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Abstract

The purpose of the project was to produce and investigate the breaking due to high laser
power of tapered nanofibers, with a diameter of 500 nm, placed in vacuum. Furthermore to
look for characteristics of the fiber breaking, i.e. to investigate if it is possible to tell in advance,
on the optical path length change that the fiber is going to break. An experimental setup was
build for this purpose using an interferometric method. Several experimental problems were
solved and resulted in an improved and more stable setup.

During the experiment the purpose was extended to also investigate the thermal properties
of the nanofibers, i.e. the heating and cooling of the nanofibers and their thermodynamics.

The heating and cooling of the fibers is investigated experimentally and analytical expressions
for the rate of optical path length change as a function of the optical path length change is found.

The results also showed indications that the radiation from the fibers obeys Plancks law of
radiation.

It was found that it was not possible to predict at what power a fiber would break, since
the power needed to break a fiber seemed to be individual for each fiber. It was found, how-
ever, that careful treatment and cleaning of the fiber and keeping it free from contaminations
before inserting in the vacuum chamber was essential for producing a good tapered fiber.
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Chapter 1

Introduction

My master thesis was done at QUANTOP in 2014-2015. The thesis is written with the
future students in mind who are going to work with the experiment. I have tried to pass on
the knowledge that was gained in the laboratory and therefore also explained how the tapered
nanofibers are prepared, how the setup was build, how to use the fiberburning setup, and espe-
cially my experiences with the working setup. I have also included an overview of the literature
and theory that I have studied on during the project time. I therefore hope that the thesis will
be used and can give inspiration to new exciting experiments.

Investigating the thermal properties of tapered nanofibers is relevant for several applications of
nanofibers among them atom trap experiments.

A nanofiber with a diameter d smaller than the wavelength λ of the light guided in the nanofiber
is an efficient quantum interface as it can couple atoms and light strongly. As d < λ, a signif-
icant part of the light propagates outside of the fiber and this intense evanescent field of light
surrounding the nanofiber can be used for atom trapping along the fiber [1].

The purpose of the interface is to create entangled states of the atoms and use it for quantum
information experiments, e.g. working towards creating quantum memories and optical fiber
quantum networks [2].

A solid understanding of the thermal behaviour of nanofibers is important if the nanofibers
are going to be used in quantum information experiments, as understanding how the fiber
heats and cools together with the heating and cooling time constants, (and the concerns of the
nanofiber melting or breaking) are important fiber properties that needs to be investigated.

In this experiment tapered 500 nm diameter nanofibers are produced by a heat and pull pro-
cedure and transferred to vacuum. The nanofiber is placed in one arm of a Mach-Zehnder
interferometer using a laser of 852 nm wavelength and heated with another laser of 789.6 nm
wavelength. The interference fringes are counted as the fiber is heated and cooled and by look-
ing at the change in optical path length of the light through the fiber it is possible to examine
when the fiber is heated and when it is cooled.

The heating and cooling transients are investigated to describe how the fiber heats and cools
and to see if it is possible to describe the thermodynamics governing the heating and cooling.

The fibers are heated till they break, the breaking power is measured and it is examined if
the fibers show any characteristic signatures around the point of breaking.
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Chapter 2

Theory

In this section I will explain the relevant theory I have studied about optical fibers and
tapered nanofibers. I will start with optical fibers and then introduce the tapered nanofibers.
Then I will discuss the thermal properties of tapered nanofibers inspired by the theory and
experiment investigated in [3]. Finally I will discuss an important application of tapered
nanofibers as an atomic trap.

2.1 Optical fibers

An optical fiber is a fiber used to guide light. An optical fiber is usually made of glass
(silica) but it can also be made of plastic. The optical fiber consists of a core, a cladding and
a protective coating called buffer, see figure 2.1.

Figure 2.1: The figure shows an optical fiber with core, cladding and buffer. From [4].

Optical fibers are used for communication; to send signals over long distances at a high
bandwidth (data rate). The optical fibers are flexible as they can be bended and be bundled
into cables. Compared to copper wires, used for communication with electrical signals, fibers
are more efficient, as there is less loss in the transmitted signal, there is no electromagnetic
interference (electrical disturbances), and the data bandwidth is larger. Besides fiber optic
communication, optical fibers are used for fiberscopes, fiber optic sensors, fiber amplifiers and
fiber lasers.

The index of refraction, which determines the speed of the guided light in the fiber, is typ-
ical 1.44-1.5 for glass fibers. The core has a little higher index of refraction than the cladding
because then the light in the fiber can be guided by total internal reflection (as explained below).
The core of the silica glass fiber is often doped with GeO2 or Al2O3 to increase its refractive in-
dex. The difference in refractive index between the core and the cladding is usually less than 1%.
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The power of the light propagating in an optical fiber decays exponentially with distance.
This loss of power, or attenuation, is given in dB/m. E.g. a single mode fiber, has a loss of 0.2
dB/km for a wavelength of 1550 nm (this wavelength is used for telecommunication) [5].

There is loss in fibers because of scattering and absorption. The guided light can scatter
on defects or irregularities in the fiber. These irregularities can e.g. be rough surfaces and
different crystalline sections in the fiber. Glass is amorphous silica so there exist no long range
crystalline order but each SiO4 tetrahedras exhibits a local (short range) order. The scattering
is an energy loss because it couples energy from the guided modes into the radiation modes.
There can also be Rayleigh scattering in the fiber, which is scattering on particles which are
small compared to the lights wavelength. The scattering intensity I depends on wavelength as
I ∝ 1

λ4
, so increasing the wavelength can reduce the Rayleigh scattering loss.

Absorption of the guided light, can occur if the atoms or molecules in the fiber can absorb
the wavelength of the guided light. That is, if the frequency of the light matches either the
electronically allowed transitions, or the vibration frequency of the atoms or molecules e.g. the
vibrational mode of the Si-O chemical bonds in silica glass fibers. The absorbed light can be
converted to heat in the fiber. Often the impurities or the dopants, added to change the fibers
refractive index, absorbs most of the light.

Silica fibers have a high transmission of optical wavelengths. At wavelengths of 1550 nm
(near infrared), silica has, as mentioned earlier, a very low loss of around 0.2 dB, because of
the ultra pure silica has a low concentration of absorption molecules [6]. The low loss in silica
fibers is what makes silica an attractive material for optical fibers.

Optical glass fibers typical have diameters in the range 100-125 µm (without the coating).
The diameter of the total fiber (with the coating) is around 250-500 µm, whereas the diameter
of the core is around 8-62.5 µm [7]. Optical plastic fibers have much larger dimensions; here
the core diameter is often 0.5 mm or higher.

We distinguish between single mode and multimode optical fibers. The single mode fibers
guide only one mode of light whereas the multimode fibers can guide several modes. In a single
mode fiber most of the light will be in the core mode but some light in other modes might also
propagate through the fiber, although this will only be a small procent of all the light. Light
in the core mode can couple to cladding modes or radiative modes, which will then decrease
the amount of transmitted light through the fiber. The modes that can pass through the fiber
are the modes that share the symmetries of the guided mode e.g. they spatially look like the
guided mode. The effective size of the core, the mode field diameter, is small for single mode
fibers, around 8-10 µm and larger for multimode fibers usually 50 or 62.5 µm [4].

2.1.1 Description of the fiber

I use an optical fiber (Fibercore SM750) which is (125±1) µm in diameter. The mode field
diameter, which is a measure of the size of the field, is 4.6 µm. The fiber is tapered1 to a
diameter of 400-500 nm. The nanofiber section, the fiber waist, is known from a simulation to
be approximately 1-2 mm long while the tapered fiber part (the length the fiber is pulled) is
around 35-37 mm. The nanofiber region is the interesting part because here a significant part
of the light propagates outside the fiber as the fiber has a diameter smaller than the wavelength

1A tapered fiber is an optical fiber which over some length is stretched out to a very small diameter
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of light. This is the evanescent field and it is here that atoms can be trapped as explained in
section 2.4.

Before the fiber is tapered the coating is removed by stripping the fiber. The fiber is then
tapered by a heat and pull method where the fiber is pulled at both ends while it is heated by
an oven. The silica melts and the fiber is elongated so its diameter gradually decreases. The
nanofiber is then transferred to vacuum to be heated, as will be explained later.

The optical fiber we consider here is a single mode step index fiber, with the refractive index
of the core nco=1.4536 and refractive index of the cladding ncl=1.4468.

The complex refractive index consists of a real and an imaginary part n = nreal + i · nimag.
The real part, the refractive index, determines the phase shift of the light and is around 1.45
and the imaginary part (the extinction coefficient) determines the absorption of the light and
is around 10−7 for a wavelength λ = 789.6 nm in Silica, as inferred from figure 2.2. So for our
purposes the optical fiber is not absorbing the light (the light is actually absorbed by eventual
particles on the fiber) and it is transparent at λ = 789.6 nm. It is also the transparency of
Silica in the infrared range of wavelengths which makes it attractive for transmitting optical
signals.

Figure 2.2: Index of refraction and extinction coefficient for fused silica as a function of wavelength.
From [3].

2.1.2 Total internal reflection

The optical fiber can confine and guide light by the principle of total internal reflection
(TIR). TIR can be explained by considering the light fields in the ray optics representation
where the light beam is described by a ray with a height and an angle with respect to the
propagation axis.

At the interface between two different optical dense materials light is refracted according to
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Snells law:
n1 · sin(θ1) = n2 · sin(θ2) (2.1)

where n1 is the refractive index of the first material, n2 is the refractive index of the second
material, θ1 is the angle of incidence of the incoming light and θ2 is the angle of the refracted
light, see figure 2.3.

Figure 2.3: TIR at an interface. Light incident on the interface with θ < θc is refracted. Light
with θ > θc is reflected back.

We consider n1 = nco and n2 = ncl. For nco > ncl it is possible that the light from the core
incident on the core-cladding interface is reflected back into the core instead of being refracted
into the cladding. This is called total internal reflection. If θ2 = 90°, the maximum value of
θ2, the light is neither reflected nor refracted, so the light moves along the interface. From
equation (2.1) with θ2 = 90° we have θ1 = sin−1(n2

n1
), which we define as the critical angle θc.

To achieve TIR the angle of incidence θ must be greater than the critical angle θc. For θ < θc
the light will split; some light will be reflected and some will be refracted through the interface.
The closer θ is to θc the more light will be reflected and for θ > θc all light will be reflected back
into the core. As sin−1(x) is defined for −1 < x < 1 we see that to achieve TIR we must have
n1 > n2, i.e. we will only have TIR in a high index material surrounded by a low index material.

TIR can be used to confine light in the core. This is the principle of transport of signals
in optical fibers where TIR is used to guide light in the fiber. Only light with incident angle
θ > θc is guided in the fiber, as seen in figure 2.3.

We can lose light from a fiber if it leaks from the core to the cladding. E.g. if the fiber is
bent, the light incident on the interface of core and cladding may have an angle of incidence
less than the critial angle in the bend. So the light that gets into the fiber (with θ > θc)
may have θ < θc inside the fiber, because the fiber bends. The power losses due to bending
are exponentially decaying with attenuation coefficient α, where α depends on the radius of
curvature of the bend. After a propagation length l the power of the light in the fiber will thus
be reduced by a factor of e−αl.

2.1.3 Evanescent wave

In total internal reflection a small part of the light will escape the core and propagate to the
cladding. This is the evanescent field. The evanescent wave is exponentially attenuated, so it
decays exponentially with distance from the core. The evanescent field appears because Snells
law for θi > θc has no real solutions but only imaginary solutions that allow transmission of
some light.

We consider a plane wave EI = Eie
i(~ki·~r−ωt) incident on the core-claddding interface, where

part of it will be reflected and a little transmitted see figure 2.4.
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Figure 2.4: The incident field ki is partly reflected kr and transmitted kt.

The transmitted field is, ET = Ete
i(~kt·~r−ωt), where ~r = (x, y, z). Using Snells law we find

~kt · ~r = kt · sin(θt) · y + kt · cos(θt) · z = kt · y ·
n1

n2

· sin(θi) + kt · z ·
√

1− (n1

n2
)2 · sin2(θi).

The square root is imaginary for θi > θc = sin−1(n2

n1
) i.e. for total internal reflection. We have

ET = Ete
−iωteiαye−βz where α = kt ·

n1

n2

· sin(θi) and β = kt ·
√

(n1

n2
)2 · sin2(θi)− 1.

The transmitted field is thus a plane wave with an exponentially decaying term e−βz. The
intensity I = E∗TET = E2

t e
−2βz of the transmitted field - the evanescent field - is seen to be

exponentially decaying with distance z into the cladding.

In the untapered fiber the evanescent field leaks into the vacuum around the fiber. The pene-
tration depth of the evanescent field is small and is of the order of the wavelength of the light.
In the tapered nanofiber the evanescent field that leaks into the vacuum is considerably larger
because the fiber diameter is less than the wavelength of light, so a penetration depth of the
order of the wavelength is larger than the diameter of the fiber, which means that a significant
fraction of the lights energy will propagate outside the fiber.

2.1.4 Propagation of light in optical fibers: fiber modes

An optical fiber mode is a field distribution which is conserved in form while propagating
through the fiber and it only experiences a phase shift eiβz with propagation constant β due to
the propagation (optical path length change). Fiber modes are either core or cladding modes.
If the fiber is coated the coating can absorb the cladding modes and the light signal will prop-
agate in the core modes.

The light modes that are allowed to propagate in a fiber can be found by solving Maxwells
equations. Here the following discussion applies to fibers with nco − ncl << 1, which is called
the weak guiding approximation. In this approximation the derivative of the dielectric function
ε = n2 is neglected. For my fiber, Oε = 0, because the index of refraction is constant within
the core and within the cladding. For a more comprehensive review the reader is referred to
other literature e.g. [6].

In the weak guidance approximation, the electric field mode E(~r, ω), in order to conserve
its form while propagating, should satisfy the Helmholtz equation:
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∇2E(~r, ω) + n2(ω)
ω2

c2
E(~r, ω) = 0 (2.2)

where n(ω) is the refractive index as a function of the lights frequency ω, ~r is the radial direc-
tion vector and c the speed of light in vacuum.

For the fiber, with core radius a, we have the boundary conditions:

n = nco for r < a and n = ncl for r > a

As the fiber has cylindrical symmetry we will use cylindrical coordinates (r, φ, z) so the
Helmholtz equation is:

∂2E

∂r2
+

1

r

∂E

∂r
+

1

r2

∂2E

∂φ2
+
∂2E

∂z2
+ n2ω

2

c2
E = 0 (2.3)

Because of the cylindrical symmetry the field will be of the form E(r, φ, z) = F (r)eimφeiβz

where the factor eimφ, with m an integer, ensures the cylindrical symmetry, so that a 2π rota-
tion around the fiber axis will not change the field. The factor eiβz is a phase shift.

In the fiber core, r < a, equation (2.3) will be an ordinary differential equation for the ra-
dial part F (r):

d2F

dr2
+

1

r

dF

dr
+ (κ2 − m2

r2
)F = 0 (2.4)

where

κ2 = n2
co

ω2

c2
− β2 (2.5)

This is a Bessel equation which has Bessel functions of the first kind Jm(κr) as solutions.
The solutions are physical as they are finite at r = 0.

In the fiber cladding, r > a, we have:

d2F

dr2
+

1

r

dF

dr
− (γ2 +

m2

r2
)F = 0 (2.6)

where

γ2 = β2 − n2
cl

ω2

c2
(2.7)

Assuming γ is real, we will have physical solutions that goes towards zero as r goes to-
wards infinity. The solutions are the modified Bessel functions of the second kind Km(γr). The
Bessel functions of the first and second kind are shown in figure 2.5. The Bessel functions of the
first kind, the solutions in the core, are oscillating field functions whereas the modified Bessel
functions of the second kind, the cladding solutions, are exponentially decaying field functions.

All the components of the electric field ~E = (Er, Eφ, Ez) and magnetic field ~H = (Hr, Hφ, Hz)
can thus be found by solving equation (2.3) and will as described be of the form:

Ψ(r, φ, z) = F (r)eimφeiβz where Ψ is either E or H and F (r) = A · Jm(κr) for r < a,
F (r) = B ·Km(γr) for r > a and A and B are constants.

From Maxwells equations the four tangential field components Eφ, Ez, Hφ and Hz must be
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Figure 2.5: Bessel functions of the first kind Jm(x = κr) (left) and of the modified second kind
Km(x = γr) (right). From [6].

continuous at the core to cladding transition r = a which, following [8], leads to four homo-
geneous linear algebraic equations for the four constants A,B,C,D in F (r). These equations
have nonzero solutions when the determinant of the matrix of coefficients vanish. This gives a
characteristic equation with the Bessel functions, that can be solved numerically. The solution
determines the propagation constant β, which depends on the index m. Also for each m there
will be more solutions for β denoted by the integer j, where j=0,1,2,3... Every βmj is specifying
one mode.

We see that the guided fiber modes decay with radial distance from the fiber. It can be
shown [8] that if γ is real, which we assumed above, i.e. γ2 > 0 the mode is guided but
if γ is imaginary i.e. γ2 < 0 the mode is not guided. So γ2 = 0 is the cutoff between a
mode being guided or not. According to equation (2.5) and equation (2.7) for γ2 = 0 we get
κ = k0 ·

√
n2
co − n2

cl, where k0 = ω
c

is the wavevector.

The effective index of refraction that the mode experiences is neff = β
k

where β is the β-
constant of that mode and k = 2π

λ
is the wavevector.

In the weak guidance approximation the guided modes of the circular symmetric fiber are
called LPlm modes where l is the azimuthal index and m is the radial index which describes the
azimuthal and radial dependence of the intensity distribution of the mode. The LPlm modes
are shown in figure 2.6. We can see that the number of nodes (the zero planes where the field
intensity distribution is zero) is 2l (going around in a circle at constant radius) and the number
of nodes along the radial direction (outwards) is m-1.

The LPlm modes are linearly polarized along one axis transverse to the fiber, and the
polarization along the fiber axis is neglected, because only light rays almost parallel to the
fiberaxis are guided, as explained in the next section. As the propagation vector ~k is then
parallel to the fiber axis the field is polarized transversely to the axis. The LPlm modes can
couple to other LPlm modes with the same azimuthal spatial symmetry i.e. the same l number.
E.g. the LP01 mode couples to the LP02, and as seen on figure 2.6 their intensity distributions
overlap. Coupling to modes with another l number is possible if the fiber does not have
azimuthal symmetry, e.g. if the fiber is bended or if there is dust on the fiber. Then it will be
most likely that the coupling is to modes with a similar β value.
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Figure 2.6: The intensity field distributions of the LPlm modes. The colour is the phase, so a
colour change is a phase change i.e. a change of the sign of the distribution. From [9].
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2.1.5 Numerical aperture and the V-number

The numerical aperture NA of an optical system describes the angles over which the system
can either receive or emit light. The numerical aperture of an optical system e.g. a lens is
defined as NA = n · sin(θ) where n is the refractive index of the medium the lens is placed
in, and θ is the half-angle of the maximum cone of light that can either enter or exit through
the lens, see figure 2.7. If there is no power lost at the interface, the NA is constant for the
beam, as the beam propagates between the two materials. This is seen from Snells law as
NA = n1 · sin(θ1) = n2 · sin(θ2), also seen on figure 2.7.

Figure 2.7: Numerical aperture of a lens.

The numerical aperture of a fiber is

NA =
√
n2
co − n2

cl

this is seen from figure 2.8 where n1 is nco and n2 is ncl.

Here we have TIR for

θ ≥ θc = sin−1(n2

n1
)

and if we apply Snells law at the air fiber interface we have

n sin(φ) = n1 sin(α) = n1 sin(π
2
− θ) = n1 cos(θ) = n1

√
1− sin2(θ)

for θ = θc we have

n sin(φ) = n1

√
(1− sin2(sin−1(n2

n1
))) = n1

√
(1− (n2

n1
)2) =

√
n2

1 − n2
2

where we used that sin2(sin−1(x)) = x2.

We then define NA ≡
√
n2

1 − n2
2

Since θ is at minimum equal to θc for TIR and as we have for a decrease in θ, φ increases
(figure 2.8) we see that φmax = sin−1(NA

n
) is the maximum acceptance angle of the light for

which we have TIR in the core. For a fiber in vacuum n = 1 and light will be guided for
sin(φ) ≤

√
n2

1 − n2
2. For a typical optical fiber n1

∼= n2 so we see that only light rays with small
φ i.e. nearly parallel to the fiber are guided. We see that the NA describes the different angles
of light that the fiber can receive and guide.
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Figure 2.8: Numerical aperture of an optical fiber. From [8].

The number of modes that can propagate in a fiber is described by a dimensionless constant
called the V-number or normalized frequency given by:

V =
2πa

λ
·
√
n2
co − n2

cl =
2πa

λ
·NA (2.8)

where a is the fiber core radius, λ is the vacuum wavelength of the light guided in the fiber,
nco is the core index of refraction and ncl is the cladding index of refraction. The number of
modes for V � 1 is approximately V 2

2
. For a step-index fiber the mode volume is 4V 2

π2 . If V is
small, only the fundamental mode (m = 0) is guided and the fiber is single mode. It can be
shown [8] that a step index fiber supports only the single mode with m = 0 for V < Vc where
Vc is the smallest value of V that satisfies J0(Vc) = 0. Here Jm(x) is again the Bessel function
of the first kind. The smallest x that gives J0(x) = 0 is x = 2.4048 which is the first root of the
Bessel function, see figure 2.5. That is, for V = 2.4048 the fiber is single mode. This value of
V is called the single-mode cutoff. Therefore the core radius a of the fiber is chosen such that
V < 2.4048 for the fiber to be single mode. Then the fiber core should, according to the theory,
only guide the fundamental mode and the higher order modes should be guided in the cladding.

To satisfy the single mode condition V < 2.4048 the numerical aperture must be small, if
we consider infrared wavelengths (few µm) and few µm core radii, which have been used for
optical communication. A small NA indicates that the mode is approximately paraxial so
the z component is small compared to the x,y components and the modes are transverse, as
found earlier. The field for a single mode fiber is often approximated by a Gaussian function

E(r, z) ≈ E0e
− r2

w2 eiβz where the spot size w depends on the V-number and w ' a for V = 2.
So the single guided modes are paraxial, transverse and gaussian with a spot size on the order
of the core diameter.

The table and figure 2.9 shows at which V-parameters the LP modes, guided in the fiber, are
cutoff. We see that only the fundamental mode LP01 is guided in the fiber core for V < 2.4048.
We also see that ncl < neff < nco and that the modes for high V are mostly guided in the core
but for lower V they tend to be guided in the cladding. For V < 1 the LP01 mode goes from
core mode to cladding mode.
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Figure 2.9: Table of cutoff values for the V-parameter for the LPlm modes and plot of the effective
index of refraction neff as function of V for the LPlm modes. The calculations are done for a step
index fiber with ncl = 1.444 and nco = 1.45. Notice that this figure use LPml instead of LPlm.
From [6].

For the fiber used in the experiments, the core diameter, which gives a single mode fiber
guiding 852 nm light, can be calculated.

The numerical aperture for my fiber is NA =
√
n2
co − n2

cl =
√

(1.4536)2 − (1.4468)2 = 0.14
For a fiber to be single mode V < 2.4048 so we set V = 2.4048 and solve for a.
V = 2πa

λ
· NA ⇒ a = V ·λ

2·π·NA = 2.33 µm. So for a core diameter d ≤ 4.66 µm the fiber is
singlemode.

When we calculate the V-number we neglect the air surrounding the fiber and therefore
assume that the cladding is infinite. This approximation is ok as the cladding diameter is much
larger than the core diameter and also because the E and H fields of the guided mode outside
the core decay exponentially so not much of the light goes to the outer surface of the cladding.

The calculation above is valid for the unpulled optical fiber whereas for the pulled nanofiber
we have to consider how the tapering changes the index of refraction. When the fiber is
tapered to a nanofiber the core is almost disappearing as it becomes very thin. Therefore
at the nanofiber section, the fiber mostly consist of silica, with the index of refraction of the
original cladding. That is, when we calculate the single mode diameter, we should consider the
light as guided by the cladding-air interface and use ncl as the new index of refraction for the
core and nair as the new index of refraction of the cladding.

For the pulled fiber we then have NA =
√
n2
co − n2

cl =
√

(1.4468)2 − (1.0003)2 = 1.05. For
V = 2.4048 we find a = V ·λ

2·π·NA = 310.6 nm. So for d ≤ 621 nm the fiber is single mode.
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Therefore I want to pull the fiber a length l such that its diameter becomes less than 621 nm
in order to have a single mode fiber.

2.1.6 Graded index fibers and step index fibers

There exist two different types of optical fibers: graded index fibers and step index fibers see
figure 2.10. In the graded index fiber the index of refraction changes gradually from the center
of the fiber to the surface of the fiber. Whereas in the step index fiber the index of refraction is
a little different in the two parts of the fiber: the core and the cladding on which interface the
index of refraction changes in one step. The graded index fiber reduces intermodal dispersion,
which is a pulse broadening effect because incident rays can have different angles of incidence
θ when propagating in the fiber, as seen in figure 2.8.

Different angles gives different modes of propagation. Different propagation lengths give
a time difference in propagation time through the fiber for the light pulses. So a multimode
pulse, which consist of different modes will be temporally broadened because the pulses will
arrive at the end of the fiber at different times. For the step index fiber the temporal spread
in the arrival of two pulses scales as (NA)2 whereas for a graded index fiber it scales as (NA)4

so for a small (NA) the graded index fiber reduces intermodal dispersion.
There is of course no intermodal dispersion in a single mode fiber as only one mode can

propagate in the fiber.

Figure 2.10: The figure shows how the light propagates in the fiber and how the index of refraction
profile is. In the single mode fiber the light travels in one ray, one mode.
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2.2 Tapered nanofibers

When the fiber is tapered the fiber diameter is gradually decreased, see figure 2.12. This
changes the modes that can propagate in the fiber at the tapered section. The decreasing
diameter means that for d < λ a larger part of the evanescent field propagates outside the fiber.
The light in the tapered fiber is guided by the cladding-air interface instead of the core-cladding
interface. As the index of refraction of the fiber is very different from the index of refraction
of the surrounding air we cannot use the weak guiding approximation. For the nanofiber we
will then have to consider the solutions to Maxwells equations, the exact modes of a step index
fiber as found in e.g. [6]. The guided modes are found by solving the wave equation in every
region of constant refractive index. This gives an eigenvalue problem where the solutions to
the resulting eigenvalue equations should be matched at the boundaries, using the boundary
conditions. (The eigenmodes are the guided modes and the eigenvalues are the effective indices
of the modes).

The exact modes are separated in transverse modes and hybrid modes. The transverse
modes have the z or longitudinal component of either the E or H field equal to zero, and are
then perpendicular to the propagation direction (z). The modes are called transverse electric
(TE-modes) for Ez = 0 (and Er = Hφ = 0) and transverse magnetic (TM-modes) for Hz = 0
(and Hr = Eφ = 0). The hybrid modes have no zero components of either E or H fields and
are denoted HE (EH) when Ez is smaller (larger) than Hz. The fundamental mode is the HE11

hybrid mode.

Figure 2.11: Dispersion curves for the exact fiber modes together with the weakly guided LP01

mode. From [6].

The TE01 mode has the same dispersion (neff ,V )-curve as the LP11 mode so the single
mode cutoff is still V = 2.4048 and below this V value only the fundamental mode HE11 is
guided (as the LP01 mode in the weakly guiding approximation).

There is a correspondence between the exact modes and the LPlm modes from the weak
guidance approximation. E.g. the fundamental exactHE11 mode which is spherically symmetric
corresponds to the fundamental weak guidance LP01 mode. It can be shown [6] that within the
weak guiding approximation the LPlm modes can be seen as linear combinations of the exact
modes.

We can think of it as the LPlm modes split into the exact modes when the light propagates
from the optical fiber to the tapered nanofiber.

As the light propagates through the fiber the guided modes thus changes. In the untapered
part the modes sees an effective index ncl < neff < nco, and nco − ncl � 1 so the guiding is
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Figure 2.12: In the tapered fiber, the modes change during propagation through the fiber, because
of the changing shape. From [11].

weak and NA � 1. In the tapered part nair < neff < ncl the guiding is strong, NA > 1

and V � 1. The fiber is multimode and the number of modes is proportional to V 2

2
. If the

diameter decreased enough such that V < 2.4048 at the waist the fiber is again single mode
here. At the beginning of the tapered section the light in the guided core mode couples into the
guided cladding modes and at the end of the tapered section some of the light in the cladding
modes couples back into the guided core mode, but some light couples to radiation modes
and is lost. Making the fiber shape adiabatic is about preventing this loss. In [10] they use
Rayleigh scattering to observe and show that they have control over the propagation of the
modes through the nanofiber. As neff = β

k
changes along the tapered fiber the phase factor

that the field achieves due to propagation through the fiber is now an integral over β along the
fiber (z axis) i.e. E ∝ E0e

−i
∫ z
0 β(z′)dz′ .

2.2.1 Adiabatic tapered nanofibers

An adiabatic fiber is a fiber with a certain local core taper angle Ω(z) along the fiber, see
figure 2.13, such that coupling to higher order modes is minimized. The adiabacity means
that the fiber shape changes so slowly that the light does not discover the change, so the light
travels in the same mode through the fiber. The local core taper angle can be calculated as
a function of fiber radius and if the tapered fiber is produced such that its local core taper
angle is always below the adiabatic boundary condition curve, then the fiber is adiabatic. Then
the fiber is adiabatic all the way through the tapering process and a minimum of light will be
lost by coupling to higher order modes as the fiber is tapered, so the fiber will have a high
transmission. High transmission fibers are very attractive for applications, especially for strong
light matter interactions e.g. when using the nanofiber as an atom trap.

The local taper angle Ω is inferred from figure 2.13 as Ω(z) = tan−1( r(z)
zt

) where r(z) is the

local core radius and zt is the local taper length. For small angles Ω(z) = tan−1( r(z)
zt

) ' r(z)
zt

.
The local cladding taper angle can be found from scaling Ωco as Ωcl = rcl

rco
Ωco.

The beat length zb = 2π
β1−β2 is the interference length where the two modes β1 and β2 are in

phase and can interfere or beat. It is seen that coupling is most likely to occur between modes
with similar β value because this will produce a long beat length.

To consider adiabatic behavior we compare the beat length zb with the local taper length
zt = r(z)

Ω(z)
. For zt >> zb the fiber is long enough that the propagation is adiabatic for the

considered mode and the mode will follow the variations in the taper shape. For zt << zb the
propagation is not adiabatic, the fundamental mode and the dominant coupling mode are in
phase over the whole relevant length zt so the modes beats; there is a coupling between the
modes, and energy is lost from the fundamental mode i.e. the guided mode βg to excite higher
order modes βcl i.e. the cladding modes.

The boundary condition between adiabatic and non adiabatic behavior is zt = zb. This
gives

Ω(z) =
r(z)

2π
(β1 − β2) (2.9)

So for Ω(z) ≤ r(z)
2π

(β1 − β2) the propagation is adiabatic. This condition is called the adiabatic
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criteria [12]. Wee see that for similar β values, zb is long and the adiabatic criterion is more
difficult to satisfy. Ω should be slowly warying within beat length.

The maximum Ω curve can be calculated for the fiber as a function of radius using equa-
tion 2.9. E.g. [12] finds the curve for Ω as a function of the radius as shown in figure 2.14 for
the LP01 and LP02 modes. When Ω is below the curve the fiber is adiabatic for the considered
mode. When Ω is above the curve the fiber is lossy for that mode. It is seen that the fiber
shape should be first steep (high Ω) for high radius and the shape then flattens (low Ω) as the
radius is decreased until it is steep again for very low radius. In the figure the dashed lines
indicate the curves for Ω when the fundamental mode is guided by the core-cladding interface
and by the cladding-air interface. It is seen that the minimum Ω for adiabatic propagation is
close to the transition from core guidance to cladding guidance.

Figure 2.13: The taper transition in an optical fiber. Ω(z) is the local taper angle, r(z) is the
local core radius and zt is the taper length. From [13].

So the angle Ω should be small enough everywhere such that the mode only sees a straight
fiber. But it is not always possible to produce the whole tapered fiber with Ω below the curve
because this will result in very long tapered sections which are more sensitive to the environment
e.g. dust. Therefore it is often attractive to have short tapers.

Adiabatic fibers can be produced by pulling the fibers asymmetrically There are also other
things to consider than adiabacity for the fibers to get an optimal form. For trapping atoms
around the nanofiber we want the fiber to be to some extent symmetric around the center of
the tapered waist such that the coupling to the atoms is equal on both sides of the fiber. In
addition the tapered nanofiber section should be long enough to trap the desired number of
atoms around the nanofiber, but not to long because then it can start vibrating.

Figure 2.14: The local core taper angle Ω in radians as a function of the normalized taper core

radius ρ(z)
ρ(0) . ρ(0) is the initial radius. From [12].

Many have developed methods to taper fibers precisely and have succeeded in getting an
ultra high transmission through the adiabatic fibers together with showing that the fiber shape
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is important for the applications of the fiber. E.g. [14] shows that they are able to produce
and control precise shaping of tapered fibers while [15] demonstrated design and fabrication
of adiabatic tapered optical fibers with a very high transmission of 99.7%. In [16] and [17] a
transmission for the fundamental mode of 99.95% was obtained.

Designing high transmission fibers for higher order modes is also an experimental aim,
especially because the interference between the higher order modes can create a distribution
of the evanescent field which is attractive for atomic physics experiments, as it breaks the
symmetry of the mode propagation axis such that the need of a standing wave for atomic
trapping is suppressed. It has be shown [13] that by reducing the cladding to core radius ratio
the requirement for adiabatic propagation of the LP11 mode can be reached. In [18] 85-95%
transmission for higher order modes were obtained. Whereas in [19] a transmission of 97.8% for
the first excited LP11 group of modes was obtained. Also research in producing fibers for other
applications, e.g. for coupling to wispering gallery modes is investigated [20]. (A wispering
gallery mode is a mode that can travel around a concave surface). This shows that the shape
of the tapered nanofiber is important for its applications.

2.2.2 The shape of the tapered nanofibers

The shape of a tapered fiber which has been produced by symmetrically pulling it i.e.
pulling the same distance in each direction (left and right) at the same speed, is expected to
be exponential [21] as shown in figure 2.12 and figure 2.15.

Figure 2.15: The fiber shape after tapering. It consist of the untapered optical fiber outside points
P and Q and the tapered fiber inside. The tapered fiber consists of the taper waist of length lw
and on both sides the taper transitions each of length z0. r(z) is the taper profile function and r0
is the initial radius. rw is the waist radius. From [21].

In [21] it is explained how the shape of the fiber can be modelled without using fluid dy-
namics. To do this it is assumed that the fiber is heated uniformly and that the heated section
is cylindrical. This can be satisfied by using a box-shaped temperature distribution and pulling
the fiber symmetrically. The box-shaped temperature distribution is a good approximation for
small heaters whereas for wider heaters the temperature distribution is better described with a
Gaussian distribution, where the maximum temperature is in the center and the temperature
is decreasing outwards, as also found in [22]. But the assumption in [21] avoids using fluid
dynamics as the viscosity distribution of the fiber resembles the temperature distribution.

At the time t during elongation the hotzone AB of length L is heated, see figure 2.16. It
is assumed that in the hotzone the silica glass is soft enough to be stretched but not so soft
that it sags under its own weight and that the fiber is cold outside the hotzone. At a later
time t+ δt the hotzone AB has been stretched through δx and now only A’B’ is being heated.
The model by [21] use conservation of volume of the fiber during elongation and the fact that
the local taper profile radius r(z) at point z is equal to the waist radius rw as that point was
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pulled out of the hotzone see figure 2.15. For the pulling setup which I use there the hotzone is
constant (δl = 0 in figure 2.16). With a constant hotzone length L0 [21] find the taper profile
function r(z) to be described by a decaying exponential profile:

r(z) = r0e
− z
L0 (2.10)

where r0 is the initial fiber radius.

Figure 2.16: a) At time t the cylindrical fiber is heated between points A and B (the length L).
b) At time t+ δt the fiber has been elongated δx. From [21].

I have mostly pulled symmetric fibers to have the same fiber shapes to heat in the vacuum
chamber. If the heated fiber burns in the chamber it will usually be at the waist that it burns,
because the fiber gets hottest at the waist where it is thinnest. Therefore I do not think it
will make a significant difference on the power at which the fiber burns if the fiber shape is
adiabatic and the fiber is pulled asymmetrically or if the fiber shape is not adiabatic and the
fiber is pulled symmetrically. So I do not expect that the fiber shape will influence the power
needed to burn the fiber because the fiber burns at the same place, i.e. the waist, every time.
But the length of the waist and diameter might influence the breaking power.

To find the length I have to pull the fibers in order to obtain the wanted waist diameter I
use an algorithm developed in [22] and [23]. The algorithm models the fiber shape using the
fibers fluid dynamics. The algorithm takes as input the pulling length and the fluidity profile
τ(z) of the fiber. The fluidity is the inverse of the viscosity and tells about how willingly fiber
mass is to flow in the fiber. The quantity τ(z) can be determined from the cross section area
A(z,t) of the fiber. The area is measured, using another algorithm, from a picture taken of
a fiber that is pulled only a short distance (1-2 mm). Using the axial velocity profile v(z) of
mass flow in the fiber, τ(z) can be determined, and the algorithm then finds the simulated fiber
profile (and diameter) for the given pull length.

According to the simulation the fibers produced in this project have a waist of approximately
1 mm (2 mm) when their diameter is 500 nm (400 nm). The longer the fiber is pulled the longer
the taper section becomes. There is an uncertainty on the algorithm as it uses the fibers fluidity
profile which is much dependent on how the fiber, used for the simulation, is placed in the oven.
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Figure 2.17: The modeled diameter of the fiber after 35 consecutive pulls of 1 mm followed by
1 pull of 0.7 mm. The fiber is simulated to be pulled a total of 35.7 mm which gives a nanofiber
diameter at the waist of 500 nm.

2.3 Thermal properties of nanofibers

2.3.1 The violation of Plancks law by a nanofiber

The thermal properties of tapered 500 nm diameter nanofibers are investigated in a paper
by Wuttke and Rauschenbeutel [3]. Here it is found that because the diameter d of the fiber
is less than the thermal wavelength λT , then the thermal radiation of the fiber can not be
described classically by Plancks law and instead fluctuational electrodynamics (FED) has to
be considered. Because d < λT the volume of the emitter (i.e. the nanofiber) also has to be
considered when the thermal properties are described.

In [3] the tapered 500 nm diameter silica nanofiber was also produced by a heat and pull
proces. They also consider the change in optical path length change of the light through the
fiber, as they heat the fiber with a laser. In the fiber they have two fiber Bragg gratings which
functions as mirrors such that the nanofiber is a Fabry Perot resonator for the light. They then
look at the Fabry Perot transmission peaks.

A fiber bragg grating (FBG) is a bragg grating in the fiber that reflects some wavelengths
and transmit all other wavelengths. The grating is made by a periodic variation of the refractive
index in the fiber core. This means that the when light is sent through the fiber some light
will be transmitted through the first FBG1 to the second FBG2 where some light is reflected
back to FBG1 and some light is transmitted through FBG2. The part T1 that is transmitted
through FBG2 interferes with the part T2 that first gets reflected from FBG2 to FBG1 and
then reflected from FBG1 to FBG2. When the fiber is heated the optical path length of the
light through the fiber changes so the freqency of the transmitted Fabry Perot resonance peaks
are changed. They then count the peaks and as they know the difference in optical path length
change between the peaks, ∆Lopl = λlaser/2, they can calculate the optical path length change.

They observe that the optical path length change of the light through the fiber increases
linearly with heating power. Classically they calculate, using Plancks law, that the optical
path length change should not depend linearly on heating power but follow a more logarithmic
function which also seems to saturate for high heating powers.
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Classically the heat radiataion of an emitter (black body) is described by Plancks law.
A black body is an ideal perfect absorber and a black body in thermal equilibrium is also an

ideal perfect emitter. The emission is called black body radiation and has a spectrum P (ν, T )
given by Plancks law:

P (ν, T ) =
2πhν3

c2

1

e
hν
kBT
−1

(2.11)

which shows that the radiation spectrum for a frequency ν only depends on the black bodys
temperature and not on the bodys shape or material.

Stefan-Boltzmanns law is Plancks formula integrated over angles and frequencies. This gives

the total power H radiated pr unit area A and is for a black body: H
A

= σT 4 where σ =
π2k4B

60~3c2
is a constant.

A real (gray) object (not a black body) can be related to black body radiation by introducing
a correction factor: the spectral emissivity ε which is surface property. In this way the surface
area of the emitter is taken into account. A black body then has ε = 1 whereas a gray body emits
radiation less efficient than a black body and has ε < 1. The emissivity is the effectiveness in
emitting energy (thermal radiation) and it is given as the ratio of the emitted thermal radiation
of the gray body to the emitted thermal radiation from a black body. The emissivity can depend
on wavelength and angle of the emitted light.

But Plancks law is only correct when the size of the emitting object d is larger than the
thermal wavelength λT and therefore should not apply for the tapered nanofibers, which is also
what [3] concludes although others [24] have observed the opposite.

In [3] they consider a thermodynamic model of the fiber in order to compute the temperature
distribution T (t, z) of the fiber, as a function of time t and position z. The heat equation in
units of power is:

cp ·ρ·∂tTdV = −dHrad(T )+dHrad(T0)+dPheating+∇(λ∇T )dV −

√
kBf 2

8πMT0

p(T−T0)dS (2.12)

The term on the left hand side is the heat inside the fiber at temperature T . The quantity
cp is the specific heat capacity of silica and ρ is the density of silica. The terms on the right
hand side are the radiated heat at temperature T , −dHrad(T ), the absorbed heat at room
temperature T0, dHrad(T0), the power of the heating laser dPheating, and the heat conductivity

of the fiber λ. The last term
√

kBf2

8πMT0
p(T − T0) describes the heat transport from the fiber

to eventual particles in the surrounding and can be neglected since the fiber is in a vacuum
chamber. They also show that heat diffusion through the surrounding gas in the vacuum is
negligible for the pressures p < 10−4 mbar they achieve.

As the fiber at the nanosection is very thin it is assumed that the temperature is constant
across the fibers diameter and then the problem can be reduced to only considering the tem-
perature distribution along the fibers length, the z axis.

The equation can then be solved numerically, for a given radius profile of the fiber and
by applying the relevant boundary conditions the fibers temperature distribution T (t, z) is ob-
tained. (They assume a boundary condition where the fiber is initially thermalized and where
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no heat flow occurs at the boundary).

The equation is first solved using Plancks law to compute the radiated heat dHrad(T ) and
then using the predictions from FED theory.

The FED theory is inspired by [25], from where it is known that for objects with sizes d
smaller than or on the order of the thermal wavelength λT = ~c

kBT
(the thermal wavelength is

approximately 7.6 µm at room temperature), then the radiated energy is different from Plancks
law because of interference effects of the small emitting object with the emitted radiation. Then
the emissivity depends on the size and shape of the object. Also if the emitting object is very
small then the volume of the object should be considered rather than the surface area of the
object when calculating the emitted power.

In [3] the radiated power per unit length of an infinite cylinder of radius a and at temper-
ature T is calculated. The spectral emissivity ε(ν) is found by normalizing the total radiated
power per surface area with the radiated power from a black body equation(2.11) (Plancks for-
mula). This emissivity is only valid for the cylinder diameter it was calculated for and will give
a wrong result for another diameter. Especially for nanofibers (very thin cylinders) the heat
radiation scales with volume and not surface area as for bigger objects and because emissivity
is a surface property it does not exactly apply to nanofibers. Actually, as the emissivity is
defined as a surface property, the emissivity of nanostructures (with d < λ) can exceed 1 which
means that their thermal emission is higher than that of a black body [26].

In figure 2.18 the spectral emissivity, (the fraction of power radiated at a given wavelength), as
a function of optical frequency of a nanofiber and a black body is compared. We observe that
for 789.6 nm light (380 THz) the emissivity for the nanofiber is low, around 10−6 whereas it is
high for the black body. For the black body as the temperature is increased it emits more light
at higher frequencies and in the visible region. But here the nanofiber has a low emissivity and
is transparent.
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Figure 2.18: The spectral emissivity as a function of optical frequency of a nanofiber and a black
body. From [3].

The emissivity of the nanofiber-vacuum interface as a function of temperature can be found
from Stefan-Boltzmanns law which for a gray body is H(T ) = ε(T )σT 4A. In [3] ε(T ) is found
from Kirchoffs thermal law ελ = αλ which states that the emissivity at λ equals the absorptiv-
ity at λ. This theory then neglects transmission of light through the object and is therefore
actually not valid for the nanofiber because the nanofiber is transparent for visible and IR light.
The emissivity is found in [3] to be constant at 0.9 for T > 1500K.

As mentioned [3] finds that the FED theory describes the thermal properties of the nanofiber
better than the Planck theory. They conclude that this is because Planck law which is valid for
macroscopic objects cannot be applied to objects with d < λT , as here the thermal radiation
becomes a volumetric effect.

2.3.2 Contributions to the optical path length change of light through
a heated tapered nanofiber

The optical path length of the light through the nanofiber changes when the fiber is heated
and cooled as it is in the experiment. The optical path length change is given by the integral
of the refractive index n(l) along the path length l: ∆opl =

∫
n(l)dl.

The optical path length changes (according to [3]) because of the thermo optic effect of sil-
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ica, the strain optic effect of silica, and the thermal expansion of the fiber radius a.

The thermo optic effect is the dependence of the refractive index n on the temperature:
n(T ) = n0 + αT where α = ∂n

∂T
is the thermo optic coefficient.

The strain optic effect is the dependence of the refractive index n on the strain of the fiber.

As the fiber is heated it thermally expands in all three directions; axial (fiber length l) and
radial (radius a) but if the fiber is pre-tensioned a length longer than it can elongate axially
by thermal expansion, then it will not expand axially but only radially. The linear thermal
expansion coefficient of silica is αte = ∆L

L
1

∆T
= (4− 7) · 10−7/K [3].

In [3] the tapered fiber is pre-tensioned after producing it such that the nanofiber waist is
elongated by ∆Lstrain

L0
= 5% of its physical length L0. As this pre-tension elongation is much

longer than the axial thermal expansion of the fiber that the fiber can achieve when it is heated,
which is around 0.1% of the fiber length, then the axial thermal expansion will not change the
physical length of the fiber but will only lower the stress in the pre-tensioned fiber.

As n or a changes this changes the V-parameter V = 2πa
λ
·
√
n2
co − n2

cl and the effective in-

dex of refraction of the guided mode of light is changed neff = β(V )
k

. Therefore we consider the
effective index of refraction in the following.

It can be shown [3] that the fibers effective index of refraction as a function of radius and
temperature is given by

dneff (a, T )

dT
=
∂neff (a)

∂n
(
∂n(T )

∂T
− nαte(T )αso) +

∂neff (a)

∂a
(1 + µp)αte(T )a (2.13)

where ∂n(T )
∂T

is the thermo optic coefficient, αso is the strain optic coefficient, αte is the
thermal expansion coefficient and µp is the Poissons ratio, i.e. the ratio of transverse (radial)
strain to axial strain.

Figure 2.19 shows equation 2.13 and we see that the main contribution to the change of the
effective index of refraction is due to the thermo optic effect and that there is only a negligible
contribution from the strain optic effect and the radial thermal expansion.

Figure 2.19: The change in neff ,
dneff

dT [10−6 /K] as a function of temperature T [K]. From [3].
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2.3.3 Pre-tension of the tapered nanofiber

As mentioned, reference [3] pre-tension the fibers after they are produced, before measur-
ing on them. In [27] this is investigated by exposing tapered nanofibers to tensile-stress and
analysing the stress-strain behaviour. (We recall that the stress is a measure of the internal
forces the particles in the fiber exert on each other. The stress is measured in pressure σ = F

A
,

where F is the force and A is the area. The strain is a measure of the deformity of the material.
The strain ε is given by the deformation ∆l divided by the initial length L), ε = ∆l

L
. In [27] they

stretch the fiber, such that it elongates, while measuring the tensile force with a force sensor.
The tensile force is the force required to pull the fiber to the point where it breaks. They plot
the elongation versus the force and see that the data is linear for low strain but for higher strain
and close to the breaking point of the fiber the data is described by a nonlinear model that
includes a quadratic term. They find that most of the fibers can be pre-tensioned on average
approximately 7% of the initial waist length before they breaks. For a 500 nm diameter fiber
with a waist of 2 mm it has a strain of 7.9 ± 0.2% so it can be tensioned 7.9 % of the initial
length before it breaks. The stress is then 7.0 ± 0.2GPa. They also find that the nanofiber is
a brittle material, i.e. they do not break in the same way when exposed to stress.

Based on this discussion I will also pre-tension the fibers before measuring on them. The
pre-tension also stretches the fiber and ensures that it lies more straight. Futhermore the
pre-tension will make the fiber vibrate less which is convenient for atom trapping around the
fiber.

2.3.4 Expected experimental results and comparison with other ex-
perimental results

The experimental setup and the way the optical path length change is measured in [3] is
different from my experiment but I think it is still interesting to compare the results to see if
one can use it to explain some of the measurements.

As the nanofibers investigated in both experiments have a diameter of 500 nm so d < λT ,
we could expect to observe some of the same behaviour.

As mentioned, [3] observes that the optical path length change increases linearly with power,
which they describe being due to the fiber being a nanofiber and d < λT so the thermodynamic
behaviour of the fiber cannot be described by Plancks law.

The investigated fibers in this project have a shorter waist section, i.e. nanofiber section,
than the fibers investigated in [3], so this fact might influence the observations. The fibers I
have looked at had a waist section of 1-2 mm whereas the fibers inspected by [3] had a waist
section of 5-10 mm.

As the fiber is heated it can get rid of the heat by radiation, heat conduction in fiber or
heat transfer to eventual particles in vacuum (heat convection).

It could be expected that a fiber with a long waist will be more likely to conduct heat by
radiation because of the larger resistance along the thin waist to conduct heat in the fiber.
Whereas a fiber with a shorter waist could easier conduct heat in the fiber.

Besides the experiments not being equivalent this could affect the observations and we might
observe another behaviour than [3].

Another factor that could influence the observations is that the vacuum in my experiment
is not ultrahigh vacuum. Eventual dust particles in the chamber or on the fiber could also be
expected to influence the observations. If there are any dust particles on the nanofiber they
will be absorbing most of the heat from the heating laser. The dust might evaporate as the
fiber is heated and this would be expected to be visible on the measured optical path length
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change.
In [3] it is found that for their fibers when they are heated the strain (from the pre-tension) is

released and the fibers stays stressed during the measurements (measured up to a temperature
of 1800 K which is above the melting temperature of silica).

Therefore, as the fibers in this experiment are also pre-tensioned, it is not expected that the
fiber will deform as it is heated. It is expected that the fiber when it is heated will relax from
the pre-tensioning and for high power, close to the melting temperature of silica (1450 K), the
fiber could be ripped apart. If the fiber for high heating power is deformed we expect to see it
in the optical path length change.

The facts discussed here are important to consider when the data is analysed.
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2.4 A tapered nanofiber as an optical trap for atoms

A motivation for investigating the thermal properties of tapered nanofibers is the use of
nanofibers as atom traps [28], [29], [30], [31], [2], [32], [1].

Figure 2.20: a) The potential for atom trapping close to the nanofiber surface. The red detuned
beam creates an attractive potential while the blue detuned beam creates a repulsive potential.
The total potential is shown in black. The potential minimum is at 200 nm from the fiber surface,
here the potential is a trap for atoms. b) The atoms along the nanofiber are separated by λ/2.
c) Cross section of the nanofiber. The atoms are trapped above and below the nanofiber. d) The
nanofiber with atoms trapped around it. From [1].

A tapered nanofiber is currently used at QUANTOP in a setup where Cs atoms are trapped
around the nanofiber in the evanescent field of the light sent through the nanofiber. As d < λ
i.e. the wavelength of the light through the fiber is greater than the diameter of the nanofiber
(500 nm) the light will propagate with a very intense evanescent field around the tapered
nanofiber section and this can be used for creating a potential well for trapping atoms. The
atoms can be trapped in the focus of the intense light. The trap uses a red detuned 1064 nm
beam and a blue detuned 780 nm beam which are sent through the nanofiber (detuned with
respect to the atomic Cs D2 line of 852 nm), see figure 2.21. The red detuned beam creates an
attractive potential for the atoms, while the blue detuned beam creates a repulsive potential
for the atoms, so the total potential that the atoms feel is a potential well, that they can be
trapped in at a distance of 200 nm from fiber surface, see figure 2.20a. This trap is created along
the fiber because of the fibers cylindrical symmetry. To trap the atoms at separated positions
two counter propagating red detuned beams are used. The two beams create a standing wave,
as they propagate against each other and the interference of the two beams creates a periodic
potential with minima and maxima of the potential energy. This is then a 1D optical lattice
where the atoms are trapped in a row along the fiber (i.e. on the antinodes of the standing
wave). The atoms are separated by λ/2. Two 1D optical lattices are created one above and
one below the fiber so atoms are trapped above and below the fiber, figure 2.20d.

The tapered nanofiber is placed in vacuum in a MOT (Magneto Optical Trap) used for
collecting and cooling the Cs atoms.

For the nanofiber trap at QUANTOP they need tapered nanofibers that can stand 15 mW
of laser power. Therefore in this experiment it will be investigated if the fibers can stand 15
mW of heating power.
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The 500 nm diameter of the fiber is chosen as this diameter results in a high power density
of the evanescent field around the fiber. (Actually a diameter of 400 nm would give the highest
power density [33]). Also at a diameter of 500 nm the nanofiber is single mode and guides only
the fundamental mode HE11 for the two wavelengths used (780 nm and 852 nm).

Figure 2.21: The blue detuned and two counter propagating red detuned beams create a trap for
the atoms. There can be trapped 0 or 1 atoms in each well separated by λ/2. Figure from [34].

Two probe beams each achieve a phase shift when they propagate through the atoms. As
the two beams have different frequency, the phase shifts are different for the two beams and the
difference in phase shift can be used to calculate the number of atoms around the nanofiber.
Approximately 2500 Cs atoms are trapped along the nanofiber. The phase shift measurement
is non destructive, so this is a QND (quantum non demolition) measurement, as the atoms do
not absorb the light (because the light is not on resonance with the atoms) which means that
the photons are not scattered and the atoms stay in the trap. The noise on the measurements
is the natural quantum noise so the method can be used to measure on entangled states of
atoms which interacts with the light through the nanofiber. This is relevant for use in future
quantum computers.
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Chapter 3

Experimental part

In this section I will describe the experimental setup used for pulling fibers and the setup
used for heating and burning the fibers. When I started there was a working setup for pulling
fibers; a 852 nm laser, an oven and translation stages which just needed alignment. The oven
and the translation stages were placed inside a flowbox with a flow of air downwards to keep
the enclosure clean to avoid contamination of the fibers which are produced in there. Then I
have built the setup for heating and burning the fibers and I have often changed and improved
the setup when new ideas appeared that could make the setup better, less sensitive to laser
modejumps and to fluctuations in the interferometer, or more convenient to work with.

3.1 Fiberpulling

In this section it is described how the fibers are pulled. First the experimental setup for
fiberpulling is described and then it is described how the fibers are prepared for the fiberpulling
including the importance of cleaning the fibers. The heat and pull method for fibermaking
is described followed by an analysis of the transmitted light through the fibers. Finally it is
explained how the fibers are glued and transferred to the vacuum chamber.

Figure 3.1: The oven heats the fiber, which is placed in the clamps, while the stages pull the fiber.

32



Figure 3.2: The experimental setup for fiberpulling. The beam from the laser (red) is directed with
two mirrors through the prism pair into the isolator. After the isolator there is a λ/2 waveplate
followed by a PBS. The transmitted beam from the PBS is reflected at a beamsplitter (green) and
coupled into the fiber that goes to the pulling stages. The reflected beam at the PBS is with two
beamsamplers (BS) and two lenses (f) directed to a reference detector (ref det).

3.1.1 Experimental setup

The fiber pulling setup is seen on figure 3.2. The 852 nm (Cs D2 line) laser beam is directed
with two mirrors though a prism pair, used for changing the shape of the beam from elliptical
to circular, into the isolator. The isolator should avoid back reflections into the laser. The
beam then passes a λ

2
waveplate and a polarizing beam splitter (PBS) where the waveplate is

used to change the intensity of the light into the two polarization arms (H and V) after the
PBS. One arm is reflected at a 50:50 beamsplitter (BSW11) to a fibercoupler which couples the
light into the SM750 fiber from Fibercore.

The fiber end, where the laser beam is coupled into is angle-polished. This is done every
time the fiberspool is changed. For angle polishing I use the angle polishment from Thorlabs.
The fiber end is angle polished by 8 degrees, to prevent backreflections of the light at the end
face. There is a 4% coupling loss on the end face. The other end of the fiber is coupled into a
detector to measure the transmission of light through the fiber, while the fiber is being pulled,
see figure 3.8. This end is not angle polished, as this would take too long time to do if it should
be done each time a new fiber was pulled and since it was not important for the experiment
to have a maximum throughput. This fiber end is cleaved with a Fujikura cleaver at an angle
of 0 degrees. (Since this end is not angle cleaved the light can reflect back through the fiber).
When I started, the coupling of light through the fiber to the detector was around 10% but
now I have a coupling of around 12%.

I have added a beam sampler (BS) (BSF10 B) after the PBS to be able to measure a ref-
erence signal from the laser, while the fiber is being pulled, in order to see if something strange
happens with the laser. I use this to check if the laser e.g. was modejumping while the trans-
mission was being recorded. I also use this detector as a reference detector for the 789.6 nm
light in the fiberburning experiment, as explained later, see figure 3.16.
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Figure 3.3: The thermal stripper.

3.1.2 Preparing fibers for pulling

The fibers are prepared for pulling by stripping and cleaning them. The glass fibers have
a protective layer of plastic buffer around them. This buffer is stripped off the fiber, on the
part (approximately 10 cm) of the fiber that I want to put into the fibermounts and oven. In
the beginning, I used a mechanical stripper and stripped the fiber by hand. I would strip the
fiber a couple of times to remove all the leftovers of the buffer. This mechanical stripping is
not ideal, as it can make scratches in the glass which can scatter light and damage the fiber.

In the summer 2014 we got a Jonard thermal stripper. The thermal stripper heats the fiber
so the buffer becomes soft and then the buffer is stripped of the fiber by pulling the fiber slowly
through the stripper. (The thermal stripper is set to strip fibers of 125 µm diameter. It could in
the beginning only strip the fibers 7 cm so the stages were moved closer to each other to fit this
length). I found the thermal stripper to be more effective than the mechanical stripper because
the mechanical stripper left more buffer material on the fiber, which is probably because the
thermal stripper heats the buffer so it is easier to remove. In December I had a specially
designed rail made for the thermal stripper. This improved fiber stripping significantly since
now the wagon on the rail holding the fiber slides better and do not move in jumps as it did
before. It is also now possible to move the wagon at a constant speed which makes the fibers
better stripped. I also had the rail made such that I could strip longer fibers (up to 20 cm) if
I wanted to make fibers with a longer taper section (this would, however, also require to move
the stages sideways when the fiber is inside the oven, to make the oven heat a larger part of
the fiber).

3.1.3 Cleaning fibers

The cleaning of the fibers is the most difficult step as everything afterwards depends on it.
This is also the part of the preparation that usually takes most time.

In the beginning I cleaned the fibers with Kimwipes lens tissues soaked with ethanol. Then
I found that cleaning the fibers with first acetone and then isopropanol, made the fibers more
clean. The actone, which is a good solvent for plastic, dissolves the leftovers of plastic buffer
on the fiber, whereas the isopropanol, which is a good cleaning alcohol removes the dust. Iso-
propanol is better than ethanol for cleaning because it evaporates quickly and does not leave
as many droplet traces as ethanol. The best cleaning result is obtained by moving the tissue
soaked with chemicals from the un-stripped part along the stripped fiber and end at the un-
stripped part. Then the tissue will collect and push all the dirt to the un-stripped part. It is
important to hold the tissue tight on the fiber so the chemical touches the whole fiber, but not
to tight since then the fiber can break.
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Figure 3.4: The figure shows how to clean the fiber (thin black line). With only a small amount
of cleaning chemical not covering the whole Kimwipe tissue and the risk of the fiber touching the
dry tissue the fiber will not be as clean as with the tissue wet everywhere the fiber will touch it.

The dirt on the fiber can be dust from the environment, from the Kimwipes, from the left-
overs of the plastic buffer, from the droplets of the cleaning chemicals, or from other particles
in the cleaning chemicals. Although both the acetone and isopropanol are spectroscopic grade,
the top of the container with the chemicals could become contaminated. As the Kimwipes can
also pollute the fibers while they are cleaned, it is very important that the Kimwipe is wet
everywhere it touches the fiber, see figure 3.4.

It can take a long time to get a clean fiber, and cleaning it too much can also make it more
dirty than it was, as more dust is applied than removed with the tissue. Often after a couple
of times cleaning the fiber you will end in an equilibrium where you apply as much dirt as you
remove, and then my experience is that it is best to take a new fiber and start over.

In [17] they actually used the opposite of what I found most efficient for cleaning: first iso-
propanol and then acetone, followed by a final clean with methanol. They did comment that
they discovered that it was not good to use acetone at all, because acetone can make the clean-
ing process take longer time, as acetone spreads small buffer particulate along the stripped fiber.
Therefore I think it is best first to clean once with acetone (to remove the worst particles) and
thereafter only use isopropanol. I did try to clean the fiber with one drop of methanol and
slide it across the fiber which was lying in the stages (such that the whole fiber was covered in
methanol). The first time it did not clean the fiber so well, but the second time with a methanol
drop, the fiber was clean except for one big dust particle. Maybe the cleaning chemical does
not make a big difference but the difference is in the method you choose to apply the cleaning
chemical: the single drop could be more efficient than the kimwipes tissues.

After the fiber is cleaned it is placed in the stages and inspected with a CCD camera for
contaminations, see figure 3.5. If there is dirt on the fiber, the fiber is taken out and cleaned
again. It is very important that the fiber is clean because dust on the fiber can melt and burn
into the fiber and break the fiber when it is heated in the oven. The dust can also scatter light,
change the propagating modes and decrease the transmission.

When the fiber is clean, it is placed in the mounts on the stages and first tensioned 200 µm
then relaxed 20 µm (these numbers were inspired by [17]). The fiber is tensioned so that it
is lying straight in the stages and it is relaxed a bit, so it is not overtensioned. If the fiber is
overtensioned, then when it is heated it will relax and deform a bit. While the fiber is tensioned
it is watched with the camera how the fiber moves. Usually it is enough to tension the fiber
200 µm but if the fiber is misplaced in the mounts it should be tensioned more. If the fiber
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Figure 3.5: The camera is a 768·1024 pixel CCD camera. It has a microscope objective with a
magnification of M=25 and an adjustable focus. A green LED illuminates the fiber from below.

moves a lot (transverse to the fiber axis) while it is tensioned, it is very misplaced and should
be taken out and repositioned in the stages. The fiber from the last part of a fiber spool is
more difficult to place well in the stages as this part of the fiber is a bit more bended from
the curvature around the spool. This fiber part memorizes some of the initial stress and needs
more tension when it is placed in the stages.

3.1.4 Making tapered fibers: heat and pull method

The tapered nanofibers are produced by a heat and pull method. The stripped and cleaned
fiber is placed in the stages which pulls the fiber apart while an oven heats and melts a small
section of the fiber as seen in figure 3.1. In this way the fiber radius is gradually decreased to
a nanofiber section.

I use a heat and pull setup which was build by Heidi Sørensen. I will give a brief overview of
the setup, but more details can be found in her thesis [22] and paper [23]. The fiber pulling
setup consists of a pair of translation stages and an oven see figure 3.6. The translations stages
are motorized and programmed to move at a constant speed of 50 µm/s. The stages are placed
on top of each other and the top stage does the actual pulling whereas the bottom stages only
translates the fiber. For a symmetric pull the top stage then moves twice the distance as the
bottom stage. On the top stage there is a pitch and yaw translation stage and placed on this is
a mount with the fiber clamps. On the bottom stage there is a XYZ translation stage, a pitch
and yaw translation stage and a mount with the fiber clamps.
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Figure 3.6: The heat and pull setup. A: The bottom stage which is stationary. B: Adaptor plate
which can be translated. In the text I refer to this plate as the bottom stage. This stage translates
the whole setup. C: The top stage. D: XYZ flexure translation stage. E: A mount to make the two
F the same height. F: Pitch and yaw stages. G: Fiber clamps. H: Mounts with magnetic clamps.
I: The oven. The camera can also be placed here when the oven is out. J: Transmission detector.
K: Fibercoupler, with light from the laser. L: The fiber.

In the original setup the fiber clamps, for holding the fiber on the stages, consisted of only
two magnets and the unstripped fiber was then placed in a V-shaped groove. It is more accurate
if the fiber is clamped also at the stripped part where it is clean, because the buffer might not
have the same diameter everywhere or might be dirty which can cause some tension in the fiber
as it is clamped. Therefore we applied some new clamps which holds the fiber at the stripped
part. The clamps, see figure 3.7, turned out to be good for holding the stripped fiber but they
were difficult to align as they are very sensitive to the alignment. (It should be noted that
the clamps are very sensitive to the position of white plastic cylinder on top of the hexagonal
metal element holding the fiber. They are also sensitive to the screw that tightens the metal
element as too much tightening can lift it up and too little will make it loose. There is another
sensitivity in how much to tighten the spring which closes the clamp. All this can change the
position of the fiber and therefore the alignment). The magnetic clamps are still important to
ensure that the fiber does not slip when it is pulled.

Figure 3.7: The fiber clamps and magnetic clamps. The oven is seen in the background.

The oven is an electric ceramic micro heater and is placed on a motorized rail such that it
can drive in between the two mounts to heat the fiber. The oven has a 2 mm wide slit where
the fiber goes in and the oven is around 1.6 cm long.
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Figure 3.8: Fiber pulling setup. The drawing figure 3.6 shows the layout schematic. The letters
also refer to figure 3.6.

That the stages should be moving and the oven standing still was chosen [22] because this
would avoid air currents carrying heat away from the oven, which could happen if the oven is
moving as the surrounding air will be pushed by the oven. The air currents could also make the
oven heat the fiber in an non-uniform way. Even then, as discussed in the theory section, the
oven temperature distribution does not allow the fiber to be heated equally everywhere as it is
not described by a box-shaped profile but turns out to be described by a Gaussian profile [22].
(It is possible to adjust the position of the oven relative to the stages so the oven can be aligned
to them. After aligning the stages the oven should be aligned such that the fiber is in the
middel of the oven without touching it).

Each time something on the stages is changed, e.g. the position of the clamps, the stages
and oven must be re-aligned. The stages can be aligned using the camera but it is more precise
using a laser module. The stages are aligned to the middle position of the top stage because
then the misalignement in the two outerpositions of the top stage will be equal. The alignment
is first done by eye using the tilt, height and transverse position of the two pitch and yaw stages.
Then the XYZ stage is used to align horizontally and vertically (i.e. the focus), by looking at
the fibers position with the camera at the two camera limits(the limits where the camera can
be placed between the stages). This alignment typically gives a misalignment between the two
fiber ends of 5-10 pixels in the middleposition and 30-40 pixels in the outer position. (1 pixel
= 0.18µm [22])

When the camera is used for alignment it is not possible to inspect the whole fibers posi-
tion, because of the camera limits, the camera cannot be positioned very close to the fiber
clamps, see figure 3.5. By shining light on the fiber with a laser, it is possible to see the
fibers position close to the clamps. This gives a better alignment because close to the clamps
the fiber is more affected by the clamping (clamping force and the direction the fiber points in
when clamped), so when this part of the fiber can be inspected, the alignment can be optimized.

The green LED laser light is diffracted on the fiber and by watching the diffraction pattern,
when the fiber is moved through the laser, the stages can be aligned. The fibers diffraction
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pattern looks complicated (probably because the fiber is transparent) but is dominated by a
green line with black fringes. The LED laser is focused with a 50 mm lens on the fiber with the
diameter of 125 µm. With this lens, the size of the beam is on the same order as the size of the
fiber. When the laser is positioned above the fiber the horizontal position of the fiber can be
aligned and when the laser is positioned on the side of the fiber, the fibers vertical position can
be aligned, see figure 3.9 and figure 3.10. If the fiber is vertically or (horizontally) misaligned
the position of the diffraction pattern changes when the fiber is scanned through the laser and
the fringes in the pattern moves up/down. (First the vertical (transverse horizontal) screw on
the XYZ stage are changed and then the vertical (horizontal) screws on the pitch and yaw
stages until neither the position of diffraction pattern or the fringes in the pattern change as
the fiber is scanned through the laser). The laser alingment is now so good that the fiber is
only misaligned by 5-10 pixels in the outer positions and 0 pixels in the middleposition.

If the alignment is done well, it means that the tension in the fiber will be mostly along the
fiber axis.

Figure 3.9: Vertical alignment of the
stages, as explained in the text.

Figure 3.10: Horizontal alignment of the
stages, as explained in the text.

The procedure that works best for pulling fibers symmetrically is the following:
- The oven goes in on the left side of the fiber (close to the left clamp) and tension the fiber
200 µm.
- Then the oven goes to the center of the fiber and the pulling starts.
- When the pulling is finished the oven goes straight back.
The fiber is tensioned in the left side, before the pull in the center, because when the oven first
meets the fiber, something (e.g. a small wiggle or twist) could happen to the fiber. Therefore
it is better if this happens at another point than the center where the nanosection will be. I
have experimented with the oven in the right side and in the left side, heating the fiber, while
the fiber is tensioned, before the fiber pulling begins in the center. It turned out that the best
result was obtained when the oven tensioned the fiber in the left side. Then the fiber was lying
more straight i.e. better aligned after being tapered and it was easier to image the whole fiber.
I think it could be due to a small difference in the structure of the clamps.

After pulling the fiber it can be inspected with the camera e.g. to see if the fiber is clean
and if it is lying straight, see figure 3.11. It is important that the fiber is clean if it should
survive high powers in the vacuum chamber. Dust on the tapered part of the fiber scatters light
from the evanescent field and this decreases the transmission of light through the fiber. Dust
anywhere on the fiber will absorb the heat from the heating laser and can make the fiber break
in vacuum. Also dust on the fiber it will not make the potential for atom trapping symmetric
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around the tapered section. Figure 3.11 shows a picture of the pulled fiber taken with the
camera.

Figure 3.11: Image of the tapered fiber taken with the camera. The camera cannot resolve the
nanosection of the fiber. The background light from the LED is subtracted in the picture.

Notice that the x-axis (the position along the fiber axis) is in mm and y-axis (the fiber
width/diameter) is in µm so the fiber is actually lying very straight. After the tapering the
fiber is often bending a bit. I suspect it is due to the tension in the fiber which is released
when the fiber is heated and then if the fiber is not placed correctly in the clamps the released
tension will make it bend a bit. Or it is an alignment issue with the clamps, even though
much time was spent on aligning the stages and this did reduced the bending of the fiber after
tapering it a lot. If the fiber is bend the light through the fiber can couple to other modes and
the transmission is decreased. If the fiber is straight the light will mostly only couple to one
mode with the same symmetry as the fundamental mode so the coupling to other modes will
be lower and the transmission will be higher. The fiber can be imaged by moving the bottom
stage in steps of 0.1 mm. For each step the camera takes an image and the images are then
stacked to show the whole fiber. It is necessary to turn off the flow in the flowbox when the
fiber is imaged because the flow makes the thin part of the fiber vibrate and then the image
is blurred. There is thus a risk of the fiber being contaminated while it is imaged. Therefore I
do not image all the fibers that I want to transfer to the vacuum chamber. The camera has a
limited resolution of 0.18 µm/pixels as found in [22] so it is difficult to image the nanosection
of the fiber as this part will only be a few pixels.
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3.1.5 Analysis of transmitted light through fiber being tapered

The light transmitted through the fiber is measured and analysed with a Gabor transform.

Figure 3.12: The transmission through the fiber during tapering is shown in blue. The transmission
oscillates due to the beating of excited higher order modes. The beat modes in the signal are shown
in black. The mode drops are indicated with arrows.

Figure 3.12 shows the transmitted light through the fiber as a function of elongation length
(i.e. pull length). The final transmission is 90%. The transmission decreases due to excitation
of higher order modes, scattering of light and other types of loss in the fiber. The transmission
start oscillating at an elongation length of approximately 8 mm and stops again around 33 mm
elongation length. With the present pulling procedure the ”record” final transmission was 94%
for a 500 nm fiber but usually I get a final transmission around 90%. A transmission higher
than 94% can be obtained by pulling the fibers adiabatic, as described in section 2.2.1.

The optical fiber is a single mode fiber before it is pulled, but as the fiber waist is tapered
higher order modes can propagate in the fiber. The fiber is thus multimode. The fiber be-
comes single mode again when it reaches a diameter d ≤ 621 nm as calculated in section 2.1.5.
The oscillations in the transmission are the excited higher order modes beating against each
other. As the fiber is elongated the excited modes will interfere in and out of phase with each
other thereby enhancing or decreasing the transmission. When the oscillations stop, there is
no more beating between the modes, so there can only be one mode propagating in the fiber.
Thus, by inspecting the transmission, it can be determined when the fiber becomes single mode.

Besides the oscillations, other drops are visible in the transmission. When the transmission
drops a guided mode is no longer guided in the fiber. As the fiber diameter is decreased, at a
certain diameter a specific mode is no longer guided in the fiber and will therefore disappear.
The diameter where the mode disappears is the cut off diameter.

As mentioned in section 2.1.4 each mode is characterized by its β-constant and the mode
experiences an effective index of refraction neff = β

k
, where k = 2π

λ
is the wavevector of the

mode.

The modes in the fiber, can be seen with a Gabor transform of the transmission signal.
A Gabor transform G(t, ν) is a short time Fourier transform of the transmission signal, with
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a Gaussian window:

G(t, ν) =

∫ ∞
−∞

e−π(t−τ)2e2πiντX(τ)dτ (3.1)

Where X(τ) is the signal at time τ and ν is the frequency. The Gaussian window is for
splitting the signal up in small time parts and analysing a smaller amount of data. It is more
interesting to write the Gabor transform in terms of k, l instead of ν, t because we are interested
in the signal as a function of pull length l not time. The pull length is l = v · t, where v is the
pull speed and t is the time, and the beat wavenumber is k = 2π

λ
= 2πν

v
. We can then write:

G(l, k) =

∫ ∞
−∞

e−α(l−z)2eikzT (z)dz (3.2)

where T (z) is the transmission signal and α is a constant.
The Gabor transform of the transmission is shown on figure 3.12. It shows the beating

k modes (black) in units of wavenumber present in the fiber during the pull and when they
disappear.

The beating modes in the Gabor transform is the result of the interaction between the dif-
ferent modes excited in the fiber. The different modes k1 and k2 in the fiber beat at the
wavenumber k seen in the transform. E.g. a mode with k1 and another with k2 beat at the
sum and difference k1 ± k2. The beating is due to the phase difference between the modes.
The modes propagating in the fiber achieves a phaseshift since neff = β

k
changes and the fiber

length changes when the fiber is pulled. The phases φ1 and φ2 of the modes k1 and k2 can
interfere constructively or destructively through the fiber so the transmission oscillates. The
constructive interference is almost 100% for elongation lengths up to 33 mm, as seen in the
figure. At the end of the tapered section, if the modes interfere constructively, they couple back
into the guided core mode whereas if the modes interfere destructively, they couple into the
cladding mode and are lost. Here the final transmission is 90%, so 10% of the energy is lost.
When all the beating modes have disappeared from the transmission signal there can not be
more than one mode so the fiber is now single mode. The transmission oscillates and the higher
order modes are excited in the fiber because the pulling is not adiabatic. The adiabatic pulling
would have a higher final transmission but could also show oscillations in the transmission.

It is interesting when the beating components disappear because this gives information on
the diameter of the fiber and when the nanofiber becomes single mode. The visible modedrops
are indicated with arrows in figure 3.12. It is possible to tell which mode disappears at which
modedrop, since the cut off diameters of the fibers are known.

From figure 2.11 we know which modes will drop first, as the fiber radius decrease and neff and
V changes. We see that the HE21 mode will disappear before the TE01 and TM01 modes. The
mode starting at 26 mm ending at 34.2 mm could be the HE21 mode and the mode that disap-
pears at 36.6 mm could be the TE01/TM01 modes. The intense mode starting at 25 mm and
disappearing at 33.5 mm could be the HE12 mode since this mode has a spatial overlap (same
l value) as the fundamental HE11 mode so it is very likely that this mode will be excited. The
HE12 mode has a larger cutoff diameter than the HE21, TE01 and TM01 modes so it disappears
before the other modes as the fiber is tapered.

We see that the beat wavenumber increase a lot just before the mode disappears. This is
because as the fiber is tapered neff decreases and the difference between the refractive index
of two modes neff1 and neff2 (i.e. the beating mode neff = β

k
) increases (see figure 2.11). The
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amplitude of the signal is determined by the mode coupling. Usually the more adiabatic the
fiber is the smaller the amplitude is and the less the number of excited modes in the signal.

The constant lines in the signal is probably noise, because it is also present before we start
the pull (i.e. at elongation length equal to zero). It can be electronic noise, noise from the laser
or the background light.

3.1.6 Glueing fibers and transferring them to the vacuum chamber

The tapered fiber is glued with UV glue (Norland optical adhesive) to a specially designed
device, figure 3.13, and transferred to the vacuum chamber. The fiber is transferred to vacuum
to investigate its thermal properties. If there is air around the fiber the fiber can transfer heat
to the air molecules, and then it will be difficult to heat the fiber. Before the fiber is glued it is
tensioned a bit. E.g. for a 400 nm fiber with a waist of 2 mm a tension of 100 µm corresponds to
an elongation of 5% of the waist length, which will not break the fiber according to [27]. Gluing
the fibers in order to transfer them to the vacuum chamber has been quite an experiment as
many fibers have broken during this step. But I have found a successful method of gluing the
fibers, however, it takes some time, so there is a risk of the fiber becoming contaminated, but
the method will avoid the fiber from breaking in the vacuum chamber, when the chamber is
sealed. Figure 3.13 shows a picture of how and where the fiber is glued and is ready to be
transfered into the vacuum chamber.

Figure 3.13: The glued fiber. After gluing the fiber to the cubes, the fiber is curved around the
bolt and glued at all critical breaking points.

I have experienced that it is most easy to glue the fiber to a pair of aluminium cubes that
are separated by an M6 bolt. In the beginning I tried to glue the fibers to wingnuts instead
of the cubes but this turned out to be very difficult because it was almost impossible to get
the wingnuts exactly across each other and if they are not in front of each other they will not
hit the fiber at the same height. The shape and surface of the wingnuts also made it difficult
to glue the fiber to as the glue would leak down the wingnut when applied and the wingnut
surface was not smooth. The aluminium cubes have a flat, smooth surface and the area (1 cm2)
is much larger than the fiber diameter so it is not a problem to hit the fiber even though the
cubes are not exactly across each other.
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The glue is applied with a little wooden stick on top of each cube. (I also apply some glue
on the edges of the cube because here the fiber can break if it experiences some tension (e.g.
when sealing the chamber) that press the fiber end to the sharp edge). The cubes on the M6
bolt are then moved up to the fiber using a mount with two screws where I can change the
horizontal and vertical position of the cubes. The glue droplet on the cubes should touch the
fiber but the cube should certainly not, as this can break the fiber. I did try to apply the glue
after the cubes were moved to the fiber and just touching it, but this is more difficult as the
fiber can break from the small force exerted on it when the glue is applied whereas the fiber
will not break due to the force from touching the glue. I have measured the transmission of
light through the fiber while gluing it and found that the transmission did not change so the
gluing does not affect the transmission.

The fiber should be glued at the transition between stripped and un-stripped fiber. The
fiber is also glued at the edges of the cube to guide it around the bolt. Finally the two fiberends
are glued to the Thorlabs mount so the ends will not twist around each other at any place after
the glue.

The vacuum chamber, see figure 3.15, is made of stainless steal KF components from Pink
Vacuum. I have designed it such that there are two windows to look through so that one can
inspect the fiber with the IR viewer to see if e.g. light is scattered on the fiber as an indication of
dust. The reason for using a vacuum chamber is that the nanofiber trap experiments are done
in vacuum and therefore the fibers have to be tested under the same conditions. In air heat can
be conducted away from the fiber, so in air the fiber will burn at a higher power than in vacuum.

The chamber is sealed by a method described in [35]. We form the vacuum seal around the fiber
by tightening a Swagelok nut compressing a teflon ferrule around the fiber. On the vacuum
flange there is welded a Swagelok fitting where the fiberends come out. The fiber ends are
transferred through the teflon ferrule and the Swagelok nut seals the chamber, see figure 3.14.

Figure 3.14: Teflon fiber feedthrough. From [35]. We use KF components not CF.

I have experienced several critical points which are important to glue as the fiber can break
here when the chamber is being sealed. I think that the fibers did break because when the
Swagelok nut is closed the two fiber ends twisted around each other and the tension from this
twisting could make the fiber break at these sensitive points.
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Figure 3.15: The vacuum chamber. Through the window the fiber can be observed.
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3.2 Fiberburning

In this section the experimental setup for fiberburning is described. Some of the significant
changes in the setup are explained and the experimental procedure is described. Finally the
E-field and intensity at the fringes detector is calculated.

3.2.1 Experimental setup

Figure 3.16: The experimental setup. The elements are described in the text.

The experimental setup for fiber heating and burning consists of an interferometer with the
fiber in one arm. The current setup is shown in figure 3.16. The laser used in the interferometer
is a 852 nm diode laser (red in figure 3.16), denoted the measuring laser. This laser is also
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used in the fiberpulling setup, see figure 3.2. A diode laser is a semiconductor p-i-n junction
laser which outputs an elliptical beam. The output beam is elliptical because it diverges a lot
after being sent out, and the diverging is different in the horizontal and the vertical axes, so
the beam size is larger in one of the axes, which makes it elliptical. The laser beam is directed
using two mirrors through a prism pair to make the elliptical beam more circular. The prism
pair consists of two prisms that are angled with respect to each other in such a way that the
beam passing through is transformed from elliptical to circular. This is done by reducing the
beam size in the elongated direction.

The beam then passes an isolator, to avoid optical feedback i.e. back reflections into the laser.
Back reflections are unwanted as they can cause the laser to mode jump, frequency shift the
laser light or make fluctuations in the amplitude of the light. An optical isolator is a device con-
sisting of two polarizers with a Faraday rotator in between, that allows light to travel through
but not back. It is based on the Faraday Effect that the lights plane of polarization is rotated
as the light is transmitted through glass exposed to a magnetic field. The isolator rotates the
polarization of light in such a way that the backreflected light is polarized perpendicular to the
incoming light, and will therefore not be able to go back through the first polarizer.

Before the polarizing beam splitter (PBS) a waveplate is inserted. A waveplate is a bire-
fringent material that changes the polarization direction of the beam by introducing a phase
shift between the extraordinary and ordinary axes of the crystal. The phaseshift between the
two components of the light determines the polarization of the outgoing light. A birefringent
crystal has two optical axes with different refractive indices, so light that travels along the two
axes has two different velocity components. The different velocities gives rise to a phaseshift
between the light components along the two axes. The waveplate can thus be used to change
the intensity of the beam in the two arms of the interferometer, as the two arms are differently
polarized. PBS 1 splits the beam into the two arms; one arm goes through the fiber while
the other arm does not. The PBS is a cube that splits the incoming beam into two beams of
different linear polarization orthogonally to each other, ideally totally polarized beams. The
two beams meet again at another PBS 2 and interfere at the fringes detector.

The beam in the arm which is reflected from the PBS passes through an acoustic optic modu-
lator (AOM) (ATM-801A2) where the light is shifted in frequency with 80 MHz. The 1. order
(+80 MHz) of the beam is sent to a mirror while the 0. order is sent to an etalon and then to
a reference detector. This is done to be able to measure on the 852 nm light while the fiber is
being heated to be able to monitor if anything unusual happens in the transmitted light. The
light is reflected from the surface of the etalon and from the surface inside the etalon so the
two beams will interfere on the detector and changes in the interference pattern will be detected.

The AOM diffracts and shifts the frequency of light using the acoustic optic effect. A voltage
applied to the AOM crystal provides an RF (radio frequency) signal with a frequency of 80
MHz. This creates strain in the crystal and the refractive index of the crystal changes. The
changes in the refractive index are moving periodic planes of expansion and compression i.e.
sound waves which propagates in the crystal. The sound waves have the same effect as a
diffraction grating for the laser light which is Bragg diffracted on them. The diffracted waves
have different frequencies depending on diffraction angle.

The 1. order of the 852 nm beam is then sent through a Neutral Density filter (ND) with
ND=1 to attenuate it and through another PBS 3 where it is reflected to the fibercoupler and
coupled into the fiber. A dichroic mirror (DMSP805) reflects the beam after the fiber and
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sends it through a waveplate, where the polarization is changed, to PBS 2 where it is combined
with the beam from the other arm. The dichroic mirror transmits wavelengths < 805 nm and
reflects wavelengths > 805 nm.

It is necessary to have an AOM in one arm to shift the frequency of the beam such that
the beams have different frequencies and can be mixed at the fringes detector as calculated in
section 3.2.5.

The arm which is transmitted through PBS 1 should have the same optical path length as
the beam in the fiber arm because the interferometer is more stable to frequency fluctuations
when the length of the two arms are equal. An interferometer measures the optical path length
change through a phase change of the two arms, and the phase change of each arm is propor-
tional to the length of the arm. If the two arms then have the same length they have the same
phase shift and the interferometer is more stable to frequency changes, e.g. laser mode jumps.
Therefore this beam moves a long distance before arriving at the detector. First some light
is taken out by a beam sampler to measure the transmission through the fiber as it is pulled.
Then the beam is reflected from four mirrors, to get the desired optical path length, before
it is send to the PBS 2 to combine with the other beam. A lens of f = 1000 mm is used for
collimating the beam on the way.

The polarizing filter polarizes the beams to the same polarisation before they hit the fringes
detector where they interfere, thereby allowing only one specific polarization to pass determined
by the rotation of the filter. This is necessary as there is only interference between waves with
the same polarization (or with a small angle between the polarisation directions).

It is easier to hit the detector with a mirror in front of it. I have used a dichroic mirror
(DMSP805) in front of the detector that reflects the 852 nm beam and transmits the 789.6
nm beam. In this way the high power 789.6 nm beam will not saturate the detector, and the
detector will only measure the interference fringes produced by the two 852 nm arms. The
lens in front of the detector has a focal length of f = 60 mm, and is used for focusing the light
on the detector. In the experiment it was a problem that the lens was focusing the light to
much on the detector such that it was locally saturated, so the lens was moved a bit from the
focal length f, to avoid saturation. The fringes detector is a Thorlabs (PDA10A-EC) fast pho-
todetector with a bandwidth of 150 MHz, so it can measure frequencies below 150 MHz. The
photoelectric effect converts photons into electrons as each photon knocks off an electron from
the photodetector metal. This creates a current and the voltage over the current is measured,
although with some electronic noise.

The other detectors used in the experiment, are also photodetectors. They are calibrated
by trying different settings of the detector gain together with different ND filters to ensure that
the value in voltage on the detector is less than 10 V in the laser current interval used and
that the detector noise (for no beam) is low. A linear fit of the measured power to the detector
voltage then gives the conversion formula. The noise on the detector is seen to scale approxi-
mately linearly with the signal, figure 3.17. The electronic noise (this is from the transmission
detector when the heating laser light is blocked) is seen on figure 3.18. It is seen to oscillate
with a frequency of 50 MHz, as expected.
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Figure 3.17: The noise on detector signal [mW] increases linearly with detector signal in [mW].

Figure 3.18: The electronic noise in [mW] on the transmission detector when the laser light is
blocked as a function of time in [s].

The other laser, the heating laser, (blue in figure 3.16) is a 789.6 nm diode laser that I have
constructed for heating the fiber. The laser beam passes a prism pair and an isolator followed
by two lenses of f = 50 mm and f = 63.3 mm to collimate the beam and make it fit the beam
size on the other side of the fiber. It should be noted for future users that the prism pair
was especially difficult to align, as it was broken in several corners which made it difficult to
position it. The lenses where chosen by considering the size of the beam waist on both sides
of the fibercoupler. I have measured the beam waist of the incoming and outgoing 789.6 nm
beams. The beam waist input should look like the output, so the data were plotted in Matlab
and fitted to a Gaussian beam function to find the optimal beam waist w0 and the optimal
value of the offset z i.e. the position of the beam waist from z = 0. Then a Mathmatica program
was used to find the position and focal length of the lens(es). The program takes as input the
q parameters of the two beams. We want qin = qout where q = z+ i · zR, z is the position of the
beam waist, and zR is the Rayleigh range, both values found with Matlab. Then the program
uses the theory of ABCD matrices for a propagating beam and takes as input the focal lengths
of the lenses. The program outputs the position of the lenses. The only working combination

49



was a setup with first a lens of f = 50 mm placed 15 cm from the 789.6 nm isolator and then a
lens of f = 63.3 mm placed 11.4 cm from the first lens. The lenses optimized the coupling into
the fiber. The lenses where found when the setup was as in figure 3.19 but they where kept
when the setup was changed, as they did still improve the coupling into the fiber.

Part of the beam is guided to the reference detector with a beam sampler which transmits
90% of the light. The reference detector measures the heating laser, before it enters the fiber,
while the fiber is heated. The beam passes a waveplate that is locked to the degree that sends
most light through the fiber. The waveplate is placed after the reference detector because it
is a low order waveplate which is a bit wavelength dependent. The beam is then coupled with
two mirrors into the fiber. Before the fiber, the beam is transmitted through PBS 3. When the
PBS is changed (to couple the measuring laser into the fiber) it should not change the heating
laser beam significantly because this beam is transmitted through the PBS.

After the vacuum chamber the beam goes to the output detector, which measures the amount
of light going through the fiber. The dichroic mirror separates the two beams going out of the
fiber by transmitting λ < 805 and reflecting λ > 805. The ND filter in front of the detector
is a ND=2 reflective filter, to avoid saturating the detector. The filter is tilted such that the
reflection does not go back into the fiber.

It should be noted that I also use the 789.6 nm reference detector as a reference detector
for the 852 nm light in the fiberpulling experiment, see figure 3.16. (For this experiment I
removed the magnetic beam sampler. The lenses are placed to collimate the 789.6 nm beam,
so other focal lengths might be better for the 852 nm beam but I found it convenient to use
the same detector, also because of the lack of space for yet another detector).

The fibercoupler used for coupling the beam into the fiber is a free space fibercoupler (A230-
TM-B). Several fibercouplers were tried before this was chosen. The problem with the other
fibercouplers was usually that the lens in front of the fibercoupler could not be positioned to the
correct length for collimating the beam correctly and other lenses in front of the fibercoupler
did not help either.

In the experiment the change in the optical path length of the light is measured by look-
ing at the interference signal on the detector. The distance that the interference fringes move
corresponds to the optical path length change. When the fiber is heated with the laser the in-
terference signal reveals that the fringes move and that the fiber is elongated. The fringes move
in the opposite direction when the fiber is cooled and contracts. In this way the optical path
length change of the light through the nanofiber in vacuum can be measured as the nanofiber
is heated.

3.2.2 Significant changes in the setup

The building of the setup started in the spring 2014 then during the summer 2014 the setup
was moved as it used too much space and it was moved again in the beginning of the autumn
2014 to make it more convenient working with it so for example that the vacuum chamber did
not have to be moved so much every time a new fiber was transferred. This meant that there
have been many opportunities to change and improve the setup. Many adjustments were small
improvements like e.g. the path for coupling the 789.6 nm light into the fiber consisted in the
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beginning of two PBS´s but was changed to two mirrors. In October 2014 the setup looked
like figure 3.19. In March an etalon was added together with the 852 nm zero order reference
detector, figure 3.20. In April the two arms of the interferometer was changed and the setup is
now as shown in figure 3.16.

Figure 3.19: The experimental setup as it was in the autumn. The elements are described in the
text.
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Figure 3.20: The experimental setup as it was in the spring. The elements are described in the
text.

3.2.3 Heating laser (789.6 nm)

For the experiments I constructed a laser for heating and burning the fibers. It is a diode
laser with a wavelength of 789.6 nm from Thorlabs (LD785-SH300) As the purpose of the
laser is to heat the fibers, it is a powerful laser which can output powers up to 280 mW, see
figure 3.21. The laser can according to the specs output 300 mW power. Therefore the laser
does not have a grating, to narrow the linewidth of the laser, as the precision of the lasing
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wavelength is not so important. A thermistor measures the temperature of the laser and a
Peltier controls it using the thermoelectric effect. The lasing threshold is found from measuring
the laser power with a powermeter as a function of the laser current. The measured linear part
of the data (from I = 97 mA to I = 300 mA) is fitted to a linear function which gives:

P (I) = 0.9717mW
mA
· I − 90.32mW

So the lasing threshold is: P (I) = 0 ⇒ I = 90.32/0.9717 = 92.95 mA which fits well with
the specs value of 92.9 mA.

Figure 3.21: The power in [mW] as a function of the current in [mA]. The measured data (blue
dots) fitted to a linear function (red curve).

As there were issues with backreflections into the laser the maximum laser current was set
to 350 mA such that the maximum output power of the laser is below 250 mW.

3.2.4 Description of the experimental procedure

The air is pumped out of the vacuum chamber first using the roughing pump and then the
turbo pump, see figure 3.22. First the needle valve is opened, and when vacuum is established,
the bulk valve is opened. It is important to pump the air out slowly as rapid pumping can
create a storm inside the chamber which can easily break the fiber at the tapered section.
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Figure 3.22: The vacuum chamber with the pumping system.

It was discovered that a proper pumping rate could be found by monitoring the transmission
through the fiber while pumping. The pumping rate should then not affect the transmission
through the fiber. When a vacuum is established the two laser beams are coupled into the
fiber (789.6 nm with the mirrors and 852 nm with a mirror and PBS 3, see figure 3.16). The
focus on the free space fiber in-coupler is optimized for the heating laser as we want to heat
and eventually burn the fiber. The coupling is typically 40% for the measuring laser and 60%
for the heating laser.

Then the interference signal of the two 852 arms is found by modematching the two beams.
The visibility of the interference signal should be optimized, so using the two mirrors in the
fiberarm the beam is ”walked” into the detector to spatially overlap the fiber arm with the
other arm which is already hitting the detector. It should be noted that it can help a lot on the
coupling of light out of the fiber to change the position of the end of the fiber in the fibercou-
pler ferrule (Bullet bare fiber adapter). This is probably because the lens in the fibercoupler
is not optimal for collimating the beam even though this fibercoupler was the best avaliable
choice. The fiberend should of course be positioned at the place where the signal is largest. If
necessary the waveplate in the fiberarm and the polarizer before the detector are changed. It
is most optimal if the polarizing filter transmits approximately 50% of each beam. It can be
easier to find the interference signal if an additional waveplate is inserted in the arm without
the fiber to change the polarization of this beam such that the light is reflected from PBS 2,
while changing the waveplate of the fiber arm such that most light is transmitted through PBS
2. Modematching of the beams can then be done at a point after PBS 2.

The interference signal should have the same frequency as the LO signal, 80 MHz, and the
interference should of course disappear when one arm is blocked. It can be useful to check that
the fringes moves in one direction when pushing slightly a mirror and in the other direction
when pulling slightly on a mirror. When the signal is optimized such that it is much larger than
the noise, the measurements can be performed. For the experiment the amount of measuring
light in the fiber arm should be small, as we do not want to heat the fiber with this laser, a
power of 100 µW is typically enough, while there can be several mW in the other arm. The
current on the measuring laser should be chosen such that the laser is not modejumping. If the
laser is mode jumping often it is enough just to change the current by ± 1 mA.
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The fringes are sampled while the heating laser is blocked (causing the fiber to cool) and
unblocked (causing the fiber to heat). The current on the heating laser is increased after each
blocking so the power of the laser increases for each heating. The heating laser is blocked just
before the f = 50 mm lens, see figure 3.16, such that there is no light on either of the heating
laser detectors. During the experiment the signal on the two reference detectors and the output
detector are then measured.

The interference signal from the detector is connected to an oscilloscope such that the fringes
can be seen on the oscilloscope while heating the fiber. This is used to determine when the fiber
burns because then the interference signal (fringes) will disappear. On the computer screen the
fringes counting can be seen while doing the experiment, as the data is sampled and plotted
shortly after. It is helpful to see how much the fringes counting change and whether the data
sampling seems correct. Even though it can be difficult to follow everything that happens while
doing the experiment because the axes on the plot changes very fast, so it is difficult to judge
how much the optical path length changed and if it e.g. decreased to the initial length when
the heating laser was blocked.

After the fiber is burned the actual coupling of light into the fiber can be measured by clipping
and cleaving the fiber end just after the fiber (in) coupler and measure the coupling through
the piece.

3.2.5 Calculation of the E-field and the intensity at the fringes de-
tector

In the interferometer the two 852 nm beams in the two arms interfere at the detector where
we see the beatnote. The optical path length change of the two arms gives a phase shift between
the two beams, which at some points on the detector will be destructive and at some points will
be constructive, i.e. the interference. The two beams have different frequencies, as the AOM
shifts the frequency of the beam in the fiber arm from ω to ω+ Ω, such that they can be mixed
at the detector. The two arms have approximately the same optical path length, because while
the beam in the fiber arm receives a phase shift from propagating in the fiber with a refractive
index, the beam in the other arm propagates a long distance. The two beams are then shifted
in phase since the beam through the fiber gets a phase shift when passing through the fiber
exposed to heating.

When the fiber is heated, the fiber is elongated l(T ) and the fibers index of refraction n(T )
changes, giving rise to a phase shift of the light through the fiber. The light that goes through
the fiber sees a changed optical path length ∆opl = ∆(n · l). Actually it is ∆opl =

∫
n(l)dl

as n varies with l, so the light is phase shifted with respect to the light through the cold fiber
or the other arm. The phase shift is ∆φ = k · ∆opl. When the light through the fiber is
phase shifted and the optical path length changes, the interference signal moves the amount
of fringes m corresponding to the changed optical path length ∆opl = m · λ0. (1 fringe = 1 λ
= 1 λ0

n
). From the optical path length change one could find the fibers elongation length l as;

∆opl = ∆(n · l) = m · λ0 then l = mλ0
n

. The changed elongation length is then the length the
empty arm should be made longer to see no moving of the fringes signal, as the fiber is heated.

In this experiment we investigate the optical path length change of the light. The elonga-
tion or contraction of the fiber should not be thought of as a physical elongation or contraction
because as the fiber is pre-tensioned and glued to the metal cubes so the change in physical
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length is smaller than the pre-tensioned length, as mentioned before. The optical path length
change is both the length change and the refractive index change. It is difficult to say how
much l changed because both l and n changes when the fiber is heated. As mentioned before
the change in refractive index n is due to that n depends on temperature and strain. The
change in the fibers length l when the fiber is heated will be to relax the pre-tensioned fiber a
bit instead of elongating the fiber.

The E-field of the beam in the empty arm is
−→
E empty = Ee,0 · ei(kz−ωt)ẑ where Ee,0 is the

amplitude, k = 2π
λ

is the wavevector, ω the frequency and t is the time. The E-field in the

fiber arm with the AOM is
−→
E AOM = EA,0 · ei(kz−(ω+Ω)t+φ)ẑ, where EA,0 is the amplitude, Ω is

the freqency which the AOM shifts the light with and φ is the phase shift the light gets when
passing through the fiber.

I have assumed that both fields are plane waves and polarized in the z direction. Since we
are looking at the interference in time, for this calculation the direction is not important and
could be omitted.

I therefore only look at the size of the field. The total E field at the detector is then:

Etotal = Eempty + EAOM = Ee,0 · ei(kz−ωt) + EA,0 · ei(kz−(ω+Ω)t+φ)

At the detector we measure the intensity of the field which is:

I = |Etotal|2 = E∗total · Etotal =

(E∗e,0 · e−i(kz−ωt) + E∗A,0 · e−i(kz−(ω+Ω)t+φ)) · (Ee,0 · ei(kz−ωt) + EA,0 · ei(kz−(ω+Ω)t+φ)) =

|Ee,0|2 + |EA,0|2 + E∗e,0EA,0e
−i(Ωt−φ) + E∗A,0Ee,0e

i(Ωt−φ)

Generally the amplitudes Ee,0 and EA,0 are complex but we can write them as E = |E|eiΦ.

I = |Ee,0|2 + |EA,0|2 + |Ee,0|e−iθ|EA,0|eiψe−i(Ωt−φ) + |Ee,0|eiθ|EA,0|e−iψei(Ωt−φ) =

|Ee,0|2 + |EA,0|2 + |Ee,0||EA,0|e−i(Ωt−φ+θ−ψ) + |Ee,0||EA,0|ei(Ωt−φ+θ−ψ) =

|Ee,0|2 + |EA,0|2 + |Ee,0||EA,0| · (e−i(Ωt−φ+θ−ψ) + ei(Ωt−φ+θ−ψ)) =

|Ee,0|2 + |EA,0|2 + |Ee,0||EA,0| · 2 cos(Ωt+ φ′)

where φ′ = −φ + θ − ψ is the total phase. We see that we measure a signal at the fre-
quency Ω which is exactly the frequency that the AOM is driven with. Therefore the signal on
the detector should in frequency be identical to the signal sent to the AOM. At the detector
there is a high pass filter at 50 MHz that only allows components with frequencies > 50 MHz
to pass, so the DC terms |Ee,0|2 and |EA,0|2, which are constant in time, are sorted out.

Then at the detector we only have the AC term I = 2|Ee,0||EA,0| · cos(Ωt+ φ′).

At the detector the signal is demodulated into the I and Q components, i.e. the interference
signal from the detector is mixed with the RF signal at 80 MHz, which is the local oscillator
and is the same signal that is sent to the AOM, and then we get the I and Q signals.
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In the demodulation circuit the signal is mixed with IΩ = A · cos(Ωt):

Ic = I · IΩ = 2|Ee,0||EA,0| · cos(Ωt+ φ′) · A · cos(Ωt) =

2A|Ee,0||EA,0| · 1
2
(cos(Ωt+ φ′ − Ωt) + cos(Ωt+ φ′ + Ωt)) =

A|Ee,0||EA,0|(cos(φ′) + cos(2Ωt+ φ′))

We have a low pass filter that sorts out the fast 2Ω frequency term such that the signal is:

Ic = A|Ee,0||EA,0| cos(φ′)

This is the I or in phase component of the signal at the detector (it is in phase with cos(φ′)).

In the demodulation circuit the signal is mixed with IΩ+π/2 = A · cos(Ωt+ π
2
):

Id = I · IΩ+π/2 = 2|Ee,0||EA,0| · cos(Ωt+ φ′) · A · cos(Ωt+ π/2) =

2A|Ee,0||EA,0| · 1
2
(cos(Ωt+ φ′ − Ωt− π/2) + cos(Ωt+ φ′ + Ωt+ π/2) =

A|Ee,0||EA,0|(cos(φ′ − π/2) + cos(2Ωt+ φ′ + π/2))

Again we have a low pass filter so the signal is:

Id = A|Ee,0||EA,0| cos(φ′ − π/2) = A|Ee,0||EA,0| sin(φ′)

This is the Q or quadrature component of the signal (it is π/2 out of phase with the I compo-
nent).

A drawing and description of the electronics used can be found in section 3.3.1 and in the
appendix.
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3.3 Data sampling and data analysis

In this section I will explain how the data is sampled and analysed. In the experiment the
optical path length change is measured. The input from the interferometer is the fringes signal
from the fringes detector.

3.3.1 Electronics

Figure 3.23: Drawing of the data sampling. VCO is voltage controlled oscillator, amp is amplifier,
comp is comparator, HPF is high pass filter and LPF is low pass filter. The elements are explained
in the text.

I have constructed electronics for data sampling using a design by Jürgen Appel shown in
details in the appendix figure 7.1. The electronics mix the radio frequency (RF) fringes signal
from the detector with the local oscillator (LO), which is the AOM driving signal at 80 MHz
(also RF signal). This gives us the I and Q signals that tells if the optical path length change
is increasing or decreasing.

The I and Q signals are the In phase and Quadrature components of the fringes signal. The I
and Q signals are separated in phase by π

2
and therefore they are called quadrature signals.

When there is no change in the fringes signal the I and Q components are constant (either
0 or 1). When the fringes signal change (as the fiber is heated and cooled) the I and Q signals
are alternating between 0 and 1. The I and Q signals can only change one at a time.

A schematic of the electrical circuit used to drive the AOM and mixing the RF with the LO is
seen in figure 3.23. A photo of the electronics used for data sampling is seen in figure 3.24. All
the electrical components are from mini circuits.
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Figure 3.24: A photo of the electronics used for data sampling.

In the lower left of figure 3.23 we see the signal from the fringes detector which passes a
high pass filter (PHP-50+) which allows the higher frequency components >50 MHz from the
detector signal to pass. The filter is there to avoid the amplifier afterwards from saturating.
Then the signal passes a low noise amplifier (MAN-1LN) which amplifies the weak signal with
28 dB. The RF signal then enters the mixer. The other signal, the LO, comes from the VCO, a
voltage controlled oscillator. The frequency of the oscillating signal sent out from the VCO is
controlled by the applied voltage. This voltage is set to give a signal of Ω = 80 MHz. The VCO
signal is split into two signals; one that goes to the mixer through an amplifier (MAN-1HLN)
and one that goes to drive the AOM. The amplifier (MAN-1HLN) amplifies the signal to 10
dBm and sends it to the mixer. This signal is the strong local oscillator. The other part of
the signal is also amplified to 10 dBm with the amplifier (MAN-1HLN) and then send to an
attenuator (PAS-3+) which attenuates the signal below 5 dBm such that it can go to the AOM.
The signal then pass through a coaxial amplifier (ZHL-1-2W-5+) connected to a heatsink. The
signal is amplified with 29 dB so it is at most 33 dBm = 2W when it goes to drive the AOM.
The heat sink is taking the generated heat away from the system.

At the mixer, the I&Q modulator (MIQC-88M), the LO and RF signals are mixed and the
output is the I and Q signals, as calculated in the section 3.2.5. Both the I and Q signals pass
a low pass filter that only allows frequencies < 3 MHz to pass so the fast oscillating terms at
2Ω are sorted out, as also found in section 3.2.5. The signals then pass a comparator. The
comparator is like a switch where the voltage over the incoming signal Us is compared with
another voltage U. If Us <U the output is 0 V (”0”) and if Us >U the output is 5 V (”1”).
The I an Q signals are then measured as being either 0 or 1 and we have the possible outcome
IQ values: 00, 01, 10, 11. The comparator is seen to convert the signals from analog to digital.

The I and Q signals are read by a microcontroller and then by the LabJack (LabJack U6).
The microcontroller samples the data faster than the LabJack, so we do not lose data as we
did when we only used the LabJack for data sampling. The microcontroller has a sample rate
of 336 kHz, so we can sample the data correctly if there is always at least 1

336 kHz
= 3 µs be-

tween two samples, i.e. the optical path length must not change by more than 1/4 wavelength
(1 count) within 3 µs. The LabJack also receives data from the three detectors: the reference
detector of the measuring laser and the reference and transmission detector of the heating laser.
The LabJack furthermore receives an input from the stages containing information about the
position of the stages and from the stages controller. The data is then all sent to be saved in
a file on the computer (PC).
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3.3.2 The optical path length change from the I and Q components.

In the experiment the I and Q values are measured, and an algorithm then converts the I
and Q signals to fringes counts as described below. Then the algorithm converts the fringes
counts for each sample to optical path length change as a function of time, and by dividing the
number of samples by the sampling rate, the duration of the experiment can be found.

The data is thus a number (counts) which change by zero or one for every measurement.
Therefore the microcontroller samples the data and converts the counts to a 6 bit Gray code
where only one bit is changed at every measurement. The advantage of sampling the data as
Gray code is that here the data is read while the bits change so if only one bit change at every
measurement then we can only lose one bit.

It is important that we measure all the data, because missing data can make it difficult to
tell whether the optical path length change increased or decreased.

The gray code is then decoded to binary.
The algorithm considers the difference between the current data and adjacent data to dis-

cover how much the data has changed and in which direction, i.e. if the fiber contracted or
elongated.

The fringe counts is then the cumulative sum of the differences. An example of the raw
data is plotted in figure 3.25.

Figure 3.25: The raw data, the fringes counts versus sample. The sample rate was 8333 samples/s.

The optical path length change of the light through the fiber is calculated from the fringes
counts. When the I and Q signals changes 4 times the fringes move by 1 fringe, so the fringes
counts should be divided by 4. We know that 1 fringe corresponds to 1 wavelength. As we
consider the interference of the two arms on the detector, the relevant wavelength of the mea-
suring laser is the vacuum wavelength of 852 nm. The optical path length change in microns is
then L = ∆opl = fc

4
· 0.852 µm where fc is the fringes counts. An example of the optical path

length change as a function of time is plotted in figure 3.26.
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Figure 3.26: The optical path length change of the fiber as a function of time. Between each peak
the fiber is heated with increasing power.

We see that the data from the experiment consists of many heating and cooling transients
where the power is increased for each successive. Each peak contains a lot of data about the
heating and cooling. An example of a zoom on a peak is shown figure 3.27.

Figure 3.27: Zoom on the second peak in figure 3.26

.
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3.3.3 Analysing the cooling transients.

To analyse and compare the cooling transients the algorithm allows you to zoom in on
one transient and pick the sample point exactly where the cooling starts. From this point the
evolution of the transient can be plotted, see figure 3.28, for the cooling transient of the peak
in figure 3.27.

Figure 3.28: The cooling transient of the second peak (figure 3.27). The time and fringes counts
are changed such that the transient starts in t = 0 and ends at fringes counts = 0.

We see that the transient lasts about 1 s. This is the typical time it takes the fiber to cool
and the fringes counts to go back to the zero point.

Each transient is then analysed. The data in the transient is smoothed over 85 samples.
The number 85 is chosen because the fringes counts curve is not changing dramatically over
approximately 10 ms and the sampling rate times 10 ms is about 85 samples. Then the difference
between every adjacent data point is found and divided by the inverse of the sampling rate to
get the difference in fringes counts per sample converted to difference in fringes counts per time.
This is the rate of cooling and is plotted in figure 3.29.

Figure 3.29: The rate of cooling dL
dt as a function of time t.

The rate is then converted to change in optical path length change per time, and plotted as
a function of optical path length change, figure 3.30.

62



Figure 3.30: The rate of cooling dL
dt as a function of optical path length change L.

To examine the characteristics we have plotted this as a log-log plot. To avoid diverging
data, we have to neglect data equal or close to zero. For the optical path length change this is
done by setting all data less than 1 µm equal to 1 µm. For the rate dL

dt
this is done multiplying

all data by -1 in order to make all data positive and then setting all values smaller than 0.05
µm/ms equal to 0.05 µm/ms. Now the logarithm of dL

dt
can be plotted as a function of the

logarithm of the optical path length change L, see figure 3.31.

Figure 3.31: The logarithm of dL
dt as a function of the logarithm of optical path length change L.

This is then done for all the peaks that we want to analyse.

3.3.4 Analysing the heating transients.

The heating transients are analysed in a way similar to the cooling transients. The evolution
of the heating transient is chosen with the algorithm. I choose the transient from the start of
the heating to the point where the optical path length change is equal to what it is when the
cooling begins, because in this way I avoid the spikes in the transients.

The heating transient of the peak in figure 3.27 is shown in figure 3.32.
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Figure 3.32: The heating transient of the second peak (figure 3.27). The time and fringes counts
are changed such that the transient starts in t = 0 and at fringes counts = 0.

We see that the transient lasts about 0.18 s. This is the typical timescale on which the fiber
heats.

Each transient is then analysed. The data in the transient is like the cooling data smoothed
over 85 samples and then the difference between every adjacent data point is found and divided
by the inverse of the sampling rate to get the difference in fringes counts pr sample converted
to difference in fringes counts pr time. This is the rate of heating and is plotted in figure 3.33.

Figure 3.33: The rate of heating dL
dt as a function of time t.

The rate is then converted to change in optical path length change pr time, and plotted as
a function of optical path length change, figure 3.34.
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Figure 3.34: The rate of heating dL
dt as a function of optical path length change L.

To plot this as a log-log plot if the optical path length change is less than 1 µm we set
it equal to 1 µm. If the rate dL

dt
is less than 0.05 µm/ms it is set equal to 0.05 µm/ms. The

logarithm of dL
dt

is plotted as a function of the logarithm of the optical path length change L,
in figure 3.35.

Figure 3.35: The logarithm of dL
dt as a function of the logarithm of optical path length change L.

Again this is then done for all the peaks that we want to analyse, although it should be
noted that it will turn out for the heating transients that the log-log plot is not relevant.
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Chapter 4

Results and Discussion of data

In this section I will show some of the interesting results the experiment has shown and
discuss what can be analysed from the data. As the setup was often changed to improve it I
will relate the data shown to the setup at the time the data was measured and since I hope the
thesis will be read by future students I will try to explain how and why the setup was changed.
Finally I will show the data from the working setup where strange behaviour in the fringes
counting (optical path length change) had been eliminated and discuss what these results show
and draw some conclusions.

4.1 Measuring optical path length changes

During the first experiments when interference fringes were visible, the fringes count changed
a lot, often by several thousand counts, when something in the optical path length was changed
(e.g. if a mirror was just slightly touched). But the fringes counting also changed a lot when
nothing in the optical path length was changed, which made it harder to identify the problem.
At that time the experimental setup was as shown in figure 3.19 and it was suspected that
something in the setup was not stable. The elements in the setup were each inspected with
a powermeter to look for instabilities in transmitted or reflected power. Fluctuations in the
transmitted power after the fiber in the vacuum chamber have always been observed, and these
fluctuations are probably due to the fact that the fiber acts as a Fabry Perot resonator for the
light. The huge fringe count change was seen both with a tapered fiber and with a normal
optical fiber positioned in one arm of the interferometer. Several elements were realigned but
the reason for the huge fringes counting change was not found.

It was, however, noticed that at the same time the fringes counting changed a lot (as seen
on the computer) then the interference signal seen on the oscilloscope was jumping from big to
small amplitude and back. So it could look as if the measuring laser was mode jumping. The
laser current was varied but the effect was still seen. The theory was then that the laser light
was backreflected from the fiber end into the laser, which could make the laser modejump. As
the fiber ends are not angle cleaved the light can be backreflected from the fiber end. This
optical feedback could be avoided by re-designing the experiment. If the fiber was in the same
arm as the AOM there would be no backreflections because after the AOM the light is shifted in
frequency, so if the light is reflected back from the fiberend into the laser then the backreflected
light would have another frequency and not cause the laser to mode jump. As re-arranging the
setup would take some time and because we wanted to investigate the fiber breaking power in
vacuum, it was decided first to try to reduce the power of measuring light in the fiber arm,
because then only a small amount of light would be backreflected into the laser. With the
power reduced by a factor of 10 the change in fringes counts for the steady setup were then
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only the expected fluctuations. As mentioned earlier we also only need a few times 100 µW of
the measuring laser into the fiber since we should not heat the fiber with this light.

4.2 Data sampling rate

A typical result from the first fiber burning is shown in figure 4.1. The optical path length
change of the measuring laser and the transmitted power and reference power of the heating
laser was monitored. At that time I only experimented with heating the fiber and not cooling
it. For this experiment the current of the heating laser was increased in steps of 1 mA until the
fiber burned. The transmitted power data show that the fiber did burn during the measurement
and the reference power signal shows how the heating laser was mode jumping. We can see that
the fiber breaks as the transmitted power abruptly drops to zero and the optical path length
change remains constant. This fiber burned at 15 mW of transmitted power. The measurement
of this value was of course one of the experimental aims. When this experiment was done the
sampling rate was only 2500 Hz (only the LabJack was used for data sampling), which we now
know was too low, so probably data was lost and the optical path length change might not have
been measured correctly, but at that time we did not realize that the sampling rate was too low.

The jumps seen in the power on the reference detector looks like the heating laser mode jump-
ing. These jumps are not seen in the transmitted power, which is strange as the detectors are
measuring on the same laser. This will be explained below.

The transmitted power shows fast oscillations on top of a smooth behaviour with the heating
laser drive current and hence the input power to the fiber. These fast oscillations are assigned
to Fabry Perot resonances of the etalon formed by the cleaved fiber endfaces. Both the optical
path length of the fiber and frequency changes of the heating laser lead to rapid scanning over
the transmission resonances. The fiber ends reflects 4% of the light (of both the measuring
laser and heating laser) so the transmitted power is expected to oscillate with at maximum
16% because of this effect. But we also observe that the oscillations oscillate with a greater
amplitude for higher power and for the highest measured power they oscillate with more than
16%.
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Figure 4.1: The optical path length change plotted together with transmitted power and reference
power of the heating laser. The left y-axis belongs to the optical path length change and the right
y-axis belongs to the transmitted power and reference power. The signal of the reference power is
multiplied by 10 for clarification.

During this phase of the experiment there were sometimes problems with finding the true
interference signal of the two beams. The interference amplitude should be large compared to
the noise and the interference should disappear when one arm is blocked. Often when the fiber
arm was blocked, there was still some interference. It was then found that the interference
also contained an interference between the 0. order beam and 1. order beam from the AOM.
It turned out that there was a leakage of the 0. order into the 1. order beam which also made
the measured data incorrect. The leakage was avoided by removing dust from the AOM with
an air spray, since the dust in the AOM scatters the 0. order beam such that it can interfere
with the 1. order beam on the detector.

We then investigated cooling and heating of the fibers, by blocking and unblocking the heating
laser. A typical result is shown in figure 4.2. The heating laser is blocked and the current
(power) of the laser is increased and then the laser is unblocked. Therefore the data should
consist of ”steps” of blocking and unblocking the laser, where the optical path length change
increases when the fiber is heated and we see the optical path length change decreasing when
the fiber is cooled, together with the transmitted power of the heating laser increasing and
decreasing.
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Figure 4.2: This long experiment measured the optical path length change while the fiber was
heated and cooled. The sampling rate was 2500 Hz which was later found to be too low to measure
all the data correctly.

In figure 4.2 we only see the optical path length change increasing during heating and not
decreasing during cooling, so something is not correct, because the heating laser was blocked
and unblocked during the experiment, as also seen on the transmitted power, which is dropping
to zero when blocking the beam.

This fiber burned at about 60 mW as seen on the figure, but I note that just before the
fiber burned it was able to withstand a power of almost 70 mW.

Later it was found that the LabJack, which was used for measuring the data, was loosing
some data because the sampling rate (2500 Hz) was too low. The data were acquired but the
LabJack was just to slow to catch all I/Q transitions. Therefore it was not possible with the
data to tell if the optical path length change increased or decreased. It was also suspicious that
the total optical path length changed by almost 1 mm as seen on the figure. This measurement
also shows the mode jumps in the power on the reference detector, which will be discussed later.

During the experiment it was observed on the oscilloscope that the interference pattern, which
should be steady when the optical path length does not change and move sideways when the
fiber is heated or cooled, was also jumping up and down together with the amplitude decreasing
and then increasing again, when the fiber was being heated. This could be because the fiber
is not polarization maintaining. If the fiber is birefringent and can change the polarization of
the light through it when it is heated, the interference signal may change in amplitude, as it
depends on the polarisation of the two interfering beams. The amplitude is largest when the
two beams have the same polarization and when the two beams have different polarisation the
amplitude is smaller.

As it was observed that lost data events were detected in the data sampling and that the
sampling rate of 2500 Hz was slower than the fiber response to being heated and cooled, the
sampling rate was then increased to the maximum of 10 kHz.
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The lost data events are defined by a change of both the I and Q signals within the same
sample period. Such an event makes it impossible to decide whether the optical path length
increased or decreased from the last sample and indicates that the sampling rate is too slow to
track the dynamics of the fiber.

After increasing the sample rate the data looked e.g. like figure 4.3, which now also shows
effects of cooling. Although data was still lost, as seen in figure 4.4 where the points where
both the I and Q signals change are shown by the green lines.

Figure 4.3: Heating and cooling the
fiber. The optical path length change
does not give much information as
much data is lost as seen in figure 4.4.

Figure 4.4: The optical path length
change data from figure 4.3 with over
lapped green vertical lines to mark
lost data events.

We then had to change the program used for data sampling such that the total sample rate
could be increased to 50 kHz and the sample rate per channel was 12012 Hz. The data were also
sampled in a different way such that the data resolution was better, to prevent the sampling
from losing data and measure transitions with both the I and Q signals changing.

4.3 Heating laser mode jumps

The laser modejumps which have only been seen in the power on the reference detector,
figure 4.1 and figure 4.2, were still puzzling so the attention was directed to the setup and the
heating laser path.

Here a λ/2 waveplate was positioned before the PBS and reference detector, see figure 3.19.
This waveplate was used to change the amount of light going to the fiber and the detector
respectively. The waveplate was a low order waveplate so the phase retardation, and hence the
polarization transformation of the waveplate depends on the wavelength. Polarization changes
are then converted into intensity changes at the output of the following PBS. Because if the
laser mode jumps and the wavelength of the light changes a bit then the waveplate will trans-
mit a different amount of light power and the calibration of the detector will be wrong, as the
detector is placed after the waveplate and as it was calibrated for the waveplate positioned to
transmit at a certain amount of light. This effect is especially dramatic if the PBS is oriented
for almost complete extinction at the output port to the monitor detector, as it was here, so
the relative error in the power on the detector was large. When the fiber heating experiment
was performed the current on the heating laser was changed. At some currents the laser could
mode jump to another wavelength.
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Therefore the path for the heating laser was changed such that the waveplate was placed
after the detector, see figure 3.20. The light then passes a beam sampler which transmits
almost all the light and reflects only a few percent to the detector, which is still sufficient for
the reference detector. The beam sampler is less sensitive to polarization. Also the polarization
of the beam sampler was fixed by the isolator, and it consists of glass with an antireflecting
coating such that it is not very wavelength dependent. The waveplate was still used for changing
the polarization of the light and was positioned such that most light would be reflected from
the PBS into the fiber.

4.4 A new heating laser setup

After the heating laser path was changed the data for fiber heating looked like the example
shown in figure 4.5.

Figure 4.5: The optical path length change plotted together with the transmitted power and the
power on the reference detector. Notice that the top of the transients change.
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Figure 4.6: The optical path length change shown together with the green lines indicating where
data is lost. This is seen to happen when the fiber is heating or cooling.

It is seen that the behaviour of the power on the reference and transmission detectors are
similar, as expected, and no mode jumping in the power on the reference detector is observed.
It is also seen, see figure 4.6, that the LabJack still miss some data points for higher power.
However the sampling rate was now high, 12500 Hz, so lost data are now a minor fraction of
all the sampled data.

Several additional explanations for the lost data were investigated. Besides that the data
sampling was too slow, it could also be if the measuring laser was mode jumping and if the
signal on the detector then changed too fast for the LabJack to measure it. The lost data could
also be noise e.g. if the interference signal was poor then only the noise would be measured.
The interference signal is always optimized before measuring and it is watched on the oscillo-
scope during the measuring. But it could be that it could change faster than resolved with the
oscilloscope.

It is seen that the top of the transients change depending on heating power. For low power
some transients shows spikes while for medium power they are flat, figure 4.5. At the same time
the power signals, change from having a very steep slope to a less steep slope. This is because
here I changed the increment of heating power. This is probably also why the cooling transients
change from rapid heating and cooling, when the fiber is exposed to much more power than the
last heating, to a less rapid heating and cooling, when the fiber is exposed to only a slightly
different power than the previous heating. In this experiment the optical path length change
did go back to its initial length (referred to as the zero point) when the fiber was cooled, which
is also expected if the fiber is not deformed permanently by the heating.

It was also investigated if it is the same places that the data is lost. In figure 4.7, it is seen
that it was usually when the fiber is heated or cooled for higher power that the optical path
length change varies too fast for the LabJack to follow and we lose data.
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Figure 4.7: The optical path length
change and data loss. We see that the data
is usually lost when the fiber is heated or
cooled.

Figure 4.8: Zoom on figure 4.7, blue is the
optical path length change and green is the
lost data.

A subsequent experiment resulted in the data shown in figure 4.9.

Figure 4.9: The optical path length change together with the signals on the detectors.

We see, that the optical path length change for higher heating power is decreasing, which
does not make physical sense. The signals on the detectors, both changes from a very steep
slope to a less steep slope around 150 s. This is again because the increment of heating power
was changed during the experiment. After seeing the results of these experiments it looked like
the sampling rate was still not fast enough, and it was concluded that a microcontroller for
sampling the data was needed before data collection by the LabJack. The microcontroller that
was acquired had a sample rate of 336 kHz, which was a lot faster than the 12.5 kHz used so
far.
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4.5 Saturation of the optical path length change

It was often observed that the optical path length change saturated with power, see e.g.
figure 4.7. It looks like there is a maximum optical path length change. It was considered if it
could be a sign that the fiber was breaking, but no correlation was observed with the breaking.

The saturation of optical path length change with power was not observed in [3]. The
experiment described here and the one in [3] are different but I think it is still interesting
to compare the results. As discussed before the optical path length change is observed in [3]
to increase linearly with power, which they ascribe as due to the fiber being a nanofiber with
λT > d and therefore the thermodynamic behaviour of the fiber can not be described by Plancks
law.

Figure 4.10: This figure show the data from [3] and is shown here to compare it with my data.
The circles are the experimental data, the blue bands the FED predictions and the green bands
the predictions using Plancks law. a) The optical path length change in [µm] as a function of time
in [s] for one heating and cooling transient. b) The maximum optical path length change in [µm]
as a function of transmitted power in [mW] for a fiber with a 5 mm long waist. c) The maximum
optical path length change in [µm] as a function of transmitted power in [mW] for a fiber with a 10
mm long waist. d) The maximum optical path length change in [µm] as a function of background
gas pressure for a fiber with a 5 mm long waist.

From figure 4.10 we see that the range of laser powers used for heating the fibers in [3] are
similar to the powers I used for heating the fibers. The nanofibers examined by [3] had a longer
waist (5-10 mm long) than my fibers which according to the simulation have a waist of 1-2 mm.
It is expected that a fiber with a long waist will mainly conduct heat by radiation because there
will be too much resistance along the thin waist to conduct heat in the material, whereas a fiber
with a shorter waist will be more able to conduct heat to the taper region. The heating power
at which the dominant effect (i.e. radiation or heat conduction) changes will depend on the
length of the waist. But for high heating power, radiation is the dominant effect. This could
explain why we see the saturation of the optical path length change for higher powers. The
saturation of the optical path length change could be because the heating energy added to the
fiber is radiated away at the same rate as it is added. As the fiber is heated to a temperature
Tmax the optical path length change will be ∆oplmax = ∆opl(Tmax) and it will not increase any
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more than this value. So for higher heating temperatures above Tmax the optical path length
change will maximally be ∆oplmax.

4.6 Microcontroller for data sampling

When the data was sampled with the microcontroller a typical sample looked like figure 4.11.

Figure 4.11: The optical path length change in [µm] as a function of time in [s]. The last
measurements are not shown as here the optical path length change increases dramatically.

In the beginning of the experiment, figure 4.11, the zero point shifts and in the end the
fringes counts increase dramatically. The data were sampled very fast with the microcontroller
so now the extreme optical path length change is probably not an error in the data sampling.

The microcontroller samples the data with 336 kHz, so the fringes counts will be correct as
long as the fringes counts does not change by more than 1 count within 3µs (1/336 kHz).

The slopes of the data (optical path length change versus time) can be resolved to see how
fast the data is changing, and to determine if the data is changing faster than 1 count/3µs.
The steepest slopes of the data were investigated but no data changing faster than 0.333 cts/µs
was observed.

The fastest rate of change observed was 1 cts/70 µs. Hence the sample rate is high enough.
As the data sampling rate seemed to be correct we looked after parts of the setup which

were not stable and could obstruct the fringes counting.

On another fiber something interesting was observed see figure 4.12.
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Figure 4.12: The optical path length change in [µm] together with the signals on the detectors in
[mW].

Figure 4.13: Detail zoom of fig. 4.12; the last heating/cooling transient before the fiber breaks is
shown.

On figure 4.12 we see the heating and cooling of the fiber and that the fiber breaks. We
see that the fiber after the last blocking contracts to the zero point (which is almost the initial
length) and then it is broken while the heating laser was blocked because when the laser is
unblocked the fiber is broken; there is no transmitted power and the optical path length change
is constant.

On the last heating transient (shown in detail in figure 4.13) it is seen that the transmitted
power decreases during the heating. The actual coupling of light into the bare fiber was mea-
sured after the experiment and it was lower than the initial coupling into the tapered fiber. The
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actual coupling of the bare fiber should be higher than the initial coupling of the tapered fiber
as the light is scattered at the waist of the tapered fiber. Therefore the coupling must have
decreased during the experiment which is also consistent with the decrease in transmitted power.

An explanation could be that the fiber sags down such that it does not guide the light so
well and then breaks. Usually when the fiber breaks it rips like a rope because the fiber is
under tension, so maybe this fiber was not tensioned as much as the other fibers.

It could also be thought that a particle inside the vacuum chamber was evaporated from
the fiber as the fiber was heated and then when the fiber was cooled the particle condensed on
the waist, where the fiber is thinnest, and absorbed the light. This would be a very unlikely
event and it could also be discussed why the particle would condense on the fiber instead of on
the cold chamber walls. A particle on the nanofiber would explain the decrease in the coupling
but it is not likely that it would break the nanofiber, as it takes around 1 mN of longitudinal
stress to rip a nanofiber [27].

It is strange that we see spikes in the signals of both the transmitted power and the fringes
counts at almost the same time. These spikes are not observed in the reference power signal. If
the spikes are real and not a measurement error then at these spikes a lot of power is transmit-
ted through the fiber and the optical path length change increases a lot. Something could have
changed the coupling of light into the fiber such that at the spikes a lot of light is transmitted
through the fiber and the fiber is heated a lot and the optical path length change increases.

If the laser was mode jumping we would expect to see the power jumping to a new level
and not a spike.

The way the laser is blocked and unblocked is with a piece of thick paper. At the instant
when the paper cuts the beam, the light will be diffracted on the paper, so the lights mode will
change. If the coupling of light into the fiber was not optimized, the diffracted mode could be
thought to ”fit” better into the fiber and then the coupling would increase together with the
amount of transmitted light through the fiber, in this instant of time. This could explain the
spikes and that we do not see the spikes for every blocking/unblocking because as the light is
blocked by hand with a piece of paper it is not possible to do it exactly the same way each
time. But as the duration of the spikes is approximately 0.5-1 s it could be discussed if not the
diffraction effect would happen on a much shorter time scale (as it takes no more than 1 s to
block the beam).

The amplitude of the interference signal during this experiment was low compared to typi-
cal values in the experiment so it is possible that the interference signal was so small that the
detector mostly measured noise. The interference signal was optimized before the experiment
but dropped to 1/3 of its amplitude during the second heating. Later it was discovered that
when the experiment was started the current of the heating laser was 90 mA. The current was
low because we did not want to burn the fiber immediately (and we did not know how much
power it could stand). This current is actually below the threshold (92.95 mA) so the laser is
not lasing as well yet. When the current was increased above threshold of the heating laser (in
the second heating) and the fiber was heated the fiber could have rotated the polarization of
the light and the amplitude of the interference signal would change.

The spikes in the transmitted power of the heating laser are also seen in the optical path
length change, and could indicate that the fringes detector measures light from the heating
laser. At the dichroic mirror before the transmission detector, figure 3.20, a small part of the
heating laser light is reflected towards the fringes detector. It could be that for high power this
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light locally saturates the fringes detector, which fits with the interference signal decreasing.
If the detector is locally saturated for high power this could explain why we saw the extreme
optical path length change of the fiber in figure 4.11. When the heating laser is at the maximum
current (maximum output power) a total of 3.6 mW hits the fringes detector. Hereof 1.2 mW
is actually from the heating laser.

4.7 Local saturation of the fringes detector

Many of the experiments showed an extreme increase in the optical path length change of
the fiber for high powers, as we saw in figure 4.11. It could look like the measuring laser made
a mode jump. As there, at that time, was no reference detector for the measuring laser it was
not possible to check that. Most of the experiments had a low coupling of the measuring laser
light into the fiber because the fiber coupling is optimized for the heating laser light, and it
was therefore discussed to increase the power of the measuring laser in the fiber arm.

For high powers it was also often seen that the amplitude of the interference signal decreased
when the fiber was heated and then it re-appeared at normal height when the fiber was cooled.

During some experiments it was tried to change the rotation of the waveplate (in the fiber
arm after the fiber before PBS 2, figure 3.20) as the fiber was heated at high power and when
the interference signal decreased, to see if the amplitude of the interference signal could be
increased. If the fiber does change the polarization of the measuring light in the fiber arm, such
that it does not interfere as well at the detector with the empty arm, then it should be possible
to change the amplitude of the interference signal back by changing the lights polarization with
the waveplate.

It was discovered that when the fiber was heated and the amplitude of the interference
decreased, the interference signal could get back to almost the same amplitude as it was by
changing the waveplate. Only for very high power was it difficult to get a good signal when
the fiber was heated.

As it looks like the fringes detector was locally saturated by the heating laser the position
of the lens in front of the detector was changed such that the light was not focused directly at
the detector. Then the interference signal did not change in amplitude during the experiment,
and the data now looked like figure 4.14.
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Figure 4.14: The optical path length change in [µm] together with the signals on the detectors in
[mW] as a function of time in [s].

Here the optical path length change increases as the fiber is heated more and decreases to
the initial length as the fiber is cooled. The oscillations in the transmitted power through the
fiber are always observed, due to the fiber behaving as a Fabry Perot resonator for the light. We
see that the optical path length change saturates, and as discussed earlier this was not expected
according to [3], and this indicates that there is a maximum optical path length change of the
fiber. In [3] it was observed that the optical path length change depended linearly on the
heating power but here we always first seen a linear dependence on power and then saturation
(figure 4.14). With this fiber, figure 4.14, it actually looks like that the optical path length
change decreases a bit again for higher powers, indicating that there is a maximum optical path
length change for a certain power.

4.8 Adding a dichroic mirror in front of the fringes de-

tector

The extreme optical path length changes did, however, return in subsequent measurements
so in order to completely avoid the possible saturation of the fringes detector, which was thought
to be the reason for the extreme optical path length changes, the mirror in front of the detector
was replaced with a dichroic mirror such that the heating laser light is removed from the beam
before it arrives at the detector. The dichroic mirror reflects the measuring laser and transmits
the heating laser.

After adding the dichroic mirror, different optical path length changes were then observed
as shown in figure 4.15 and figure 4.16. In these experiments the amplitude of the interference
signal did not change, which could be an indication that the amplitude fluctuations observed
earlier were actually caused by the heating laser saturating the detector.
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Figure 4.15: The optical path length change in [µm] as a function of time in [s] for the first heating
and cooling experiment on the fiber.

In figure 4.15 it is seen that the zero point of the optical path length change is changed
during the experiment but ends at the initial zero point again. An explanation is that the
measuring laser was mode jumping to another mode, when the zero point changed, and then
back.

I notice that when the heating laser is blocked the fringes moves continuously over time. But
when the heating laser is unblocked the fringes jump in discrete steps. Probably because of the
optothermal effect i.e. that the fiber acts as a Fabry Perot resonator for the heating laser light,
so the increasing temperature (power) changes the length of the fiber which is the length of the
Fabry Perot resonator, so the transmitted power of the transmitted frequencies are changed,
and the change in reflected and transmitted power inside the fiber heats the fiber and again
changes the fiber length (fringes moving).

Another measurement afterwards on the same fiber is shown in figure 4.16.
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Figure 4.16: The optical path length change in [µm] as a function of time in [s] for the second
heating and cooling experiment on the fiber.

Here there is no changing of the zero point of the optical path length change. The saturation
of optical path length change with power is very clear. If the first heating (figure 4.15) and
second heating (figure 4.16) are compared it is seen that the optical path length change has
almost the same size and behaviour if the shifting zero point is subtracted from the data
(figure 4.17).

Figure 4.17: Average optical path length change as a function of average transmitted power for
the first heating (blue dots) and second heating (red dots) of the fiber.
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4.9 Investigation of memory effects

The previous observations inspired to test if the fiber has memory, i.e. if the fiber would be
affected by being heated a second time shortly after the first heating (figure 4.18).

Figure 4.18: The optical path length change in [µm] together with the signals on the detectors in
[mW] as a function of time in [s] for the two successive heating and cooling experiments on the
fiber.

Figure 4.19: Average optical path length change as a function of average transmitted power for
the first heating (blue dots) and second heating (red dots) of the fiber.

In figure 4.19, the average transmitted power versus average optical path length is shown.
For the average optical path length the deviation from zero is subtracted (just before the optical
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path length change increases) so all peaks have the same zero point for the two memory test
heatings.

The first and second heating look similar so it looks like the fiber is not changed by the
first heating i.e. it does not have memory about the first heating. The top of the heating and
cooling peaks also look similar for both heatings, and the top of the peaks change in the same
way for high and low power. In a zoom it is observed that for low power they increase gradually
whereas for high power they have a steep increase and then a decrease.

Another memory test on the same fiber is shown in figure 4.20. Here something changes
the optical path length and the three heatings do not look the same. The optical path length
change does not go back to the zero point when the fiber is cooled. No change was observed in
the interference signal during the experiment.

The difference in the zero point of the optical path length change could be because the
measuring laser was mode jumping because of optical feedback, and adjusting the optical path
length change for the zero offsets show that they are rather similar.

Other possible explanations for the shift in zero points could be that the glue was heated
such that the fiber is not so tensioned as we expect. It could also be a deformation of the
fiber. If the fiber is deformed while it is heated, i.e., the heating changes the fibers shape, it
could be thought that it would be observed as a changing of the zero point of optical path
length change. But the deformation would then be expected to happen at a high power close to
the fibers melting temperature, and here the zero point starts to change already at low power.
As discussed earlier the fiber should also be pre-tensioned such that when it is heated it is
expected to relax and then rip so it is not expected that it will deform. The measuring laser
mode jumping is therefore a more probable explanation.

Figure 4.20: The optical path length change in [µm] together with the signals on the detectors in
[mW] as a function of time in [s] for the three successive heating and cooling experiments on the
fiber.

We have seen that it does not seems that the fiber show memory effects. The time between
the measurements should also be sufficient for the fiber to cool. If the fiber was affected by the
first heating it would probably be seen as a deformation the fiber.
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4.10 Analysis of a 400 nm diameter tapered fiber

In this section we analyse data from a fiber with a waist diameter of 400 nm. The fiber was
heated to observe if and when it would break (figure 4.21). The fiber did not break since it
could stand the maximum avaliable heating power of 55 mW.

Figure 4.21: The optical path length change in [µm] together with the signals on the detectors in
[mW] as a function of time in [s]

Figure 4.22: The optical path length change as a function of time when the fiber is heated and
cooled. (Shown here since the red and green curves in figure 4.21 partly overlaps with this curve).

We observe that the optical path length change suddenly increases when the transmitted
power reaches about 40 mW, figure 4.21, and at this point does not go back to the zero value
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Figure 4.23: Zoom on the optical path length changes on figure 4.22. When the heating laser is
blocked, the optical path length changes.

again. This behaviour is what would be expected if the fiber was deformed during the heating.
The fringes counts were all measured and the slope of the optical path length change as a
function of time was not above the maximum rate, so the behavior could not be ascribed to
counting errors.

It was also observed, figure 4.23, that the optical path length change fluctuates when the heat-
ing laser is blocked and the fiber has cooled off. Here the fringes counts (optical path length
change) should be constant, so this may be due to an unstability in the setup and will be
discussed later. The fluctuations were not in the same direction and when they were inspected
closely it was seen that the changes were continuous and not jumps, which also indicates that
it was an unstability and not a sampling error.

The optical path length change is plotted as a function of the average power in figure 4.24.
The optical path length change is taken as the last point when the fiber has been heated and
just before the laser is blocked and the cooling begins. The background is subtracted, where
the background is the deviation from the zero point after cooling at the right hand side of the
peak.
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Figure 4.24: The maximum optical path length change in [µm] as a function of the average
transmitted power in [mW] through the fiber.

We here observe the saturation of the optical path length change and also note that some
fluctuations arise for high power where the optical path length change differs more for each
heating.

4.10.1 Cooling transients

As explained in the data analysis section, every 5th peak of the heating transients are
analysed starting from the 2nd peak (the 1st peak is also included in the following two figures
but the optical path length change of this peak is small probably because the current for this
heating was just above the threshold of the laser).
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Figure 4.25: The cooling rate dL/dt as a function of optical path length change L for every 5th
of the cooling transients in figure 4.22.
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Figure 4.26: The logarithm of the cooling rate -dL/dt as a function of the logarithm of the optical
path length change L for every 5th of the cooling transients in figure 4.22.

We find, as shown in figure 4.25, that the cooling rate dL/dt is numerically largest when the
fiber starts cooling, i.e. for the initial optical path length change L, and then the rate decreases
towards zero as the fiber cools to zero optical path length change. We also find that the cool-
ing rates dL/dt are different depending on the heating power used to obtain the optical path
length change L. Note for example that for a given optical path length change L the cooling
rate dL/dt depends on the power the fiber was heated with, so that the cooling rate is smaller
for higher heating power. This means that the fiber cools faster when it has been heated with
less power for a given optical path length change. This I will discuss later. A priori one might
have expected that the cooling transients were similar and that the fiber would cool in the same
way independent of the power used to heat it.

If the fibers cooling was exponential the rate of cooling dL/dt would depend linearly on L.
As seen on figure 4.25 the slopes are not linear and as described in [3] the thermodynamics of
the fiber is also expected to be more complicated. That the curves are shifted vertically tells
us that the fibers cooling is also a function of the fibers history i.e. of the power it was heated
with and not only a function of the optical path length change of light that the fiber gives rise
to. (It should be noted that the offliers in figure 4.25 appears in the beginning of the cooling
and are related to the sudden decrease in heating that causes some initial disturbance in the
fiber).

In figure 4.26 the logarithm of the cooling rate -dL/dt is plotted as a function of the loga-
rithm of the optical path length change L, and these plots are now linear. While the slopes of
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the curves are rather similar, the different cooling transients (curves) are shifted horizontally
depending on the power, i.e. they do not have the same intersection with the y-axis.

Inspired by figure 4.25 we describe the rate of cooling dL/dt as a function of optical path
length change L by a power law

dL

dt
= −(α · L)β = −αβ · Lβ (4.1)

with α and β positive constants. Taking the logarithm on each side of this gives

log(−dL
dt

) = β · log(α · L) = β · log(α) + β · log(L) (4.2)

which gives the linear function as seen in figure 4.26. By fitting the linear part of the curves
in figure 4.26 to a linear polynomial the coefficients a and b can be found. Using y = a · x + b
where y = log(−dL

dt
), x = log(L), we find for the slope a = β and for the intersection with the

y-axis b = β · log(α). From b we can find α = exp(a
b
). The units of the fits are found with the

optical path length change L in µm and the time t in ms.

The results of the fits are shown in table 4.1. The measurement with the lowest power of
0.03 mW has been excluded from the fit since it was close to the noise level.

Table 4.1: Table of cooling transient data.

Cooling transients
Power a = β b α Lmax τinit [ms] τfinal [ms]

0.72 mW 1.188 -5.31 0.0114 61.8 100 130
4.68 mW 1.230 -5.65 0.0101 95.0 108 149
9.47 mW 1.277 -5.92 0.0097 113 111 163
13.9 mW 1.297 -6.05 0.0094 130 111 168
18.7 mW 1.328 -6.22 0.0093 140 111 175
24.2 mW 1.330 -6.26 0.0090 146 114 181
29.0 mW 1.345 -6.35 0.0089 154 114 184
35.0 mW 1.338 -6.35 0.0087 160 116 185
39.5 mW 1.281 -6.02 0.0091 150 111 164
44.7 mW 1.337 -6.39 0.0084 169 119 190
49.5 mW 1.351 -6.52 0.0080 166 128 208
53.3 mW 1.360 -6.51 0.0083 170 121 199
Average 1.305 -6.13 0.0091 - - -

From the data in table 4.1 we can calculate average values of α and β that could be used in
equation 4.1 as α = 0.0091 and β = 1.305. However we also see that both a and b (numerically)
increases with power, but since the absolute value of b increases faster than a, the value of
α = exp(a

b
) decreases. The results are shown graphically in figure 4.27 and figure 4.28, where

it is observed that the cooling coefficients β and α have a clear power dependence.
We can now improve equation 4.1 by fitting a logarithm to β, see figure 4.27. The fit is

good, except for one peak which was more difficult to fit. I have checked this fit but it does
not change significantly when the fitting interval is changed.
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The β coefficients are fitted to the formula β = c1 · log(P ) + c2 and this gives
β = 0.0389 · log(P ) + 1.1952. The α coefficients are fitted to a linear formula α = d1 · P + d2

which gives α = −5 · 10−5 · P + 0.0104.

β = 0,0389∙log(P) + 1.1932
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Figure 4.27: The quantity β as a function of power in [mW]. The data is fitted to a logarithm.
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α = ‐5E‐05∙P + 0.0104
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Figure 4.28: The quantity α as a function of power in [mW]. The data is fitted to a linear function.

In [3] they also investigated the time constants for the heating and cooling transients and
compared them to the FED prediction and Plancks law. They obtained figure 4.29 and showed
that their data followed the FED prediction. The time constants were obtained by considering
the heating rise times in the interval 10%-50% of maximum optical path length change of the
heating and in the interval 75%-90% of maximum optical path length change of the heating.
For the cooling time constants they considered the cooling fall times in the interval 90%-50% of
maximum optical path length change of the cooling and in the interval 25%-10% of maximum
optical path length change of the cooling.
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Figure 4.29: This figure shows the time constant data from [3] and is shown here to compare with
my data. Left (right) side: heating and cooling time constants in [s] as a function of maximum
optical path length in [µm] for a nanofiber with a 5 mm (10 mm) long waist. The blue circles (red
squares) are the measured initial (final) time constants. Blue (red) bands is the FED prediction
for the initial (final) time constants, green (yellow) bands is the predictions for the initial (final)
time constants using Plancks law.

The cooling time constants τ are found from the rate dL/dt as τ = − L
dL
dt

= −L
−(α·L)β

=

((α · L)−β) · L where the minus sign is due to that it is cooling. To compare my data to the
data found in [3] I will consider τinit the time constant for when the fiber has cooled to 70% of
its initial optical path length change (i.e. of the maximum optical path length change Lmax)
and τfinal the time constant for when the fiber has cooled to 17.5% of its initial optical path
length change (i.e. of the maximum optical path length change Lmax). These times are thus the
average of the intervals considered by [3]. The maximum optical path length change is shown
in figure 4.24.

We then have:
τinit = (α(P ) · 0.7Lmax)−β(P ) · 0.7Lmax and τfinal = (α(P ) · 0.175Lmax)−β(P ) · 0.175Lmax

To calculate τinit and τfinal I use the values from table 4.1 where the obtained values of τinit
and τfinal are also given. The found time constants are shown in figure 4.30.
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Figure 4.30: Initial and final cooling time constants in [ms] as a function of the maximum optical
path length change of the cooling in [µm].

We see that τinit < τfinal i.e. (dL
dt

)init > (dL
dt

)final so the fiber cools faster in the beginning of
the cooling. This is also found in [3] both for the FED and Planck predictions. For my fibers
τinit is almost constant whereas τfinal increases with maximum optical path length change (heat-
ing power). This is in contradiction to what [3] observes as for their fibers both τinit and τfinal
decreases with maximum optical path length change which they claim is because their fibers
follow the FED prediction. As seen in figure 4.29 the Planck prediction for τinit and τfinal is
almost constant in the interval 60-180 µm (the same maximum optical path length changes as
my fibers have). This could indicate that my fibers follows Plancks law more than the FED
prediction. The values of the time constants are in the same interval for my fiber and [3]. But
both my τinit and τfinal are greater than the FED and Planck predictions, although τfinal is
a bit closer to the FED prediction. Here it is important to remember that my setup and the
setup in [3] is not the same and also that my fiber has a waist length much shorter than [3].
The shorter waist length could influence the time needed for cooling.

The reason why the cooling rate dL/dt for a given optical path length change L is different,
depending on the heating power, is probably due to the way the fiber cools, where the rate of
cooling depends on the fibers temperature.

When the fiber is heated the temperature distribution as a function of the fibers length will
be expected to be a function with the peak temperature centred at the thinnest point of the
fiber i.e. at the waist. When the fiber is cooled, the fiber waist, which is hottest and thinnest,
will cool faster than the rest of the fiber.

In figure 4.31 a sketch of the fiber and its temperature distribution is shown. If the fiber
is heated with high power it will start with the red temperature distribution and if the fiber is
heated with less power it will start with the blue temperature distribution. A fiber with the
initially red temperature distribution will, when it is cooled, cool very fast in the beginning
(peaked red distribution), and then slow down (flatten red distribution) as it is very hot and
all the heat from inside the fiber has to travel to the fiber surface to radiate away. This fiber
has more heat to radiate so it will take a longer time to cool than a fiber with the initially
(peaked) blue temperature distribution will need.
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The measured optical path length change will depend on the temperature distribution of the
fiber. The initially hot fiber will in the beginning (peaked red distribution) give rise to a longer
optical path length change than the initially colder fiber (peaked blue distribution), because
it is hotter, but as it is cooled (flatten red distribution) it will give rise to a shorter optical
path length change. At some point the two fibers will give rise to the same optical path length
change. If the two fibers are compared at the time when the initially hot fiber (flatten red
distribution) has reached the optical path length change that the initially cold fiber (peaked
blue distribution) gives rise to, i.e. the optical path length change in the moment the cold fiber
starts cooling, then here the initially hot fiber will be cooling at a rate lower than the initially
cold fiber, because the initially hot fiber has been cooling for a while.

This could be why we observe in figure 4.25, that the cooling rate dL/dt is faster for lower
heating power than for higher heating power for a given optical path length change L.

Figure 4.31: Sketch of how the temperature distribution of the fiber (black) could be visualized.
The red temperature distribution is of a fiber heated with high power and the blue temperature
distribution is a fiber heated with lower power. The initial temperature distribution is peaked and
concentrated at the waist whereas the temperature distribution after some time flattens out.

We have seen that a power law can describe the fiber cooling where the shifting factor
b = β · log(α) accounts for that the rate of the optical path length change dL/dt depends not
only on the optical path length change L but also on the initial heating power through the
coefficients α and β.

We have also seen that we could explain the fact that the rate of the optical path length
change dL/dt depends on the initial heating power by the fiber radiating the heating energy
from its surface. This is what is expected from Plancks law for macroscopic objects. It is
in contradiction to what [3] observes, as they find that to explain the nanofibers radiation of
heating energy they have to consider the volume of the nanofiber. So it seems that the cooling
of the fibers, used in this experiment, despite that they are nanofibers, actually obeys Plancks
law.

4.10.2 Heating transients

The heating transients of the same peaks as the cooling transients are analysed as explained
in the data analysis section. Again the 1st peak is included in the next two figures but not in
the following figures due to the low signal.

The rate of the heating transients dL/dt versus the optical path length change L are shown
in figure 4.32. It is seen that the heating rates increases as the fiber is heated more, so the
fiber heats faster when it is heated more, which is also what is expected. The heating rate is
largest when the heating starts and then it decreases towards zero as the fiber heats. For a
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given optical path length change L the heating rate dL/dt is higher for higher heating power.
Figure 4.33 shows the logarithm of dL/dt vs the logarithm of L.

Figure 4.32: The heating rate dL/dt as a function of optical path length change L for every 5th
of the heating transients in figure 4.22.
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Figure 4.33: The logarithm of the heating rate dL/dt as a function of the logarithm of the optical
path length change L for every 5th of the heating transients in figure 4.22.

As the heating rates dL/dt in figure 4.32 are almost linear, the linear part of the data is
fitted to a linear function y = ax+b where y = dL/dt and x = L. The slopes a and intersections
b of the linear fits are given in table 4.2 and plotted as a function of power in figure 4.34 and
figure 4.35 respectively. It was chosen to omit the first data point as the power of this transient
was so low that the signal was not good (the 2nd heating transient). It is seen that the values
of the slopes a are similar but the intersections b differ more.
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Table 4.2: Table of heating transient data.

Heating transients
Power a b Lmax τinit [ms] τfinal [ms]

4.68 mW -0.0106 1.106 95.0 35.4 284.2
9.47 mW -0.0117 1.339 113 36.2 385.7
13.9 mW -0.0114 1.464 130 38.1 438.7
18.7 mW -0.0113 1.575 140 38.1 423.2
24.2 mW -0.0108 1.658 146 36.9 334.3
29.0 mW -0.0107 1.646 154 40.3 450.8
35.0 mW -0.0107 1.795 160 37.5 347.1
39.5 mW -0.0105 1.694 150 37.0 316.8
44.7 mW -0.0104 1.781 169 40.5 425.1
49.5 mW -0.0103 1.791 166 39.1 363.3
53.3 mW -0.0102 1.806 170 39.6 370.9
Average -0.0108 1.605 - - -

Figure 4.34: The slope a of the fits of fig-
ure 4.32 as a function of power in [mW].

Figure 4.35: The intersections b of the
fits of figure 4.32 as a function of power
in [mW].

Again to compare my data to [3] I will consider τinit the time constant for when the fiber
has heated to 30% of its maximum optical path length change Lmax and τfinal the time constant
for when the fiber has heated to 82.5% of its maximum optical path length change Lmax. These
times are thus again the average of the intervals considered by [3].

For the heating we have the time constant τ = L
dL
dt

= L
a·L+b

so τinit = 0.3·Lmax
a(P )·0.3·Lmax+b(P )

and

τfinal = 0.825·Lmax
a(P )·0.825·Lmax+b(P )

The obtained values of τinit and τfinal are shown in table 4.2 and plotted in figure 4.36.

We see that τinit < τfinal i.e. (dL
dt

)init > (dL
dt

)final so the fiber heats faster in the beginning
of the heating, which is expected and also seen from figure 4.22 where dL/dt is maximum for
zero optical path length, i.e. at the beginning of the experiment. This [3] also finds both for
the FED and Planck predictions.
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Figure 4.36: Initial and final heating time constants in [ms] as a function of the maximum optical
path length change of the heating in [µm].

The initial heating time constants τinit are constant while the final heating time constants
τfinal lies within the same interval but show no obvious tendency. Also in [3] almost constant
time constants for the heating for both the FED and Planck prediction for the same maximum
optical path length changes as considered here is observed. The values of τinit are below the
FED prediction and above the Planck prediction, whereas the values of τfinal are much above
both the FED and Planck prediction. So this fiber heats fast in the beginning, when it has
reached 30% of its initial optical path length change, and it heats very slowly as it has reached
82.5% of its maximum optical path length change. From figure 4.32 we also observe that the
heating rates dL/dt when the optical path length change L has reached 82.5% of its maximum
value are very close to zero, i.e. here the heating is very slow.

From figure 4.25 and figure 4.32 it is seen that the numerical rates of cooling and the rates
of heating are in the same interval. We see that as expected, for both heating and cooling the
initial rate is larger when the heating power is higher. Also we observe that a fiber heated at
a power P in the beginning of the heating, heats at almost the same rate as it cools when it is
cooled.

For both heating and cooling processes we saw that τinit < τfinal i.e. (dL
dt

)init > (dL
dt

)final so
the fiber heats and cools fastest in the beginning of the heating or cooling but the laws describ-
ing the heating or cooling were different.

4.11 Preheating the fiber

In [3] the fibers were preheated before the experiment. The fibers were preheated at a high
heating laser power (80-160 mW [3]) for 30 seconds before each heating and cooling. This was
done to ensure that the fiber was thermalized at the not tapered parts, i.e. that the fiber had
the same temperature at all places except at the nanofiber section (the waist). According to [3]
the thermalization time of the not tapered fiber parts is 8 seconds so the 30 s preheating should
be enough time for thermalization. After preheating the heating laser was switched of for 2
seconds before the heating and cooling experiment was started. The 2 seconds is according

98



to [3] enough time for the nanofiber section to cool so that the fiber was at ambient tempera-
ture before the experiments.

With my setup it takes much more than 2 seconds to block the heating laser and increase
the current (power) on the heating laser. An improvement to the setup would be to have a
mechanical blocking mechanism and a switch to control the heating laser power in which case
this could be done in a short time. This was not implemented in this work, so here the non-
tapered parts of the fiber might also start cooling when the heating laser is blocked.

Figure 4.37: Preheating a fiber for 5 min at maximum power. The optical path length change in
[µm] plotted together with the transmitted power and reference power of the heating laser both in
[mW].

In this experiment, figure 4.37, a fiber was heated for 5 min at maximum power and the be-
haviour of the fringes signal was observed. During the first 10 s the optical path length change
increases a lot then decreases and after that it is almost constant, but a little decreasing. This
decreasing could be due to the interferometer drifting in time. This spike in optical path length
change have often been seen before, at the moment when the heating laser is unblocked and
the fiber is heated. The oscillations in the transmitted power fluctuates more in the beginning
of the measurement where the optical path length change also fluctuates. It is seen that 30 s
of preheating is enough time for the fiber to thermalize as the optical path length change is
approximately constant after 10 s.

99



Figure 4.38: The preheated fiber. It is noticed that the optical path length change does not
increase with power after the fiber is preheated as the heating powers P have the relation: P4 >
P3 > P2 > P1.

Figure 4.38 shows measurements on a fiber which has been preheated. The fiber is preheated
with the maximum avaliable power for approximately 30 s and then the heating and cooling
transients follow. Afterwards the fiber is preheated between every 3rd measurement.

It is seen that the top of the preheated transients change with power just like the top of
the heating transients. The spike in the first preheat was also observed in figure 4.37. In the
beginning of the experiment when the heating power is low, the preheated transients increase
relatively fast, see figure 4.39, then the rate is reduced until the end of the experiment where
the heating power is almost the same as the preheating power, the rate again increases.
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Figure 4.39: The optical path length change in [µm] plotted together with the transmitted power
of the heating laser in [mW].

It is noticed, figure 4.38, that the optical path length change does not increase with power
after the fiber is preheated, because we see in figure 4.39 that the relation between the heating
powers P are P4 > P3 > P2 > P1. This behaviour is unexpected as the optical path length
change does go back to the zero point so we would expect that higher heating power causes an
increase in the optical path length change. This seems to show that the preheating of the fiber
actually results in a decreased optical path length change when the fiber is heated again. But
as it does takes a longer time to change the power of the laser after the preheat, than between
each successive heating and cooling, it might be possible that the whole fiber has time to cool
after the preheat and then it does not matter if it is preheated. The observations might then
be explained if the non tapered parts of the fiber before the preheat does not have time to cool
and then it is already hot as it is heated so the optical path length change is longer (P1 and
P3) than after the preheat where the non tapered parts of the fiber have time to cool and then
the optical path length change is smaller (P2 and P4).

For the present setup and our fibers it therefore does not seem to be an advantage to pre-
heat the fibers as described in [3]. The preheating is done to obtain an initial temperature
condition of the fiber, but this seems already be the condition with the cold fiber, because
the cold fiber in the vacuum chamber should have the same temperature everywhere when the
experiment is started.

4.12 Reference detector for the measuring laser

As there were doubt about if the measuring laser was mode jumping it was decided to add
a detector to the setup to be able to monitor the measuring laser while heating the fiber. The
detector is seen on figure 3.20 where an etalon reflects the 0th order beam from the AOM into
the reference detector. On the detector the interference of the light reflected from the surface
of the etalon and the light reflected inside the etalon is observed. The interference fringes will
change when the laser modejumps. The LabJack then samples one more channel but since the
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sample rate was then 8333 Hz and with the microcontroller for data sampling, this should still
be high enough to measure all optical path length changes.

4.13 Changing the two arms in the interferometer

As discussed before the sudden changes of the optical path length change could be due to
optical feedback into the laser. When the optical path length changes (as the fiber is heated
or cooled) the optical feedback into the laser changes and then the frequency of the laser can
change (mode jumping). The mode jumping will elongate and contract the fiber differently,
which can change the optical path length.

To avoid the optical feedback it was decided to change the setup, such that the AOM was
positioned in the fiber arm, see figure 3.16. This should reduce the feedback, as the beam in
the AOM arm is shifted in frequency and will therefore not make the laser mode jump if this
beam is feedback. At the same time the optical path lengths of the two arms were changed
to make them equal because then the fringes counting on the detector will be more stable to
frequency changes.

4.14 Analysis of a 500 nm diameter tapered fiber

In this section we analyse data from a fiber with a waist diameter of 500 nm. The data
were obtained from after the two arms in the interferometer were switched. The fiber had a
transmission of 90.5% after it was pulled. As the fiber was pulled it is interesting that we could
actually see that the measuring laser was mode jumping. This is seen both in the transmitted
power (blue) and in the reference power (red) in figure 4.40.

Figure 4.40: Raw data from the experiment. The intensity as a function of pulling length in [mm].
The laser is modejumping seen in the transmission through the fiber (blue) and in the power on
the reference detector (red).

At a pull length of approximately 24 mm we suddenly observe a change as more light is
transmitted through the fiber while less light is measured at the reference detector. That the
change is simultaneous in both detectors indicates that it is a mode jump.
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Figure 4.41 shows the optical path length change plotted together with the reference power
and the transmitted power of the heating laser, and we observe that it looks like a typical
measurement series.

We also see that the fiber did not break in the experiment and from figure 4.41 it is seen
that the fiber could withstand the maximum avaliable power of about 67 mW.

Figure 4.41: The optical path length change plotted together with the reference power and the
transmitted power of the heating laser.

We do not see anything unusual in the detector signals while performing the experiment.
Figure 4.42 shows the signal on the reference detector for the measuring laser. The measuring
reference signal usually changes by ±0.01 V and always shows some spikes, which we ascribe
to electronic noise in the detector, since the spikes often occur both when the heating laser is
turned on or off, as seen in figure 4.43.

Figure 4.42: The signal on the reference detector in [V], for the measuring laser, as a function of
time.
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Figure 4.43: The fringes counts together with the reference signal of the measuring laser. The
spikes in the signal on the detector occur briefly when the heating laser is turned on or off.

The saturation of the optical path length change is still observed, see figure 4.44. Here the
blue curve is the average optical path length change while the green curve is the final optical
path length change just before the fiber is cooled. The curves are observed to be similar but
the green curve is a bit below the blue, because the average curve also includes the spikes often
appearing in the beginning of the heating. The optical path length change saturates around
160 µm or 40 mW of transmitted power.

Figure 4.44: The optical path length change as a function of the average transmitted power
through the fiber. The blue curve is the average optical path length change while the green curve
is the final optical path length change before the fiber is cooled, it is this curve that I refer to as
the maximum optical path length change.
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We also observe, figure 4.45, that during the whole experiment the optical path length
change returns to the zero point as the fiber is cooled. Furthermore we do not observe any
sudden fluctuations in the optical path length change when the heating laser is blocked and
the fiber has cooled of. This indicates that the switching of the two arms in the interferometer,
did improve the measurements, and made the setup more stable. It also indicates that it was
probably backreflections of the measuring laser which made the zero point of optical path length
change.

Figure 4.45: The optical path length change in [µm] as a function of time in [s] when the fiber is
heated and cooled.

But we still observe the spikes in the optical path length change as the fiber is heated,
indicated on figure 4.45. Since the setup is now more stable the spikes are probably real and
not due to measurement errors. We see that the spikes do not appear for all transients. This
could indicate that the spikes appear when the fiber is heated above a certain temperature Tc

or when the fiber is heated above Tc again after it has been cold for a while. As the power is
increased, we note that the spikes become smaller and even disappear, which is interesting as
one might have expected that the spikes would occur with sudden heating with high power. This
could therefore be an effect of the whole fiber being heated up gradually during the experiment.
Also as the optical path length change begins to saturate, the spikes are fewer and the small
peaks at the maximum power begins to level out.

4.14.1 Cooling transients

Figure 4.46 shows the rate of optical path length change dL/dt as a function of optical path
length change L for some of the cooling transients. We see, that we observe the same behaviour
as with the 400 nm fiber, as discussed earlier. In particular we observe that for the same optical
path length change L the cooling rate depends on the fibers initial heating power and that the
rate is slower for higher heating powers.
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Figure 4.46: The rate of optical path length change dL/dt as a function of optical path length
change L for some of the cooling transients in figure 4.45.
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Figure 4.47: The logarithm of the cooling rate -dL/dt as a function of the logarithm of the optical
path length change L for some of the cooling transients in figure 4.45.

Figure 4.47 shows the log plot of the data which like the 400 nm fiber indicates that the
cooling of the fiber follows the power law 4.1.

It again looks as the peaks have the same slope but that they are shifted in the intersection
with the y axis. The cooling data for the analysed peaks are shown in table 4.3, except the
data for the 1st peak which was very weak.

Table 4.3: Table of cooling transient data.

Cooling transients
Power a = β b α Lmax τinit [ms] τfinal [ms]

1.68 mW 1.277 -5.35 0.0152 80.7 68.6 101
4.87 mW 1.326 -5.65 0.0138 77.3 79.7 125
7.85 mW 1.373 -5.95 0.0132 98.6 78.4 132
19.0 mW 1.361 -6.00 0.0122 124 80.3 133
29.6 mW 1.351 -6.02 0.0117 142 81.0 132
39.8 mW 1.386 -6.26 0.0109 153 86.3 147
48.0 mW 1.377 -6.22 0.0109 163 84.5 142
56.7 mW 1.370 -6.21 0.0107 165 86.4 144
64.7 mW 1.382 -6.29 0.0105 169 87.5 149
Average 1.356 -6.00 0.0120 - - -
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The power dependence of the coefficients β and α from the power law are shown in figure 4.49
and figure 4.48 where the fits are also shown. It is found that the β coefficients follow β =
0.0237 · log(P ) + 1.2868. The α coefficients are fitted to the formula α = d1 ·P + d2 which gives
α = −6 · 10−5 · P + 0.0141.

β = 0,0237∙ log(P) + 1.2868
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Figure 4.48: The quantity β as a function of power in [mW]. The data is fitted to a logarithm.
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Figure 4.49: The quantity α as a function of power in [mW]. The data is fitted to a linear function.

The initial and final time constants for the cooling are shown in figure 4.50. The maximum
optical path length change is found from figure 4.44. It is seen that both τinit and τfinal are
almost constant and τfinal is increasing slowly for higher maximum optical path length change,
so they look more like the Planck prediction than the FED prediction from [3]. The 2nd data
point deviates, due to the decrease in maximum optical path length change of this peak, and
as τ depends on L, τ for this peak is reduced.
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Figure 4.50: Initial and final cooling time constants in [ms] as a function of the maximum optical
path length change of the cooling in [µm].

We see that τinit is close to but greater than the constants found by and the FED prediction
and is also greater than the Planck prediction. Whereas τfinal is between the time constants of
the FED and Planck prediction.

The tendencies of the cooling time constants are similar to the 400 nm diameter fiber
discussed earlier so it looks like they follow the Planck prediction. But we observe that this
500 nm diameter fiber cools faster than the 400 nm diameter fiber.

4.14.2 Heating transients

The heating rates dL/dt as a function of optical path length change L are shown in fig-
ure 4.51. Figure 4.52 shows the logarithm of the data.

The heating rates dL/dt are not as linear as for the 400 nm diameter fiber, figure 4.32. The
linear part of the data is fitted to a linear function. For higher power the data is approximately
linear until a sudden ”bump” around L = 110 µm and then the data is again linearly decreasing
towards zero. So it could look like the data follows two linear functions, but here I have only
fitted the first linear part of the data, which for high powers is the data approximately from 20
to 110 µm. The fitting coefficients a and b are given in table 4.4 and their power dependence
is shown in figure 4.53 and figure 4.54 respectively. We have again omitted the 1st peak as the
signal was very weak.
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Figure 4.51: The heating rate dL/dt as a function of optical path length change L for some of the
heating transients in figure 4.45.
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Figure 4.52: The logarithm of the heating rate dL/dt as a function of the logarithm of the optical
path length change L for some of the heating transients in figure 4.45.
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Figure 4.53: The slope a of the fits of fig-
ure 4.32 as a function of power in [mW].

Figure 4.54: The intersections b of the
fits of figure 4.32 as a function of power
in [mW].

Table 4.4: Table of heating transient data.

Heating transients
Power a b Lmax τinit [ms] τfinal [ms]

1.68 mW -0.0079 0.8604 80.7 36.2 199
4.87 mW -0.0019 2.649 77.3 8.9 25.2
7.85 mW -0.0129 1.766 98.6 17.1 49.0
19.0 mW -0.0114 2.012 124 18.9 54.0
29.6 mW -0.0123 2.285 142 19.1 54.7
39.8 mW -0.0120 2.568 153 18.2 52.9
48.0 mW -0.0135 2.791 163 17.9 51.5
56.7 mW -0.0143 2.936 165 17.3 49.7
64.7 mW -0.0150 3.090 169 16.8 48.4
Average -0.0112 2.329 - - -
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Figure 4.55: Initial and final heating time constants in [ms] as a function of the maximum optical
path length change of the heating in [µm].

The time constants are shown in figure 4.55. I have omitted a data point for τfinal in the
plot as this point was very high compared to the other final time constants. From figure 4.51
it is also seen that this point (1.68 mW) heats very slowly (τ high). We see that the time
constants are first increasing then decreasing (when we neglect τinit for 1.68 mW). The values
of the time constants fit very well with the Planck predictions in [3]. It is also noticed that this
fiber heats very fast compared to the 400 nm diameter fiber.

4.15 Example with dust on the fiber

Ideally the fiber should always be inspected for dust before transferring it to vacuum.
Figure 4.56 shows an example of a dust particle on a fiber. After the fiber was pulled it was
inspected with the camera and a bright spot was noticed, which was identified as a dust particle.
The pattern looks almost like a diffraction pattern.
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Figure 4.56: Dust particle on the fiber. The picture is taken with the CCD camera. The light
from the LED is seen in the background.

Figure 4.57: The optical path length change plotted together with the reference power and the
transmitted power of the heating laser.

The fiber was still transferred to the vacuum chamber for burning it as we thought it could
be interesting to see if the dust particle affected the fiber burning. During the 7th heating,
figure 4.58, the interference signal decreased a lot in amplitude. Here the transmitted power,
figure 4.57, also decreases.

If the fiber was deformed due to the heating we would not expect the fringes counts to
go back to the same zero point which they do here. It looks like a dust particle on the fiber
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Figure 4.58: The optical path length change in [µm] as a function of time in [s] when the fiber is
heated and cooled. The 7th heating is indicated with an arrow.

absorbs and scatters the light which is why the transmitted power is low. But we see that the
dust particle first affects the fiber in the 7th heating. Also as the coupling of light into the
fiber before the experiment was good the particle seen in figure 4.56 could not have affected
the coupling. Maybe the dust burned to the fiber at this power. With an infrared viewer a
bright point to the left of the fiber was visible which was scattering the light. This could very
well have been the dust particle.

The particle must also be on the left side (in coupling of light) of the fiber because then
when the fiber is heated the dust will absorb the light, and as the heating is blocked and un-
blocked the optical path length change will not increase and decrease any more than it did just
before the dust burned to the fiber. This is also what we observe in figure 4.57. If the particle
was on the right side (out coupling of light) then as the heating is blocked and unblocked the
optical path length change should be able to increase and decrease more than before the dust
burned to the fiber when the power is increased.

The coupling when the experiment started was 63% for the heating laser. The actual cou-
pling through the bare fiber (the fiber is clipped before the fibercoupler and here the actual
coupling is measured) was 69%. The transmission through the fiber (with tapered part) was
only 7.3% after the experiment. As the transmission before the experiment was 90% this low
transmission after the experiment indicates that the dust particle absorbed the heat.
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4.16 Breaking power of the nanofibers

A purpose of the experiment was to see how much power the fibers could stand in vacuum
before they broke and if there were any characteristics of the fiber burning, i.e. if we could
tell in advance by looking at the fringes counts that the fiber was going to burn during the
next heating. As discussed before, in section 2.2.2, the breaking power is expected to depend
on the thickness of the waist, while it is not expected to depend on the fiber shape, as the
fiber will break at its thinnest part where it is hottest, i.e. the waist. As the project time was
mostly spend on building the experiment and make it work and explain why it was behaving
as it was and as it also quickly turned out that the good fibers could stand a lot more power
than needed for the atom trap experiment (15 mW), the project focus moved from reproducing
fibers for burning them, to investigate the optical path length change and to understanding the
heating and cooling transients. The experiments also showed that the breaking power of the
fibers where indeed very different; either they could stand a lot of power or they would break
immediately at only a few mW of power. I think that this difference in breaking power is due
to how clean the fibers are.

The measurements I have achieved (since the experiment, both the fiberpulling and fiber-
bruning, was working) shows that 46% of the fibers could stand > 15 mW as required for the
atom trap experiment. Hereof 82% could stand > 50 mW. The highest power sent through
a fiber without the fiber breaking was 108 mW. Often the high transmission fibers could not
break even with the maximum avaliable power (the maximum avaliable power depends on the
coupling of light into the fiber). Of the fibers that could not stand more than 15 mW, they all
burned at powers less than 5 mW. I think that these fibers might have been polluted during
the transfer into the vacuum chamber.

A total of 60% of all the fibers were burned or tried to be burned with the highest avali-
able power. The other 40% broke during fabrication either during the pulling or during the
transfer to vacuum. When the fibers broke during the pulling, it was usually at different pull
lengths that they broke, which indicates that it was not a systematic error in the pulling pro-
cedure. The fact that approximately every second to third fiber will break during fabrication
is a factor which must be taken into account when doing the experiments.

Since the initial purpose of the work was to investigate the fiber breaking, I will here show
some of the many examples observed.
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Figure 4.59: Fiber burning of 500 nm diameter fiber. The optical path length change and trans-
mitted power is plotted as a function of the time where the time is set to zero at the breaking
time.

Figure 4.59 shows a typical fiber burning at 75 mW of power. We see the optical path
length change increases fast and then the slope of optical path length change versus time
becomes slower before the fiber breaks (when the transmitted power drops). When the fiber
breaks the optical path length change drops a bit and afterwards the fringes detector only
measures noise. As the fiber breaks the rate of change of the counts is less than the maximum
rate for the data sampling to be correct (1 cts/3 µs), so we do measure all data on the fiber
breaking correctly. The fiber breaks fast and the transmitted power only changes within one
sample period while the fiber breaks. The transmitted power is measured with the LabJack
with a sample rate of 8333 Hz. If the sample rate was even faster we could see more features
in the transmitted power when the fiber breaks.

Another fiber that broke at high power is seen in figure 4.60. This fiber broke at 80 mW.
The optical path length change follows the same characteristics as figure 4.59 but on a longer
time scale. Usually the thin fibers broke at lower power than the thick fibers probably because
a thick fiber can hold more power for a longer time than a thin fiber. But figure 4.60 shows an
example of a thin fiber which could stand a lot of power.
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Figure 4.60: Fiber burning of 400 nm diameter fiber. The optical path length change and trans-
mitted power is plotted as a function of the time where the time is set to zero at the breaking
time.

The breaking plots can be compared to how a heating transient for a fiber that does not
break, acts on the same timescale, shown in figure 4.61 and figure 4.62. It is observed that the
slope of the optical path length change as a function of time is increasing.

Figure 4.61: A usual heating and cooling transient of a fiber that did not burn. The optical path
length change and transmitted power is plotted as a function of the time.
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Figure 4.62: A zoom of figure 4.61.

Figure 4.63 shows a typical 500 nm fiber that broke at very low power. The slope of the
optical path length change as a function of time is not changing as much as for the 500 nm fiber
that broke at high power, figure 4.59, but just before the fiber breaks the slope is constant. It
is observed that this fiber breaks at a longer timescale than the 500 nm fiber at high power. It
could indicate that the time the fiber is heated before it breaks depends on the breaking power.

Figure 4.63: Fiber burning of 500 nm diameter fiber. The optical path length change and trans-
mitted power is plotted as a function of the time where the time is set to zero at the breaking
time.
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Figure 4.64: Fiber burning. The optical path length change and transmitted power is plotted as
a function of the time where the time is set to zero at the breaking time.

The fiber in figure 4.64 took longer time to break, and at very low power. The slope of the
optical path length change as a function of time decreases until it becomes constant and just
before the fiber breaks it is seen that the (now negative) slope increases, and the optical path
length change decreases a bit.

It could look like it is possible to divide the breaking curves into two types for high breaking
power and low breaking power. For high power the slope decreases and then the fiber breaks
whereas for low power the slope becomes constant and maybe it shifts sign and then the fiber
breaks. But not all fibers showed this.

From all the investigated fiber breakings it looks like the time the fiber is heated before it
breaks depends on the power. For high power the fiber breaks on a short timescale while for
low power the fiber breaks at a longer time scale. It also makes sense that the fiber needs to
be heated a longer time with low power to get to the breaking temperature. But if the power
is above the breaking temperature the fiber will break immediately.

The thin 400 nm fibers usually broke at lower powers than the thicker 500 nm fibers, which we
also expect, as the thinner fiber is more sensitive to defects that could heat and make the fiber
break.
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Figure 4.65: One of many broken nanofibers.

There is an uncertainty in the breaking power which comes from the uncertainty in the de-
tector calibration. Besides the breaking power is determined as the average transmitted power
measured in the interval when the fiber was breaking.

As mentioned before, in the first experiments, a picture of the fibers was always taken with the
camera before they were transferred to vacuum. When this was done the fibers did not stand
much power afterwards in vacuum. But when the fibers were not pictured they survived a lot
more power. This shows that it is very important to get the fibers transferred to the vacuum
chamber quickly.

I have noticed that the best fibers, i.e. the fibers that were cleaned easily and the fibers that
could stand very high power, where produced during holidays or weekends. I think this was be-
cause at these times there were very few people in the fiber lab, so there was not much changing
in the air. It is an important observation because it shows how sensitive the experiment and
fiber production is to the environment.

We did not see any characteristics in the optical path length change before the fiber burned,
so it must be concluded that it is not possible to tell in advance from the optical path length
change when the fiber is going to burn. We actually saw all types of behaviour of the optical
path length change as a function of time: increasing slope, flat slope and decreasing slope. In
all cases the slope was changing before the fiber broke but there was no tendency. It can then
be concluded that the characteristics of the fiber breaking in the optical path length change
and the breaking power depends on each individual fiber.

121



Chapter 5

Conclusion

We have found that for the fibers investigated in this experiment the numerical rates of
cooling and the rates of heating are in the same interval. We have seen that as expected, for
both the heating and cooling the initial rate is larger when the heating power is higher. Also we
observe that a fiber heated at a certain power in the beginning of the heating, heats at almost
the same rate as it cools, when the heating is discontinued.

For both the heating and cooling process we saw that τinit < τfinal i.e. (dL
dt

)init > (dL
dt

)final
so the fiber heats and cools fastest in the beginning of the heating or cooling, but the analytical
expressions describing the heating and cooling were found to be different.

The conclusion with regard to the thermal properties of the tapered nanofibers investigated
in this experiment is that the rate of heating dL/dt as a function of optical path length change
L can be described by a linear function whereas the rate of cooling dL/dt as a function of
optical path length change L can be described by a power function.

That the rate of heating dL/dt as a function of optical path length change L can be described
by a linear function means that the fiber heats exponentially (L is in µm and t is in ms).

dL

dt
= −Γ · L+ b⇒ L(t) = L0 · (1− e−Γ·t) (5.1)

where Γ = −a in tables 4.2 and 4.4. A typical value of Γ is 0.01.

That the rate of cooling dL/dt as a function of optical path length change L can be described
by a power function means that the fiber also cools by a power law.

dL

dt
= −(α · L)β ⇒ L(t) = c1(c2 + t)γ (5.2)

where γ = 1
1−β and β is given in tables 4.1 and 4.3. A typical value of γ is -3.

Even though it is not possible to compare my experiment completely to the experiment in [3]
I still think it is interesting and informative to look at the data together, with the combined
results shown in figure 5.1.

We have observed that the time constants for heating and cooling were in the same range
as observed by [3]. The general increasing trend of the cooling time constants for the fibers in
this experiment looks more like the data predicted by Plancks law than for FED theory (see
center panel of figure 5.1). The trend of the fibers heating time constants did not show the
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Figure 5.1: The data for the time constants obtained in this experiment together with the data
obtained in [3]. Top left: heating time constants for the d = 500 nm (1 mm waist) fiber. Top right:
heating time constants for the d = 400 nm (2 mm waist) fiber. Center: cooling and heating time
constants as found in [3]. Blue dots are initial and red squares are final time constants. The blue
and red bands are initial and final rates for FED theory and the green/yellow line are initial/final
rates for Planck theory. Bottom left: cooling time constants for the d = 500 nm (1 mm waist)
fiber. Bottom right: cooling time constants for the d = 400 nm (2 mm waist) fiber.
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same general rising trend as for the cooling, and even indicated that a maximum had been
reached.

We can notice that the fibers in this experiment have a large difference between τinit and
τfinal for the heating time constants whereas in [3] the fibers have a large difference between
τinit and τfinal for the cooling time constants.

We have observed that the 500 nm diameter fiber heats and cools faster than the 400 nm
diameter fiber. In particular the 500 nm fiber is faster in heating than the 400 nm fiber. The
500 nm fiber also heats faster than the 500 nm fiber in [3], which has a 5 mm long waist, but
the cooling rates are more similar. As mentioned, the effective waist section of the 400 nm
diameter fiber is expected to be a bit longer than the effective waist section of the 500 nm
diameter fiber. That the heating rates of the two fibers differ could be an indication that the
length and diameter of the fiber waist influences the fibers heating and cooling rates. This could
be explained by the heating energy being easier transported in a fiber with a short effective
waist length than in a fiber with a long effective waist length.

It was observed that the optical path length change saturated with power, i.e. that the heating
energy added to the fiber was radiated away at the same rate as it was added. The saturation
of the optical path length change also indicates (comparing with the data in [3]) that the fibers
are described by Plancks law. We also saw that the fact that the cooling rate of the optical
path length change dL/dt was observed to depend on the initial heating power might be ex-
plained by the fiber radiating the heating energy from its surface which is what is expected from
Plancks law. As the time constants was another indication of the fibers following Plancks law, it
can therefore be concluded that the radiation of the fibers in this experiment obeys Plancks law.

As we did not see any characteristics in the optical path length change before the fibers broke,
we can also conclude that it is not possible to tell in advance from the optical path length
change when the fiber is going to break. We also saw that the breaking power seemed to be an
individual property of each fiber, but generally the thinner fibers broke at lower powers.

The fibers were tested for memory effects, i.e. if they would behave differently during a 2nd
heating. We did not observe any memory effects, since we saw that the fiber heats in approxi-
mately the same way the 2.nd time it is heated.

We have seen that preheating the fibers was not an advantage for the fibers in this experi-
ment. The idea behind the preheating was to obtain an initial temperature condition of the
fiber, which however already seemed to be reached with the cold fiber in the vacuum chamber.

It was often observed that sudden spikes in optical path length change appeared at the in-
stant the fiber was heated. As these spikes were still observed when the setup was made more
stable we assume that they are real and not due to measurement errors. We discussed that the
spikes did not appear for all transients and that this could indicate that the spikes appeared
when the fiber was heated above a certain temperature Tc for the first time or again after it
had cooled. It was also noticed that as the power was increased, the spikes became smaller and
even disappearing, which could be an indication of the whole fiber being heated up gradually
during the experiment.
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5.1 Suggested improvements to the setup

The important issue for making good tapered nanofibers is the fiber cleaning. The flowbox
keeps some dust away but I do not think it is enough since the fibers do get dirty when they
are produced in the flowbox. I have also noticed that the best fibers were made in the week-
ends and holidays when there were no other people in the lab. The ideal situation would be
to have a clean room for making the fibers and transferring them to the vacuum chamber in here.

It would also be good to find a way to inspect the fiber for dust everywhere before it is
transferred to vacuum. The dust could be seen, with the camera, by sending light through the
fiber, as the dust can scatter the light. But with the camera the fiber can not be inspected from
all positions. Maybe one could inspect UV light on the fiber in order to determine from the
fibers fluorescence if there is dust on the fiber. It would also be good to find a way to inspect
the fiber for dust again when it is inside the vacuum chamber.

The power of the heating laser is increased by increasing the current of the laser when the
heating laser is blocked and the fiber is cooling. This is not the optimal way to do it, because
it is not possible to change the current in the same amount of time every time, so the heat-
ing and cooling experiments takes different amounts of time and therefore it can be difficult
to investigate e.g. preheating. It would be better to have a switch; so that the laser power is
the same but the total power is varied by varying the time interval in which the power is applied.

Also a mechanical arm to block and unblock the heating laser when the fiber is heated and
cooled could be an improvement as the the blocking and unblocking then would be done in the
same way every time.
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Chapter 6

Outlook

6.1 Adiabatic fibers

It could be interesting for a future experiment to pull an adiabatic fiber and test its thermal
properties in vacuum. This would require writing an algorithm that could do the opposite of
the algorithm that we have now, i.e. finding how to pull the fiber with the current fiberpulling
setup in order to get the optimal adiabatic shape. One could e.g. be inspired by [17] and their
algorithm [36]. Then it could be investigated if the fibers breaking power depends on the fiber
shape.

6.2 Nanofiber resonators

Tapered nanofibers are used for achieving an efficient atom light coupling using the evanes-
cent field of light. The light-matter coupling can also be enhanced using the nanofiber as an
optical microresonator. The light is enhanced here because it passes the atoms many times
and can thus interact with the atoms several times. Tapered nanofibers can e.g. be used as
Fabry Perot resonators with implemented fiber bragg gratings in the nanofiber [37], and these
nanofiber resonators can show thermally excited mechanical modes [38]. Designing fibers with
these properties could also be an outlook.

Another experiment could be to make tapered nanofiber loops [39]. A nanofiber loop cre-
ates a resonator for the light, as here the light is enhanced by moving around the nanofiber
loop many times. In this way the light can interact with the atoms several times and efficient
atom light coupling can be achieved.

We did try to loop the fibers around themself but the fibers broke every time. One could
be inspired by the method of first twisting and then looping the fiber used in [40]. However
our group has just recently succeeded in creating a nanofiber loop, of which a picture is shown
in figure 6.1.
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Figure 6.1: A nanofiber loop. The loop and the picture is made by J.B. Béguin and used here
with his permission.

The loop was made by driving the stages a bit (approximately 5 mm) closer to each other,
and then the flow in the flowbox made the fiber twist and this created loops on the fiber. If
the fiber is then pulled slowly apart again (approximately 1-2 mm) then there will only be one
loop left on the fiber. It is possible to make loops on the fiber because the tension in the fiber
is low. It is most attractive to make small loops (with a small radius, of about 1 mm) because
then the FSR and finesse of the loop will be high. A high finesse defines a good cavity with a
good coupling. For the use of nanofiber loops it will also be attractive to make adiabatic fibers
as high transmission fibers will increase the finesse of the cavity.
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Chapter 7

Appendix

7.1 Electronics

A more detailed hand drawing of the electronics described in section 3.3.1 is seen on fig-
ure 7.1.

Figure 7.1: Hand drawing of the electronics for data sampling. The dashed line divides the
elements on the electronics board, figure 3.24, and outside of it.
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