Helicity can therefore only be
used under the assumption that the particles are massless.

Helicity in the ultra-relativistic limit (m � E) is called chirality. The chiral four-
component states are the eigenstates of γ5 = γ0γ1γ2γ3 with eigenvalues +1 (right-handed)
and -1 (left-handed) with the projections

ψL = 1
2(1− γ5)ψ , ψR = 1

2(1 + γ5)ψ (2.12)

ψL = ψ 1
2(1 + γ5) , ψR = ψ 1

2(1− γ5) (2.13)

By convention the fermion two-component spinor of a left-handed (right-handed) four-
component spinor is also called left-handed (right-handed), whereas the anti-fermion two-
component spinor is referred to as right-handed (left-handed).[8] In the following left- and
right-handedness refer to two-component spinors.
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In the massless limit the chirality states and the helicity states become the same.

The Fermion Fields

The left-handed fermion two-components are arranged in SU(2)T weak isospin doublets
whereas the right-handed are arranged in isospin singlets

lL =

(
νeL
e−L

)
,

(
νµL
µ−L

)
,

(
ντL
τ−L

)
(2.14)

qL =

(
uL
d′L

)
,

(
cL
s′L

)
,

(
tL
bL

)

lR = eR, µR, τR

qR = uR, dR, cR, sR, bR, tR

For anti-fermions the right-handed two-components are arranged in a SU(2)T weak
isospin doublet and the left-handed in isospin singlets [8]. Since there exists no exper-
imental evidence of right-handed neutrinos and left-handed anti-neutrinos these are not
included among the singlets.

The mass eigenstates of the quarks are not the same as the eigenstates of the weak
isospin. To obtain the weak isospin eigenstates the lower component of the quark doublets,
d, s, and b, is unitary transformed using the Cabibbo-Kobayashi-Maskawa (CKM) mixing
matrix




d′

s′

b′


 =




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb






d
s
b


 ≈




cos θC sin θC 0
− sin θC cos θC 0

0 0 1






d
s
b


 (2.15)

In the last part of Equation 2.15 the mixing of (u, d) with the b-quark has been
neglected. The value of the Cabibbo angle, θC , is 13.1◦.[9]

Gauge Bosons and Interactions of the Electroweak Theory

By requiring SU(2) × U(1) gauge invariance, four gauge fields are introduced W 1
µ , W 2

µ ,
W 3
µ , and Bµ. W a

µ only couples to the isospin triplet current

Jaµ = 1
2ΨLγµτaΨL, a = 1, 2, 3 (2.16)

where τa is the Pauli spin matrices. ΨL denote the isospin doublets and ΨL is the adjoint
of ΨL (ΨL = Ψ†Lγ

0). The Bµ field couples to the weak hypercharge current

jYµ = YΨγµΨ (2.17)

where the chirality of Ψ is not specified since the weak hypercharge current does not
depend on chirality [7].

The Lagrangian with the proper covariant derivative of the SU(2)×U(1) gauge group
working on left and right-handed particles is then
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L = ψLγ
µ
(
i∂µ −

g

2
τaW a

µ − g′YWBµ
)
ψL

+ ψRγ
µ
(
i∂µ − g′YWBµ

)
ψR − 1

4W
a
µνW

aµν − 1
4BµνB

µν (2.18)

where W a
µν = ∂µW

a
ν − ∂νW

a
µ + gεabcW b

µW
b
ν , where εabc is the Levi-Civita symbol, and

Bµν = ∂µBν − ∂νBµ. g and g′ are the coupling constants between the weak isospin
current and the W and B fields respectively. The bosonic fields, W a

µ and Bµ, describe the
force carrying particles of the electroweak theory, W±, Z0, and γ.

There are no mass terms for the gauge bosons nor the fermions in Equation 2.18
thus they are massless. This contradicts experimental evidence and in order for the
gauge bosons to acquire mass without breaking the gauge symmetry an isospin doublet of
complex scalar fields, the Higgs field, φ, is introduced with Lagrangian term

L =

∣∣∣∣
(
i∂µ −

g

2
τaW a

µ − g′YWBµ
)
φ

∣∣∣∣
2

− V (φ) (2.19)

where V (φ) is the potential given by

V (φ) = −µ2φ†φ+
λ

2

(
φ†φ
)2

, µ2 > 0 (2.20)

By requiring µ2 > 0, the Higgs field will have a non-zero vacuum expectation value of

v =

√
µ2

λ
. (2.21)

The vacuum state of φ can be written as[5]

〈φ〉 =
1√
2

(
0
v

)
(2.22)

The Higgs field spontaneously breaks the symmetry of the Lagrangian and due to
the choice of gauge three massive bosons appears and one boson remains massless. The
massive (physical) gauge bosons are a combination of the original gauge bosons, W a

µ and
Bµ

W±µ =
1√
2

(
W 1
µ ∓W 2

µ

)
MW=

1

2
vg (2.23)

Zµ =cos θWW
3
µ − sin θWBµ MZ =

v

2

√
g2 + g′2 (2.24)

Aµ =cos θWW
3
µ + sin θWBµ MA=0 (2.25)

θW is referred to as the weak mixing angle and is given by

cos θW =
g√

g2 + g′2
, sin θW =

g′√
g2 + g′2

(2.26)
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The weak mixing angle depends on the masses of the Z and W -bosons:

sin2 θW = 1−
(
MW

MZ

)2

≈ 0.226. (2.27)

The masses of the fermions can be acquired by interaction between the Higgs field and
the fermionic fields and give rise to a mass of each of the fermions, f , of [5]

mf =
κfv√

2
(2.28)

The constant κf is not constrained through the theory and must be determined experi-
mentally through measurement of the fermion masses.

Now it is easy to define the interaction of the mass eigenstate bosons of the electroweak
theory and the covariant derivative can be rewritten to

Dµ = ∂µ + i
g√
2

(
W+
µ T

+ +W−µ T
−)

+ i
1√

g2 + g′2
Zµ
(
g2T 3 − g′2Y

)
+ ieAµ

(
T 3 + Y

)
(2.29)

where e = g sin θW = g′ cos θW and T± = 1
2(σ1 ± iσ2), T 3, and Y are the operators for

isospin and weak hypercharge.
Recalling Equation (2.9) the coupling to Zµ and Aµ can be rewritten resulting in the

interaction terms of the Lagrangian to take the form

LI = LEMI + LCCI + LNCI
= −eQψγµψAµ −

g

2
√

2
ΨLγ

µ
(
T+W+

µ + T−W−µ
)

ΨL

− g

2 cos θW
ψγµ

(
gV − gAγ5

)
ψZµ (2.30)

where gV and gA refer to the vector and axial-vector coupling to the fermions:

gfV = T 3
f − 2QF sin2 θW ,

gfA = T 3
f . (2.31)

By construction the W± bosons only couple to left-handed particles. This is known
as the V-A structure. In the neutral current the vector and axial-vector couplings differ
for charged fermions and will therefore give rise to a difference in the amplitudes of vector
and axial-vector contributions. The Z will therefore couple to both left-handed and right-
handed particles, but with different strength unlike the photon that couples with equal
strength to right-handed and left-handed charged fermions.

2.4 Quantum Chromo Dynamics

The last part of the Standard Model is Quantum Chromo Dynamics (QCD) describing the
strong force that only affects particles that carry color charge (only quarks and gluons).
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The gauge group for QCD is SU(3). There are three color charges for the quarks, Red,
Green, and Blue (Anti-Red, Anti-Green, and Anti-Blue for the anti-quarks) and eight
different gluons that couple to different color states of the quarks. Since gluons themselves
carry color charge, unlike the photon, they can selfinteract.[8]

The Lagrangian for the strong force is

L = q (iγµDµ −m) q − 1
4G

a
µνG

µνa (2.32)

where Dµ = ∂µ + igsTaG
a
µ is the covariant derivative, Gaµ is the gluon field, Ta is the

generator of the gauge group, and Gaµν = ∂µG
a
ν − ∂νGaµ − gsfabcGbµGcµ describes the gluon

propagation. gs is the coupling of QCD, and fabc is the structure constant of the gauge
group ( [Ta, Tb] = ifabcTc). [7]

The coupling of the strong force differs from the coupling of the electroweak force by
the fact that it is constant at large distances whereas the electroweak coupling decreases
with growing distance. At short distances the strong and electroweak coupling show the
same behavior. When two quarks are close together the coupling constant is small there
is thus no gluon field between them and they can move freely (asymptotic freedom). If
the quarks moving apart, they will be pulled together again due to field lines of the
strong force connecting them (color confinement). If the force pulling the quarks apart is
sufficiently strong a quark-anti-quark pair will be created from the vacuum and what was
once one hadron has now split into two. Due to this effect quarks are glued together to
form colorless objects known as hadrons.



3

Tau Polarization in Z Decays and its Measurement

In this chapter the polarization asymmetry in Z0 decays will be presented along with the
basic properties of tau decays and how to use tau decays as spin analyzers.

3.1 The Z Boson

In hadron collisions, Z bosons are produced in quark-antiquark annihilations as shown
in Figure 3.1. The antiquarks are present in the proton through quantum fluctuations
creating a sea of quarks and antiquarks. Quark pairs can also create off-shell, virtual
photons, γ∗ causing interference between contributions from γ∗ and contributions from Z.

γ∗/Z

q

q̄

τ+

τ−

Figure 3.1: Feynman diagram for the leading order qq̄ → Z → ττ process.

As seen in Figure 3.2, the Z peak at ∼ 90 GeV lies on top of the smoothly decreasing
γ∗ distribution. At hadron colliders the energy of the quarks colliding varies between the
events depending on the energy carried by the quarks and antiquarks. A range of energies
will therefore be studied at the Large Hadron Collider and it is not possible to study the
physics exactly at or near the Z peak in Z → ττ decays where undetectable neutrinos are
present in the decays of the tau leptons.

15
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Figure 3.2: The number of produced Z/γ∗ in proton collisions as a function of the center
of mass energy. The distribution is made from simulations.

The width of the Z boson is given by

ΓZ =
∑

f

Nf
c

GFM
3
Z

6π
√

2

[
gf 2
A + gf 2

V

]
(3.1)

where f denotes the fermion flavour, Nf
c is the number of color charges, GF the Fermi

coupling constant (GF = 1.16637(1) × 10−5 GeV−2 [3]), MZ the mass of the Z, and gfV
(gfA) is the vector (axial-vector) coupling between the fermion and the boson Z. The width
of the Z is inversely proportional to its lifetime.

The cross section for qq̄ → Z/γ∗ → ff is given by [7]

σ(s)= σγ(s) + σZγ(s) + σZ(s)

=
1

3
Nf
c

4πα(s)2

3s

[
Q2
qQ

2
f + 2QqQfRe(r(s))gfV g

q
V + |r(s)|2

(
gf 2
V + gf 2

A

)(
gq 2
V + gq 2

A

)]

(3.2)

where α(s) is the electroweak coupling constant dependent on the center of mass energy
squared, s. r(s) is a propagator given by

r =
GFM

2
Z

2π
√

2α(s)
· s

s−M2
Z + iMZΓZ

(3.3)

In Equation 3.2, σZ is the Z cross section, σZγ is the interference term between Z and
γ∗, and σγ is the γ∗ cross section. The Z/γ∗ cross section is dominated by the Z cross
section near the Z peak at

√
s = MZ .
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3.2 Polarization

As described in Section 2.3, the Z0 couples differently to right-handed and left-handed
fermions. When a fermion-anti-fermion pair annihilate to create a Z0 (or a photon)
the fermion and the anti-fermion must have opposite helicities due to conservation of
angular momentum. The fermion-anti-fermion pair created when the Z0 or photon decays
must similarly have opposite helicities. In Figure 3.3 the helicity combinations for the
qq̄ → Z/γ∗ → τ−τ+ process are shown.

Figure 3.3: Helicity combination in qq̄ → Z/γ∗ → τ−τ+. The thick arrows denote the
helicity of the quarks and taus.

The derivations in this section follow the argumentation in Ref. [10].

The cross section for qq̄ → Z/γ∗ → τ−τ+ depends on θ∗ which is the angle between
the initial state quark and the final state fermion in rest frame of the Z. The cross sections
for the helicity combinations shown in Figure 3.3 are
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dσ

d cos θ∗
(
qLq̄R → τ−L τ

+
R

)
=

1

3

4πα (s)2

s
×

[
Q2
qQ

2
τ + 2Reχ (s)QqQτ ḡ

q
Lḡ

τ
L + |χ (s) |2ḡq 2

L ḡτ 2
L

]
(1 + cos θ∗)2

dσ

d cos θ∗
(
qLq̄R → τ−R τ

+
L

)
=

1

3

4πα (s)2

s
×

[
Q2
qQ

2
τ + 2Reχ (s)QqQτ ḡ

q
Lḡ

τ
R + |χ (s) |2ḡq 2

L ḡτ 2
R

]
(1− cos θ∗)2

dσ

d cos θ∗
(
qRq̄L → τ−L τ

+
R

)
=

1

3

4πα (s)2

s
×

[
Q2
qQ

2
τ + 2Reχ (s)QqQτ ḡ

q
Rḡ

τ
L + |χ (s) |2ḡq 2

R ḡτ 2
L

]
(1− cos θ∗)2

dσ

d cos θ∗
(
qRq̄L → τ−R τ

+
L

)
=

1

3

4πα (s)2

s
×

[
Q2
qQ

2
τ + 2Reχ (s)QqQτ ḡ

q
Rḡ

τ
R + |χ (s) |2ḡq 2

R ḡτ 2
R

]
(1 + cos θ∗)2

(3.4)

where χ (s) is a propagator given as

χ (s) =
GFM

2
Z

2π
√

2α (s)
· s

s−M2
Z + isΓZ/MZ

(3.5)

By comparing the r(s) propagator of Equation 3.3 with χ(s) it is seen that the only
difference is in the denominator. This is due to an s dependence of ΓZ (ΓZ(s) =
s
M2
Z

Γ(M2
Z)). ΓZ denotes the width at the Z peak,

√
s = MZ .

In Equation3.4 the correction due to interference between Z0 and photons is taken
into account. ḡfL and ḡfR are the effective1 chiral couplings in the neutral current for a
fermion with flavour f . They can be expressed in terms os the vector and axial vector
couplings, ḡfV and ḡfA, as

ḡfL =
ḡfV + ḡfA

2

ḡfR =
ḡfV − ḡ

f
A

2
(3.6)

The first term in the parenthesis in Equation 3.4 is the pure Z contribution, the sec-
ond term is the interference term between Z and γ∗, and the last term is the pure γ∗

contribution.
With unpolarized beams the differential cross section can be expressed as

dστ
d cos θ∗

(s, cos θ∗;λ) =
(
1 + cos2 θ∗

)
F τ0 (s) + 2 cos θ∗F τ1 (s)

−λ
[(

1 + cos2 θ∗
)
F τ2 (s) + 2 cos θ∗F τ3 (s)

]
(3.7)

1The effective couplings take into account the electroweak radiative corrections in the qq̄ → Z/γ∗ →
τ−τ+ process
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with λ being the helicity of τ−. The four form factors are given as

F τ0 (s)=
1

3

πα (s)2

2s

[
Q2
qQ

2
τ+2Reχ (s)QqQτ ḡ

q
V ḡ

τ
V +|χ (s) |2

(
ḡq 2
V + ḡq 2

A

) (
ḡτ 2
V + ḡτ 2

A

) ]

F τ1 (s)=
1

3

πα (s)2

2s

[
2Reχ (s)QqQτ ḡ

q
Aḡ

τ
A+|χ (s) |22ḡqV ḡ

q
A2ḡτV ḡ

τ
A

]

F τ2 (s)=
1

3

πα (s)2

2s

[
2Reχ (s)QqQτ ḡ

q
V ḡ

τ
A+|χ (s) |2

(
ḡq 2
V + ḡq 2

A

)
2ḡτV ḡ

τ
A

]

F τ3 (s)=
1

3

πα (s)2

2s

[
2Reχ (s)QqQτ ḡ

q
Aḡ

τ
V +|χ (s) |22ḡqV ḡ

q
A

(
ḡτ 2
V + ḡτ 2

A

) ]

(3.8)

The longitudinal polarization asymmetry of τ− is the asymmetry between the number
of right-handed and left-handed τ− (NR and NL respectively), i.e.

Pτ =
NR −NL

NR +NL
=
στ (λ = 1)− στ (λ = −1)

στ (λ = 1) + στ (λ = −1)
(3.9)

Equation 3.9 is valid in the ultra-relativistic limit (mτ � Eτ ), which is appropriate
for taus from Z-decays. In this limit, the tau helicity and chirality states are identical.
The polarization , Pτ , is defined for τ− and will have the opposite sign for τ+. In terms
of the form factors in Equation 3.8 the longitudinal polarization can be rewritten to

Pτ = −
(
1 + cos2 θ∗

)
F τ2 (s) + 2 cos θ∗F τ3 (s)

(1 + cos2 θ∗)F τ0 (s) + 2 cos θ∗F τ1 (s)
(3.10)

At the Z0 pole (
√
s ≈MZ) the polarization integrated over cos θ∗ becomes

〈Pτ 〉 = − 2ḡτV ḡ
τ
A

ḡτ 2
V + ḡτ 2

A

= −Aτ (3.11)

Here the last equation defines the so-called chiral coupling asymmetry, A. Values of gA,
gV , and A for different fermions are given in Table 3.1.

Recalling Equation 2.31 and observing that ḡτA � ḡτV (see Table3.1), the expression
for polarization asymmetry reduces to

〈Pτ 〉 ≈ −2
ḡτA
ḡτV

= −2
(
1− 4 sin2

eff θW
)

(3.12)

In this limit the dependence on the weak mixing angle is particularly simple. The
polarization asymmetry is thereby a measure of the effective weak mixing angle, θW .

3.3 Tau Decays

The tau lepton was discovered in 1975 and since its discovery measurements have shown
that the tau lepton behaves as the electron and the muon and is thus consistent with a
third family lepton.

The tau lepton is the heaviest of the leptons with a mass of 1.777 GeV and therefore
it has a very short lifetime (ττ = (290.6±1.0)×10−15 s [3]). Due to its large mass the tau
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f T f3 Qf gfA gfV Af
ντ 1/2 0 1/2 1/2 1
τ− -1/2 -1 -1/2 -0.04 0.16
u 1/2 2/3 1/2 0.19 0.67
d -1/2 -1/3 -1/2 -0.35 0.94

Table 3.1: Numeric values of quantum numbers, vector and axial vector couplings, and
the chiral coupling asymmetry, Af . A value of sin2 θW = 0.23 has been used.

Decay Modes Branching fraction [%]

e−ν̄eντ 17.82± 0.04
µ−ν̄µντ 17.39± 0.04
π−ντ 10.91± 0.07
K−ντ 0.696± 0.023
ρ−ντ 25.94± 0.09
K∗−ντ 0.429± 0.015
h−2π0ντ 10.85± 0.11
h− ≥ 3π0ντ 1.34± 0.07
h−h+h−ντ 9.80± 0.07
h−h+h− ≥ 1π0ντ 5.38± 0.07

Table 3.2: Branching fraction of the most common tau decays [3]. h± stands for π± or
K±.

lepton is sufficiently heavy to decay to an up and a Cabibbo mixed down quark, unlike
the electron and the muon. Thus, the tau lepton has two different decay modes, it can
decay leptonically or hadronically.

Figure 3.4: Leptonic and hadronic decay of the tau lepton.

In Figure 3.4 the two decay modes of the tau lepton are illustrated. To first order
one expects the branching fraction to hadrons to be three times as big as the branching
fraction to electrons and muons due to the color charges of the quarks.

In Table 3.2 branching fractions for both hadronic and leptonic decays are stated. The
leptonic decays have a total branching fraction of ∼ 35% and the hadronic decays have a
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Meson Quark Composition Mass [MeV] Dominating Decay Mode

π− ūd 139.6 -
ρ− ūd 775.5 π−π0

a−1 ūd 1230 ρ−π−

K− ūs 493.7 -
K∗− ūs 891.6 K−π0

K−1 ūs 1403 K∗−π0

Table 3.3: Mass, quark composition and dominating decay mode of the mesons from the
main hadronically tau decays.[3]

total branching fraction of ∼ 65%. This is consistent with the expected branching fraction
when QCD corrections are included.

The tau lepton can decay to mesons being pseudo-scalars, vector or axial-vector parti-
cles that are either Cabibbo-favoured

(
π−, ρ−, a−1

)
or Cabibbo-suppressed

(
K−,K∗ −,K−1

)
.

In Table3.3 the mass, quark composition, and dominating decay mode for both the
Cabibbo-favoured and Cabibbo-suppressed mesons are listed.

3.4 Tau Decays as Spin Analyzers

It was already predicted in 1971, four years before the discovery of the tau lepton, by Tsai
[11] that if a lepton heavy enough to decay to quarks existed the helicity of the lepton
would be accessible through the angular distribution of the decay products due to the
maximal parity violation in the decay of the heavy leptons. Tau leptons can thus be used
as spin analyzers.

In the following sections, differential distributions are derived for τ− decays. The
corresponding distributions for τ+ decays can be found by a change of sign on the helicity
dependent term. Since Pτ− has the opposite sign of Pτ+ , the distributions for a left-
handed τ− is the same as for a right-handed τ+. There is therefore no need to split the
analysis into τ− and τ+. For a given polarization, the kinematic distributions of the decay
products of τ+ and τ− will be identical.

Hadronic Decays as Spin Analyzers

In the case of a tau decaying to a pion and a neutrino, the neutrino is preferably emitted
opposite the spin orientation of the tau to conserve angular momentum. This is due to
the left-handed nature of the neutrino. Hence, the pion will preferably be emitted in the
direction of the spin orientation of the tau. The angle θ is defined to be the angle in the
rest frame of the tau lepton between the direction of flight of the tau in the laboratory
rest frame and the direction of flight of the pion, as illustrated in Figure 3.5. The decay
distribution as a function of θ is be given as [12]

1

Γ

dΓ

d cos θ
= 1

2 (1 + Pτ cos θ) (3.13)
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where Pτ is the average polarization of the sample. In the case of a sample consisting
completely of right-handed taus Pτ equals to 1 and in the case of a sample of left-handed
taus Pτ equals to −1.

Figure 3.5: τ− → π−ντ . The thick arrows denote the helicity of the particles.

The angle θ is given by the kinematics of the decay in the following form

cos θ =
2x− 1− a2
β (1− a2) (3.14)

where β =
√

1−m2
τ/Eτ2 is the velocity of the tau, x is the fraction of the energy of the

tau carried away by the pion (x = Eπ/Eτ ), and a = mπ/mτ . In the case of the pion decay,
terms of order a2 can be ignored. The velocity of the tau, β, can be put to one since the
Eτ � mτ in the case of Z decays.

The differential distribution in Equation 3.13 can be rewritten in terms of xπ to

1

Γ

dΓ

dx
= 1 + Pτ (2x− 1) (3.15)

From this it is clear that a right-handed τ− (left-handed τ+) will preferably decay into
a hard pion, whereas a left-handed τ− (right-handed τ+) will decay into a soft pion.
The polarization of an ensemble of taus can be measured by measuring the slope of the
distribution of x.

When a tau decays into a vector meson, V , and a tau neutrino, there are two possible
helicity configurations of the vector meson. As shown in Figure 3.6 the vector meson
can either be longitudinally polarized (helicity equals 0) or transversely polarized (helicity
equals -1). In case of a longitudinally polarized vector meson, the differential distribution
is similar to that of the pion decay with the only difference being x = EV /Eτ and the
terms of order a2 can no longer be neglected. When a tau decays to a transversely
polarized vector meson, the sign of the spin of the final state is flipped. Since there will
be a mixture of longitudinally and transversely polarized vector mesons the differential
distribution becomes

1

Γ

dΓ

d cos θ
= 1

2 (1 + αPτ cos θ) (3.16)
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(a) (b)

Figure 3.6: τ− → ρ−T ντ (a) and τ− → ρ−Lντ (b). The thick arrows denote the helicity of
the particles.

where α is given by

α =
m2
τ − 2m2

V

m2
τ + 2m2

V

(3.17)

For rho decays α has the value of 0.46 and for a1 decays a value of 0.12. The differential
distribution can be rewritten in terms of the energy fraction carried by the vector meson,
x, to

1

Γ

dΓ

dx
=

1

1− a2
(

1 + αPτ
2x− 1− a2

1− a2
)

(3.18)

As seen in Figure 3.7(b) the distribution of energy fraction carried by the rho meson
will run from a2 = (mρ/mτ )2 to one.
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Figure 3.7: Distribution of fraction of visible energy, x, in pion (a) and rho (b) decays
divided into left-handed (pink) and right-handed (blue) samples.

A lot of sensitivity of the polarization is lost in Equation 3.18 compared to the pion
decay due to the mixing of longitudinally and transversely polarized vector states. Some of
the sensitivity can be regained by considering other variables sensitive to the tau helicity.
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Figure 3.8: ρ− → π−π0.

For decays into a rho-meson another variable sensitive to tau helicity is the angle
between the direction of flight of the vector meson and the π− in the rest frame of the
vector meson as illustrated in Figure 3.8. The angle is given by [13]

cosψ =
mρ√

m2
ρ − 4m2

π

· Eπ− − Eπ0

|~pπ− + ~pπ0 | (3.19)

The angle is sensitive to the helicity of the rho meson and therefore also to the helicity
of the tau, that the vector meson originated from. This is due to the fact that right-
handed τ− produce more longitudinally polarized rhos whereas left-handed τ− produce
more transversely polarized rhos. When a longitudinally polarized rho decays the decay
angle, ψ, will preferably be 0◦ or 180◦. In a transversely polarized rho decay the decay
angle, ψ, will preferably be 90◦ due to conservation of angular momentum. From Equation
3.19 it is seen that the angle depend on the energy sharing between the charged and the
neutral pion. Hence in a decay of a transversely polarized rho the energy tends to be shared
equally between the charged and the neutral pion. On the contrary, when a longitudinally
polarized rho decays one of the pions will tend carry most of the available energy.

The distributions of cosψ for right-handed and left-handed taus from rho decays are
shown in Figure 3.9.
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Figure 3.9: The distribution of cosψ from rho decays divided into left-handed (pink) and
right-handed (blue) samples. Each sample is normalized to one.
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In the decay of heavier vector mesons such as a1 there will be three pions. This gives
rise to six kinematic variables used to extract the tau helicity. [13]

Leptonic Decays as Polarization Analyzers

When a tau lepton decays leptonically there will be two neutrinos in the final state which
makes this decay channel less sensitive to the tau helicity than the hadronic channels.
Since we do not have access to the helicity of the final state lepton, the differential
distribution is averaged over both helicities of the lepton. Ignoring terms containing
m`/mτ the differential distribution can be written as [12]

1

Γ

dΓ

dx
= 1

3 (1− x)
((

5 + 5x− 4x2
)

+ Pτ
(
1 + x− 8x2

))
(3.20)

where x = E`/Eτ .
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Figure 3.10: Distribution of fraction of visible energy, x, in electron (a) and muon (b)
decays divided into left-handed (pink) and right-handed (blue) samples.

In Figure 3.10 it is seen that the distributions of the visible energy fraction, x, looks
similar for left-handed and right-handed taus. The dip at xµ = 0 in Figure 3.10(b) which
is not present in Figure 3.10(a) is due to the larger mass of the muon compared to the
mass of the electron since x will be within the range from (m`/mτ )2 to one.

Sensitivity

To quantify how suited different tau decays are as polarization analyzers the concept of
sensitivity is introduced. For every decay channel the n kinematic variables usable for
polarization measurements are arranged in a vector, ~ξ. The decay distribution can then
be written as [14]

W (~ξ) = f(~ξ) + Pτg(~ξ) (3.21)
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Decay Mode Sensitivity Branching Fraction Relative Weight
S B ∝ S2B

e−ν̄eντ 0.22 0.1782 0.06
µ−ν̄µντ 0.22 0.1739 0.06
π−ντ 0.58 0.1091 0.30
ρ−ντ 0.49 0.2594 0.44

π−π+π−ντ 0.45 0.0980 0.13

Table 3.4: Sensitivity, branching fraction, and relative weight for the tau decays most
frequently used for polarization measurements. An input of Pτ = −0.15 has been used.
The relative weights are normalized to add up to unity. In case of the vector meson decay
modes all the variables sensitive to the tau polarization have been used.[10][13]

where f and g fulfills

∫
f(~ξ) dn~ξ = 1,

∫
g(~ξ) dn~ξ = 0, f ≥ 0 and |g| ≤ f (3.22)

where f is the sum of the distributions coming from a right-handed and a left-handed
sample of taus while g is the difference. The sensitivity is then defined as [14]

S2 =

∫
g2

f + Pτg
dn~ξ (3.23)

The sensitivity of different decay channels is listed in Table 3.4. The weight of the
decay channels in an ideal polarization measurement is the sensitivity squared times
the branching fraction. It is clear from Table 3.4 that the lepton channels have a very
low weight while the rho decay has the highest among the hadronic channels. The low
sensitivities of the lepton channels are due to the two undetectable neutrinos in the final
state.

3.5 Polarization Observables at Hadron Colliders

In Section 3.4 it was shown that especially the pion and rho channel are sensitive to
the spin orientation of the tau. When using x to measure the polarization of the taus
knowledge of the energy of the tau is required. At electron-positron colliders the tau
energy is known since the exact collision energy is known through the beam constraint
and the tau polarization can be measured with x. At hadron colliders the energy of a
collision is in general not known, since it is the gluons and quarks inside the hadrons that
collide and the tau energy is therefore not known through a beam constraint. It is only
known that the energy in the transverse plane to the beam is equal to zero before the
collision. The tau energy would be known if the momentum of the tau neutrinos were
reconstructed. The sum of the momentum of the tau neutrinos in the transverse plane
can be reconstructed through the transverse energy. In the collinear approximation [15]
the tau neutrino energy is reconstructed by projecting the missing transverse energy onto
the tau directions. The collinear approximation requires that the tau pair must not be
back-to-back, which will cut away a lot of the signal.
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Instead of using the x distributions the cosψ (Equation3.19) distribution of the rho
decay can be used. However, the width of the rho mass is large and the mass not measured
well at the Large Hadron Collider. At the expense of sensitivity, the first part of Equation
3.19 is dropped, and the charged energy asymmetry is used instead [16]

Υ =
Ech − Eπ0

Ech + Eπ0

(3.24)

where Ech is the energy of the charged mesons and Eπ0 is the neutral energy of the π0s.
The charged energy asymmetry do not require knowledge of the tau energy. The charged
energy asymmetry is optimized for the rho decay, but in this thesis it is studied inclusively
for all decays with one charged meson in the final state.

In Figure 3.11 the charged energy asymmetry is shown for right-handed and left-handed
taus. The difference between the charged energy asymmetry in Figure 3.11 and the cosψ
distribution in Figure 3.9 is that the charged energy symmetry is zero at Υ = ±1 for
both right-handed and left-handed taus. This causes the sensitivity of the charged energy
asymmetry to be lower than the sensitivity of cosψ.
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Figure 3.11: The distribution of the charged energy asymmetry, Υ, from rho decays divided
into left-handed (pink) and right-handed (blue) samples. Each sample is normalized to
one.
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Particle Physics at Hadron Colliders

In this chapter, an overview of the structure of collisions at hadron colliders will be given
together with a description of Monte Carlo techniques and the event generators used in
this thesis.

4.1 Collisions at Hadron Colliders

At the Large Hadron Collider (LHC) protons are collided to study the physics of the
elementary particles. At the elementary level, it is, however, not the protons that are
colliding, but rather the constituents of the protons, the gluons and the quarks. The
protons consists of three valence quarks, two up quarks and one down quark, and a sea
of quark-anti-quark pairs held together by gluons. Most often the protons will collide in
soft collisions. We are interested in a hard collision that happens rarely.

In Figure 4.1 a schematic view of a proton-proton collision is seen. Here follows a short
summary of the different parts of a proton-proton collision:

Hard Process: When partons collide at high energy different processes can occur.
One process if the scattering of two partons creating two high pT partons. This will
be observed as jets in the detector. An alternative process is the creation of a new,
short-lived particles. In this thesis, the hard process of interest is qq̄ → Z/γ∗ →
τ−τ+.

Underlying Event: The cross section for soft QCD is large compared to the cross
section for the hard scattering. The probability for the partons not participating in
the hard scattering to interact softly is therefore non-vanishing. The soft interaction
creates many soft jets.

Initial State Radiation (ISR): All partons can radiate gluons. The gluon will
primarily be radiated parallel to the original parton. In ISR, most of the radiated
gluons will move along the beam-axis and thus not detected. A gluon can be radiated
in a large angle creating additional jets observed in the detector, but this happens
rarely.

Final State Radiation (FSR): Like the initial state partons could radiate a gluon
or a photon so can the final states. In case of lepton final states there will only be
radiated photons since leptons do not couple to gluons.

29
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Jet Fragmentation: Due to color confinement described in section 2.4 the initial
state and final state radiated gluon and quarks, and partons from the hard scattering
cannot be observed alone, they need to be in a color neutral state. The gluons and
quarks will therefore radiate more soft and collinear gluons that can split into a
quark pair to smear out the color charge they are carrying. At an energy scale
of ∼ 1GeV the pertubative description of QCD breaks down. It is in this non-
pertubative regime that hadrons (mostly pions) are created. This is what is defined
as a jet.

Beam Remnants: A part of the beam will not participate in the hard process nor
the underlying event and will continue along the beam axis. The beam remnants
will carry color charge and will thus interact with the rest of the collision (the hard
scattering and the underlying event).

Figure 4.1: Schematic overview of a proton collision.[17]

We see that even though we are only interested in the hard process in hadron collisions
we will get extra collisions in the underlying event and jets from initial state and final
state radiation. The hard process studied in this thesis is qq̄ → Z → ττ . The final state
will therefore consist of two tau decays and is thus not as complicated as the final state
in Figure 4.1.
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The momentum along the beam-axis of the incoming partons is not known. The
longitudinal momentum of the final state particles do therefore not carry much useful
information. Under the assumption that the incoming partons move along the beam-axis,
the initial transverse momentum is known to be zero, and the transverse momentum and
energy are used to study the collisions. We therefore wish to split the momentum into
momentum transverse to the hadron beam, pT , and momentum parallel to the hadron
beam, p||. Instead of using p|| rapidity is introduced, which is a relativistic generalization
of speed and adds under Lorentz transformations. The rapidity is given by

y = 1
2 ln

(
E + pz
E − pz

)
(4.1)

where the z-direction is parallel to the beam-axis.
In the massless limit, m2 � E, the rapidity reduces to the pseudorapidity, η, that is

directly connected to the angle, θ, between beam axis and the direction of flight of the
particle:

η = − ln

[
tan

(
θ

2

)]
(4.2)

Experimentally the pseudorapidity is used.

4.2 Parton Distribution Functions

The proton, as described previously, consists of three valence quarks and a sea of gluons
and quark-anti-quark pairs. For the description of parton-parton interactions, the concept
of parton distribution functions is introduced. The parton distribution functions (PDFs)
can to lowest order be described as the probability of finding a given parton with a specific
momentum fraction inside the proton.

The parton distribution functions, fi(x), depend on the energy fraction, x given by

x =
|~pparton|
|~pproton|

(4.3)

and the momentum transfer between partons inside the proton, Q. In the case of Z
production. the average x will be

〈x〉 =
MZ√
s

=
91.1876 GeV

7 TeV
≈ 1.30 · 10−2 (4.4)

since a energy corresponding to the mass of the Z will be needed to create a Z boson.
The energy of the hard scattering squared, ŝ, puts further restrictions on the momen-

tum fraction of the incoming particles, x1 and x2, by requiring:

ŝ = x1x2s (4.5)

where s is the collision energy of the protons squared.
In Figure 4.2 parton distribution functions for two different momentum transfers are

shown. It is seen that the dominant parton is the gluon which at the average value of
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x is an order of magnitude larger than the quarks. Notice that for high values of x the
dominant parton distribution functions are the u and d quarks. This is due to the up and
down quarks being the valence quarks.

3.1 The New Standard PDF Sets

The standard set of parton distributions in the MS scheme, referred to as CTEQ6M, provides an

excellent global fit to the data sets listed in Sec. 2.1. An overall view of these PDF’s is shown in

Fig. 1, at two scales Q = 2 and 100 GeV. The overall χ2 for the CTEQ6M fit is 1954 for 1811

data points. The parameters for this fit and the individual χ2 values for the data sets are given in

Appendix A. In the next two subsections, we discuss the comparison of this fit to the data sets, and

then describe the new features of the parton distributions themselves. Quantitative comparison of

data and fit is studied in more depth in Appendix B

Fig. 1 : Overview of the CTEQ6M parton distribution functions at Q = 2 and 100 GeV.

3.1.1 Comparison with Data

The fact that correlated systematic errors are now fully included in the fitting procedure allows a

more detailed study of the quality of fits than was possible in the past. We can take the correlated

systematic errors into account explicitly when comparing data and theory, by using the procedure

discussed in Sec. B.2 of Appendix B. In particular, based on the formula for the extended χ2

function expressed in the simple form Eq. (11), we obtain a precise graphical representation of the

quality of the fit by superimposing the theory curves on the shifted data points {D̂i} containing

the fitted systematic errors. The remaining errors are purely uncorrelated, hence are properly

represented by error bars. We use this method to present the results of our fits whenever possible.

Figure 2 shows the comparison of the CTEQ6M fit to the latest data of the H1 experiment

[14]. The extensive data set is divided into two plots: (a) for x < 0.01, and (b) for x > 0.01. In

order to keep the various x bins separated, the values of F2 on the plot have been offset vertically

for the kth bin according to the formula: ordinate = F2(x,Q2) + 0.15 k. The excellent fit seen

in the figure is supported by a χ2 value of 228 for 230 data points. Similarly, Fig. 3 shows the

comparison to the latest data from ZEUS [15]. One again sees very good overall agreement.

8

Figure 4.2: Parton distribution functions from CTEQ6M[18].

Even though the gluon is dominating for low values of x it is not a leading order part of
the creation of Z bosons since they can only be created in quark-anti-quark annihilation.
However, at next-to-leading order (NLO) the gluons play a part in the creation of Z
bosons, since gluons can split into quark-anti-quark pairs which then can interact with
quarks from the other proton. In Figure 4.3 the NLO processes for pp→ Z/γ∗ → ττ are
shown.
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g
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q̄ τ−

γ∗/Z γ

q
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g

γ∗/Z

q τ+

q

τ−
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Figure 4.3: Next to leading order Feynman diagrams for the Z/γ∗ → ττ process. The
diagrams are initial state gluon radiation (a), final state photon radiation (b), and initial
state gluon splitting (c).
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4.3 Cross Sections at a Hadron Collider

A cross section, σ, of a process is a measure of the probability of that process to take
place. It is measured in barns, b, and the amount of data, the integrated luminosity, L,
is measured in inverse barns, b−1. The expected number of events, N , of a given process
is given as

N = σL (4.6)

Cross sections are calculated from known initial states, but there are, as described in
Section 4.2, multiple initial states in hadron collisions with different momentum fractions,
xa and xb. The cross section of a process ab → X can be calculated by averaging over
all initial states and convolute the cross section with the respective parton distribution
functions. This is known as the factorization theorem and is given by: [19]

σAB =

∫
dxa dxbfa/A

(
xa, Q

2
)
fb/B

(
xb, Q

2
)
σab→X (4.7)

The cross section of the hard scattering, qq̄ → Z/γ∗ → ff , σ(ŝ), is given by Equation
3.2. Using Equation 4.7 the differential cross section of the hard scattering is found to be

dσ

dŝ
(pp→ ``X) = σ(ŝ)

∫
dxa dxbfa/A

(
xa, Q

2
)
fb/B

(
xb, Q

2
)
δ
(

1− xaxb
s

ŝ

)
(4.8)

with the constraint on xa and xb given by Equation 4.5.
In Figure 4.4 cross sections for the production of various particles are shown as a

function of the collision energy. From this it is seen that it will only be one in a million
events that produces a Z boson. The W boson will be produced 10 times as often due to
the lower mass of the W boson and the V-A couplings of the Z described in Section 2.3.

4.4 Event Generators

In particle physics, simulations play a major role. Due to the complexity of the theory,
simulations of what we expect are compared to data to see if there are any deviations and
measure properties as for example the tau polarization. All event generators use a Monte
Carlo method to generate random events with the frequency that we expect from Nature.
Instead of providing all different processes simultaneously, the event generators generate
one event type at a time, which must then be reweighted according to their respective
cross section.

There are several event generators available for proton-proton collisions and they treat
the different parts of the collisions described in Section 4.1 in various ways. Many simu-
lations use a combination of two or more event generators each providing the simulation
of one or more of the parts of a proton collision.

Event generators can be split into two groups, parton shower generators and matrix
element generators.

The parton showering (PS) generators calculate the hard process to lowest order. A
showering algorithm is then performed on the outgoing partons so they radiate gluons and
the gluons split into quark pairs. When the invariant mass of the partons is sufficiently
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Figure 4.4: Cross sections at the Large Hadron Collider.[20] Please note that the Large
Hadron Collider was running at

√
s = 7 TeV in 2011 and the cross section should be

evaluated at that energy.

low (∼ 1GeV), the pertubative gluon and quark radiation breaks down and the partons
are combined into colorneutral states. The original partons will then have evolved into
jets.

The matrix element (ME) generators calculate the matrix elements to leading order
with different number of final state partons, i.e. Z → `` + additional jets created from
initial and final state radiation as shown in Figure 4.3. The ME generators do not include
any hadronisation and the final state is single partons. To get to an observable state, the
jets must be created with a parton showering algorithm.

In Figure 4.5 the difference between the matrix element and the parton shower ap-
proach is shown.
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Figure 3.8: The evolution of final state showers can be done in various ways. The interaction
can be calculated with matrix elements and parton showering can then be used to produce all
additional radiation. Similarely the matrix elements can be calculated up to NLO after which
the diagrams can be evolved with parton showering. In both cases there will be overlap between
the diagrams as seen in the diagonal. The matching and selection of which diagrams to use, is
performed by matching algorithms.

Figure 3.9: The calculation of 2 → n processes would not be possible in generators for n much
higher 2 if not for the method of factorising the event. In this way different parts of the process
can be calculated independently and merged afterwards, to a complete numerical calculation. The
figure shows the factorisation of a 2 → 2 process with both ISR and FSR. From [23]

Figure 4.5: Graphical interpretation of the matrix element (ME) method versus the parton
shower (PS) method.[21] All the blue gluons are calculated exact with matrix elements
and all the red gluons are produced with parton showering algorithms.

Besides the many event generators there exist programs made for a specific parts of the
physics processes. TAUOLA, for example, provides a detailed description of tau decays.

In the following, descriptions of the event generators used for simulations in this thesis
are presented.

PYTHIA

Pythia[22] is a widely used general purpose event generator in high energy physics for both
Standard Model and Beyond the Standard Model physics. The advantage of Pythia is
that it simulates all the parts of a proton collision, from the hard process to the underlying
event, to beam remnants, to jet formation. For the parton distribution functions, Pythia
uses CTEQ 5L[23] as default for protons.

The hard scattering processes in Pythia is limited to leading order 2 → 2, and 2 →
1processes. Additional jets are created through hard radiation during the parton showering
mechanism. Pythia is therefore not good at estimating the cross section for events with a
high jet multiplicity in the final state.

The underlying event consists of multiple parton interactions and scatterings. In
Pythia the underlying event is described as several independent 2 → 2 processes along
with prompt photons, charmonia and bottomonia creation, low-mass Drell-Yan pairs, and
t-channel γ∗/Z0/W± exchange. The many scattering partons are color connected to each
other and to the beam remnants.

Pythia uses the Lund string fragmentation model[24] for hadronisation, where quark
pairs are held together by a color string which represents a gluon. When the quarks move
apart the color string will break creating a new quark pair. When the energy of the quarks
is sufficiently low they can no longer break the color strings and hadrons will be formed.
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HERWIG

Herwig[25] is a general purpose event generator simulating all parts of a proton collision. It
works in many ways like Pythia, but can be interfaced with more programs than Pythia.
It has available a large number of 2 → 2 processes both for the Standard Model and
Super Symmetry. It decays almost all particles with full spin correlations, but can also
be interfaced to programs dedicated to special particle decays. The main focus of Herwig
is a detailed simulation of QCD jets. As with Pythia, the hard processes are treated at
tree level, and additional radiated partons are generated through the parton showering
process.

The underlying event is originated from a minimum bias pp generator developed by
UA5, but modified to use the hadronisation algorithm developed in Herwig.

The hadronisation process in Herwig is cluster based. Partons are, after parton
showering, combined into colorless clusters of either quark-anti-quark pairs or diquark-
anti-diquark pairs. If the formed clusters are too light to decay into two hadrons the
cluster is formed into a light hadron. If the cluster is heavy enough to decay into two
hadrons, it will do so and the decay products will continue to decay until the clusters are
too light to decay.

AlpGEN

AlpGEN[26] is a Matrix Element generator. It is designed for generating Standard Model
processes in hadronic collisions with main focus on final states containing multiple jets.
The processes Z/γ∗ → ff̄ +N jets and W → ff̄ ′+N jets processes have been calculated
with Njets ≤ 6.

Parton showering is not included in AlpGEN and must be handled by another program,
for example Herwig or Pythia with which Alpgen can interface. After parton showering
the showers must be matched to the matrix element to avoid double counting.

MC@NLO

MC@NLO[27] is a matrix element event generator with the hard scattering calculated
including Next-to-Leading-Order QCD corrections. MC@NLO includes cross sections for
electroweak processes, and tt̄ and bb̄ production. It can simulate final state with two or
three jets. To get the correct jet multiplicity MC@NLO interfaces with Herwig to create
parton showers and hadronisation. Since the jet multiplicity in the hard scattering is
limited it is not as precise in predicting the jet multiplicity as Alpgen.

The Underlying Event

There exists dedicated generators for underlying events. One of those is JIMMY[28]
which uses a leading order multiple scattering model. It can be interfaced with Herwig to
generate the underlying event instead of the generator included in Herwig.
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TAUOLA

TAUOLA[29] is a program made specifically to handle tau decays. It takes into account all
the spin effects of the particles that the taus originate from and calculates the kinematics
of the tau decay products according to their helicity. It can be interfaced with both Herwig
and Pythia. If the taus have already decayed in the preceding event generator TAUOLA
will ”undecay” them and afterwards decay the taus properly.

Detector Simulation

To compare simulations to real data, the events generated by an event generator will be
propagated through a detector simulation, so detector responses will be available for the
comparison. In ATLAS the detector simulations can be done with two different programs,
ATLFAST II[30] and Geant4[31]. Geant4 is more precise than ATLFAST II and is used
for the detector simulations in all the used Monte Carlo samples in this thesis.

Geant4 is a full detector simulation where every final state particle is followed through
the detector and all physics processes that can occur in interactions between the particle
and the detector material is simulated. The response from every active detector element
is simulated, and the signal is digitalized for the final output of the simulation to have
the same structure as recorded data so all reconstruction algorithms can run on simulated
data.
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The Large Hadron Collider and the ATLAS
Experiment

This chapter contains a short description of the Large Hadron Collider and the ATLAS
Experiment. The main focus in this chapter is particle reconstruction and identification
using the ATLAS detector.

5.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is the largest particle accelerator on Earth. It is located
at CERN (Conseil Européen pour la Recherche Nucléaire) at the boarder between France
and Switzerland. CERN is a collaboration between the 20 European member states and
non-member states from the rest of the world.

The Large Hadron Collider is approximately 27 km in circumference and lies 100 m
below the ground. There are four interaction points where protons or lead ions are collided
at high energies. At the four interaction points, gigantic experiments (ALICE, ATLAS,
CMS and LHCb) are recording every detail of the particle collisions. The design collision
energy for protons is 14 TeV, but the LHC has in 2010 and 2011 been run at a collision
energy of 7 TeV, 3.5 TeV per proton beam. At this level of energy, the protons move with
a speed very close to the speed of light.

The proton beams consist of 2808 bunches of protons 50 ns seconds apart. Each bunch
contains ∼ 1011 protons so many proton collisions can happen at each bunch crossing.
This is known as in time pile up. The protons are held in the accelerator ring by 1232
superconducting dipole magnets with a maximum magnetic field of 8.33 T. The beams
are focused and defocused by 392 quadropole magnets.

In Figure 5.1 an overview of the accelerator complex at CERN is seen. The protons
begin their acceleration in the linear accelerator LINAC 2, where they are accelerated from
rest to an energy of 50 MeV. They are then fed to the Booster to be accelerated to 1.4 GeV
after which they are injected into the Proton Synchrotron to be accelerated to 25 GeV.
The last acceleration before the Large Hadron Collider is the Super Proton Synchrotron
where they are accelerated to 450 GeV. In the LHC the protons are accelerated from 450
GeV to 3.5 TeV by radio frequency (RF) cavities situated on the ring between ALICE
and CMS.

The Large Hadron collider is build to have a peak instantaneous luminosity of L =
1034cm−2s−1 at ATLAS and CMS and many factors of tens lower at LHCb and ALICE.
So far the design peak luminosity has not been reached and the maximum instantaneous
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luminosity in 2011 was L ≈ 3.7 · 1033cm−2s−1. In Figure 5.2 the integrated luminosity
delivered by the LHC and recorded by ATLAS in 2011 is shown. It is seen that ATLAS
has recorded over 90% of the collisions provided by the LHC which adds up to 5.25 fb−1

compared to the 45.0 pb−1 recorded by ATLAS in 2010. In this thesis all of the data of
2011 has been used for the analysis.

Figure 5.1: The accelerator complex at CERN. [32]

Figure 5.2: Integrated luminosity delivered by LHC (green) and recorded by ATLAS
(yellow) in 2011.
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There are four large detectors placed at the four interaction points at the Large Hadron
Collider. Two of them, ATLAS and CMS, are general purpose detectors in the sense that
they do not search anything specific, but cover a wide area of searches of physics beyond
the Standard Model. The ALICE experiment is build to look at heavy ion collisions and
in order to investigate the physics that governed the Universe shortly after the Big Bang.
The LHCb experiment studies physics with b quarks and in particular CP violation which
might describe the matter-antimatter asymmetry in our Universe.

5.2 The ATLAS Experiment

The ATLAS (A Toroidal LHC ApparatuS) detector is 44 meters long, 25 meters tall, 25
meters wide, and weighs approximately 7000 tons. It is build to explore particle physics
at the TeV scale and look for phenomena not described by the standard model.

The xyz-coordinate system for ATLAS originates in the interaction point with the
z-direction in the beam direction and x and y in the orthogonal plane with x pointing
towards the centre of the LHC ring and y pointing upwards. Often a polar coordinate
system is used, where instead of the polar angle, θ, we use the pseudorapidity introduced
in Section 4.1, η.

Figure 5.3: The ATLAS detector.[33] Please notice the size of the experiment by comparing
to the humans standing in front of it.
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In Figure 5.3 an overview of the ATLAS detector is shown. ATLAS consists of several
subdetector systems each with a special task in measuring properties of the particles.
From the centre and out the subdetector systems are the inner tracking detector, the
electromagnetic calorimeter, the hadronic calorimeter, and the muon system. All of the
subdetectors consist of a barrel detector around the centre of the collision and an end-cap
detector to be able to detect particles with high η.

The Inner Detector

The purpose of the inner detector is to reconstruct trajectories of the charged particles
traversing the detector with minimal energy loss and find secondary vertices from τ and
b decays. An applied magnetic field bends the tracks of the charged particles and makes
it possible to measure the momentum and the charge of the particles as well.

The inner detector consists of three subdetectors, the pixel detector, the silicon tracker
(SCT), and the transition radiation tracker (TRT) shown in Figure 5.4.

Figure 5.4: The inner detector ATLAS. [33]

The Pixel Detector

The pixel detector is build of three cylindrical pixel layers in the barrel region at a radii of
∼ 5 cm, 9 cm, and 12 cm and three disks at each side of the interaction point as end-cap
detectors with a distance between 9 cm and 15 cm away from the interaction point. There
are 1456 pixel modules in the barrel detectors and 288 in the end-cap detectors. The
pixel detector covers |η| < 2.5 and a charged particle leaves three hits. The pixel detector
provides a measurement of the hit in three dimensions. The accuracy of the pixel detector
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is 10 µm in the R − φ plane and 115 µm in the z direction in both barrel and end-cap
regions.[33]

The Silicon Tracker

The silicon tracker (SCT) covers the same η region as the pixel detector, |η| < 2.5. The
SCT uses semiconductor silicon strips to measure the passage of a charged particle. It
consists of 4 cylindrical modules each of 2 layers of silicon microstrips in the barrel region
and nine disks on each side of the interaction point. A charged particle will leave 8 hits
in the SCT. The SCT measures the track hits in three dimensions and has a precision
of 17 µm in the R − φ plane and 580 µm in the z direction in both barrel and end-cap
regions.[33]

The Transition Radiation Tracker

The transition radiation tracker (TRT) is a straw tube detector consisting of ∼ 400000 4
mm thick straws. It can measure the tracks within |η| < 2.0 and only in the R− φ plane.
The trajectories are reconstructed by particles hitting the straws and a charge particle
will leave a large number of hits (approximately 36 per track). In the end-cap region
region straws are arranged radially in wheels. The precision of the TRT is 130 µm per
strawtube.[33]

Besides measuring the track of the particles the TRT also provides a separation
between electrons and charged pions by their different transition radiation. The transition
radiation is the radiation of particles, when they move between media with different
refractive indices. The TRT exploits that the transition radiation is different for electrons
and charged pions.

The Magnet System

Just outside the inner detector is the central solenoid magnet providing a magnetic field
of 2 TeV aligned with the beam axis. It is this magnet that gives the possibility of
measuring the momentum and charge of the charged particles traversing the inner detector
by measuring the bending of the tracks. Since the magnet is in front of the calorimeters
the amount of material in the magnet is kept at a minimum to avoid too much energy
loss.

The muon system is placed within another magnet system. The toroid magnets bend
the trajectories of the muons improving the momentum resolution of the muons. The
toroid magnet system consists of three air-core toroids, one barrel toroid and two end-cap
toroids, with 8 coils each.

The Electromagnetic Calorimeter

The electromagnetic calorimeter measures the energy of electrons and photons by stopping
the particles. It consists of a barrel detector covering |η| < 1.475 and two end-cap detectors
covering 1.475 < |η| < 3.2. The end-cap detector is divided further into two subdetectors
covering 1.375 < |η| < 2.5 and 2.5 < |η| < 3.2.
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The detector is build up by layers of lead that absorb the energy of the particles
and liquid argon that measures the energy of the electromagnetic shower generated by the
particles interacting with lead. In the electromagnetic calorimeter the layers are accordion
shaped in the radial direction to ensure full φ coverage with no cracks (Figure 5.5).

Figure 5.5: The accordion geometry of the electromagnetic calorimeter. [33]

The electromagnetic calorimeter has three calorimeter layers for |η| < 2.5 and two
layers in 2.5 < |η| < 3.2. In the region |η| < 1.8, a presampler calorimeter is installed to
correct for energy loss before the electromagnetic calorimeter. The presampler is a thin
liquid argon plate that measures the energy before the particles hit the lead in the rest
of the detector. Since the only purpose of the presampler is an energy measurement its
granularity is lower than the rest of the calorimeter. The three layers in the central part
of the calorimeter are divided into ∆η ×∆φ cells with different granularity. The second
layer is thickest and has a granularity of 0.025× 0.025.[33]

The energy resolution of the electromagnetic calorimeter is σE/E = 10%/
√
E ⊕ 0.7%

in both the barrel and end-cap regions.

The Hadronic Calorimeter

The purpose of the hadronic calorimeter is to measure the energy of particles that interact
through the strong force, i.e. hadrons, and thereby also hadronically decaying taus, by
stopping them. It is a sampling calorimeter like the electromagnetic calorimeter with
sampling layers that measure the energy, and layers of dense material that create particle
showers.

The hadronic calorimeter covers up to 4.9 in |η| and is divided into several sub-systems.
In the barrel region (|η| < 1.7) is the central tile calorimeter (|η| < 1.0) and an extended
barrel on each side covering 0.8 < |η| < 1.7. The sampling material in the tile calorimeter
is scintillating tiles, that becomes fluorescent when it is hit by a charged particle. The
∆η ×∆φ granularity in the tile calorimeter is in the range of 0.1× 0.1 to 0.2× 0.1.

There are two types of calorimeters in the end-cap region, the liquid argon end-cap
calorimeter (HEC), and the liquid argon forward calorimeter (FCAL).
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Figure 5.6: The electromagnetic and hadronic calorimeter in ATLAS. [33]

The end-cap calorimeter covers 1.5 < |η| < 3.2. The sampling material of HEC is
the same as in the electromagnetic calorimeter, liquid argon, and the stopping material
creating showers is copper. It has a ∆η ×∆φ granularity of 0.1 × 0.1 for 1.5 < |η| < 2.5
and 0.2× 0.2 for 2.5 < |η| < 3.2.

The forward calorimeter also uses liquid argon as the active material. As the stopping
material is copper (inner disk) and tungsten. The η region covered by FCAL is 3.1 <
|η| < 4.9. The large η region is due to measurement of missing transverse energy, where
it is important that no energy escapes detection.

The energy resolution of the barrel and the end-dap calorimeters is σE/E = 50%/
√
E⊕

3% and for the forward calorimeter the energy resolution is σE/E = 100%/
√
E⊕10%.[33]

The Muon Spectrometer

Because of their relatively high mass the non-strongly interacting muons are very pen-
etrating and traverses the calorimeter system. The toroid magnets provides a magnetic
field that bends the tracks of the muons so the momentum can be measured with high
precision.

The muon spectrometer covers |η| < 2.7 and consists of four different types of detectors,
monitored drift tubes (MDT), cathode strip chamber (CSC), resistive plate chambers
(RPC), and thin gap chamber (TGC) (Figure 5.7). The MDTs and the CSCs are used
for precision tracking while the RPCs and the TGCs are used to trigger on muons and
measure the muon momentum orthogonal to the momentum measured by MDTs and
CSCs.
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Figure 5.7: The muon spectrometer system in ATLAS. [33]

Trigger and Data Acquisition

As seen in Figure 4.4, the total cross section is large compared to the cross section of
processes of interest as W , Z, and Higgs production. The collisions will therefore undergo
a selection before the data is recorded, the collision will have to trigger the data recording.
An event that will fire a trigger can for instance be an event having high a pT physics
object such as an electron, photon, muon, tau or jet.

The trigger system of ATLAS is build of three parts called Level 1 (L1), Level 2 (L2),
and Event Filter (EF). Each trigger system is more sophisticated than the previous.

L1 is a hardware trigger system that searches for regions in the detector where a high
pT physics object is identified. The L1 trigger looks for muons, electrons/photons, taus,
and jets in the muon spectrometer and the calorimeters. The Level 1 trigger system has
to make a decision on whether to fire or not within 2.5µs and has a maximum firing rate
of 75 kHz. If an event passes a L1 trigger, it is passed on to the Level 2 trigger system.
L1 provides L2 with the Regions of Interest (RoIs) corresponding to the trigger objects
identified at L1.

The Level 2 trigger system reconstructs all data in the RoIs and from that information
makes a decision within 40 ms whether the event is of interest or not. The L2 system
reduces the maximum rate from 75 kHz to 3.5 kHz. If an event passes a Level 2 trigger,
it is passed to the Event Filter trigger system.

The EF trigger system investigates the event further and can combine several L1 and
L2 triggers to make complex event composition. Normally, the data is only reconstructed
in the RoIs, but some event filter triggers reconstructs response from the whole detector.
The EF system reduces the maximum rate to 200 Hz.

L1 triggers are hardware based, whereas L2 and EF triggers are software based and
are run on large computer farms.

The naming scheme for triggers is that it starts with the trigger system (L1, L2, or
EF), then provides the kind of particle that triggered (j(et), mu(on), e(lectron), tau, x
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(missing ET ), and so on) and finally the momentum cut given in GeV.
Some triggers fire too often and are therefore prescaled. Prescaled triggers will only

be passed to the next trigger level once for every n times it fires, where n is the prescale.
The data are written out into three different streams depending on the event filter

trigger. The three streams are Muon, Electron and JetTauEtmiss. It is very likely that
one event fires more than one type of EF trigger. A bookkeeping system is required to
ensure that the same event is not used more than one time in the analysis.

5.3 Particle Identification with the ATLAS Detector

The detector is build in such a way that different physical objects leaves different traces
so particles are reconstructed and identified by the fingerprints they leave in the detector.
In Figure 5.8 the characteristic left by different particles traversing the ATLAS detector
is shown.

Figure 5.8: The characteristics of different particles traversing the ATLAS detector.[34]

Jet Reconstruction

Clusters are formed by combining cells in the calorimeter with an energy deposit over a
certain threshold (topological clusters). Jets are then reconstructed by combining clusters
using jet finding algorithms.

The ATLAS experiment uses an algorithm where clusters are paired together depend-
ing on their distance and their energy. The jet reconstruction algorithm used by ATLAS
is the anti-kT algorithm. [35]
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The distance between to objects is

dij = min
(
p−2Ti , p

−2
Tj

) (∆Rij)
2

R2
(5.1)

where ∆Rij =
√

(ηi − ηj)2 + (φi − φj)2. The radius parameter, R, used for jet reconstruc-
tion in this thesis is 0.4 and the jet pT reconstruction threshold is 7 GeV. If the smallest
dij is smaller than the threshold momentum, p−2T , jet i and j are joined. If it is equal
or larger than the threshold momentum, p−2T , the jet is taken as an individual jet. The
anti-kT algorithm will group the objects with highest pT first.

Electron Reconstruction and Identification

Electrons are reconstructed from clusters in the electromagnetic calorimeter and must be
matched to a track in the inner detector.[36]

To avoid hadronic jets faking the electron reconstruction, a cutbased method is used to
identify electrons. There are three levels of cuts, loose, medium, and tight, with increasing
jet rejection. The loose cut consists of simple cuts on the shape of the shower and with
a loose matching between the track and the calorimeter clusters. The medium cut makes
a tighter cut on the shower shape using the shape in the first part of the calorimeter and
includes cut on the quality of the track in the inner detector. The tight cut increases the
cut on the track cluster matching and uses the TRT to eliminate pions.

Muon Reconstruction and Identification

Muons can be reconstructed either with a track in the inner detector matched to a hit in the
muon spectrometer (Combined muons) or only hits in the muon spectrometer (Standalone
muons). The combined muons are only available within |η| < 2.5 since it is the coverage
of the inner detector.

The muons used in this thesis are combined muons reconstructed by the Staco algorithm[37]
which begins with hits in the muon spectrometer and propagates the track inwards to
match it to a track in the inner detector taking into account the energy loss of the muon
when it traverses the detector. The Staco algorithm uses statistical tools to match tracks
to hits in the muon spectrometer.

To reduce the number of fake muons, cuts on the track quality can be applied.

Tau Reconstruction and Identification

Taus refer to hadronically decaying taus, since the leptonically decaying taus will be
reconstructed and identified as muons or electrons.

Hadronic tau identification uses reconstructed jets as basis. All jets are thus con-
sidered as reconstructed taus. Tracks with pT > 1GeV satisfying a set of track quality
requirements are matched to the reconstructed tau if the distance, ∆R, from the jet axis
is less than 0.2. [38]

In order to separate taus from the overwhelming background of QCD jets, cuts are
performed on the substructure of the tau candidate. The tau identification requires
that the reconstructed tau has collimated energy deposit in the calorimeter, few number
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of isolated tracks (if there is more than one, they should be collimated as well), and
a good geometric matching between the tracks and the energy deposit.[38] There are
three different methods for identifying taus, the cut-based (Cut), the likelihood-based
(LLH), and the boosted decision tree (BDT). All three methods have three levels of cuts,
loose, medium, and tight, with increasing jet rejection. The LLH and the BDT are both
multivariate methods. In this thesis the boosted decision tree-based jet discriminant is
used.

Since electrons can fake taus, an electron veto cut is also applied in tau identification.
There are two methods, cut-based, and boosted decision tree-based. In this thesis the
boosted decision tree-based electron veto is used.

The energy of the taus are calibrated using Monte Carlo samples. The tau energy
scale has an uncertainty of 2.5% − 3% depending on the momentum of the taus and the
η region. [38]

Reconstruction of Missing Transverse Energy

The Missing Transverse Energy (MET) holds information on the particles that do not
interact in the detector and thus leave no trace, such as neutrinos.

The Missing Transverse Energy can either be measured using cells in the detector or
reconstructed and identified objects. The algorithm used in this thesis to reconstruct the
MET is cell-based and known as MET RefFinal.

The cell-based reconstruction uses the energy from the calorimeter, corrected for the
energy loss in the cryostat (cooling) and the energy of the muons. The calorimeter cells
are associated with high pT reconstructed and identified objects such as electrons, muons,
taus, jets, etc. The energy of the objects are calibrated according to the object type.
Overlap-removal is performed to eliminate double counting. Besides the cells associated
with objects the cells not matched to any objects are also included.[37]

The MET is calculated as

~Emiss
T = −

(
~ET

RefEle
+ ~ET

RefGamma
+ ~ET

RefTau
+ ~ET

RefJet
+ ~ET

RefMuon
+ ~ET

CellOut
)

+ ~ET
miss,Cryo

+ ~ET
miss,Muon

(5.2)

where ~ET
RefObj

is the transverse energy of the associated objects, ~ET
CellOut

is the trans-

verse energy of the cells not associated with an object, ~ET
miss,Cryo

is the MET from the

cryostat and ~ET
miss,Muon

is the MET from the muon spectrometer. In Figure 5.9 the MET
calculation is shown schematically.
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Figure 5.9: The Missing Transverse Energy refined final reconstruction. Courtesy of the
ATLAS JetETmiss Group.
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Z → ττ Selection

This chapter describes the selection of events that will be used in the measurement of the
tau polarization in Z decays. The events we wish to select are events where one tau has
decayed to a muon and one tau to hadrons known as the semileptonic channel.

The event selection is inspired by the Z → ττ cross section measurement at the ATLAS
experiment[39], but has been modified to run over the full 2011 data set.

6.1 Data set and Monte Carlo Samples

The data sample used for this analysis is the full 2011 data set. First one needs to ensure
that the run is on the GoodRunsList (GRL) since some of the data recorded can be flagged
bad as in some parts of the detector. In this analysis all parts of the detector are used
and they must therefore all be well functioning in all the runs. The luminosity of the data
sample is calculated from the GRL and the trigger used. It was calculated to be 4.63 fb−1

corresponding to 88% of the data recorded by ATLAS.
There are background processes that can mimic Z → ττ , both electroweak and QCD.

The electroweak backgrounds taken into account in this analysis are Z(→ µµ) + jets,
W (→ µνµ) + jets, W (→ τντ ) + jets, WW , WZ, ZZ, and top pair production. The W +
jets backgrounds can fake a signal by a jet faking a tau. Z → µµ fakes the signal primarily
by a muon being misidentified as a tau. In WW , WZ, ZZ, and top pair production events
two taus can be produced and thereby fake the signal.

For the signal process, a Monte Carlo sample generated with AlpGEN, hadronised
with Herwig, and with the underlying event simulated by JIMMY, is used. The W +
jets backgrounds are simulated with the same tools as the signal. The Z → µµ sample is
generated with Pythia, the diboson samples are generated with Herwig and the top pair
production with MC@NLO. In all samples the taus are decayed using TAUOLA. In Table
6.1 all used Monte Carlo samples are listed with their integrated luminosities calculated
using the cross sections given in Reference [40].

The 2011 runs are split into run periods A to M. Run periods B-M are used in
this analysis. The Monte Carlo samples are split into four different run numbers, each
simulating collision conditions and triggers in the different run periods.
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Process Event Generator Luminosity
[fb−1]

Z/γ∗ → ττ+0 jets (MZ > 40GeV) AlpGEN+Herwig+JIMMY 12.7
Z/γ∗ → ττ+1 jet (MZ > 40GeV) AlpGEN+Herwig+JIMMY 19.8
Z/γ∗ → ττ+2 jets (MZ > 40GeV) AlpGEN+Herwig+JIMMY 19.9
Z/γ∗ → ττ+3 jets (MZ > 40GeV) AlpGEN+Herwig+JIMMY 36.2
Z/γ∗ → ττ+4 jets (MZ > 40GeV) AlpGEN+Herwig+JIMMY 41.6
Z/γ∗ → ττ+5 jets (MZ > 40GeV) AlpGEN+Herwig+JIMMY 46.8
Z/γ∗ → ττ+0 jets (MZ < 40GeV) AlpGEN+Herwig+JIMMY 0.26
Z/γ∗ → ττ+1 jet (MZ < 40GeV) AlpGEN+Herwig+JIMMY 2.83
Z/γ∗ → ττ+2 jets (MZ < 40GeV) AlpGEN+Herwig+JIMMY 9.62
Z/γ∗ → ττ+3 jets (MZ < 40GeV) AlpGEN+Herwig+JIMMY 14.4
Z/γ∗ → ττ+4 jets (MZ < 40GeV) AlpGEN+Herwig+JIMMY 17.3
Z/γ∗ → ττ+5 jets (MZ < 40GeV) AlpGEN+Herwig+JIMMY 17.4
Z/γ∗ → µµ (MZ > 60GeV) Pythia 5.05
W → τν+0 jets AlpGEN+Herwig 0.41
W → τν+1 jet AlpGEN+Herwig 1.60
W → τν+2 jets AlpGEN+Herwig 8.34
W → τν+3 jets AlpGEN+Herwig 8.32
W → τν+4 jets AlpGEN+Herwig 8.10
W → τν+5 jets AlpGEN+Herwig 7.77
W → µν+0 jets AlpGEN+Herwig 0.42
W → µν+1 jet AlpGEN+Herwig 1.60
W → µν+2 jets AlpGEN+Herwig 8.34
W → µν+3 jets AlpGEN+Herwig 8.29
W → µν+4 jets AlpGEN+Herwig 8.29
W → µν+5 jets AlpGEN+Herwig 8.37
WW Herwig 146
WZ Herwig 45.1
ZZ Herwig 198
ttbar MC@NLO 165

Table 6.1: Monte Carlo samples used for signal and electroweak background, their event
generators and the integrated luminosity of the samples.

Data Skimming

In order to ease the data-handling, a very loose selection is performed prior to the real
analysis. This skimming is performed both on data and on the Monte Carlo samples so
the number of events can be compared. The skimming cuts are:
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• Passed GoodRunsList (only data)

• Passed muon trigger (EF mu18 or EF mu18 medium)

• At least one reconstructed muon with pT > 15GeV and within |η| < 2.4

• At least one reconstructed tau with pT > 10GeV and within |η| < 2.47 excluding
1.37 < |η| < 1.52

Since all jets are reconstructed as tau candidates the last cut is extremely loose.

Pileup Reweighting

Pileup refers to multiple proton collisions in one bunch collision. The pileup is measured
as the number of primary vertices in a bunch crossing and it has grown throughout 2011
ending up at an average of 12-15 vertices per bunch crossing. Pileup makes it hard to
separate the detector response from different hard processes happening simultaneously.

Pileup conditions are included in the Monte Carlo simulations. To obtain the same
pileup profile in Monte Carlo and data, the Monte Carlo samples are reweighted event
by event. Since pileup has grown with time the different run periods in the Monte Carlo
samples are used to simulate pileup conditions for different run periods. In Figure 6.1 the
average number of vertices per bunch crossing for the 2011 data set and Z → ττ + 0 jets
are shown. It is seen that a reweighting is needed to make the distributions agree.
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Figure 6.1: Number of vertices in data (red) and the (Z → ττ)+0 jets Monte Carlo sample
(blue).
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6.2 Event Preselection

Number of Vertices

A collision event candidate is required to have at least one reconstructed primary vertex
with at least four reconstructed tracks.

Trigger

Two muon triggers are used to select the events, EF mu18 and EF mu18 medium. Both
triggers will fire at a muon with pT > 18GeV at Event Filter level, but they are passed from
different level 1 triggers, L1 MU10 and L1 MU11, respectively. The luminosity recorded
with EF mu18 is 1.45 fb−1 and 3.18 fb−1 with EF mu18 medium. Both triggers are fully
efficient at reconstructed muon pT > 20GeV.

In the Monte Carlo samples weights corresponding to the fraction of luminosity taken
by each trigger are applied to the samples to ensure the correct fraction of EF mu18 and
EF mu18 medium in the results.

6.3 Object Preselection

Objects (muons, electrons, and taus) undergo a looser selection, preselection, before the
final object selection to be able to perform cleaning cuts and overlap removal on the
preselected objects.

Muons

Muon candidates are reconstructed using the staco algorithm described in Section 5.3. The
candidates must lie within |η| ≤ 2.4 and have pT ≥ 20GeV. They are required to satisfy
loose selection requirements which include both standalone muons, that only leave hits in
the muon spectrometer, and combined muons, that leave hits in the muon spectrometer
combined with a track in the inner detector. The muon candidates must be no further
away than 10 mm from the primary vertex in the longitudinal direction, |z0| ≤ 10 mm.
The preselection cuts for muons are summarized in Table 6.2.

Electrons

Electron candidates are required to be within |η| ≤ 2.47 to be within the coverage of
the inner detector. The crack regions between the barrel and end-cap detectors in the
electromagnetic calorimeter are avoided by requiring the electron to lie outside 1.37 <
|η| < 1.52. The electrons must have pT ≥ 15GeV and must have passed the medium
cut-based electron identification described in Section 5.3. The electron candidates must
either be seeded by the calorimeter only or by the calorimeter and a track. The electron
preselection cuts are summarized in Table 6.2.
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Jets

Jets are reconstructed using the anti-kT algorithm described in Section 5.3 with a R
parameter equal to 0.4. The jets are required to have pT > 20GeV.

Taus

Taus are reconstructed using the anti-kT algorithm with a R parameter of 0.4 as described
in Section 5.3. The tau candidates are required to have pT > 20GeV and lie within
|η| ≤ 2.47 excluding the crack region in the electromagnetic calorimeter, 1.37 < |η| < 1.52.
To reduce the number of electrons faking taus, the track with the highest momentum, the
leading track, is required to be outside the central part of the detector, |η| > 0.03. In
Table 6.2 the preselection cuts for tau candidates are summarized.

Overlap Removal

To avoid counting the same detector response as two different objects, an overlap removal
between different types of objects is performed. The overlap removal defines a cone of
radius ∆R =

√
∆η2 + ∆φ2 around an object. If there is another type of object inside

this cone, one of the objects will be removed. The overlap removal is hierarchical: it
chooses muons over electron, electrons over taus and taus over jets. The cone size is 0.2
for overlap removal between muons and electrons and 0.4 for all other overlap removals.
Overlap removal also removes objects of the same type overlapping leaving the preselected
object with the highest pT.

“Hole” in the Liquid Argon Calorimeter

In April 2011, a failure occurred affecting a part of the electromagnetic calorimeter. The
calorimeter was repaired in June, but in the period between April and June the energy
could not be measured within 0 < η < 1.4 and−0.8 < φ < −0.6. Since the electromagnetic
calorimeter is a vital part of the measurement of missing transverse energy, an event with
a preselected jet, tau or electron within the affected area will be removed. The liquid
argon calorimeter “hole” is also taken into account in the Monte Carlo samples where a
luminosity weight is used to identify the amount of data affected by the “hole”.

Jet Cleaning

There is a very small probability that signals from cosmic rays or noise in the calorimeter
electronics can be reconstructed as jets. To avoid this, quality cuts are imposed on the
reconstructed jets and taus. If a reconstructed jet/tau fails the cuts the entire event is
rejected. The cuts used for jet/tau cleaning are the recommended cuts from the Tau
Working Group in ATLAS, see Appendix A.1. The cuts are applied to all reconstructed
jets and taus with pT > 20GeV and |η| < 2.5.

Event Selection Based on Preselected Objects

The events are required to have at least one preselected muon and one preselected tau
after overlap removal.
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6.4 Object Selection

After overlap removal has been performed on preselected objects, a further and tighter
selection of physics objects is done. All objects are required to have passed the preselection
requirements.

Muons

All muons are required to have passed the preselection cuts. Muon candidates are required
to have hits in the muon spectrometer combined with a track in the inner detector. The
distance from the muon to the primary vertex, |d0|, must be smaller than 10 mm. Track
quality cuts are applied to clean the track of the muon candidate. The track quality cuts
are cuts on number of hits in different parts of the inner detector and are described in
detail in appendix A.2. The final object selection cuts are summarized in Table 6.2.

Electrons

All electrons must have passed the preselection. The only extra cut in the final object
selection for electrons is to require the tight cut-based electron identification as described
in Section 5.3.

Jets

Jets are restricted to be within the coverage of the hadronic calorimeter, |η| < 4.5.

Taus

All taus must have passed the preselection cuts. Tau candidates are required to have one
or three tracks and unit charge. To suppress jet contamination, a tight cut on the boosted
decision tree (BDT) discrimination variable is required as describe in Section 5.3. The
electron contamination is restricted by a medium electron veto using boosted decision tree
(BDT) and a cut-based muon veto is applied. A summary of the final selection for tau
candidates is given in Table 6.2. If more than one tau pass the cuts, the tau with the
highest pT will be used in the study of tau polarization.

6.5 Muon Isolation

Muons from semileptonic Z → ττ decays are expected to be isolated with no energy
deposits around the track and only one track. Since muon candidates in QCD multijet
background are expected to be near jets, isolation criteria are applied on the muon to
reduce the number of multijet background events.

In muon isolation cuts, cones of size ∆R =
√

∆η2 + ∆φ2 are investigated for energy
deposits not caused by the muon and number of tracks within the cone. The cuts are

• ETcone/pT < 0.04 within a cone of radius ∆R = 0.2

• No other track within a cone of radius ∆R = 0.4
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Preselection Selection

Muon Loose Muon is Combined
pµT ≥ 20 GeV |d0| < 10 mm
|η| ≤ 2.4s Track quality cuts
|z0| ≤ 10 mm

Electron Medium Tight
peT ≥ 15 GeV

|η| ≤ 2.47, excluding 1.37 < |η| < 1.52

Jet pjetT ≥ 20 GeV |η| < 4.5

Tau pτT ≥ 20 GeV Tau ID BDT Tight
|η| ≤ 2.47, excluding 1.37 < |η| < 1.52 1 or 3 tracks

Leading Track |η| > 0.03 Unit charge
Electron veto BDT Medium

Muon veto

Table 6.2: Object preselection and selection cuts. Objects are required to have passed
both the preselection and the selection cuts.

where ETcone is the sum of transverse energy in the calorimeter within the cone (corrected
for the energy deposited by the muon) and pT is the transverse momentum of the muon
The transverse energy investigated is the original transverse energy subtracted the energy
of the muon.

6.6 Event Selection

In the event selection, properties in the entire event of all the objects are investigated.
The objects are required to have passed the full object preselection and selection.

Event Selection Based on Selected Objects and Muon Isolation

An event must fulfill the following requirements on the number of selected objects:

• At least one selected and isolated muon

• At least one selected tau

Events not passing the object selection cuts are rejected.

Opposite Sign Charge

Since the hadronic tau and the muon will originate from a electrically neutral particle
they must have opposite electrical charge.

Dilepton Veto

A veto on preselected electrons and more than one preselected muon is therefore applied
after the opposite sign charge requirement. This will reduce the Z(→ µµ) + jets back-
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ground sufficiently since there will most likely be two preselected muons. In Figure 6.2 it
is seen that there are very few signal events with more than one preselected lepton.
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Figure 6.2: Number of preselected muons and electrons after object selection cuts and
opposite sign charge cut.

W Suppression Cuts

In order to reduce the number of W (→ µν) + jets and W (→ τν) + jets that pass the
selection two cuts are applied.

Since the mass of the Z is much larger than the mass of the τ lepton, the taus will
be highly boosted and the neutrinos originating from their decay will be highly collinear
with the tau direction. If the Z is not boosted in the transverse plane, the muon and the
tau will lie back-to-back and the missing transverse energy caused by the neutrinos will
lie either in the direction of the muon or the tau. If the Z is boosted in the transverse
plane, the Emiss

T will lie in the narrow angle between the muon and the tau as shown in
Figure 6.3 (a). In W + jets events the missing ET will lie in the wide angle between the
muon and the jet faking a tau as shown in Figures 6.3 (b) and (c).

The angles between the missing ET and the tau candidate and the missing ET and
the muon can thus be used as a discriminator for W + jets background. The angles are
combined into the variable

Σ cos ∆φ = cos
(
φ (µ)− φ

(
Emiss

T

))
+ cos

(
φ (τh)− φ

(
Emiss

T

))
(6.1)

It is seen that for transversely boosted Z → ττ events Σ cos ∆φ will be positive, and it
will be zero when the muon and tau are back-to-back. In W + jets events Σ cos ∆φ will
be negative. A cut of Σ cos ∆φ > −0.15 is therefore applied. The Σ cos ∆φ distribution is
shown in Figure 6.4 (a).
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Figure 6.3: Position of Missing ET in Z → ττ (a), W → µν (b), and W → τν (c) events.
Courtesy of Ryan Reece.

The other W suppression cut is on the transverse mass of the muon and the Emiss
T ,

mT, given by

mT(µ,Emiss
T ) =

√
2pµTE

miss
T ·

(
1− cos

(
φ (µ)− φ

(
Emiss

T

)))
(6.2)

which must be above 50 GeV. The transverse mass distribution is shown in Figure 6.4
(b).

The events are required to pass both the cut on Σ cos ∆φ and the mT.
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Figure 6.4: Σ cos ∆φ (a) and the transverse mass of the muon and missing transverse
energy (b) after all prior cuts. The vertical lines describe the regions for selection and the
control regions for W + jets normalization.

Visible Mass

A cut on the invariant mass of the selected muon and tau, the visible mass, is performed
to reduce events coming from Z → µµ and multijet QCD background. The visible mass
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is used due to the amount of neutrinos in the signal final state. The visible mass window
used for selection is 35GeV < mvis(µ, τh) < 75GeV.
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Figure 6.5: Visible mass of the isolated muon and the hadronic tau after all prior cuts.
The vertical line indicate the selection cut.

Number of Tracks

In the measurement of the polarization only object selected taus with one track is as
described in Section 3.5. This cut is not part of the event selection in the Z → ττ cross
section measurement at ATLAS[39]. In Figure 6.6 the number of tracks for the hadronic
decaying tau is shown. A good agreement in tau track multiplicity is seen between data
and Monte Carlo.

6.7 Background Estimation

The number of background events passing the selection is estimated in two ways, with
Monte Carlo samples, and with data-driven methods. In general the electroweak back-
ground is estimated from Monte Carlo samples, but some samples need further normal-
ization to data. The multijet QCD background is estimated completely from data using
the ”ABCD”-method.

Electroweak Background

The electroweak backgrounds completely estimated from Monte Carlo are the diboson
(WW , WZ, and ZZ) background and the top pair background. They are used without
any other scale than a luminosity scale found from the luminosity in the samples.
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Figure 6.6: Track multiplicity for tau candidates after all event selection cuts.

Though, for the standard event selection, opposite sign charge of the muon and the
tau is required, here a study is presented of the W + jets background both for opposite
sign (OS) and for the same sign (SS) case. This will be needed for the estimation of the
multijet background.

The W + jets background needs a further normalization since the rate of jets faking
taus is not well described in Monte Carlo. The normalization factor for W + jets is
different for regions with opposite and same sign charge of the muon and the hadronically
decaying tau, because quark jets will primarily be biased towards the opposite sign charge
region while gluon jets will be equally distributed between opposite and same sign charge
regions. The quark jets have a higher probability of faking a tau than a gluon jet and
the normalization factors are therefore different in the opposite sign charge and same sign
charge regions.

The scale factors are measured by investigating the number of events passing all cuts
prior to the W suppression cuts and both W suppression cuts reversed. The scale factors
for the W + jets background are found to be

kOS
W = 0.604± 0.008

kSSW = 0.720± 0.017

The W + jets background is scaled with this factor and a luminosity scale. In all figures
in Section 6.6, the W + jets background is scaled.

As the rate of jets faking taus in W + jets backgrounds is not well described, it is
investigated whether it is the same for Z(→ µµ) + jets background. The scale factor is
only measured in the opposite charge region. The selection requirements used to measure
the Z + jets normalization factor is two muons, W suppression cuts, selected tau, one
isolated muon, and 66GeV < mµµ < 116GeV. The normalization factor for Z + jets is
found to be consistent with one and the Z + jets background will therefore not be scaled
with anything else, but the luminosity weight.
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Multijet Background

The multijet QCD background is not well modeled in Monte Carlo and furthermore the
cross section for QCD is very high compared to the electroweak processes. A completely
data-driven method is therefore used to estimate the amount and shape of the QCD
background passing the selection cuts.

The multijet background is estimated with the entirely data-driven method known
as the “ABCD”-method[41]. Data is divided into four regions, one signal dominated
region and three background dominated regions. The division is defined by two criteria:
isolated/non-isolated muon and opposite/same sign charge. The signal region (A) has an
isolated muon and opposite sign charge, the other regions (B, C, and D) have the other
three combinations, as shown in Figure 6.7.

C 

B 

D 

A 

Isolated 
muon 

Non-isolated 
muon 

O
S
 

SS
 

Figure 6.7: Regions for the ”ABCD”-method. OS/SS stands for opposite/same sign
charge.

The assumptions required by the “ABCD”-method are:

• There are enough events in region B, C, and D to propagate the statistical uncer-
tainty linearly to region A.

• The cuts applied (muon isolation and charge product) are uncorrelated.

• Region B, C, and D (muon anti-isolation cuts) consist almost entirely of QCD
multijet background. If there are other background sources (electroweak), it will
be subtracted prior to the determination of number of multijet events in region A.

The number of multijet events in the signal region A is given by

NQCD
A =

NQCD
B

NQCD
D

·NQCD
C (6.3)
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where NQCD
i = Ndata

i − NMCEW
i , and MCEW is the electroweak Monte Carlo samples

including both signal and background.
The shape of QCD background is assumed to be the same in opposite sign and same

sign regions for all variables. The shape is thus found from region C.
In all the figures in Section 6.6, the multijet background is estimated using the number

of QCD events from the “ABCD” method and the shape from region C. A good agreement
is observed between the expected and observed number of events in all variables.

6.8 Summary of Z → ττ Selection

In Table 6.3, a summary of number of events passing the selection are listed. After
background normalization, a good agreement is seen between expected and observed
number events. The Z → ττ cross section is thus as expected.

In Figures 6.8 and 6.9, kinematic variables of the tau, the muon and the missing
transverse energy of events passing the entire event selection except the cut on track
multiplicity of taus are shown. A good agreement between both the number and the
shape of expected and observed events are seen of all variables after the selection.

Through the event selection, Figures 6.2 to 6.5 have also shown good agreement of the
shape of all variables used in the selection.
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Figure 6.8: Distribution of transverse momentum (a), pT of leading track (b), pseudo-
rapidity (c), and azimuthal angle (d) of taus passing the selection.
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Figure 6.9: Distribution of muon pT (a), Emiss
T (b), pseudo-rapidity of the muon (c), and

azimuthal angle of the muon (d) of events passing the selection.
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Tau Helicity in Monte Carlo Samples

Knowledge of the true tau helicity in the Monte Carlo simulations is a vital part in the
extraction of the tau polarization result from real data. Very unfortunate, the tau helicity
was not saved in the ATLAS Monte Carlo simulations. This chapter will describe how the
tau helicity is re-established. Also studies of the detector smearing and the event selection
on the tau polarization are presented.

7.1 Re-establishing the Tau Helicity Event-by-Event in
Monte Carlo

In the ATLAS simulation, tau decays are handled by TAUOLA[29], which assigns helicity
to the taus and decays them accordingly. In this process, unfortunately, the tau helicity
was not saved and thus it is not available in the data stream.

Tau Helicity in TAUOLA

In the ATLAS Monte Carlo samples the spin effects are simulated using TAUOLA[29],
which calculates weights for the tau pairs according to their kinematics. The weights are
given as

w = 1
4

4∑

i,j=0

h+i h
−
j Rij (7.1)

where h+ and h− are the so-called polarimeter vectors for the τ+ and τ− decays, respec-
tively, and the matrix Rij describing the spin orientation of the system, in the case of a
Z decay, takes the form

R =




1 0 0 −Pτ
0 0 0 0
0 0 0 0
−Pτ 0 0 1


 (7.2)

Here Pτ is the tau polarization given by Equation 3.10. Equations 7.1 and 7.2 are expressed
in the rest frame of the Z with the z-axis in the direction of flight of the τ−. By inserting
Equation 7.2 into Equation 7.1 one obtains

w = 1
4

[
1 + h+z h

−
z − Pτ

(
h+z + h−z

)]
(7.3)
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where we have used, that h+0 = h−0 = 0. It is seen, that only the z-component of the
polarimeter vectors appear in the expression for w: The event weight thus only depends
on the longitudinal part of the polarization.

The polarimeter vectors, h, contain information on the helicity dependent part of the
kinematics of tau decays, and thus the variables described in Section 3.4. In τ− → π−ντ
decays, for example, the z-component is hz = cos θ, c.f Equation 3.13.

It is decided whether a tau pair is saved by generating a random number between 0
and 1. If the weight, w, is greater than the random number the tau pair if saved. If on
the other hand w is smaller than the random number the tau pair is rejected and the tau
pair must be regenerated.

Method for Extracting the Tau Helicity

The tau helicity in a sample decayed with spin effects can be re-established using reverse
engineering[14]. We do not know the truth tau polarization, but we know the polarimetric
vectors h+ and h− from the tau pair since they only depend on kinematics of the tau pair.
From h+ and h− we can find the probability that the τ− is left-handed or right-handed.

When studying the tau helicity event-by-event, the polarization in Equation 7.3 is
substituted with the helicity, λτ , that can either be +1 or −1 for right-handed and
left-handed τ−, respectively. Using the tau helicity, two weights can be generated from
Equation 7.3:

wR = 1
4

[
1 + h+z h

−
z − (h+z + h−z )

]

wL = 1
4

[
1 + h+z h

−
z + (h+z + h−z )

]
(7.4)

The polarimeter vectors, h, are calculated with TauSpinner[42] that uses the same
algorithm as TAUOLA.

With the two weight, wR and wL, one could assign the spin-configuration event-by-
event in an unpolarized sample by comparing the probability of the τ− to be right-handed
given by

pτ−R τ
+
L

=
wR

wR + wL
(7.5)

to a random number between 0 and 1. If pτ−R τ
+
L

is greater than the random number, the

event will be assigned with the τ−R τ
+
L spin-configuration. Otherwise it will be assigned the

τ−L τ
+
R spin-configuration.
If the sample is polarized, as in the case of Z decays, the probability, pτ−R τ

+
L

will instead

be given by

pτ−R τ
+
L

=
(1 + Π)wR

(1 + Π)wR + (1−Π)wL
(7.6)

where Π is the average tau polarization of the sample. Information of the average
polarization of the Z in the sample is thus required.

The Π depends both on center of mass energy and scattering angle of the Z, as seen in
Figure 7.1. Figure 7.1 (a) and (b) are made analytically from the expression in Equation
3.10. The contributions from up-type quarks and down-type quarks are taken to be 50%
each in Figure 7.1. Even though there are two u valence quarks in the proton, the stronger
coupling of the Z to the down-type quarks will to some extend even out the contributions.
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Figure 7.1: Tau polarization dependence on the center of mass energy taken at cos θ∗ = 0
(a) and the scattering angle (b).

Due to the strong dependence of the tau polarization on the
√
s and cos θ∗, it is

not sufficient to know the overall polarization of the sample, but one must estimate the
dependencies of Π on the center of mass energy and the scattering angle.

Estimating Π(s, cos θ∗) in Monte Carlo

As discussed, it is necessary to estimate the average tau polarization as a function of s
and cos θ∗, Π(s, cos θ∗) from the Monte Carlo sample. Π(s, cos θ∗) is used as an input in
Equation 7.6.

Due to the dependence of Π on the scattering angle, θ∗, it is necessary to know the
angle in the simulations. Information on the incoming quarks creating the Z boson is not
available in the ATLAS simulations and it is therefore not possible to calculate θ∗ directly.
It is therefore assumed that the incoming quarks move along the beam axis, and from this
the scattering angle can be calculated. Instead of using the approximate scattering angle,
the pseudo-rapidity is used in the angle dependence study.

Event by event, the polarimeter vectors, h+ and h−, are calculated from the kinematics
of the tau decays at truth level using TauSpinner. From the polarimeter vectors, wR and
wL are calculated using Equation 7.4 and an asymmetry, Aw, is constructed from the
calculated weights. The asymmetry is given as

Aw =
wR − wL

wR + wL
(7.7)

All the calculations are done in bins of
√
s and η to determine the energy and scattering

angle dependence on Π. Distributions of Aw for different energy and scattering angle
ranges are created. In Figure 7.2, the Aw distribution from the Monte Carlo sample of
study is shown in the energy range around the Z peak (90GeV <

√
s < 92GeV) and for

all θ∗.
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Figure 7.2: Aw from the ATLAS Z → ττ Monte Carlo sample in the energy range 90GeV <√
s < 92GeV and for all θ∗. The distribution is normalized to 1 pb−1.

To be able to measure Π in ATLAS Z → ττ Monte Carlo samples, distributions of Aw
for right-handed and left-handed τ− are created in a Pythia and TAUOLA standalone1

run where the helicity information of the taus is accessible. The standalone run used the
same configuration of input parameters as was used for the production of the Monte Carlo
samples under study. The Aw distributions for right-handed and left-handed τ− from
Pythia+TAUOLA are shown in Figure 7.3.

Π is measured by fitting the Aw distributions from the Monte Carlo samples of study
with the sum of the Aw for right-handed and left-handed τ− created with Pythia and
TAUOLA.

The fitting was done using χ2 fit.

To determine the tau polarization as a function of the center of mass energy, the Monte
Carlo samples are divided into mass bins. The mass bins vary in size and are smallest
around the Z peak where we wish to study the dependence in detail.

In Figure 7.4 the extracted tau polarization dependence on center of mass energy
and pseudo-rapidity is seen. Compared to Figure 7.1 (b) the dependence on η is very
weak. Since the initial state is symmetric in proton-proton collisions, the sign of the
approximated θ∗ is not meaningful and the θ∗ dependence is somewhat evened out. By
noting the different vertical scales between the two plots, it is seen that the pseudo-rapidity
dependence is very weak compared to the dependence on center of mass. Hence, for the
event-by-event assignment of spin-configurations according to Equation 7.6, the cos θ∗

dependence of Π has been ignored.

1The ATLAS software was not used in this process.
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Figure 7.3: Aw for right-handed (blue) and left-handed (pink) τ− created with Pythia
and TAUOLA. Both distributions are normalized to unity.
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Figure 7.4: Extracted tau polarization values in the ATLAS Z → ττ Monte Carlo samples
as a function of center of mass energy (a) and pseudo-rapidity, η, (b).

The mass dependence observed in Figure 7.4 (a) is fitted to the function

Π (s) =
A
(
1−M2

Z/s
)

+B
(
1−M2

Z/s
)2

+ C
(
1−M2

Z/s
)

+D
(7.8)

where A, B, C, and D are fit parameters. The functional form is inspired by Equation
3.7 for cos θ∗ = 0 and ignoring the α dependence on

√
s.

The result of the fit can be seen in Figure 7.5 and in Table 7.1. It is seen that the fit
is not good for energies above 120 GeV.

Comparing Figures 7.1 (a) and 7.5 it is seen that the polarization is lower for low
center of mass energy in the measured sample than in the theoretical. This might be
because the energy plotted is not the true energy, but reconstructed from the two taus.
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Fitting Parameter Value

A −0.673± 0.013
B −0.169± 0.005
C −0.283± 0.026
D 1.012± 0.029

Table 7.1: Fitting parameters for the mass dependence fit.

If a tau has radiated a photon, the energy will be underestimated. The underestimation
of the center of mass energy might affect the low energy region the most due to the large
amount of events near the Z peak compared to the number of events with low energy.

Since the cross section of the Monte Carlo sample is dominated by the Z peak (
√
s ∼

90GeV), most of the selected events will be at that energy. It is therefore important
that Π(s) describes the energy range around the Z peak well. As seen in Figure 7.5, the
extracted tau polarization and Π(s) agree around the Z peak.
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Figure 7.5: Tau polarization as a function of
√
s fitted with Equation 7.8.
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Samples Ntot NL NR Polarization

Z → ττ + 0 jets 3123597 1751102 1372495 −0.1212± 0.0006
Z → ττ + 1 jet 323746 182168 141578 −0.1254± 0.0017
Z → ττ + 2 jets 902192 501041 401151 −0.1107± 0.0010
Z → ττ + 3 jets 483736 267525 216211 −0.1061± 0.0014
Z → ττ + 4 jets 144706 79859 64847 −0.1037± 0.0026
Z → ττ + 5 jets 44925 24682 20243 −0.0988± 0.0047

Table 7.2: Number of τ−L τ
+
R pairs (NL), τ−R τ

+
L pairs (NR), and the polarization in a fraction

of the signal Monte Carlo samples used in this thesis.

Results

The tau helicity is re-established using the method described in this section with an
average tau polarization of the Z boson given by Equation 7.8 with parameters given in
Table 7.1.

Due to a non-understood technical problem, for a small fraction of events (about 0.5%)
the truth information on the tau decay products was not available in the data stream.
These events have been ignored in the study.2

In Table 7.2 the number of right-handed τ− (NR) and left-handed τ− (NL) are listed
for each of the signal Monte Carlo samples. The tau polarization is calculated as

Pτ =
NR −NL

NR + NL
(7.9)

and the uncertainty is found using error propagation and is given by

σPτ = 2

√
NRNL

(NR + NL)3
(7.10)

As seen in Table 7.2, the tau polarization is varying between the samples. The
combined, luminosity weighted polarization from all the Monte Carlo samples is Pτ =
−0.1211± 0.0005.

In Figure 7.6 the visible energy fraction for different types of tau decays are shown. It
is clear from especially Figure 7.6(a) that the helicity re-establishing method has worked
well since the positive and negative helicity samples should follow, as we recall from Section
3.4, 1

2x and 1
2(1− x) respectively. Compared to the distributions in Figures 3.7 and 3.10

created with a Pythia and TAUOLA standalone run, it is seen that distributions in Figure
7.6 are indeed very similar.

2Some taus are not decayed properly in Monte Carlo and have no decay products. If a tau do not
have any decay products, the weights in Equation 7.4 cannot be calculated and a tau helicity cannot be
re-established. The helicity is in this case put equal to zero and will not be used in measurement of the
tau polarization.
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Figure 7.6: The visible energy fraction for pion (a), rho (b), electron (c), and muon (d)
decays of tau divided into τ−R τ

+
L pairs (blue) and τ+R τ

−
L pairs (pink). Both samples are

normalized to one.

7.2 Detector Effects on the Tau Helicity

To measure the tau polarization the charged energy asymmetry is used. The energies used
to calculate the charged energy asymmetry, Υ, defined in Equation 3.24 are not directly
accessible in the data since the energy of the neutral pions is not reconstructed. Instead
the total transverse calorimeter energy, ET, and the transverse momentum of the charged
tracks, pTrkT , are used. Υ is studied for taus with one track, one prong taus. The charged
energy asymmetry is given in terms of observables as

Υ =
pTrkT −

(
ET − pTrkT

)

pTrkT +
(
ET − pTrkT

) =
2pTrkT

ET
− 1 (7.11)

since the energy of the neutral pions will be given by Eπ
0

T = ET − pTrkT .

However, the reconstructed Υ will differ from the truth Υ due to detector effects. The
correlation between truth and reconstructed Υ is shown in Figure 7.7. The correlation
factor is calculated to be 0.872 meaning that the reconstructed charged energy fraction
corresponds well to the truth.
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Figure 7.7: Correlation between truth and reconstructed charged energy asymmetry for
truthmatched taus decaying to rhos.

The smearing of the energies by the detector will affect the separation between right-
handed and left-handed τ− in the charged energy asymmetry distribution. The sensitivity
loss is estimated by comparing the sensitivity of truth taus to the sensitivity os truth-
matched, reconstructed taus. Reconstructed taus are truthmatched if they are within a
cone of radius ∆R =

√
∆η2 + ∆φ2 = 0.4 of a true tau.

truthϒ

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

/ 0
.0

4
τn

0

5

10

15

20

25

30

35

40

45

Truthmatched Taus

 = +1λ 

 = -1λ 

recoϒ

-1 -0.5 0 0.5 1 1.5 2 2.5

/ 0
.0

4
τn

0

5

10

15

20

25

30

35

Truthmatched Taus

 = +1λ 

 = -1λ 

(a) (b)

Figure 7.8: The truth (a) and reconstructed (b) charged energy asymmetry for truth-
matched taus decaying to rhos. The distributions are normalized to unity.
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Sensitivity

Υtruth 0.402
Υreco 0.326

Table 7.3: Sensitivity of the truth and reconstructed Υ for truthmatched taus decaying
to rhos.

In Figure 7.8 the truth and reconstructed charged energy asymmetry are shown for
truthmatched taus decaying to rhos. It is seen that around Υ = 1, the reconstructed
charged energy asymmetry is smeared out due to detector effects.

Sensitivities of truth and reconstructed charged energy asymmetry are calculated using
Equation 3.23 taking the polarization to be −0.1211. The result is shown in Table 7.3
from which it is seen that the detector reduces the sensitivity by about 20%.

7.3 Effect of the Event Selection on the Tau Polarization

Besides the detector effects, the event selection can cause a bias in the selection towards
right-handed or left-handed τ−.

Effect of the Data Skimming

The data skimming, consisting of loose cuts described in Section 6.1, cuts harder on the
right-handed τ− than the left-handed τ−. This is seen in Table 7.4 where the polarization
asymmetry becomes more negative (from −0.1211 to −0.362) and thereby the difference
between the number of left-handed and right-handed τ− becomes larger.

This difference in efficiency caused by the trigger requirement in the skimming. The
triggers, EF mu18 and EF mu18 medium, are fully efficient at pT(µ) above 20 GeV and
fire rarely if pT(µ) is smaller than 20 GeV. From Figure 7.6 (d) it is that requiring pT(µ) >
20GeV, will cut harder on right-handed than on left-handed τ−.

Cuts on the kinematics of the muon from a tau decay will affect the hadronically
decaying tau as well since they are correlated through their spin.

Effect of the Event Selection

As seen in Table 7.4, the rest of the full selection cuts harder on the left-handed τ− than
on the right-handed τ−. The bias from the skimming cuts are somewhat evened out
resulting in a polarization of −0.231 after full selection. This is due to the cut on the
transverse momentum of the hadronic tau. As it can be seen in Figures 7.6 (a) and (b), a
cut on the pT of the tau will cut harder on left-handed than on right-handed τ−. Despite
the fact that the cuts are not as hard on the right-handed taus in the final selection, the
polarization after full event selection is still larger than the initial polarization of −0.1211.

Due to the different number of right-handed and left-handed τ−, the fraction of QCD
multijet events will be different in the two samples throughout the event selection.

The distributions of the reconstructed charged energy asymmetry for right-handed and
left-handed τ− are shown for all one prong taus passing the full selection in Figure 7.9.
The sensitivity for the distributions in Figure 7.9 is calculated using Equation 3.23 with
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Cut NL NR Pτ
Full Sample 2764480± 1930 2167270± 1710 −0.121± 0.001
Skimming 148522± 217 69533± 148 −0.362± 0.001
Object Selection 8663± 85 4422± 63 −0.324± 0.008
Opposite Sign Charge 8555± 84 4378± 62 −0.323± 0.008
Dilepton Veto 8545± 84 4373± 62 −0.323± 0.008
W Suppression Cuts 6814± 77 3715± 58 −0.294± 0.009
35GeV < mvis < 75GeV 5493± 69 3179± 54 −0.267± 0.010

One Prong Taus 3590± 55 2245± 45 −0.231± 0.012
(Polarization measurement only)

Table 7.4: Number of τ−L τ
+
R pairs (NL), τ−R τ

+
L pairs (NR), and the tau polarization through

the event selection. The luminosity is normalized to 4.63 fb−1.

a polarization of −0.231 resulting in a sensitivity of 0.335. By comparing the sensitivity
after selection with the sensitivity before, it is seen that they are comparable. Hence the
selection do not affect the sensitivity of the charged energy asymmetry.
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Figure 7.9: Reconstructed Υ for all one prong taus passing the full selection
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7.4 Summary

In this chapter a method for re-establishing the tau helicity in a polarized Monte Carlo
sample has been introduced. The method requires knowledge of the average tau polar-
ization of Z as a function of the center of mass energy and scattering angle dependence
of Z. It was found that the dependence on the pseudo-rapidity used to measure the
scattering angle was negligible compared to the dependence on center of mass energy.
The results of the tau helicity re-establishing method is seen to correspond well to the
expected distributions. An average polarization of −0.1211 was found in the sample.

The decrease in sensitivity of the charged energy asymmetry due to detector effects
have been investigated. The sensitivity is 20% lower for the reconstructed charged energy
asymmetry compared to the truth value. A significant correlation was seen between
reconstructed and truth charged energy asymmetry.

The data skimming cuts harder on right-handed than left-handed τ− resulting in a
more negative tau polarization. This is caused by the trigger requirement in the data
skimming cuts. After the final selection the tau polarization is −0.231 compared to
−0.1211 before any cuts were applied.
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Polarization Measurement

In this chapter the method for measuring the tau polarization and the results of the
measurement will be presented.

8.1 Charged Energy Asymmetry After Full Selection

In Figure 8.1, the charged energy asymmetry is plotted for data and Monte Carlo. The
reconstructed taus in Monte Carlo have been matched to a true tau and associated with
a pion, rho or other decays. The simulated taus not matched to true hadronic tau decays
are labelled “Not Hadronic”
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Figure 8.1: Charged energy asymmetry after the full selection. The simulated taus are
divided into decay types. ATLAS TAUOLA default branching fractions used for Monte
Carlo, see Table 8.1.

83



84 CHAPTER 8. POLARIZATION MEASUREMENT

Decay Mode Monte Carlo Samples Particle Data Group
Branching fraction [%] Branching fraction [%]

h−ντ 13.04 11.61± 0.06
h−π0ντ 26.75 25.94± 0.09
h− ≥ 2π0ντ 10.13 10.85± 0.11

Table 8.1: Branching fractions of one prong hadronic tau decays in the signal Monte Carlo
sample and from the Particle Data Group[3]. h− denotes a charged hadron. The statistical
uncertainties on the Monte Carlo numbers are negligible.

By comparing branching fractions of taus in the simulation to the world average
branching fractions from the Particle Data Group[3] (PDG), a difference was found. The
branching fractions for one prong hadronic tau decays in the signal Monte Carlo sample
and from the Particle Data Group are listed in Table 8.1. Especially the branching fraction
for decays with one charged hadron and no π0 differs substantially between the simulation
and the value from PDG. It is therefore necessary to scale the contributions from each
decay mode to the branching fraction from PDG.
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Figure 8.2: Charged energy asymmetry after the full selection. Monte Carlo branching
fraction correct to PDG values, see Table 8.1.

In Figure 8.2, the charged energy asymmetry is plotted again, this time with the
contributions from the different tau decay modes normalized to the branching fractions
from the Particle Data Group. Whereas all plots presented previously in this thesis were
based on the default ATLAS TAUOLA branching fractions, results from now on, will be
based on the PDG numbers.
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8.2 Fitting Method

The polarization is measured by fitting the sum of a right-handed and a left-handed
template to data.

Two fitting methods is used, the method of least squares and a likelihood fit.

Fitting Templates

The templates used in the fit are the left-handed and right-handed simulated samples
created with the method described in Section 7.1. The distributions consists of taus
passing all cuts described in Chapter 6. Both templates are normalized separately to an
integrated luminosity of 4.6 fb−1.

In Figure 8.3 the fitting templates for right-handed and left-handed τ− are shown
along with the data points. The tau branching fractions in signal Monte Carlo are scaled
to the values from Particle Data Group as discussed in Section 8.1. It is seen, that there
are fewer right-handed τ− compared to data and left-handed τ−, and more left-handed
τ− than data. This is due to the difference between the cut efficiencies of τ−R τ

+
L pairs and

τ−L τ
+
R pairs as discussed in Section 7.3.

The binning of the templates in Figure 8.3 have been chosen to reduce the bin-by-
bin statistical fluctuations while retaining a sufficiently number of bins to keep the shape
information of the Monte Carlo templates.

Method of Least Squares

In χ2 fitting, or the method of least squares, the χ2 function depending on the parameters
you want to fit, is minimized. The χ2 function is given as:

χ2 =

nbins∑

i=1

(
Ni

obs −Ni
exp

σiNobs

)2

(8.1)

where Ni
obs and Ni

exp are the observed and the expected number of events in bin i,
respectively, and σiNobs

is the uncertainty on the observed number of events in bin i.
The observed number of events in each bin follows a Poisson distribution. By requiring
Ni

obs > 10 in all bins, the uncertainty can be approximated to

σiNobs
=
√

Ni
obs (8.2)

The expected number of events, Ni
exp, depends on the fit parameters that are varied

to minimize χ2. It is calculated as

Ni
exp = NMC

((
1− Pτ

2

)
µLn

i
L +

(
1 + Pτ

2

)
µRn

i
R + niEW

)
+ µQCD · niQCD (8.3)

Here the parameters left free to vary in the fit are

• Pτ : The tau polarization which is the parameter of interest in the fit.
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Figure 8.3: Templates of charged energy asymmetry for right-handed (a) and left-handed
(b) τ− compared to data. Each of the two Monte Carlo templates are normalized to 4.6
fb−1.
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• NMC: A normalization factor to ensure that the Monte Carlo normalization is
correct. NMC is a nuisance parameter1. The nuisance parameter is kept in the
fit to ensure that the tau polarization is not affected by the normalization.

whereas the other are

• niL and niR: Number of left-handed and right-handed taus in bin i of the two Monte
Carlo templates, respectively.

• µL and µR: Luminosity normalization of the signal Monte Carlo.

• niEW : Number of electroweak background in bin i given as

niEW =
∑

b

µbn
i
b (8.4)

where b is the background sources, µb is the luminosity normalization of background
b, and nib is the number of tau candidates in bin i of background b.

• niQCD: The shape of the multijet QCD background in region C is expected to be
the same as in the signal region as described in Section 6.7. It is given as

niQCD = Ni
obs,C −NMC

((
1− Pτ

2

)
µLn

i
L,C +

(
1 + Pτ

2

)
µRn

i
R,C + niEW,C

)
(8.5)

where the C in the subscript denotes that the number of events is in region C. The
second term in Equation 8.5 is correcting for the presence of signal and electroweak
background in region C before using the data in this region to estimate the multijet
QCD background in the signal region.

• µQCD: The scale factor allowing us to use the QCD events in region C to estimate
the QCD background in the signal region, A. It is given by

µQCD =
NB
QCD

ND
QCD

(8.6)

c.f. Equation 6.3.

To determine the goodness of a χ2 fit the, calculated χ2 is compared to the number of
degrees of freedom[43], ndf, given as

ndf = nbins − 2 (8.7)

since we have two fit parameters, Pτ and the nuisance parameter, NMC. From the
calculated χ2 and the number of degrees of freedom the probability of making an equally
good or worse fit can be calculated.

The weakness of the method of least squares lies in bins with few observed events. In
bins with few entries, Equation 8.2 breaks down and chi2 is not appropriate.

1A nuisance parameter is a parameter that is not of immediate interest in the fit, but is kept in the fit
to make it converge.



88 CHAPTER 8. POLARIZATION MEASUREMENT

Method of Maximum Likelihood

The method of maximum likelihood uses a likelihood function, L, that is maximized to find
the optimal value for the fit parameters. The likelihood function describes the likelihood
of an expected number of events given an observed number of events[43]. The probability
is expected to be Poissonian leading to the following likelihood function

L (Pτ ,NMC) =

nbins∏

i=1

e−N
i
exp
(
Ni

exp

)Niobs
Ni

obs!
(8.8)

where the number of expected events in bin i, Ni
exp, depends on the fitting parameter Pτ

and the nuisance parameter NMC as described in Equation 8.3.
Instead of maximizing the likelihood, one minimizes minus 2 times the logarithm of

the likelihood, −2 logL.
To determine the goodness of a likelihood fit, χ2 with the fit parameters determined

by the likelihood fit is calculated and compared to the number of degrees of freedom.

8.3 Fitting Results

The minimization of χ2 and the likelihood function is performed using the MINUIT
package[44] interfaced to ROOT. In particular, the MIGRAD minimization algorithm
is used in the fitting.

The fit is performed in the range of the charged energy asymmetry from −1.0 to 2.0
with 15 bins in total. The number of degrees of freedom is therefore 13.

By using the templates from Figure 8.3 and the number of expected events given by
Equation 8.3 the values for the fitting parameters, NMC and Pτ , are given in Table 8.2.
The correlation factor between the fit parameters and χ2/ndf are stated as well.

From Table 8.2 it is seen that the value of the tau polarization for the maximum
likelihood fit and the least square fit differs by 0.013. The χ2/ndf are similar and thereby
the goodness of the fits are equal. In Figure 8.4 the observed number of events is shown
with both the χ2 and the likelihood fit. It is seen that the two fits are virtually identical.
Since the method of least squares does not handle bins with low statistics well, the values
of the likelihood fit is used resulting in a tau polarization and Monte Carlo normalization
factor of

Pτ =−0.258±0.048

NMC= 0.992±0.014

In Figure 8.5 the likelihood fit is shown with the templates. The templates are scaled
with the values of the fit parameters from the likelihood fit.
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Parameter Likelihood Fit χ2 Fit

Pτ
NMC

−0.258 ± 0.048
0.992 ± 0.014

−0.271 ± 0.048
0.986 ± 0.014

Correlation Factor 0.352 0.352

χ2/ndf 1.86 1.85

Table 8.2: Result of fit without cut efficiencies.
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Figure 8.4: Template fit using the method of maximum likelihood (pink) and the method
of least squares (blue).
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Figure 8.5: Template fit using the method of maximum likelihood (violet), the right-
handed (blue) and left-handed (pink) templates excluding the background, and the
background (cyan) scaled to the fit result.
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8.4 Systematic Uncertainties

The measurement of the tau polarization is influenced by systematic uncertainties. In this
section the sources of systematic uncertainties will be presented.

Effect of Limited Monte Carlo Statistics

In the fits, only the statistical uncertainty on data was taken into account and the
statistical uncertainties on the Monte Carlo templates were ignored. They are, however,
present and, as seen in Figure 8.3, of the same order as the uncertainties in data.

The templates are dominated by the statistics of the signal sample and especially the
Z(→ ττ) + 0 jets whose cross section is ∼ 6 times higher than Z(→ ττ) + 1 jet. From
Table 6.1, it is seen that the simulated Z(→ ττ) + jets sample corresponds to about 2.7
times as much integrated luminosity as the real data. However, for the templates, the
simulated data is divided into two almost equally large data sets resulting in 1.5 times as
much statistics in the templates as in data. The other Monte Carlo samples will result in
smaller statistical uncertainties due to their higher integrated luminosities.

In a dedicated Monte Carlo study, the sum of two templates each with 15000 entries
were fitted to a distribution with 10000 entries. The fit was performed in two ways; first,
by ignoring the uncertainties on the templates, then, by including the uncertainties with
extra Poissionian terms for each bin in each template introducing a nuisance parameter
for each bin in each template. This cannot be done in the real tau polarization fit, since
there the templates contain weighted events that do not follow Poissonian statistics.

From this study, an increase in the uncertainties of the fit parameters of 16% was
observed when including the statistical uncertainties on the templates. Assuming that
the two contributions add in quadrature, this corresponds to an uncertainty from the
template statistics of 60% of that of the data statistics. Transferring this result to the
proper polarization fit gives:

Pτ =−0.258±0.048(stat.)±0.028(MC)

NMC= 0.992±0.014(stat.)±0.008(MC)

Pileup Reweighting Scale Factor

In the pileup reweighting described in Section 6.1, the entire Monte Carlo distribution of
the number of primary vertices per bunch crossing should be scaled by a factor of 0.83+0.05

−0.08
according to ATLAS recommendations. To investigate the effect of the pileup reweighting
on the polarization measurement the scale is increased by 0.05 and decreased by 0.08 and
the entire analysis, including the Z → ττ selection, is redone for both scales.

Tau Energy Scale

The energy of the hadronically decaying tau is calibrated. There are uncertainties on the
scale dependent on the pseudo-rapidity, the pT, and the number of tracks of the taus. In
Table 8.3, the uncertainties on the tau energy scale for one prong taus as recommended
by the ATLAS Tau Working Group are stated.
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1 Prong Taus |η| < 1.3 1.3 < |η| < 1.6 1.6 < |η|
15GeV < pT < 20GeV 3.0% 3.5% 3.0%
20GeV < pT < 50GeV 2.5% 3.0% 2.5%

50GeV < pT 3.0% 3.5% 3.0%

Table 8.3: Uncertainties on the tau energy scale for one track taus.

Since the energy of the tau is used in the missing transverse energy reconstruction, the
uncertainties on the tau energy will affect the Emiss

T as well. The Emiss
T is therefore scaled

simultaneously with the tau energy scale as described in Reference [39].

The entire selection and the fit is redone with the tau energy scaled up and down by
the amounts from Table 8.3, where full correlation has been assumed between the different
points. The Υ variable was re-calculated with the new tau energy.

Tau Identification Uncertainty

The tau identification used in the selection, BDT tight, has an overall uncertainty of 4%
estimated by the ATLAS Tau Working Group. This uncertainty is an overall number and
the Tau Working Group provides no recommendations on the efficiency as function of Υ.
By assuming the 4% to be flat in Υ, only the normalization factor will be affected.
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Figure 8.6: Number of taus passing BDT medium compared to number of taus passing
BDT tight in the selection as a function of Υ.

The variables used in the charged energy asymmetry are also used by the tau BDT
identification. To investigate the effect of lowering the tau identification cut, events passing
the full selection with BDT medium is compared to events passing BDT tight in Monte
Carlo. As seen in Figure 8.6, lowering the tau identification cut has an effect on the shape
of the Υ variable. Lowering the cut to BDT medium has a large impact on the number
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of identified taus and can thus not be directly compared to the overall tau identification
uncertainty of 4%. The study of comparing taus passing BDT tight to taus passing BDT
medium is used to indicate the shape of the tau identification uncertainty.

To investigate how the polarization is affected by a shape-dependent tau identification
uncertainty, two different models for the uncertainty as a function of the charged energy
asymmetry are studied, a linear model and a quadratic model. The two models are
motivated by the study of the comparison of taus passing BDT medium and taus passing
BDT tight.

For the signal the effect of the linear model is investigated by scaling the predicted
number of right-handed and left-handed signal events in each bin with a linear function
given by

f(Υ) = 1± 0.02y where

{
y = Υ for Υ ≤ 1
y = 1 for Υ > 1

(8.9)

Since Υ > 1 is unphysical and caused by detector resolution, the correction for candidates
with Υ > 1 has been damped to what it would have been for Υ = 1. It is estimated that
the difference between the tau identification uncertainties between the neutral energy
dominated region (Υ = −1) and the charged energy dominated region (Υ = 1) is 4%.

The quadratic model of the tau identification uncertainty for the signal is given by

f(Υ) = 1± 0.03y2 where

{
y = Υ for Υ ≤ 1
y = 1 for Υ > 1

(8.10)

It is estimated that the difference between the uncertainty at the minimum (maximum)
at Υ = 0 and the maximum (minimum) at Υ = ±1 is 3%.

The effects of the linear and quadratic model of the uncertainty dependence on the
charged energy asymmetry for signal on the tau polarization are listed in Table 8.4.

The effect of the uncertainty of the tau identification on the normalization factor is
investigated by scaling the signal sample with 4% according to the Tau Working Group
recommendations.

Uncertainty on the Background Shape

The uncertainty on the shape of the background is assumed to be greater than for the
signal because most of the background events arise from jets misidentified as taus.

To study the effect of the shape-dependent tau identification uncertainty of the back-
ground the linear and quadratic models from Equations 8.9 and 8.10 are used. The scales
0.02 and 0.03 are substituted with 0.20. Only the background is scaled while the signal is
kept constant.

The effect on the tau polarization of the linear and quadratic model of the tau
identification uncertainty for the background are listed in Table 8.4.

The uncertainty on the background shape will only affect the tau polarization since
varying the shape is expected to have no influence on the normalization.

Tau Branching Fractions

As described in Section 8.1, the contributions from the different tau decay modes were
normalized to the branching fraction from Particle Data Group. To investigate how the
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Shape Model Sample Scale ∆Pτ
Linear Model Signal ±2% 0.022
Quadratic Model Signal ±3% 0.033

Total Signal 0.040

Linear Model Background ±20% 0.021
Quadratic Model Background ±20% 0.017

Total Background 0.027

Table 8.4: Effect on the tau polarization of linear and quadratic model of the tau
identification uncertainty of the signal and background separately.

tau polarization is affected by uncertainties on the tau branching fractions, the branching
fractions are varied independently with the uncertainties listed in Table 8.1 and the fit is
redone.

Other Systematic Uncertainties

The following systematic effects were investigated and it was found that they only had
little or no impact on the tau polarization.

• Luminosity:

There is a 3.7% uncertainty on the measurement of the integrated luminosity[45].
Since the luminosity only enters the fit in the luminosity scales, µL, µR, and µEW ,
in Equation 8.3 only the normalization parameter, NMC, will be affected by the
uncertainty on the integrated luminosity. The fit is redone with the luminosity
scaled up and down with 3.7%.

• Muon pT Smearing:

The muon pT is smeared in the Monte Carlo to resemble the resolution in data. Since
we have selected a combined muon the pT is smeared in both the inner detector and
the muon spectrometer. An uncertainty arises from the smearing[46] and the effect
of the uncertainty is investigated by varying the pT smearing of the track in the
inner detector and in the muon spectrometer separately. The event selection and
the fit are redone with muon pT resolution varied.

• Muon Efficiency:

The efficiency of the muon reconstruction is scaled in Monte Carlo to resemble data.
The muon efficiency scale factor has an uncertainty of less than 1%[47]. It is not
expected to have a large impact on the tau polarization nor the normalization factor.
It is studied by varying the muon efficiency scale factor up and down in Monte Carlo
and redo the entire analysis including the Z → ττ selection.

• Normalization Factors for W + jets background:

The influence on the tau polarization and the normalization factor from the un-
certainties on the normalization factor for the W + jets background described in
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Section 6.7 is investigated by varying the normalization factors and redo the fit.
The normalization factors of same sign and opposite sign charge regions are varied
independently. The effect of this systematic is expected to be small since only few
W+jets events pass the selection.

• Multijet Background:

The estimation of the multijet QCD background has an uncertainty that will in-
fluence the polarization and normalization as it enters in Equation 8.3. The scale
µQCD is

µQCD =
NB
QCD

ND
QCD

= 1.049± 0.019(stat.)± 0.032(sys.) (8.11)

where B and D are control regions. The systematic uncertainty on µQCD is taken
from Reference [39].

The effect of the uncertainty on the estimation of QCD background is investigated
by varying µQCD up and down by 0.04 and redo the fit.

• Theoretical Cross Sections

The theoretical cross sections used to calculate the corresponding integrated lumi-
nosity in Table 6.1 have uncertainties affecting the luminosity scales, µ, in Equation
8.3.

From the cut flow Table of the selection, Table 6.3, it is seen that the main con-
tributions to the charged energy asymmetry distribution are Z → ττ , Z → µµ,
W → µν, and QCD background. It is therefore the uncertainties on the theoretical
cross sections of Z → `` and W → `ν that are investigated.

The uncertainty on the Z → `` cross section is 5.1% and the uncertainty on the
W → `ν cross section is 5.0%[40]. The impact on the tau polarization and the
normalization factor is studied by scaling the cross section independently and redo
the fit.

The uncertainty on the W → `ν is not expected to influence the tau polarization
nor the normalization factor very much since the number of W → `ν that passed
the full selection is very low. The uncertainty on the Z → `` cross section is on
the other hand expected to affect the normalization factor since Z → ττ events are
dominating the charged energy asymmetry distribution.

• Fitting Method:

The fit is done with 15 bins. To evaluate how the number of bins affect the
measurement of the tau polarization and the normalization factor, the fit is redone
with 30 bins still in the range −1 < Υ < 3.

Summary of Systematic Uncertainties

The systematic uncertainties are summarized in Table 8.5. From this it is seen that
the systematic uncertainty with the largest effect on the tau polarization is the shape
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Source of Uncertainty ∆Pτ ∆NMC

Luminosity 0.000 0.038
Pileup 0.030 0.013
Tau Energy Scale 0.046 0.059
Tau Identification, Signal 0.040 0.038
Uncertainty on Background Shape 0.027 -
Muon pT Smearing 0.000 0.000
Muon Efficiency 0.000 0.000
W Normalization factors 0.000 0.000
Multijet Background 0.002 0.003
W Cross Section 0.001 0.001
Z Cross Section 0.001 0.051
Tau Branching Fractions 0.006 0.003
Fitting Method 0.001 0.000

Total Systematic Uncertainty 0.073 0.096

Table 8.5: Summary of the systematic uncertainties and their effect on the tau polarization
and the normalization factor.

dependent tau identification uncertainty on the signal, whereas the largest effect on the
normalization arises from uncertainties on the tau energy scale.

The systematic uncertainties are assumed to be uncorrelated and the total systematic
uncertainty is:

σsystot =

√∑

i

(σsysi )
2

(8.12)

where i is the source of the systematic uncertainty. The total systematic uncertainties on
the tau polarization and the normalization factor are listed in Table 8.5.

8.5 Summary

In this section, the charged energy asymmetry after full event selection was presented.
It was found that the tau branching fractions in the Z → ττ simulations were not in
agreement with the values from Particle Data Group. Therefore the contributions from
different tau decay modes were scaled to the branching fractions from Particle Data Group.

The method for measuring the tau polarization by fitting has been presented. The tau
polarization has been measured to be

Pτ = −0.258± 0.048(stat.)± 0.0028(MC)± 0.073(sys.)

where (stat.) refers to the statistical uncertainty of the fit, (MC) to uncertainties aris-
ing from the limited statistics in the simulations, and (sys.) refers to the systematic
uncertainties.

In the tau polarization measurement, the Monte Carlo normalization was kept as a
free parameter to make the measurement independent of the normalization. From the
systematic uncertainties on the normalization factor listed in Table 8.5, it is seen that it
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was a good choice to keep the normalization as a free parameter in the fit since some of the
uncertainties on the normalization factor might have propagated into the tau polarization.
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Conclusion

The tau polarization was measured in one prong hadronic tau decays, by use of the variable
Υ, which measures the energy asymmetry between charged and neutral pions. Templates
of right-handed and left-handed taus were fitted to the data. In the fit, the normalization
was kept as a free parameter, and the tau polarization was extracted entirely from the
shape of the charged energy asymmetry. It was found that the tau branching fraction in
the signal Monte Carlo differed from the values from Particle Data Group (PDG), the
signal Monte Carlo samples were therefore scaled to the tau branching fractions from
PDG. The result of the measurement is

Pτ = −0.258± 0.048(stat)± 0.028(MC)± 0.073(sys.)

The measured tau polarization lies within 1.5σ of the expected value of −0.120 from the
Monte Carlo sample.

Another result of the study is expressed through a normalization factor, which is the
ratio between the observed number of events in real data and in simulation. This was
found to be

NMC = 0.992± 0.014(stat.)± 0.008(MC)± 0.096(sys.) (9.1)

showing an excellent agreement between observation and expectation.
The effect of the systematic uncertainties and statistical uncertainties on the Monte

Carlo samples where evaluated for both the normalization factor and the tau polarization.
The tau polarization depends on the center of mass energy. At the LHC a range of

center of mass energies are studied and the result of the tau polarization measurement at
the LHC can therefore not be directly compared to the result from LEP[1].

In the work with the tau polarization, it has been necessary to re-establish the tau
helicity in the signal Monte Carlo samples. The original tau helicity was lost in the
generation of Monte Carlo samples and therefore a method for restoring the tau helicity
has been developed. The results of the re-establishment of tau helicity were compared to
and agreed with a Pythia+TAUOLA standalone run, where the original tau helicity was
accessible.

More data would improve the measurement of the tau polarization by reducing the
statistical uncertainty of the fit. The systematic uncertainty on the tau polarization is of
the same order as the statistical uncertainty and might be reduced by more data resulting
by lowering uncertainties on tau energy scale, tau identification, etc.

It would also be beneficial for the tau polarization measurement to study more thor-
oughly the efficiencies as a function of Υ. It has been beyond the scope of this thesis to
study these effects in detail.
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In this thesis all one prong taus where used in the tau polarization measurement. How-
ever, the pion channel carries no information on the tau polarization in the charged energy
asymmetry. By mixing the templates with events not sensitive to the tau polarization the
sensitivity decreases. It would therefore improve the sensitivity of the templates if one
knew the substructure of the reconstructed tau, i.e. number of neutral pions, and thereby
reject pion decays which will have no neutral pions.

In conclusion, this thesis presents the first measurement of the tau polarization in
Z → ττ events at a hadron collider.
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A

Appendix to Z → ττ Selection

A.1 Jet Cleaning Cuts

The cuts for jet and tau cleaning are:

• fem > 0.90 and |fquality| > 0.8 and |η| < 2.8

• |t| > 10 ns

• fem < 0.05 and fch < 0.1 and |η| < 2.0

• fem > 0.95 and fch < 0.05 and |η| ≥ 2.0

The cuts are applied with a logical ”OR” condition. The variables used in the cleaning
cuts are:

• fem : Fractional energy measured in EM calorimeter

• |fquality|: Measure of the quality of the jet in the Liquid Argon calorimeter.

• fch : Charge fraction is the ratio of the sum of the transverse momenta of tracks
associated to a jet and originating at the primary vertex, to the jet calorimetric
transverse momentum.

• t : Jet time (energy-squared-weighted time of cells within a jet) with respect to the
event time.
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A.2 Muon Track Quality Cuts

The muon track quality cuts are

• no BlayerHit expected or nBLayerHits > 0

• nPixHits + nDeadPixelSensors > 1

• nSCTHits + nDeadSCTSensors > 5

• nPixHoles + nSCTHoles < 3

• Two cases for the track in the Transition Radiation Tracker (TRT):

|η| < 1.9:
nTRTOutliers / (nTRTHits + nTRTOutliers)< 0.9 and nTRTHits + nTRTOut-
liers > 5

|η| ≥ 1.9:
(nTRTHits + nTRTOutliers > 5 and nTRTOutliers / (nTRTHits + nTRTOut-
liers) < 0.9 )
or nTRTHits + nTRTOutliers < 6

The variables used in the muon track quality cuts are

• no BlayerHit expected: The muon track passes through an uninstrumented or dead
part of the barrel part of the pixel detector.

• nBlayerHits: Number of hits in the barrel part of the pixel detector

• nPixHits (nSCTHits): Number of track hits in the pixel detector (SCT detector)

• nDeadPixelSensors (nDeadSCTSensors): Number of dead Sensors in the pixel de-
tector (SCT detector) traversed by the track.

• nPixHoles (nSCTHoles): Number of holes in the pixel detector (SCT detector)
traversed by the track.

• nTRTHits: Number of hits in the TRT caused by the track.

• nTRTOutliers: Number of hits in TRT in the track associated as outliers (not caused
by the muon).
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