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Abstract

In this thesis I present the fabrication and measurement of a top-gated GaAs/AlGaAs quan-

tum device, designed to investigate algorithm-based tuning of quantised conductance and

quantum Hall states. The device consists of a GaAs Hall bar with a high-mobility two-

dimensional electron gas (2DEG), on which a pixel-like array of gate electrodes is fabricated

in such a fine geometry that a tunable quantum point contact (QPC) can be induced in

the 2DEG. Importantly, the presence of up to 17 gate electrodes allows application of up to

17 independent gate voltages, with is far beyond the control capability of prior quantum-

point-contact devices. To demonstrate the resulting tunability of the potential landscape

experienced by the electron gas, we apply a new tuning algorithm that optimizes for observ-

ing a quantized conductance staircase without human intervention. I also present magnetic

field measurements in the quantum Hall configuration, with an outlook towards applying

multi-gate quantum point contacts in future integer and fractional quantum Hall experi-

ments.
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1 Introduction

1.1 Background and motivation

Quantum devices based on two dimensional electron gases (2DEGs) hosted within het-

erostructures are becoming increasingly more complex as we try to both scale up qubit

devices, the building blocks of quantum computers, and to investigate new quantum phe-

nomena by increasing local control. The number of gates and thereby the number of control

parameters make the task of gate tuning increasingly more time-consuming and repetitive.

This high-dimensional parameter space makes it difficult for humans to navigate and identify

features that indicate the typically small operational area of this large parameter space.

To tackle this tuning challenge in quantum dot systems, machine learning techniques

have been used to develop algorithms that can automate the tuning process of quantum

dot devices to the single and double dot regime [2, 8, 29, 40, 41], the fine tuning of device

parameters [37, 34], such as locating specific charge states [11], and the identification of

specific features such as charge state transitions [24] and bias triangles [30].

When it comes to gaining more local control by increasing the number of gates, experi-

ments have been done to investigate the 0.7 anomaly in QPCs [18, 3] and the supercurrent

distribution in Jospehson junctions [12]. However, the potential of ML techniques for scien-

tific discovery in systems with high local control is yet to be realised. To test these techniques,

the QPC can act as a great platform because of its simplicity and rich physics. This thesis

is based on work performed in a GaAs/AlGaAs 2DEG; primarily, a pixelated gate design is

developed and fabricated on the heterostructure, following which we allow our algorithm to

tune the QPC conductance into the expected staircase pattern.

1.2 Chapter overview

Chapter 2 will cover the concepts lying behind the 2DEG, the physics of the quantum point

contact and finally it will present the Quantum Hall effect and some of the physics that

describe it. In chapter 3, the fabrication process and considerations will be presented, starting

with the considerations that went into designing the device. Then it will present the choices
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of wafers that were made, before moving on to how a single lithography step is done. Finally

it provides the considerations that went into each of the fabrication steps: Cleaving, Markers,

Mesa, Ohmics Contacts, Fine Gates of the QPC and Bond Pads. In chapter 4 an overview

of the device is given with a picture of the full chip, a device schematic and the experimental

setups that were used. Chapter 5 will present the preliminary measurements we did on a

device, that determined the success of the fabrication. In chapter 6 the measurements done

using the algorithm will be presented and in chapter 7 I will provide a summary of our

measurements and an outlook on possible future experiments. Finally in the appendix the

fabrication recipe used to create the device tested in this thesis is provided with further

technical details.
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2 Theory

In this chapter we present some background for the measurements described in the thesis.

The first part gives a description of the two dimensional electron gas, as it is the platform of

our experiments. In the second part we present the physics of the quantum point contact,

QPC, and finally we will present the quantum Hall effect.

2.1 The two dimensional electron gas

The two dimensional electron gas, or 2DEG, is used extensively in experimental condensed

matter physics. It has been as a very fruitful platform to investigate systems such as quantum

dots [5] , quantum point contacts [3, 18], the quantum Hall effect, as reviewed in Ref. [36],

and many other quantum mechanical phenomena.

AlGaAs

AlGaAs

AlGaAs

AlGaAs

SL

GaAs (QW)

GaAs

Delta Doping

Delta Doping

Energy

EF

2DEG

Figure 2.1: 2DEG Illustration of how the wafer is constructed to realise a 2DEG. This
illustration is based on the wafer we used for the third device, the deep well high mobility
wafer, where the 2DEG is 190 nm below the surface.

It can also be a very versatile platform because the 2DEG can be manipulated by applying

a potential to metallic gates fabricated on top of the heterostructure in which the 2DEG

resides.

One of the most famous uses of the 2DEG phenomenon is in the metal-oxide-semiconductor

field-effect transistor, or the MOSFET [1], which is used in all everyday electronic devices.
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Although 2DEGs do appear in these MOSFETs they are usually not suited to use for the

purposes we wish to use them for, because the 2DEG quality is poor [33]. One alternative

to silicon based 2DEGs is Gallium Arsenide / Aluminium Gallium Arsenide, GaAs/AlGaAs,

based 2DEGs with which some of the highest electron mobilities have been achieved [6].

Because of the difference in energies between the band gaps in GaAs and AlGaAs ,a

potential well can be formed at the interface between the two. This confines the electrons

to a plane parallel to the interface, and it is in this potential well that the 2DEG resides.

The reason why GaAs/AlGaAs works so well, and gives such high mobilities, is because the

difference in their lattice constants is very small. This ensures that there is almost no strain

between the crystal layers in the heterostructure. If there was strain between the crystal

layers, crystal imperfections would appear. This would increase the number of scattering

sites, thus resulting in a lower electron mobility [33].

These GaAs/AlGaAs heterostructures are fabricated layer by layer with atomic layer

precision using molecular beam epitaxy (MBE) [26]. The heterostructure is grown on top

of a separately grown GaAs substrate, which are cut from large GaAs crystals. The het-

erostructures used for the work showed in this thesis were grown by the Manfra group at

Purdue University, USA.

The two main properties of 2DEGs that affected our choice of wafer in this project were

the gateablility and the mobility of the 2DEG. We aimed for a high mobility 2DEG which

was also easily gateable. Unfortunately, high mobility 2DEGs are typically more difficult to

gate than ones with lower mobility. This is caused by the former being highly doped in one

or more doping layers in order to achieve these high mobilities. The downside of this process

is that the dopants can have a strong screening effect, and can act as charge traps which will

lead to hysteresis. A silver lining of highly doped heterostructures is that they are relatively

easy to fabricate ohmic contacts on.

2.2 The physics of quantum point contacts

The quantum point contact, QPC, is a simple yet very useful structure, used in many different

designs made to investigate physics in 2DEG materials. A QPC can be realised in a 2DEG
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by separating the 2DEG into two reservoirs that are connected by a small passage. In this

passage the system will be reduced even further in dimensionality, from a 2D system to a

1D system, resulting in interesting physics such as the quantization of conductance.

In practice, the QPC is made by evaporating metal gates on top of the heterostructure, to

which potentials can be applied, thereby depleting the 2DEG underneath and in the vicinity

of the metal gates. By placing two metal top gates opposite each other with a small gap in

between, we can create a QPC, as seen in Figure 2.2.

Figure 2.2: QPC Illustration of a quantum point contact. The two grey rectangles to the
left and right represent reservoirs, the gold triangles are gates, the blue region around them
represent the electric field that depletes the 2DEG and the sine wave represents an available
mode in the QPC.

The first QPC measurements were done in 1988 by B.J. van Wees et. al[38] and D.

A. Wharam et, al[39], both using a 2DEG in GaAs/AlGaAs heterostructures to define the

narrow channel. Both groups saw that the conductance showed a step like behaviour as a

function of applied gate voltage, and reported quantization of the conductance, which took

values of

G =
2e2

h
N (1)

where N refers to the number of modes that are available in the channel, which depends on

the voltage applied to the gates.
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The quantum point contact is a simple system, well known in the field of condensed

matter physics, and the physics of the conductance quantum is well understood. However,

for some phenomena observed in the quantum point contact regime, the physics lying behind

the origin is still under debate: for example, the 0.7 anomaly. The 0.7 anomaly appears as a

step in the quantized conductance staircase at 0.7 of the conductance quantum. It cannot be

explained by the 1D quantisation of the system and other factors must be taken into account.

Among the proposed explanations of this anomaly are spontaneous spin polarization [10, 35],

Kondo effects [19, 7], and Wigner crystallization [27]. Measurements using scanning gate

microscopy reveals both Kondo and Wigner physics [4]. Gaining more understanding of the

gate potentials [18, 3] required to observe and optimize the 0.7 anomaly, for example, could

give us some definitive insight into its origin.

It is exactly because the QPC is so well known, is “simple” to fabricate and contains

unknown physics, that it would be interesting to increase the complexity and controllability

of the system by increasing the number of gates that realise the QPC. In particular, we

aimed to achieve granular and two-dimensional control over the potential of the channel.

To try and increase the control of the channel potential by adding pixelated gates, without

increasing by a large amount the tuning overhead, we decided to use machine learning (ML)

techniques. These ML techniques could help us work with systems that have many control

parameters, while at the same time the development of these techniques would let us dare

to design devices with more complex arrays of gates.

For the quantization of conductance to appear in a QPC system, the electrons should not

be scattered too much in the channel, since this is only observed in the ballistic transport

limit, when the mean free path of the electron is much larger than the length and width of

the channel. In order to avoid this scattering, a high mobility 2DEG is advantageous when

trying to observe the conductance quantum. One of the reasons why the two research teams

in 1988 were the first to observe this physics was exactly because they used high mobility

GaAs/AlGaAs heterostructures[38, 39].Further, it is required that the level spacing of the

transverse modes is much larger than the temperature of the system, which is a reason why

we cool the device to around 20 mK using a cryogenic dilution refrigerator. Another reason
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is that the 2DEG will not manifest in the heterostructure at high temperatures. Finally the

width of the channel has to be comparable to the Fermi wavelength. Since the width of the

channel is adjustable with the potential applied to gates this condition will be fulfilled.

We can show that the conductance quantum is equal to equation 1, by looking at the

linear response regime when we apply a small voltage difference to the reservoirs. The

difference in the electrochemical potential of the two reservoirs is

µL − µR = −|e|VSD (2)

Expanding this using the definition of a derivative we get

fL(E)− fR(E) =
∂fL(E)

∂µL
(µL − µR) = −∂fL(E)

∂µL
|e|VSD (3)

Because there is a voltage applied between the two electron reservoirs, using an external

voltage source, there will be a difference in the distribution functions for the left and right

moving electrons which will result in a net current given by

Itot = −gs
|e|
h

(∑
n

∫ ∞
En

dE[fL(E)− fR(E)]

)
(4)

Here fL and fR refer to the Fermi-Dirac distributions for the left and right reservoirs. We can

insert equation 3 into this equation for the net current and preform the energy integration

to get

Itot = gs
e2

h

∑
n

fL(En)VSD (5)

Further, if we divide by the voltage bias

G =
Itot
VSD

= gs
e2

h

∑
n

fL(En) (6)

The sum will reduce to N, the number of modes, if we are at low temperaures and the energy

En of a particular mode n is below the Fermi energy since then the Fermi-Dirac distribution
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is equal to one, and the mode will be occupied contributing gs e
2/h to the conductance[17].

G =
2e2

h
N (7)

2.3 Saddle point potential model

Using the method above we were able to show that the conductance through a QPC is

quantized, but we did not consider how the specific potential of the QPC channel looks. A

central part of this project is to fabricate a device which is able to form and manipulate the

potential of the QPC and so the potential of the QPC plays a major role in the design of

the device. One way of modelling the quantum point contact is to assume that the potential

takes the form of a saddle point potential[17].

V (x, y, z) = −1

2
m∗ω2

xx
2 +

1

2
m∗ω2

yy
2 + V (z) (8)

Using this potential, the Hamiltonian describing the electron motion is separable. Since the

system is a 2DEG, where motion in the z-direction is highly confined, we can assume that the

states with energies Ez will have an energy spacing much larger than any other energy scale

in the system. In the y-direction we have a parabolic potential with the well known harmonic

oscillator solutions, with energies Ey = ~ωy(m+ 1
2). The total energy is E = Ex +Ey +Ez.

We can write the equation of motion for the x-direction as

(
− ~2

2m∗
∂2x −

1

2
m∗ω2

xx
2

)
ξ(x) = Exξ(x) (9)

and we can rewrite this as (
l2x∂

2
x +

x2

l2x
+ ε

)
ξ(x) = 0 (10)

where ε = 2Ex
~ωx

is the normalized energy scale and l2x = ~
mωx

is the length scale. The solutions

to this equation can be written as a linear combination of parabolic cylinder functions Dν(x)

ξ(x) = c1D− 1
2
i(ε−i)

[
(1 + i)x

lx

]
+ c2D 1

2
i(ε+i)

[
(−1 + i)x

lx

]
(11)

9



From this it can be shown that the transmission in the x-direction through the parabolic

potential barrier of mode m is

Tm(E) =
1

1 + e2πεm
(12)

where

εm =
E − ~ωy(m+ 1

2)− Ez
~ωx

(13)

Here we see from equation 12 that the transmission takes the shape of a step like function.

Successive transmission modes m also give a step like function, but shifted, such that the

sum of transmission modes gives a function with the shape of a staircase, as seen in Figure

2.3b. We also see that ~ωx determines the width of the transition region between plateaus

or how steep the step is and the energy shift between plateaus is set by ~ωy.

X
Y

V

a) b)

0 10
0

3

Tr
an

sm
is
si
on

E

T1 T2 T3

Ttotal

Figure 2.3: Saddle point potential and Transmission a) A saddle point potential where
ωy/ωx = 3. b) Transmission through a saddle point potential.

2.4 The quantum Hall effect

The quantum Hall effect owes its name to the classical Hall effect which was discovered by

Edwin Hall in 1879 [14]. Hall found that when he applied a perpendicular magnetic field

to a gold leaf, while running a current through it, he saw two characteristic voltages. One

voltage, V, was the voltage measured along the current path, which occurs because of the

electrical resistance, R, of the sample. The other voltage, VH , was the voltage measured

across the current path, which we now know as the Hall voltage.

Hall found that VH was proportional to the current, I, and proportional to the perpen-

dicular magnetic field, B, and by denoting VH/I as the Hall resistance, RH , we have that
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RH ∝ B. The reason why we see a voltage difference across the sample can be explained by

the Lorentz force, as a perpendicular magnetic field will exert a sideways force on the moving

electrons in the sample. This will result in an accumulation of electrons on one side of the

sample, and ultimately a voltage difference across the current path. This also explains why

a larger perpendicular magnetic field will show a larger Hall resistance because of a larger

force on the electrons. We also have that the Hall resistance is dependent on the electron

density, n, such that RH = B/(ne). We see that as the electron density increases, the Hall

resistance decreases. In order to maintain the current the electrons move slower and in turn

experience a smaller Lorentz force. This results in a smaller voltage drop across the current

path or a smaller resistance. When it comes to measuring the electron density of samples,

the Hall effect is remarkable because it is independent of size and shape of the sample. It

has become a standard for determining the electron density of free electrons in electrical

conductors.

2.5 The integer quantum Hall effect

If we then move to measure the Hall effect in a 2DEG at low temperatures and in a high

perpendicular magnetic field, we see that the Hall resistance shows a step like dependence

on the magnetic field, instead of the linear relationship we see in the classical Hall effect.

This was discorvered by K. von Klitzing et al. in 1980 [22], and they found that these

steps take on values of RH at plateaus equal to RH = h/ie2, where i is an integer and h is

Planck’s constant. We also see that the longitudinal resistance, or the magnetoresistance,

oscillates with increasing magnetic field, and at large magnetic fields the minima of these

oscillations will reach almost zero resistance. These oscillations are called Shubnikov–de Haas

oscillations. The plateaus of the Hall resistance and the minima of the magnetoresistance

also coincide at the same magnetic fields. When the Hall resistance starts a new plateau,

the magnetoresistance drops to almost zero resistance.

We can explain this behaviour by looking at how the electrons experience the magnetic

field in two dimensions. The electrons are forced into circular orbits, again because of the

Lorentz force, where they are only allowed to assume a certain set of discrete energies. The
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two-dimensional case differs from the three-dimensional case because in the three-dimensions

motion of the electrons can add any amount of energy when the motion is along the magnetic

field.

The energies of these circular orbits can be found by looking at the Schrödinger equation

for an electron in a magnetic field [17]. We have a Hamiltonian that reads as

H =
(p + |e|A)2

2m∗
+ V (z) (14)

Here V (z) is the potential confining the 2DEG. We chose A = (−By, 0, 0), which results in

a magnetic field B = (0, 0, B). We can separate this Hamiltonian into

Hz = − ~2

2m∗
∂2

∂z2
+ V (z) (15)

and

Hxy =
(px − |e|Bzy)2 + p2y

2m∗
(16)

The solutions to the Hamiltonian describing the states in the z-direction can be ignored as

only the lowest states will be occupied in a 2DEG. To solve the eigenvalue problem for the

Hamiltonian describing the states in the plane, we first assume that the wavefunctions take

the form

ψ(x, y) = eikxxη(y) (17)

which leads to the eigenvalue problem

(
p2y

2m∗
+

1

2
m∗ω2

c

(
y − ~kx
|e|Bz

)2
)
ηkx(y) = Eηkx(y) (18)

Here ωc = |e|B
m∗ is the cyclotron frequency. We see that this equation resembles that of a one-

dimensional quantum mechanical harmonic oscillator, with a kx-dependent center coordinate.

y0 =
~kx
|e|B

(19)
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The quantized energy states of the harmonic oscillator are

En = ~ωc(n+
1

2
) (20)

and if we include the Zeeman splitting of the spin states we have

E±n = ~ωc(n+
1

2
)± 1

2
g∗µBBz (21)

This quantization of states is called Landau quantization. If we ignore the contribution

from the Zeeman splitting of the spins, we see that the energies of these states are proportional

to the magnetic field, B, and we also see that there are large energy gaps of ~ωc in between

the different Landau levels. In each of these Landau levels there are a quantized number,

d = eB/h, of degenerate states which reflects the number of orbits per Landau level that can

be packed in to each unit area. This degeneracy is proportional to the magnetic field, which

gives rise to an interesting set of magnetic field values where integer values of Landau levels

are exactly filled. If we look at the case where we are at a magnetic field, B1 = nh
e , where

all the states, n, in the lowest Landau level are exactly filled and we then start lowering the

the magnetic field, we would see that the number of available states would decrease, forcing

electrons to move to the next Landau level. Since all Landau levels have the same number

of degenerate states, at a certain magnetic field, B2, both the first and the second Landau

level will be exactly filled and we can relate B1 and B2 as B2 = nh
2e = B1

2 . By lowering the

magnetic field even further we can repeat this process of filling up an exact number of Landau

levels, and write up the set of fields where this is true as Bi = nh
ie , i = 1, 2, 3, .... Inserting this

into the expression for the classical Hall resistance, RH = B
ne we have RH = h

ie2
. Although

this explains the values of resistance at which we see the plateaus, it does not explain why

there are plateaus [33].

The Landau levels can not explain why we see a constant Hall resistance and an almost

zero longitudinal resistance for a range of values in the magnetic field. To explain this we

have to look at localized electrons, that appear because of hills and valleys in the potential

landscape where the 2DEG resides. These localised electrons act as reservoirs in the sample
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Figure 2.4: Density Of States, Landau Levels Density of states for electrons in a 2DEG
under different circumstances a) DOS in a 2DEG, without a perpendicular magnetic field b)
Landau levels occur with a perpendicular magnetic field. c) The Landau levels are broadened
by the presence of scattering sites in the 2DEG, which gives rise to localised states.

and will not contribute to the electrical conduction through it. The consequence of this

is that whenever we try to empty or fill the Landau levels of the extended flat regions of

the sample, we will instead be emptying and filling the localized states thereby keeping the

conducting regions at their full capacity. Because of these localized electrons we see that

the Landau levels are kept exactly filled for a range of magnetic field values which shows as

quantized plateaus in the Hall resistance and an almost zero longitudinal resistance in the

same magnetic field range.

To fully understand why the longitudinal resistance drops to zero we also have to consider

the formation of edge states [15]. Along the edge of the sample the electrons experience a

steep potential, which keeps them inside. Because of this the Landau levels are pushed up in

energy at the edge, such that even when the Fermi energy, EF , is in between Landau levels

in the bulk of the sample, the Fermi energy will cross the energy levels of electrons at the

edge of the sample. These edge states allows for dissipationless transport along the edge,

such that two voltage probes on the same edge will experience the same voltage, and thus

near zero resistance. Edge states on opposite sides of the sample are still separated thereby

allowing the Hall voltage to build up [17].
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In Figure 5.6b we show a quantum Hall measurement preformed on one of our samples.

The Hall resistance plateaus have been marked with their corresponding filling factor. To

calculate the location of these filling factors we look at the magnetic field values of two

neighbouring peaks in the longitudinal resistance, and calculate the electron density, ns [9].

ns =
2e

h

1

(1/B1)− (1/B2)
(22)

Using this electron density we can calculate the magnetic field value, Bi where we should

observe integer filling factors, νi.

Bi =
ns

2eνi/h
(23)

The electron densities we calculated using this method did not match the electron den-

sities the wafer manufacturer supplied us. We believe the 2DEG was damaged during fab-

rication and because of this the calculated magnetic field values do no line up exactly with

the plateaus in the Hall resistance.

2.6 The fractional quantum Hall effect

Above we looked at how the magnetic field dependence of the degeneracy of the Landau

levels, gave us certain magnetic field values where an exact number of Landau levels were

filled. For one magnetic field value the lowest Landau level would contain all the states,

resulting in a filling factor of one. Intuitively this would mean that we do not expect any

more plateaus in the Hall resistance at magnetic field values above the plateau showing a

filling factor of one. However, at larger magnetic fields we do see plateaus corresponding to

fractional filling factors [33].

To explain fractional plateaus in the Hall resistance, electron-electron interactions have

to be taken into account. Some of the fractional states can be explained by the wave function

proposed by R. B. Laughlin [21, 25],

ψ1/m =
∏
j<k

(zj − zk)me−
1
4

∑
i |zi|2 (24)
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This wave function can explain the fractional states with filling factors ν = 1/m, where m

is odd. However, these states do not account for all the fractions that have been observed.

Most of the fractional states can be explained with Composite Fermion, CF, Theory [21, 20].

This theory looks at new particles that consists of electrons and flux quanta. Composite

Fermion Theory can still not explain all the fractional fillings, and there is still physics to be

discovered here.
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3 Fabrication

3.1 Designing the device

The design of our device is heavily influenced by the motivation behind the project. It

diverges from typical QPC designs by adding local control in two dimensions, and hence we

need to design a pixel-like gate pattern. By increasing the number of gates we also increase

the dimension of the voltage space we have to navigate, and to help us tune the device we

wish to use machine learning techniques. This tuning task is a problem that is becoming

more and more clear as the community tries to design new devices with many gates that end

up taking many hours to tune. Therefore the device design will also facilitate the goal of

seeing if we can use machine learning techniques to develop new tools that could help tune

quantum devices.

200 nm

a) b)

Figure 3.1: Designing the pixel QPC 1 a) The concept design of the pixel QPC b) First dose
test of a pixel QPC deisgn.

Another motivation behind the project is to investigate if the width of integer and frac-

tional quantum Hall effect plateaus could be changed by manipulating either the curvature

or the disorder of the QPC saddle point potential.

We would also like the design to be modular, such that we can extend it to even more

complex devices, for example to investigate tunneling between edge states by either letting
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them pass through the QPC or by separating the 2DEG in two and then have the wave

functions of the edge states overlap near the QPC.

A final motivation behind the design is to explore a direction related to recent experiments

performed in the groups of F. Bauer[3] and M.J.Iqbal[18], concerning the 0.7 anomaly [35].

The 0.7 anomaly appears as a shoulder at 0.7 2e2/h in quantized conductance traces. The

two papers referenced here explored the origin of the 0.7 anomaly by adding gate complexity;

they moved from two facing gates forming a QPC to a double-layer gate structure adding a

top gate[3] or to three gates facing each other along the channel[18]. These devices were a

step in the right direction, but we would like to take this further, and one way of investigating

the 0.7 anomaly could be to make a device in which we had full control of the potential in

the QPC channel.

Combing these ideas into a single design makes a lot of sense since large amounts of

control and many gates go well together.

The first QPC concept design we discussed can be seen in Figure 3.1a. The design

distinctive, with nine pixels that allow us to control the potential landscape in the channel

region. This QPC design was designed with the saddle point potential in mind, as the nine

pixels allows us to control the curvature of the potential in both the x- and y-direction. The

design also poses some challenging fabrication questions. The first question being, how do

we apply a voltage to the middle pixel. Since we have chosen to fabricate using a single gate

layer, we are limited to fabricating gates that follow the plane of the wafer and we cannot

apply a voltage to the middle pixel without also applying it to the connector that needs to

be routed out from the middle pixel, passing in between the other pixels. Our first design

attempt can be seen in Figure 3.1. In Figure 3.1b we now see the connector that connects to

the middle pixel which has to be routed out in between the top right and middle right pixel.

In order to justify that the potential of the lead will not have a large impact on the 2DEG

below it, the lead has to be much smaller than the pixel. If we can make the lead very thin,

then in the far field, the 2DEG will not see the potential of the lead as dominating, but will

instead see the potential of the pixels as dominating. This then leads us to the question how

small can we make the lead and how large can we make the pixels.
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The size of the lead is limited by our equipment and our patience. With our equipment

we are able to make the lead around 10-20 nm wide, since beyond this dimension it is just

not very reliable. Tests later revealed that we could fabricate the connector reliably if it was

30 nm wide. If we then look to see how large we can make the pixels, we are faced with

the question of how wide do we want the QPC channel to be, or rather how large an area

do we have to deplete with our gates in order to realise the QPC. This can be seen as the

distance between the two large grey gates in the top of the design to the two large gates

in the bottom of the design in Figure 3.1. We call the gates that are not pixels the outer

gates. Their purpose is to deplete the 2DEG completely so that transport occurs only in

between them, so that the pixels can be used to fine tune the channel that connects the two

reservoirs.

To answer the question of how large can we make the pixels, we look to other QPCs that

have shown good conductance quantisation steps. One QPC we looked at, and also tried to

fabricate, was a QPC designed by QDev Master student Christian Olsen in 2015 [31]. His

QPCs consisted of three gates, two outer gates and one gate to cover the area in-between

the outer gates. The gap between his outer gates varied from 600 nm to 800 nm. In general

we would want the distance between the outer gates, and thereby the size of the pixels, to

be as small as possible, keeping in mind our other limitations.

Lastly there is the question of the spacing between pixels. Ideally we would want the

spacing to be as small as possible to have full control of all the area in the channel. Although

if we want a symmetric design, which we do, where the distance between pixels is equal, then

the limiting factor is the gap where the connector to the middle pixel passes in-between the

top right and middle right pixels. There is the risk of the lead merging with the pixels or

the lead not being continuous if the gap between pixels is too small.

Yet again we encounter another limit. This time its the limit of the e-beam resist that we

use. We use PMMA A2 resist for this lithography step, which is 50 nm thick. If we were to

have a spacing between pixels of 50 nm, then 30 nm would be occupied by the lead and then

there would be a gap between the lead and pixel of 10 nm on each side. This means that

when we have exposed our pattern onto the resist and developed it, then the space between
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the lead and the pixel will be a 50 nm tall resist wall that is 10 nm wide. Structures that

are taller than they are wide have a tendency to fall over. Because of this it is recommended

to use a spacing between gate features that is larger or at least close to equal to the height

of the resist that is being used.

To summarize, we wish to have connectors that are as small as possible, to ensure that

they are much smaller than the pixels. We want the pixels to be as small as possible making

the distance between the outer gates as small as possible. The limiting factor is the e-beam

resist and the width of lead.

The picture shown in Figure 3.1b is a SEM of one of the first test lithography runs, to test

if we were able fabricate these thin leads. We ended up redesigning this design because we

did not like how the leads of the middle left and right pixels were routed out along another

thin lead. In Figure 3.2a we see a SEM of the new design where the bottom and top row

of pixel now have their leads routed out in between the outer gates. One consequence of

routing the leads out like this is that we split the outer gates thereby increasing the number

of gates, which in turn increases the number of bond pads required on the daughter board.

Fortunately we were able stay within the 48 bond pads available to us on our daughter

boards. If we had exceeded this number one solution could have been to bond several outer

gates to the same bond pad on the daughter board. Here, the limit is the number of lines

we have available in the fridge.

After doing several test and attempting to fabricate the QPC on a chip with a het-

erostructure we did one final change to the QPC design to get more reliable results. The

change was to increase the size of the entire design by 50% and giving the outer gates an

almost bow tie look giving more space to the thin leads when they start to fan out. This

design can be seen in Figure 3.2b. The new pixel spacing was chosen since we could relax

our design requirements for the high-mobility GaAs/AlGaAs wafer, which had the 2DEG

buried around 190 nm below the surface. Hence, gate pitches that were too small, were not

required since they would not be resolved to that extent in the far field.

Apart from the design of the pixel QPC there is only the mesa left to be designed. The

specific mesa design we used for this project is a design used by many others at Qdev and
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a) b)

200 nm 300 nm

Figure 3.2: Designing the pixel QPC 2 a) SEM of the second nine pixel QPC design. b)
SEM of the final design of the nine pixel QPC.

previously at Harvard University [28, 23]. The mesa can be seen in Figure 3.5 and in Figure

4.1. What stands out in the design of the mesa, are the E shaped ohmics. They are designed

in this way to improve the ohmic contact to the edge states that appear at high magnetic

fields. The worry is that if the ohmic was in the shape of a square, then an edge state would

travel along the edge and thereby not come in contact with the metal we deposit on top.
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3.2 Choice of wafer

As mentioned in the description of 2DEGs there are pros and cons to different wafers. Some

wafers are grown specifically to have good gate action and low hysteresis, while some are

designed to have very high mobility. For our experiment we wished to investigate the physics

of the fractional plateaus in the fractional quantum Hall effect, using our pixel-gate QPC.

So our ideal wafer would be a wafer which had both good gate action and showed evidence

of the fractional quantum Hall effect.

Unfortunately, wafers with very high mobility get their mobility from being very highly

doped. This hinders the gating of the 2DEG because the dopants can act as charge traps

and screen the gates. Another factor that turned out to have a great influence on the results

of our work, was how easily we could make ohmic contact to the 2DEG. Wafers that are

highly doped are also much easier to make ohmic contact to, while highly resistive ohmics

were exactly the reason why we had to deem our first two devices, attempted on a less-doped

wafer, unsuccessful.

The wafers that are available to us are wafers designed and fabricated by Michael J.

Manfra and his group at Purdue University. We get the wafers sent together with data sheets

that show quantum Hall measurements. From these data sheets we can quickly determine

the wafers that have the potential to show signatures of the fractional quantum Hall effect

and those that don’t, typically by assessing the mobility and density and the magnetic fields

available in our dilution refrigerators. When it comes to how well the wafers gate, we have

to rely on the experience of others who have worked with the wafers and tried gating them.

It was on the basis of these considerations that we decided to use the following two wafers.

The first wafer we tried was a 90 nm deep 2DEG which was designed with the aim to be

used for spin qubit devices, meaning it was designed with the aim to have good gate action

and because of this it is not highly doped. It had a stated mobility of 4 × 106 cm
2

V s , which

is not super high compared to the second wafer we used, but could be adequate. It looked

like a perfect match, best of both worlds, but we were unfortunately not able to make good

ohmic contact to this 2DEG.
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The second wafer we used had a 2DEG 190 nm deep and was designed with the aim of

having a very high mobility. It has a mobility of 24.6×106 cm
2

V s , measured at 300mK, and it is

highly doped. We were able to make good contact to it and even though gate ramps showed

hysteric behaviour we were able to find a measurement method where we could reproduce

the behaviour of our pinch off curves described in section 5.3.
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3.3 A lithography step

Although the fabrications process is long and each of the fabrication steps has to be fine-

tuned to fit the exact needs of that step, there is a common workflow that is repeated several

times throughout the process. Each of the main processes has a lithography step, and in

total there are five lithography steps to be completed to fabricate one device with the recipe

I have used. The five steps are: Markers, Mesa, Ohmics, QPC and Bond Pads.

a) b)

c) d)

e) f)

g) h)

Figure 3.3: A single lithography step. a) The first step is spinning resist, in pink, on the
sample, in grey. b) The second step is exposing and developing. After this step one of three
things can happen: Metal evaporation, ALD growth and mesa etch c) Metal, in yellow, is
evaporated onto the sample. This process leaves some of the resist not covered making it
easier to do lift off. d) Lift off is done in a solvent that removes the resist, leaving behind
metal that is stuck to the sample. e) ALD, in green, is grown on the sample. This process
covers all surfaces of the chip thereby enclosing the resist. f ) Lift off is done. With ALD it
is tricky because the resist is entirely enclosed. g) Mesa is etched, the 2DEG is highlighted
in blue to indicate that the etch has to pass it. h) Resist is removed after the mesa etch.

We start out by cleaning our wafer piece, chip, to ensure a uniform spin coating. If even

one speck of dust is on the wafer when we have put on the drop of resist and start the spinner,

then this tiny spec of dust will be flung along the surface and leave a rift in the resist.

The resist we use depends on the features we want to make. For the fine gates of the

QPC we use PMMA 2%, which has a thickness of 50 nm, because this fits the features size of

our gates of around 30 nm. For the ohmics we a use stack of PMMA 8% (500 nm), PMMA

8% (500 nm) and PMMA 4% (200 nm) for a total of 1.2 µm. This is to make sure we can
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lift off the metal stack of almost 600 nm metal that will constitute our ohmics.

When spinning the resist there are two parameters that can be chosen for the spinner.

There is the rotations per minute of the spin and the duration of the spin, and they will

have an impact on the thickness of the resist. In general we use 4000 rpm and 60 sec, which

gives reliable outcomes for most of the resists we use. Beyond 4000 rpm the resist will not

get much thinner and the same is true for spin time. This can be seen by looking at spin

curves from the supplier of the resists.

After spinning the chip we bake it on a hot plate to harden the resist. The baking

temperature differs from resist to resist and baking time can also vary significantly. One

thing to be aware of is cross linking the resist, by baking it at too high a temperature or

baking it for too long.

After the spin is complete, the chip is ready for the exposure. There are many parameters

to optimise for the exposure, and these will not be explained in detail. When the resist gets

exposed it changes composition and the exposed resist can be removed with a developer.

This is true for positive resists. There are also negative resists, where it is only the exposed

resist that will not be removed by the developer, but we don’t use these.

When the chip has been developed it is ready for the metal deposition, as seen in Figure

3.3c and d, or if we were fabricating the mesa, the mesa etch as seen in Figure 3.3g and

h). For the four fabricating steps other than the mesa etch we would now do the metal

deposition. This is done using e-beam evaporation, where a crucible with metal is heated

using an e-beam and the evaporated metal will cover the entire chip with a uniform layer of

metal. A standard metal stack for a generic metal gate, would be of titanium and gold. The

titanium acts as a sticking layer to ensure that the gold sticks easier. The amount of metal

that needs to be deposited depends on what is being made. For the markers it is important

to deposit enough metal to have them be visible under resist during alignment. Around 100

nm Au is sufficient. For the ohmics a special recipe has to be made to fit the wafer. This

can vary a lot. For our fine gates in the QPC, we deposit 5 nm Ti and 18 nm Au, to ensure

a good lift off. The final fabrication step are the bond pads that have to be connected to

the much smaller QPC gates. It is important to be aware of the height of the mesa when
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depositing the metal for the bond pads. This is because the bond pads are not on the mesa,

so there has to be deposited enough gold to climb the mesa.

The final step is the lift off where the remaining unexposed resist is removed. When the

resist is removed, all the metal that was deposited on top of the resist will fall off and only

metal that was deposited directly onto the surface of the chip will remain.

In Figure 3.3 the ALD growth is also shown in e and f. Because the lift off of ALD is

very tedious, we decided to cover the entire chip with ALD instead. This was done after the

ohmics had been made.
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3.4 Cleaving

Cleaving a chip with a scribing pen is the first step that needs to be done before any fabri-

cation can begin. Scribing with a pen is done by making a small notch on the edge of the

wafer, and then placing the wafer on an edge such that the notch aligns with the edge and

then pushing on each side of the notch. The edge can be that of a glass slide, the tip of the

scribing pen or ideally a scribing block. Because of the almost perfect crystal structure of

the wafers, the wafer is prone to cleave along certain crystal orientations. These are usually

the directions which we wish to cleave along and they are marked on the full wafer with the

major and minor flat. The major and minor flat indicate some crystal direction which is

given by the manufacturer of the wafer.

When cleaving it is important to keep track of the crystal direction of the wafer, if

it turns out that the experiments is dependent on crystal orientation. This is one of the

reasons it is important to mark the chip with a symmetry break. A symmetry break is also

important in general for the fabrication process especially when placing the chip with the

proper orientation for exposures.

There are three aspects of cleaving which are important to consider when cleaving. The

amount of wafer residue that end up on the surface of the chip, the dimension of the wafer

piece and how straight the edges are.

The cleanliness of the surface of the wafer is important because a single dust speck can

ruin a spin coating or a part of the design. Because of this we usually spin coat the wafer

with a layer of PMMA 4% to protect the surface of the wafer from wafer residue from the

scribing. Afterwards the PMMA can be stripped and any residue will be removed with it.

The dimensions of the wafer piece are mostly important with regards to whether or not

the design can fit. Other than that the only limiting factor is if the chip can get a good spin

coating and if it can fit in the equipment. The smallest wafer piece we tried spinning was 5

mm x 3.5 mm.

The straightness of edges are important, because a chip with sloped edges can be near

impossible to pick up with a pair of tweezers. And if it can’t easily be picked up with a pair
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of tweezers it is not worth fabricating on.

At Qdev there are four ways we can cleave a chip: with a scribe pen , with the manual

scribe, with the automatic Loomis scribe and with the wafer saw. During this project we

ended up using all of these except the wafer saw. Scribing with the scribing pen is good for

quick tests, for example a dose test, on blank wafers that don’t have any heterostructure on

them. It often happens that the notch is not placed exactly where it was supposed to be and

then the cleave can end up giving an uneven edge.

The manual scriber gives more precision and accuracy than a scribing pen, but can leave

a lot of residue on the surface on the chip. When using the manual scriber the cleave still

has to be done by hand, and this still leaves room for a lot of errors.

The Loomis scriber is an automatic scriber which is controlled with computer commands

and it has a cleaving function which cleaves exactly along the scribe. We used the automatic

scriber for most of our samples.
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3.5 Markers

The first lithography step of the fabrication process are the alignment markers. Their purpose

is to ensure that for all of our exposures the lithography equipment exposes the design in

the correct place on the chip. It is from the markers that we can make a reference for a

coordinate system in which the design is placed.

60 μm

Figure 3.4: Alignment Marker Bright-field optical image of a titanium gold alignment marker
after lift off. The design of the marker is a standard that works with many different lithog-
raphy systems.

The markers have the shape of a cross with an even smaller cross in the middle of it, as

seen in Figure 3.4. The small cross in the middle has a size that fits the zoom presets on

our lithography systems such that when we move to the markers we can easily align to it.

Whenever we do alignment with a set of markers, it usually means that we will not be able

to use them again. This is because the resist that covers the markers will be exposed during

the alignment process and then when we do the mesa etch or a metallisation we will either

etch the markers or cover them with metal. To make sure we have enough markers for all

the exposures, we expose five sets of four markers.

When we do the annealing of the ohmics, we also anneal the metal of the markers. This

results in an uneven surface of the metal on the markers which worsens the alignment. When

the Elionix lithography systems locates the markers, it scans a line perpendicular to each of
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the four alignment marker arms. It then measures the reflected signal to identify the middle

of each arm. If the surface of the marker is not uniform it can worsen this process. We were

able to align within 100 nm with annealed alignment markers and this was good enough for

what we needed. Using markers that are not annealed we can align to within 10 nm. If we

wanted to be able to align with in 10 nm, then we could change the order of the exposures

to be: Mesa, ohmics, markers, QPC and bond pads.
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3.6 Mesa

The purpose of the mesa is to confine the 2DEG into smaller and more controlled areas on

the chip. When we receive the heterostructure wafer piece there is a 2DEG across the whole

wafer. In our case we wish to do Hall bar measurements and therefore need to remove some

of 2DEG to make Hall bars. One of our Hall bars can be seen in Figure 3.5. An upside to

this fabrication step is that we can fit four mesas onto a 5mm by 5mm wafer piece and we

can then pick and choose the ones that look best at the end of the fabrication process.

400 μm

Figure 3.5: Mesa Dark-field optical image of the sample after the mesa etch has been done.
Dark-field images highlights height differences, so the bright features are edges or dust specs.

When doing the mesa etch it is important to make sure we etch past the 2DEG. To

ensure this we do a test etch on a wafer piece without a heterostructure and then measure

the height of this piece and estimate an etch rate. We then pick an etch time that would

etch at least 20 nm past the 2DEG depth. After the etch we can strip the resist and measure

the height of the mesa with a profilometer. Ideally we could measure the height of the resist

before the etch and then measure the height of the mesa and the resist at intervals during

the etch. Unfortunately we had problems with the profilometer needle sticking to the resist

and not being able to measure the height while the resist was on the device.
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3.7 Ohmic contacts

In order to do current transport measurements there has to be made an ohmic contact to

the 2DEG. We do this by depositing gold, germanium and platinum on the sample, and then

annealing it to make an eutectic alloy of the gold and germanium that then spikes into the

wafer to make a contact to the 2DEG. An ohmic after annealing can be seen in Figure 3.6.

50 μm

Figure 3.6: Ohmic. Bright-field optical image of an ohmic. The mesa, where the 2DEG
reside, has the shape of an E, and on top of the E, is a rectangular metal stack that has been
annealed.

The process of making ohmic contacts follows the same steps as a normal metal deposition

with some alterations. We start by thoroughly cleaning the sample as a clean surface is

important for a good ohmic contact. Then we spin it, expose it, develop it and ash it. After

doing these steps we load it into the AJA and run a RF milling recipe. RF milling works

by filling the chamber with Argon plasma and then applying a small oscillating voltage to

the sample holder. This will accelerate the argon plasma into the sample which will clean

the surface even more and thereby improve the contact. We then deposit our metal stack,

unload and do lift off like normal. After lift off, the chip is loaded into the RTA (rapid

thermal annealer), and the ohmics are annealed.

We faced many problems with our ohmics and also spend a lot of time trying to develop

a new ohmic recipe for the 90 nm wafer. In total we fabricated three devices, the first two
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were deemed not good enough because of their ohmics resistance was too high (of the order

of kiloOhms at low temperature). The third device was fabricated using the highly doped

deep well wafer, which is easy to make contact to. The tricky part of developing new ohmic

recipes is that there is not always an easy method to try many different metal stacks and

many different annealing programs, without also using a lot of material and doing many

exposures. For our tests we made a chip with four mesas, then spun it with the resist for

the ohmics and exposed it. We could then cleave it into the four mesas before development,

and then when we developed each of the pieces, the dust from cleaving would fall off. With

this method we could try out four different metal stacks and annealing programs with only

two exposures.

The metal stack we ended up using for the ohmics is very tall, contains a lot of metal, and

takes a long time to metallise. Because of this the AJA chamber can get very hot and end

up damaging the resist by hard baking it. To prevent this we would take breaks in between

the metal layers to let it cool. We would usually take these breaks after metallising platinum

which needs a very large current to melt. Another concern when metallising platinum is that

it can ”spit”. These metal chunks that are shot at the sample can damage the resist but is

for the most part harmless, and will just leave spots on the ohmics.
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3.8 Fine gates of the QPC

The fine gates of the QPC are one of the more challenging exposures because the optical

microscope cannot magnify enough to let us see if the development and metallisation went

well. If we were to use the e-beam microscope we could end up damaging the device and so

we only know if the lift off went well when the device is loaded and we can check for pinch

off and leakage between the gates.

One of the main challenges we faced while figuring out the exposure for the QPC gates

was a problem concerning the PEC’ing of the design. PEC stands for proximity effect

correction and is an algorithm in the design conversion software called Beamer that corrects

the exposure dose for back-scattering. We saw that when we did dose tests of the small QPC

gates only, where the design covers an area of about 4 µm by 4 µm, we would see one set of

doses that gave good results. But then when we expanded the design to include longer gates

that fanned out to be about 2 µm wide each for a total exposure area of about 40 µm by

40 µm, the design would end up being overexposed. It turned out that the PEC algorithm

ends up assigning a too large dose if the design is too large. To fix this we only PEC the

inner part of the QPC exposure and leave the larger features of this exposure unPEC’ed.

34



3.9 Bond pads

The final step of the fabrication process are the bond pads and larger gates. These gates are

done in a lithography step of their own because their feature sizes are much larger than that

of the QPC gates and also because they need to be tall enough to climb over the mesa edge.

In our case the mesa is 200 nm tall and in order to make sure that the metal on top of the

mesa makes contact to the metal not on the mesa, we metallise at least 50 nm more metal

than the height of the mesa.

One of most important aspects of bond pads is that they should be easy to bond to. To

ensure this we make the bond pads 200 µm by 100 µm to give good space for the bond to

stick and in case another bond is in the way we have space to maneuver around it. The

metal stack of gold and titanium are also easy to bond to. In general we did not have any

troubles with the bonding.
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4 Device overview

4.1 Picture of the device

In Figure 4.1, we see an optical picture of the entire device after the final lift off of the bond

pads. We see three square mesas, top left, bottom left, and bottom right. For this device

we decided to make a mesa with a different design compared to what we had worked with

so far. If the other square mesas turned out not to show features of the quantum Hall effect

as we wanted, we could unload and re-bond the two mesa seen in the top right.

Figure 4.1: Entire device Bright-field optical picture of the entire device. The picture consists
of 16 individual pictures that the microscope software stitches together to one picture. The
wafer piece is 5 mm by 5 mm.

The top left and bottom right mesas each have a pixel QPC, and we decided to bond

the top left mesa and QPC. Looking closely at the center of the three square mesas there

are also some small spots of gold next to the QPC. These spots of gold are from a QPC

exposure where the alignment went bad. So when we had to do the final exposure with the

36



bond pads, we were not able to align to these QPCs. Because of this we exposed a second

design next to it which we were able to align to for the bond pads exposure. The bottom

left mesa has two QPCs based of off Christian Olsens QPC design. These two QPCs were

not able to pinch off the 2DEG. To bond the top and bottom left mesas and QPCs we need

47 bond pads, leaving us with one left over bond pad on our 48 bond pad daughter board.

So we are not able to bond all mesas and QPCs on this device. From the device picture we

can also see how all the different features look. In the top left we see a gold square which

is the symmetry break. We also see that three of the five marker sets have been damaged

from the processes of the other fabrication steps. This leaves us with two sets of markers to

spare. We see that the metal of the ohmics and markers are much darker than the metal of

the bond pads and gates. This is because of the annealing, and to some extent, the ohmics

also containing other metals than gold.
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4.2 Device schematic

Figure 4.2 shows a schematic of the top left mesa and QPC as seen in Figure 4.1. Figure

4.2a is of the entire mesa and QPC and Figure 4.2b is a zoom in on the pixel QPC which is

located at the center of the mesa. We chose the dimensions of the pixels in this QPC design

to be 300 nm x 300 nm, the distance between the center of one pixel to another to be 464

nm and the width of the leads that connect to the pixels to be 30 nm.

For the algorithm run we will show below, we will look at two different QPCs that we call

the right QPC and the middle QPC. The right QPC consists of the top right and bottom

right pixel(P3,P9) being swept, while the outer gates are at a voltage where the 2DEG is

depleted beneath them. Similarly, the middle QPC is realised by sweeping the top middle

and bottom middle pixels(P2,P8), while the outer gates are depleting the 2DEG beneath

them.

300nm

VP1 VP2 VP3

VP4 VP5 VP6

VP7 VP8 VP9

VO1 VO2 VO3 VO4

VO5 VO6 VO7 VO8

b)

Ohmic Contacts

2DEG
Bond Pads for Gates

a)

Figure 4.2: Device Schematic. a) Mesa and QPC gates overview, showing the mesa, where
the 2DEG resides, in grey. Ohmic contacts are shown in blue and bond pads are shown in
green-brown. The gate fan-out are shown in red. b) Zoom in on the pixel QPC.
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4.3 Voltage Bias and Current Bias

The two main measurement setups we have been using have been voltage and current bias

measurement setups as seen in Figure 4.3a and b. We used the voltage bias setup when we

wanted to measure the resistance of the QPC and we used the current bias set up when we

wanted to measure the quantum Hall effect.

AC/DC
ADDER

LockinLockinQDAC

IthacoLI-75 
Voltage amp.

a)
LockinLockin

LI-75 
Voltage amps.

b)

R

Figure 4.3: Voltage and Current Bias. a) Shows the voltage bias setup, which is used for
measurements where we wish to pinch off the current. b) Shows the current bias setup which
is used for quantum Hall measurements.

For the voltage bias setup we use a four-terminal setup where we have one voltage probe

on each side of the QPC, an ohmic where we apply a voltage on one side of the QPC and an

ohmic where we measure the current on the other side of the QPC. The rest of the ohmics

are floating. On the ohmic, where we apply a voltage, we have a AC/DC adder, such that we

can set a DC bias offset with our QDAC and on top of that send an oscillating AC excitation

from our lock-in amplifier. We then measure the voltage difference across the QPC with

the two voltage probes that go to a LI-75 voltage amplifier, from which we get the voltage

difference, and this is sent to the lockin amplifier. The current is measured with an Ithaco

current preamplifier and a lock-in amplifier.

When we do the quantum Hall effect measurements in magnetic field we use the current
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bias setup. This setup differs from the voltage bias setup by having a large resistor of 10MΩ

on the ohmic where we apply the excitation voltage. If the resistance of the resistor is much

larger than the resistance of the system, then we know the total resistance of the system

and since we know the voltage of our excitation we know the current in the system. Because

of this we do not have to measure the current, and can let the current run to ground. For

the quantum Hall measurements we need two voltage probes for the Hall voltage and two

voltage probes for the longitudinal voltage. Again we use a LI-75 voltage amplifier to a lockin

amplifier for both of these voltage measurements.
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5 Baseline measurements

When the fabrication process is done, and the device has been loaded into the dilution

refrigerator we preform a set of baseline measurements to determine whether or not the

fabrication was successful. In this section we will go through these measurements and discuss

when a device is good enough and when it is needed to go back to the cleanroom and make

another device.

5.1 Ohmics

We measure the ohmic contacts by grounding all but one contact to which we connect the

Keithley. Using the Keithley we apply a voltage to the bond pad and measure the current

leaving the Keithley. The range is chosen such that we sweep through zero bias so we can

see if there is a good contact to the 2DEG at the low bias regime which we will use for our

actual measurements, typically 1mV and lower.
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Figure 5.1: Ohmics Overview of IV-measurements of different Ohmics a) IV-Measurement
of an ohmic that does not have contact to the 2DEG b) IV-Measurement of an ohmic that
does have contact to the 2DEG but with a large Schottky barrier, resulting in a very large
resistance at low bias. c) IV-Measurement of an ohmic with a good contact to the 2DEG.

The first two devices that were fabricated had ohmics that showed IV measurements

resembling those of Figure 5.1a and Figure 5.1b. There were either no contact to the 2DEG

or there was almost no current at low bias. The recipe we had been using was developed for

a 57 nm deep 2DEG, and after doing a few unsuccessful tests trying to adapt the recipe to

our 90 nm 2DEG, we realised that the ohmics might turn out to be a bigger challenge than

expected. We had many wafers available to us that we would like to use, but we did not

have any ohmic recipes for them.
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After unsuccessfully trying to develop a new ohmic recipe for the 90 nm wafer, we moved

on to the 190 nm wafer, to which we were able to make good ohmic contact with the first

test. All ohmics showed IV-measurements resembling that seen in Figure 5.1c. Because of

this we quickly decided not to measure on the 90 nm devices and started fabricating the

third device on the 190nm wafer, which also turned out to have good ohmics.
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5.2 Pinch Off

When we have determined that the ohmics are satisfactory we move on to measure whether

the gates can gate the 2DEG, especially to the point of pinch off, or not. To do this we use

a setup similar to the one shown in Figure 4.3a.
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Figure 5.2: Pinch Off Overview of the pinch off of different groupings of gates. a) Pinching
off with all gates b) Pinching off with outer gates c) Pinching off with pixel gates.

Looking at the three different pinch off curves in Figure 5.2, we see that they all have a

sudden drop in conductance at around -1 V. This is when the 2DEG directly beneath the

gates is depleted, and is called depletion. In Figure 5.2b and c we see that after depletion

there is a gradual decline in the conductance, which we call pinch off. We see that the pinch

off region spans a larger voltage range for the outer gates, Figure 5.2b, than it does for the

pixel gates Figure 5.2c. The outer gates are more than 1 µm apart and have to deplete the

2DEG in this space. For the pixel gates it is more difficult to exactly pinpoint the path of

the current that needs to be pinched, as we are not sure how much the leads influence the

2DEG. It was on the basis of measurements like these that we decided to limit the voltage

we could apply to the gates to -2 V, to protect the device.
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5.3 Hysteresis

For us to quantify how well each of the pixels gates work, we want to do a set of measurements

that show how well each pixel can deplete the 2DEG and how hysteretic each pixel gate is. To

do this we would ideally want to deplete the 2DEG such that we create a channel underneath

a row of pixel gates. We could then ”close” and ”open” this channel with each of the pixel

gates in that row and then compare them. We tried this method of pinching off row by row.

For example we would set the top row of pixels to 0 V and then sweep all the other gates

with a common voltage to identify a pinch off point. We would then set the gates at a voltage

just before the pinch off point and then sweep each of the pixel gates in the top row. Using

this method we found that some of the pixel gates did not reduce the current through the

device at when sweeping them from 0 V to -2 V. We suspected that the connectors fanning

out from the other pixels might have had an influence, and screened off some of the other

pixel gates.

Because we were suspecting the connectors to be having an effect on the surrounding pixel

gates we thought of an alternative way to characterise the pixel gates, which was to separate

the gates into the gates that fan out to the top of the mesa (O1,O2,O3,O4,P1,P2,P3,P4)

and the gates that fan out to the bottom of the mesa (P4,P6,P7,P8,P9,O5,O6,O7,O8) into

two groups. By doing this we can set the gates fanning out to the bottom of the device

(P4,P6,P7,P8,P9,O5,O6,O7,O8) to -2 V to deplete the 2DEG beneath those gates. Then we

sweep the top outer gates (O1,O2,O3,O4) to a pinch off point, and set them to a voltage just

before that pinch off point. This would leave the top row of pixel gates (P1,P2,P3) and the

center pixel (P5) gate at 0 V. We would expect the current path to be beneath these gates.

Each of these pixels can then be swept for pinch off and the same procedure can be done for

the pixel that fan out to the bottom of the device. The data shown in Figure 5.3 was taken

using this method, and the position of the plots matches the position of the pixels. The

orange data points are from the down sweep and the blue points are from an up sweep. We

see that the up sweep and down sweep have a pinch off point that differs less than 0.1 V for

all the pixels which indicates that there is very little hysteresis. We also see that the pinch
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off point for each of the pixels is also very similar for each of the pixel gates and lay between

-1.3 V and -1.1 V. If the pixel gates had shown to have had large differences in pinch off

points, we would be able to account for this by either applying more or less voltage to those

gates compared to the others. Knowing that the pixels show almost identical behavior also

gives us a good basis for interpreting the data from the algorithm runs. If we see that the

algorithm assigns a potential of 0.2 V less to one pixel gate than the others we will know

from this data that it is not because that gate is stronger.
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Figure 5.3: Single Pixel Hysteresis Measurements Overview of how hysteretic each pixel
gate is. The orange data points are from a down sweep and the blue data points are from
an up sweep preformed right after the down sweep. Each of the graphs are positioned like
each of the pixels, so top left graph is from the top left pixel.

Unfortunately the device did not show this behavior when we started running the algo-

rithm to optimize for conductance steps. The device had changed, as seen in Figure 5.4a,

and we were forced to implement a routine where we wait at 0 V before each down sweep to
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ensure a consistency in the pinch off curves. Because we are interested in the voltage range

just before the pinch off, where the conductance is around 20 conductance quanta, we jump

from 0V to the starting value of our sweeps and then also wait at this voltage before every

sweep. We found that if we wait at 0 V for 20 s and at our starting voltage for 10 s, we were

able to better replicate the pinch off curves as seen in Figure 5.4c. Using this routine we were

able to run our algorithm and find configurations of voltages that showed conductance steps.

Had we not used this routine then the loss function score landscape would have changed

every sweep and the algorithm would be looking for moving minima.

Taking the hysteresis into consideration for the next device fabrication is important since

there is a very large time loss when we have to wait 30 s for each data point for the algorithm.

We are interested in running this algorithm as quickly as possible such that we can explore as

many configurations as possible. Each down sweep takes about 90 s to measure so removing

the wait time will reduce our measurement time by 1/3. In future, a careful choice of wafers,

to identify one where quantised conductance is not difficult to observe but which is not

hysteretic for gating purposes, would be a good direction to try.
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Figure 5.4: Waiting Times Because the device showed to be very hysteretic we would set all
the gates to 0V and introduce a wait time before every sweep. a) A down sweep and an up
sweep done in succession without waiting. b) Several down sweeps where we wait at 0 V for
10 s then jump to -1.3 V and wait 3 s there before doing the down sweep. c) Several down
sweeps where we wait at 0 V for 20 s then jump to -1.3 V and wait 10 s there before doing
the down sweep.

46



5.4 Quantum Hall effect

In order to apply an algorithm with the aim to investigate the fractional quantum Hall effect,

we have to first be able to measure the fractional states at all in a given wafer. To do this

we perform magnetic field measurements and look at the Hall resistance. We use a current

bias set up by placing a large resistor of 10 MΩ on the sine out of the lockin such that the

total resistance of the system is dominated by the large resistor. We then apply a voltage

of 40 mV from the lockin which results in a current bias of 4 nA. To measure Rxx we have

to measure the voltage along the current path, so the ohmics have to be ”on the same side”

of the current path. To measure Rxy, the Hall resistance, we have to measure the voltage

across the current path, so there has to be an ohmic ”on either side” of the current path. The

setup we used can be seen in Figure 5.5a. This setup was picked based on symmetry of the

ohmics, as we thought that was important for the measurement. A perpendicular magnetic

field is needed to do the measurement, so we also had to mount the device in the sample

puck such that it was perpendicular to the z-direction of our vector magnet, because it is

in this direction it can produce the largest magnetic field (6T, while the x- and y-directions

are limited to 1T). When we set the magnet to increase its field, we do it using a continuous

sweep at 30 mT/s. We then record Vxx and Vxy twice a second throughout the magnetic

sweep. The measurement can be seen in Figure 5.5b.
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Figure 5.5: First Magnetic Field Sweep. a) Device overview with experimental setup used
for the measurement b) Quantum Hall measurement with the Hall resistance shown in blue
and the longitudinal measurement shown in red.
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The data points shown in blue are the Hall resistance, which should ideally look like

a staircase with flat steps, that indicate the filling factor of the system. We do see some

resemblance to a staircase, but it is far from ideal. The red data points show the longitudinal

resistance, Rxx, which should show zero resistance whenRxy is at a plateau, indicating perfect

conduction, because of the edge states, and then show a peak in between plateaus in Rxy.

We do see the peaks in Rxx but we do not see the resistance drop to zero in between peaks,

which is again not ideal.

Some of the possible reasons to why we see this behaviour could be: (1) the mesa etch

had damaged the 2DEG, (2) the ohmic anneal temperature had been too high and damaged

the 2DEG, (3) the ohmic metal stack, (4) the wafer being too old or (5) the mesa design.
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Figure 5.6: Second Magnetic Field Sweep a) Device overview with experimental setup used
for the measurement b) Quantum Hall measurement with the Hall resistance shown in blue
and the longitudinal measurement shown in red.

After this measurement we started trying out different ohmics, and found in the notebook

of Christian Olsen, who has also done similar measurements on an almost identical mesa,

that doing the measurement using only ohmics on one side of the QPC gave good results for

him. It was on this basis that we tried out the setup seen in Figure 5.6a where we chose to

have both the current and ground ohmics and the voltage probe ohmics on one side of the

QPC. Using this setup we obtained the data seen in Figure 5.6b, where the steps in Rxy are

much more defined and Rxx reaches zero resistance in between peaks. We however do not

see any fractions and after discussions with the Manfra group who developed the wafer, we
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concluded that it was likely that the 2DEG had been damaged during fabrication.
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6 Algorithm measurements

In this section we describe the main result of the thesis, apart from the development of

the pixel gate array, where we use an autonomous algorithm to tune the pixel qpc to show

quantized conductance. This master project was performed in collaboration with Torbjørn

Rasmussen who developed the algorithm, using CMA-ES [16], that could preform an opti-

misation of the voltages on the gates of the QPC devices that were fabricated, to find the

best looking quantized conductance staircase. The algorithm was developed in collaboration

with Assistant Professors Oswin Krause of DIKU and Evert van Nieuwenburg of the NBI.

Measurements in this section were performed by both of us working together. Details of the

algorithm developed are presented in Torbjørn Rasmussen’s Master thesis [32], but I will

describe briefly below how it works in principle. The algorithm works by assigning voltages

to the gates that have to be optimised from a distribution that is changed according to the

score of former runs. We start by assigning voltages to the gates we wish to optimise. Then

we sweep another set of gates to produce a pinchoff curve. This pinchoff curve is then scored

by a loss function based on its resemblance to a staircase such as expected from a quantised

conductance measurement. Based on this score we can then change the distribution to favour

voltages that showed good scores. This is then repeated until the pixels are assigned the

voltage value that gives the best staircase, according to the loss function.

In this section we will look at two algorithm runs, one performed on the right QPC and

one done on the middle QPC. Both algorithm runs are prepared similarly, as we first apply

a voltage of -2 V to the outer gates to deplete the 2DEG underneath them, such that we

are confident that the current path is constricted to be beneath the pixel gate array. The

parameters that the algorithm has to optimize, are the pixel gates that are not being swept,

so in the case of the right QPC, this would be the left and middle column of pixels and the

middle right pixel (P1,P2,P4,P5,P6,P7,P8). These pixel gates would be set at a constant

voltage and then the top and bottom right pixels (P3,P9) would be swept. This would

result in a pinchoff curve which a loss function will score and according to this score, the

distribution from which the voltages are chosen will be altered.
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The two runs differ slightly as the algorithm run done on the middle QPC was done using

a newer version of the algorithm which includes a feature we call dynamic window mode. In

the dynamic window mode, we let the algorithm move the voltage “window”, i.e. search a

larger voltage range with the sweeping gates (however, each sweep is still constrained to a

smaller and fixed voltage range than the total available voltage range).

It is important to point out that the algorithm’s performance is limited by our ability to

define a loss function that can differentiate between curves that look like staircases and curves

that don’t. Also, the absolute value of the loss score should not be given much importance,

only that lower scores are better.

6.1 Right QPC

To manually look for QPC-like conductance staircases, we found it useful to sweep one

pair of gate electrodes within the 3x3 array with one voltage, VQPC, and plot the resulting

conductance curve g(VQPC), while keeping all other gate voltages constant. When sweeping

the pair P3 and P9, we refer this configuration as the “right QPC”. (The “middle QPC” is

formed by the pair P2 and P8.)

The right QPC is the QPC configuration we have had most success with when tuning by

hand and when using the algorithm when it comes to reproducible quantized conductance

staircases. To prepare it for an algorithm run, we apply -2 V to the outer gates and the

algorithm is then able to tune the other seven pixels to a voltage such that we see several

conductance steps. The exact setup can be seen in Figure 6.1a where we see the outer gates

in black at -2 V, the seven orange pixels that are being controlled by the algorithm, and the

two green pixels that are being swept in a fixed voltage range. These measurements were

done using a voltage bias setup as shown in Figure 4.3a.

When setting up an algorithm run there are several different limits for the different gates

that we can set. We set the voltage range in which the QPC gates are being swept and we

set the voltage limits within which the other seven pixels can be set. In Figure 6.1d we see

that the voltage sweep range is from -1.1 V to -1.5 V and in Figure 6.1b we see the voltage

range of the seven pixels is 0.2 V to -1 V. When choosing the voltage range to sweep, we try
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to pick it such that we don’t have too many measurement points that have zero conductance

as these do not add much information to the algorithm.

As we saw in Figure 5.3 we had to introduce a waiting time in between each measurement

to get reproducible pinch off curves. For the algorithm run shown in Figure 6.1 and Figure

6.2, for every measurement we waited at 0 V for 20 s then we jumped to the start value of

the gates and waited 10 s before measuring the pinch off curve.

-2V

QPC
Algorithm

-1.1-1.5

18

0
VQPC [V]

g[e
2 /h]

800 Iteration

los
s

40

55

d)a)

c)

Start - 45.69
Best - 36.16

b) 0.2

-1

V

Figure 6.1: Right QPC algorithm run Overview of the algorithm run preformed on the right
QPC. a) Illustration showing the setup of the algorithm run. The outer gates in black are
set to -2 V. The seven orange pixels are being optimised and the two green pixels are being
swept. b) Voltages of the seven optimised pixels that produced the best staircase shown in
d. c) Best loss score from each iteration. d) First pinch off curve where all seven pixels are
at 0V and the pinch off curve with the best score.

Figure 6.1 shows an overview of the algorithm run, where Figure 6.1a shows what is

being optimised, Figure 6.1c shows how the best loss score from each iteration develops for

following iterations, Figure 6.1d shows the first pinch off curve and the pinch off curve with

the best loss score and Figure 6.1b shows the optimised voltages of the pixel gates from the

best pinch off curve shown in Figure 6.1d.

Looking at Figure 6.1c we see that the loss score drops and reaches a saturation point at

around iteration 40. After this point the average change of voltages within an iteration is less

than 100 mV, and the small changes in score after this point can be attributed to the device

being hysteretic even with the waiting. Seeing the loss score fall and reach a steady value

shows that the algorithm is able to optimise the pixel gates to improve what we informally
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call the “staircasiness” of the pinchoff curve. We can look into how the pinchoff curves evolve

at different iterations in Figure 6.2.

In Figure 6.2a, b, c and d, we see pinchoff curves for the different iterations, 0, 10, 25

and 50. In each of the plots, three of the curves are highlighted in green, blue and red.

The pixel voltages for these pinchoff curves are shown above where the frame has the color

corresponding to the curve. The other pinchoff curves for these iterations are shown in grey.

Just by looking by eye we can clearly see that the pinchoff curves transition from curves

that show very little resemblance to a staircase, to curves that most definitely look like

staircases. We also see that the voltage values of the seven pixels become more equal at the

later iterations and that the curves are more bunched up or more alike, at later iterations.

This indicates that the algorithm has found a minimum in the loss score landscape, and that

these voltage values give reproducible results.

We also see that the conductance value ranges from 40 e
2

h to 0 e
2

h in iteration 0 and in

iteration 50 it ranges from 10 e
2

h to 0 e
2

h . One concern we have had, that would be important

to examine in future work, is that the loss function does not reward the number of steps, so

a perfect four step staircase is better than an okay ten step staircase. Another concern we

had was the fixed voltage range in which the sweep was preformed. We saw that the pinchoff

point was almost always close to the lowest voltage, pushed all the way to the right. And

finally we were also concerned that we were optimising for noise. At high conductance values

there was more noise than at low conductance values. Because the loss function rewards flat

plateaus, staircases with noise will get a worse score than staircases without. These were

some of the considerations we had while developing the algorithm and the loss function.
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Figure 6.2: Iteration Overview of Right QPC Overview of the pinch off curves for four
different iterations in the algorithm run. Three pinch off curves are highlighted for each
iteration with red, green and blue. The voltage values of the seven pixels for each of these
curves are shown above. a) Iteration 0. b) Iteration 10. c) Iteration 25. d) Iteration 50.
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6.2 Middle QPC

By applying VQPC to P2 and P8, we now turn towards the “middle QPC”. As stated above

the algorithm run done on the middle QPC differs from the algorithm run shown above done

on the right QPC. Based on some of the considerations mentioned above the algorithm was

altered such that it was able to choose the sweeping window in a larger range and it was also

altered to make the loss function only evaluate the curves between 0.01 e
2

h and 11 e
2

h . The

sweeping window is 800 mV and the algorithm can choose to do this 800 mV sweep in the

range 0 V to -2 V. If a measurement does not have data that spans the entire 0.01 e
2

h to 11 e
2

h

range the curve is assigned a score of 1. This can be seen in Figure 6.3d where the starting

pinch off curve has been assigned a score of 1.

0.9

1.0

-2V

QPC
Algorithm

-0.8-2

24

0
VQPC [V]

g[e
2 /h]

400 Iteration

los
s

d)a)

c)

Start - 45.69
Best - 36.16

Start - 1
Best - 0.91

b) 0.2

-1

V

Figure 6.3: Middle QPC algorithm run Overview of the algorithm run preformed on the
Middle QPC. a) Illustration showing the setup of the algorithm run. The outer gates in
black are set to -2 V. The seven orange pixels are being optimised and the two green pixels
are being swept. b) Voltages of the seven optimised pixels that produced the best staircase
shown in d. c) Best loss score from each iteration. d) First pinch off curve where all seven
pixels are at 0V and the pinch off curve with the best score.

In Figure 6.3 we see an overview of the algorithm run done on the middle pixel, similar

to Figure 6.1 for the right QPC. For this algorithm run we see from Figure 6.3c that the

loss score does not converge as clearly as it did for the right QPC. This also aligns with our

experience of tuning the middle QPC by hand. It was more difficult to produce pinch off

curves with clear conductance quantization on the middle QPC than the right QPC. We also

see that we see a minima at the very beginning of the optimisation run, which turns out to
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Figure 6.4: Iteration Overview of Middle QPC Overview of the pinch off curves for four
different iterations in the optimisation run. Three pinch off curves are highlighted for each
iteration with red, green and blue. The voltage values of the seven pixels for each of these
curves are shown above. a) Iteration 0. b) Iteration 15. c) Iteration 30. d) Iteration 42.

be the best staircase of the run, shown in Figure 6.3d. This optimisation run also has half

as many iterations as the optimisation run on right QPC, so it is possible that the iteration

merely needed more time.

If we move to look at how the different pinch off curves look like at different iterations

throughout the optimisation run in Figure 6.4, we see that the voltages of the seven pixels

do seem to converge towards a set of voltages. We also see that the pinch off curves are

much more alike at the later iterations than in the early iterations. This indicates that

the algorithm is working as intended. The algorithm shows again that it prefers to pinch
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off at the most negative voltage allowed. Even though the staircases we see in these pinch

curves are not as pronounced as for the right QPC, we definitely still see some resemblance

to staircases. Some of these features though are outside the evaluation window of 0.01 e
2

h

to 11 e
2

h , because of this these features are not influencing the optimisation. The fact that

the algorithm makes use of the ability to move the evaluation and sweep window, and that

this ability has an effect in reducing the score, is encouraging. This is because in future,

tuning an extremely long series of conductance steps may become possible by tuning in a

local voltage range, moving the sweep window, and tuning the next set of steps.
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7 Summary and Outlook

In this thesis, I have shown that we were able to fabricate a device using nanofabrication

lithography techniques in a different paradigm; that of pixelated gates that increase the spa-

tial tunability of the resulting potential landscape, and that can be tuned using autonomous

algorithms. Specifically, we showed that a new gate-voltage optimisation algorithm allows us

to observe quantized conductance staircases. It was found that only certain configurations of

gates gave convincing optimisation results when using specific procedures to account for gate

hysteresis, which we attribute to non-idealities of the particular device. When deactivating

the QPC gates, we were not able to measure fractional quantum Hall plateaus, which we

attribute to fabrication-induced reduction of 2DEG mobility. We speculate that the quality

of the 2DEG was compromised during an annealing step with rather high temperature.

Looking at what improvements could be done for future experiments (where the problems

concerning ohmics, hysteresis and lack of fractional quantum Hall plateaus have been fixed),

one may consider to replace our single-layer gates by a two-layer process. The first gate layer

could be a screening gate with an array of holes, over which a second layer implements one

individual gate above each hole. Such a design may alleviate potential problems associated

with the pixel connections, which in our single-layer design are not screened. Extending the

thought of a screening gate and the concept of pixel gates, one could also explore a much

larger grid of pixels and demonstrate new types of experiments that could be performed with

a device like this.
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8 Appendix A

8.1 Fabrication Recipe

This fabrication recipe is based on the recipe found in Federico Fedele Ph.D thesis [13] and

the ohmic recipe was found in the Master and Ph.D thesis of Christian Olsen and Douglas

T. McClure [31, 28].

Markers Clean

• 3 Solvent Cleaning

– 2 min 1,3-Dioxolane

– 2 min Acetone

– 2 min IPA

• Dry with N2 gun

• Ash 2 min in O2 atmosphere

Markers Spin

• Prebake 5 min at 185°C

• Spin A4 at 4000 rpm for 60 sec

• Bake 2 min at 185°C

Markers Exposure
The exposure file is prepared using the software Beamer, using these parameters:

• 100 keV Elionix

• 2 nanoamps

• 720 µC/cm2

• 600 um WF

• 60000 dots per WF

• pitch is 1

• 0.36 us dwell time

• In the wecass schedule file use 1.2 dose coefficient. This may vary
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Markers Develop

• 60s in MIBK:IPA ratio 1:3

• 15s in IPA

• Dry with N2 gun

• Ash 2 min

Metal Deposition and Lift-Off

• 6 nm Ti

• 100 nm Au

• 2 hours in 80°C NMP

Mesa Clean

• 3 Solvent Cleaning

– 2 min 1,3-Dioxolane

– 2 min Acetone

– 2 min IPA

• Dry with N2 gun

• Ash 2 min in O2 atmosphere

Mesa Spin

• Prebake 5 min at 185°C

• Spin EL9 at 4000 rpm for 60 sec

• Bake 1 min at 185°C

Mesa Exposure
The exposure file is prepared using the software Beamer, using these parameters:

• 100 keV Elionix

• 40 nanoamps

• 295 µC/cm2

• 600 um WF

• 20000 dots per WF

• pitch is 1
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• 0.06637 us dwell time

Mesa Develop

• 90s in MIBK:IPA ratio 1:3

• 20s in IPA

• Dry with N2 gun

• Ash 2 min

Prepare Test Chip
We need a chip to check the etch rate of the solution. This can be done on a scrap piece

of wafer that does not have a heterostructure.

• Clean with same 3 solvent cleaning

– 2 min 1,3-Dioxolane

– 2 min Acetone

– 2 min IPA

– Ash 2 min in O2 atmosphere

• Spin AZ1505 at 4000 rpm 60s

• Bake 115°C for 1 min

• Expose any pattern on the Heidelberg, that lets you measure the mesa height. We
used nine 100x100 um squares.

• Develop with MF-123 for 30 sec

• Stop development in MQ for 15 sec

Prepare Etch solvent
The etch mixture consists of H2SO4:H2O2:H2O with a ratio of 1 : 8 : 240. This mixture

should have an etch rate of about 3nm/s. The mixture is stirred using a magnetic stirrer to
keep the mixture uniform. While etching the chip is also lightly stirred in the mixture. First
we etch the test chip. Then we strip the resist and measure how much has been etched using
either a profilometer or a Sensofar. Then we adjust the etch time accordingly, while taking
into account that the etch rate will decrease as time has passed.

Mesa Etch

• Etch the chip

• Rinse in MilliQ for 30 sec

• Strip resist with 3 solvent cleaning

• Measure the height of the Mesa to see that the 2DEG has been cleared
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Ohmics Cleaning

• 3 Solvent Cleaning

– 2 min 1,3-Dioxolane

– 2 min Acetone

– 2 min IPA

• Dry with N2 gun

• Ash 2 min in O2 atmosphere

Ohmics Spin

• Prebake 5 min at 185°C

• Spin A8 at 4000 rpm for 45 sec

• Bake 4 min at 185°C

• Spin A8 at 4000 rpm for 45 sec

• Bake 6 min at 185°C

• Spin A4 at 4000 rpm for 45 sec

• Bake 8 min at 185°C

Ohmics Exposure

• 100 keV Elionix

• 40 nanoamps

• 295 µC/cm2

• 600 um WF

• 20000 dots per WF

• pitch is 1

• 1200 µC/cm2

• 0.27 us dwell time

Ohmics Development

• 90s in MIBK:IPA ratio 1:3

• Rinse 15s in IPA 15 sec
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• Ash 2 min

Ohmics Deposition and Lift-Off
Before we deposit the metal stack, we clean the deposition area in situ with argon plasma

for 120 seconds.
We then deposit the metal:

• 5 nm Pt

• 200 nm Au

• 100 nm Ge

• 73 nm Pt

• 100 nm Au

• 50 nm Ge

• 55 nm Pt

• Lift off in 80°C NMP for 2 hours

Ohmics Anneal
The ohmics are then annealed in order to make a better contact to the 2DEG. We an-

neal the sample in a RTA, rapid thermal annealer, in Forming gas (N2/H2) atmosphere at
530°C (this is too high, don’t use this ohmic recipe) for 100 seconds. This ohmic stack and
anneal recipe is from Douglas McClure’s Phd thesis. A similar recipe can be found in Chris-
tian Olsens Master thesis. This recipe uses an annealing temperature of 440°C for 60 seconds.

ALD - Oxide layer We deopsit 15 nm of Hafniumoxide

Clean the chip

• 3 solvent cleaning

• 2 min 1,3-Dioxolane

• 2 min Acetone

• 2 min IPA

• Ash 2 min

• Deposit 15 nm HfO2

QPC Cleaning

• 3 Solvent Cleaning

– 2 min 1,3-Dioxolane

– 2 min Acetone

– 2 min IPA
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• Dry with N2 gun

• Ash 2 min in O2 atmosphere

QPC Spin

• Prebake 5 min at 185°C

• Spin A2 at 4000 rpm for 60 sec

• Bake 3 min at 185°C

QPC Exposure
The exposure file is prepared using the software Beamer, using these parameters:

• 125 keV Elionix

• 1 nanoamps

• 1248 µC/cm2

• 500 µm WF

• 200000 dots

• Pitch 1

• Remember to divide dose time with 4. Because of multipass.

• Set multipass to four passes

• 0.0195 µs dwell time, This has been divided by 4.

• In beamer we use Bias to shrink the design with 4 nm with the X-Y mode. This varies
depending on the outcome of the Bias x Dose test

• In the wecass schedule file use 2.65 dose coefficient. This varies depending on the
outcome of the Bias x Dose test

QPC Develop
For the QPC we use cold development. This gives us more leeway because it slows down

the development process.

• 4 min in MilliQ:IPA ratio 3:7, 9 mL MilliQ, 21 mL IPA, cooled to -5°C

• Dry with N2 gun

• Ash 45 sec

QPC Metal Deposition and Lift-Off

• 5 nm Ti
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• 18 nm Au

• 1 hour in 80°C NMP

Bond Pads Clean

• 3 Solvent Cleaning

– 2 min 1,3-Dioxolane

– 2 min Acetone

– 2 min IPA

• Dry with N2 gun

• Ash 2 min in O2 atmosphere

Bond Pads Spin

• Prebake 5 min at 185°C

• Spin EL9 at 4000 rpm for 60 sec

• Bake 3 min at 185°C

• Spin A4 at 4000 rpm for 60 sec

• Bake 3 min at 185°C

Bond Pads Exposure
The exposure file is prepared using the software Beamer, using these parameters:

• 125 keV Elionix

• 40 nanoamps

• 1248 µC/cm2

• 500 um WF

• 200000 dots

• Pitch 1

• 0.0195 us dwell time

Bond Pads Develop

• 60s in MIBK:IPA ratio 1:3

• 15s in IPA

• Dry with N2 gun
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• Ash 2 min

Bond Pads Deposition and Lift-Off

• 10 nm Ti

• 250 nm Au

• 2 hours in 80°C NMP
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[34] Julian Teske, Simon Humpohl, René Otten, Patrick Bethke, Pascal Cerfontaine, Jonas

Dedden, Arne Ludwig, Andreas Wieck, and Hendrik Bluhm. A machine learning ap-

proach for automated fine-tuning of semiconductor spin qubits. Applied Physics Letters,

114:133102, 04 2019.

[35] K. J. Thomas, J. T. Nicholls, M. Y. Simmons, M. Pepper, D. R. Mace, and D. A.

Ritchie. Possible spin polarization in a one-dimensional electron gas. Phys. Rev. Lett.,

77:135–138, Jul 1996.

[36] David Tong. Lectures on the quantum hall effect, 2016.

[37] N M van Esbroeck, D T Lennon, H Moon, V Nguyen, F Vigneau, L C Camenzind, L Yu,
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