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Abstract

In this thesis we theoretically analyze the proximity effect of a superconductor on a two-dimensional
electron gas (2DEG) with Rashba spin-orbit interaction (SOI) in the presence of a magnetic field and
its corresponding fingerprints in tunneling spectroscopy through a contriction in the 2DEG. We first
analyze the junction without SOI via two different models, one in a wave-function approach and one
in a Green’s function approach in the tunneling regime. We establish that when the wavenumber in
the 2DEG can be approximated by the ground-state wavenumber in the infinite square well there is
a correspondence between the two models, and study the induced gap and effective g-factor in this
approximation. The induced gap rises as a function of coupling between the 2DEG and superconductor,
while the effective g-factor moves from the g-factor in the 2DEG towards that of the superconductor
with increased coupling.

We then analyze tunneling spectroscopy through a constriction in a proximitized 2DEG driven into the
tunneling regime via a quantum point contact (QPC). We derive analytically and study numerically
some properties of the density of states (DOS) in the 2DEG with proximity-induced superconductivity
without SOI. Here we find two peaks, one at the induced gap and one at the superconductor-gap, and
also find that a finite chemical potential introduces an asymmetry in the DOS, which is important
for the conductance. Finally we study the system numerically including Rashba SOI, comparing our
results to experimental data. We present results that resemble experiment in that we get an induced
gap of the right size and get a qualitative match with the other conductance feature in experiment.
These results have the drawback that the effective g-factor needed to get a correspondence between
experiment and theory is too large compared to measurements on similar designs. The understanding
of the proximitized 2DEG structure with Rashba SOI and Zeeman field is important for research in
topological superconductivity.
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Chapter 1

Introduction

Realizing a useful quantum computer seems to move closer to reality in recent years. The basic idea
of a quantum computer is one where instead of an ordinary bit, which can take two values, 0 or 1, a
quantum bit, qubit, is in a superposition of two quantum states, [¢)) = a|0) +b|1). Such a qubit-based
computer has been shown to hold certain advantages over classical computers [1], and at the present
point in research there is a lot of focus on trying to realize a quantum computer.

One problem with constructing a qubit is quantum decoherence, which works to alter the qubit state
on time-scales faster than what is needed to perform computations with the qubit. As explained in ref.
[2] it has been shown that quasiparticle states in systems involving superconductivity called Majorana
bound states possess the required properties to be robust against such quantum decoherence.

Over the last years there have been several promising experimental observations that suggest that
Majorana bound states have been observed in nanowire-designs [3, 4]. A good indication of the com-
munity buzz is that articles on the topic of quantum computers has begun to hit mainstream media
[5]. With the belief growing in the community that Majoranas have now been realized, attention be-
gins to shift from realizing isolated systems containing only a few Majorana bound states to designing
scalable networks of Majoranas useful for actual quantum computation.

Some proposed designs for scalable designs that could feature in such networks can be found in e.g.
ref. [6]. It should be clear that these designs involve large numbers of topological nanowires placed
in a well-defined geometry. This however turns out to be a big experimental obstacle since producing
hundreds or more nanowires with the desired characteristics is challenging enough in itself; now linking
them and placing them accurately on such small length scales as is relevant here is a demoralizing
thought. Therefore there is now some investigation into using 2-dimensional electron gases (2DEGs)
as a platform for quantum computation [7, 8]. As this is a relatively recent effort there are still
unanswered questions about these designs, not all involving Majoranas. This thesis’ aim is to provide
better understanding of a superconductor-2DEG junction with infinite planar extension, which means
we do not expect Majorana bound states to appear; rather the theoretical investigation serves to build
a material understanding which is important in order to design 2DEG-based junctions that contain
Majoranas.

In this thesis we first outline in chpt. 2 the basic theory that underlines the motivation to study
the system in question and explain the methods we are going to employ throughout the thesis. We
then go on to model a 2DEG proximitized by a semi-infinite superconductor by two different models:
A wave-function approach including an effective quasiparticle mass, effective g-factor and BCS super-
conductivity in chpt. 3; and by a Green’s function approach in the tunneling approximation in chpt.
4. We then derive a correspondence between the two models in chpt. 5. Then we study tunneling
spectroscopy of proximitized 2DEGs in chpt. 6, both finding the local density of states (DOS) and
eventually obtaining numerical conductance results including Rashba spin-orbit interaction.
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Chapter 2

Fundamental Concepts and Theory

Here we review some fundamental theory that may be useful for readers who are unacquainted with
some of the subjects. Readers with experience in solid state physics may want to skip parts of this
chapter.

2.1 Semiconductor properties

2.1.1 Effective Mass in Semiconductors

Many of the semiconductor properties can be explained by electrons moving in an energy band. Since
the group velocity is by definition ‘;—2’, and the energy € is w = €, we see that

v(k) = Vye(k). (2.1)

The effects of the crystal on the electron motion are contained in the dispersion relation e(k). This
is important with regards to the effective mass-approximation. From looking at the usual free electron
dispersion relation:

kZ

)~ 5

(2.2)

we see that the curvature is determined by m ™!, which for a free electron would be constant. However
we know that in a crystalline potential the energy bands can have many different shapes as a function
of k. This of course means that the usual free electron energy dispersion as a function of &k is not
applicable anymore. However, we can usually model the energy dispersion as having the same form,
but now with an effective mass, m*:

]€2
2m*’

e(k) ~ (2.3)

This effect is most pronounced in semiconductors. As an example of this we have included a simple
derivation in Appendix A, concluding that close to the Brillouin zone boundary we can indeed model
the dispersion with an effective mass that depends directly on the size of the band-gap, U, and the
bandwidth, A; in this rather simple calculation we get:

m* 1

m 2\ Ux1

where the + refers to holes and electrons respectively. Since semiconductors have almost filled valence
bonds or only slightly filled conduction bands the excitations in semiconductors will lie close to energy
gaps in semiconductors, which makes the above formula applicable, whereas the excitations in metals
happen around half-filling of the conductions bands where the dispersion is simply like free electrons.

(2.4)

Note that all of this analysis in Appendix 8.1 was done in k-space, assuming translational invariance.

5
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Thus the effective mass approximation is a bulk property and the approximation will not necessarily
hold close to the edge of a sample. Nevertheless, our model in this thesis will assume an effective
mass uniform everywhere in the semiconductor, which changes discontinuously at the boundary to the
superconducting metal where the mass is again the free electron mass.

2.1.2 Zeeman Field in Semiconductors

It is an important and well-known result of quantum field theory that in the non-relativistic limit the
Dirac equation reduces to the Schrodinger equation, with a term —yu-B added to the Hamiltonian. (see
ref. [9] chpt. 8 for a thorough derivation.) We will call this term the Zeeman term. Particles placed
in an electromagnetic field can in this limit be independently described by the eigenvalue equation:

[ﬁg—uiﬂu:Em (2.5)

2m

where p=p — €A, = g5-S, S = § (we set h = 1), and where this theory predicts g = 2.

When you treat particles in solids, this effect can be changed due to the electromagnetic fields from
ions and other electrons. Here we will not even present a toy-model calculation of this effect, but
rather refer to ref. [10] chpt. 6, in which the magnitude of the spin-orbit interaction (SOI) and its
effect on the Zeeman energy is calculated. It turns out that in analogy with the effective mass we can
also model the response of the electrons in a semiconductor with SOI to an external magnetic field by
replacing the g-factor for a free electron by an effective g-factor, g*.

It is important here to note that the renormalization of the g-factor and Rashba SOI (which we
will discuss in the next section) are in general independent effects that can coexist as well as exist
exclusively on their own. This justifies that we in this thesis focus a lot on the parameter regime
where we have an effective g-factor in the 2DEG with zero Rashba SOI.

2.1.3 Spin-Orbit Interaction

For many effects observed in solids, relativistic effects are not important. However, under certain
circumstances they can become relevant and as we will touch upon later, it seems they are very in-
fluential in the systems under consideration in this thesis. Therefore we will present a derivation
for a free charged particle in an electromagnetic field and see how relativistic effects couple the or-
bital motion and the spin. The full derivation of how to go from free particle SOI effects to SOI
effects in solids is rather involved, and I refer the reader to ref. [10] for a well-renowned treatment
of SOI in solids. Rather we will present a toy model-calculation to get some intuition about the effects.

The SOI is a relativistic effect. An electron moving with velocity v in an electric field E will in
its own rest frame experience a magnetic field given by:

B=—(vxE)/& (2.6)

where 7 is the Lorentz factor known from special relativity. Now assume that we have a central electric
field given by E = |E|r, which corresponds to the situation for an electron in a simple atom. Also
assuming weak relativity, i.e. v ~ 1 we get a magnetic field given by:

E

r

B:rxp

. (2.7)

meC?

Now we write the electric field as the gradient of the potential, E = —VV. Assuming the central
approximation, i.e. that the potential is centrally symmetric, we can write this gradient as:

6
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oV 19V
Bl =20 =<
or eOr
where V' is the potential energy of the electron and e is the elementary charge. Now inserting the
definition of the angular momentum L =r X p we get:

(2.8)

1 10V(r)
B = — L 2.
meec2r Or (2.9)

Through the Zeeman-coupling, this magnetic field will couple to the electron’s spin and give an energy
contribution corresponding to the following term in the Hamiltonian:

e g 10V(r)
Hsor = —pu-B=g——8.B= -
SoI H mee 4(mec)?r  Or

oL, (2.10)

where again i = 1. Now this derivation is actually fundamentally flawed in that the accelerated rest
frame of the electron is actually not inertial; the correction is calculated in e.g. [11] pp. 548-552, and
is called the Thomas correction. The result is:

o-L. (2.11)

2.1.4 Qualitative Rashba spin-orbit coupling derivation

For electrons moving in a crystalline potential the angular momentum is altered. Depending on the
solid the resulting SOI effect changes a lot, both in magnitude and in functional form. We will focus
on Rashba SOI, since this is the effect that is relevant for this thesis. As explained in ref. [10] chpt.
6 the Rashba SOI stems from an inversion symmetry breaking in the direction orthogonal to the
2-dimensional plane. This is for example present at the edges of a material, be that either a 2DEG
which will then be characterized by this inversion symmetry breaking throughout the plane, or can
be seen only as a surface effect as was done in for example ref. [12] when looking at the gold surface.
As suggested by ref. [12] one first try to derive the SOI effect at such a surface would be to assume free
electrons moving in the planar surface. The only potential affecting the free electrons at the surface
would be the confining potential keeping the electrons confined in the solid; thus:

dv,

vy = -z 2.12
7, © (2.12)

when z denotes the out-of-plane direction. The corresponding SOI term in the Hamiltonian becomes:

HRashba = o - (€, X v) = ar(o X v) - e, (2.13)

where ap is the Rashba SOI strength, which is proportional to the gradient of the potential. This
term is the famous Rashba SOI term, which we will focus on in this thesis.

The above procedure produces the correct type of term in the Hamiltonian, but with a much-too-
weak coupling strength ap compared with experimental results. To get the real magnitude of the
Rashba SOI people have invoked k - p-theory as in ref. [10] or tight-binding calculations as in ref. [12],
but the calculations are somewhat lengthy and will not be reproduced here. Instead we will in this
thesis try to assume some values of the Rashba SOI strength based on typical experimental results
and see what effect different SOI strengths have on the results of our model.
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2.2 Superconductor Properties

2.2.1 BCS Superconductivity

The Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity from 1957 was the first succesful
theory that from a microscopic viewpoint explained the phenoma in some solid state systems today
known broadly as conventional superconductivity. Cooper in 1956 showed the important instability
of the Fermi sea in the presence of an attractive interaction due to the formation of so-called Cooper
pairs. Bascially an electron combining with its time-reversed state of zero net momentum and spin
can lower the energy of the total state compared to the two electrons just occupying states at the
Fermi energy (see e.g. ref. [13] exercise 17.1 for a guided derivation).

The energy gain of the system by forming such a Cooper-pair is called the superconducting order
parameter A. The result of this binding-energy of the Cooper pair, A, is that a gap in the supercon-
ducting single-particle energy spectrum appears around the fermi level, of order A. Therefore we also
refer to A as the superconducting gap.

The BCS Hamiltonian is:

Hpes =Y &cclytho + ka/CLTCT_MCka—kIT (2.14)
ko kk’

Now in BCS theory we assume that mean-field theory is applicable around the expectation value
<clT(T "k ¢> # 0. Performing a Hartree-Fock mean field procedure of (2.14) yields:

Hpys = Z €kl ko + + const., (2.15)

ot
Z Akcch_ki + h.c.
k

where:
Ak = Z ka/<C,k/¢Ck/T>. (216)
k/

Now the functional form of Ay in BCS theory can be found by assuming an effective phonon-mediated
interaction given by:

Vi = (2.17)

—V for |€k| < wp
0 otherwise

where wp is the Debye frequency (see ref. [13] chpt. 17418 for more details). By self-consistent
analysis the above leads to a superconducting pairing that is constant as a function of k:

ABCS = A,,. (2.18)
Fourier-transforming this to real space yields a point-like interaction:
A(r,r’) = Ad(r — 1'). (2.19)
Because it is uniform as a function of k we call this an s-wave pairing, referring to the spatially uniform
s-orbital of electrons in atoms. We will in our analysis only consider the BCS, mean-field type pairing.
2.2.2 BCS quasiparticle density of states

It will be worthwile to show the derivation of the BCS quasiparticle density of states, since the steps in
doing this are similar when you include the Zeeman field and Rashba SOI. Here we will follow closely
ref. [13] pp. 334-335.

8
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We can interpret the following as the density of states:

1 —1 )
ds(w) = TV Z A(ko,w) Z ImGE = ; ImG,o(k, w +in), (2.20)
g g
where we have introduced the retarded Green’s function G¥, the spectral function A = —2ImG* and

the Matsubara Green’s function G. The Matsubara Green’s function for the BCS superconductor
follows from ref. [13] sec. 18.4. If we plug this in and define E? = & + A% we get:

1 1 1
s _ Z W+Z7]+§k - _ Im _ : w+§k (221)
av (w+1n)? — E; % = w—FEcx+i1m w+Ex+in)] 2Fk

w + &k
28,

= % > 5w — Ex) — 6(w + Bu)} (2.22)
ko

where we used that = P1 —ind(z), where P f(z) means the Cauchy principle part of an arbitrary

:v+'m
function f(z) and n = 0. Now we want to change variables from a discrete sum over k to a continuous
energy integral via the variable £, = 2";—2

traced density of states v(§):

— p; we do this by introducing the non-superconducting, spin-

S s = [ o (2.23)
ko

Let us now assume that (&) varies little on the relevant energy scale. If we also assume that p >> A
we can extend the integration to all of energy space, which results in:

dy(w) ~ v(0) /Z dg;{ <1 + 2) 5w — E) + <1 - é) 5w + E)} (2.24)

Now under this approximation the odd terms in £ drop out, and if we only consider for the moment
w > 0 we get:

do(w) [~ 1 e e e E
_/ d§2(5(w—E)_/0 dga(w—E)_/| N dB 520 (w E)_/A| dEmé(w—E).
(2.25)

From this we can see that the BCS quasiparticle density of states weighted by the non-superconducting
one is:

ds(w) _ Y 9w |A)). (2.26)

A0) VTP
It is easy to extend the result to negative energies: ds(—w) = ds(w). We have plotted dg(w) in figure
2.2.1 - here we see clearly the well-known gap of size 2|A| in the DOS of the BCS superconductor.

2.2.3 Proximity Effect

If you place a normal conductor next to a superconductor a superconducting gap will appear in the
normal conductor. Thus effectively the superconductor 'infects’ the normal conductor with supercon-
ductivity. This is known as the Prozimity effect. We will not derive this effect here since we will study
this effect in detail later in the concrete example of a 2DEG-superconductor junction.
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ds

v(0)

4

3+

2t

1t
. . . . . .
-3 -2 -1 0 1 2 3 A

Figure 2.2.1: A typical plot of the BCS superconducting density of states as a function of energy. We see a gap
of size 2|A| for |w| < A.

2.3 Bogoliubov-de Gennes Equations

It is well known (see ref. [13] chpt. 1) that if we have a one-particle fermionic operator in second
quantization in some arbitrary basis v:

A=Ay ychen, =) (Wildly)d,e, (2.27)
Vi,Vj Vi,Vj
we can transform to real space using the quantum field operators W, W:

Ulir) =) (r[v)e; (@)= (x|v)e. (2.28)

v v

This yields:

A= Z(Vﬂfle)clicyj = Z /dr/dr'(yi]r><r]fi{r’><r"Vj>c,T,ich = (2.29)

Vi, Vj Vi,V

Z/dr<yiyy>Ar<r|yj>c;cyj :/dr<z<yi|r>cj,i>/lr > (x|, E/dr\I'T(r)Ar\I'(r),

Vi, Vg 123 vy

where we used the locality-condition for single-particle operators in real space: (r|f|r') = f(r)d(r—r').
In this manner we can incorporate usual effects like the kinetic energy and also Rashba SOI and Zeeman
energy if we allow the indices v;, v; to run over spin-direction also. However, we will also need BCS
superconductivity, which we cannot express in this way. We will include this in a mean-field, BCS
manner as explained in section 2.2.1. Using the results from equations (2.15) and (2.18) we can
Fourier-transform to real space:

AO ik-(r—r’
Hyper = Y Dol + hoc. = e > / dr / dr'e™ Wl ()Wl (1) + hec. (2.30)
k k

- / dr / dr' Dod(x — /)WL (1)W1 (') + h.c. = / dr¥l(r)Ag U] (r) + h.c. (2.31)

Standard procedure is now to introduce the so-called Nambu spinor:

o= <?> ) (2.32)

10
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this being in real- or k-space. As explained in e.g. ref. [14] this allows for an elegant way to obtain the
eigenspectrum in the problem given a mean-field superconducting pairing. However, since we are also
going to include magnetic field and SOI with different spin directions we will not be able to capture all
of this in this formalism. The way to establish the problem is to then introduce an extended Nambu
spinor:

T(r)
. Uy (r)
U(r) = \I/I(r) (2.33)
~wl(r)
Using the anti-commutation relations for the fermionic quantum field operators:
{U(), v} =0;  {¥(0), v} =0;  {¥(r), ¥(")} = d(r — 1), (2.34)

we can rewrite the total Hamiltonian in a smart way to incorporate all the types of terms we need.
Let us take the superconducting term as an example:

Hanper = / ar (W) AW (1) + hec.) = % / ar (W) AW (1) — W (1) Ao Wl (x) + he)  (235)

0 0 Ay 0
1 - 0 0 0 Agl-=
. / O] DO R (2.36)
0 Ay 0 0

Here there was no constant term from commuting \Iq and \IJL but some of the other terms in the full
Hamiltonian will produce a constant term that has to be added. Repeating this procedure for kinetic
energy, SOI and Zeeman term yields:

1 _ _
H=g / dr¥T (r)H¥(r) + const, (2.37)

where H is the second quantized Hamiltonian, H is a 4 X 4-matrix that we will call the BdG-
Hamiltonian.
Now we introduce the pauli-matrices in both particle-hole space, 7, and spin-space, o, such that:

Toi =0, L =T®0; =101 0;=1®0;. (2.38)

In our modelling we will model a 2DEG and a superconductor. Starting from the second quantized
Hamiltonian, we can derive that the BdG-Hamiltonians in the 2DEG, H,,, and the superconductor,
Hs, will have the following form (written here in k-space):

1
Hn = &nTz + alkyow — keoy)Te + S9nupB - 0 (2.39)
1
Hs = &Te + 59supB -0 + ATy, (2.40)

where &,, &, are kinetic energies in the 2DEG and superconductor respectively, a is the Rashba SOI
strength in the z — y plane of the 2DEG, g¢,, gs are the effective g-factors in each material separately,
g is the Bohr magnetion, B is the applied magnetic field and A is the mean-field superconducting
pairing, assumed in our model to be real.
Now, importantly there is a relation between H and H. This is the so-called Bogoliubov-de Gennes-
transformation (see ref. [14] pp. 137-145).

11
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Let us move forward by considering the solutions to the so called Bogoliubov-de-Gennes equations
(note that the eigenstates are four-component spinors):

H(x[ ) = B (x] ). (2.41)

Assuming that these solutions constitute a complete set, we can represent our quantum field operators
in this energy-eigenbasis:

U(r) =Y (r|dn)en; )= (r|dn) e, (2.42)

which yields:

H= / dr <Z<rwn>%;>%<z<rmn>cn> + const. = (2.43)

n n

1 _ _ 1 - 1

3 2 E, /dr<1/1n} r>-<r‘ 1/Jn/>c}:cn/+const. =35 Z En/<1/1n} ¢n/>c};cn/+const. =3 Zn: Encilcn—i-const.,
n,n n,n

where the ¢ and ¢! are given by:

Cm = /dr<r‘¢m>T SU(r); o = /dr\TlT(r) (x| thm), (2.44)

which follows from equation (2.42). Thus in conclusion, the eigenenergies from equation (2.41) are
also eigenenergies of the original second-quantized problem. Therefore solving equation (2.41), known
as the Bogoliubov-de-Gennes Equations (BAG equations), is also solving the original problem.

2.3.1 Symmetries

Here we draw from ref. [2]. The exact choice of Nambu spinor (equation (2.33)) is made such
that it highlights that the dynamics of holes in the absence of magnetic field is the same as that of
time-reversed electrons. If we study the definition of equation (2.38) we can see that the o-matrices
govern the spin-structure of the terms that appear in the Hamiltonian, while the 7-matrices govern
the particle-hole-structure of the problem. We can write out the 7-structure of the BdG-Hamiltonian
schematically as:

H <( (electron — sector) (electron — hole coupling)) ’ (2.45)

hole — electron coupling) (hole — sector)

where the different sectors are 2 x 2-matrices. If we compare with equation (2.37) we see that the terms
in the electron-sector will produce terms with ¥ to the left and ¥ to the right in the second quantized
Hamiltonian, i.e. electron-like terms. Likewise the hole-sector will produce hole-like terms. By
choosing the Nambu-spinor as in equation (2.33) we ensure for the Hamiltonians under consideration
in this thesis that the BdG-Hamiltonian has the following structure in 7-space:

(Mo A
"= <A _UyH50y>’ (2.46)

where the entries are again 2 x 2-matrices and we have assumed the entries of A real. Thus we see
that for whichever 2 x 2-matrix that governs the electron-sector, Hg, the hole-sector will be governed
by the time-reversal of —Hg, since we know that:

THoT' = o, H}o,. (2.47)

This way we have built in the time-reversal symmetry into the formalism by our choice of Nambu
spinor.

12
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By extending our Nambu spinor from the 2 x 1 one to 4 x 1 spinor we ”artificially” double the
dimension of the Hamiltonian and thus the number of eigenstates. This means there must be some
symmetry present to account for this doubling, so that the number of independent solutions stay the
same. This symmetry is the particle-hole symmetry, which can be expressed as the following operator:

0 -1
_ 0
P=71o0,K = 0 K, (2.48)

o= O O
o O = O

0
0
-1 0

where K is the complex conjugate-operator. We can derive that for our Hamiltonian with Rashba
SOI, Zeeman field and s-wave superconductivity with the choice of basis (2.33) for the Nambu spinor
we have the following relation:

{H, P} =0. (2.49)

This means that if we have an eigenstate of H:

Hr[i) = Ei(r|vi), (2.50)

then necessarily the state Pi; is also an eigenstate with the negative eigenvalue:

H(P(r|pi)) = —P(H(r|vi) = —Ei(P(r|v:)). (2.51)

This particle-hole symmetry and its consequences for the energy spectrum will follow us throughout
this thesis.

13
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2.4 Tunneling Spectroscopy in the Linear Response Regime

One way to probe the single-particle propagator is to use tunneling spectroscopy. We will derive the
formula for the current in the linear response regime where it is evident how the single-particle density
of states (DOS) is probed. Throughout this derivation we follow ref. [13] pp. 133-136 closely.

A tunneling experiment usually consists of two materials (materials 1 and 2) brought into contact
with an insulating layer in between. The idea with the insulating layer is to establish weak contact
between the materials such that the overlap of the wavefunctions is weak, although non-zero. The
overlap of the wavefunctions leads to tunneling terms in the Hamiltonian of the form:

Hp = Z(Tyuchcz,u + Tj,#c;McLV), (2.52)
pv
where:
T = WA} = [ dr} o) H w0, ), (2.59)

with H(r) being the single-particle Hamiltonian. Now the current is defined as the rate of change of
particles through the constriction, i.e.:

I = —ell), (2.54)
where:
=Ny =il N = ilHr, Nt =i 30 S| (Tonel ez + Tuchuerw ) el ens| (2.55)
v v
= Z(TV“CL/CQ’H - T;‘Mc;#cl,,,) = —i(L— L. (2.56)
vi

Assuming the coupling between the two materials is very weak, it is adequate to calculate the current
only to lowest order in the coupling. Therefore we will use the linear response formula which states
that, for a Hamiltonian H = Ho+ H'6(t—t() with some perturbative H’, the change in the expectation
value of some operator A from the equilibrium vale (4), is given by:

S{A(L)) = (A(t)) — (A)y = / h dt’(—i&(t - t’)< [fl(t),ﬁ’(t’)} >0> (2.57)

to
In our case we have zero current in steady state so that:

o

oo
(1)) = / dt’(—z‘&(t . t')< [Ip(t), HT(t’)]> ) = / d'CR oy (1), (2.58)
oo 0 oo P
where we defied the current correlation function C’ﬁ, a1y (L t'). Also note that we are in the interaction
picture (see e.g. [13]) so that the time evolution is governed by H = H; + Hs. We can simplify the
correlation function as:

CR yp (t— 1) = —0(t - t')< [ﬁ(t) ~ L), L) + ﬁ(t’)} >0 (2.59)
— 0(t — 1) [< [ﬁ(t), ﬁ(t')] >0 . < [ﬁT(t), i(t’)} >0 + c.c.] (2.60)
= 9Ref(t — t’)< [ﬂ(t), i(t’)} >0, (2.61)
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where the last equation sign follows because we will only consider particle-particle current, which does
not allow for terms that do not conserve the number of particles in each system (a supercurrent would
allow for these terms). Thus we are left with the following formula for the current:

I(t) = 2Re /_ Z ot — t’)< [ﬁ(t),i(t')] >0 (2.62)

— 9Re / ) ot — )33 1, <<él,u(t)cJ{ y (t')>0<egu(t)e2,w (t’)>0 (2.63)

v VM

(&, o) (g <t’>é;u<t>>0) . (2.64)

Now we explicitly pull out the time-dependence that stems from the applied voltage difference (which
is the real source of the current):

er(t) = eu(t)e TN ay(t) = gt)e VR (2.65)
where the time-dependence of the ¢ is given by a Hamiltonian with a common chemical potential .

Now we introduce the lesser and greater Green’s functions:

Gt t) = =i el (1) Ghtt) =+l ()alt)) . (2.66)

0
With these definitions we get:
I =2Re / at'ot—)> N 1y, ) (z=V1)(t=t) (2.67)
o) v v

(Groun 01165,

2,0

(') = G (88) G5, (F, 1) (2.68)

This can be rewritten as a trace over u, v

= 2Re / dt’@(t—t’)ei(_e)(_v)(t_t/)Tr[Gf(t,t’)TG;(t’,t)TT - Gf(t,t’)TG2>(t’,t)TT]. (2.69)

where V =V} — Vo. Now upon assuming that the Green’s functions are only functions of the time
difference t — ¢ we can Fourier transform wrt. only one time-variable, which after some work results
in:

I= / 621“’ Tr {G>( VTG (w4 eV)TT — G (w)TG5 (w + eV)TT], (2.70)

which upon inserting the relations between lesser and greater Green’s functions and the spectral
function (here np(w) is the Fermi function):

iG”(r,w) = A(r,w)(1 —np(w)); —iGS(r,w) = A(v,w)np(Ww) (2.71)
leads us to the formula:
dw
I= / %Tr [Al( )T Ag(w + eV)TT] (np(w+eV) —np(w)). (2.72)

Now in this thesis we will be working the basis u = (ki,01), v = (kg, 02). Writing out the trace over
k; and ks explicitly yields the formula for the particle-current:

= [ SR Y Tl ) dalka o+ V) inpw +eV) —np)), (273)
> ki,ko

where the Tr, is defined to only run over the spin-degrees of freedom of the particles.
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2.5 Introduction to Majorana Physics

The following draws from ref. [2]. Here we will go through the basics of two important theoretical
papers, which explain the fundamentals of Majorana bound states in nanowires.

2.5.1 Kitaev

Kitaev’s paper (ref. [15]) from 2001 is an important landmark on the road towards realizing Majorana
fermions in condensed matter systems and is continuously referenced as the underlying model that
is sought after. We will therefore explain the basic features of the paper and try to emphasize its
important implications.

Kitaev presents a 1D-chain model with L sites, and nearest-neighbor hopping terms. The sites can be
occupied or un-occupied by fermions. Furthermore the chain is superconducting by being proximitized
by a large bulk superconductor with a p-wave superconducting pairing. Here p-wave follows since the
model is spinless and the pairing is therefore of the triplet-kind. If we denote the second-quantized
fermion operators as a,a’ this gives us the following Hamiltonian for the chain in real space:

1 *
H = Z( (a a1+ a;Ha]) — u(a}aj — 2) + Aajaj + A a;ﬂa}), (2.74)

where w is the nearest-neighbor pairing strength, p is the chemical potential, and A = |Ale? is the
induced superconducting pairing. Now we define some new fermionic operators, which we will call
Majorana operators (and for simplicity set # = 0 in what follows):

c2j—1 = a; + a;; coj = —iaj + ia;r-, j=1,...,L. (2.75)

Evidently these operators are hermitian. We see that this new definition basically splits up each
fermion site into two pieces, thus doubling the number of ’sites’ in the model. Now we can rewrite the
Hamiltonian in terms of this new basis, which yields:

7
Hy =g D (—neaj-acaj+ (w+ [Al)egjeajpr + (—w + |A])ezj-1¢2542) (2.76)
J
Let us look at two limiting cases:

|Al =w =0, < 0: Here the Hamiltonian reduces to:

L

= —uz (al ja; — 1/2) = ZCQJ 1€25. (2.77)

The important thing to note is that here the Hamiltonian can be written in terms of a product of
Majorana operators from the same fermionic site. The ground state is the unoccopied state.

|Al =w >0, p=0: In this case the Hamiltonian reduces to:

L—1
H1 =w Z C2j62j+1a (278)
j=1
which we see couples Majorana operators from different fermionic sites. Also the ¢; and cop-operators
remain unpaired, i.e. they do not enter the Hamiltonian. This means that any ground state of the
system, |¢g), will be degenerate in that adding the fermionic state we get from combining ¢; and caf,
will cost zero energy.
The interesting thing to note is that if the state with the two unpaired Majorana operators is realized,

16



Bjarke Nicolaisen January 15, 2017

this means that we have two ”unpaired” Majoranas in each end of the chain. And it is exactly the lack
of pairing to neighboring Majoranas that makes these two Majoranas immune to local perturbations
in the environment. More specifically, since we can construct a fermionic state out of combining ¢y
and cyr, if this fermion has to be perturbed in some way the perturbation has to affect both Majo-
rana operators. And since these are spatially separated, local perturbations cannot affect this joint
fermionic state.

Now how do we realize the two phases of the system, i.e. with the fermionic state from combin-
ing ¢; and cor, occupied or not? In ref. [15], Kitaev argues that the two phases extend to connected
domains in the parameter space where the spectrum is gapped. To move from one type of Majorana
paring to the other, the gap in the spectrum has to close and reopen.

This explains in an informal way why we talk about topologically protected phases. We know that
topology is the study of objects that remain invariant under some kind of transformation - like the
well known example of a cup that can be continously deformed into a torus, which renders the two
objects topologically equivalent. In the same manner we can say that any transformation (meaning
changing of system parameters) that does not close the energy gap will then keep the system in the
same phase, i.e. our system is "topologically trivial” in the regimes without delocalized Majoranas
at the ends, and ”topologically non-trivial” in the phase with delocalized Majoranas at the ends. An
effective tool to actually determine which topological phase the system is in for given parameters is
establishing a so-called topological invariant; see ref. [16] for further explanation.

This explains the basic idea of why Majoranas are expected to be useful for quantum computing.
The immunity to local perturbations is essential, since small, local perturbations (for example thermal
perturbations) is a recurring obstacle in quantum physics that is hard to circumvent. However, an
important ingredient in the paper was the p-wave superconductivity. (It is p-wave since there is no
spin-dependency in the model.) The problem is that actually obtaining and manipulating a p-wave
superconductor is not experimentally realistic. Conversely, conventional s-wave superconductors are
abound. A footnote on page 4 in ref. [15] is interesting in this regard: ” It appears that only a triplet
(p-wave) superconductivity in the 3-dimensional sub-strate can effectively induce the desired pairing
between electrons with the same spin direction — at least, this is true in the absence of spin-orbit
interaction”. It turned out some years later that actually spin-orbit interaction would be important
to overcome this problem.

2.5.2 Oreg et. al.

Around 2009-2010 some different papers [17, 18] came up with a similar idea; an, at least in theory,
experimentally viable idea to realize an effective p-wave superconductor. Here we will explain the
basics of the paper ref. [18] because of its simplicity!.

In the article [18] we are presented with BAG Hamiltonian (see section 2.3) for a continuous 1D
wire (longitudinal in the y-direction) with spatially varying electrochemical potential, Rashba spin-
orbit interaction, a Zeeman term and conventional s-wave superconductivity induced via the proximity
effect given by:

/ () HT (y)dy. (2.79)

2
= B;n _ (y>]72 + upo.. + B(y)ow + Aly)7a,

with the notation convention that:

!The following draws from sections of a hand-in made in the course CMT2 at the University of Copenhagen in 2016.
The report was made by authors Mads Jgrgensen and Bjarke Nicolaisen, and permission to reprint parts of this hand-in
here has been given by both authors.
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T =0;®1; 0; =1® by 0;Tj Eé‘j@é’i, (280)

with & being the i’th pauli matrix. Here w is the spin-orbit coupling strength, A is the superconducting
order parameter, and B is the magnetic field.

It is interesting to study the energy spectrum for constant parameters, which is:

B} = B2+ A%+ & + (up)? + 2,/ B2A2 + B2 + (up)*}, (2.81)
where we defined &, = [% — u(y)]. By inspecting the spectrum in different parameter regimes, we
can see some interesting behaviour. We include figure 2.5.1 from the article, which shows the energy
spectrum for single particles for different parameter values.

The point of figure 2.5.1 is to show that when varying either parameter p, B and A, we can
close and open the energy gap at p = 0. The idea is to drive a part of the wire topologically non-
trivial; if it is surrounded by topologically trivial regions with a gap closing at the interface, we can
achieve Majorana bound states in the ends of the topological wire segments. The biggest problem
lies in tuning the wire into the topologically non-trivial phase. In this concrete system the topology
of a region is determined by whether B — /A2 + u2 is positive or negative, which they show di-
rectly in the paper. But the major point of the paper is this: By having a wire with Rashba SOI, a
Zeeman term and proximitizing this wire by an s-wave superconductor the result is that we can in
principle tune the wire in and out of the topologically non-trivial phase by spatially varying u, B or A.

This result explains the underlying motivation for what system we study in this thesis. We will
conduct analysis on a 2DEG proximitized by a conventional superconductor, with a Zeeman term
from a magnetic field and Rashba SOI. Even though the systems under consideration in this thesis do
not immediately contain Majoranas, and we do not focus on Majoranas in our analysis, the underlying
motivation for studying these systems with exactly these parameters is that hopefully the work will
prove useful in the hunt for Majorana bound states.
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Figure 2.5.1: Figure from [18]. (a) The energy spectrum for different parameter values. The color ’red’ corre-
sponds to spin-up, "blue’ to spin-down in the z-direction. (b) shows the excitation spectrum (exci-
tation because the energy is relative to the chemical potential, which is here equal to zero) with the
same parameter values. The hole-branch is now included. (c) Here we change B =0 — B = 1/4,
which means that we open up a gap in the excitation spectrum at p = 0. Note that the spin-colors
have now been switched off, to indicate that the energy branches no longer have a well-defined
spin in the z-direction since we now have a SOI-term with ¢, and magnetic field with o,. Still
electron and hole branches are well-defined though. (d) Now A = 0.1, which opens up another
gap just like for the magnetic field; however, this one is now between electron and hole branches.
Therefore there are new branch gaps at p = 0 and also for p = 2 where before the hole and
electron gaps touched. (e) Now A = B and we clearly see the new splitting induced by the larger
A making the excitation branches split even further; now at p = 0 we have one branch at energy
1, and one for E = 0 = u. Therefore we can say that the energy gap has been closed. (f) Now
A = 0.3 > 1/4 = B, which makes the gap at p = 0 reappear. (g) Here we decrease A again to
A = 0.1, but let p = /21/20. We see as in (e) that the gap at p = 0 closes. (h) Increasing p
reopens the p = 0 gap once again.
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2.6 Experimental Considerations

We will throughout the report compare some of our results with some experimental results obtained in
the Center for Quantum Devices at the University of Copenhagen. Here we present basic explanations
of the relevant experimental designs.

2.6.1 2DEG design at QDev

In ref. [19] there is a nice description of the 2DEG-growth and characterization in QDev. Here we
highlight some of the points that are relevant for the understanding of this thesis.

The basic idea of a 2DEG is to ”freeze out” one dimension of propagation by confining the elec-
trons in this dimension to a narrow quantum well, while allowing them to propagate freely in the two
planar dimensions. A problem that has been persistent in junctions involving 2DEGs is that it has
been hard to get a clean interface between the two regions. However with the device seen in figure 2.6.1
they managed to build a system which is devoid of this problem and has a close to perfect transition
between the layers.

a C
a
z=0
b
7nm
'4nm
Si dopants
150nm
b Y
04| 15
0.3} 4
o2} 12
B 0.1 £ 3‘
-

w (o] A— . Y R 2 3{.»
-0.1¢ 11 -
-0.2}+

f . . . . 0
0 10 20 30
Z(nm)

Figure 2.6.1: Figure from [19]. a Sketch of the total wafer where the growth direction is vertical. b Self-
consistent Poisson equation calculation which shows both the potential (blue) and the wavefunction
probability density (red) as a function of length in the growth direction. ¢ An actual picture of a
device using Transmission Electron Microscopy (TEM).

As can be seen from figure 2.6.1 b) they have succesfully established a quantum well in the 2DEG
InAs material. In this thesis we will model this system simply by a 2DEG region of one material with
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a hard-wall barrier on one side, and a delta-function barrier to a superconductor, which we model as
being semi-infinite.

2.6.2 Quantum Point Contact

It is now a well-known result [20]-[21] that the conductance through a sufficiently narrow constriction
in a 2DEG is quantized - see figure 2.6.2 b for some theoretical conductance plots, where indeed the
conductance is quantized for some parameter values. The mechanism to control the conductance can
be explained schematically as such: Imagine you have a 2DEG. Then put a dielectric on top. On top
of this you deposit two pieces of electrodes as in figure 2.6.2 a. Now you put on a voltage difference
over the electrodes. Since the underlying 2DEG is connected to ground, the conduction electrons
from the electrodes would like to propagate there, but due to the dielectric they cannot. Thus under
the electrodes we will establish something like an effective capacitor with an electric field penetrating
down through the sample in the growth direction. Since the 2DEG is a semiconductor with only a few
conduction electrons available it is possible to deplete the regions below the electrodes of conduction
electrons. Now there only remain a few conduction electrons in the narrow region between the two
electrode-tips. By further enhancing the electrode voltage and thus the electric field, the edge electric
field effects of the capacitor will deplete this region too, so that finally we reach the quantized con-
duction regime and can essentially turn off the conductance altogether.

Experimentally this means that the QPC electrode-gate voltage control allows for tuning into the
so-called tunneling regime, which means a regime where the conductance is almost zero. To model the
systems involving QPCs in this thesis we will therefore ab initio invoke the tunneling approximation.

a b5
wx Wy
— 1 3
4r— 0.1 3
— 1 1

source

b/
% 5 10 15
Er-E;/ w,

Figure 2.6.2: Figure from [19]. a A schematic of the QPC design on top of the 2DEG wafer. b Theoretical
conductance curves assuming low bias, low temperature, and quadratic potential V(x,y,z) =

—imwla? + %mwggf +V(2).
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Chapter 3

Wave-function approach to a
S-2DEG-junction

Our aim in this section is to perform analysis on the system showed in figure 3.0.1. We want to get a
solution for the subgap (i.e. energy |E| < A) energy solutions to understand the general behaviour of
the system. From the energy solutions we want in particular to extract information about the induced
gap in the 2DEG and the effective g-factor of the sub-gap excitations in the system, and investigate
its relation to the wavefunction probability density.

In the following we follow closely the treatment of a similar system (though without Zeeman en-
ergy) in ref. [22]. Consider a junction with a superconductor for z < 0, and a 2DEG in the region
0 < z < d. We assume infinite planar directions in the zy-plane where the Hamiltonian separates
into H = H, + H,,. The eigenstates of H,, are plane waves such that the interesting problem lies in
solving for the eigenstates of H,. We will leave as many free parameters as possible for flexibility of
the model. We assume different effective masses in the superconductor (ms) and 2DEG semiconductor
(my,); we assume a potential energy difference Vj of the conduction band bottoms of the two regions;
we assume a delta-function potential barrier U,d(z) to model the Schottky barrier of the interface.
Furthermore we also apply a constant magnetic field with only a z-component B, such that we get a
Zeeman-contribution to the Hamiltonian. We leave the effective g-factors in the two regions, gs and
Jn, as parameters as well.

Since we have a non-trivial Hamiltonian in both particle-hole- and spin-space we would normally
work in the full 4 x 4-BdG-basis described in section 2.3. However, since the only nontrivial spin-term
is the magnetic field, we can actually work only with a 2 x 1 Nambu-spinor, containing one electron

z U,8(2)

2DEG

24| u

SUPERCONDUCTOR

0 d

Figure 3.0.1: On the left: A shematic of our system. A finite 2DEG proximitized to a semi-infinite supercon-
ductor. On the right: A schematic of the potential felt by a single-particle excitation in the system
as a function of distance.
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part with spin-up or -down, and one hole part with the opposite spin:

U(r) = (iﬁg) (3.1)

In this way we still keep the structure needed to get a BCS, superconducting gap-term in our Hamilto-
nian (i.e. a coupling between electrons and holes of opposite spins), and can also include the Zeeman
effect by simply choosing B to be positive or negative, depending on which solutions we want to
solve for - the electron spin-up and hole spin-down solution, or the one with reversed spins. We will
implement this sign by adding a parameter o = +1 to the Zeeman energy. All this enables us to write
the Hamiltonian in the following way (we set i = 1):

H= /dr@T(r)H\TI(r) + const., (3.2)
where:
— v2 HBYs
H= 5 K + Uab(2) |72 + 5 Boty + A1, |0(—2) (3.3)

(- = 0= 10 )7 + 22 o (21000 - ),

written with the same notation as introduced in section 2.3. The BdG equations are:

(x| ) = B(x] 3 (3.4
where the 2 x 1 eigensolutions to this equation are the excitations of the system. We now seek to solve

the eigenequation for eigenenergies. Because the Zeeman term in this Nambu-spinor basis acts as a
simple shift of the energies, we will define the following quantities:

Bo; E,=E- %Ba. (3.5)

Let us first look at the eigenstates in the 2DEG-region. Here the electron-hole equations are decoupled

and we get, defining <r‘ 1Zn> = <$ZE3) as the eigensolution to equation (3.4) in the 2DEG, for the
electron-part of the eigensolution:

v2

[_ 2my,

—W—%*MQ=MWM$ (3.6)

Pe(r) = [A+eik'r - A_e*ik'r} , where k= =+/2m,(E, +p— Vo).

Ky
Now since the solutions in the zy plane are decoupled from the z-direction we introduce k| = | &, | to

0
account for the plane wave propagation in the zy-plane. Since we are only interested in the z-direction
dynamics we will treat the good quantum number k| as a parameter so that the general equation for
the electron becomes:

te(r) = exp(ik)| - r) [z‘heikez — A_emher| (3.7)
where:

ki + k2 = 2mn(Ep + 1 — Vo), (3.8)

For the hole-wavefunction 1, (r) it is a similar equation, so now we relabel the wavenumber for the
hole kj;, and achieve:
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Yn(r) = exp(ik - r) Heknz — {_e=knz| (3.9)

where:

kif + ki = 2mn (= En + p — Vo), (3.10)

where we see that the energy has changed sign, E — —F, consistent with a hole being the antiparticle
of an electron and the Zeeman term has also changed sign, i.e. E, — —F,, since our Nambu-spinor
in equation (3.1) assumed different spin-directions of the hole and electron.

Now for the superconductor the electron and hole parts couple. Anticipating that our sub-gap states
must decay in the superconductor (since sub-gap, single-particle excitations are not allowed in a
superconductor), we assume a solution of the form:

<I‘Wis> — kT (ktip)z <Z>7 k,p€R;  u,veC. (3.11)

Note that we also here have k|| as the wavenumber in the zy-plane to ensure overall continuity of the
wavefunction. Plugging expression (3.11) into the BdG equations (3.4) we obtain:

—(k+i 2+k2

[(H;:L)S' - u] u+ Av u

A — |:—(n+ip)2+k2| B H} ; =B <v> (3.12)

2ms
Now looking for non-trivial solutions to equations (3.12) yields:
w —u— Ey A
det —(I@-‘rip)Q-‘rkﬁ =0« (313)

A o e A 22

2mg Mg

EE

—z) — = +i\/A? — E? (3.14)

Assuming |E;| < A we can take the real and imaginary parts of this equation which yields:

[ 2 N
1
— —kp=+\A2-E2. (3.16)
ms
Now we define:
£ = —i2 (3.17)
ms
whereby equation (3.16) squared assumes the form:
E? = A? 4 ¢2, (3.18)

which has the typical appearance for a superconducting spectrum; a superconducting gap A and ki-
netic energy &;.

On a physical background, under the assumption |Es| < A we demand that the wave function atten-
uates in the superconducting region z < 0 with a characteristic distance x~'. Thus x > 0, whence

equation (3.16) leaves us two choices for b for the other parameters given.
Now we want to determine the eigenstates corresponding to the above eigenvalues. Since we can
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only determine the coefficients u, v up to a normalization, we choose u? +v? = 1. The BdG equations
(3.12) under the condition (3.15) becomes:

Esu+ Av) U
(5 2) (%) - o0
A
v Es - gs

_ 2\ —1 _ 2\ —1 N -1
u? = <1+(ESA2§S) ) = <1+(]‘Zs2 _22) > = <1+ g+§> = ;<1+§> (3.21)

This of course means that v? = %(1 — g—z) The two choices of sign for p explained earlier gives us

v = (3.20)

two different solutions; if p — —p then also £ — —&;, which in turn means that u <> v. In result we
have:

(r|tps) = e®iT [B+e(”+ )z <5) — B_elrin)z (Z)] (3.22)
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3.1 Matching Boundary Conditions

Now we want to proceed by using the boundary conditions. Firstly we have continuity of the wave
function at the superconductor-2DEG boundary:

(|9 g = (r[ )] - & (3.23)
<rwn>‘z:0 = <r|,¢_}5>‘z:0 = (3.24)
Al —A_ B.u—B_v

(HI - H_> - <BL) - B_u>' (3.29)

Next we have the boundary condition for the derivative of the wave function. Here we get from
Schrodinger’s equation:

= o 2 (rl9) = (B =V(@)(r|9) = (3.26)

151(1)(/0 2;5 Z<r\¢>dz+/06 2s%a§<r\w>dz> = ;g%(/iw(z) —E><r\w>dz) = Ua{x| )],y =

(3.27)
_ 1 _ _
g O=(x [ Un)].g = 5 0:(x[9s) | = Ualr| ). & (3.28)
Ay (e —U,) + A_ (3= + U,) - B+u("p+”)+B poim
H+( 'Lkh B Ua) +H_ ( zkh +U, ) (Zp-l—n) + B u (n zp) =0 (329)

The third boundary condltlon is dictated by the finite size of the 2DEG, where we demand that at
the boundary the wavefuntion is zero:

(x| ¥n)|,og=d = (3.30)
A eiked _ A_e*ik‘cd
(Hieikhd _ He—ik:hd> = 0. (3.31)

Combining these three boundary conditions yields:

u —v -1 1 0 0 By

v —U 0 0 -1 1 B_
S e e gern 0 0 Ay
v(g’;”) U% 0 0 ;ﬁhﬂ - U, ;flhn +U, || A- ' ‘

0 0 eiked —ethed 0 0 H,

0 0 0 0 eikhd _ef’ikhd H_

Looking for non-trivial solutions to this equation by setting the determinant of the above 6 x 6—matrix
equal to 0 and using equation (3.21), we get an equation for the excitation energies in the system:

ES . . S
0= ip?(k:h cos dky, sin dk. — k. sin dky, cos dk.) + %khke cos dky, cos dke+ (3.33)

S

sin dky, sin dk, (m”

S

(p* + [k + 2Uams]2)> +sin dky, cos dke (ke[k + 2Uymy))+cos dky, sin dke (ke[r + 2Ugms)).

This is the equation for the spectrum in this model.
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3.2 Almost Infinite Square Well-Approximation

While we can solve equation (3.33) numerically to obtain the excitation spectrum for a given set of
parameters, we would like to get an expression that is easier to understand analytically, for example
to see which parameters the induced gap in the 2DEG depends on. Therefore we follow a similar
procedure as used in ref. [22]: we define the following:

z n 2 a n n =7 — 7
= P W Uom + m K; ke = ko + 0ko;  kp = ko + 0ko o = doky; oy = ddko,
kom ko mgko

(3.34)

where ko = 7/d, the wavenumber of the ground state of an infinite square well of width d.
We now assume that only the lowest subband in the 2DEG is occupied, and that to a good approx-
imation the wavenumber in the 2DEG matches that of the ground state in the infinite square well;
under this approximation, the following holds:
Sko Ok
T el e ay,ay << 1 (3.35)
ko~ ko
We will call this approximation the ” Almost Infinite Square Well”-approximation (AISW). Now ex-
panding the sines and cosines in equation (3.33) to first order in oy, &y we get:
o ~ = (2 2 N
zsé—(ak —ag) + 1+ agag(s® + w?) + w(oy + ax) = 0. (3.36)
S
Now we need to rewrite the ag, @ in terms of the variables we want to end up with in an equation.
Let us first define the following;:

k2 — k2 12 2
£ I Fo FO. _ Yy — kj

(3.37)

?

2my, 2my, 2my,’

where kpg is the fermi-wavenumber in the absence of any coupling to the superconductor, and &, is
the kinetic energy relative to the Fermi energy with infinite barrier between the two materials.

If we invoke the definitions from equations (3.34) and (3.37), and use that in our BDG equations
(3.4), we can arrive at the following relations:

keolk: koS
Ep=&n+ — °=—<£n+ 0 °>. (3.38)
m m

n n

From these relations we can arrive at:

dm d?m E, —
ay = dokg = ? “(Ep— &) = “(Ep— &) = ”75”. (3.39)
0 ™ €0
Similar calulations lead to:
E 2 E2 9 2 E2
Q= o + fn; Qo) = 7571 3 n; Oéi + de = 7(571 _|2— n) . (3.40)
€0 €5 €5
Invoking these rewritings into equation (3.36) leads to:
e2-E2 , &n 2sE, E
0=14+22 " - -— & 3.41
+ 2 (w*® + s%) Y T (AT )i (3.41)
o 2seo B, B _ §§ . 63 2wepéy, (3.42)

" (A2 - E2)12(w? + 52) w2+ 52 w4 st

Now defining:
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S€Q
and rearranging a bit, equation (3.42) becomes:
2¢q0En B w 2
ot a7 52);2] = (&- §€9°> + o (3.44)
S

This is the final form of the equation for the spectrum in this approximation. Let us investigate some
limits of equation (3.44) for a moment. We see that for €59 — 0 the terms that contain E vanish; this
effectively can be understood as if the superconductor plays no role in the equation anymore. Thus
we might conjecture that €,9 has something to do with the coupling between the superconducting and
the 2DEG regions. Also we see on the RHS of equation (3.44) that the kinetic energy in the 2DEG in
the absence of coupling, &,, is renormalized into an effective kinetic energy, &:

§=&n — %690- (3.45)

We also see in equation (3.44) that both the magnetic field in the superconductor and the semicon-
ductor figurate, so that the slope of the energy as a magnetic field may be some combination of the
two g-factors, which can in principle be found by solving the above equation for E; this is not doable
analytically, but numerically it is easy. Some analysis on this is the subject of the next section.

From equation (3.44) we can try to find the induced superconducting gap in the 2DEG, similarly
to what is done in ref. [22]. The induced gap is defined by:

A'Lnd = minkHE(k‘H). (3.46)
If we make the assumption:

€90
A

we can ignore the second term in the LHS parenthesis in equation (3.44), leading to:

<< 1, (3.47)

w

1/2
En =+ (fn — §690)2 + 630:| .

(3.48)
This has exactly the form we expect for a particle in a superconductor; a kinetic term which varies
quadratically as a function of k|| and then a constant energy contribution - a gap that the particle has

as a minimum possible energy. Thus we can simply read off the induced gap in the approximation
(3.47) as:

€0S

—_— 4
52 + w? (3.49)

Aing = €g0 =

If we want a more exact form of the induced gap, we need of course only solve equation (3.44) for the
minimum energy as a function of k| for given parameters.

We will compare equation (3.44) to the energy spectrum you get in a tunneling model in section
4.
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3.3 Effective g-factor in the AISW-Approximation

We have seen from equation (3.44) that both the magnetic field in the superconductor and the semi-
conductor mix in the equation for the sub-gap spectrum. One question that we will try to answer is
whether the effective g-factor tells us something about the microscopics of our system. In the next
section we will do some analysis on the relation between the effective g-factor and the wavefunction
probability density. We will also investigate the effective g-factor analytically in the small-B-field
limit.

3.3.1 Relation to the Wavefunction Probability Density

The Hamiltonian we have can be written as:

H=Ho+H; H =g(z)Bo; g(z)=9gs0(—2)+g.0(2)0(d — 2), (3.50)

where 0 = £1. Say we treat the magnetic field as a perturbation. Then using the well-known result
from 1st order perturbation (see e.g. ref. [23]), we get the change in the energy to be:

AE = (il #in) = [ arl(el Go)PBotro = (o.5 | (; Al +0.5 | ' o)) | [ oot
(3.51)

0 7 d 7
) ( [l 2o ) | i dsfioa)P )B _ B, (352)

gS d —_ gn d —
Jo oo dzltbo(2)[? Jo o dzltbo(2)[?
So we see that in 1st order perturbation, the effective g-factor is a mix of g, and g5, weighted by where

the quasiparticle lives. The question is then: How far does this result extend when the magnetic field
becomes a more dominating factor in the calculations?

The Feynman-Hellmann Theorem [23] is very useful here. It states simply that for a Hamiltonian
which is a function of some parameter A and has eigenfunctions 1, (\) with non-degenerate eigenval-
ues F,(\) the eigenenergies satisfy the following relation:

O0E, 0H
O\ = <¢n|67’1/}n> (3.53)
In our case with the Hamiltonian from equation (3.50) we see that this becomes:
0E, - 0H | - _
= (Gl 500 = [ drliaPo(). (3.54)

So we see that the instantaneous slope of an eigenenergy of our system must similarly to the 1st
order perturbation result be a linear sum of g, weighted by the weight of the wavefunction probability
density in the normal region, and g5 weighted by the weight in the superconducting region. So on a
general basis, the slope of the energy must be related to where the wavefunction lives.

Now what is experimentally interesting is not so much the information about how the wavefunc-
tion probability density changes as a function of magnetic field, but rather where the quasiparticle is
located at zero field since this says something about the design of the 2DEG (i.e. to which extent the
system confines the wavefunction as intended etc.). Therefore it is interesting to look at the formula
for the effective g-factor at small B-fields.
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3.3.2 Effective g-factor for Small B-fields

It is of interest to derive how the effective g-factor varies as a function of the model parameters.
The basic question is whether there is some knowledge about the system to be had by extracting the
effective g-factor in an experiment, and if so, what knowledge? The experimentally relevant limit is
for small B-fields, but without other approximations on the parameters. Let us now start from the
expression for the energy, equation (3.44):

E,E
JAZ - 2

We assume that we have solved for the sub-gap state energies at zero B-field, Ejy:

E? 4 2¢49 =&+€ (3.55)

2
B2 <1 + 690) =2+ (3.56)

JAZ _E7

The positive-energy solution to this equation is plotted in figure 3.3.1 (the negative energy that follows
from particle-hole symmetry is ignored here). Here we see that the minimal energy solution is always
found for zero renormalized kinetic energy, £ = 0 (see equation (3.45)). Note that only the square of £
figurates in equation (3.55), so negative & is redundant. This means that we can find the induced gap,
Aing (see equation (3.46)) as the solution to the equation (3.56) with & = 0, for zero B-field. Also,
interestingly the curve is not monotonous as a function of €4g for § # 0.

We are now interested in how the energy Ejy changes for small magnetic fields. Let us therefore
define the following;:

E—Ey— B, (3.57)

where we neglect higher order terms in the magnetic field. ¢* defines the effective g-factor. Then
inserting this value in the energy equation (3.55) yields:

2eq0(Eo — (9" + 950)B)(Eo — (9" + gno) B)

Ey— (¢* + g,0)B)% + : =24 &, 3.58
(Eo = (9" + gn0) B) A2 (Bo— (¢ 1 5.0) B £+ €50 (3.58)
Eg
A
£=0.3A
04 £=0.6A
— £=0.9A
0.2
1 1 Il 1 1 &LD
2 4 6 8 10 A

Figure 3.3.1: Here we see how the positive energy changes as a function of the variable ¢4 for a choice of kinetic
energies £ < A. The curve for £ = 0 is equal to the curve for the induced gap as explained in the
text.
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gn=10=5gs

Ego

0 2 4 6 8 10 A

Figure 3.3.2: Here we see how the positive effective g-factor solution varies as a function of €49, the tunnel
coupling strength parameter for a choice of kinetic energies £ < A.

Now we expand on both sides of equation (3.58) to only first order in the magnetic field:

E2 —2(g +gnU)EoB+TQOEE0(—(g +g50) — (¢* + gn0))B. .. (3.59)
— L0
2E3eq0 2E3€q0

* 2 2
Y e mpn 0 eB) = €4 (3.60)

Now differentiating with respect to B we obtain:

QES'egO
(A2~ B2

26g0

VAT By

—2(g" +gno)wo+ Eo(—(g" + 9s0) — (¢ + gno))+ (=(9"+gs0)) = 0= (3.61)

* €4g0 128690 €40 €90 2690133
248 - =g |24+ 2——2 | 4g,0(2 +
g A _Er (A ERpr| T Az | " A2 E7 (A2 E2)3
(3.62)
€ € E?
gn[1+ = :| +gs|: L + 2690 23 2:|
VA2 A2_EZ (A2-EF)¥

gt =+ 0 VAT =4 (3.63)

EgegO

1 +2 €90 + (AQ_ES)g/z

VT
where the + originates from the ¢ = +£1. We have plotted the positive effective g-factor solution
for some choices of kinetic energy in figure 3.3.2. Note that we choose £ < A so that we only look
at sub-gap energy states (see figure 3.3.1). Since (3.55) only depends on the square of £ we do not
investigate negative &.

We see from figure 3.3.2 that g* — g, for ;0 — 0. Since €50 — 0 means there is no induced gap in
the 2DEG and thus no proximity effect to the superconductor we can see this limit as an ”isolated
2DEG”-limit, where it makes sense that g* — g,. Conversely, we see from figure 3.3.2 that when €4
increases the finite semiconductor begins to become negligible due to the infinite superconductor; thus
g* — gs, i.e. the wavefunction lives mostly in the superconductor. Also we found that the induced
gap in the 2DEG depends critically on €49, according to figure 3.3.1 with £ = 0.

32



Bjarke Nicolaisen January 15, 2017

3.4 Numerical analysis

In this section we will calculate the effective g-factor and compare it with where the wavefunction lives,
both via solving analytic equations numerically - see section 8.2 for details about the procedure. To
do this we of course have to specify the model parameters. We choose these not to match experiment,
but to exemplify the theory up until this point. We choose the bulk aluminium superconducting gap
(see e.g. [24] p. 268):

U, =0; =0.1; pu=06eV; A =0.340meV d=20nm; pu— V= 27.05A. (3.64)
ms
To check that we are really in the AISW-approximation regime we calculate for these parameters for
k= 0:
k k
Z€ —1.005; - =0.976. (3.65)
ko ko
So we see that we are indeed in the AISW-approximation regime. We want now to calculate the factor
g0 for our parameters:
€40 s €
- =—-——-—=219. 3.66
A s2+w?A (3.66)
From the discussion of figure 3.3.1 we know that we can find the induced gap, Aj,q by solving the
energy equation for the above value of €, with £ = 0:

2¢€40

Ai2nd 1+ \/W = 630 = (367)
~ “ind
Aind = 0.78A, (3.68)

as can also be confirmed by looking at figure 3.4.1, where we solved equation (3.33). Also due to this
figure we can tell that for k| = 0 we are very close to the minimum energy value, § = 0.

Figure 3.4.1: Here we see how the positive energy solution to equation (3.33) (the negative hole energy solution
is ignored here) changes as a function of the variable k). It is clear that an induced gap of
approximately 0.78A is induced for this set of parameters.
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49+

Energy
48| ,
— Wavefunction

471 Wavefunction zero B-field

46+

45+

B
0.05 0.10 0.15 0.20 0.25 0.30 E

Figure 3.4.2: Here we see how the effective g-factor (the negative hole energy solution is ignored here) changes as
a function of the variable €,9. The 'Energy’-curve is found via solving equation (3.33) numerically.
The "Wavefunction’-curves are found numerically via solving for the wavefunction as explained in
Appendix B.

Now we want to compare finding the effective g-factor by calculating the wavefunction numerically
and comparing with explicitly finding the slope of the energy with respect to magnetic field. This is
done in figure 3.4.2.

First of all the curve ’Energy’ and ’Wavefunction’ lie perfectly on top of each other, indicating
that the Feynman-Hellmann Theorem is indeed applicable in this system. Secondly we see that indeed
the correct g—g changes as a function of the magnetic field, confirming that the 1st order perturbation
result is indeed perturbative in B. However, the discrepancy for these parameters is actually not very

significant, even when g*B becomes of order A.

It is important to stress though that these findings are specific to the parameters chosen here, and that
the parameters would have to be changed for another sysem and the analysis redone to see exactly
for how large magnetic fields one could still use the slope of the energy wrt. magnetic field as an
indication of where the wavefunction lives.

Finally we include some plots of the wavefunction probability density for zero magnetic field in

[¥]*2

z (nm)

Figure 3.4.3: Here we see how the wavefunction probability density for zero B-field varies as a function of
distance, z, inside the 2DEG. The superconductor-2DEG interface is located at z = 0.
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Figure 3.4.4: Here we see how the wavefunction probability density for zero B-field varies as a function of
distance, z, inside the superconductor. The superconductor-2DEG interface is located at z = 0.
Clearly the probability density per length is much lower than in the 2DEG, figure 3.4.3, but the
decay length is sufficiently big to ensure a substantial weight when integrated over the semi-infinite
superconductor.

figures 3.4.3, 3.4.4. The shape confirms the notion that we have something like an approximate ground
state of the infinite square well in the 2DEG, with a minimal tail inside the superconductor, where
the wave-function attenuates exponentially. However, since the decay length in the superconductor is
so large for our system, the tail will actually result in a substantial weight when integrated up over all
of the superconductor’s space. This also highlights one of the problems of this model when trying to
compare with the experiments at the Center of Quantum Devices; there they have a nanometer thin
layer of Aluminium. Since the wave-function dies out so slowly in the superconductor, this means
that the half-infinite superconductor used in this model is likely not a good approximation. It would
not be too difficult to include a finite-size superconductor as well, but the analysis would have to be
redone.
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Chapter 4

Green’s Function Approach to an N-S
Junction

In order to tackle the problem with both spin-orbit, zeeman field and superconductivity, we will use
a greens-function approach. We will be working in the imaginary-time regime in real space (see e.g.
ref. [13] chpt. 10), i.e. work with Matsubara Green’s-functions such as:

G(rro,v'r'o") = —<TT (xpg(r, )l T')) > (4.1)

It will prove useful to solve the equations of motion in a matrix structure, using the following definition:

Wy(r, 7)
1t v (r’T) rot 1ot 1ot 1ot — \T T
G(rr,r'r) = —<TT qi(m) ® (\p;(r,r) v, ) w0, wT(r,r)) >: —<TT(\II®\IIT)>
Ui(r, 7)
(4.2)
A couple of useful relations are:
{T(r), T ()} = () @ U (r') + UT(r') @ U(r) = 6(r — r')1yxa, (4.3)
and:
0 0 0 -1
(T(r), T()} = 6(r — 1) 8 ; (1) 8 = yo(r — 1), (4.4)
-1 0 0 0

which can be verified explicitly. Interestingly, we recognize x as the same matrix that figurates in the

particle-hole symmetry operator, equation (2.48). This suggests that the approach we are using in
setting up the model captures the particle-hole symmetry of the problem (see section 2.3.1), which we
will see explicitly later on.

Let us now proceed to solve the problem. First we must write up our tunneling Hamiltonian in
the Bogoliubov-de-Gennes formalism (see section 2.3):

1 _ _ _ _ _ _
H = HotHytHo = / dr [\Pl(r)?{za/‘lla/(r) 48 (1) HE B () + < / dr' T (1) T B (1) + hoc.
(4.5)
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where a,a’ € {1,2,3,4}. Also note that the U’s are confined in real space to the 2DEG region,
whereas the ®’s are confined to live in the superconductor. The parts that make up the 1st quantized
Hamiltonian are, for an in-plane magnetic field:

P2+ i+ p?

— Hs Tz+BsU$+ATx;
2m

2 2 2
23— ki + ky + k2
" 2my,

— ,un) To+Bpog+olkyo, — kpoy);  He = (

(4.6)
Note that the magnetic field could also be chosen to be Bo,, in order to model a magnetic field out
of the 2DEG plane. For the tunneling term we choose the simplest approach, which is to say that the
tunneling is local in space, only takes place in the interface between the two materials and does not
involve any spin- or particle-hole-coupling terms:

T(r,r') = 6(r) — ril)é(z)é(z’)tol =6(r —1)d(2)tol (4.7)

Thus we can also write the tunneling term in the Hamiltonian in the same way as the other terms:

Hy = % / dr / A/ (1) Ty Doy (1) + hc. = % / Ar B! (1) Ty B (1) + hec., (4.8)
where:

T = §(2)tol. (4.9)

Now we write up the equation of motion:
— 9.G(rr,r'7") = —|—8T<TT\I/(I-, e, T')> - (4.10)

or(0(r = 7)U(r,7) @ U, 7) — 0(7 = )W ) @ W(r, 7)) =
16(r — 1')(r — ') + <TT [H, 0 (x)](r) ® U, T/>>.

So we will need to find the equal-time commutator between the Hamiltonian and the quantum field

operator ¥(r). Digging right in, by looking at an arbitrary component of the W(r)-vector yields (with
Einstein summation-convention of repeated indices):

[H, (r)] = 5 / ! [T (0 Y W () + 0 (M B () (W () T i () + ), ()] =
(4.11)
1 / n T T (T, AN Tt (v AT * 5T 1\ AT
5 [ (Moo [ PR T (), W)+ Tor [FL () B (), T ()] + T o[ @], () T (6, T (0)] ) =
(4.12)
1 _ _ _ _ _
3 [ (Hz,a/ (T4 )T (), T(r)} — (TL (), Tp(0))) ... (4.13)
= T AT (), U (1)} () + T 8L, ()T (1), %(r)}) -
1 _ _ _ _
5 (Hng, [Xa,ﬂqu(r) - 1a5\11a/(r)} — 1oy Por (1) Toar + Xap®, ,(r)Ta*,a). (4.14)
From this we can extract the underlying matrix structure. This results in the following:
- 0;g(rr, ') =16(r —v)o(r — 7)) + <TT[H, U(r)](r) @ Ui(r, T’)> = (4.15)
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5(r — )50 — )1 4 % (<TT ((‘T’T(IU T)an>T ® U, 7—’)>> — <TT (H”\T/(r, )@ Ui, T’)>> .

. <TT (Tci(r, e dte, T/))> + <TT ((@(r, T)TX)T ® U, T/)) >> .

Here we have four different types of Green’s function-matrices:

(T (D(x,7) 2 (7)) )5 <TT ((qﬁ(r, T))T ® U, T’)> >; (4.16)

(r. (30 w6 ) ) (7 (300) 8 0w e)).

So normally we would have to repeat the equation of motion-technique on each of these kinds of Green’s
matrices in order to close the set of equations. However, this is where our the artificial doubling of
the spectrum in choosing a 4 x 4 Nambu spinor comes in play (see section 2.3). Now we can use the
particle-hole symmetry to limit our computations. Using the following identities:

H=HeH =H" YT=x; xx=1 (X\I/)T:\TJT; (X@)TZCTJT. (4.17)
we can perform rewritings similar to the following;:
_ T _ _ _
(WT(r,T)HnX) = xTHIGTT (v, 7) = \H U (v, 7) = YHE X T. (4.18)

From this we can finally arrive at a nice equation of motion for G(r7, r'7’), i.e. equation (4.15) becomes:

—aTg(rT,r'T’):5(7—7')5(r—r’)1+% (x’H < <\I'T(r 7@ Ui, T))> 7{”< ( (r, T)®@T(r'm'))>...
(4.19)

co— T<TT (@(r, )@ Uiy 7'/))> + XT*x<T (i)(r T)®

\_/

1
—&,g(m’, r'r) = 6(7’—7”)5(r—r')1+§<( XH,x + ’H”)g(rT, ')+ (—xT*x+T) )E(rT, r'r )) (4.20)
Here we have introduced the definition:
F=-(T,200"). (4.21)

Note that we have now reduced our problem to one only involving two unknowns, G and £. Now to
close the equations we need to find the equation of motion for £. Performing the same procedure as
above we obtain:

— 0, F(rr,x'7") = (Hs — xHiX) E(xr,x'7") + (T* — xXTx)g(rr, r'r’). (4.22)

Now we make a Fourier-transformation of the imaginary time, using that all Matsubara Green’s
functions’ time-dependence only depends on the time difference, i.e. (for 7 > 7/):

G(r,7)=G(r—1). (4.23)
This leads to the equations:

G, ion) = 3(r — )1+ L ((H" — XHiX)G (¥ won) + (T = XTX)E (e iwn) ) (4:24)
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1
ioon (6,1 ieon) = 5 (s = XHD)E (0,1 i) + (T* = XTG(r, ¥ iwon) ). (4:25)

Combining equations (4.24) and (4.25) we can solve for the Green’s function:

1, -t
£ = <an Q(X%SX - Hs)) (IT" = xTx)g = (4.26)
G = (ion+ 5 (X~ Ha) ) (80— 214 (T~ xT*) (ion + S (X ~Ha) ) (T~ XT)G
2 2

(4.27)
We see from this result a clear Dyson-equation structure. This means that we can simply read off the
self-energy contribution:

1 e 1
=5 (T =xT") <Mn SOH X —H )) (I =xTx) (4.28)
Now we can simplify this using the following relations:

XHx = —Hn; xHix=-Hs; xT'x=-T; (4.29)

These identities follow directly from the particle-hole symmetry in our system (see section 2.3.1):

PHP' = —H & xH 'y = —H. (4.30)

This results in:

N(r, v iwn) = T(iwn, — Hs) 'T* = TGos(r, 1/, iw,) T (4.31)

Using the expression for the tunneling terms, equation (4.7), yields:

S(r, v iw,) = 6(2)5(zl)|t0|2&(r, v iwy,). (4.32)

From here on we follow the procedure outlined in ref. [25]. We rewrite this in the momentum-space
representation:

Gos(r, ¥, itwn,) = —<TT\TJ(I') ® @T(r/)(z’wn)> (4.33)
1 i(kr—k'r') - T s 1 i(kr—k’-r’ .
= _<TTV1§(:,€ (ker—k )ck®cL(zwn)> = V%e (ker—k )&(k,k’,zwn). (4.34)

Now assuming that the superconducting Green’s function is translationally invariant we get:

gOs(r r’ an = Zeﬂ{ (r=r") ilk—k): gOs(k k' ZWn) @(I‘—r/,inJ (4'35)
kk’

Since the RHS of the above equation only depends on the relative position, so must the middle part,
which means that:

Gos(k, k', iwn) = O Gos (K, iwn) = (4.36)
: dk ik-(r—r’ .
Gos(r, 1, iwy,) —/(27T)36 =) G (K, ). (4.37)

This means that the self-energy equation (4.32) becomes
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Y(r, v’ iw,) = 5(2)5(2/)|t0|2/ (2(1:)3

Now we want to Fourier transform the self-energy into a momentum-space representation:

ek G0 (K, iwy), (4.38)

) :/dl<g05(k, iwn)/d(r| —rh)ei(kp)(l"lI“I)/dZ/dZ/e—i(Pz—kz)ze—i(plz+kz)z/5(z)5(zl)’t0|2

(2m)3=
(4.39)
= |to|? / &)%(k,iwn) / d(ryy — ] )’ TPIETTD = g2 / &)%(k,iwn)(gn)%(pl — k) =
(4.40)
S(py), iwn) = |t0|2/d2]::g&s(P,iwn)- (4.41)

From here we will transform to energy space, and make the usual approximations to get a momentum-
independent self-energy expression. First we write a trivial statement:

. 2 dp. . 2 A2 dp. .
Sy iwn) = [tol / 22 Goo (s in) = It /A de/ D5l — &p)os(e ien), (442)
—Al

where A1, Ao mark the bottom and top of the conduction band, i.e. Ay — A1 is the bandwidth. We
also know that we can change between an integral over momentum to one over energy by using the
density of states v, so that we for example have:

/ Pz pyw) = / deG(e, w)v(e, p|)- (4.43)

2 =

Thus we can identify the density of states from the two above equations:

v(e,p)) :/ifa(e—gp). (4.44)

Now we assume that the density of states varies slowly enough with energy that we may take it outside
the integral and write:

A2
S(pyjs iwn) &~ Biwn) = [to]?[v(0)] /dé}ig(é}i,iwn) = [to[*|v(0)] /_A de3 (iwn — (7= + Bsow + AT2)) 7,

(4.45)
where the &7 is the superconducting kinetic energy term from equation (4.6). At this point we perform
the analytic continuation of the Matsubara Green’s function, which gives us the retarded self-energy
as a function of the regular frequency and an infinitesimal imaginary part n:

! (4.46)

A2
() = Siwn — w + in) = [tol2[(0)| /A A€8 (@ + in — (€57 + Buos + Ary))
—Al
Now we can solve for this inverse structure. To solve this we will be looking at the kind of design
where the magnetic field goes is in the z-direction, which gives us a magnetic field-contribution of Bo,
instead. This means that Gy is diagonal in spin-space, which allows us an easy inversion of it.
Since the inverse of a diagonal matrix is simply the inverse of its entries, we can treat such an inverse
as a number in our calculations. And since we can decompose our 4 x 4 matrix into 4 blocks of 2 x 2
matrices that are each diagonal, we can treat each of those diagonal blocks as a number, and invert
our matrix as a 2 X 2 matrix in 7 space, which yields:
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_ w4+ &1, — Bso, + A1,
i — (657, + Boo, + A1) ' = P 4.4
orin=(Gr+ Do+ An)) - = o g & A

The o, in the denominater here is to be understood as a number that changes sign in spin-space just
as if it was in the numerator.

Let us now consider the integral in equation (4.46):

A2 w4+ &1, — Bso, + A1,
YHw) =32 +':t20/d5 —P 4.48
@) i) = ftol " (O) Y “ (w+in — Bso,)? — (§5)% — A? (448)
Expanding the parenthesis in the denominator yields:
(w4 in — Bso,)? = (ws)? + iSign(ws)n., (4.49)
where we defined:
ws = w — Byo,. (4.50)
Now we use the fact that:
L PLind(a) (4.51)
z + ’”7 77*)0+ z 1o\ 5 .
where P f(x) denotes the Cauchy principle part of f(x). Then the self-energy becomes:
A2 ws + &371, + AT,
P —t20/d5 P = 4.52
(w) | 0’ |l/( )‘ Y gpw?%—iSign(ws)n— (55)2 A2 ( )

A2 1
\t0|2]1/(0)] /_)\1 dfrs, [ng — (55,)2 AT Sign(ws)mé{(fé)z — (wg — A2)} (ws + f;Tz + A7), (4.53)

Let us look at the delta-function part first. We can use the well-known decomposition of the delta-
function of a function:

o) =3 s (454

where the a; are the roots of the function f(x). Using this for the variable £, we get that:

6(&p — Vw2 =A%) +0(&p + /w2 — A%)
21¢3 ]
Here we see that there is 'phase transition’ at |ws| = A: for |ws| < A the delta functions will not

contribute to the self-energy because then (/w2 — A2 ¢ R, which means that the integral over real
values of £ can never attain this value. Let us therefore look at these two regions seperately:

5(&p — (W2 —A%) = (4.55)

4.0.1 |w] <A

Here the self-energy is the following:

ws—i—f TZ—FATz
S (w) = — [t/ P/ e (4.56)

Using the identities (a? > 0):

42



Bjarke Nicolaisen January 15, 2017

1 1 x T 1 9 5
/de == arctan(a>; /dxac?—i—a? =3 log(a® + x%), (4.57)
and defining;:
v = 7ltol*[v(0)], (4.58)
we get:
1 A3+ A2 s + AT, A A
YR (W) = - lo 2—'—— Tz—lu arctan | ———=—— | — arctan| ———21— | |.
A+ A2 T /A% — w2 A? — W2 A2 — w2
(4.59)

Now under the assumption that A\j, Ao >> |\/A? — w? |, the self-energy simplifies considerably, result-
ing in:

A s+ T2
2 W) (4.60)

1
R\ — | 2100 22
Y w) = 7<7T log )\17'2 + AT
Since Ao — A1 is the bandwidth of e.g. an aluminium band it should be of order electron volts, which is
around 3 or 4 orders of magnitude larger than A, so A, Ag >> |1/AZ — w2 | is a safe approximation.

4.0.2  |w,| > A :

In this parameter-regime the delta-function from equation (4.55) will indeed contribute to the self-
energy. Again under the assumption that A1, A2 >> |\/A? — w? | both delta-functions will contribute
under integration yielding a contribution to the self-energy of:

A2
_ /_A &g [Sign(ws)imd{(£5)? — (w2 — A*)}H(ws + &7 + ATy) = (4.61)

™

(ws + E;Tz + AT:E) = (4'62)

A2 Y s .
—7/ d§S[Sign(ws)i<6(§p Vw2 = A?) +6(& + /Wl A2)>

21¢3 ]

o 1
— Z")/Slgn(ws)m(ws + ATI) (463)

Now the contribution not stemming from the delta-function can be calculated using the identities
(a? > 0):

1 1 T —a x 1 9 9
[t = ml‘)g(“a); [ oz = ylesle ). (4.64)
Thus we get a contribution:
ws + §pTz + AT,
& 4.
Tp / { ] (4.65)

ol 1 log Ay — w2 — A2 )\1+\/w2 A2 lo < %—(wg—Az)) (4.66)
=—= Ts .
2 2 _ A2 Ao+ /w — A2 A — w — A2 2 s g

[Mog(;l)@}, o
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where again we invoked the assumption A, Ao >> |\/A? — w2 |. Thus the total self-energy in this
parameter-regime becomes:

(4.68)

1
»E(w) = —y <7r log(:\\i>Tz + iSign(ws) W + ATa >

VIAZ =i

Comparing equations (4.60) and (4.68) we see that the only difference between the two regimes |w| < A
and |w| > A is the factor iSign(w,) that is multiplied onto the second term in the self-energy in the
latter regime.

Let us stop for a second and reflect on what we have done. We set up a tunneling model. We
then assumed the simplest tunneling coupling possible, i.e. one without spin-flip processes. By using
the equation of motion-approach we then obtained a Dyson equation which allowed an easy iden-
tification of the self-energy which contains all the non-trivial information of the system. Then we
integrated out the superconductor’s degree of freedom by performing an integral over all k,-values,
thereby getting a local self-energy. Then naturally there were two different regimes, ws > A and
ws < A, which we treated independently. In the end we ended up with an analytic solution to the
self-energy that corresponds to what has been obtained before in literature, see e.g. ref. [25].

Now that we have established the Green’s function we can proceed to for example solving for bound
states energies or looking at the density of states and conductance measurements.
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Chapter 5

Wave-function and Tunneling Model
Correspondence

Using the result from section 4 we can then find the poles of the retarded Green’s function in k space
by writing:

G (k,w) = (0 ow) ~ (W) (5.1)

And from solving for the poles of the Green’s function, i.e. solving the equation:

det(GP)"1(k,w) =0, (5.2)

we get the energy solutions in our system.

At this point we will take a step back and compare the expression for the energy that we get in
the Green’s function approach with the one we got for the system in the AISW approximation, section
3.2. What we would like is some kind of correspondence between the tunneling rate, ¢y, see equation
(4.9), from the Green’s function model and the parameters from the wave-function model. The moti-
vation to do so is that the tunneling rate does not have a clear microscopic interpretation; a connection
between the two would then give us a better understanding of what constitutes the tunneling rate.

The expression from the wave-function model in the AISW approximation we know from equation
(3.44):

2¢40En Es w 2
B2 4 9447:<g_—m)+8m (5.3)
" (A2 - E2)1/2 noogY 9

where we remember:

‘&ﬁEE—@%EBa (5.4)

To find the corresponding form of the bound state energies from the Green’s function model without
SOI we will define the following parameters for a clearer derivation:
A2

- ~log §£2
¢n =6&n — . A ; Wn,s =W — Bn,507 (5-5)

where &, is the kinetic energy in the 2DEG from equation (4.6). Note that without SOI we can just
like in the AISW approximation treat the spin as a parameter because spin is a good quantum number,
i.e. 0, = 0 = £1. Then solving for the bound states energies, with |ws| < |A[, using the relevant
self-energy expression from equation (4.60) yields:
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& S xA
det(GH) ™ (k,w) = 0 < det [wn —&ur + 7“5;2 =0s (5.6)
2
2 A2
— Ws ) Yy A
0= (wn+7A2—w§> _5”_7A2—w§<:> (5.7)
2 nws ~
Wi = 2 g2, (5-8)

When comparing equations (5.3) and (5.8) we see a complete correspondence (interpreting w as the
energy) given the following equalities:

Y, A2 w
; lOg Ail = ;690; Y= Eg(). (59)

The first equality is a relation between the renormalizations of the chemical potential in the two
different models.
The second equality is quite interesting - it gives us a direct correspondence between the tunneling

coefficient, which lives inside -, and the microscopic quantities of the wave-function model, which
stem from €g49. To remind ourselves, we had:

s
€g0 = mEO, (510)
where:
= mnﬁ; = 2Uamn mnﬁ; € = L, (5.11)
ms ko ko ms ko mnd2

where m,,, ms are the masses in the 2DEG, S region respectively, p is to a good approximation the
fermi wavenumber in the superconductor, ky = 7 is the ground state standing wave-wavenumber of
the 2DEG of width d, U, is the delta-function barrier amplitude between the two materials, and & is

the inverse decay-length in the superconductor.

The scope of this result is that mathematically the tunneling model can be described by the AISW
approximation in a wave-function model with a possibly different renormalization of the chemical po-
tentials in the two models, and under the relation v = €,9. That the AISW in this manner corresponds
mathematically to a tunneling model is not immediately clear when setting up the models. Impor-
tantly this result gives us a way to connect the tunneling rate |tp| to microscopic parameters, which
is usually not easy. This result also expands the scope of the tunneling model, since now in principle
we can take a wave-function model and test if the AISW approximation is a good approximation to
the system; if so, then we might as well model the system by a tunneling model, which is sometimes
easier. Concretely all the analysis we did in sections 3.3.2-3.4 can now be directly seen to also apply
in the tunneling model case, remembering the shift in chemical potential.

Another thing to note is that this approach might also be extended to a system including SOI. In
principle the approach would be the same as described above, but one would have to do the analysis

to see if there exists a similar, general correspondence between the two models.

This concludes our analysis on the wave-function model. We will now turn to analysis on tunnel-
ing spectroscopy of proximitized 2DEGs.
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Chapter 6

Tunneling Spectroscopy of
Proximitized 2DEGs

In this section we will use the analysis from section 4 to analyze the tunneling spectroscopy in junc-
tions involving a proximitized 2DEG. In particular we will study a (pS)-QPC-(pS)-junction, and on the
way get information about a (pS)-QPC-N junction. Here (pS) denotes a 2DEG that via the proximity
effect has inherited a superconducting gap from the superconductor, see e.g. equation (4.60). QPC
denotes a Quantum Point Contact (see section 2.6.2), N denotes a normal conductor. As described
in section 2.4 the QPC acts to effectively drive the system into the tunneling regime. We are going
to investigate the conductance in the linear response regime, at zero temperature. In order to find
the conductance in the (pS)-QPC-(pS) setup we will determine the density of states (DOS), which is
directly connected to conductance in the (pS)-QPC-N setup.

As has been explained in section 2.6, the Center for Quantum Devices at the University of Copen-
hagen has made conductance measurements on devices of the type (pS)-QPC-(pS) and (pS)-QPC-N,
ultimately in the search for Majorana fermions. To get Majoranas in the design, the idea would be to
experimentally define a 1D-channel in the 2DEG to simulate the physics known from nanowires. This
is not contained in the analysis we have done so far. However, since the understanding of the proxim-
itized 2DEG is still in its early stages, in a hope to understand the physics of the proximitized 2DEG,
conductance measurements on setups without a 1D-channel are also interesting. An attempt to model
these experiments can be done by referencing our analysis with the Green’s functions. Here we use
the self-energy to effectively integrate out the semi-infinite superconductor on top of the 2DEG and
be left with a (pS)-(pS) system where the two regions are tunnel-coupled. The proximitized Green’s
function is really a bulk Green’s function, so by using this approach we neglect edge effects. Then to
find the current and conductance we compute the spectral function and use the linear-response result
for the current (see section 2.4).

We acknowledge Michael Hell from the CMT group at the Niels Bohr Institute for his collaboration
with the work in this chapter.
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6.1 Experimental Results from the Center for Quantum Devices
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Figure 6.1.1: An experimental 2D conductance plot of a (pS)-QPC-(pS) junction, courtesy of the Center for
Quantum Devices at the University of Copenhagen. The z-axis is in-plane magnetic field, the
y-axis is source-drain bias. Note that the y-axis is misplaced: Vg, = 0 should be in the symmetry
point on the y-axis. Also note that the experimentalists have employed a colour-cutoff, so that all
negative conductance has been set equal to 0 conductance. By applying a gate voltage over the
QPC as described in section 2.6.2 the system has been driven into the tunneling regime.

The results shown in figure 6.1.1 are fairly recent and show a tunneling spectroscopy conductance
measurement on a (pS)-QPC-(pS) device. The setup is similar to that presented in section 2.6.1, with
Aluminium as the superconductor proximitizing the 2DEG. In the rest of this chapter we present anal-
ysis that tries to model the experimental setup used to obtain figure 6.1.1. From similar experiments
in other designs the Center for Quantum Devices infer the following parameters:

mnp

=0.023; A =Ap=235ueV; a~0.5eVA. (6.1)

ms

Note that the SOI strength is actually not well-known. This is part of the motivation to look into the
conductance of this device - if there is some way to deduce the SOI strength from conductance mea-
surements this would be useful. The choice of the renormalized chemical potential, i (see section 5) is
not normally known in experiment. We do, however, expect the chemical potential to be substantially
larger than Anyj.

Also the value of the tunnel-coupling parameter v is debatable. If we use the result from chpt. 5
and estimate v via the wave-function model of chpt. 3, using the experimental parameters, we get
v =~ 50A 1. We will argue later (section 6.5.1) why this is an unrealistic size. Therefore we will try
some different values of both ji and v and see how this affects our results.
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6.2 Numerical Conductance Analysis

Here follows an explanation of how we obtain all numerical results to follow. In an attempt to obtain
simpler expressions we will not include the magnetic field in the superconductor in all numerical work
that follows, unless stated otherwise. This approximation is relevant when the effective g-factor in the
2DEG is much larger than that in the superconductor.

We want to look only at the electron current in this thesis. This means that we only consider the
electron-sector in our BdG-matrices (see equation (2.45)), i.e. all matrices that appear from now on
are only 2 x 2-matrices. To find the conductance we can use the formula derived in equation (2.73):

I = /°° ;L:\tOPTra Z é(khuﬂ@(k%w +eV) | [np(w+eV) —np(w), (6.2)

- ki,ko

To treat this numerically we will do the following: First of all we will write the sums over k as integrals:
* dw L.L
I= — |to*T my//dk dk1y A;(k 6.3
/_OO 5, o] fa[(%)g 1zdkiyAs (K1, w) (6.3)
L,L,
| @2 dkgxdkgyé(kg, wHeV)|[np(w+eV) —np(w)]

Now our next approximation in treating this system is to assume that we are at zero temperature.
This means that the fermi-functions become step-functions, and the current formula reduces to:

L.L, L.L,
= / » bl [ o2 // d’““d’“y“kl’“)} [(W

Note that here we had to introduce the volume L,L,, which we do not really know how to estimate
for our system. Therefore all our conductance results will be given with an arbitrary scaling factor.

//dkgxdkgyAz(kQ,w-l-EV) . (64)

In our model we have identical superconductors on both sides of the junction: therefore 4; = A,.
This enables us to do the above numerical integration altogether in a smart way. We discretize the
w-integral, so that we only need to evaluate a finite number of w-points. Then for each w-value we
calculate the integral over k using the a built-in numerical integration function in Mathematica, ” NIn-
tegrate”. We calculate this integral over k for values of w in the range w € [—eV, eV] and collect them
in a vector with matrix-entries, deo(w)

e ( / / dk,dk, Ak, w) = @ggg% jigzg) (6.5)

From this we can easily find the electron density of states (DOS) as a function of energy, d.(w):

de(w) = Trodeq (w). (6.6)

We will call dey,(w) the DOS-matrix. Knowing the DOS-matrix we can calculate the convolution (i.e.
the product of the DOS with itself) in equation (6.4) for an w € [—eV, 0] in the following way:

[/ / dklxdklyA(kl’“)] [ / / dk?rd@yA(kz,ereV)} = (27)8 g (w) -

I x /—Oev dwTr, [dﬁ(w) “deg (W + eV)}. (6.8)

eo(w+eV) = (6.7)
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So by calculating d.,(w) (with as many w-points as is needed for convergence of the integral in equation

(6.8)), we have all the information we need to find the electron density of state and the conductance
in the system.

There are some things to consider regarding the numerical integration. First of all, for |ws| < A
we have to do someting about the in that appears in the Green’s function, see e.g. equation (4.60).
We implement this numerically by choosing a finite value for 1. We have to choose it so that it is
sufficiently small to act as an infinitesimal in the calculations, and sufficiently large that it does not
vanish in the numerical integration done by the ” NIntegrate”-function in Mathematica. We therefore
chose to test two different values: n = 1ueV and 1 = 5ueV. Both of these produced similar results,
which lead us to conclude that the choice of i has the right size for these calculations.

Furthermore, to do the numerical calculation we chose to only integrate over a finite range of k-values.
Since the other energy scales in this problem are of order 100ueV-1meV we integrated over a region in
k-space such that the maximum kinetic energy was of order 0.5e¢V, which is much larger than the exci-
tation energies expected in the system. Then all the dynamics should be safely captured by the model.

Lastly, in working with a predefined integration routine like ”NIntegrate” in Mathematica, it is wise
to have some check of whether the results make sense. The results were compared to results ob-
tained by other means by Michael Hell in the CMT group at the Niels Bohr Institute without SOI, for
~v = 180ueV, n = 1ueV, and found to be in good correspondence. Also, ” NIntegrate” is built to display
the estimated error if the numerical integration does not converge quickly enough. The errors were
usually of the order of 1% or less of the result of the integration, which is satisfactory for our needs
with the following analysis. An exception to this was e.g. for energies inside the induced gap-energy
region where we know the electron DOS should be equal to zero, but where the numerical integration
yielded a small value for the integration, with an error of approximately the size of the integration
result. However this is not a problem since the integration result is relatively small compared to the
values of the DOS in energy domains outside the induced gap.

6.3 (pS)-QPC-N System

In setting out to get results for the (pS)-QPC-(pS) system in the above explained way we find the
DOS-matrix (equation (6.5)) on the way to establishing the current and from that the differential
conductance. However, the DOS is actually very interesting because it is related to the conductance
of a (pS)-QPC-N system.

Let us say we have a (pS)-QPC-N system in 2 dimensions. This means that the DOS-matrix in
the normal region, dg, (w), will be constant as a function of energy, unlike the superconducting dg, (w);

therefore we can write for the current:

I x /ZV Tr, @(w)d‘;o(w + eV)] dw (6.9)

eV
= / Tr, [
0

Since only the superconducting DOS depends on the energy, we get:

2, (0) 2y () | o, (6.10)

dal
T o T, [dﬁa(eV)é(O)} (6.11)
This is an important result; it says that in the linear response-regime the conductance in a (pS)-QPC-N
experiment can be found for any value of the bias by multiplying the DOS-matrix of the superconduc-

tor at the bias voltage-energy with some constant matrix for the system without superconductivity,
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and then taking the trace over spins. So by solving for the DOS-matrix for a proximitized 2DEG we
also harvest information about a (pS)-QPC-N setup.

If we further assume that the normal region has trivial spin-structure, then equation (6.11) reduces
to:
dl
— o Tr [
dv 7

This says that the density of states in a proximitized 2DEG is proportional to the conductance of a
(pS)-QPC-N system, with N being a simple normal conductor. This gives us an extra incentive to study
plots of the DOS for the proximitized 2DEG. We will not compare our density of states-measurements
with experiment in this thesis though.

d;,(eV)} = d,(eV). (6.12)
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6.4 Analysis Without SOI

6.4.1 Analytical Calculation of the DOS in a Proximitized 2DEG Without SOI

When working in the regime without SOI there is no coupling between different spins, i.e. spin-up
and spin-down in the magnetic field-direction are good quantum numbers, and we can therefore look
only at one spin projection at a time. Mathematically this will be represented by a factor o = =£1,
as many times earlier in this thesis, where the sign depends on whether we look at the spin-up- or
spin-down-projection.

Here we will work with the following abbreviations:
ws =w — Bso; w, =w — B,o. (6.13)

As was derived in section 4, the self-energy changes dramatically between the two regimes |ws| < A
and |ws| > A. Therefore we will have to treat the two independently when finding the local DOS.
Here we will only derive analytically the DOS for |ws| < A and refer the reader to some numerically
obtained plots in e.g. figure 6.4.4 for a view of the whole energy spectrum.

lws| < A:
In this regime we have the following retarded Green’s function:

-1

. . = ws + i + T A
GR(k,w) =Gk, w+in) = |wy +in — EuTs + : , 6.14
:( ) :( 77) n n—E&nTz +7 \/A2 = (Ws n iT])Q ( )
Now we neglect the in’s that do not contribute to any poles in our regime of wg:
R . = ws +in + T A -
Gikw) = |wn +i =T + 7 (6.15)
— VA2 —w?
Let us now rewrite the Green’s function in terms of some ”quasi-particle weight” Z:
G(k,w + in) ! (6.16)
gk,w+1in) = . = , .
- wp + 11 — gnTz + ’sz—i_/ﬁzztf;—x
1
_ (6.17)
; & ATy
<1 + \/A;Y—wg‘> ((A) + 177) — B(W)U — gnTZ + ﬁ
1
= Z(w) — , (6.18)
w4+ Z(w) (—B(w)a — &y + 6(w)7'$>
where we defined:
1 ~yA vB;
Z(w) = i (w)=E—— Blw)=B,+——-— 6.19
® @= gy BOSBit o (619

__x
(1 + VA2—w? >
From here the calculation of the DOS is completely similar to what we did when finding the BCS
quasiparticle density of states (section 2.2.2). Defining:

we =w — Z(W)Bw)o; B =+\/E + Aw)?]. (6.20)

We then rewrite the Green’s function to obtain:
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1

g(k,w+in) = Z(w) : - (6.21)
w4+ Z(w) (—B(w)a —&nTy + 6(w)¢z)
_ Z(w) w+in+ Z(w)(—B(w)o + anTZ - 0(w)Tz) (6.22)
@+ i1 — Z(@)oBW))? — Z(w)(& + 8 (w))

_ Z(w) we +1in + Z(W)(fnTz - 6( ) ) - (6.23)

(m i)~ Zw)h /2 + 6<w>2) (m i) + Z@)h /22 + 6<w>2)

- w 1 B 1 we + Z(w)(énTz - 5(W)Tx)
=4 )(<wa+m> — 2By (o F i) +Z<w>Ek> 22(w) By (6.24)

. 1 B 1 we + Z(w)(gfﬂ—z - 6(‘*))71)
- <<wa i)~ Z@) B (et 1 Z(w)Ek> 2B, - (62)

To find the electron density of states, d.(w), we write (remembering that all matrices are 2 x 2-matrices
in spin-space):

1 1 1
de(w) = 577 ) Ak w)oo = —— > ImGR(k,w)oe = -~ > Img(k,w+in)os = (6.26)
k k,o

Ne

Wy + Z(w)fn

2
55, (6.27)

% > (0fws — ZW)Er} — §{wo + Z(w)Ex})
k,o

_Nyoren [Tl
_2032/_ﬁd5”2

<z<w> T Z(;)g) 5wy — Z(w)Er} + (z<w> _ Z%)g”) 5wy + Z(w)Ex)
k k
(6.28)

(6.29)

—ZZ ”2D/ dgn
7

where we changed variables from a sum over k to an integral over the renormalized kinetic energy
&, and also introduced the renormalized chemical potential belonging to &,, fi, and the free electron,
spin-traced density of states in 2 dimensions, vop:

<1+§)5{w0— Z(w)Eg} + <1—§1>5{%+Z( VEr}],

i— i+ ng(ii); Vop = % (6.30)

Let us for the following only consider w, > 0:
do(wy > 0) V2D Z/ dé, (1 + ) Hws — Z(w)Ey} (6.31)
— ”2D Z / dé <1 + ) [5(£n —Vw2/Z(w)? - §(w)?)... (6.32)

wo/Z()
VR = Zw)25w)?)

T 8(E + V22 - 6<w>2‘>}
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This means that the density of states becomes:

de(ws > 0)

- 6.33
Vo (6.33)

w2—Z(w)26(w)? We - :
1 <1 + o) ) | w2_;(w')26(w)2 Hwo = Z(w)3(w)), for i < /wZ /2]~ 0(w)?

2 2'““3—521)25@)2'\0(% — ZW)ow)), for i > /w2 /Z(w)? — 6(w)§f; 34)

_1 (1 - % [1 VR 2P s S — g)) . (6.35)

. ol O(we — 2
ez

From this result we see that we expect three features in the DOS: The first is a peak at the energy which
solves the equation w, = Z(w)d(w). Since this is the lowest-energy non-zero value of the DOS this
energy is the induced gap, or Aj,q. Also we expect a peak at the divergence point ws — A, since here

2% diverges for zero B-field, which means that the DOS diverges. But we also see a third
w2 —Z(w)25(w)?

'dip” in the DOS, namely that at the energy, wqip, that solves the equation ji = \/w2/Z(w)? — 6(w)?’
the DOS should be discontinuously changed by an amount dictated by equation (6.35). Since the DOS
is proportional to the differential conductance in a (pS)-QPC-N experiment, one should in principle
be able to identify the chemical potential from this experiment by examining the energy at which the
dip in the density of states lies.

We can do the same kind of analysis for w, < 0. This results in a density of states given by:

delw) _ 15~ (1 ! [1  Sign(uy) Y02 = 2B\ o o S - g)) .. (6.36)

2 |we |

% |wo |
O VwE - Z(w)%(w)?]

Here it is clear to see that the DOS is symmetric in w, as long as |y/w2/Z% — A?| < f1; from then on
there is a discontinous change in the DOS, with different magnitude depending on the sign of w,. A
comparison of the analytical solution to a numerical solution for three different values of fi is shown in
figures 6.4.1, 6.4.2, and 6.4.3. The numerical solution was obtained by the same methods as explained
in section 6.2. The reason why the numerical solution seems more smooth around the discontinuities
is that in obtaining the numerical solution we had to introduce a finite value for the n = 0F.

Note that we have two peaks in the DOS here - one at the induced gap and one at w — A, as
explained earlier. The asymmetry in the density of states is clear for i = 200ueV in figure 6.4.2;
but for a too small fi it never occurs, as in figure 6.4.1. And for a ji too large the ”dip” where the
asymmetry occurs is pushed so far into the peak at w = A that it becomes nearly invisible. Therefore
for large 11 this effect seems to not be a good way to determine the chemical potential.

O(lws| = Z(w)d(w))-
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Figure 6.4.1: i =0, v = 180ueV, B,, = Bs = 0. Here we see both an analytical and numerical solution of the
proximitized 2DEG density of states for zero magnetic field. The ji-dependent asymmetry from
equation (6.36) is not visible because of the low value for f.
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Figure 6.4.2: i = 200, v = 180peV, B,, = B, = 0. Here we see both an analytical and numerical solution of the
proximitized 2DEG density of states for zero magnetic field. The fi-dependent asymmetry from
equation (6.36) is now visible and sets in at around w = +0.65A.

Lastly let us discuss when there is a non-zero DOS at zero energy, for any of the spin-projections.
The theta-function 6(|ws| — Z(w)d(w)) must have a positive argument for w = 0 then. We can find the
critical parameters where this happens by setting the argument of the theta-function equal to zero for

[|wo| = Z(w)d(w)]| _, =0« (6.37)
| — Z(0)B(w)o| = Z(0)8(0) < (6.38)
B(w) = . (6.39)

So for Zeeman energy B(w) larger than ~ there will the DOS will be non-zero at w = 0. This will be
important later.

In this section we derived analytically the DOS for a proximitized 2DEG for ws < A. We derived

that for finite f there is an asymmetry in the DOS. In the following section we will find the DOS
numerically.

95



January 15, 2017 Bjarke Nicolaisen

de/ Vop
4+
3 L
Analytical
2+ —— Numerical
1 L
Il L L L L 1 L J 1 L L L L 1 Q
-1.0 -0.5 0.5 1.0 A

Figure 6.4.3: i = 1000, v = 180ueV, B,, = Bs; = 0. Here we see both an analytical and numerical solution
of the proximitized 2DEG density of states for zero magnetic field. The fi-dependent asymmetry
from equation (6.36) is not visible because the high value of fi it has been pushed very close to
w = +A where it is hidden inside the divergence.

6.4.2 Numerical Evaluation of the DOS in a Proximitized 2DEG Without SOI

What we want in this section is to build a foundation upon which our later conductance discussion
can be based. This foundation is the electron density of states. We are interested in the diagonal
entries of the DOS-matrix, equation (6.5). From now on we denote the Zeeman-energy in the 2DEG
as Fzeeman and neglect the magnetic field in the superconductor. We employ the methods described
in 6.2.

First we plot the entries for v = 0.77A. This is plotted in figures 6.4.4-6.4.6. We see from figure
6.4.4 that for Ezceman = 0 the two spin directions are equivalent. Then in figures 6.4.5-6.4.6 we see
how the effect of a magnetic field in the 2DEG is to displace the two spin projections oppositely wrt.
energy. It is also interesting to note that the induced gap-peaks in the DOS move as a function of
magnetic field whereas the gap at A stays the same as a function of magnetic field. Now in figure 6.4.6
we have Ezeeman > ¥ and thus the induced gap has been displaced so much that the density of states
is non-zero for w = 0 (see discussion leading to equation (6.39)). For this large Zeeman-energy we
also see a slight dip in the spin-up DOS result close to w = —A. This is the asymmetry we derived in
equation (6.36) due to finite chemical potential. This feature clearly becomes more pronounced with
increasing Ezeceman. Interestingly, the asymmetry also becomes much more pronounced for a higher
value of 7, which we can see in figures 6.4.7-6.4.8. We have plotted the energy at which the asymmetry
happens, wqip, as a function of magnetic field in figure 6.4.9. Interestingly it changes non-linearly with
the magnetic field.

In this section we showed numerical for the DOS for different parameter values. In the next sec-
tion we will analyze the conductance results on the basis of our understanding of the DOS-matrix.
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Figure 6.4.4: Ezceman = 0, it = 1000pueV, A = 235ueV, v = 0.77A. The diagonal entries of the DOS-matrix
normalized to the 2D free electron density of states, as a function of energy. We see that two spin
directions are equivalent without magnetic field.
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Figure 6.4.5: Ezceman = %’y, = 1000peV, A = 235ueV, v = 0.77A. The diagonal entries of the DOS-matrix
normalized to the 2D free electron density of states, as a function of energy. We see that the two
spin-directions are displaced oppositely under a non-zero magnetic field.
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Figure 6.4.6: Ezceman = 27, & = 1000pueV, A = 235ueV, v = 0.77A. The diagonal entries of the DOS-matrix
normalized to the 2D free electron density of states, as a function of energy. Now the Zeeman
energy is so large that we have non-zero DOS at w = 0.
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Figure 6.4.7: v = 3A, Ezceman = gv, i = 1000pueV, A = 235ueV. The diagonal entries of the DOS-matrix
normalized to the 2D free electron density of states, as a function of energy. The dip in the entries
close to w = £ A is noticeable.

dorr deyy

Vop Vap
3 3.0r
2.5¢ 2.5¢
2.0r 2.0
15 1.8¢

1.0 1.0¢

0.5} 0. \—‘4/

. . T w | l | W
A

-2 -1 0 1 2 A -2 -1 0 1 2

o1

Figure 6.4.8: v = 3A, Ezceman = %fy, i = 1000pueV, A = 235ueV. The diagonal entries of the DOS-matrix
normalized to the 2D free electron density of states, as a function of energy. The two spin directions
have now been displaced so much that the density of states is non-zero at w = 0 and the dip in
the entries now occurs closer to w = 0 compared to figure 6.4.7.
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EZeeman

1 2 3 4 5 A

Figure 6.4.9: A = 235ueV, v = 3A, i = 1000pueV. Here we have the energy solution, waip, of the equation
0 = \/w?/Z(w)? — §(w)? — i plotted as a function of Zeeman energy in the 2DEG. We see that
the solution moves non-linearly with the magnetic field.

6.4.3 Conductance Results Without SOI

In the regime without SOI we get conductance results similar to figure 6.4.10. We see some features
that happen regardless of which parameters we choose: At zero B-field, moving up on the y-axis from
zero source-drain bias, we see three features. It is pretty clear that the last one appears at 2A. But
there are two other features, which seem to move up and down depending on the parameter . Let us
try to understand the origin of these features based on the analysis in section 6.4.2.

dl/dV [arb. units]

i‘04

Figure 6.4.10: i = 1000peV, v = 180ueV, A = 235ueV. Here we have a 2D conductance plot in arbitrary units,
Zeeman-energy in the 2DEG on the z-axis and source-drain bias energy on the y-axis. Note that
we have an upper cut-off in color, so the white parts of the plot are off-scale.

00 02 04 06 08 10 12 14
EZeeman / A

Let us consider the DOS in figure 6.4.4 and the current formula (6.4) at zero B-field. In order to
get a noticeable conductance feature we need to find a bias voltage where the current changes a lot.
The current from equation (6.4) is a convolution of the DOS-matrix with itself at different energies.
Consider now V =~ 0. Then the induced gap in the DOS around w = 0 from figure 6.4.4 means that
de(w) = 0,w € [0, Ajpa], and thus for small bias we will get a contribution to the current equal to
0. First at the point where eV = 2A;,4 we will have a non-zero contribution. This big change in
the current means a big differentical conductance, G = g—{/. From this argument, we expect the first
non-zero in a plot of the conductance at zero B-field to be at the point eV = 2A;,4.

We know from section 6.4.1 that the DOS has two divergencies at the induced gap Aj,q, and one at
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Figure 6.4.11: 1 = 1000ueV, A = 235ueV, v = 3A. Here we have a 2D conductance plot in arbitrary units,
Zeeman-energy in the 2DEG on the z-axis and source-drain bias energy on the y-axis. Note that
we have an upper cut-off in color, so the white parts of the plot are off-scale.

the superconducting gap A. In between the two divergencies the DOS is non-zero but continuous and
rather well-behaved. Therefore we expect a big change in the current at the point eV = Ajg + A,
where the two divergencies will get convoluted, and thus a noticeable feature in the conductance plot
at this same value of the conductance.

In the same manner of arguing, the bias which makes the two divergencies at w = £A overlap should
also produce a noticeable feature in the conductance plot. Thus to conclude, we would expect three
features in the conductance plot at zero magnetic field: One at eV = 2A;,4, one at eV = Ajnq + A,
and one at 2A. Notice that these observations give us a clear way to deduce the induced gap from
tunneling spectroscopy experiments on devices such as the (pS)-QPC-(pS) one.

When looking at figure 6.4.10 we see features which correspond well to this interpretation. At zero
B-field and zero source-drain bias we have no conductance, since here the current is constantly equal
to zero. Then at three different bias-strengths, which we interpret as the ones mentioned above, we
see strong conductance features. Notice that their relative brightness varies - for example, the third
feature up at eV = 2A seems to be a negative conductance line. The lack of a positive conductance
feature at eV = 2A can be explained by the divergence at w = A having a much lower height than the
one at w = Ajyq in figure 6.4.4, so that they will give rise to different brightnesses in the conductance
plots. In the same figure we also see that the DOS falls rapidly after passing the peaks at w + A,
which explains the negative conductance feature.

Now let us try to understand what might happen when we apply a Zeeman field in the 2DEG. As
explained in section 6.4.1, here spin is a good quantum number, so that the DOS-matrix is diagonal.
This means that the trace in equation (6.8) becomes:

Tr, dé(w)dw(w + EV) = deﬁ(w)deﬁ(w + €V) + deu(w)deu,(w + GV) (6.40)

We conclude that the formula for the current only couples same-spin species of the DOS. This
means that the displacement of the spin-species with magnetic field does not matter for the peaks at
eV = 2A;q and we expect a constant feature at eV = 2A;,q4 as a function of magnetic field, which is
also clear from figure 6.4.10.

This same argument does not hold for the second feature at eV = Aj,q + Aal. The reason for this is
that the induced gap changes as a function of magnetic field, whereas the gap at w = +A does not.
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Therefore the point where we have an overlap of the divergence in the DOS associated with the A-gap
and the induced gap will scale with magnetic field like the induced gap does. This behavior is clear
from figure 6.4.10. The final feature at 2A4; should not change with magnetic field, similar to the
feature at 2A;,q.

When the magnetic field reaches the strength Ezceman ~ 77 we see some change in the behavior.
We can see from equation (4.60) that for small energies w << Apj the induced gap becomes approxi-
mately equal to ~y:

Aing ~ v, w << Ay (6.41)

When the magnetic field strength becomes larger than the induced gap we will begin to see some
features at eV = 0 since now the DOS is non-zero for small energies.

Finally there is one more feature in figure 6.4.10, which is important to understand since is repeats
in all the results and seems present in figure 6.1.1 too. At the point where the gap closes, a new
conductance line seems to appear at a bias energy around eV = A. This is due to the "gap closing”,
i.e. de(w = 0) # 0. This means that the divergence at w = —A will only appear in the current integral
for eV > A, not for eV < A, which gives a big conductance feature at eV = A.

Now we also show results for a different value of ~ in figure 6.4.11. The point of this plot is that for
this value of v we get some non-linear conductance feature with increasing Zeeman field, somewhat
resembling some of the non-linear features we see in figure 6.1.1. This stems from the finite-chemical-
potential induced asymmetry in equation (6.36) and therefore matches with figure 6.4.9. Also we see
that the three conductance features at zero magnetic field have somewhat blended together as one big
conductance feature at high bias voltage.

Both figure 6.4.10 and 6.4.11 have some shortcomings when trying to compare them to experiment
(figure 6.1.1). None of them show the kind of conductance-gap closing as we see happening at about
100mT in figure 6.1.1. And none of them really catch the same kind of non-linear conductance fea-
tures as in figure 6.1.1. In the next section we will introduce Rashba SOI and see how this affects the
conductance results.
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6.5 Analysis Including SOI

6.5.1 (pS)-QPC-(pS) Conductance With SOI

When producing results with SOI we put the magnetic field in-plane with the SOI.

Before we produce some results including SOI, let us try to use our knowledge of the system without
SOI to interpret the experimental plot in figure 6.1.1. We will only consider positive bias, since the
problem is symmetric wrt. bias. We know that we expect to see three features at zero B-field; one
at eV = 2A;,q, one at eV = Ajg + Aa; and one at eV = 2A,;. When looking at figure 6.1.1 we
see a very faint feature at around eV = 200ueV. Note that the y-axis is not placed properly in the
figure 6.1.1, as explained in the figure text it should be symmetric around Vdec = 0. Then further up,
at around eV = 400ueV there is a very bright peak indeed, also with some width. How are we to
interpret this?

I believe the very faint feature at eV = 200ueV is simply too vague to be interpreted as eV = 2A;4.
In all simulations this peak is very bright because we go from zero current to suddenly convoluting
two divergencies in the DOS. The faint feature might be attributable to something called Andreev
reflection though (see e.g. ref. [26]), which is a 4th order process in the tunneling parameter, which is
naturally not captured in our model that only captures features up to second order in the tunneling
constant.

Given this interpretation, where are the three distinct features in figure 6.1.1 then? Well, if we
conjecture that our parameters are chosen such that Ajq = A, then we might expect that the three
features would blur together as in figure 6.4.11. This could explain the feature in experiment. Now
which parameters govern the magnitude of the induced gap? For zero SOI we have shown that the
induced gap can be found from solving equation (3.44) for the energy with the constraint £ = 0. From
this equation we can see that the only parameters that govern the magnitude of the induced gap in
the absence of magnetic field are A and +, given €50 = v (see chpt. 5). For a given A we made a plot
of the magnitude of the induced gap as a function of €0 = 7 in figure 3.3.1. What is interesting about
this graph is that for v < A we have something like Aj,q < 0.5A. Thus if we are to be consistent
with the above interpretation of figure 6.1.1 where we conclude that we have an induced gap close to
the value of A, we need at least v > 2A4;. Such a value of v should reproduce something similar to
figure 6.1.1.

But actually such a large value for v introduces a problem with the gap-closing. When including
the SOI, we expect the conductance feature for zero B-field at eV = 2A;,q4 to diminish as a function
of magnetic field instead of staying constant as without SOI. We can argue why by building on the
intuition from the 1D wire model in ref. [18]. If we just look at the spin-dynamics:

Hopin = Bog + upo. (6.42)
When looking at the eigenspinors of this Hamiltonian they are:
up upy2
Xio<<3j: 11+(B) ) (6.43)

For up — 0 we get the usual o,-eigenspinors in the o, basis, while for B — 0 we get the o -eigenvectors.
So we see that also including SOI transverse to the Zeeman field mixes the spin of the eigenvectors.
Without SOI we saw that the spin-up and spin-down parts of the DOS did not mix, which led to
a constant conductance feature at eV = 2A,;,4 for B, < . However since SOI in this way mixes
the spin-up and spin-down parts, we would expect that now there is some coupling between the two,
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which would lead to the conductance feature setting in at a lower bias with increasing magnetic field,
i.e. a conductance gap closing. It is at the point Ezceman = 7 that we expect a gap closing and the
zero conductance to vanish. As explained earlier we also expect a conductance feature at eV = A to
appear at this point. These features are consistent with figure 6.1.1 if we interpret the magnetic field
strength B ~ 100mT to equal the induced gap closing in the DOS.

From these arguments we would look in the v > A-regime. However, we also know that the Zee-
man energy splitting scales as:

1
EZeeman = Eg ,U,BB, (644)

where pp is the constant called the Bohr magneton. If we identify the point B = 100mT as the point
where we have gap-closing we can find a correspondence between the effective g-factor and ~:

*

—92 - 57.88ueVT 1. 01T = v & (6.45)
* i —1
= —-— '4
9= 55011V (6.46)

From this relation we can see that the lower limit for -, which we established above to be around
v = 2A = 470peV would mean we have an effective g-factor equal to or greater than g* = 160.
From the experience with proximitized 2DEGs at the Center for Quantum Devices at the University
of Copenhagen there is certainly some effective g-factor in the 2DEG, but it is of order 10. g* ~ 100
is a big stretch. And in our model the only way to get a gap-closing is to invoke a magnetic field
Ezeeman > v- Thus from experience of the range that we expect the effective g-factor to belong to we
would most probably need v < A 4.

So we have two different arguments, each excluding the other; one predicts v > A and the other
v < Ap). At this point we will present the results we get for each regime and see if they bring any
clarity to the situation. First we try three different values of v below Aaj. These results are presented
in figures 6.5.1-6.5.3. Note that we have an upper-color cut-off in all conductance plots. By compar-
ing the figures we see that we have an induced gap that clearly grows as a function of growing -, as
expected. And also the gap closing at Ezeeman = 7 is clear in all the plots. Also the appearance of
the conductance line at eV = Ajp; at magnetic fields Ezeeman > 7 is clearly there in all the plots.
The three features that existed without SOI clearly also show themselves here. The resemblance to
experiment is poor, though. A major problem in comparing figures 6.5.1-6.5.3 to figure 6.1.1 is that
the induced gap is simply not large enough in any of the figures to resemble experiment - as expected.
Furthermore, at zero B-field we see the three features quite distinctly in figures 6.5.1-6.5.3, whereas
as explained earlier it seems there is only one significant feature in experiment. Also the behaviour
of the features with magnetic field seem quite linear in figures 6.5.1-6.5.3, not capturing the non-zero
curvature of some of the conductance features that is there in figure 6.1.1.

Now we look to the other regime where v > Aaj. The results are shown in figures 6.5.4-6.5.9.
All of these results have the common problem described earlier that to get a correspondence with
experiment we need a g-factor of g* > 160, which is inconsistent with the experience from experiments
with proximitized 2DEGs.

One question that is very relevant to the Center for Quantum Devices at the University of Copen-
hagen is whether there is a way for them to estimate the Rashba SOI strength from looking at their
experiments. Since the SOI is known to change the way features vary with magnetic field it might
be that the curvature of the non-linear features in experiment are related to the SOI strength. We
therefore plot the conductance for varying SOI strengths in figures 6.5.4-6.5.7. Here we see that for
low SOI strength there is something similar to two non-linear conductance features. The top feature
seems to be the finite fi-effect from the result without SOI, figure 6.4.11, while the second feature
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Figure 6.5.1: o = 0.59eVA i = 1000peV, A = 235ueV, v = 0.1A. Here we see a 2D-plot of the differential
conductance in arbitrary units, Zeeman energy in the 2DEG on the z-axis and positive source-drain
bias voltage energy on the y-axis.

must be due to SOI. However when we increase the SOI strength in the next figures, the two features
blend together as one. Thus both parameters i and « are relevant when it comes to the non-linear
conductance features with magnetic field.

Now to confirm our suspicion that it is the finite fi-effect we derived without SOI that is involved
we vary fi. We show this in figures 6.5.8-6.5.9. It is clear that the slope of the conductance feature
depends on the size of the renormalized chemical potential. In conclusion it seems that both the
chemical potential and the SOI strength affect the curvature of the non-linear conductance features.
Finally we include plots of the entries of the DOS-matrix for non-zero SOI in figures 6.5.10-6.5.12, to
compare with the conductance measurement in figure 6.5.7. Note that dery = dey| and dep) = deyt, so
we do not plot all entries. We see how the diagonal part has a big peak at low Zeeman field, and how
this peak diminishes and vanishes for increasing Zeeman field, in correspondence with figure 6.5.7.
Note also that the off-diagonal part is not zero here and will affect the current.

In conclusion we can say that including Rashba SOI gave us the kind of conductance-gap closing
that we see in experiment, figure 6.1.1. The size of the gap depends on ~, the tunneling coefficient,
and we need a value of « higher than what corresponds to experimental experience to get an induced
gap corresponding to experiment. We reproduced in all plots that for Zeeman energies larger than ~
we had a conductance feature at A and one at 2A, which also happens in experiment. For the high
values of v we were also able to show non-linear conductance features, whose curvature depends on
both the chemical potential and SOI strength, which resemble experiment, figure 6.1.1.
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Figure 6.5.2: o = 0.59¢VA i = 1000ueV, A = 235ucV, v = 0.43A. Here we see a 2D-plot of the differential
conductance in arbitrary units, Zeeman energy in the 2DEG on the z-axis and positive source-drain
bias energy on the y-axis.

dl/dV [arb. units]
0.3

-0.1

M 1

00 02 04 06 08 10 12 14

EZeeman / A

Figure 6.5.3: o = 0.59eVA i = 1000peV, A = 235ueV, v = 0.77A. Here we see a 2D-plot of the differential
conductance in arbitrary units, Zeeman energy in the 2DEG on the z-axis and source-drain bias
energy on the y-axis.
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Figure 6.5.4: o = 0.20eVA, i = 1000ueV, A = 235ucV, v = 3A. Here we have a 2D conductance plot in
arbitrary units, Zeeman-energy in the 2DEG on the z-axis and source-drain bias energy on the
y-axis.
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Figure 6.5.5: o = 0.30eVA, i = 1000peV, A = 235ueV, v = 3A. Here we have a 2D conductance plot in
arbitrary units, Zeeman-energy in the 2DEG on the z-axis and source-drain bias energy on the
y-axis.
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Figure 6.5.6: o = 0.42¢VA, i = 1000ueV, A = 235ucV, v = 3A. Here we have a 2D conductance plot in
arbitrary units, Zeeman-energy in the 2DEG on the z-axis and source-drain bias energy on the
y-axis.
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Figure 6.5.7: o = 0.59eVA, i = 1000ueV, A = 235ueV, v = 3A. Here we have a 2D conductance plot in
arbitrary units, Zeeman-energy in the 2DEG on the z-axis and source-drain bias energy on the
y-axis.
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Figure 6.5.8: i = 500ueV, o = 0.59¢VA, A = 235ueV, v = 3A. Here we have a 2D conductance plot in
arbitrary units, Zeeman-energy in the 2DEG on the z-axis and source-drain bias energy on the
y-axis.
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Figure 6.5.9: i = 1800ueV, a = 0.59eVA, A = 235ueV, v = 3A. Here we have a 2D conductance plot in
arbitrary units, Zeeman-energy in the 2DEG on the z-axis and source-drain bias energy on the
y-axis.
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Figure 6.5.10: Ezceman = %'y, a = 0.59eV, i = 1000peV, A = 235ueV, v = 3A. The spin-diagonal- and
spin-off-diagonal-part of the electron density of states normalized to the 2D free electron density

of states, as a function of energy.
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g’y, a = 0.59eV, i = 1000ueV, A = 235ueV, v = 3A. The spin-diagonal- and

spin-off-diagonal-part of the electron density of states normalized to the 2D free electron density

of states, as a function of energy.
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Figure 6.5.12: Ezceman = 27, @ = 0.59eV, i = 1000ueV, A = 235ueV, v = 3A. The spin-diagonal- and
spin-off-diagonal-part of the electron density of states normalized to the 2D free electron density

of states, as a function of energy.
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Chapter 7

Conclusion

In this thesis we performed theoretical investigations of a superconductor-2DEG junction. In chpt.
3 we built upon ref. [22] and studied the BdG equations including BCS superconductivity, effective
mass and effective g-factor in the semiconductor and a delta-function potential to model a barrier
between the two regions. We obtained the equation for the excitation spectrum of the system and
derived the spectrum in the approximation that the wavenumber in the 2DEG is approximately that
of the ground state of the infinite square well (AISW). We then went on to conduct some investigation
into the proximity-induced gap in the 2DEG in this approximation, showing that the induced gap
depends critically on the coupling-parameter €49. Furthermore we analyzed the effective g-factor in
this approximation for small magnetic fields, and concluded that €59 — 0 results in the wave-function
being confined in the 2DEG, whereas for 6’% >> 1 the relative wave-function probability weight in
the 2DEG vanishes. We concluded this section with some numerical results for a set of concrete
parameters chosen to exemplify the results derived so far.

We then went on to derive an energy-dependent self-energy in the 2DEG in a Green’s function tunneling
model where we integrate out the semi-infinite superconductor coupled to the 2DEG to obtain an
effective Green’s function in the 2DEG in chpt. 4. From this we obtained the excitation spectrum for
the proximitized 2DEG. Via comparing the equations for the spectra we established a correspondence
between the AISW-approximation in the wave-function model and the tunneling Green’s model up
to a shift in the chemical potential if we equate the parameters €;0 = 7 in chpt. 5, where gamma
is related to the tunneling rate. This allowed us to immediately relate the results from the AISW-
approximation to the proximitized 2DEG. Furthermore the result is useful because it extends the
domain of applicability of the tunneling approximation in a Green’s function model to any situation
that can be effectively modeled by a wave-function AISW-approximation, and enables us in such a
situation to find an estimate for the tunneling rate based on microscopic parameters.

In chpt. 6 we then built upon the tunneling Green’s function model and applied it to tunneling
spectroscopy of two proximitized 2DEGs. We analyzed the electron density of states (DOS) in the
absence of SOI and calculated the conductance numerically. Here we found an asymmetry in the
DOS for finite chemical potential, which can influence the conductance results. Finally we obtained
numerical density of states and conductance results including Rashba spin-orbit interaction (SOI),
and analyzed the effect of different strengths of the parameters v, the chemical potential and the
SOI strength on the conductance result and compared with experimental results. We showed that
when the gap closes we get two conductance features at bias energy A and 2A, which corresponds
well with experiment. We uncovered that the value of the chemical potential plays a role unless it
is very large, and that it can lead to some non-linear conductance features like the ones observed
in experiment at high bias voltage. Also we showed that the SOI strength can also influence these
non-linear conductance features with increasing magnetic field, and that both chemical potential and
SOI strength therefore contribute to these features.

We showed that if we assume an effective g-factor larger than what is regarded as probable (i.e.
g* ~ 200), we showed that we can get results that resemble experiment in many ways. We get an
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induced gap of the right size, a conductance gap closing resembling experiment and can reproduce
the features in experiment in a qualitative way. In conclusion we could not reproduce experiment for
probable values of the parameters. However, we did uncover some general and interesting properties
about the system that should be useful in analyzing future experiments, and hopefully this work can
lay the foundation for further exploration into the analysis of tunneling spectroscopy of proximitized
2DEGs.

Further work into the problem could include: including SOI in the wave-function model and seek a
correspondence with the Green’s function tunneling model, or investigate further the reason for the
problem with the size of the induced gap versus the size of the effective g-factor.
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Chapter 8

Appendices

8.1 Appendix A

There are many layers of complexity in describing accurately the behaviour of solids. The first approx-
imation one usually makes (see [24]) of the behaviour of solids in electric fields is to assume electrons
moving freely, which describes the conduction in metals well. However, many solids are more complex
than this simple model can describe. Thus we need some way to include the ion lattice’s effect on
the conduction electrons. One model that answers some qualitative questions about the lattice is the
nearly free electron model. Here we assume a weak periodic potential originating from the periodic
ion lattice, but still no electron-electron interaction except in a mean-field way. It will turn out that
at the zone boundary of the Brillouin zone an energy gap can be formed.

Let us follow ref. [24] chpt. 7 and consider a one-dimensional lattice where the ions generate a
periodic potential: U(z) = U(z + a). Fourier analysis is useful:

Uz) =Y _ Uge'“™. (8.1)
G

Likewise we can write the wavefunction of our particle as a Fourier series (permitted by the boundary
conditions of the lattice):

P(x) = C(k)e™. (8.2)
k

We now want to solve the wave equation of an electron in the crystal, Hiy = ey, where H is the
Hamiltonian and e is the energy eigenvalue. Rewriting everything in k-space we get the equation:

kz ik i(k+G)x ik
zk:mC(k)e +%:%:U0C(k)e( +6) :ezk:C(k)e . (8.3)

For each Fourier component on both sides of the equation to have the same coefficient we need the
following identity:

Ak —)C(k) + > UaC(k - G) =0, (8.4)
G

where A\, = % This is called the central equation. Assuming that we solve for all the C’s in this
equation, the wavefunction will have the form:

Ur(z) = Clk — G+, (8.5)
G
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which clearly fulfills the Bloch Theorem that any wavefunction in a periodic potential is the product
of a plane wave and some periodic function with the potential periodicity.

Let us first consider a wavevector exactly at the zone boundary at %G, that is at m/a. Then we
have:

K2 = (;c:)? — (k-G (8.6)

Now as an approximation we retain only the coefficients C(3G) and C(—1G) in the central equation.
Now for there to be any non-trivial solutions to the central equation (8.4) the energy must fulfill:

er =AEU. (8.7)

Now we assume a k which is only close to the boundary %G. With the same two-component approxi-
mation the wavefunction has the form:

() = C(k)e™™ + C(k — G)elh=G)e (8.8)

The central equation then has a solution if the energy satisfies:

A — € U _
det< U Ao E) —0& (8.9)
1 1 !
e=5M-c + M) £ \/4(/\kG+)\k)2+U2- (8.10)

The two energy solutions describe two different energy bands. Now approximating the k as being
sufficiently close to the zone boundary that we can Taylor expand the square root to first order, we
get:

k2 2\

where k = k — %G, and A = %, i.e. the bandwidth. Here we see that a clear energy gap has
emerged, and that the subsequent band bending leads to something which can be modeled as an

effective mass:

1
m*/m=—. 8.12
/ 2+l (8.12)
Now in this model the effective mass depends on the energy gap and the bandwidth A. This makes
sense since the bandwidth determines the overall curvature of the band, while the band gap of course

modifies how much the curvature changes close to the zone boundary.

74



Bjarke Nicolaisen January 15, 2017

8.2 Appendix B

Here we show some of the work on the way to test to which extent the first order perturbation result
holds, i.e. for what range of B-field strengths can we still postulate that the slope of the energy with
respect to the magnetic field depends on where the wavefunction lives without a magnetic field applied?
In order to test this we will need to explicitly calculate an analytical expression for the following two
quantities:

d
o= [ G BP o= " e B da. (8.13)

—0o0
We thus hypothesize the following formula for calculating the effective g-factor based on the Feynman-
Hellmann theorem:

Gn as

g = gn + Js- (8.14)

an + ag as + an

So now we actually need to solve the coupled equations from (3.32) for the coefficients of the wavefunc-
tion. Simplifying the wavefunction down to only 4 unknown coefficients using the boundary condition:

Y(d) =0, (8.15)

and seeing that we can rewrite the coefficients in equation (8.14) in terms of the ratio of a,, and a
only:
ay, a, 1 1

= — pu— 8-16
an+as asl+o oS24 1 (8.16)

we can actually reduce our task of only finding three coefficients, since the ratio a,,/as is independent
of the normalization of the wavefunction. Since we have four equations with three unknowns, the last
"leftover’ equation would then yield a constraint on the allowed energies.

So first of all we invoke the hard-wall boundary condition at z = 0. This yields:

Apeth=d A _e7thd — ) o (8.17)

A = A+62ikzd; H = H+€2ikhd =
wk — eikHrH A+eikzz 1 A_efikzz 1 + H+€ikhz 0 + H_efikhz 0 — (818)
0 0 1 1
ik 1 1kyz —iky(z— 0 ikpz —1 z—
etk [A+<O> (ek + ekl 2d)> +H+<1> (e Fnz | o= tkn( Qd))} = (8.19)
. . 1 . _ . _ . 0 . _ —iky (2—d) 0

ik 7)) ik.d ik, (2—d) ik.(2—d) ikpd ikp (z—d)+e”""n —

e [A+e <O> (e +e ) + Hye <1> (e ) (1” = (8.20)

LT [A (é) sin(k, (2 — d)) + H(?) sin(kp (2 — d))] . (8.21)

Writing up the boundary conditions for these new wavefunctions yields:

— Asin(k.d) (é) — H sin(kpd) (2) =B, <Z> —B_ (Z) (8.22)

() 0 0)L () - ()] oo ().

(8.23)
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Now we need to solve the coupled equations for the coefficients of the wavefunction. It is here that we
can eliminate one of the coefficients by not demanding overall normalization of the total wavefunction,
since this will not affect the ratio that we are interested in. Thus we find:

B zlltg z n —1 2 sYa i z
4i:4kmaﬂ%)+m““”H”nUhm%% (8.24)
A 2mppu
B _ . k.ms cos(dk,) + mu(k +ip + 2msU, ) sin(dk,) : (8.25)
A 2my, pv
sin(dkz) _ i(u?—v?)(ksms cos(dks)+mn (5+2msUs) sin(dk-))
H _ sin(dks) sin(dkn)pmn ) (8.26)

A 2uv

From now on we will not mention that our coefficients are renormalized by A, but simply let A — 1,
since this will easen the notational burden.
Let us now move on to determining the coefficients a,, and as:

d d d
0, = / S SR / sin? (k. (= — d)) dz + / | H|? sin2(ky (= — d)) dz (8.27)
0 0 0
_ 2dk; — sin(2dk;) +HP 2dky, — sin(2dkh).
4k, 4kp,
For the second one it will be helpful to define:
By=uBy; B_=vB.; Bi=-B_. (8.28)

Before we calculate the integral in the superconductor it is time to try and simplify a bit. To do this
we must remember the following:

&p 2 _
G+ o

A2 _ 2
1. ¢ 1 ¢ 1 » 1
2 _ P p
= S(1—2Ry; = (14 |2)=1+]Y—|| === (82

1
2

where 53 = Eg — A2, Since we are looking at subgap states \Ep] < A, clearly , is imaginary, which
means that:

u? = (V)" = (v*)? & u = 4" (8.30)
This leads us to an interesting observation:

k.mg cos(dk,) + my(k + ip, + 2msU,) sin(dk,)

B = 8.31

+= T 2m,pu* ( )

_ Z,kzms cos(dk,) + mp(k + ip, + 2msU,) sin(dk.,) _-B - (8.32)
2m,pv

|By[*=|B_|* ByB:=-B}; B Bi=-B (8.33)

Another thing that will be helpful is that from the definitions of u? and v?, we can say that u = +v*,
with an unkown sign, but though with a definite sign. This allows us for example to rewrite:
u*v 1

1 = —. 8.34
+ uv*  u? (8.34)

Using exactly this we see that:
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o 0
asz/ ws-w:dz—/ e*h*

u

(B4 2 + |B_ ) (ul? + [of?) - <B+B ¥ )] (8.35)

1 1 B, B* (k — ip)
_ B.I2+|B_I? 2 2y _ + e 5.
e (B4 1B (P o) = 5o d =g e

Thus the ratio becomes:

2dk, —sin(2dk. 2dk;, —sin(2dk
an _ ZZ( )+\H]2 ; iIICI:L( h) (6.30

O L (Bel? + [B_)(ul + of?) — gy { BB )
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