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Abstract

In this thesis we present and derive the basic formalism of the magnetically induced Andreev
Bound state, known as the Yu-Shiba-Rusinov (YSR) state, by use of a classical-spin approximation.
We then show how YSR states are obtained in odd occupied quantum-dots, coupled to supercon-
ductors, using Schrieffer-Wolff transformations. Considering transport through superconductor-
dot-metal structures we find that transport can either be meditated by Cooper-pairs or by re-
laxation of the YSR state. In this framework we find that Cooper-pair transport, even for a fre-
quency asymmetric spectral function, always yields bias symmetric conductance, while relaxation
transport shows the same asymmetries as the underlying spectral function. We then discuss spe-
cific superconductor-dot-dot-metal devices based on gate-controlled nanowires and consider the
transport occurring in such setups. Using a Zero-Band-Width approximation we find a qualitat-
ive model able to describe all charge sectors for superconductor-dot-dot systems in the regime of
large coupling to the superconductor. Within such systems we find that change of groundstate is
signaled by zero-bias YSR crossings replacing the coulomb diamond structure expected for metal-
lic leads. When exchange singlet formation competes with YSR triplet screening we obtain a new
regime which we name partially screened.
By analyzing two specific bias-cuts of aforementioned device, in which the system behaves like a
single impurity, we fit conduction using our classical-spin model and find it to conduct through
relaxation processes. In these line-cuts, bias asymmetry is found even at the particle-hole symmet-
rical points which we explain using a modified Schrieffer-Wolff model.
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1 INTRODUCTION

1 Introduction

Superconductivity is an interesting phase appearing in many metals when cooled down below a crit-
ical temperature TC . It was discovered experimentally by repeated measurements of its most charac-
teristic macroscopic quality, namely dissipationless transport, measured as zero resistance currents.
Following these discoveries theoreticians fought for years trying to develop a mechanism explain-
ing the superconducting phase transition. A breakthrough appeared with the pioneering work of
Barden-Cooper-Scrieffer (BCS) which provided a microscopic picture explaining the phase transition
and related observations. A cool thing about living in the modern age is the recent development of
nanostructures, such as nanowires and quantum-dots, allowing one to directly test, not only the mac-
roscopic, but the microscopic parts of BCS theory such as manipulations of single Cooper-pairs and
quasi-particles. This opens the door for exciting opportunities in exploration of novel electronics and
quantum mechanics - an opportunity the old guard probably would have envied.

Next we will present a short review of BCS superconductivity explaining our primary building
blocks in order to have a clear language for presenting Andreev Bound-states.

1.1 BCS Superconductors

The primary ingredient, in the theory of BCS superconductors, is the effective positive interactions
between quasi-particles. The most famed being the interaction stemming from combined coulomb
and phonon interactions which for electrons, with energy no-more then the Debye energy ωD removed
from the Fermi-surface, becomes positive. Writing down a simple Hamiltonian for such a system

HBCS =
∑
kσ

ξkc
†
kσckσ +

∑
kk′

Vkk′c
†
k↑c
†
−k↓c−k′↓ck′↑ (1.1)

where ξk is the energy of the electron like excitations in the system and c(†) is the usual fermionic an-
nihilation(creation) operators. In the simplest derivations one typically choose’s Vkk′ to be the forked
function

Vkk′ =

{
−V for |ξk| , |ξ′k| < ωD

0 for |ξk| , |ξ′k| > ωD
(1.2)

For such a interaction one can do self-consistent mean-field to find that the anomalous correlation,

∆ = −
∑
k′

Vkk′〈c−k′↓ck′↑〉 (1.3)

takes a non-zero value for temperatures lower then TC . This result is often interpreted as the formation
of a Cooper-pair liquid existing in parallel to the normal electrons gas, in which one can either remove
or add two electrons in order to add or remove a Cooper-pair. Seeking as simple a model as possible
which captures these anomalous effects one typically do mean-field for this correlation to obtain

HBCS ≈ HMF =
∑
kσ

ξkc
†
kσckσ +

∑
k

∆c†k↑c
†
−k↓ +

∑
k

∆∗c−k↓ck↑ (1.4)

= (
c†k↑ c−k↓

)( ξk ∆
∆∗ −ξk

)(
ck↑
c†−k↓

)
(1.5)
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1.2 Andreev Bound States 1 INTRODUCTION

which may seem weird at first glance as it looks particle none-conserving. But here it should be
remembered that in mean-fielding we have effectively stopped counting how many Cooper-pairs
their are and non-conserving interactions proportional to ∆ involves Cooper-pairs. So in total the
system is particle conserving as one could also guess as the original Hamiltonian eq.(1.1) is.

The BCS mean-field Hamiltonian can be diagonalized allowing one to describe it through the
quasi-particles known as Bogoliubovs,

HMF =
∑
k

Ek

(
γ†k↑γk↑ + γ†k↓γk↓

)
(1.6)

with γkσ = ukckσ + σvkc
†
kσ̄ and Ek =

√
ξ2
k + |∆|2. Here uk(vk) determines the electron(hole) weight of

the excitation and is given by the equations,

|uk|2 =
1

2

(
1 +

ξk
Ek

)
, |vk|2 =

1

2

(
1− ξk

Ek

)
(1.7)

Here we see that for ξk = 0 the quasi-particles are fifty-fifty superpositions of electron and hole and as
ξk becomes larger(smaller) it becomes more electron(hole) like. So how should one visualize such an
excitation? Consider if one inserted an electron into a superconductor at energy ξk > |∆| it could then
form a Cooper-Pair with a electron at energy −ξk leaving a hole at −ξk with opposite pointing spin.
Then a Cooper-pair could split up, one electron would fill the hole and the other becomes similar
to the original electron inserted. If this process continues indefinitely the state evolves into being
somewhat hole and somewhat electron with weights precisely given by uk and vk which is shown in
Fig.1.1

Figure 1.1: In (a) we show a representation of the superconducting spectral function, which have
divergent peaks precisely at ±∆ and Cooper-Pairs with energy µ. In (b) we show an example of how
one can think about Bogoliubovs. If one starts with an electron it would, mediated by a Cooper-Pair
flip into a hole, and then back and forth, until it becomes a superposition.

1.2 Andreev Bound States

In the current years dozens of experiments using superconducting junctions of different kinds are
being done all over the world. A common feature in many such systems is the Andreev reflection
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1.2 Andreev Bound States 1 INTRODUCTION

process where two electrons, with energies mirrored around the Fermi surface, tunnel into the super-
conductor to form a Cooper-pair. In a excitation sense this looks like a electron excitation is traded
for a hole excitation, thereby explaining the name Andreev reflection. In small systems such effects
are known to become resonant and lead to the formation of sub-gap states named Andreev Bound
States (ABS). In this thesis we will be considering ABS formed on quantum-dot systems coupled to
superconductors. Quantum dots are basically controllable artificial atoms, in the sense that they have
well separated energy levels which occupancy can be controlled by capacitively coupled bottom gates.
Coupling a single level to a superconductor strongly realizes sub-gap ABS. But in such setups ABS
is a potentially confusing term, since it does not cover which process that leads to the formation of
sub-gap resonances. We therefore separate them into two types:

1): The proximity induced state. This type of bound state is well described in the literature [1, 2]
and arise in the regime U << |∆| with U being the charging energy of the dot. The driving mechan-
ism is the proximity effect, which drives the quantum dot superconducting, in the sense that a state
composed of a superposition of dot state |n = 0〉 and |n = 2〉 becomes more energetically favored as
coupling is increased. For large coupling this state becomes the ground-state in the middle of the
|n = 1〉-coulomb diamond. In a exchange language one could say that for |∆| → ∞ the quasi-particles
are effectively removed from the picture and the dot hybridizes with Cooper-pairs. Meaning that a
state allowing Cooper-pairs to tunnel in and out, and with mean occupancy n = 1, is favored, which
is fulfilled by the superposition.

Figure 1.2: In (a) we show a representation of the dot-superconductor spectra in the YSR regime. Here
we see dot states and Bogoliubov quasi-particles as well as the single YSR state. In (b) a similar spectra
for the proximity induced state. Here the sub-gap state consist of a superposition of the empty and
doubly occupied dot state in addition of a Cooper-Pair not shown.
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1.2 Andreev Bound States 1 INTRODUCTION

2): The Yu-Shiba-Rusinov State. The Yu-Shiba-Rusinov state [3, 4, 5], or YSR state, arise in the
opposite regime when U >> |∆| and is mediated by magnetic exchange between quasi-particles in
the superconductor and quantum dot states. This process have been described in [6, 7] and the basic
explanation is that in this regime the quasi-particles are not far removed in energy, and they therefore
hybridize with the |n = 1〉 dot state. In a exchange language one would say that quasi-particles with
opposite pointing spin compared to the electron occupying the dot, are energetically favored as they
can move in and out of the dot. This interaction forms a singlet state, composed of dot-electron and
quasi-particles, which moves in from the gap as coupling is increased. For a critical coupling this state
becomes the ground state when |n = 1〉. Using a language familiar to people working with magnetic
impurities and Kondo effect one would call such a state screened, as the superconductor screens the
spin of the nearby quantum-dot with a quasi-particles from its bulk.

These two states are shown visually at Fig.1.2. Is should be noted that the physics of these two
states, in view of spectroscopy, are quite similar as for both one starts with a doublet for low coupling
and then as coupling is increased a singlet moves down until it crosses and becomes the ground-state.
Two noticeable differences: For the proximity induced state the two other occupancy states will still
be visible inside of the gap which is not the case for YSR as shown in [6]. Also, as we will see later the
formation of the YSR state leads to the disappearance of the gap peaks at±∆, which is not the case for
proximity as seen in [8]. In the intermediate regime U ≈ ∆ the formed singlet is constituted of both
quasi-particle and cooper-pair mixing attributes of both states [9, 10]. In experiments the intermediate
regime and the YSR regime is the most common as the charging energy U is typically larger then ∆.

In this thesis we will work specifically on YSR states in quantum dots, their transport properties
and how they behave in different regimes. The YSR state is interesting because it is an easy probe-
able many-body state with close connections to the rich fields of STM physics [11, 12, 13] and Kondo
physics [14, 15] from which its theory originated. But as explained above, it is not a unusual visitor
in the world of quantum dots [16], which are receiving a high amount of activity in the recent years
related to the development of quantum computers. It also serves as a probeable sub-gap state for
the development of transport theory in superconducting structures, which maybe helpful in under-
standing another famous sub-gap state: the Majorana fermion. Lastly, chains of YSR states have been
shown to be able to yield a magnetic helix order which can be driven to an topological none-trivial
regime yielding Majorana’s at the end of the chain [17, 18]. With this motivation we will continue into
a summary of the thesis to come.

In the next section we will derive the basic Greens function and Nambu framework needed to do
calculations on coupled systems, including superconductivity and magnetic interactions. With this
structure in place we will move on to derive the YSR state’s Green function and spectral properties
using a classical spin approximation which is done in Section.3. Then in Section.4 and Section.5 we
will consider superconductor-dot-metal as a platform for YSR physics and consider transport from
metal to superconductor too see how it probes the sub-gap spectra. In Section.6 and Section.7 we will
present a description of double-dot systems and develop a Zero-Band-Width method of obtaining
these structures spectra. We will then utilize these methods too understand data from two devices
and discuss the relevant dynamics. Lastly, before moving into conclusions, we will try to apply our
classical-spin approximation to certain line-cuts of the double-dot experiment in Section.8. Here we
se, that certain regions of a double-dot systems behaves almost as a single-dot, allowing us to extract
parameters and analyze the given transport patterns.
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2 FRAMEWORK

2 Framework

In this section we will do a brief derivation of Green function structure necessary for future calcula-
tions. These derivations will in essence follow the same lines as [19] and constitutes the basic formal-
ism used throughout this thesis. Also we will show that, with some constraints on the Hamiltonian,
the matrix structure existing in Greens functions can be expanded to also include 4× 4 Nambu space
greatly simplifying calculations containing both superconductors and spin-interactions.

2.1 Greens functions

We start by considering a generic Hamiltonian

H = H0 +HI (2.1)

where H0 is quadratic in operators Ψa which create state |Ψa〉 from the vacuum state and where a
runs over all states present. HI is some more complicated interaction and we consider both H terms
to be time-independent. This means that we can generally write H0 =

∑
ab Ψ†ah0(a, b)Ψb. From here

we define the imaginary-time Greens functions

G(τ, τ ′, a, b) = −〈Tτ (Ψa(τ)Ψ†b(τ
′)〉 = − 1

Z
Tr
[
e−βHTτ (Ψa(τ)Ψ†b(τ

′))
]

(2.2)

where Ψa(τ)Ψ†b(τ
′) are operators from the Hamiltonian. Here τ is imaginary time, Z the partition

function, brackets refer to the normal thermodynamical average and Tτ is the imaginary time-ordering
which for fermions adds a sign when two field operators are interchanged.

Looking at equation eq.(2.2) one clearly sees that the thermodynamical term Exp[−βH] is on the
same form as time evolution Exp[Hτ ] and as the trace forces equality of index on the left and right
side we end up with a cyclic constraint on imaginary time,

G(τ, τ ′, a, b) = G(τ − τ ′, a, b) = ±G(τ − τ ′ + β, a, b) (2.3)

where + is for bosonic operators and − is for fermionic. From here one obtains the standard Matsub-
ara Greens function by fourier transforming over the imaginary-time separation τ − τ ′ yielding

G(iωn, a, b) =

∫ β

0
dτG(τ − τ ′, a, b)eiωnτ (2.4)

where the cyclic property confines ωn = (2n + 1)π/β with n being a integer and thereby reduces the
Fourier transform to a fourier series over the interval β. Next one determines the Greens function by
use of equations of motion

−∂τG(τ − τ ′, a, b) = ∂τ

[
θ(τ − τ ′)〈Ψa(τ)Ψ†b(τ

′)〉 ± θ(τ ′ − τ)〈Ψ†b(τ
′)Ψa(τ)〉

]
= δ(τ − τ ′)〈Ψa(τ)Ψ†b(τ

′)∓Ψ†b(τ
′)Ψa(τ)〉+ 〈Tτ ([H0 +HI ,Ψa(τ)]Ψ†b(τ

′))〉 (2.5)

= δ(τ − τ ′)δab −
∑
c

h0ac〈Tτ (Ψc(τ)Ψ†b(τ
′))〉+ 〈Tτ ([HI ,Ψa(τ)]Ψ†b(τ

′))〉

−∂τ ′G(τ − τ ′, a, b) = −δ(τ − τ ′)δab +
∑
c

〈Tτ (Ψa(τ)Ψ†c(τ
′))〉h0cb + 〈Tτ (Ψa(τ)[HI ,Ψ

†
b(τ
′)])〉 (2.6)
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2.1 Greens functions 2 FRAMEWORK

Which is the general form of equations of motion. Next we will consider the special case HI = 0
which is the most relevant for this thesis and use the so called matrix notation referring to the variable
structure AB(a, b) =

∑
cA(a, c)B(c, b) which follows the rules of matrix multiplication. It should be

stated that in this notation c could be any state, including momentum k and spin, but also different
types of fermions. Using this structure and removing the index h0 = h the previous equations can be
rewritten into the simple form

− ∂τG = I + hG ⇒ iωnG = I + hG (2.7)
∂τ ′G =− ∂τG = I + Gh ⇒ iωnG = I + Gh (2.8)

with I = δab and all greens functions having suppressed a common frequency G = G(iωn). Next we
sort Greens functions, separating internal degrees of freedom as momentum and spin from different
states living in different sub-spaces. Therefore we rewrite the previous equation but with Latin index
a only denoting the sub-space and Greek to internal degrees of freedom,

iωnGaaγµ = δaaδγµ +
∑
b

∑
ρ

habγρGbaρµ (2.9)

⇒
∑
γ

(iωnδργ − haaργ)Gaaγµ = δaaδρµ +
∑
b6=aγ

habργGbaγµ (2.10)

where we have summed and renamed indices. Next we define the bare Greens function G0aργ =
(iωnδργ − haaργ)−1 which is the Greens function if their is no interactions with other fermions, hab = 0
for b 6= a as the right-hand side of the above equation will then be an identity. Next we reinstate the
matrix notation for the internal degrees of freedom,

G−1
0a Gaa = I +

∑
b 6=a

habGba (2.11)

⇒ Gaa = G0a + G0a

∑
b6=a

habGba (2.12)

⇒ Gaa = G0a +
∑
b6=a
GabhbaG0a (2.13)

where the last result is what is obtained if one started from Eq.(2.8) instead of (2.7). Next in order to
fully determine such systems, one also needs equations for the coupled Greens functions using the
above equation one obtains a similar result except that the identity terms cancels out,

Gba =
∑
c 6=b
G0bhbcGca and Gba =

∑
c 6=a
GbchcaG0a (2.14)

which is the full set of equations necessary for solving systems of time-independent quadratic Hamilto-
nians including coupling between different fermion systems. Next we will introduce the concept of
Nambu-space to construct quadratic Hamiltonians which includes magnetic and superconducting
interactions.

6



2.2 Nambu space 2 FRAMEWORK

2.2 Nambu space

In this thesis we will often be working with both superconducting and magnetic interactions so this
section is dedicated to definitions and usage of Nambu space. Consider a Superconducting Hamilto-
nian with some spin scattering interaction J

H =
∑
k

[∑
σ

ξkc
†
kσckσ + ∆c†k↑c

†
−k↓ + ∆c−k↓ck↑ + J

∑
k′

(c†k↑ck′↑ − c
†
k↓ck′↓)

]
(2.15)

which contains multiple interactions. In derivations, and especially in perturbation theory, it will be
annoying always having to expand in all interactions, so we desire a way to automatically include
some of the interactions in a quadratic form. This can be done by choosing a new basis,

Ψ†k =
(
c†k↑, c−k↓, c†k↓, −c−k↑

)
(2.16)

here the sign on the last term is chosen for convenience. Remembering that the whole 2 × 2 Hilbert
space is spanned by Pauli matrices one can write out the full 4 × 4 space as tensor products of Pauli
matrices. Defining the tensor product structure such that τ operates in particle-hole space correspond-
ing to entrance 1, 2 and 3, 4 of Ψ†k while σ operates in spin space corresponding to 1, 3 and 2, 4. Also
we use the shorthand notation σiτj = σi ⊗ τj and we suppress identities τi = σ0 ⊗ τi which allows us
to write matrices in the following way,

τx =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , σyτy =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 (2.17)

Using this notation we can rewrite out Hamiltonian as

H =
1

2

∑
kk′

Ψ†k [(ξkτz + ∆τx)δkk′ + Jσz] Ψk′ =
1

2

∑
kk′

Ψ†khk,k′Ψk′ (2.18)

in obtaining this expression from eq.(2.15) we used ξk → ξ−k, neglected constant terms and introduced
a factor 1/2 to fix overcounting. A subtlety in using the 4 × 4 Nambu space is that regular anti-
commutators take a slightly different form{

Ψ†kµ,Ψk′µ′

}
= δkk′δµµ′ ,

{
Ψ†kµ,Ψ

†
k′µ′

}
= δ−kk′(σyτy)µµ′ (2.19)

which will turn out to be a little problematic in regards to Green function structure, but first let us
define the Green-functions in Nambu space. The Nambu Greens function is defined as the outer
product of the Nambu spinors

Gµν(τ, τ ′, a, b) = −〈Tτ (Ψaµ(τ)Ψ†bν(τ ′)〉 (2.20)

which forms a matrix written here in index µν. Next we would like to incorporate Nambu space into
the existing Greens-function framework, in order for this to work the equations of motion in eq.(2.5)

7



2.2 Nambu space 2 FRAMEWORK

must yield a similar structure in Nambu space as to normal space. This equation consist of two parts
an identity and the commutator with H . First notice that the identity term also forms if the states
where in Nambu space as the new spinors anti-commutator also yields an identity as seen in Eq.(2.19)

The problems is terms like [H,Ψa] Ψ†b = −hacΨcΨ
†
b with normal states, where we need to check

that operators in Nambu space behaves similarly. We here consider the case of operators belonging to
the same fermionic space too avoid to many indexes, but the result generalizes to different spaces as
well, and as spin now is incorporated in Nambu structure the only internal degree of freedom is k so
we write,

[H,Ψkµ] Ψ†k′µ′ =
1

2

∑
k′′k′η′′η′

(
Ψ†k′η′hk′η′k′′η′′Ψk′′η′′Ψkµ −ΨkµΨ†k′η′hk′η′k′′η′′Ψk′′η′′

)
Ψ†k′µ′

= −1

2

∑
k′′η′′

hkµk′′η′′Ψk′′η′′Ψ
†
k′µ′ +

1

2

∑
k′η′η′′

Ψ†k′η′hk′η′−kη′′(σyτy)η′′µΨ†k′µ′

= −1

2

∑
k′′η′′

hkµk′′η′′Ψk′′η′′Ψ
†
k′µ′ −

1

2

∑
k′η′η′′

Ψ†k′η′(σyτy)η′η′′hk′η′′−kµΨ†k′µ′ (2.21)

= −1

2

∑
k′′η′′

hkµk′′η′′Ψk′′η′′Ψ
†
k′µ′ −

1

2

∑
k′η′′

hk′η′′−kµΨk′η′′Ψ
†
kµ′

= −
∑
k′′η′′

hkk′′µη′′Ψk′′η′′Ψ
†
k′µ′

from the second to third line we used anti-commutators, from third to fourth line we used {hk, σyτy} =

0 and lastly we used that Ψ†k(σyτy) = Ψ−k, hk = hTk and hk,−k′ = hk,k′ = hk′,k. So we see here that in
order for these relations to be true, a number of restrictions need to be put on h. The Hamiltonians we
are working with, as the one presented in this section, always fulfills these properties.

Lastly a quick trick yields a useful result, consider

(
[H,Ψkµ] Ψ†k′µ′

)†
= −Ψk′µ′

[
H,Ψ†kµ

]
=

−∑
k′′η′′

hkk′′µη′′Ψk′′η′′Ψ
†
k′µ′

† = −
∑
k′′η′′

Ψk′µ′Ψ
†
k′′η′′hk′′kη′′µ

⇒ Ψk′µ′

[
H,Ψ†kµ

]
=
∑
k′′η′′

Ψk′µ′Ψ
†
k′′η′′hk′′kη′′µ (2.22)

These two equations precisely mimic the matrix structure, except the inclusion of Nambu space, which
we used in the calculation of Eq.(2.12) and related quantities, therefore we are allowed to include
Nambu space freely into the matrix structure in Eq.(2.12), Eq.(2.13) and Eq.(2.14) which constitutes
a powerful set of equations which we will use for solving coupled systems with both magnetic and
superconducting interactions in Section.5.
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3 Magnectic Interactions - YSR state

The basic concept of the Yu-Shiba-Rusinov state comes from a local magnetic exchange term applied
to a superconductor. This system was first investigated by Yu-Shiba-Rusinov [3, 4, 5] where they, in
order to solve the complicated spin-spin correlations, approximated the spin to be classical instead
of quantum mechanical. What they found is that such interactions leads to the formation of a bound
state.

In this section, starting from the addition of an potential and magnetic scattering term, we will
show that one obtains a sup-gap resonance which will turn out to be the YSR state. From there we
will consider the spectral properties of the YSR state focusing of the symmetry breaking properties
of the potential scattering term. In the end we will derive a more simple formalism for the YSR
state consisting of only two particles but with the loss of information about out of gap behavior. The
Hamiltonian for a local spin-spin interaction is

HK =

∫
dr
∑
σσ′

Jδ(r)c†σ(r)S · σσσ′cσ′(r) (3.1)

where J is the strength of the magnetic interaction, S is the local spin operator and σ = (σx, σy, σz) is
a vector of Pauli-matrices. Making this spin classical is done by letting S →∞ and fixing the direction
while letting J → 0 such that J |S| = const. For simplicity one commonly chooses S to point in the
z-direction.

Now we will cast everything in Nambu spinor form as discussed in the previous section. Inserting
HK into a standard BCS superconductor and adding a local potential scattering term W yields,

H =
1

2

∫
drdr′Ψ†r

[
ξ(r − r′)τz + ∆τx + (Jσz +Wτz)δ(r)δ(r

′)
]

Ψr′ (3.2)

written with the spinor defined in Section.2.2 fourier transformed into r space. We include the poten-
tial scattering term since most models derived from real systems, either impurities on a substrate or
quantum dots, yields both magnetic and non-magnetic scattering. This will be our full Hamiltonian
and next we derive the corresponding Greens function starting from equation of motion,

G(iωn, r = 0) = [iωn − h(r = 0)]−1 =
[
G−1

0 (r = 0)− V
]−1 (3.3)

here we defined the bare Greens-function of the Superconductor, which we calculate in the next sub-
section, treating it separately from the local interactions V = Jσz +Wτz as it is not diagonal in r.

3.1 Bare Greens Function

Here we calculate the bare Greens-function for a BCS superconductor in r space. Since G0 is diagonal
in k we start from there and perform a fourier transform,

G0(r, iωn) =

∫
d3k

eik·r

iωn − ξkτz −∆τx
= 2π

∫
dk

∫ 1

−1
d cos(θ)

k2eikr cos(θ)

iωn − ξkτz −∆τx
(3.4)
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3.1 Bare Greens Function 3 MAGNECTIC INTERACTIONS - YSR STATE

as we consider local interactions only in this thesis we set r = 0 and suppress the r index,

G(iωn) = 4π

∫
dk

k2

iωn − ξkτz −∆τx
(3.5)

next we will change integration variable to ξk by use of the density of states

dk

dξk
=

dk

dN

dN

dξk
=

1

4πk2
ν0(ξk) (3.6)

where the denominator is simply the surface of a sphere as we consider the Fermi surface to be a
sphere in momentum.

Using this to change integration and setting the density of states constant around the fermi-surface
ν0(ξk) = νF yields

G(iωn) = νF

∫
dξk

1

iωn − ξkτz −∆τx
= νF

∫
dξk

iωn + ∆τx + ξkτz
(iωn)2 − ξ2

k −∆2
(3.7)

here we quickly recognize that the ξkτz drops out as it is a asymmetric function

G0(iωn) = −νF
∫
dξk

iωn + ∆τx

(ξk +
√

(iωn)2 −∆2)(ξk −
√

(iωn)2 −∆2)
(3.8)

now in order so solve this by complex integration we perform analytical continuation substituting
iωn → ω + iη which gives us the retarded Greens function.

First lets consider how the denominator changes under this substitution√
ω2 + iωη −∆2 ≈

√
ω2 −∆2 + isgn(ω)η (3.9)

where we have ignored terms of higher order in η, taylor expanded and rescaled η as it is infinitesimal
small anyway, only keeping track of signs

Then the Greens function becomes

G0(iωn) = −νF lim
η→0

∫
dξk

iωn + ∆τx

(ξk + isgn(ω)η +
√
ω2 −∆2)(ξk − isgn(ω)η −

√
ω2 −∆2)

(3.10)

we will now solve this by integrating over the positive half plane, but we need to consider the expres-
sion in two cases:

1) If ∆ > ω then the square roots gives an i and the η → 0 limit can be taken before integration and
the pole becomes ξk = i

√
∆2 − ω2

2) If ∆ < ω then the η term decides which of the poles is on the positive half plane and so the pole
becomes ξk = iη + sgn(ω)

√
ω2 −∆2 and η → 0 is taken at the end.

All in all we obtain the forked function

GR0 (ω) = −θ(∆− |ω|)πνF
ω + ∆τx√
∆2 − ω2

− iθ(|ω| −∆)sgn(ω)πνF
ω + ∆τx√
ω2 −∆2

(3.11)

which is the common building block of the superconductor.
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3.2 YSR state 3 MAGNECTIC INTERACTIONS - YSR STATE

Throughout this thesis we will often write this Greens function as

GR0 (ω) = −πνF
ω + ∆τx√
∆2 − ω2

(3.12)

but when doing computations one needs to be careful using eq.(3.11) to properly determine signs.
Notice that for spectral properties only the imaginary values matter and so for |ω| < ∆ the spectral

function is zero as expected from a superconductor as this is within the gap where no quasi-particles
are present.

3.2 YSR state

Now with the bare Greens function calculated we return to the full retarded Greens function with
local interactions included. The calculations done here follows the conventions used in [20, 13] but
with some slight changes of signs in order to keep consistence with the rest of the thesis. Considering
the full Greens function

GR(ω) =
[
(GR0 (ω))−1 − V

]−1
= πνF

[
ω −∆τx√
∆2 − ω2

− πνF (Jσz +Wτz)

]−1

(3.13)

Here we clearly see that the natural unitless scales are α = πνFJ and β = πνFW .
A great advantage of choosing z as spin direction is that we can block separate this equation into

two spin-blocks by setting σz = σ = ± yielding

GRσ (ω) = πνF
√

∆2 − ω2
[
(ω − σα

√
∆2 − ω2)−∆τx − β

√
∆2 − ω2τz

]−1
(3.14)

where σ is determined by which spin block you are considering. These are written in the reduced
Nambu space,

ψ↑ =

(
ck↑
c†−k↓

)
ψ↓ =

(
ck↓
−c†−k↑

)
(3.15)

inversion of a 2× 2 matrix is a simple operation yielding

GRσ (ω) =
πνF
√

∆2 − ω2

((ω − σα
√

∆2 − ω2)2 − β2(∆2 − ω2)−∆2

[
(ω − σα

√
∆2 − ω2) + ∆τx + β

√
∆2 − ω2τz

]
=

−πνF√
∆2 − ω2(1− α2 + β2) + 2ασω

(
ω − (σα− β)

√
∆2 − ω ∆

∆ ω − (σα+ β)
√

∆2 − ω2

)
(3.16)

bound states are obtained by considering resonances that is when the Greens functions denominator
is zero,

0 =
√

∆2 − ω2(1− α2 + β2)− 2ασω (3.17)

⇒ 4α2ω2 = (∆2 − ω2)(1− α2 + β2)2 (3.18)

⇒ ω0 = ±∆
1− α2 + β2√

(1− α2 + β2)2 + 4α2
(3.19)
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3.2 YSR state 3 MAGNECTIC INTERACTIONS - YSR STATE

which is a very important result. This is the energy of a YSR bound state for a classical spin and a
potential scattering term. One quicly notices that |ω0| < ∆ so this state is truly a sub-gap state for all
range of parameters. When no potential scattering is present it takes the more simple form

ω0(β = 0) = ±∆
1− π2ν2

FJ
2

1 + π2ν2
FJ

2
(3.20)

which is the familiar expression found by [4]. For α = 0 the bound states exist precisely at the gap and
as one increases α the bound states moves down the gap and will eventually cross zero as shown on
Fig.3.1. For Spin-half as we later treat in this paper this crossing marks the transition from a spin-1/2

Figure 3.1: Here we plot ±ω0 as a function of α using Eq.(3.19). For (a) β = 0 and for (b) β = 1. For a
real spin, here considering S = 1/2, the crossing marks a change of groundstate which is why D is on
the left side for Doublet and S is on the right side for Singlet. The horizontal dotted lines along both
(a) and (b) refers to spectral cuts made in Fig.3.3

doublet to a screened singlet groundstate, and the singlet is when the spin is screened by a quasi-
particle with opposite pointing spin from the superconductor.

Since the classical-spin does not have a spin space as a spin-1/2 would, this change of groundstate
is not visible in the math, but is a phenomenological fact and will become apparent when we consider
the Zero-Band-Width model in Section.7.

Next we will consider spectral representations of the YSR state to show how truly different this
state is from the normal superconducting state. Our full Greens function for the system takes the
shape

GR(ω) =

(
GR↑ (ω) 0

0 GR↓ (ω)

)
(3.21)

in the full 4× 4 Nambu space. In Nambu representation the spectral function is given by

A(ω) = GA(ω)− (GA(ω))† (3.22)

but as the full Greens function is block diagonal we can consider the blocks separately and as off-

12



3.2 YSR state 3 MAGNECTIC INTERACTIONS - YSR STATE

diagonal components in each block are identical, it reduces to the imaginary part so we obtain,

A(ω) =

(
A↑(ω) 0

0 A↓(ω)

)
with Aσ = −Im

[
GRσ (ω)

]
(3.23)

which components for σ =↑ are plotted in Fig.3.2 for visualization.

Figure 3.2: Plot of Am↑(ω) for α = 1 and β = 1 in order to show how different Nambu components
look. For resonances to be visible an artificial broadening of η = 0.075 have been added by ω → ω+ iη
The diagonal components are commonly denoted the spectral function of the electron (11) and hole
sector (22).

The most common thing to consider is the diagonal components of the spectral function as it enters
directly into transport calculations and as we will later see in section 5 that holes feel change of bias
opposite to electrons, as the Fermi level is displaced in the negative direction under application of
bias. Therefor we define a spectral representation more closely related to transport,

B↑(ω) = Im
[
GR↑,11(ω)

]
+ Im

[
GR↑,22(−ω)

]
(3.24)

which is the spectral function probed by direct tunneling. With this definition we also find B↑(ω) =
B↓(ω) which is expected from the symmetry of the problem.

With this definition we create plots of B for different interactions strengths α drawn as lines on
Fig.3.1 at Fig.3.3. A number of important features of the YSR state become visible in these plots. First
notice that as α increases the peaks moves away from the band gap and at the same time the band
gap weakens. This is also clear from comparing the bare superconductors Green function with the
new effective eq.(3.16) where the divergence at ∆ is not present, and it instead goes to zero, but a
divergence at ω0 have appeared. So YSR interaction seems more as a inward shift of gap divergences
than the appearance of a new feature.

Secondly, notice that the inclusion of a potential scattering terms lifts the particle-hole symmetry
and leaves the spectral function asymmetric around ω. This is due to the symmetry breaking role
of the W term which can already be seen in the Greens function Eq.(3.16) where β terms have signs
dependent on the particle-hole sector. A larger discussion can be found in [20] but it is worth remem-
bering as this symmetry breaking will be a focus in future transport calculations, since it turns out
that the related asymmetry in conductance is highly non-trivial to obtain.
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3.3 Simplified YSR 3 MAGNECTIC INTERACTIONS - YSR STATE

Figure 3.3: Here one sees how the function B(ω) evolve as α vary’s. The blue lines are for β = 0 and
the red lines for β = 1. From the left each plot relates to a line-cut on Fig.3.1. For resonances to be
visible an artificial broadening of η = 0.075 have been added by ω → ω + iη. Be aware that the scales
change as α increases since the spectral function drops off rapidly for large α.

3.3 Simplified YSR

The preceding description of the YSR state is the most general classical evaluation, but its complexity
complicates understanding in regards to calculations of transport and other properties. Therefore
we will here, largely inspired by [13], develop a simplified model where we lose information about
quantities out side of the gap but win more intuitive equations.

We start from the YSR Greens function

GR↑ (ω) =
−πνF√

∆2 − ω2(1− α2 + β2) + 2ασω

(
ω − (σα− β)

√
∆2 − ω2 ∆

∆ ω − (σα+ β)
√

∆2 − ω2

)
(3.25)

which we then expand around the YSR energy ω0 in the denominator. Substituting ω = −σω0 + δω
into the denominator and expanding the square root yields√

∆2 − ω2(1− α2 + β2) + 2ασω ≈ σδω

2α
((1− α2 + β2)2 + 4α2) (3.26)

and in the numerator we simply set ω = −σω0 and obtain

ω0 − (σα∓ β)
√

∆2 − ω2
0 =

−σ∆√
(1− α2 + β2)2 + 4α2

(1 + (α∓ σβ)2) (3.27)

resetting δω = ω + σω0 and putting all the pieces together yields

GRa↑(ω) =
1

ω + ω0

(
v2 uv
uv u2

)
, GRa↓(ω) =

1

ω − ω0

(
u2 −uv
−uv v2

)
(3.28)
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with the new definitions

u2 = 2πνF∆α
1 + (α+ β)2

((1− α2 + β2)2 + 4α2)
3
2

, v2 = 2πνF∆α
1 + (α− β)2

((1− α2 + β2)2 + 4α2)
3
2

(3.29)

from which it becomes clear that the case β = 0 yields symmetric spectral heights. To make these
effects even more apparent we can rewrite this as,

u2 = z + δz, v2 = z − δz (3.30)

z = 2πνF∆α
1 + α2 + β2

((1− α2 + β2)2 + 4α2)
3
2

, δz = 4πνF∆α
αβ

((1− α2 + β2)2 + 4α2)
3
2

(3.31)

defining an similar Spectral function to eq.(3.24) where we perform analytical continuation yields

Figure 3.4: Here we see a comparison between the spectral function from the exact Greens-function
(Red) and the approximate one (Blue) expanded around the resonance ω0. Parameters are β = 1,
varying α and η = 0.075

B↑(ω) = Im
[
GRa↑,11(ω)

]
+ Im

[
GRa↑,22(−ω)

]
=

η(z − δz)
(ω + ω0)2 + η2

+
η(z + δz)

(ω − ω0)2 + η2
(3.32)

from which the YSR appears as a simple Lorentzian around the resonance. in Fig.3.4 a comparison
is made between our two models and we see that the Lorentzian form fails to capture all out of gap
features, so if one only wants to describe the sub-gap YSR features this approximate model provides a
acceptable picture. The model also fails when the YSR state approaches the gap and weakens for very
large and small α.

A great advantage of this approximate form is that it allows to work with a reduced Hamiltonian.
Considering the Greens function eq.(3.28) one can express it in the basis

GRa↑(ω) = |φ↑〉
1

ω + ω0
〈φ↑| , GRa↓(ω) = |φ↓〉

1

ω − ω0
〈φ↓| (3.33)

with |φ↑〉 = (v, u) and |φ↓〉 = (−u, v) which spans a diagonal basis 〈φ↑|φ↓〉 = 0 but is not normalized
〈φσ|φσ〉 = u2 + v2 6= 1. Now we define a new effective Hamiltonian for the superconductor-impurity
system demanding that it generates the Greens functions. One can choose the simple form,

Heff = ψ†↑ |φ↑〉ω0(u2 + v2)−1 〈φ↑|ψ↑ + ψ†↓ |φ↓〉ω0(u2 + v2)−1 〈φ↓|ψ↓ (3.34)

= ψ†↑ |φ̂↑〉ω0 〈φ̂↑|ψ↑ + ψ†↓ |φ̂↓〉ω0 〈φ̂↓|ψ↓ (3.35)
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where the factor (u2 + v2)−1 is simply there as a normalization factor from the inversion of the matrix,
and since it is span-1, it is its own inverse. Thereby |φσ〉 〈φσ|φσ〉 〈φσ| = |φσ〉 (u2 + v2) 〈φσ| from which
the normalization is necessary. In the last line we define the hat to mean Â = A/

√
u2 + v2. Also ψσ

just refers to the Nambu spinor in the σ block as defined earlier. We can rewrite our Hamiltonian in a
more canonical form

Heff = −γ†↑ω0γ↑ + γ†↓ω0γ↓ (3.36)

where we define γ†σ = (v̂c†σ + σûcσ̄) from which we see that they are just local Bogoliubovs with a
normalization. This new Hamiltonian allows us to easily do calculations on YSR states so long one
can disregard the gap.

With all this formalism in check we are ready to consider systems where YSR states are obtainable
in a physical relevant model. In the next section we will consider the case of a single quantum-dot
coupled to a superconductor. Since a quantum-dot behaves as a magnetic moment whenever an odd
number of electrons are placed on the dot YSR physics can be obtained.
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4 SINGLE-DOT SYSTEM

4 Single-dot system

In this section we will discuss the formation and effect of YSR states on single quantum dot systems.
The general idea is that when a single electron is placed on the utmost dot orbital it must contain a
free 1/2-spin. A superconductor then interacts with this spin through tunnel interactions yielding an
effective magnetic coupling from which a sub-gap YSR state forms.

For dot systems the common starting point is the Anderson model,

H = Hd +HL +Ht (4.1)

Hd =
∑
σ

εdnσ + Un↑n↓

HL =
∑
αk

[∑
σ

ξαkc
†
αkσcαkσ + ∆α(c†αk↑c

†
α−k↓ + cα−k↓cαk↑)

]
, (4.2)

Ht = tα
∑
kσα

c†αkσdσ + h.c

where HL is the Hamiltonian for the leads in generic form, Hd is the Hamiltonian for a single level
with local Coulomb interaction U , where nσ is the number operator on the dot and Ht is the tunnel
Hamiltonian connecting these components.

4.1 Excitations - Coulomb diamonds

Figure 4.1: In (a) one sees a schematic of a single dot d connected to two leads A and B through
tunnel couplings tA and tB . In (b) one sees the excitation spectrum and a mirrored spectrum of a
single quantum-dot with local coulomb interaction U . These patterns are called Coulomb diamonds
and a single diamond have width and height U . The color change mark different ground-states. To
the left: Empty dot singlet. Middle: Single occupied doublet. Right: Double occupied singlet

For clarity we will quickly discuss the dot Hamiltonian Hd and the related Coulomb diamond
picture. First of all, a single quantum-dot has 4 possible states,

〈m| ∈ 〈0| , 〈σ| , 〈↑↓| (4.3)
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4.2 Superconducting lead 4 SINGLE-DOT SYSTEM

where 〈σ| is two states as it is a spin doublet. These states have the related energies from Hd

Em ∈ [0, εd, 2εd + U ] (4.4)

since we are most interested in the single-occupied regime we will change variables to εd = −U/2(1 +
δ) where δ now describes the displacement away from the particle-hole symmetric point which is the
point where it is as easy to excite the filled 〈↑↓| state as the empty state 〈0|.

Since we only probe excitations, constant shifts of energy does not matter, and we can rewrite the
energies as

Em ∈
[
U

2
(1 + δ), 0,

U

2
(1− δ)

]
(4.5)

being a function of δ. The corresponding excitation spectrum is the familiar Coulomb diamond, where
δ ± 1 are the degeneracy points between different ground states and δ = 0 the center of the odd
occupancy diamond. In simple transport experiments one would probe this diamond feature by use
of two metallic probes. This yields two different regimes of transport:

1) If the bias between the two leads is smaller than any excitation in the dot, the dot is considered
to be Coulomb-blockaded and any transport from lead A to B must happen through cotunneling,
which is tunneling through higher energy excitations.

2) If the bias is higher than a given excitation, then current can run by constantly loading and
removing electrons on the excited state, therefore one will see a dramatic rise in current when this
occurs. This is denoted sequential-tunneling.

Therefore, as done in multiple experiments, one can control dot occupancy by a capacitively
coupled bottom gate and then measure differential conductance dI

dV as a function of bottom gate and
bias voltage. This would yield the coulomb diamond pattern as plotted in Fig.4.1 with a constant
background from cotunneling and dramatic conductance increase at bias matching the excitations as
this would increase sequential tunneling.

4.2 Superconducting lead

As we are interested in the interaction between superconductors and quantum spin we will consider
one of the leads to be superconducting. In order to obtain an effective YSR model we need to reduce
the Anderson model to a Kondo like model. This can be done when the dots are placed deep within
the cotunneling regime in which dot occupancy is locked.

Next one uses a Schrieffer-Wolff transform, following [10, 21], to derive an effective model. In
Appendix.B the Schrieffer-Wolff transformation is derived and explained in detail, here we will just
apply it.

First we will consider second-order Schrieffer-Wolff around δ = 0 to derive the superconductors
self-interaction through the quantum dot. In this derivation we consider the two single occupied
states to be m-states and the two singlet states 〈↑↓| and 〈0| to far-away in energy l-states which will be
removed in the perturbation,

〈m| ∈ 〈λ, σ| 〈l| ∈ 〈λ, 0| , 〈λ, ↑↓| (4.6)

where λ is any eigenstate of the superconductor.
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4.3 Second order perturbation - Self-interactions

Here we will calculate the effective interaction between a superconductor and itself, up to second
order as to obtain an effective Kondo model. It should be stated that these results easily translate into
superconductor-metal interaction by letting ∆ for one of the leads go to zero. To use Schrieffer-Wolff
most effectively we follow this recipe:

1): Write down all possible paths connecting m states.
2): For all paths manipulate operators into a normal ordered fashion
3): Calculate the energy-denominators from the transformation.

Here we will be calculating in the superconducting diagonal basis by using Bogoliubov quasi-particles
which will in effect dramatically increase the number of paths one can go through a single dot, as one
can both remove or add a quasi-particle when adding an electron on the dot. Therefore we will
consider the paths in normal electron formalism and later change into Bogoliubov basis where one
have to give each path its corresponding energy denominator. The two paths are defined as

1) 〈λ, σ| → 〈λ± qp, ↑↓| → 〈λ′, σ| (4.7)
2) 〈λ, σ| → 〈λ± qp, 0| → 〈λ′, σ| (4.8)

where the number of particles in the superconductor λ′ varies from λ by 0 or ±2 quasi-particles de-
pendent of path. These paths can also be regarded as two permutations of the tunnel Hamiltonians
necessary for the transition as shown in Fig.4.2 The Hamiltonian connecting these different states is

Figure 4.2: A graphical interpretation of the paths considered in Schrieffer-Wolff transformation. The
two paths correspond to: 1)HBHA and 2)HAHB . Which is to be read from the right. H is the relevant
tunnel Hamiltonian for the shown path.

the tunneling Hamiltonian Eq.(4.2) so what we are doing is effectively perturbations in tunnel coup-
lings over energy of the l states which close to δ = 0 is approximately Uα/2. Next, following the recipe,
we will consider operator order for these two paths, where we will change into the diagonal basis of
the superconductor described by Bogoliubov quasi-particles ckσ = ukγkσ − σvkγ†−kσ̄ and expand into
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more paths,

1) HBHA ⇒ t2S
∑
kk′σσ′

c†kσdσd
†
σ′ck′σ′ = t2S

∑
kk′σσ′

(ukγ
†
kσ − σvkγ−kσ̄)dσd

†
σ′(uk′γk′σ′ − σ′vk′γ†−k′σ̄′)

⇒ H1eff =
∑
kk′σσ′

t2S

(
δσσ′ − d†σ′dσ

)
(4.9)(

A
(1)
+ ukuk′γ

†
kσγk′σ′ −A(1)

− σσ′vkvk′γ
†
kσ̄′γkσ̄ −B(1)σvkuk′γ−kσ̄γk′σ′ −B(1)σ′ukvk′γ

†
kσγ
†
−k′σ̄′

)

2) HAHB ⇒ t2S
∑
kk′σσ′

d†σckσc
†
k′σ′dσ′ = t2S

∑
kk′σσ′

d†σ(ukγkσ − σvkγ†−kσ̄)(uk′γ
†
k′σ′ − σ′vk′γ−k′σ̄′)dσ′

⇒ H2eff = −
∑
kk′σσ′

t2Sd
†
σ′dσ (4.10)(

A
(2)
+ ukuk′γ

†
kσγk′σ′ −A(2)

− σσ′vkvk′γ
†
kσ̄′γkσ̄ −B(2)σvkuk′γ−kσ̄γk′σ′ −B(2)σ′ukvk′γ

†
kσγ
†
−k′σ̄′

)
where we have used uk = u−k and vk = v−k, interchanged dummy indeces and discarded terms not
dependent on γ. Importantly, in the last step in each calculation we inserted the energy denominator
corresponding to that specific path.

Next we consider the energy denominator from eq.(B.14) where we neglect the k dependence of
the quasi particles since we attribute processes closest to the gap to be dominant, thereby setting
ESk ≈ |∆| and use εS ≈ −U

2 (1 + δ) yielding

A
(1)
± =

1

2

(
1

Eσ − E2∓qp
+

1

Eσ′ − E2∓qp

)
=

1

Eσ − E2∓qp
=

1

εd − 2εd − U ±∆
(4.11)

=
2

U

−1

1− δ

∞∑
n=0

(
2∆

U

∓1

1− δ

)n
A

(2)
± =

1

2

(
1

Eσ − E0±qp
+

1

Eσ′ − E0±qp

)
=

1

Eσ − E0±qp
=

1

εd ∓∆
(4.12)

=
2

U

−1

1 + δ

∞∑
n=0

(
2∆

U

±1

1 + δ

)n
B(1) =

1

2

(
1

Eσ − E2∓qp
+

1

Eσ±2qp − E2∓qp

)
=

1

2

1

−εd − U + ∆
+

1

2

1

−εd − U −∆
(4.13)

=
2

U

−1

1− δ

∞∑
n=0

(
2∆

U

1

1− δ

)2n

B(2) =
1

2

(
1

Eσ − E0±qp
+

1

Eσ∓2qp − E0±qp

)
=

1

2

1

εd + ∆
+

1

2

1

εd −∆
(4.14)

=
2

U

−1

1 + δ

∞∑
n=0

(
2∆

U

1

1 + δ

)2n

here the±qp indicates if quasi-particles are removed or added to the superconductor for a given path,
yielding a contribution of ∆, the 0 or 2 index are particles on the dot and σ index is the spin of a
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single particle on the dot. At this stage it also becomes clear that in order for us to have a controlled
expansion then ∆ << |εd|, |εd + U | or else the denominators would diverge. This yields

∆ <<
U

2
|1± δ| (4.15)

As we would like an effective spin model in the end we rewrite the S-dot operators in term of spin
operators using the following relations,

d†↑d↑ =
1

2
+ Sz

d†↓d↓ =
1

2
− Sz (4.16)

d†↑d↓ = Sx + iSy

d†↓d↑ = Sx − iSy

Inserting these into eq.(4.10) we notice a important distinction between the spin dependent part and
the spin independent part, namely that the δσσ′ term enters into the non-spin dependent part and
changes the sign. So to obtain the new effective terms one should add the contribution from path 1)
to 2) for spin dependent terms and subtract them for non-spin dependent terms proportional to the
identity. Even though this recipe is simple, the math gets tedious when including all orders of ∆ as
the sorting of different terms and signs is not trivial. We will therefor here present the main result
which depends on the following couplings found from the denominators,

JS =
2t2S
U

∞∑
n=0

(
2∆

U

)2n( 1

(1 + δ)2n+1
+

1

(1− δ)2n+1

)
(4.17)

=
t2S
U

2

1− δ2

[
2 +

∞∑
n=1

(
2∆

U

)2n (1− δ)2n+1 + (1 + δ)2n+1

(1− δ2)2n

]

WS =
1

2

2t2S
U

∞∑
n=0

(
2∆

U

)2n( 1

(1 + δ)2n+1
− 1

(1− δ)2n+1

)
(4.18)

=
t2S
U

1

1− δ2

[
−2δ +

∞∑
n=1

(
2∆

U

)2n (1− δ)2n+1 − (1 + δ)2n+1

(1− δ2)2n

]

JS∆ =
2t2S
U

∞∑
n=1

(
2∆

U

)2n−1( 1

(1 + δ)2n
− 1

(1− δ)2n

)
(4.19)

=
4t2S∆

U2

∞∑
n=1

(1− δ)2n − (1 + δ)2n

(1− δ2)2n

WS∆ =
1

2

2t2S
U

∞∑
n=1

(
2∆

U

)2n−1( 1

(1 + δ)2n
+

1

(1− δ)2n

)
(4.20)

=
2t2S∆

U2

∞∑
n=1

(1− δ)2n + (1 + δ)2n

(1− δ2)2n
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where in general the sums have been split into even and odd parts as to accommodate the sign dif-
ferences. The terms shown in bold text are the two terms yielding the standard Schrieffer-Wolff terms
for a metal, all other terms are of higher order in ∆/U .

With all this in check, we write out the full second order perturbation, being careful about signs
from different combinations of uk and vk terms and get,

Ĥ(2) = H1eff +H2eff = HJ +HW +HJ∆ +HW∆ (4.21)

HJ = JSSz

[
Kkk′(γ

†
k↑γk′↑ − γ

†
k↓γk′↓)− (Lkk′ − Lk′k)γ−k↓γk′↑ − (Lk′k − Lkk′)γ†k↑γ

†
−k′↓

]
+ JSS+

[
Kkk′γ

†
k↓γk′↑ + Lk′kγ−k↑γk↑ + Lk′kγ

†
k↓γ
†
−k′↓

]
(4.22)

+ JSS−

[
Kkk′γ

†
k↑γk′↓ + Lkk′γ−k↓γk↓ + Lkk′γ

†
k↑γ
†
−k′↑

]
HW = WS

[
Mkk′(γ

†
k↑γk′↑ + γ†k↓γk′↓)− (Lkk′ + Lk′k)γ−k↓γk′↑ − (Lk′k + Lkk′)γ

†
k↑γ
†
−k′↓

]
(4.23)

HJ∆ = JS∆Mkk′

[
Sz(γ

†
k↑γk′↑ − γ

†
k↓γk′↓) + S+γ

†
k↓γk′↑ + S−γ

†
k↑γk′↓

]
(4.24)

HW∆ = WS∆Kkk′

[
γ†k↑γk′↑ + γ†k↓γk′↓

]
(4.25)

with the following definitions

Kkk′ = ukuk′ + vkvk′ , Mkk′ = ukuk′ − vkvk′ , Lkk′ = ukvk′ (4.26)

notice that in HW∆ and HJ∆ no L dependent terms arise as the energy denominator B contains no
odd terms. Which is the same Hamiltonian as found by [10]. Now for clarity we will shift back to c†,
c space yielding for the normal terms

HJ = JS
∑
kk′σσ′

c†kσSS · σσσ′ck′σ′S , HW = WS

∑
kk′σ

c†σkScσk′S (4.27)

Which is the expected form from a Schrieffer-Wolff transformation in a normal metal and for the new
terms,

HW∆ = WS∆

∑
σkk′

[(
u2
ku

2
k′ − v2

kv
2
k′
)
c†kσSck′σS + (u2

kvk′uk′ + v2
k′ukvk)c

†
kσSc

†
−k′σ̄S + h.c

]
(4.28)

HJ∆ = JS∆

∑
σσ′kk′

S · σσσ′

[(
u2
ku

2
k′ − v2

kv
2
k′
)
c†kσSck′σ′S + σ(u2

kvk′uk′ + v2
k′ukvk)c

†
kσSc

†
−k′σ̄′S + h.c

]
(4.29)

Notice that these last terms consist of a modification of pairing in the superconductor and a modi-
fication of eq.(4.27) proportional to ukuk′ − vkvk′ . If one sets the dot to be particle-hole symmetric
δ = 0 one would expect the whole system to be particle-hole symmetric as a BCS superconductor is
particle-hole symmetric by itself.

In order to verify this, one does the following substitutions c† → c, uk → vk and vk → uk and
verify that HJ , HW∆ → HJ , HW∆ and HW , HJ∆ → −HW ,−HW∆.

Then for δ = 0 we getHW , HJ∆ = 0 and symmetry is indeed held. If δ 6= 0 then there is no guaran-
tee of symmetry. The two terms JS and WS correspond to the potential and magnetic scattering terms
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4.4 SDN junction 4 SINGLE-DOT SYSTEM

analyzed in Section.3 where we found that the breaking of particle-hole symmetry left the YSR state
with an asymmetric spectral function. The new terms JS∆ and WS∆ correspond to higher order ef-
fects, including terms inducing spin-dependent superconductivity as seen from Eq.(4.29). From here
on we will only consider lowest order in ∆/U therefore we can disregard the terms JS∆ and WS∆, but
this analysis verifies that to all orders of ∆/U the system by itself conserves particle-hole symmetry
at δ = 0.

4.4 SDN junction

We will now consider a system composed of a single superconductor coupled to a dot which is also
weakly coupled to a metal, written as SDN (Superconductor-Dot-Normal-metal). The weak coupling
is to assure us that we can disregard Kondo physics, where the metalic lead tries to screen the quantum
dot which becomes relevant at large metallic coupling and low temperature [22]. This will let us use
the metal as a probe of the Superconductor-Dot system, We will now consider our system to be placed

Figure 4.3: In (a) one sees a schematic of a single dot d connected to a Superconducting lead and a
metallic lead, the dot is painted red to illustrate its strong coupling to the superconductor compared
to the metal. In (b) one sees the coulomb diamond with a gap on top, illustrating the physics of a dot
and superconductor together. The pink box illustrates where our Schrieffer Wolff approximation is
working determined by ∆ << |U/2(1± δ)|. Here ∆ = U/5

in the regime ∆ << U/2 as to obtain YSR physics and we will only consider the regime deep within
the coulomb diamond further restricting ∆ << U/2|1 ± δ|. In this regime we ignore interaction of
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higher order in 2∆/U and can therefore write up a effective Hamiltonian

Heff = HS +HN +HK (4.30)

HS =
∑
k

[∑
σ

ξkSc
†
kσSckσS + ∆(c†k↑c

†
−k↓ + c−k↓ck↑)

]
(4.31)

HN =
∑
kσ

ξkNc
†
kσSckσS (4.32)

HK =
∑
kk′αα′

[
Jαα′

∑
σσ′

c†kσαS · σσσ′ck′σ′α′ +Wαα′
∑
σ

c†kσαck′σα′

]
(4.33)

with α ∈ S,N . Just before in the Schrieffer-Wolff transformation evaluated the self interaction terms
JSS and WSS . The corresponding self-interactions for the metal is simply given by the limit ∆ → 0
and replacement of tS with tN . For lowest order in ∆/U , where we in effect fully ignore ∆ treating
the superconductor as a metal we can also write the connecting term JNS and WNS in the above same
form, with the tunnel couplings given by tStN . So all the effective couplings are given as

Jαα =
tαt
′
α

U

4

1− δ2
, Wαα =

tαt
′
α

U

−2δ

1− δ2
(4.34)

An important thing to notice is that for δ << 1 J is approximately constant and W linear. Now if we
approximate the spin to be classical then the sign change of W must in effect flip which spectral peak
is enhanced as W → −W makes δz → −δz in Eq.(3.31).

Now we will utilize the classical-spin approximation in order to solve this model. First we clearly
see from the expression for J and W and our classical-spin discussion that the unitless quantity de-
termining the YSR physics is

C = πνF
t2S
U

(4.35)

as it is the proportional to both J and W with πνF from the superconducting Green-function. In the
next sections we will fully consider the transport through such a system, but lets first analyse the
spectral function. By keeping only HS , JSS , and WSS we plot the spectral function and YSR energy
ω0 using δ as a parameter. This is done in Fig.4.4 for different values of C, in units of ∆ and by letting
|S| = 1 for simplicity.

The shapes seen in Fig.4.4 are seen everywhere in YSR quantum dot experiments. The round-
shape, for weak YSR wherein the spin is not yet screened, is known as the eye. Now that we have
discussed the Hamiltonian and the YSR state in this setup we will begin to consider transport which
is what can measured in experiments.

Commonly one applies a current through the above system from metal to superconductor and
measure the conductance. In experiments the above mentioned bias asymmetry appears quite clearly
[23] and for one used to calculating transport in normal metallic systems this will come as no surprise
since the spectral function directly links to conductivity and contains this asymmetry. Next we will
find that this picture is too simple, and that sub-gap conductance is not necessarily proportional to
the spectral function.
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Figure 4.4: In the top left corner we plot |ω0| eq.(3.19) as a function of δ for different C. For C = 1/4
we see it crosses zero as expected since then α = 4C = 1 at δ = 0 where WSS = 0. For very small C
the YSR state stays close to the gap as expected. In the color-plots we consider the spectral function
as defined in eq.(3.24) also as functions of δ and for different C. Here, one can also clearly see the
asymmetry arising when moving out of δ = 0. All plots are made with |S| = 1.

5 Transport

In this section we will derive non-equilibrium transport for a SDN system. We will use two different
but similar approaches. First based on the calculation done by [7] we derive an exact mode which
accounts for all interactions within the classical-spin framework. This model will turn out to be hard
to apply and even harder to obtain an intuition off.
Later on based on the brilliant approach of [24] and [13] one can reduce the difficulties significantly by
using the simplified Greens function from Section.3 and by ignoring contributions from the metallic
probe, which yields a structure similar to transport through a resonant level. Thereby we obtain
simple intuitive equations which allows one to understand the nature of YSR transport in greater
detail.

The more advanced model can in that sense be used as a benchmark for the reduced form allowing
us to test its limits, and even more importantly allowing one to consider the probe’s impact on the
physics for the case of high tN .
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5.1 Exact Calculations

The following section follows closely the calculations done in [7]. Taking the Anderson Hamiltonian
for a SDN, eq.(4.2), and writing it in 4× 4 Nambu space yields,

HA = HS +HN +Hd +Ht (5.1)

Hα =
1

2

∑
kk′α

Ψ†αk [ξαkτz + ∆ατx] Ψαk

Ht =
1

2

∑
αk

tα(Ψ†αkτzΦ + Φ†τzΨαk)

Hd =
∑
σ

εdndσ + Und↑nd↓

where α ∈ S,N , ∆N = 0 and we are using the standard basis from Section.2.2 for Ψαk and we define

hi =
(
d†↑, d↓, d†↓, d↑

)
(5.2)

for the dot. The τz on the tunneling terms is necessary to fix signs from Nambu notation. Now
defining current as the change of charge do to tunneling processes in and out of the superconductor,

I = Q̇S(t) = eṅS(t) =
−e
2ih

∑
k

[
Ht(t),Ψ

†
Sk(t)τzΨSk(t)

]
(5.3)

=
etS
4ih

∑
kk′

([
Ψ†Sk′(t)τzΨSk′(t),Ψ

†
Sk(t)τzΦ(t)

]
− h.c

)
(5.4)

where we used nS = 1/2(Ψ†SkτzΨsk), from here we will assume all operators are evaluated at time t.
Considering the commutator, suppressing S index for clarity and writing out the Nambu space yields,

Ψ†Sk′τzΨSk′Ψ
†
SkτzΦ = (c†k′↑ck′↑−c−k′↓c

†
−k′↓+c

†
k′↓ck′↓−c−k↑c

†
−k′↑)(c

†
k↑d↑−c−k↓d↓+c

†
k↓d↓−c−k↑d↑) (5.5)

Taking the commutator of each of these therms yields the current

I =
−etS
2ih

∑
k

[
c†k↑d↑ + ck↓d

†
↓ + c†k↓d↓ + ck↑d

†
↑ − h.c

]
=
−ets
i2h

∑
k

[
Ψ†SkΦ− h.c

]
(5.6)

=
etS
2ih

∑
k

Tr
[
ΦΨ†Sk −ΨSkΦ

†
]

(5.7)

where the trace arose as an inner product was converted to a outer. As to obtain a observable we take
the thermodynamic average of the current,

〈I〉 =
etS
2ih

∑
k

Tr
[
〈ΦΨ†Sk〉 − 〈ΨSkΦ

†〉
]

=
etS
2h

Tr
[
G<dS(0)− G<Sd(0)

]
=
etS
h

TrRe
[
G<dS(0)

]
(5.8)
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where we have used the definition of the lesser Greens function G<Sd(t − t
′) = −i〈ΨSk(t)Φ

†(t′)〉 and
used the relation

[
G<ab
]∗

= −G<ba. Next we need to evaluate these lesser Greens functions. Using our
results from equations of motion eq.(2.14) we obtain

GdS = GddtSτzG0S (5.9)

now a quick way to obtain Gdd is to consider the equation of motion for GSS ,

GSS = G0S + G0StSτzGdS (5.10)

Inserting the equation for GdS then yields,

GSS = G0S + G0StSτzGddtSτzG0S = G0S + G0STSSG0S (5.11)

where we define the T matrix following convention. Therefore we obtain Gdd as

t2SGdd = τzTSSτz (5.12)

So the dot’s Greens function is fully determined by the superconductors T matrix. Inserting back into
Eq.(5.9)

GdS =
1

tS
τzTSSG0S (5.13)

which we use to get a expression for the current

〈I〉 =
e

h
TrRe [τzTSSG0S ]< =

e

h

∫ ∞
−∞

dωTrRe [τzTSS(ω)G0S(ω)]< (5.14)

where in the last step we fourier transformed. Very importantly this current is expressed without
any reference to the dot. This allows us to solve for TSS using our Kondo Hamiltonian obtained
from Schrieffer-Wolff transformation instead, thereby obtaining an effective model for the center of
the Coulomb diamond.

Writing out our Hamiltonian for this system in the simple form,

H =
1

2

∑
αkk′

Ψkα [(ξαkτz + ∆ατx)δkk′ +Aαα] Ψαk′ +
1

2

∑
kk′

[
Ψ†kSASNΨkN + h.c

]
(5.15)

with
Aαα′ = JSσz +Wτz (5.16)

We start by defining the Greens function for the decoupled N and S space,

GSS =
[
G−1

0S −ASS
]−1 and GNN =

[
G−1

0N −ANN
]−1 (5.17)

then calculating the contribution from coupling the two

GSS,eff = GSS + GSSASNGNS (5.18)
= GSS + GSSASNGNNANSGSS,eff
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which we recognize as a Dyson series thereby yielding

GSS,eff =
[
G−1

0S −ASS,eff
]−1 with ASS,eff = ASS +ASNGNNANS (5.19)

from which we define a new T matrix,

GSS,eff = G0S + G0SASS,effGSS,eff = G0S + G0STSSG0S

⇒ TSS = ASS,effGSS,effG−1
0S (5.20)

which is a nice formula for our purpose. Putting this definition into eq.(5.14) yields

[TSSG0S ]< = [ASS,effGSS,eff ]< = AaSS,effG<SS,eff +A<SS,effG
r
SS,eff (5.21)

where we used Langreth rules [25] obtained by use of contour ordered Greens functions which is
done in Appendix.A. We need to consider each of these objects in detail before moving on. Since they
consist of fractions of Greens functions one cannot simply use Langreth rules, but if we instead return
to the relevant Dyson series we can obtain new Dyson like equations by use of Langreth rules. We
start with,

G<NN = [G0N + G0NANNGNN ]<

= G<0N + Gr0NANNG<NN + G<0NANNG
a
NN

=
1

1− Gr0NANN
G<0N (1 +ANNGaNN ) (5.22)

where we used that the impurity potential Aαα is time independent so Ar = Aa and A< = A> = 0
and it the last step solved the Dyson like equation. With this result we can express one of the key
components

A<SS,eff = [ASS +ASNGNNASN ]< = ASNG<NNASN = ASN
1

1− Gr0NANN
G<0N (1 +ANNGaNN )ANS

(5.23)
this is one piece of the puzzle. Next we consider

G<SS,eff = [G0S + G0SASS,effGSS,eff ]<

= G<0S + Gr0SArSS,effG<SS,eff + Gr0SA<SS,effG
a
SS,eff + G<0SA

a
SS,effGaSS,eff

=
1

1− Gr0SArSS,eff

[
G<0S + Gr0SA<SS,effG

a
SS,eff + G<0SA

a
SS,effGaSS,eff

]
(5.24)

= GrSS,effA<SS,effG
a
SS,eff +

1

1− Gr0SArSS,eff
G<0S

(
1 +AaSS,effGaSS,eff

)
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Putting these pieces together we obtain the matrix needed to find the total current in eq.(5.14),

[ASS,effGSS,eff ]< = ArSS,effG<SS,eff +A<SS,effG
a
SS,eff

= ArSS,eff

[
GrSS,effA<SS,effG

a
SS,eff +

1

1− Gr0SArSS,eff
G<0S

(
1 +AaSS,effGaSS,eff

)]
+A<SS,effG

a
SS,eff

=
(
1 +ArSS,effGrSS,eff

)
A<SS,effG

a
SS,eff +ArSS,eff

1

1− Gr0SArSS,eff
G<0S

(
1 +AaSS,effGaSS,eff

)
(5.25)

= (1 + T rSSGr0S)A<SS,effG
a
SS,eff + T rSSG<0S(1 +AaSS,effGaSS,eff )

= T rSNG<0N (1 +ANNGaNN )ANSGaSS,eff + T rSSG<0S(1 +AaSS,effGaSS,eff )

= T rSNG<0NA
a
NS,effGaSS,eff + T rSSG<0S(1 +AaSS,effGaSS,eff )

where we defined,

T rSN = (1 + T rSS)ASN
1

1− Gr0NANN
and AaNS,eff = ANS +ANNGaNNANS (5.26)

Now with all this in check we are finally ready to do full current calculations. Here we present the
full expression and summarize all terms appearing in it,

〈I〉 =
e

h

∫
dωReTrτz

[
T rSNG<0NA

a
NS,effGaSS,eff + T rSSG<0S(1 +AaSS,effGaSS,eff )

]
(5.27)

where the fundamental quantities are

A
r/a
NS,eff = ANS +ANNGr/aNNANS A

r/a
αα,eff = Aαα +AαβG

r/a
ββ Aβα (5.28)

Gr/a0S = −πνF
(ω ± iη) + ∆τx√
∆2 − (ω ± iη)2

Gr/aSS,eff =
[
(Gr/a0S )−1 −Ar/aSS,eff

]−1
(5.29)

Gr/a0N = ∓iπνF Gr/aNN =
[
(Gr/a0N )−1 +ANN

]−1
(5.30)

T
r/a
SS = A

r/a
SS,eff

1

1− Gr/a0S A
r/a
SS,eff

T
r/a
SN = (1 + T

r/a
SS )ASN

1

1− Gr/a0N ANN
(5.31)

G<0N = 2iπνFnF (ω − eV τz) G<0S = (Gr0S − Ga0S)nF (ω) (5.32)

where we have chosen to apply the bias eV to the metallic side and obtained the metallic Greens
functions by taking ∆ → 0. We raise the Fermi level of the N side as current is defined as change of
electrons on the S side, then positive bias yields positive current.

Lastly in this project we are more focused on conductance than current, so we define the differen-
tial conductance as

σ(V ) =
d〈I〉
dV

=
2πνF e

h

∫
dωImTr

[
τzT

r
SN (ω)

dnF (ω − eV τz)
dV

AaNS,eff (ω)GaSS,eff (ω)

]
(5.33)

For zero temperature the Fermi function yields a delta function and cancels the ω integral. In order to
make this equation independent of νF this factor will be absorbed into A as to form a unitless scale.
Taking from Schrieffer-Wolff we obtain effective parameters

πνFAαα′ = πνFJαα′Sσz + πνFWαα′τz (5.34)
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which we will use as our scales in plotting,

πνFJαα′S = πνF
tαtα′

U
Ĵ = t̂αt̂α′ Ĵ and πνFWαα = πνF

tαtα′

U
Ŵ = t̂αt̂α′Ŵ (5.35)

with Ĵ , Ŵ and t̂α =
√
πνF /Utα being unitless quantities. We will now show and discuss a number of

results obtained by solving eq.(5.33) on Mathematica. We will not go through a full treatment but for
more information and analytical expressions obtained in certain limits one can check out [7]. First we
consider the case of week metallic coupling and no potential scattering Ŵ = 0. This is done in Fig.5.1
where we clearly see conduction peaks precisely situated at the YSR energy. This matches what one
would expect from considering the YSR spectral functions from our analysis of the Greens functions
for the dot-superconductor system. Back then we needed to add an artificial broadening which now
is replaced by broadening provided by the metallic lead.

When we considered spectral functions we found they had varying peak heights, but in Fig.5.1 we
obtain the surprising result that for low couplings all peaks precisely conducts 2e2/h, which hints at
something highly resonant going on and not just lowest order transport which should be proportional
to the spectral function. Also the broadening increases as both Ĵ and t̂N increases as expected since
the metallic lead is then more strongly coupled to the superconductor. We see that for large t̂N we
encounter higher conductance than 2e2/h for multiple peaks but we attribute this to simple overlap of
YSR peaks. Lastly the conductance from out-of gap quasi-particles also increases for higher coupling
to superconductor. For t̂N = 0.75 and Ĵ = 1.75 we see that the coupling have become strong enough
to engulf the whole gap and then we instead see a hill on a constant background. We saw earlier that
the addition of a potential scattering term rendered the symmetric spectral functions asymmetric, so
one would expect asymmetric conductance for low order transport. Therefore we analyze the case of
finite Ŵ while keeping t̂N small.

In Fig.5.2 we see a lot of interesting physics appearing. First the peak height is no longer locked to
e2/h even though there is no overlap between YSR, instead 2e2/h acts as a upper bound. For Ĵ = Ŵ
no sub-gap features appears at all, and it seems that the closer Ĵ is to Ŵ the smaller are the conduction
peaks. Maybe most surprisingly none of the peaks are bias asymmetric, while we know for a fact that
the spectral function is. This hints strongly to the fact that transport is non-equilibrium and requires
higher orders to function.

This result was very surprising as one normally relies on the spectral function for information
about conductance patterns. Further expanding our confusion we found that increasing η from ana-
lytical continuation to a non-infinitesimal value allows bias asymmetric peaks to appear if W̄ 6= 0. For
a critical η one than obtains conductance peaks that apart from a constant factor is similar to the asso-
ciated spectral function. These effects are shown for a single case in Fig.5.3. It should be noted that this
happens generically for all parameters when both Ĵ 6= 0 and Ŵ 6= 0 where the resulting asymmetry
can be either small or large dependent on the underlying spectral function. In order to understand
these effects we expanded Eq.(5.33) in the parameter t̂N and obtained conductance in different order
of t̂N . These calculations revealed that, for all cases, lowest orders in t̂N always in symmetry corres-
ponded to the related spectral function. If calculations are done in the symmetrical regime we found
that higher orders of t̂N will diverge, therefore one needs to sum all orders to obtain anything con-
verging which in effect symmetries the conductance. Correspondingly in the asymmetrical regime
we find that higher-order terms quickly go to zero and that the lowest orders fully describe conduct-
ance. So when η is infinitesimal higher order processes dominates transport. This also informs us that
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Figure 5.1: In these figures we plot conductance calculated using eq.(5.33) with parameters t̂S = 1,
Ŵ = 0 and all in units of ∆. These parameters are chosen such that Ĵ mimics the behavior of α
in Fig.3.3 and as in that case the change of groundstate occurs at Ĵ = 1. The peaks are all situated
precisely at the YSR energy ω0. In the lower panels we increase the metallic coupling tN , thereby
increasing metallic broadening. In all these plot we have analytically continued ω → ω ± iη with
η = 10−7∆ included for technical reasons.

one should be very careful when using perturbative methods, such as low order master equations, to
investigate transport through YSR states.

Instead of going down the long and tedious road of understanding this model in depth we will
shift to the more transparent Resonant-level Model derived in the next section.
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Figure 5.2: In these figures we consider conductance calculated using Eq.(5.33) with parameters t̂S =
1, t̂N = 0.25 and all in units of ∆. As to have correspondence we use the same Ĵ as in Fig.5.1, but the
two sides do not correspond to a groundstate as changing Ŵ increases the crossing point. We increase
the potential scattering Ŵ going downwards and notice that for Ŵ = Ĵ there is no peak. In all these
plots we have analytically continued ω → ω ± iη with η = 10−7∆.

5.2 Resonant-level Model

The model, which we have named the Resonant-level model, is based on the calculations of [24] and
[13]. The basis of the model is using the simplified Hamiltonian eq.(3.36) and since we consider the
metal to only weakly couple to the dots, we disregard terms ANN ≈ 0. For such an model we have
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Figure 5.3: In these figures we plot conductance calculated using Eq.(5.33) with parameters t̂S = 1,
t̂N = 0.25, Ĵ = 1.5 and Ŵ = 0.5 and all in units of ∆. In these plots we drive from a bias symmetrical
regime into aa bias asymmetrical regime by increasing the analytical continuation parameter η from
ω → ω ± iη. The result is surprising as one usually assumes that η only affects broadening.

the Hamiltonian

H = HS +HN +Ht (5.36)

HS ≈ Heff = −ω0γ
†
↑γ↑ + ω0γ

†
↓γ↓ (5.37)

HN =
∑
kσ

ξkc
†
NkσcNkσ (5.38)

Ht =
∑
σ

ANSσ(c†NσcSσ + h.c.) (5.39)

where no k index on cα means momentum summed and ANS obtains a spin index as it is no longer
cast in Nambu space. In order to compute the whole problem in terms of γ operators we rewrite the
tunnel Hamiltonian using the relations cS↑ = (v̂γ↑ + ûγ†↓) and cS↓ = (v̂γ↓ − ûγ†↑),

Ht =ANS↑

[
c†N↑

(
v̂γ↑ + ûγ†↓

)
+ h.c

]
+ANS↓

[
c†N↓

(
ûγ↓ − v̂γ†↑

)
+ h.c

]
(5.40)

This Hamiltonian can then be sorted into the two independent operators γ↑ and γ↓ and one can work
out transport through both states, but we do a short-cut for clarity. Noticing that the Greens-function
for both γ↑ and γ↓ yielded symmetrical spectral contributions and knowing from exact transport that
the conductance is also symmetrical for both subspaces, we choose to only consider one channel and
then multiply by a factor 2 in the end. We choose γ↑ and obtain

Ht = v̂ANS↑c
†
N↑γ↑ + ûANS↓c

†
↓γ
†
↑ + h.c (5.41)

= v̂ANS↑c
†
N↑γ↑ − ûANS↓γ

†
↑hN↓ + h.c (5.42)
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where we define the hole operators c†↓ = h↓. In this form we have no anomalous transport terms and
if apply a bias eV to the metallic side we end up with the Hamiltonian,

H = He +Hγ +Hh +Ht (5.43)

He =
∑
k

(Ek − eV )c†k↑ck↓, Hh = −
∑
k

(Ek − eV )h†k↓hk↓ (5.44)

Hγ = −ωγ†γ, Ht = v̂ANS↑c
†
↑γ − ûANS↓γ

†h↓ + h.c (5.45)

where we have suppressed the indexes N and ↑ on γ.
This is the effective model of two systems h and c coupled together through a resonant level γ.

Such models are well known and offer us a reference point in which we can understand YSR transport.
Here the electron/hole tunnel-couplings to the resonant level are proportional to the electron/hole
spectral weight û and v̂ of the YSR state.
Now in this language it is already clear why all conductance is symmetrical, even for asymmetrical

Figure 5.4: Representation of the symmetrical Andreev process. In (a) one sees the transport process
in the Resonant level model, where a electron jumps onto the site thereby exciting it and the jumps
along as a hole, in total removing to charges from the metal. In (b) one sees a more realistic way
of considering the same process. Two electrons move in and form a cooper-pair mediated by the
YSR-state.

spectral functions, if nothing further is added to the model. The only way to remove electrons from
the metal is to transport them through the resonant level into the hole sector as shown in Fig.5.4. This
process corresponds to the Andreev reflection well know in the literature.

Importantly both for negative and positive bias one needs to transport through both the electron
u and hole v peak, which is clear in the model. This means that both bias conductance peaks ends up
uv proportional and thereby symmetric.

Next we do current calculations and see if we can obtain results agreeing with the discussion. First
as we have joined superconductor-dot into one YSR state its more natural to define current through
the metal. We define it as,

〈I〉 = 2(〈Ih〉 − 〈Ie〉) (5.46)

The sign is chosen as we want to compare this model to the exact calculation from before, so we want a
electron leaving the metal to yield a positive current and the factor 2 is included as we only considered
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γ↑. We define these currents independently

〈Ie〉 =e〈ṅe〉 =
ie

h
〈[Ht,

∑
k

c†k↑ck↓]〉 =
ie

h

∑
k

v̂ANS↑(〈γc†k↑〉 − 〈ck↑γ
†〉) (5.47)

=
ev̂ANS↑

h
(G<γe(0)−G<eγ(0)) (5.48)

〈Ih〉 =−
eûANS↓

h
(G<γh(0)−G<hγ(0)) (5.49)

where we use normal G to make it clear that these Greens functions are not in any Nambu space.
Similar to before consider the Greens functions equation of motion,

Gγe = Gγγ v̂ANS↑G0e ⇒ G<γe(0) =

∫
dω

2π
(Grγγ(ω)v̂ANS↑G

<
0e(ω) +G<γγ(ω)v̂ANS↑G

a
0e(ω)) (5.50)

Gγh = −Gγγ ûANS↓G0h ⇒ G<γh(0) = −
∫
dω

2π
(Grγγ(ω)ûANS↓G

<
0h(ω) +G<γγ(ω)ûANS↓G

a
0h(ω))

(5.51)

where we used Langreth rules and the fact that the interaction is time independent. The normal metal
Greens functions are given by

G
r/a
0e (ω) = ±iπνF , G

r/a
0h (ω) = ±iπνF , G<0e/h(ω) = 2iπνFnF (ω ∓ eV ) (5.52)

where the plus in the lesser Greens function refers to electron and minus too hole components. Putting
it all together yields

〈Ie〉 =
iev̄2A2

NS↑
h

∫
dω
[
G<γγ(ω)− nF (ω − eV )(Grγγ −Gaγγ)

]
(5.53)

〈Ih〉 =
ieū2A2

NS↓
h

∫
dω
[
G<γγ(ω)− nF (ω + eV )(Grγγ −Gaγγ)

]
(5.54)

now the only component we need to solve for is the full YSR Greens function. We know that the
non-interacting YSR Greens functions is given by eq.(3.33), which in the normalized form is,

Ĝ0γ =
u2 + v2

ω − ω0
(5.55)

We then do equation of motion using eq.(2.12),

Gγγ = Ĝ0γ + Ĝ0γ v̄ANS↑Geγ − Ĝ0γ ūANS↓Ghγ

= Ĝ0γ + v̄2A2
NS↑Ĝ0γG0eGγγ + ū2A2

NS↓Ĝ0γG0hGγγ (5.56)

Before going onwards one can already here see that every YSR Greens function is paired up with a ū2

or v̄2 in both Eq.(5.56) and Eq.(5.53) which means that we can remove all hats without consequence as
û2Ĝ0γ = u2G0γ with G0γ = (ω − ω0)−1. So the normalization of u and v fully cancels. From here we
define the effective couplings as

Γe = πνF v
2A2

NS↑ Γh = πνFu
2A2

NS↓ (5.57)
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We use Langreth rules on Eq.(5.56) to obtain Greens functions

Gr/aγγ (ω) =
1

ω − ω0 ∓ i(Γe + Γh)
(5.58)

and using that G<0γ = 0 we obtain for the full lesser Greens function

G<γγ =
[
Ĝ0γ + v̄2A2

NS↑Ĝ0γG0eGγγ + ū2A2
NS↓Ĝ0γG0hGγγ

]<
(5.59)

⇒ (1− v2A2
NS↑G

r
0γG

r
0e − u2A2

NS↓G
r
0γG

r
0e)G

<
γγ = v2A2

NS↑G
r
0γG

<
0eG

a
γγ + u2A2

NS↓G
r
0γG

<
0hG

a
γγ

⇒ G<γγ(ω) = 2i
ΓenF (ω − V ) + ΓhnF (ω + V )

(ω + ω0)2 + (Γe + Γh)2
(5.60)

and lastly before inserting into Eq.(5.53) we need to calculate

Grγγ −Gaγγ = 2iImGrγγ =
2iΓe + 2iΓh

(ω + ω0)2 + (Γe + Γ2
h)

(5.61)

and we obtain the current by inserting

Ie =
eΓe
h

∫
dω

2ΓhnF (ω − V )− 2ΓhnF (ω + V )

(ω − ω0)2 + (Γe + Γh)2
(5.62)

Ih =
eΓh
h

∫
dω

2ΓenF (ω + V )− 2ΓenF (ω − V )

(ω − ω0)2 + (Γe + Γh)2
(5.63)

In the end we obtain

I =2(Ih − Ie) =
8e

h

∫
dω

ΓeΓhnF (ω + V )− ΓeΓhnF (ω − V )

(ω + ω0)2 + (Γe + Γh)2
(5.64)

Finding conduction for T = 0 ew obtain the following expression

σ(V ) =
d〈I〉
dV

=
8e2

h

[
ΓeΓh

(V − ε0)2 + (Γ/2)2
+

ΓeΓh
(V + ε0)2 + (Γ/2)2

]
(5.65)

where we defined the broadening Γ = 2(Γe+Γh). This model precisely matches the form expected for
a resonant level. One can think about transport through the following steps: the magnetic moment of
the dot induces a localized YSR bound state in the superconductor, then a electron can tunnel through
the dot and excite this induced state if the bias is higher than ω0. Now the electron is stuck, as the YSR
state is localized it cannot move away and it does not have enough energy to join the free-moving
quasi particles at the gap ∆, so the state is blocked and no further electrons can be added to the YSR
state. A way around this problem is if another electron joins the first in the superconductor then they
can form a Cooper-pair become mobile and leave the YSR state, opening for repetitions of this process.

We will now compare results from this model with the results obtained from exact calculations.
We will concentrate on the resonances V = ±ω0. In this case the two Lorenztian peaks in Eq.(5.65)
becomes equal in height so one can simply consider one of them

σ(±ω0) =
8e2

h

ΓeΓh
(Γe + Γh)2

(5.66)
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First of all when there is no potential scattering W = 0 it is clear that A2
NS↑ = A2

NS↓ and u2 = v2 as we
are in the particle-hole symmetric point. Then Γe = Γh and we obtain the simple result,

σ(±ω0) =
8e2

h

Γ2
e

(2Γe)2
=

2e2

h
(5.67)

Which precisely matches what we saw from the exact calculations on Fig.5.1 for low t̄N . This also
supports the validity of this model. For t̂N small then ANN ∝ t̂2N is small, which is neglected in the
resonant level model and higher order terms in ANS ∝ t̂N are also small, so the metal’s renormaliza-
tion by the SC is small, allowing us to set HS ≈ Heff , thereby forgetting about most of the SC without
penalty.

Figure 5.5: In (a) we consider peak heights at resonance using Eq.(5.66) with t̂S = 1 and t̂N = 0.25.
Notice that it drops to zero for Ŵ = Ĵ and converges toward 2e2/h away from this point. The empty
circles on top are numerically found peak height from Eq.(5.33). As our model only considers one
peak it fails when the peaks get close to crossing at V = 0. In (b) we compare the Resonant level (Red,
Dashed) model with exact calculation obtained with Eq.(5.33) (Blue, Full). Parameters are t̂S = 1,
Ĵ = 1.5, Ŵ = 0 and t̂N = 0.25. In (c) we again compare, with parameters t̂S = 1, Ĵ = 1.5, Ŵ = 0 and
t̂N = 0.5. Here the coupling to the metal is strong enough for the resonant model to fail.

In Fig.5.5 we investigate how this new resonant level model, eq.(5.65) compares with our results
from exact calculations, Eq.(5.33). We find that for small t̂N and η infinitesimal our model matches well
with the exact calculations if one only considers sub-gap features. As expected out of gap behavior is
lost as we have expanded around the sub-gap peaks.

5.3 Resonant level with Relaxation

In the previous sections we found how the resonant-level model reproduced the alway symmetric
conduction peaks. Next we investigate how adding of a finite analytical continuation η rendered the
exact model asymmetrical. From the previous analysis it is clear that another way of transport must
have been opened, as cooper-pair transport must always be bias symmetric.

Let us consider the bare YSR Greens function but with some non-zero imaginary value iΓr in the
denominator as if it had been analytically continued

Ḡ
r/a
γ0 (ω) =

1

ω + ω0 ∓ iΓr
(5.68)
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How can such a term arise? We saw before that coupling the state to a metallic lead broadened it
by Γe + Γh, so maybe coupling to some different state leaves it broadened? This was considered by
[13] and we follow the same thought. We write up the Dyson series yielding a Greens function like

Figure 5.6: Representation of the new relaxation process. In (a) one sees the transport process in the
Resonant level model, where a electron jumps onto the site thereby exciting it and then jumps along
into something unknown, in the mathematical model this unknown is undetermined. In (b) one sees
our interpretation of what is going on, we expect that the YSR state can relax into the quasi-particle
continuum, which is a process demanding a energy transfer so a third particle is needed.

Ḡ
r/a
0γ (ω),

Ḡ0γ = G0γ +G0γiΓrḠ0γ (5.69)

here one could assume that
iΓr = hγαG0αhαγ (5.70)

where α is some different state we have not included in our model. Since this effect somehow should
be current carrying it should happen internally in the superconductor as not to put charges back in
the metallic lead. Therefor we imagine it independent of bias which we have added to the metallic
lead. So we assume

iΓ<r = 2iΓrnF/B(ω − ωα) (5.71)

which is to say that the α particles are centered at energy ωα from the Fermi surface, where we assume
ωα to be independent of V . Doing the same manipulations as before yields the modified result

G<γγ(ω) =
2iΓenF (ω − eV ) + 2iΓhnF (ω + eV ) + 2iΓrnF (ω − ωα)

(ω + ω0)2 + (Γe + Γh + Γr)2
(5.72)

and
Grγγ(ω)−Gaγγ(ω) =

2i(Γe + Γh + Γr)

(ω + ω0)2 + (Γe + Γh + Γr)2
(5.73)

then calculating the current again yields new contributions corresponding to the new transport pro-
cess

〈I〉 =
4e

h

∫
dω

2ΓeΓhnF (ωh)− 2ΓeΓhnF (ωe) + Γr(Γh − Γe)nF (ωα) + ΓeΓrnF (ωe)− ΓhΓrnF (ωh)

(ω + ω0)2 + (Γe + Γh)2

(5.74)
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from which we obtain the differential conduction

σ =
d〈I〉
dV

=
4e2

h

[
2ΓeΓh + ΓhΓr

(V − ε0)2 + (Γ/2)2
+

2ΓeΓh + ΓeΓr
(V + ε0)2 + (Γ/2)2

]
(5.75)

which opens the possibility for asymmetrical conduction.

Figure 5.7: In these figures we consider conductance calculated using Eq.(5.75) with parameters t̂S =
1, t̂N = 0.25, Ĵ = 1.5 and Ŵ = 0.5 and all in units of ∆. In these plots we drive from an bias
symmetrical regime into an bias asymmetrical regime by increasing Γr where we have set Γr = η. In
the left and right most plot the resonant level model is plotted (Red,Dashed), while the exact model is
(Blue,Full). In the middle one see only the resonant level model.

In Fig.5.7 we show how one can go from the symmetrical regime where 2ΓeΓh > Γe/hΓr to the
asymmetrical regime where 2ΓeΓh < Γe/hΓr. We find an excellent agreement for sub-gap physics and
for small metallic coupling. To compare the two models one should simply set Γr = η.

An important thing to remember is that all usual sub-gap transport is through Cooper-pairs which
is proportional to t4St

4
N as there are no sub-gap states to relax into the continuum. This order is similar

to ΓeΓh ∝ t4St
4
N , while the relaxation current through the YSR state is proportional to Γrt

2
St

2
N . Also all

out-off gap transport is proportional to t2St
2
N as single electrons are transported into the quasi-particle

continuum similar in fashion to metal-metal transport.
This allows us to talk about two regimes for superconductor-dot-metal structures. If Γe/h >> Γr

then we are in the Cooper-pair regime where one would expect to see all conducting sub-gap features
to appear on measurements and always bias-symmetrical. The YSR state should appear symmetrical
with high peak conduction around 2e2/h probably lowered by temperature broadening which does
not affect the symmetry.

If Γe/h << Γr we are in the relaxation regime where all two particle (Cooper-pair) transport is
suppressed compared to the YSR peak. In this regime we expects the YSR to appear as asymmetric
bias-peaks with asymmetry determined by W . Other features inside of the gap, such as charge state
degeneracy lines, are expected to be weak or non-visible as they conduct through Cooper-pairs as their
is no state in the superconducting gap which can relax and thereby open a single electron channel.

If one had control over tN in experiments tuning between these two regimes should be possible, so
long Γr is not huge, since the Cooper-pair term is of higher power in tN than the relaxation term. The
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advantage of doing it this way is that the YSR physics, which is mostly determined by superconduct-
ing self-interactions, is invariant. So one should be able to tune from a bias asymmetrical conductance
picture into a bias symmetrical one without affecting the sub-gap states.

5.4 SDN Patterns

Now returning to consider how these models yields conduction patters for S-D-N system. From our
Schrieffer-Wolff transformation we found that deep inside the charge sector and for t2α/U << 1 and
∆/U << 1 we get the following interactions,

Aαα = Jαα′Sσz +Wαα′τz with Wαα′ = − tαtα
′

U

2δ

1− δ2
, Jαα′ =

tαtα′

U

4

1− δ2
(5.76)

where we defined δ = −1 − 2/Uεd. Before we can calculate we need to determine the spin S. A
single state in odd occupancy has spin-1/2, but also reminding ourselves that we use a classical-spin
approximation for a truly quantum mechanical system we need to correct S a bit. As the full quantum
mechanical system is hard to work on without the use of powerful numerical techniques as NRG, a
full correspondence is beyond our reach, instead we compare to a quantum perturbativ technique
developed with the Yosida anzats [26]. In [6] it was found that perturbatively, with and without
potential scattering W , one obtain the same YSR energie ω0 using a classical-spin and Yosida anzats if
one uses 3JClassical = JY osida.

The Yosida anzats consists of replacing the superconductor’s wavefunction with the wavefunction
of a single quasi-particle and then calculating the exchange singlet and triplet states energies, which
are formed by the quasi-particles interaction with the dot-state. The factor 3 is associated with the
3 states of the triplet. So following this procedure we will set S = 3/2 from here on out in order to
compare with experiments, which are truly quantum mechanical. Using these parameters we plot
expected conductance in Fig.5.8. Notice the difference between the Relaxation regime and Cooper-
pair regime both the discussed bias asymmetry and the dramatic drop in conductance. These features
we will look for in experiments to determine what kind of transport we should consider.
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Figure 5.8: Here we plot conductance as a function of δ and bias using Eq.(5.75). δ corresponds to
occupancy, which follows chemical potential on the dot µ. The three top most diagrams are in the
relaxation dominated regime with t̂N = 0.01 and Γr = 0.15. Conductance lies between 0 and 0.02e2/h.
The bottom three are in the Cooper-pair regime with t̂N = 0.15 and Γr = 10−7. Conductance is always
2e2/h at resonance. All parameters are in units of ∆ and the orange-lines corresponds to ±∆.

In experiments one can capacitively couple a lead to the dot and thereby control the chemical
potential of the dot, which is equivalent to controlling εd. In real systems a quantum dot is often
some kind of harmonic well with high enough level spacing to separate different levels. Then as one
increases µ levels are filled one by one and we will expects YSR signatures in each odd occupancy
sector within the gap. In 5.9 we show data from [23] to make the reader familiar with YSR signatures.

In the figure one clearly sees that every second sector shows stronger recognizable YSR features
similar to Fig.5.8, while every second sector shows weaker eye structures often reaching all the way
to the gap. These correspond to even occupancy, while the stronger corresponds to odd. In the far
right side one even sees indication of a screened groundstate where the eye is opened and a crossing
has occurred. From the low conductance and the visible asymmetry of the YSR state we would expect
this experiment to occur in the relaxation regime in regards to transport.

A problem with asymmetry obtained by the Classical-Spin approximation is that the asymmetry is
feeble compared to experimentally observed asymmetry, where one peak can be many factors larger
then the other. We do not currently know the precise reason but mostly these strong asymmetries are
observed far from center of the coulomb diamonds where our Schrieffer-Wolff transformed models are
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Figure 5.9: Here we show data from [23] obtained by A. Jellingaard et Al. The above diagram is made
with a applied B-field in order to render both leads metallic so one can see clear coulomb diamonds.
In the bottom we see in gap conductance at zero B-field with T = 0.35mk in a SDN system.

bound to fail. This failure also becomes apparent in Section.8 where we analyze data using Classical-
Spin.
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6 Double-dot system

We have arrived at the main focus of this thesis, the treatment of superconductor-dot-dot-metal
(SDDN) systems. Following collaboration with experimentalists at QDEV, mainly K. Groove Rasmussen
and J. Nygaard, we have analyzed data obtained from double quantum-dot nanowire devices. In
Fig.6.1 we present a schematic of the setup to provide the reader with an physical picture, a full de-
scription of the experiments will not be provided but a similar experiment is described in [23]. A great

Figure 6.1: A schematic of the setup used in experiments. (a) A nanowire connects a superconducting
lead (red) with an metalic lead (blue). Under the nanowire several capacitively coupled gates are
placed orthogonal to the wire. (b) Side view of the wire. By controlling the bottom gates one can
tune coulomb potentials in the nanowire. In our setup two potential wells are constructed dS and
dN labeled by the lead they lie next to. The bottom gates also allows control of the tunnel-couplings
between dots and leads.

advantage of this setup is its tuneability. By controlling the capacitively coupled bottom gates one has
control over tunnel couplings and depth of wells which correspond to local chemical potentials of the
dots. The disadvantage is that separation of parameters is not guaranteed, since tuning of a single bot-
tom gat would alter the whole structure of the potential. So when one tries to tune a tunnel coupling
the whole well could "splash" around. Writing up the full Anderson Hamiltonian for such a system

H = Hd +HL +Ht (6.1)

Hd =
∑

α=S,N

[∑
σ

εαnασ + Uαnα↑nα↓

]
+
∑
σσ′

UdnSσnNσ′

HL =
∑
αk

[∑
σ

ξαkc
†
αkσcαkσ + ∆α(c†αk↑c

†
α−k↓ + cα−k↓cαk↑)

]
, (6.2)

Ht =
∑
αkσ

tαc
†
αkσdασ + td

∑
σ

d†SσdNσ + h.c

here nS/N refers to electrons on dS and dN and as before ∆N = 0. The dots are considered to be
coupled to their nearest neighbor so dS is decoupled from lead N and similarly dN is decoupled from
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the superconductor. Apart from having two dots the only change in the Hamiltonian compared to
the single dot Anderson model eq.(4.2) is the addition of a interdot coulomb interaction Ud which
represents electrons on separate dots feeling each others charge. This coupling is assumed to be small
compared to US and UN . With this Hamiltonian we are able to develop models for such system but a
problem occurs in comparing to experiments. In real systems the term Ud capacitively couples the two
dots whereby dot-α feels the charge from the other dot’s gate. This means that change of the bottom
gate of one dot changes the occupancy of both dots.

6.1 Interdot Capacitive Coupling

This section will present a short discussion of the interdot capacitive coupling necessary to understand
double dot systems. We will not go into full detail and we mostly rely on [27] for derivations. For
starters consider the total charge on a single quantum dot connected to a bottom gateQ1 = Cg(V1−Vg)
where Cg is the capacitive coupling to the gate, V1 potential on the dot and Vg potential on the gate.
Only if their is a difference will charge accumulate on the dot.

In expanding to two dots, and labeling as in our experiment, the total charge becomes

QS = CgS(VS − VgS) + Cm(VS − VN ) (6.3)
QN = CgN (VN − VgN ) + Cm(VN − VS) (6.4)

where CgS relates to US , CgN to UN and Cm to Ud as they relate how difficult it is to change charge.
From these equations one can calculate the total electrostatic energy stored in such a system which
corresponds to a Hamiltonian, this is done in [27] and here we merely take the result,

Helec =
US
2

(nS − VgS)2 +
UN
2

(nN − VgN )2 + Ud(nS − VgS)(nN − VgN ) (6.5)

here the different U ’s can be related to the capacitive couplings from above, but in our experiment
they are simply measured. Now for our theoretical Anderson model eq.(6.3) to be relatable to experi-
ment the electrically stored energy on the dot-gate system should correspond to the dot energy from
Anderson Hd = Helec apart from factors not dependent on nα as dynamics are determined by energy
differences between states. Equating these two Hamiltonians yields the linear equations

εα = −Uα
(
Vgα −

1

2

)
− UdVᾱ (6.6)

where α ∈ S,N and ᾱ means the other dot. This equation shows that when one tunes the gate under
a dot occupancy of both dots changes. Mostly we will work in the regime where Ud/Uα << 1 such
that tuning of one dot does not disturb the second much.

6.2 Honeycomb diagrams

In double dot experiments one typically deals in what is known as honeycomb diagrams. These are
normally measured by plotting zero-bias conductance as a function of dot-bottom gates in a 2d plot.
For our point of view variation of dot-bottom gates corresponds to variation of electron occupancy the
on respective dot’s. In Fig.6.2 we see actual data from experiments. The regime these measurements
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Figure 6.2: (a) A picture of how charge sectors appear under variation of nS and nN . The interdot
coulomb coupling Ud separates charge sectors with the difference of a electron on both dots as shown.
(b) The top two plots are experimental data of zero-bias conductance taken from a device. To the left
with the superconducting lead being metallic and to the right it being superconducting. Bottom gates
Vg are marked with asterisks to remind the reader that typically multiple gates are varied at a times.
In the superconducting state two line-cuts are shown corresponding to change of source-drain bias as
a function of bottom-gate along the cut. (c) Scanning electron microscopy of a typical device. In the
experiments only one side of the device is used.

are done in, we denote as the weak-coupling regime or honeycomb regime. Weak coupling in the
sense that couplings to both leads are so small that leads do not disturb dot spectrum and therefore
it makes sense to talk about dot occupancy and charge. Also the interdot tunnel coupling td is very
small such that only Ud interrupts the honeycomb’s charge sectors. We will now discuss the visible
transport.

When both leads are in the metallic state transport is simple. Both leads act as probes and one
can separate transport into three types: 1): Fully sequential, this occurs whenever both dots are in a
degenerate occupancy state where it is energetically free to add an electron to both dots. In Fig.6.2 one
can see 4 light spots of high conductance in the metallic state at these sequential spots. 2): Partially
sequential, this happens when one dot is degenerate so it can freely change occupancy, but electrons
still have to tunnel through the second dot. Here dot-S and dot-N lines of degenerate occupancy can
vary in conductance as one dot is typically easier to tunnel trough then the other. In Fig.6.2 for the
metallic state on can see lines of dot-N degeneracy, which is weaker than the full sequential spots. 3):
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Lastly there is cotunneling which is the full tunneling through both dots happening at all places away
from degeneracy. As tunnel couplings are weak in this regime such transport is highly suppressed.
Now we will move on to the case of one lead being superconducting.

First of all one does not see a huge impact on the honeycomb diagram, which structure is still
visible in the superconducting honeycomb. Remembering that the S-lead is now a hard gapped su-
perconductor this result might seem odd. Conductance in general is also smaller than the metallic
case. Our explanation, following the language developed in the previous sections, is as follows: Since
the systems now consist of two dots with all couplings small, Cooper-pair transport in which two
electrons are transported through the entire system to form a Cooper-pair is highly suppressed com-
pared to single electron transport. But single electron transport is only valid in the relaxation process
where one can excite a YSR bound state which then relaxes into the continuum, which means that
transport depends on the presence of a YSR at the given bias and gate.

These states are formed whenever one of the dots is at an occupancy yielding a magnetic moment,
but as td must be small, to obtain a simple honeycomb, the superconductor does not feel the presence
of dot-N and YSR states only forms from dot-S interactions. Therefore one sees conductance at dot-S
degeneracy lines where the YSR state crosses zero. In the line cuts from Fig.6.2 one clearly sees YSR
states when varying dot-S bottom gates. As the superconductor is only weakly coupled one sees a
large "eye" in accordance with theory for small coupling α ∝ νF t

2
S/US . In the variations of dot-N no

such states can be seen, but a weaker sub-gap needle is observed precisely at degeneracy. This could
either be attributed to a proximity induced type bound state [1], as discussed in the introduction
or simply increased Cooper-pair transport as one dot is degenerate, opening for partial-sequential
Cooper-pair transport.

Generally what one sees in these pictures is that the phase boundaries, which in the metallic case
were formed by sequential tunneling lines, are replaced with YSR crossings. Both of these indicates
a phase-transition of the dot and in conduction measurements act as boundaries between different
groundstates. Later we will see that this continues to be true in the superconducting case even when
couplings tS and td are large.

When bias is larger than the gap situated at ∆ = 0.14 meV one probes the superconducting quasi-
particles instead of the gap and the superconductor behaves as a metallic lead with a weird density of
states.

In this case we were able to give a simple explanation, but only because coupling were weak mak-
ing this system behave effectively as a single dot coupled to a superconductor. When the couplings
are increased we have to leave our simple models behind as the superconductor then feels dot-N also.
Especially in the 11 charge sector care must be taken as more complicated interactions occurs when
YSR screening begins to compete with singlet-triplet formation between dots.

Here our classical-spin calculations based on Schrieffer-Wolff based Kondo models becomes cum-
bersome. First of all, the model only properly describes the physics deep inside of the coulomb dia-
mond and is difficult to extrapolate to all areas of the honeycomb. Secondly, each charge sector would
demand independent Schrieffer-Wolff calculations and as we have to consider two dots high order cal-
culations would be needed. For example to obtain a term wherein the superconductor self-interacts
through dot-N at least a fourth order Schrieffer-Wolff transformation would be needed.

In the next section we will develop a simple model based on a completely different approach. This
model turns out to be directly solvable and allows us to obtain spectrum for the superconductor-dot-
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dot system and when the metallic lead is weakly coupled, acting only like a probe, this is enough to
give a qualitative understanding of transport.
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7 Zero-Band-Width model

In this section we will develop the Zero-Band-Width (ZBW) model, which is a method used to solve
the Superconductor-Dot systems numerically. First and foremost this model is an alternative to full
Numerical Renormalization Group (NRG) calculations which are known for properly describing YSR
physics in such setups [23, 28].

The NRG approach is based on logarithmic discretization of energy to form a Wilson chain. Start-
ing from highest k one will then integrate out one site at a time until a converging result is obtained.
Such an approach yields the correct spectrum in the YSR problem but a number of difficulties remain.
First and foremost the method is numerical cumbersome requiring both skill and computer power.
Secondly an out of equilibrium version of NRG has not yet been developed which makes NRG un-
able to reveal much about transport. NRG provides fine spectral properties, but as discussed in the
transport section sub-gap conduction is not proportional to the YSR spectral function.

ZBW will provide an easy to apply alternative to NRG as it can be solved by direct diagonalization.
The ZBW method corresponds to replacing the whole BCS superconductor with a single quasi-particle
site with energy ∆. This approximation is inspired by Yosida’s variational anzats [26] where to lowest
order the superconductor is in effect also replaced by a single site. The YSR physics are then captured
by the triplet/singlet formation happening between this single site and the dot. The singlet will win
some energy thereby entering the gap and as the spins are opposite pointing this corresponds to a
screened state. The three triplet states are pushed up far away from the gap. Using a reduced Kondo
model the energies of these states were calculated in [10]. But as we seek a model for all charge sectors
we numerically do the same for the full Anderson model. The name Zero-Bandwidth comes from the
fact that by replacing the whole quasi-particle band with a single state one is effectively treating the
band as having no width.

Similar ZBW models have been explored in metallic systems with regards to the Kondo problem
[22]. There the ZBW is a poor approximation as the Kondo problem exist on all scales and the lowest
energy state does not determine the full physical picture. Beginning this investigation we expected the
same to be true for superconducting systems but it turns out that ZBW yields surprisingly good results
almost to the limit of being able to use ZBW to extract parameters. As one can see in Appendix.C ZBW
predicts qualitatively the same results as NRG, which is believed to yield the full solution, in almost
all regimes. Only in regions of large coulomb interaction U and large coupling to superconductor Γ
will ZBW fail.

Our picture for why ZBW provides such a close comparison to NRG is the following. A BCS su-
perconductors spectral function is empty in the gap and then diverges precisely at±∆ and afterwards
it flattens out returning to a metallic like density of states. Therefore lower energy states then ∆ are
irrelevant and Cooper pairs can also be disregarded as they are spin-less and magnetically inactive.
Therefor the first and largest contributions arise from the peaks at ±∆ which is what we capture with
a ZBW model. The ZBW approach was first explored in [6]. Here we will extend his analysis and in
the end apply the model to the double-dot system described earlier.

It should be stated that similar to NRG there does not exist a way to extend ZBW to transport
calculations and we need to return to classical-spin calculations to discuss transport.
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7.1 Single-Dot ZBW

We start with the simple system of a superconductor coupled to a single quantum dot as a testing
ground for our new model. For a single quantum dot we expect the physics to be simple and follow
the same guide-lines as the classical-spin model yielding a fine model to compare to.

Our model Hamiltonian based on the Anderson Hamiltonian eq.(4.2) is,

H = HS +Hd +Ht (7.1)

HS ≈ HZBW = ∆c†↑c
†
↓ + ∆c↓c↑ (7.2)

Hd =
∑
σ

εdnσ + Un↑n↓ (7.3)

Ht = t
∑
σ

c†σdσ + h.c (7.4)

This model consists of two fermion sites with spin degeneracy in each. Therefor the total Hilbert space
is 24 = 16 dimensional which can be diagonalized exactly. We then compare this model to the classical
spin model using Eq.(3.19) with,

α = πνF
3t2

2U

4

1− δ2
and β = πνF

t2

U

−2

1− δ2
(7.5)

where the factor 3/2 is needed to make the classical-spin behave quantum for low t2/U as discussed
in the transport Section.5. The results are plotted in Fig.7.1. One clearly sees the similar behavior for

Figure 7.1: (a) Here we plot the YSR energy at the particle-hole symmetric point εd = −U/2 for the
Classical Spin (Blue) and ZBW (Red) model as a function of tunnel coupling to the superconductor.
Here we have chosen U = 5 and everything in units of ∆. We see ZBW behaves unphysical in crossing
∆. The line indicates t used in (b). (b) A picture of the lowest excitation excluding degeneracies for
the ZBW model for t = 0.5 and U = 5 in units of ∆. Here µ = −εd is the chemical potential. Black
lines are the coulomb diamond and gap.

both ZBW and classical spin. They disagree about when the change of ground state appears and for
large t one clearly see how ZBW fails by crossing ∆. The behavior is similar for other choices of U .
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The failure of ZBW is related to its missing gap. For both classical spin and NRG the YSR state
is unable to cross ∆ as it anti-crosses with the bulk states and so it converges towards ∆ for high
coupling. But as there are no bulk states for ZBW the crossing occurs. In the second plot we see that
ZBW reproduces familiar shapes, here for example we see the "eye" shape where the coupling is not
strong enough to screen the impurity yet. We also see that the degeneracy points for V = 0, which
before stemmed from the coulomb diamond, now occur almost at the same spot but is the tail of a
YSR state. For transport in the relaxation regime one would only see the YSR structure and not the
diamond.

Next in Fig.7.2 we compare the first excitation from ZBW with classical spin YSR. For small coup-
ling t we see that they match quite well but for large t they separate. It should be stated that the two
models behavior is generally the same in the sense that as t increases from 0 an "eye" shape forms,
then closes leading to a "hill" which merges with the gap. They differ in the fact that the ZBW crosses
the gap as shown in Fig.7.2. But following these observation one could state that we are simply com-

Figure 7.2: Here we plot lowest level excitations as a function of chemical potential. In (a) U = 3 and
(b) U = 10 both with t = 0.25 in units of ∆. The dotted lines are the limits to classical spin calculation
set by Schrieffer-Wolff at U ± µ = ∆, only within these lines can classical spin be trusted. In (c) U = 5
and t = 0.8 in units of ∆. In this plot one sees large disagreement between the models. At (d) we
consider ZBW at U = 5 close to the crossing of ∆ for varies t. One clearly see how the full level cross
∆.

paring two approximate models with each other without knowing if both are failing. Therefore we
compare ZBW to full NRG calculations taken from [29] in Appendix.C. There we see that NRG and
ZBW behave very similar except that the ground state change happens faster for NRG. These results
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in addition to results from Double-Dot ZBW lead us to believe that if one disregards the precise value
of t then ZBW is equivalent to full NRG. Therefor using ZBW one can quickly obtain results in a qual-
itative sense for YSR systems. Before going into full double-dot ZBW we will present an extension
which fixes the crossing problem for ZBW.

7.2 Extended ZBW

Following the line of reason for development of the Wilson chain in NRG we believe that ZBW could
be improved by extending the model with more states in the "chain". In a sense we develop the bulk
at ∆ by adding more sites to the superconductor which fixes the ZBW crossing problem for high t.

The problem here is that this expansion is uncontrolled and we have no way to fix the new arising
tunnel couplings between superconducting sites other than comparing to one site ZBW. Therefor in
this section we will only provide a short analysis just to show that if the right approach is chosen there
is hope for improving ZBW and verifying that the missing bulk is indeed what gives the crossing
problem.

The recipe is simple: add sites in the superconductor only keeping the first site coupled to the dot.
Constructing such a model it was quickly realized that two superconducting sites fail, and one have
to go to three sites to obtain a working model.

We do not fully understand why but we believe it is related to singlet-doublet formation between
the sites removing them from ∆. We therefor utilize the following extension

HS =
3∑
i=1

(
∆c†i↑c

†
i↓ + ∆ci↓ci↑

)
+
∑
σ

(
t1c
†
1σc2σ + t2c

†
2σc3σ + h.c

)
(7.6)

Next as before we plot YSR energy in the particle-hole symmetrical point as a function of increasing
superconducting coupling t and compare to ZBW in Fig.7.3.

Figure 7.3: Comparison between single site ZBW and extended ZBW at U = 5 and t1 = t2 = 0.3 in
units of ∆. Notice that the extended version still crosses but now for higher t.

We see how the extended model fixes the crossing. What happens is that the dot hybridizes with
the first site to form the YSR state, while the other two sites still hang at ∆. But when it tries to cross
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later it anti-crosses with the two sites. As two sites are a poor approximation to a full bulk the crossing
still occurs for higher t.

7.3 Double-Dot ZBW

In this section we use the ZBW model to do a full treatment of the superconductor-dot-dot system.
We will use the non-extended version of ZBW in order to have as simple a model as possible. Similar
to the section on double-dot systems we will primarily deal with two kinds of data. honeycomb dia-
grams which are conduction plot of all occupation sectors at zero bias, and line-cuts which represent
conduction as function of occupancy along a line in the full honeycomb and source-drain bias.

As before we obtain our effective model by replacing the superconducting Hamiltonian by a single
site,

H = HS +Hd +Ht (7.7)

Hd =
∑

α=S,N

Uα
2

(∑
σ

nασ − Vα

)2

+ Ud

(∑
σ

nSσ − VS

)(∑
σ

nNσ − VN

)
HS = ∆c†↑c

†
↓ + ∆c↓c↑ (7.8)

Ht =
∑
σ

tSc
†
SkσdSσ + td

∑
σ

d†SσdNσ + h.c

where we started by choosing the form eq.(6.5) for the Anderson Hamiltonian as they in real experi-
ments vary the bottom gates and not the local chemical potential εd = −µ. So variations of Vα terms
should directly correspond to variations of the real bottom gate Vgα. For this model treating all com-
binations of parameters would be a challenge and we will therefor only discuss the subset relevant
to the experimental results. Luckily a number of parameters can be extracted by other measurements
restricting the number of free parameters we have to deal with. As a simple test we will show that our
model can reproduce similar honeycomb and cuts as seen in Fig.6.2. For this device, measurements in
the normal regime enabled height measurements of coulomb diamonds from which the parameters
UN = 3.1meV, US = 2.9meV and Ud = 0.8meV were obtained. The results of this analysis is shown in
Fig.7.4

In these plots we first consider the case of small coupling tS = 0.01meV to the superconductor
in order to map out the bare honeycomb diagram. Here we see that the lowest excitation is a the
gap except near degeneracy points where crossing occurs. In the next diagram we then increase the
coupling to the superconductor to tS = 0.125meV which in effect "softens" all transitions along the VS
lines while the sudden transitions along VN are retained. Such behavior mimics the behavior expected
from the analysis in Section.6 where we considered dot-S influenced by YSR physics while low td kept
the dot-N unaffected.

In effect we obtain a clear correspondence between excitations obtained by the ZBW model and
conductance highlights obtained in the experiment. Generally this is also what we expect when the
metal is weakly coupled thus only acting as a probe not affecting the system.

In the last plot with tS = 0.40meV we see that the honeycomb structure is replaced by two lines,
if one considered conductance. This is the screened honeycomb where the "eye" in the line cut has
crossed and becomes a hill instead. This indicates that the VS = 1 state has been completely screened
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Figure 7.4: The top three plots are Honey-Comb diagrams with tS = 0.01meV, tS = 0.125meV and
tS = 0.4meV all sharing US = 2.9meV, UN = 3.1meV, ∆ = 0.14meV and td = 0.01meV. The color
scale shows distance to nearest excitation with sign chosen to represent ground-state, positive means
Doublet ground state and negative Singlet ground state. Care should be taken in the 11-sector where
singlet refers to approximate singlet/triplet degeneracy. Also contours at Eex = 0 are highlighted.
The red lines indicate the line-cuts shown in the bottom two plots. These show excitations apart from
degeneracy. The blurred sections are out of gap where the model fails to account for bulk states and
should therefore not be trusted.

into a singlet. From this one would not be able to see occupancy changes by varying VS , so if one
looked at data naivly one would believe only dot-N is present. In order to see that there is two dots
one should raise the bias while doing honeycombs until the light regions would resurface.

Optimistic with the results from ZBW we move onto the hard problem of large couplings tS and td.
First let us consider the effects of increasing td, primarily leading to two effects: First the degeneracy
between triplet and singlet in the 11-sector would be broken. Tunneling through nearby charge sec-
tors, for example 〈↑N , ↓S | → 〈↑N↓N , 0| → 〈↑N , ↓S |, leads to an effective exchange interaction for states
of separate spin on each dot. Solving such a model by ignoringUd, doing lowest order Schrieffer-Wolff
and diagonalizing yields exchange energy,

ET = 0, ES ≈ −
4t2d

US + UN
(7.9)
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where ET is the energy modifying the three triplet states and ES the energy modifying the singlet
state. Since the singlet state is spin-less it does not produce YSR physics. So YSR physics first occurs
for the higher energy triplet states which will be screened to doublet.

Secondly for high td the superconductor can tunnel through dot-S, interact with dot-N and tunnel
back to the superconductor, enabling screening of dot-N . This is a fourth order Schrieffer-Wolff term
taking different forms for different configurations. But to lowest order in Schrieffer-Wolff the effective
dimensionless strength of such a term is

αN ∝ πνF
t2St

2
d

U2
SUN

(7.10)

which is similar to the strength of the coupling α to a single dot except there is an additional factor
t2S/U

2
S coming from tunneling through dot-S twice.

This analysis enables us to characterize such systems by three parameters

αS = πνF
t2S
US

, αN = πνF
t2St

2
d

U2
SUN

, ES =
4t2d

US + UN
(7.11)

which explain the physics going on deep within sectors where charge is determined. First the four
corner sectors where no dot is singularly occupied and therefor has no magnetic moments follow
trivial behavior with no YSR physics. The sectors with VS = 1 and VN = 0/2 would contain YSR
physics determined by αS as dot-N is magnetically inactive. Similarly for VN = 1 and VS = 0, 2
with YSR coupling set by αN . Lastly in the 11-sector one would have competition between singlet
formation and triplet screening, where the primary scale for screening would be set by αS as dot-S
is easier to screen. It should be stated that this is only a lowest order analysis and the rest of the
sectors out of these specific points follow complex behavior. Testing of these scales indicate that the
α scales do not provide a consistent picture and keeping one of these invariant does not guarantee
invariance of its respective YSR state as small changes still occur. We do not yet know if this arises as
a failure of ZBW or if its because these scales are only accurate for small couplings as they are built
on the classical-spin approximation. NRG investigations provided by R. Zitko also indicate that these
scales are not fully determining the physics and that the relevant physics change when one changes
parameters, but still keeps the related scale invariant. Even though such scale arguments fail we
still believe the corresponding physical picture to be true in each sector which is supported by ZBW
investigations.

We will now be moving on to discuss our primary focus which is data from a different device
than the one just discussed. This device is similarly constructed as the one previously analyzed but
for this device couplings are stronger. As before some parameters could be extracted by driving the
superconducting lead metallic: UN = 2.5meV, Ud = 0.01meV. But US was not extractable as the
high coupling still present in the normal case blurred coulomb diamond features. Beginning our
analysis we found out that the band crossing flaw of ZBW became more prevalent for large US and
we therefore chose to work in the regime of US = 0.8meV corresponding to U/∆ ≈ 5.5 where such
details are not interfering with the general picture. We also found no evidence of the triplet-singlet
transition occurring in the data so we choose td = 0.27meV from which the triplet-singlet separation
becomes ES = 0.177meV which is above the gap and therefor out of the picture.
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Figure 7.5: Here we see dynamics of the Honey comb diagram under increasing tS . Parameters are
UN = 2.5meV, US = 0.8meV, Ud = 0.1meV, ∆ = 0.14meV and td = 0.27meV. The letters represent
phase: HC = Honey Comb in which all dot states are visible. PS = Partially screened, this regime is
where dot-S is screened but the joined triplet is not. FS = Fully screened, in this regime the triplet in
the 11-sector is screened to a doublet and therefor it only looks like dot-N is present. The Red contour
line is along the transition Eex = 0 while the black is along Eex = ±0.01meV.

Next we will show the evolution of the honeycomb starting from these parameters and for increas-
ing tS . This can be seen in Fig.7.5

What is seen is that for increasing tS dot-S is screened before the 11-sector, which stems from the
lower energy of the singlet state for high td. This opens up a regime which we call partially screened
in the sense that dot-S is screened by itself but not when interacting with dot-N . If one increases tS
further the screened triplet state, which is a doublet since a screened spin 1 becomes spin 1/2, will
eventually obtain lower energy than the singlet state and we then enter the fully screened regime.
Quantifying this analysis we construct a phase diagram for tS and td shown in Fig.7.6. This phase
diagram affirms us in our intuition that increasing td prolongs the existence of the partially screened
regime as the exchange singlet becomes more and more energetically favorable to have as ground
state in the 11-sector compared to screened triplet. The existence of these phases can be tested in a
multitude of ways by controlling the tunnel couplings in the experimental setup. In Fig.7.7 one can
see how experimentally one can tune the fully screened regime into the partially screened regime by
varying the gate controlling td increasing the singlet-triplet separation.
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Figure 7.6: To the left we see two excitations: screened doublet in the 10-sector labeled ED and the
screened triplet in the 11-sector labeled ET as a function of tS with td = 0.27meV. In the region where
ED have crossed zero but ET has not we call the partially screened regime. To the right is a phase
diagram. Here the red line corresponds to ED crossing 0 and the green line ET crossing 0. All plots
are with US = 0.8meV , UN = 2.5meV , Ud = 0.1meV and ∆ = 0.14meV and factors are in units of
meV

As seen for the single-dot ZBW the exact values of parameters should not be trusted, as the ZBW
model does not fully agree with NRG, but we want to verify that the dynamics found by double-
dot ZBW is qualitatively reasonable. Luckily R. Zikto was willing to provide us with honeycomb
diagrams for us to compare too. These are shown in appendix.C. From this comparison it is clear that
ZBW is capable of describing dynamics of such setups and the above results can indeed be trusted.
Finally in order to truly test our understanding we went into detail and did a full comparison of
experimental results from this device in the partial screened regime and with ZBW. In this analysis
we fitted parameters by hand in order to match ZBW line cuts with experimental line cuts. The results
are shown in Fig.7.8

These fits show the surprising strength of a model as simple as ZBW. Even though the theory was
constructed from a hunch stemming from the Yosida’s anzats we have obtained a model capable of. to
a good degree, reproducing experimental results. To avoid bragging it should be stated that this was
done by using three free parameters namely US , tS and td and we cannot guarantee that our solution
is unique. We have from the start limited US and it would not be hard to imagine that the true value
is larger and would be able to produce similar line-cuts. Just to be pedantic one should also consider
that in experiment the different sectors are ill-defined when no clear honeycomb is present and the
line-cuts shown are therefor done using estimates of the gate on the other dot, not fully comparable
to our line cuts which have precise defined gates for the second dot.

But apart from these details ZBW appears to be a powerful easy to use tool which can be used to
obtain a quick quantitative picture. Here in the end we would like to state that the discussed screening
of sectors in a honeycomb have been observed before for a system with two metallic leads and two
quantum-dots [30]. Here there is no YSR physics going on, but instead the screening happens as
Kondo screening of the magnetic moment. The big difference is that instead of crossing, the Kondo
signatures stick at Vsd = 0 thereby forming a "flatland" in conductance instead of disappearing.
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Figure 7.7: In figures a to d we see conduction at zero bias as a function of bottom gates for the two
dots. From a to d the gate corresponding to the td coupling have been increased. In these plots we
see the phase transition from fully screened to partially screened. In figures e to f we see theoretical
plots where the colored areas correspond to excitations with |Eex| < 0.015meV showing the phase
boundaries as to give a clear correspondence to data. td is in units of meV . The rest of the plots are
line-cuts with label shown on their corresponding honeycomb. Here we see the triplet state enter
the gap for low td coupling. In Fig.7.8 we in depth investigate the same parameters as plot d here.
The theoretical plots are done with: UN = 2.5meV, US = 0.8meV, Ud = 0.1meV, ∆ = 0.14meV and
tS = 0.22meV. This plot was made in collaboration with K. Groove
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Figure 7.8: In figure (a) we see conduction at zero bias as a function of bottom gates for the two dots.
In (b) we see a theoretical plot of excitations as a function of gate Vα obtained with ZBW following the
previous convention. Notice that conduction occurs at boundaries between ground states. Next there
are six line-cuts for both experimental and theoretical Honey-Combs, their label indicates a line on the
corresponding honeycomb. In the experimental cuts they measure conduction as a function of source-
drain bias, while for theory it is simply excitations with irrelevant out-of gap excitations colored Blue.
The theoretical plots are done with: UN = 2.5meV, US = 0.8meV, Ud = 0.1meV, ∆ = 0.14meV,
tS = 0.22meV and td = 0.27meV. This plot was made in collaboration with K. Groove
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8 Classical-Spin for SDDN

With the use of ZBW we were able to completely map out the phases and visualize excitations for
the SDDN system. But this is not all, as it is not proper to completely map an excitation plot to a
conduction plot, we would like to complete the picture by doing transport calculations through such
systems.

The problem is that we do not yet know how to expand ZBW into a non-equilibrium framework or
in any way obtain transport equations. One could then return to NRG which, with a slight expansion,
is able to compute spectral functions. In the literature it is quite common practice to simply calculate
spectral functions and compare them to conduction data [2, 23, 28].

Figure 8.1: On the top left we see the line-cut corresponding to nN = 2 and on top right line-cut nN =
0. As the bottom gate varies one correspondingly varies nS and we see a screened YSR state moving
into the gap as nS approaches 1. On the bottom two plots we see max-conductance of YSR peaks
plotted as a function of bottom gate for dot-S. Lines in the middle represent particle-symmetrical
points obtained by finding the point were YSR states are furthest into the gap. These plots where
made in collaboration with K. Grove

Yet we saw, by doing classical-spin calculations, that one cannot simply compare spectral func-
tion to conduction. Importantly if there is no relaxation Γr then sub-gap transport will always turn
out bias-symmetric for classical-spin calculations. Also simple problems like spin-dependent tunnel-
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coupling, which is always the case in our calculations, will change conduction patterns away from
spectral patterns.

Therefor in this section we will try to do transport calculations on the SDDQ system by use of
classical-spin models. The problem here is that such models are derived deep inside a given charge
sector and not for the whole Honey-comb. So we choose to focus on two specific sectors namely
nS = 1 with nN = 0 or nN = 2. The reason for this choice is simplicity as we keep dot-N magnetically
inactive so we can focus on dot-S for contributions to YSR physics.

In Fig.8.1 we see a plot of line-cuts describing these two sectors when varying nS . We notice
the peak asymmetry when moving away from the particle-hole symmetrical point, described in the
classical-spin picture as δ = 0, where one peak is growing and one is falling. This asymmetry, in
correspondence with conductance much lower than 2e2/h, strongly hints that we are in the relaxa-
tion dominated regime, as described in the transport Section.5, where non-resonant single-electron
processes dominate conduction. We will later from an estimate of parameters show this is indeed
the case. But an additional asymmetry shows up, namely that even for δ = 0 conduction is not bias
symmetric which would always be the case for single-dot transport. This could be a error in the ex-
perimental setup where positive or negative bias enhances conduction. But when considering nN = 0
compared to nN = 2 we see that the bias asymmetry changes sign enhancing the bottom YSR peak for
nN = 0 and top for nN = 2. This systematic form indicates that it is not such an error.

Therefor we will now derive effective Kondo models for these two regions using Schrieffer-Wolff
transformations. We will go up to third order as cotunneling through two dots is at least a third order
process. So second order will be self-interaction mediated through the closest dot while third order
will be tunneling connecting metal with superconductor.

Also we will be looking for terms breaking particle-hole symmetry at δ = 0. Remembering that in
the analysis for the single-dot we found that to all orders of ∆/U this symmetry was protected it must
stem from something new in the double-dot system.

8.1 Second order perturbation - Self-interactions

Here we will calculate the second order contribution to the leads, which is effectively the leads self-
interaction through their closest quantum dot. First of all we ignore the metallic leads contribution
as we consider only weak coupling. We therefor go straight to the superconductors self-interaction
through dot-S.

For tunnel operators and energies we use the full double-dot Anderson Hamiltonian shown in
eq.(6.3). We start with the case of nN = 0 for which the system is completely similar to the single-
dot system as dot-N is always inactive and Ud never contributes. Therefor taking the results from
single-dot calculation to lowest order in ∆/US from eq.(4.21)

H
(0)
SS = J

(0)
SS

∑
kk′σσ′

c†SkσS · σσσ′cNk′σ′ +W
(0)
SS

∑
kk′σ

c†SkσcNk′σ′ (8.1)

with

J
(0)
SS =

t2S
US

4

1− δ2
W

(0)
SS =

t2S
US

−2δ

1− δ2
(8.2)

here the index (0) indicates that it is for nN = 0. The next order that contributes to this interaction
would be of the fourth order and can be disregarded compared to second order. This explains why
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the YSR result in this sector is so similar in nature to single-dot results as the YSR Hamiltonian is
identical.

Next we consider the same for nN = 2. Here dot-N is actually active throughUd since adding/subtracting
an electron on dot-S would change the energy by ±2Ud in addition to the contribution from dot-S it-
self. This only affects the energy denominators from the single-dot calculation in the following way

E
(2)
2 = E2 + 2Ud E

(2)
0 = E0 − 2Ud (8.3)

here E2 and E0 refers to the energies of the intermediate state with 0 or 2 electrons on dot-S from the
single-dot calculation. Now in Schrieffer-Wolff calculations, when disregarding the gap (∆ ≈ 0), these
terms are always subtracted from the initial state E1−E2 = −εS −US and E1−E0 = εS . Considering
these relations together it is clear that if one shifts ε(2)

S = εS + 2Ud then the calculation are equivalent
and one can reuse the previous result only with the following replacement,

δ(2) = δ − 4Ud
US

(8.4)

so in this constellation the particle hole symmetrical point is situated at δ(2) = 0. In the following
deviations and comparisons we will not differentiate between δ(0) and δ(2) since the only difference
experimentally is that the particle-hole symmetrical bias value is shifted between the two.

8.2 Third order perturbation - Effective coupling

In the double-dot systems one needs to consider third order Schrieffer-Wolff to account for transport
in the region of fixed occupancy. Like before we choose to work in the 1 electron on dot-S, 0 electrons
on dot-N configuration. Also when working with the superconductor in Bogouliubov basis the whole
m block is diagonal and we only need to consider terms going trough two l states in eq.(B.14). We
develop a model by following the same recipe as in Section.4, starting by finding all possible paths
from superconductor to metal as shown in Fig.8.2. Using the notation 〈λ, S,N |where λ is a supercon-

Figure 8.2: An visualization of the paths from S to N in third order Schrieffer-Wolff transformations.
Paths for third order are as follows, where one should read from the right: 1) ACB. 2) CAB. 3) CBA.

ducting eigenstate state while S and N refers to dots. The possible paths are,

1) 〈λ, σ, 0| → 〈λ, 0, σ| → 〈λ+ e, 0, 0| → 〈λ+ e∓ qp, σ′, 0| (8.5)
2) 〈λ, σ, 0| → 〈λ, 0, σ| → 〈λ∓ qp, σ′, σ| → 〈λ+ e∓ qp, σ′, 0| (8.6)
3) 〈λ, σ, 0| → 〈λ∓ qp, ↑↓, 0| → 〈λ∓ qp, σ′, σ̄′| → 〈λ+ e∓ qp, σ′, 0| (8.7)
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similar to what we did for second order where we use the notation qp for quasi-particle on super-
conductor and e for electron on metal and λ is the initial state. We use the approximation that all
quasi-particles are taken from the gap (Epq ≈ ∆) and electrons are taken from the Fermi surface of the
metal (Ee ≈ 0).

Additionally for clarity we will start by disregarding the gap (∆ ≈ 0) as all dot energies are of
the order U >> ∆. Hence the energy denominators from ∓qp becomes identical and we in effect can
calculate as if the superconductor was a metal, which we will do in the following calculations.

Using the Schrieffer-Wolff recipe we start by considering operator order

1) HAHCHB ⇒ C(1)tStdtN
∑
σσ′

d†Sσ′cSσ′c†NσdNσd
†
NσdSσ = −C(1)tStdtN

∑
σσ′

c†Nσd
†
Sσ′dSσcSσ′ (8.8)

2) HCHAHB ⇒ C(2)tStdtN
∑
σσ′

c†NσdNσd
†
Sσ′cSσ′d†NσdSσ = −C(2)tStdtN

∑
σσ′

c†Nσd
†
Sσ′dSσcSσ′ (8.9)

3) HCHBHA ⇒ C(3)tStdtN
∑
σσ′

c†NσdNσd
†
NσdSσd

†
Sσ′cSσ′ = −C(3)tStdtN

∑
σσ′

c†Nσ(d†Sσ′dSσ − δσσ′)cSσ′

(8.10)

where we used d†NσdNσ = 0 as we consider the dot-N to be fixed in gate, so only term the identity
from commutators appears. Here C is the respective energy denominator for a given path. These
denominators are found using third order Schrieffer-Wolff transformation as seen in Appendix.B,

C =
1

2

(
1

(Em − El)(Em − El′)
+

1

(Em′ − El)(Em′ − El′)

)
(8.11)

C(1) =
1

(εS − εN )(εS)
(8.12)

C(2) =
1

(εS − εN )(−εN − Ud)
(8.13)

C(3) =
1

(−US − εS)(−εN − Ud)
(8.14)

where Ud is the interdot coulomb coupling. Now from the operator order it is clear that path 1) and
2) can be treated on the same basis therefor we begin by looking at their joined denominator, where
we expand in Ud to first order,

C(1) + C(2) =
1

(εS − εN )εS
− 1

(εS − εN )εN
+

Ud
(εS − εN )ε2N

= − 1

εN εS
+

Ud
(εS − εN )ε2N

(8.15)

C(3) =
1

(εS + US)εN
− Ud

(εS + US)ε2N
(8.16)

Just like before we shift to spin basis using eq.(4.16) and obtain,

HSN = JSN
∑
kk′σσ′

c†SkσS · σσσ′cNk′σ′ +WSN

∑
kk′σ

c†SkσcNk′σ′ (8.17)
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where we obtain different terms for JSN and WSN as the operator ordering changes the sign of C(3).
Lastly we shift to εS = −US/2(1 + δ) and εN = UN/2 specifying our charge sector. Inserting and
manipulating yields,

J
(0)
SN = −tStdtN (C(1) + C(2) + C(3)) =

2tStdtN
USUN

[
−4

1− δ2
+

4Ud
UN

(
1

1 + δ + UN
US

+
1

1− δ

)]
(8.18)

W
(0)
SN = − tStdtN

2
(C(1) + C(2) − C(3)) =

2tStdtN
USUN

[
2δ

1− δ2
+

2Ud
UN

(
1

1 + δ + UN
US

− 1

1− δ

)]
(8.19)

from which its is clear that the last terms break particle-hole symmetry, asWSN takes a non-zero value
at δ = 0.

In order for these new terms to be able to explain data, similar terms should exist for dot-N doubly
occupied. Therefor we will go through the same motions as before starting with defining the three
paths which can be seen in Fig.8.3,

Figure 8.3: A visualization of the paths from S to N in third order Schrieffer-Wolff transformations.
The paths for third order are as follows: 1) BCA. 2) ABC. 3) BAC.

1) 〈λ, σ, ↑↓| → 〈λ∓ qp, ↑↓, ↑↓| → 〈λ+ e∓ qp, ↑↓, σ′| → 〈λ+ e∓ qp, σ̄′, ↑↓| (8.20)
2) 〈λ, σ, ↑↓| → 〈λ+ e, σ, σ̄| → 〈λ+ e, 0, ↓↑| → 〈λ+ e∓ qp, σ′, ↑↓| (8.21)
3) 〈λ, σ, ↑↓| → 〈λ+ e, σ, σ′| → 〈λ+ e∓ qp, ↑↓, σ′| → 〈λ+ e∓ qp, σ̄′, ↑↓| (8.22)

(8.23)

We obtain the operator order,

1) HBHCHA ⇒ D(1)tStdtN
∑
σσ′

d†Nσ′dSσ′c†Nσ′dNσ′d†SσcSσ = D(1)tStdtN
∑
σσ′

c†Nσ′(d
†
SσdSσ′ − δσσ′)cSσ

(8.24)

2) HAHBHC ⇒ D(2)tStdtN
∑
σσ′

d†SσcSσd
†
Nσ′dSσ′c†Nσ′dNσ′ = D(2)tStdtN

∑
σσ′

c†Nσ′d
†
SσdSσ′cSσ (8.25)

1) HBHAHC ⇒ D(3)tStdtN
∑
σσ′

d†Nσ′dSσ′d†SσcSσc
†
Nσ′dNσ′ = D(3)tStdtN

∑
σσ′

c†Nσ′(d
†
SσdSσ′ − δσσ′)cSσ

(8.26)

here we used d†NσdNσ = 1 as this dot is always occupied. These expressions are very similar to the
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case of nN = 0, but the energy denominators take a slightly altered form

D(1) =
1

(−εS − US − 2Ud)(εN + UN − εS − US)
(8.27)

D(2) =
1

(εN + UN + Ud)(εS + 2Ud)
(8.28)

D(3) =
1

(εN + UN + Ud)(εN + UN − εS − US)
(8.29)

Remembering from our evaluation of the second order terms for nN = 2 that we shifted εS by 2Ud,
we here shift both εS and εN with 2Ud and their respective U . So by doing the following shift ε̂α =
εα + Uα + 2Ud we obtain

D(1) =
1

(−ε̂S)(ε̂N − ε̂S)
(8.30)

D(2) =
1

(ε̂N − Ud)(ε̂S − US)
(8.31)

D(3) =
1

(ε̂N − Ud)(ε̂N − ε̂S)
(8.32)

These expressions compare to the empty dot-N denominators and as in that case, we simply expand
in Ud and substitute ε̂S = −US/2(−1 + δ) where the sign is from the US shift earlier and ε̂N = −UN/2
to obtain,

J
(2)
SN = tStdtN (D(1) +D(2) +D(3)) =

2tStdtN
USUN

[
4

1− δ2
− 4Ud
UN

(
1

1 + δ
+

1

1− δ + UN
US

)]
(8.33)

W
(2)
SN =

tStdtN
2

(−D(1) + C(2) −D(3)) =
2tStdtN
USUN

[
−2δ

1− δ2
− 2Ud
UN

(
1

1 + δ
− 1

1− δ + UN
US

)]
(8.34)

So with these equation we find an important difference between nN = 0 and nN = 2 namely the Ud
dependent term. This term specifically breaks particle-hole symmetry at δ = 0. An easy way to see
this is to consider WSN for δ = 0 yielding

W
(0)
SN (δ = 0) =

4tStdtNUd
USU2

N

(
1

1 + UN
US

− 1

)
= −4tStdtNUd

USUN

1

UN + US
(8.35)

W
(2)
SN (δ = 0) = −4tStdtNUd

USU2
N

(
1− 1

1 + UN
US

)
= −4tStdtNUd

USUN

1

UN + US
(8.36)

Now from these calculations it seems like W (δ = 0) is identical for nN = 0 and nN = 2, but as the
transport only depends on A2

σSN = (J ±W )2 the important sign is the one separating W and J . So
since J (0)(δ = 0) = −J (2)(δ = 0) the symmetry is actually broken in the opposite direction for nN = 0
and nN = 2.

64



8.3 Transport 8 CLASSICAL-SPIN FOR SDDN

8.3 Transport

With effective Kondo models for these occupancies we now can do full conductance calculations using
our classical-spin model. For starters we will try to extract parameters. As a lot of quantities are
unknown or only poorly estimated this is a crude estimation and we will therefor not be too concerned
in simplifying. We start by disregarding the particle-hole symmetry breaking term by setting Ud = 0.
Then the double-dot model becomes completely similar to the single-dot model with the adjustment
tN1 = 2tdtN/UN where 1 refers to single-dot.

Then taking our conductance formula eq.(5.75) from the Resonant-Level calculation and consider-
ing it for T 6= 0 as in the experiment we get,

σ(V ) =
4e2

h

∫
dω

[
2ΓeΓh + ΓeΓr

(ω + ω0)2 + (Γ/2)2

dnF (ω − V )

dV
+

2ΓeΓh + ΓhΓr
(ω + ω0)2 + (Γ/2)2

dnF (ω + V )

dV

]
(8.37)

with the definitions Γe = πνF v
2A2
↑NS and Γh = πνFu

2A2
↓NS . For δ = 0, Γe = Γh as u = v and

A↑NS = A↓NS . In this case the two Lorentzians are completely similar and we therefor choose to work
with only the positive,

σ+(V ) =
4e2

h

∫
dω

ΓhΓ/2

(ω + ω0)2 + (Γ/2)2

dnF (ω + V )

dV
(8.38)

=
4e2

h

∫
dω

ΓhΓ/2

(ω + ω0)2 + (Γ/2)2

1

4T
sech

(
1

2
T (ω − V )

)2

(8.39)

where we used the definition Γ = 2Γe + 2Γh + 2Γr. This expression is the envelope of a Lorentzian
with a Sech2 distribution divided by T . The exact result of such an envelope is a so called tri-gamma
function as seen in [31]. For our range of parameters we find that this envelope can be approximated
to a Lorentzian where one simply adds temperature to the width yielding,

σ+(V ) =
4e2

h

ΓhΓT /2

(V − ω0)2 + (ΓT /2)2
(8.40)

σ+(ω0) =
8e2

h

Γh
ΓT

(8.41)

with ΓT = Γ + 2T being the measured Lorentzian width. Next we are ready to do some ballpark
estimates. First as seen on Fig.8.1 the peak conductance at δ = 0 can be estimated to be σ+(±ω0) ≈
(0.08 ∼ 0.13)e2/h and K. Groove fitted the peak to a Lorentzian using different methods and obtained
a estimate of the width ΓT ≈ (30 ∼ 50) µeV. Using these two results we estimate,

Γh = σ+(ω0)
hΓT
8e2

(8.42)

Γh = Γe ≈ (0.3 ∼ 0.8)µeV (8.43)

By measuring another sample in the coulomb regime the temperature is estimated to be T = 80mK ≈
8µeV from which we can find Γr from the total width

ΓT
2

= Γr + T + 2Γh (8.44)

Γr ≈ (6 ∼ 16)µeV (8.45)
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So we found that Γe/h is a factor ten smaller than Γr, supporting our idea that we indeed are in the
relaxation regime dominated by single electron transport. It is also clear from data that we have bias
asymmetrical conductance supporting this claim. We do not yet know what this relaxation rate stems
from and we will later present a short discussion on the topic.

Next writing out Γe by use of Eq.(8.18) for Ud = 0 and Eq.(3.29) we obtain

Γe(δ = 0) = πνF v
2A2
↑NS = 8π2ν2

F∆
α

(1 + α2)2

t2St
2
dt

2
N

U2
SU

2
N

(4S)2 (8.46)

Then similar to earlier when we used classical-spin approximation we do the substitution S = 3/2.
We then fit the YSR energy using Eq.(3.19) to obtain tS = 0.25meV as seen on Fig.8.4 which is also
the fit we used to find the particle-hole symmetrical points shown in Fig.8.1. From these plots we
determined that for nN = 0 the interval δ ∈ [−1, 1] corresponds to V ∈ [2.555V, 2.615V ], while for
nN = 2 it corresponds to V ∈ [2.5645V, 2.6245V ]

Figure 8.4: In these two plots we fit the YSR energy found using Eq.(3.19) to the conductance peaks
along the line-cuts also shown in Fig.8.1. The classical-model model is varied along δ ∈ [−1, 1] from
left to right in both plots thereby corresponding occupancy with bottom-gate bias. This definition of
the δ interval is the one used from now on.

The rest of the parameters are taken from ZBW (See Fig.7.8) therefor we can estimate the effective
metallic coupling to be tN = (0.09 ∼ 0.11)meV where we have set νF = 1 as it lives similarly on all

tunnel couplings. From this we find πνF
t2N
UN

<< 1 supporting that the metals contributions to the
physics are negligible. Next we will try to use our model to discuss behavior out of the particle-hole
symmetrical point and compare it to the line-cuts made through honey-comb diagrams. First of all
it should be stated that such a comparison is not completely kosher as variations of δ correspond to
variations of occupancy nS . The problem is that experimental line-cuts corresponds to variations of
bottom gates which change occupancy of both dots at the same time due to the inter-dot coupling Ud
as discussed in section.6. But for Ud << US , UN the inter-dot interaction is weak and line-cuts almost
correspond to occupancy variations.

Here we will utilize our full model for the nN = 0 and nN = 2 sector with self-interaction ASS
given by the second order interaction and coupling ANS given by the third order interaction without
neglecting Ud. Plots are shown in Fig.8.5 where one can see that particle-hole symmetry is broken
precisely at δ = 0. This effect comes from the Ud term in ANS and symmetry is restored for Ud = 0.
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8.3 Transport 8 CLASSICAL-SPIN FOR SDDN

Figure 8.5: In the top two plots we plot conductance as a function of bias and δ corresponding to
occupancy. Left is for nN = 2 and right nN = 0. Also to illustrate the difference, the left has been made
using Resonant level Eq.(5.75) with temperature added to broadening through Γr → Γr + T such that
Γ = 43µ eV and the right the exact conductance model Eq.(5.33) with analytical continuation Γ = 2η =
43µeV. Below we see plots of peak conductance precisely at the resonance V = ±ω0 obtained using
Eq.(5.75). Parameters are US = 0.8meV, UN = 2.5meV, Ud = 0.1meV, td = 0.27meV, tS = 0.25meV and
tN = 0.1meV.

Comparing this plot with Fig.8.1 we see that this corresponds to the enhancing effect seen in experi-
ment.

In general when comparing the classical-spin transport calculations with the experimental results
a few features stand out. First the bias asymmetry seen in experiment is captured by our classical
spin model and explained through the relaxation process, but the amount of asymmetry seen in the
experimental data is not mimicked by our model which underestimates it. Actually the underlying
Green functions GSS in the classical-spin calculation are more asymmetrical compared to conduct-
ance result. But the competition of magnetic J and potential W interaction in the effective coupling
between metal and superconductor ANS decreases the asymmetry. If only J or W is present in ANS
thenA2

↑NS = A2
↓NS = t2 which would render Γe = v2t2 and Γh = u2t2 such that one directly probes the

spectral function as u2 corresponds to the spectral functions positive peak height and v2 its negative
increasing asymmetry.

But as transport really occurs through the dots it would be wrong to neglect such effects and
furthermore the symmetry breaking at δ = 0 is only found because we include such terms and does
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not exist in any shape or form in the spectral function. One would have to consider self-interactions to
fourth order in Schrieffer-Wolff transformations to obtain Ud dependent terms in the spectral function.
We believe that the failure of our model, in the sense of direct correspondence with data, is more
related to the following approximations:

First in approximating the spin to be classical we have lost the coupling between spin dependent
tunneling JNS and YSR state. Utilizing a full quantum mechanical treatment one would capture how
JNS dependent terms change the dot-spins, thereby affecting the YSR state. Also the classical-spin
approximation is only found to be valid in the low coupling limit with α << 1 which is before the
singlet-doublet phase transition occurs, where we here extrapolate it far out of this regime.

Secondly the classical-spin model already exist within a approximation namely the Schrieffer-
Wolff transformation which is only valid for low ∆/U and deep within the coulomb diamonds where
occupancy is fixed. Much of the observed asymmetry occurs at the wings of the YSR state close to the
degeneracy points where such a model breaks down and if one could calculate transport through an
Anderson like model this weakness could be overcome.

This being said we still find that the classical-spin models are able to explain observed features
such as asymmetry in bias and breaking of symmetry at the particle-hole symmetrical point. Also it
haa allowed us to separate the concept of resonant cooper-pair transport from relaxation transport.
Later we will present some ideas on how to test these concepts and a discussion of what drives the
relaxation process.
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9 Discussion and Outlook

Here we will present some prospects on the research done in this thesis and a discussion of relevant
issues. Two prospects are found interesting enough to have their subsections, while the rest will be
discussed here. We start by considering the ZBW model. From the work done in this thesis we be-
lieve it is clear that a ZBW approximation yields a full qualitative picture of YSR physics in quantum
dot systems if one can avoid crossings of ∆. Unfortunately, these become more and more apparent
for large U . The missing link for ZBW is to make the expansion controllable in the sense of find-
ing a larger theory that can be controllably approximated to ZBW. With such an expansion by hand,
it would be easier to obtain limits of the model without going through tedious testing of arbitrary
parameters. To this author, the most sensible way to obtain such an expansion seems to be by gener-
alizing Yosida’s anzats [26], consisting of replacing the full superconductor with a few quasi-particles,
to the full Anderson model and obtain parameters self-consistently. Such a derivation is probably
not simple but would help significantly in quantifying ZBW. Secondly by determining the paramet-
ers self-consistently one would obtain relations for ZBW tunnel couplings which seems to be none
comparable to NRG tunnel couplings as they need different values to produce similar physics.

For transport we find separation of transport into two regimes, Cooper-pair transport and relax-
ation transport, to be promising in regards to future work. First, the concept itself could be tested
in a system with a controllable metallic coupling and small Γr. By increasing tN one would increase
the symmetrical contribution, ΓeΓh ∝ t4N , faster then the asymmetrical contribution, Γe/hΓr ∝ t2N ,
which in the end would dominate, thereby yielding symmetrical conduction trough sub-gap features.
Here Γr needs to be small, else the broadening of sub-gap features when increasing tN would render
sub-gab features none visible .The reason for tuning tN being that the rest of YSR features, primarily
induced by superconducting self-interactions, would be unmodified. Such an experiment have to our
knowledge not been conducted in a quantum-dot setup. Secondly, we have only been able to find
these two transport regimes in a classical-spin calculations, which leaves one to wonder if it this pic-
ture also works for a model using a quantum-mechanical spin. The mains differences being that the
quantum-model would contain multiple states of spin and couple all spin interactions. In [7] they
considered lowest order treatment of quantum spin-spin correlations and obtained symmetrical con-
ductance for η = 0 and finite potential scattering, supporting the transport picture. But a treatment,
focusing specifically on this separation of transport, in a quantum framework should be conducted in
future work.

9.1 Relaxation

In the transport Section.5 we, out of the blue, introduced a relaxation parameter Γr only motivated
by the fact that it could stem from a coupling to Hilbert-space, not considered in the calculations, and
yielded bias asymmetric conductance. Also in extracting parameters for the specific device, discussed
earlier, we found Γr = (6 ∼ 16)µeV which constitutes approximately half of the total width of the sub-
gap states, estimated to be Γ = (30 ∼ 50)µeV at the particle-hole symmetrical point. This estimate
shows that Γr is not a small parameter in the experiment and have a significant impact on the physics.
Next we list up possible contribution to relaxations or similar effects,

• Soft-Gapped Superconductor.
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9.2 Zeeman Splitting 9 DISCUSSION AND OUTLOOK

• Relaxation induced by phonon coupling.

• Relaxation induced by coupling to classical field.

The first explanation that came to our minds, was that the superconductor we are working with have
a soft-gap, in the sense that coupling to some not regarded field have broadened the normally almost
divergent superconducting peaks. This means that quasi-particle excitations are present within the
gap opening for metallic like transport, as considered in a similar system in [32]. Such processes are
traditionally described by as a quasi-particle lifetime τ , determining how often Cooper-pairs break
up and reform [33]. But measurements done on different samples, with the same superconductor,
showed hard gaps. Also, knowing that the superconductor we are working with is Aluminum, which
have a high quasi-particle lifetime [33] and therefore a hard gap, we find no reason to believe that our
superconductor should have a soft-gap.

Another mechanism could be that the relaxation stem from coupling to a phonon field, this was
explored in [13] and in [34] where they considered coupling to a local phonon, induced by impurity
sites as this was in a STM setup. The problem in calculating such contributions, is that the effects
of regular phonons are already somewhat included in the BCS superconductor through the effective
attractive field. Higher order terms is precisely what yields the quasi-particle lifetimes in [33], and we
just before assumed this effect to be negligible.

Lastly, the conduction measurement are done by tuning a DC current to the bias one is probing,
and then applying a small AC on top of that, in order to measure gradients from which the differential
conduction is extracted. But application of a rapidly changing field could drive transitions between
states in the system, if the time evolution is so rapid that it breaks the adiabatic theorem [35]. Thereby
driving transitions in the superconductor, allowing the YSR state to relax into the quasi-particle bulk.
The effects of applying such a field have yet to be investigated in this context.

Concluding this discussion we should state a very eluding property about this relaxation: Namely
that the width of the sub-gap state seems to be independent of how far inside the gap the state is. This
is weird as about half the width is from relaxation and the three proposed mechanisms should quite
strongly depend on the distance to the gap. Because, it would then demand less energy to move the
YSR state up to the bulk. The author do not currently have a explanation for this.

9.2 Zeeman Splitting

An interesting prospect of subdividing transport into the relaxation and Cooper-pair regime is a pos-
sible explanation of disappearing Zeeman splitted states seen at occupancy-phase transitions [23].
Our explanation follows these lines: In the regime where dominant transport is through relaxation
Γe/hΓr >> ΓeΓh transport is mediated through the relaxation of a bound quasi-particle internally in
the superconductor. This means that transitions between states on the dot, not involving a YSR excit-
ation, must happen through formations of Cooper-pairs, since in that case no quasi-particle can relax.
Transport is then of order ΓeΓh ∝ t4N t

4
S , which for small tN as generally assumed, is small. A specific

example of this is the transition between two Zeeman split states, arising from a finite magnetic field.
which occurs when one have doublet ground state. A schematic of this concept is shown in Fig.9.1.
This explanation allows us to do a prediction. In the case of transport being dominated by relaxation
we would assume that the Zeeman split lines will be none visible and YSR features to be asymmetric.
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9.2 Zeeman Splitting 9 DISCUSSION AND OUTLOOK

Figure 9.1: (a) Here we show a representation of how Zeeman split doublet lines disappear in con-
ductance measurements. Singlet groundstate is marked by S and doublet with D. (b) Here we show
how the spectra look deep inside the singlet state and deep inside the doublet. Transitions are labeled
with our expected dominant transition strength. In the relaxation regime the |D↓〉 to |D↑〉 transition
would be weak.

But if transport is Cooper-pair dominated then we would expect the Zeeman split states to be visible
and YSR features to be symmetric with high conductance.
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10 CONCLUSION

10 Conclusion

We have in this thesis explained and used the basic formalism of Greens functions in Nambu space to
solve the system of a classical local moment coupled to a BCS superconductor. From this we obtained
bound sub-gap states, known as YSR states. We showed that by the addition of a potential scattering
term these states obtain an effectively bias asymmetric spectral function. Lastly we expand around
the resonance and obtain a simple Hamiltonian consisting only of two Bogoliubovs, describing the
sub-gap part of the YSR physics.

Next we considered an experimental platform for realizations of YSR sub-gap states, namely the
SDN system. Here we, by use of Schrieffer-Wolff transformations, showed that deep within the odd
occupancy sector one obtains an effective spin-1/2 impurity model, which for all orders in ∆/U shows
particle-hole symmetry represented by zero potential scattering W = 0. We then continued into
transport calculations. Based on the Keldysh technique we consider applying a bias over the metal-
superconductor structure, driving current through the quantum dot probing its states. Here we find
that this system unmodified always yields bias symmetrical peaks of height 2e2/h, which we show
stems from highly resonant transport. Including a relaxation rate into a simplified transport calcula-
tion yielded conductance showing the bias asymmetry expected from the YSR spectral function. This
we classified into two regimes namely relaxation and Cooper-pair driven transport.

We then explained the basic concepts of SDDN systems and the different transport regimes ex-
pected in such setups. We found that in the regime of weak-coupling honeycomb diagrams and
transport could be explained using the language from single-dot superconductor systems. We find
that in conductions measurements the boundaries between different ground states are formed by YSR
transitions, instead of coulombs diamonds as in the metallic case.

We then developed a ZBW model, in order to explain the behavior of SDDN systems for large
couplings. We show that both single-dot and double-dot ZBW models matches, to a qualitative de-
gree, NRG results, giving us confidence in this new approach. We then do an analysis of a specific
device, where we classify a new regime which we call partially screened, formed in the competition
between exchange singlet and YSR screening. Using ZBW we are able to fit data and dynamics to
large extent and thereby extract parameters.

Lastly, to bring coherence to this story, we use our Schrieffer-Wolff based classical-spin approach
on two line-cuts from the SDDN honeycomb. We specifically consider the regimes where the dot
closest to the metal is kept magnetically inactive, thereby obtaining an almost single-dot model. Al-
most, in the sense that we find a new term proportional to the interdot coulomb interaction, which
breaks particle-hole symmetry at δ = 0. Using this model we extract a number of parameters and
classify the observed transport to be relaxation transport.
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Appendices

A Contour Ordered Greens functions

It turns out that deriving relations between the different types of greens functions can be tedious,
but by defining the contour ordered greens function this task will turn out to be much simpler. This
section is based on the derivations done in [25]. We start by defining a new Greens function,

GC(t, t′) = −i〈TC(c(t)c†(t′)〉 (A.1)

where all other indices are hidden in the matrix structure. We only write time fully out. TC is here
the contour ordering operator which sorts operators based on order on the contour. The contour is
defined as the integral from −∞+ iη to +∞+ iη then to +∞− iη and ending in −∞− iη where η is
taken to be infinitesimal. Such a contour is shown at Fig.A.1

Figure A.1: A drawing of the contour C which one integrates along. One can decompose C = C1 +C2

where C1 is the upper plane and C2 the lower. The shapes represents time dependent operators which
occurs somewhere along the contour. At the bottom one sees the definition of contour ordering TC
where it sorts the shapes dependent on their placement on the contour.

The trick is that one can by choosing on which contour a given t exist obtain a specific kind of
Greens function. For example if both t and t′ exist on the upper contour then the contour ordering
operator TC would sort them based on the value of t and t′ with the lowest (earliest) coming first. This
is per definition the time-ordered Greens function. But if t existed on the upper contour and t′ on the
lower then ordering would always put t first, thereby one obtains the lesser Greens function. These
relations can be expressed as,

GC(t, t′) =


Gt(t.t′) if t ∈ C1, t

′ ∈ C1

G<(t.t′) if t ∈ C1, t
′ ∈ C2

G>(t.t′) if t ∈ C2, t
′ ∈ C1

G t̄(t.t′) if t ∈ C2, t
′ ∈ C2

(A.2)

So it is clear that starting from contour ordered Greens functions the usual ones are easy to find.
Now in order for Contour ordered Greens function to be useful we need a perturbation scheme

that is similar to that of usual Greens function. Normally one introduces Contour ordering to solve
problems of time-dependent Hamiltonians, so for the sake of generality we introduce it in the same
manner even though this thesis does not contain time dependency.
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Consider the following Hamiltonian,

H = h+Ht(t) (A.3)

where h = h0 + hi where h0 is diagonal and hi contains interactions. Writing time evolution for a
operator A in the Interaction picture,

AH(t) = v†(t, t0)Ah(t)v(t, t0) with v(t, t′) = Tte
−i

∫ t
t0
dt′Hth(t′) (A.4)

where the h index on both A and Ht(t
′) refers to the interaction picture trivial evolution Ah(t) =

eih(t−t0)Ae−ih(t−t0). The trick of contour ordering is to notice that u(t, t0) evolves one from t0 to t and
u†(t, t0) evolves one back again. Setting t0 = −∞ and t = ∞ and shifting t, t0 by +iη, as to force
v(t, t0) to follow the upper contour and v†(t, t0) the lower, then precisely yields the contour path on
Fig.A.1 so,

v†(t∗, t∗0)v(t, t0) = TCe
−i

∫
C dτHth(τ) = TCS

Hth
C (A.5)

where we use τ for time following the contour. An important byproduct of this is that all places where
before one used normal time ordering can easily be replaced by contour ordering as,

Ah(t) = u†(t∗, t∗0)Ah0u(t, t0) = TCe
−i

∫
C dτhAh0 (A.6)

with u(t, t0) being the normal time-evolution operator for an interacting Hamiltonian. With this dis-
cussion in place we are ready to consider the contour ordered Greens function,

GC(t, t′) = −i〈TC(c(t)c†(t′)〉 = −i〈TCSHth
C [ch(t)c†h(t′)]〉 (A.7)

following [25] we notice that before we are in a form where we can use Wick’s theorem [19], we must
separate h0 from hi so all time evolution is given by h0, which is non-trivial as hi resides in SHth

C in a
complicated manner. Here we just state the result,

GC(t, t′) = −i〈TCS
Hth0
C ShiC [ch0(t)c†h0(t′)]〉 (A.8)

and since all time evolution in this form is governed by the quadratic h0 one can apply Wicks theorem
and make Dyson equations as usual, with the only difference being that the integrals arising from SC
terms are now contour integrals instead of regular time integrals.

This means that for every normal Dyson equation, obtained from Greens functions with normal
timer ordering, their exist a corresponding contour version. This basically allows us to freely use
relation for contour ordered Greens function for any Dyson series containing normal time ordered
Greens functions. Now a typical beast one need to evaluate in transport theory is the lesser Greens
function composed of two other Greens functions. We start by considering,

G = G1G2 (A.9)

where 1 and 2 are for different Greens functions, we consider the correspondent contour equation

GC = GC1 GC2 (A.10)

G<(t, t′) =

∫
C
dτGC1 (t, τ)GC2 (τ, t′) (A.11)
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where we in the last equation obtained the lesser by choosing t to be on the upper contour and t′ on
the lower. Here τ goes through the whole contour. Next, we divide the contour into two pieces∫

C
dτGC1 (t, τ)GC2 (τ, t′) =

∫
C1

dτGt1(t, τ)G<2 (τ, t′) +

∫
C2

dτG>1 (t, τ)G t̄2(τ, t′) (A.12)

where C1 is the positive part of the contour and C2 the negative as shown of Fig.A.1. Next as the
contours are just line integrals now we can evaluate them,

=

∫ ∞
−∞

dτGt1(t, τ)G<2 (τ, t′) +

∫ −∞
∞

dτG>1 (t, τ)G t̄2(τ, t′) (A.13)

now since Gt = G> + GR and G t̄ = G< − GA we can rewrite the above equation as

=

∫ ∞
−∞

dτ(GR1 (t, τ)G<2 (τ, t′) + G<1 (t, τ)GA2 (τ, t)) (A.14)

so in matrix form this equation becomes

G< = GR1 G<2 + G<1 GA2 (A.15)

which a relation we are gonna use in section.5 alot. We also need the related equation for three Greens
functions which easily follows from the above equation,

G< = [G1G2G3]<

= [G1G2]R G<3 + [G1G2]< GA3
= GR1 GR2 G<3 + GR1 G<2 GA3 + G<1 GA2 GA3 (A.16)

This equation concludes our delve into contour ordered Greens functions as we now have the relations
we need to derive transport.
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B Schrieffer-Wolff Transformation

In order to examine our system in different charge configurations one can reduce the complicated
Anderson-model to effective Kondo-models whenever one is far removed from charge degeneracies.
This is done by use of quasi-degenerate-perturbation theory also known as the Schrieffer-Wolff trans-
formation. The following derivations are based on [36]. We start off with a general Hamiltonian, H ,
and postulate that their exist a unitary transformation such that,

eSHe−S = Ĥ (B.1)

where Ĥ is block diagonal in two blocks which we label m and l. We then expand the left-hand side

eSHe−S = lim
A→1

eASHe−AS = lim
A→1

(
H + [S,H]A+

1

2
[S, [S,H]]A2 +

1

6
[S, [S, [S,H]]]A3 · · ·

)
=
∑
j

1

j!
[S,H](j) (B.2)

where the second equal sign is from taylor expansion in A and [A,B](j) is a short hand form of the
previous equation, example [A,B](2) = [A, [A,B]]. Now we separate H

H = HD +HB +HN (B.3)

where HD is a diagonal matrix HB is block diagonal in the m, l blocks and HN is the non-block-
diagonal components connecting the m block to the l block. Since S rotates a block-diagonal matrix
into a non-block-diagonal S can be chosen to be a non-block-diagonal matrix. In the beginning we
chose Ĥ to be block diagonal. This allows us to separate the off-diagonal components, and put them
to zero, from the diagonal components which must yield Ĥ . From this we rewrite eq.B.2 into,

Ĥ =
∑
j

1

(2j)!

[
S,HD +HB

](2j)
+
∑
j

1

(2j + 1)!

[
S,HN

](2j+1)
(B.4)

0 =
∑
j

1

(2j)!

[
HN

](2j)
+
∑
j

1

(2j + 1)!

[
S,HD +HB

](2j+1)
(B.5)

next as this is a perturbation theory we would like to consider it in powers of expansion. Assuming
interactions are small HD is considered to be order 0 and HB and HN are of order 1. S can be written
S = S(1) + S(2) + S(3) + S(4) · · · where S(n) is of order n, now collecting all terms up to third order
from the above equation yields,

Ĥ = HD +HB + [S(1)) + S(2), HN ] +
1

2
[S(1), [S(1), HD +HB]]

+
1

2
[S(2), [S(1), HD]] +

1

2
[S(1), [S(2), HD]] (B.6)

0 = HN + [S(1) + S(2), HD +HB] + [S(3), HD] +
1

2
[S(1), [S(1), HN ]] +

1

6
[S(1), [S(1), [S(1), HD]]] (B.7)
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in the last equation we sort terms in order and set each order equal to zero independently to obtain
equations for S1

HN = −[S(1), HD] ⇒ 〈m|HN |l〉 = (Em − El) 〈m|S(1) |l〉 (B.8)

⇒ 〈m|S(1) |l〉 = 〈m| HN

Em − El
|l〉 ⇒ S(1) =

HN

EL − ER
(B.9)

here Em is the energy diagonal component of the m state and in the last step we promote S(1) to an
operator by defining the operator EL(R) to be the energy of the state to the immediate Left(Right). In
this manner we can construct Schrieffer-Wolff scheme in a operator formalism instead of the usual
state formalism. Setting the second order term to zero yields an equation for S(2)

[S(1), HB] = −[S(2), HD] ⇒ S(2) =
S(1)HB −HBS(1)

EL − ER
(B.10)

Next we sort Ĥ from eq.B.6 in powers as well,

Ĥ = Ĥ(0) + Ĥ(1) + Ĥ(2) + Ĥ(3) (B.11)

Ĥ(0) = HD

Ĥ(1) = HB

Ĥ(2) = [S(1), HN ] +
1

2
[S(1), [S(1), HD]] =

1

2
[S(1), HN ]

Ĥ(3) = [S(2), HN ] +
1

2
[S(1), [S(1), HB]] +

1

2
[S(2), [S(1), HD]] +

1

2
[S(1), [S(2), HD]] =

1

2
[S(2), HN ] (B.12)

now evaluating the two last terms yields

Ĥ(2) =
1

2

HN

EL − ER
HN +

1

2
HN HN

ER − EL
(B.13)

Ĥ(3) =
1

2

(
HN

EL−ER
HB

EL − ER
−
HB

HN

EL−ER

EL − ER

)
HN +

1

2
HN

(
HB HN

EL−ER

EL − ER
−

HN

EL−ER
HB

EL − ER

)
which is the full expansion up to third order, in order to show that the operator form is equivalent
to the expression in [36] one inserts complete basis between each operator and consider only terms
connecting m with m′,

Ĥ
(2)
mm′ =

1

2

∑
l

HN
mlH

N
lm′

(
1

Em − El
+

1

Em′ − El

)
(B.14)

Ĥ
(3)
mm′ =

1

2

∑
ll′

HN
mlH

B
ll′H

N
l′m′

(
1

(Em − El′)(Em − El)
+

1

(Em′ − El′)(Em′ − El)

)
(B.15)

− 1

2

∑
lm′′

HB
mm′′HN

m′′lH
N
lm′

(
1

(Em − El)(Em′′ − El)

)
− 1

2

∑
lm′′

HN
mlH

N
lm′′HB

m′′m′

(
1

(Em′ − El)(Em′′ − El)

)

77



B SCHRIEFFER-WOLFF TRANSFORMATION

Which is the expected form. Using the operator form allows one to obtain the relevant perturbation
as expressed in operators without having to consider the intermediate states in other places then the
energy denominators, which will prove a significant advantage with superconductors where particle
conservation is broken and the possible number of intermediate states thereby increases. Schrieffer-
Wolff perturbation is applicable when the coupling are small and/or the energy separation between
the m and l states is large as the n order term is of order n− 1 in energy differences between states in
the denominator.
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C COMPARISON BETWEEN ZBW AND NRG

C Comparison between ZBW and NRG

Here we do a comparison between the ZBW model and full NRG. First for the single-dot system and
then for double-dots. For the single-dot comparison we use plots from [29] where he plots single-
dot NRG results for a number of parameters. In order to do a comparison we use [29] definition of
Γ which is Γ = 2πνF t

2 in units of ∆. What is clearly seen is the great agreement between the two
models, almost to the degree that one could use ZBW to extract parameters. But one should be careful
as the comparison worsens for large Γ and U . For very large values of Γ ZBW will begin to cross the
gap as discussed in the main text, something never happening for NRG, so here the comparison is
broken. In general when ZBW begins to fail it does not do so in a dramatic way (apart from the gap
crossing) it simply becomes slower then NRG, meaning that one needs a larger Γ to obtain the same
cuts. So if one only needs a qualitative analysis ZBW will do the job.

Next we do the comparison for the double dot model. In this case we are not interested in com-
paring parameters as it have already been established for single dot, that the models disagree about
exact value. Instead we want to be sure that the dynamics found by ZBW is also found by NRG. For
this purpose R. Zitko have provided us with a number of NRG plots for different values of Γ. He
uses the definition Γ = πνF t

2 which is different from the previous. In comparing with R. Zitko we
use his definition of Γ. The double dot plots are done using the same convention as used in the main
text ZBW sections, both for NRG and ZBW. The parameters used are UN = 2.5meV, US = 0.8meV,
Ud = 0.1meV, ∆ = 0.14meV and td = 0.22meV.

The structure of the plots are: ZBW plots at the top and NRG at the bottom for increasing Γ going
to the right. We clearly see a good agreement between the models, when using ΓZBW = 1/2ΓNRG.
We are not sure if the factor 2 is merely coincidental or a disagreement in some definition along the
derivations. But from our comparison for the single-dot it would be surprising if one could compare,
using precisely the same Γ in both NRG and ZBW.
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