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Abstract

Semiconductor based quantum information processing is a promising platform for real-
izing the quantum computer. Fast readout of individual qubits is an essential ingredient
in most quantum information proposals. Fast readout has been demonstrated in semi-
conductor quantum dot qubits, but it requires the use of an additonal sensor dot. This
added complexity becomes a considerable burden as the number of qubits is scaled.

Dispersive readout is a recently developed alternative technique that avoids the use
of a sensor dot. However, in its current form, its sensitivity does not meet the stringent
requirements needed for a quantum computer.

Using numerical simulations and a model circuit at cryogenic temperatures, I show
that a simple alteration to the currently used circuit could make dispersive readout 22
times faster. This improvement promises dispersive readout as a viable option for quan-
tum computation with spin qubits because it will allow for single-shot readout of the
qubit state. My results are applicable to a wide range of quantum dot qubits in sys-
tems such as 2D semiconductor heterostructures, carbon nanotubes, and semiconductor
nanowires.
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1 Introduction

Quantum information processing promises novel possibilities in programming and data
manipulation [I]. Quantum computations are done on qubits, a bit that is in a super-
position of 1 and 0. Processing on qubits can be viewed as coherent parallel classical
processes done on boolean bits. In [2] the experimental requirements to build a quantum
computer is specified: Scalable qubit system, Initialization, one- and two-qubit opera-
tions and readout of individual qubits. Mesoscopic structures in semiconductors has
proven to be a plausible path to meet these criteria.

The spin degree of freedom of a quantum dot can be used to store quantum infor-
mation [3]. In GaAs, such a spin qubit has been realized [4]. A high level of coherence
[5], and strong qubit-qubit coupling [6] have been demonstrated in this architecture. Of
particular importance to this work, single-shot readout of the qubit spin has also been
demonstrated [7].

The readout technique used in [7] uses a capacitively coupled sensor quantum dot to
determine the spin state of the qubit. While this technique is extremely sensitive (~10
microsecond readout time), the complexity introduced by an additional sensor dot is
burdensome.

To solve this problem recently dispersive readout of the quantum state has been
demonstrated, which neglects the need for a separate mesoscopic detector making scaled-
up arrays of qubits imaginable [8].

The focus of this thesis is to improve the sensitivity of the dispersive readout tech-
nique. This is achieved by making a simple adjustment to the current readout circuit.
The new readout readout scheme is then modelled to an effective circuit, which was
simulated to investigate its behaviour. To back up the simulations the circuit was build
and analysed to prove or disprove the validity of the simulated model. Experiments
was done in a dilution refrigerator with a base temperature below 50mK to replicate
experimental environment.

The thesis is organized as follows. First I introduce a capacitive model of single and
double quantum dots (DQD) and describe the singlet-triplet qubit in a DQD including
a presentation of charge sensing and dispersive readout (sec. 2). The next section is
devoted to the readout technique reflectometry, which is an essential part of fast charge
sensing and dispersive readout (sec. 3). I then show the results from simulations on
the behaviour of the adjusted readout scheme for dispersive readout including simulated
measurements (sec. 4). Lastly the experimental results of the proposed readout scheme
is presented and compared to the simulation (sec. 5).

2 Mesoscopic structures

2.1 Capacitive model of quantum dots

Quantum dots in mesoscopic structures can be described by the classical capacitive
model [9]. The model is presented in an electron system, but everything also applies for
a hole system if the appropriate signs are changed.

The quantum dot In the capacitive model we assume the dot to be an island con-
nected to contacts via tunnel resistors and capacitors and capacitively coupled to a gate,
figure The number of electrons in the dot is denoted N. Rp(z) and Cg(r) are the
tunnel resistor and capacitor from the right (left) contact to the dot. The gate voltage
Vg is coupled to the dot through the capacitor C;. In the capacitive model we can
calculate the charge on the dot, @, as the sum of charges on each capacitor to the dot.
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Figure 1: Capacitive model of a) a quantum dot and b) a double quantum dot. All stray
and cross capacitances are assumed to be negligible. Figure adopted from [9].

Q=Cr(Vi = Vi) +Cy(Vi = V) + Cr(Vi — Vr) & (1)
eCiVi =Q+CLVL + Cng + CrVr (2)

Where V(g is the potential on the left (right) lead, V; is the dot potential, and
Cy = Cr + Oy + Cr is the total capacitance on the dot. The electrostatic energy, U,
can now be calculated as the capacitive energy on the dot,

1., o (CiV)*  (=(N = NoJe+ CLVi + CyVy + CrVr)®
Unv=;C1Vy = = (3)
2 2C'1 2C4
Where we have substituted the charge, @, with —(N; — Ny)e, where e is the electron
charge and Ny the number of electrons on the dot when all voltage sources are zero. The
Ny electrons compensate for the positive background of the donors in the semiconduc-
tor. With an expression for the electrostatic energy we can calculate the electrostatic
potential, u, of the dot,

w(N)=Un —Un—1
_[=(N = No)e + CLVi + CyVy + CrVg)?

2C4
_ [—((N —1) = Ng)e+ CpLVi, + C,V, + CRVR]2
2C4
_ (N — N0)262 — ((N - 1) — N0)262 . 2(N — No)e (CLVL + Cg‘/g + CRVR)
- 2C, 2C
2((N — 1) — No)e (CLVL + Cng + CRVR)
+
2C
_ (2(N — Ng) — 1)62 —2e(CLVL + CyVy + CrVR) (4)
2C4

This is a purely classical model. Quantum mechanics adds an extra term to the
electrostatic energy in the form of single-particle energies, 25:1 E,,. The energy
FE,, is the single-particle energy of the n’th electron which depends on the confine-
ment potential. In the electrostatic potential this introduces the level spacing AEy =
ij:l E, — Zﬁ[;ll FE, = En — En_1 and becomes the electrochemical potential,
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2
u(N)= < (N ~ Np— 1) — SOV + CyV, + CRVR) + AEy (5)
Ch 2 Ch

We can see that the electrostatic potential, or the energy level, of the dot depends
linearly on the gate voltage, figure [2h. The sawtooth shape appears due to electrons
jumping into the dot. This happens, in the case of zero bias across the dot, only when
the electrostatic potential of the dot is equal to the leads. Electrons on the dot with an
energy below the electrochemical potential of the leads cannot jump off, because there
is no available energy states on the leads.

Electrons can only jump onto or off the dot when the energy level of the dot aligns
with that of the leads. Anywhere else the electrons on the dot are trapped and block
new electrons from entering. This implies that there cannot run a current through the
dot away from alignment, a phenomenon called coulomb blockade, figure 2b. When the
levels align electrons can jump onto and off the dot freely and thereby allow a current
flow through the dot, figure 2k. These peaks in the current as a function of gate voltage
are called coulomb peaks, figure 2.

Quantum dots have been realized in many forms f.ex. the single electron resistor
(SET) [10], semiconductor heterostructure, semiconductor nanowires and superconduc-
tors.

The double quantum dot Putting two quantum dots in series we get a DQD, figure
, where Nj (o) is the number of electrons on the left (right) dot and C, is the mutual
capacitance between the dots. The calculations for such a dot is the same as before
although they get quite long. Therefore I will just present the result obtained, under
the assumption that the stray and cross capacitances are negligible, in [9]. These results
are for the zero bias regime where Vg =V = 0.

1 1
/Jl(Nl, NQ) = <N1 — 2) E1 + N2E2 — g (CglVglEl + ngvngm) y (6)

1 1
‘[LZ(Nl, NQ) = <N2 — 2) EQ + N1E1 — E (CglvglEm + CgQVgQEQ) . (7)
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Figure 2: a) The electrostatic potential p of a quantum dot as a function of gate voltage.
b) The energy levels in a quantum dot in the coulomb blockade regime. c¢) Energy levels
at a coulomb peak. d) Current as a function of gate voltage with bias approximately
zero showing coulomb peaks. Figure b-d from [IT].
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Figure 3: Stability diagram for a DQD for different regimes of coupling capacitance
Cn-The stable charge configuration of the dot is denoted (Nj, N3). a) No coupling
regime. b) Weak coupling regime. The dashed line is defined as detuning . ¢) Strong
coupling regime. Figure from [9].

2 2
Where E1(2) = C?(g) <1 1072n >7 Em = Ce,—m (%2012_1> and 01(2) = CL(R) +Cgl(2) +

T Cics

Cn, is the sum of capacitances on dot 1(2). With these equations it is possible to draw a
stability diagram figure[3] In a stability diagram crossing a line means that the otherwise
stable system changes. In this case there is either an electron jumping onto a dot or off
a dot. This electron can go to or come from either the lead or the other dot. The stable
charge configuration of the dot is denoted (N7, Na).

Letting C,,, go to zero we obtain the stability diagram shown in figure [3h. This is
two completely decoupled dots in series. Going to the other limit C, > (Cy(2) — Cpn)
we have one dot with two gates connected to it, figure Bt. In between these limits we
find the weakly coupled DQD, figure Bp.

A electron microscope picture of a semiconductor DQD is shown in figure [dc. The
gates are denoted by L and R. The gate G controls the interdot tunnel coupling C,,.

2.2 Spin-qubits in semiconductors

To make quantum operations we need to be able to store the quantum information.
Almost any interaction with the parameter that stores the quantum information will
destroy it. The spin couples only weakly to the environment making it an attractive
place to store quantum information. This is called a spin-qubit, a qubit where the
information is stored in the spin state of the system.

Spin manipulation in a quantum dot It is possible to trap a single electron in
a quantum dot. The ground state of the single electron is double degenerate in zero
magnetic field. The electron has either spin up or spin down. When a magnetic field
is applied the degeneracy of the dot is lifted due to the Zeeman effect. The spin of the
electron couple to the magnetic field which splits the energy level of the spin up and
spin down states. The size of the splitting is called the Zeeman energy.

With the two levels split with a finite magnetic field it is possible to distinguish the
two electron states, by exploiting the fact that the two spin states have different energy
levels. If the levels are slowly raised by applying a voltage on the gate, the spin state
with the highest energy will be able to jump out of the dot before the lower lying spin
state. Allowing for distinguishing the two spin states via the charge on the dot. This is
called spin to charge conversion.
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Figure 4: a) Energy diagram of a single electron in a DQD. Below the quantum capaci-
tance of the electron. b) Two electron in a DQD showing the anticrossing of the single
state. c¢) Electron microscope picture of a semiconductor DQD. Figures a) and b) from

[13], figure ¢) from [4].

The singlet-triplet spin-qubit In a DQD it is possible to realize a qubit by looking
at the singlet and triplet spin states. The combined spin of two electrons in a DQD
can be in the antisymmetric singlet state or one of the three symmetric triplet states.
Applying a magnetic field through the DQD will split the otherwise degenerate triplet
spin states. We define detuning, ¢, as € = w along the dotted in figure . Right
between the (1,1) and (0,2) regimes detuning is zero. Positive detuning is in the (0,2)
charge configuration and negative detuning in (1,1). The detuning is a measure of how
much the potential across the two dots are tilted.

The energy diagram shows in the top part of a) the hybridization of the (1,0) state
and (0,1) for a single electron in a DQD. Top b) shows the hybridization of the S(1,1),
where S(1,1) indicates it is a singlet (1,1) state, and the S(0,2) states in zero magnetic
field. The hybridization creates an anti-crossing. There is similar anti-crossings for the
three triplet states at higher detuning.

The amount of energy it takes to move the electrons into the (0,2) configuration
depends on whether the electrons is in a spin-singlet, S, or spin-triplet state, T'. If the
electrons are in the antisymmetric spin-singlet state they can both occupy the lowest
lying orbital in one dot. This is not possible for the symmetric spin-triplet state due to
Pauli’s exclusion principle. Pauli’s exclusion principle states that fermions cannot have
all the same quantum numbers. From this it can be worked out that the many-body
wave function of fermions has to be antisymmetric.

The spin-triplet state is symmetric leading to the orbital state of the two electrons
being antisymmetric. This is only possible by including a higher lying orbital in the
orbital wave function when they occupy the same dot, which is why the hybridization
between the T'(1,1) to T'(0,2) lies at much higher detuning and energy than that of the
S(1,1) and S(0,2).

This mechanism can be observed in a phenomenon called spin-blockade. Preparing
a state in the (1,1) configuration we have either a spin singlet or a spin triplet state.
Then moving to a positive detuning that is high enough than the S(1,1) goes into the
S(0,2), but lower than the crossover between the T'(1,1) to 7'(0,2). The spin singlet
will immediately go into the (0,2) configuration while the triplet state will stay in (1, 1).
In this way it is possible to distinguish the singlet and triplet state via the charge
distribution allowing for spin to charge conversion in the singlet-triplet spin-qubit.

When a measurement of the qubit state is done via spin-blockade, the triplet and
singlet state are energetically split, introducing a relaxation from the higher lying triplet
state to the lower singlet state with the characteristic time scale 7;. Any quantum
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operation or readout has to be done faster than T;. If the measurement takes longer
there will be chance that the triplet state relaxes into the singlet state in the middle of
the operation giving a wrong result.

2.3 Transport

Measuring the state of a quantum dot or DQD can be done in many ways. The easiest
is to measure the conductance of the system. That is the transport through the system.
For a quantum dot it is possible to map out the energy spacing in the dot both with
the gate voltage and bias across the dot. This allows for a measurement of the electron
temperature. When applying a magnetic field, and thereby splitting the energy levels it
is possible to measure the magnetic g-factor of the system via transport.

In the case of a DQD transport allows us to map out stability diagrams of the system,
here is briefly presented the case of zero bias. There will be a current running at the
points where the chemical potential of both dots align with that of the leads. This
happens when three lines meet in the stability diagram. Along the lines in the stability
diagram, where the energy level in one dot aligns with the leads, there will be a small
amount of current, depending on the hight of the barriers. From the stability diagram
the amount of electrons in the dot can be deduced. This is done simply by finding the
lowest transition and assume that there is zero electrons in the dot below.

Transport in mesoscopics is a whole topic in itself and is described in more detail in
f.ex. [9] and [I1].

2.4 Charge sensing

When doing transport measurements you run a current of millions of electrons through
a dot. If we want to do quantum processing with a spin-qubit we want to measure
the spin state of a single electron. This is not possible with transport measurements.
Instead we want to measure the charge distribution in the system while disturbing the
system as little as possible.

Mapping out an image of the charge distribution is not possible. But it is possible to
measure changes in the charge distribution due to f.ex. one electron jumping off a dot.
This is done with a mesoscopic charge sensor [12], which can be a qauntum dot or a
quantum point contact (QPC). The principle is the same in both cases. Looking at the
conductance as a function of gate voltage we see steps in a QPC and coulombs peaks
in the quantum dot. First we want to navigate the gate voltage such that we are on
a sharp side of a step or a peak respectively. This means that the conductance is very
sensitive to changes in electrical potential around it. If the mesoscopic sensor is placed
close to a dot, the dot will work as a gate on the sensor. When an electron jumps off the
dot it will gate the sensor a little less, and thereby changing the conductance through
the sensor.

In the case of a singlet-triplet qubit we want to detect whether both electrons moves
into the (0,2) charge configuration at positive detuning implying a singlet state or stay
in the (1,1) implying a triplet state. This can be seen as different charge distributions
which is detectable with a nearby mesoscopic charge sensor.

2.5 Dispersive response

Electrons couple capacitively to the surroundings, a phenomenon called quantum ca-
pacitance. The quantum capacitance of an electron is suppressed when undergoing
tunnelling. When the energy level of a dot aligns with that of a lead there will be elec-
trons tunnelling onto and off the dot even if there is no current through the dot. This
can happen if one side of a quantum dot is pinched off. Also in a DQD when the two
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energy levels of the dots aligns there will be tunnelling between the two dots suppressing
quantum capacitance.

The quantum capacitance of a DQD can be calculated as a function of detuning [13].
The quantum capacitance is proportional to the curvature of the energy level,

0%E
Cq = —(65)2@- (8)

where k is a coupling factor between the measurement voltage V' and detuning, Ae =
—exAV, and E the energy level. For a single electron in a DQD we find that there is a
change in the quantum capacitance as it moves from one dot to the other , bottom part
of figure . The picture is the same for the singlet S(1,1) in the two electron case,
while the triplet state response will be seen at a higher detuning where the hybridization
is located , figure [p.

3 Reflectometry

Operations done on qubits needs to be done faster than the relaxation time, T7, of the
system. Measurements done with charge sensing is limited by the RC' time of the charge
sensor, the resistance through the conductance and the capacitance to room temperature
where we measure the system. These numbers are typically R > 50k(2 and C hundreds
of picofarads limiting bandwidth of the charge sensor to less than 100kHz. Ideally
measurements should be performed on the timescale of qubit relaxation/decoherence.
In the case of GaAs singlet-triplet qubits, this requires measurements bandwidths of
roughly 1 MHz. To allow operations on quantum information we need a much higher
bandwidth. This can be accomplished by the implementation of reflectometry.

Reflectometry was first implemented in a SET based charge sensor [I4]. Using the
same principle the RF-QPC was demonstrated [I5] and [I6]. Later reflectometry was
used to make dispersive readout [13]. The principle of reflectometry is to measure the
reflected signal from a resonant circuit. The quality of the resonance depends on the
specific electrical components. Changes in the resonance is connected to a change in the
components, making it possible to detect these changes in the reflected signal.

I will first present the tank circuit which is the circuit connecting the room tem-
perature instruments to the device and allows manipulation and readout of the high
frequency signal used in reflectometry. Following after is a description of the readout
circuits used in reflectometry.

3.1 Tank circuit

The tank circuit is the circuit going down to the readout circuit and up again. A possible
configuration, and the one I used, is shown in figure[f] In the actual circuit there is also
high and low pass filters to minimize noise.

Starting from the signal generator. We first split the signal into a carrier line (blue
arrow on figure) and a reference line (yellow arrow). Following the carrier we hit a
switch, which allows us to turn on and off the carrier signal on a much shorter time
scale than is possible with the signal generator. This minimizes the back action onto the
sample. The phase shifter is in place to allow tuning of the readout phase. Before we
reach the sample we need to attenuate the signal to avoid blowing up the sample. This
also helps with thermalization of the signal. The directional coupler sends the carrier
signal down one line and the reflected signal (green arrow) up another line.

The reflected signal is the part of the carrier that is reflected from the sample and the
readout circuit. Only a negligible amount of the reflected signal is transmitted through
the directional coupler back up the carrier line. After the coupler the signal is amplified
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Figure 5: Tank circuit used to do reflectometry measurements. Blue arrow: Carrier
signal. Green arrow: Reflected signal. Yellow arrow: Reference signal.

with a cryogenic amplifier, which has a high gain of 47dB and a low noise temperature
of 4K in optimal settings, and other room temperature amplifiers. The important part
is that the first amplifier has a very low noise level, because the noise from this amplifier
is amplified by the following amplifiers.

The amplified signal is measured using what is basically a high bandwidth lock-in
amplifier (although there is no further amplification). We split the signal with a 90°-
splitter to allow readout of both the real part, I, and the imaginary part, Q. With the
phase shifter on the carrier line it is possible to tune the split such that we get I and Q.
Following the splitter the two parts of the reflected signal is mixed with the reference
signal giving us an easy measurable DC signal. Contrary to what it looks like on the
figure the two reference lines have the same length such that we really get a 90° split
readout.

3.2 Readout circuit

We now turn our attention to the readout circuit and sample, that creates the resonance
we are measuring. The basic idea behind the readout circuit is to create a resonance that
reacts to changes is the electrical component we want to measure. The reflected can be
calculated from the effective impedance of the readout circuit, Zeg, and the impedance
of the source, Zy. Here the impedance of the source is the 50§2 characteristic impedance
of the coax line. The reflection coefficient, S11, is given by:
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Zy— 2

_ 0 eff (9)
ZO + Zeff

This coefficient is the ratio of the voltage that is reflected. The power reflection

coeflicient, the ratio of power that is reflected, is the square of the reflection coefficient
S11. This can be seen by,

Sll

2 2
PReﬂ _ (VReﬂ,rmsz) _ (VReﬂz) _ (511)2 (10)
Po (VO’rmS) (VO)

Where Pgreq is the power reflected and P, the incident power.

Resistive reflectometry We want to measure a purely resistive signal in a mesoscopic
charge sensor. In reflectometry this is translated into a resonance by a network matching
circuit, consisting of an inductor L and the parasitic capacitance C}, in the sample. The
matching circuit is presented in figure[Gp, R; is the line resistance and R is the resistance
of the sensor. From there it is easy to find the effective impedance off the circuit:

1

Zeg = twlL + R+ ——
off ! ipr-i-%

(11)
From equation (@ we can see that when Z.g is equal to Zy there is no reflection.
This condition is met whenf]

L 1
- _R d -
ro, f md ho=o e

The amount of reflected signal depends on R. This allows detection changes in R
just by monitoring the reflected signal. With this method it is possible to measure
conductance changes at a much faster rate than transport measurements.

In 2005 this method was used to demonstrate real time current measurements [17].
This was done with a SET close to the current flow. The change in charge distribution
due to one electron passing by was then measured and counted. The mesoscopic charge
sensor can also be a QPC or a quantum dot. In 2010 it was investigated which charge

Zo (12)

1To get this result the I have made the approximation % > ﬁ
P
a) b) A 1 Cy

L L
R v Rf

CpI R Cpl CpI

Figure 6: Three circuits used for reflectometry where the inductor is denoted L, the
parasitic capacitance C), the line resistance R;. a) Circuit used for measuring R, f.ex. an
RF-QPC. b) Circuit to measure the parasitic capacitance, Cp. ¢) Proposed improvement
to the circuit in b).
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detector gives the best reflectomtry readout [I8]. It was found that the RF-quantum
dot is 30 times more sensitive than the RF-QPC.

Capacitive readout As introduced in section the quantum capacitance of an
electron changes in experiments. This was exploited in semiconductor qubit systems,
where dispersive readout with reflectometry on the lead of a DQD was demonstrated
[13]. The change in quantum capacitance shows up in the parasitic capacitance. The
model for dispersive readout is presented in [6p. This is basically a RLC-circuit with an
effective impedance given by,

Zeg = twL + Ry + (13)

iwCy
The resonance frequency is the same as before, fo = m, while depth of the res-
onance is determined by the line resistance. The RLC-circuits resonance frequency
depends on the parasitic capacitance which makes it possible to readout the change in
quantum capacitance as a small shift in the resonance frequency.

The revolutionary part of this experiment is the possibility to do readout of the
charge state in a DQD without having a proximal charge sensor. All the measurement
is done with the already existing leads to the dot. This opens for a much easier device
design when considering coupling multiple DQDs as in [6]. Also the coupling between
the qubits will be stronger because the coupling strength is not shared with an extra
detector. Dispersive readout using a gate has also been demonstrated [§].

Capacitive readout in match Although the dispersive readout scheme has given
beautiful results and proves a high bandwidth there is room for improvement. In multiple
papers done with this measurement technique the depth of the resonance is only about
10dB or worse. This is because the readout circuit is not matched to the characteristic
impedance, Zy. The system can be matched by adding line resistance, but intuitively
this is a bad thing, because more of the energy is now dissipated before even reaching
the device (this agrees with simulations presented later). Matching can also be done
by putting a capacitance in parallel to the parasitic capacitance. In dispersive readout
this is problematic because we want to measure a change in parasitic capacitance. By
adding capacitance in parallel we make the relative signal worse.

Another way to achieve a good match is to add the capacitor, C,, in parallel to
the RLC-circuit, figure [Gk. This capacitor together with the inductor creates a network
matching circuit that matches a resistance, which is lower than Zj, to Zy. In this case
we want to match the line resistance, which is of the order of a few ohm, to Zy = 50€).
The effective impedance of the matched readout circuit is given by:

jwCy + !
=W
Zest V' iwL+ R+ e

(14)

Because matching now is done with a capacitance, it is possible to tune into match in
situ by using a varactor diode as Cy. The rest of this thesis will focus on characterizing
dispersive readout with this circuit scheme.

4 Network matching in dispersive readout

This section focuses on describing the new network matching circuit for dispersive read-
out introduced above. This is done by simulations.
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Figure 7: Simulation of power reflection coefficient from circuit in figure [k with L =
150nH, C, = 166fF, R; = 3Q. a) The power reflection coefficient in dB. Black dashed
line follows the resonance and red dashed line is a —3dB contour line. b) Line cuts from
a) indicated with colors. ¢) Phase of the respective line cuts i b)

4.1 Simulations

With simulations it is possible to look into the circuits response to different changes
in the circuit components. Figure [7] shows simulations with the values L = 150nH,
Cp = 166fF, R, = 32, and C\ as a variable. The simulations was done by substituting
the effective impedance given in equation into @ with Zy = 50Q. (Results are
shown in power reflection coefficient to be directly comparable to the measurements
presented later.)

As desired it is possible to reach a match only by tuning the varactor capacitance
C,. The black dashed line maps out the resonance frequency for each value of varactor
capacitance. The position and form of this line is entirely controlled by L and Cj,. When
the line resistance is 50€2 the RLC-circuit without the varactor capacitance is in a perfect
match. For line resistances lower than 502 the match moves along the dashed line toward
higher values of varactor capacitance. The @Q-factor of the match is controlled by the
line resistance. The lower the line resistance the higher the @-factor in match. Moving
away from match with the varactor capacitance will change the bandwidth shown as the
red dashed line in figure [7]

We want to detect a nearly infinitesimal change in the parasitic capacitance C,. This
change will result in a small shift of the resonance frequency. As can be seen on figure
[7c a 180° phase change due to a very small shift in resonance frequency is achieved in
match. But this is a very deceiving result. Taking a closer look at the magnitude of the
reflection coefficient [fp. There is almost no signal reflected. This is because the 180°
change originates from a trivial movement across the origin in IQ-space. The phase or
the amplitude of the reflected signal does not tell everything in itself.

Up till now all experiments have either focused on the change in amplitude (resistive
readout) or the change in phase (dispersive readout). This has been the natural thing to
do with the way the readout circuit works. In resistive reflectometry there is almost no
phase change and in dispersive readout almost no amplitude change. But now wanting
to simulate dispersive readout in match this is not sufficient. We have to look at both
the phase and the amplitude.

4.2 Simulated response

With the tank circuit normally used in reflectometry we are actually measuring I and
Q of the reflected signal. For a given set of parameter values each frequency value will
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correspond to a specific point in /@Q-space of the reflected signal. Changing any param-
eter in the circuit will move us to a different point. We want to avoid thinking about
the response in the signal as either a phase shift (azimuthal change) or an amplitude
change (radial change). Instead we can think of it as the distance between two points
in I@-space. The trivial 180° change originating from crossing the origin will no longer
look special, because the origin is no longer special. Experimentally, one can measure
along any direction in IQ space with a trivial adjustment of the phase shift.

To get the best sensitivity in dispersive readout we want to maximise this movement
for changes in the parasitic capacitance C},. To do this I have simulated the magnitude
of the response as a function of frequency and total varactor capacitance Cy, assuming a
change in the parasitic capacitance AC), of 9aF found in [19], a carrier power of —80dBm,
and a noise level of —138dBm, figure The change in capacitance corresponds to an
interdot transition in a DQD.

For each point I calculated the voltage reflection coefficient with the model introduced
above using the same parameters: C), = 166fF, R; = 32 and L = 150nH. These numbers
are reasonable when compared to the literature. The reflected signal defines a point in
IQ-space for each value of frequency and varactor capacitance. This is shown as the
middle point in figure and Bk. Now making the same calculation only adding a
small value AC), = 9aF to the parasitic capacitance I get another point in the IQ-space,
second point in figure[8p and [Be. The distance between the two points is then calculated,
divided by the noise level, and then plotted in figure [8h.

The SNR was determined using a noise level of —127dBm and 625us integration
time, which was calculated from the noise seen in the data. I found that the noise level
is the same both in and off resonance and does not depend on the carrier power. From
this I conclude that the noise originates from the cryogenic amplifier, which is the first
amplifier. The noise level in the data was determined to be 14mV corresponding to
—27dBm. This is the noise after amplification. Subtracting 111dB amplification gives a
noise level of —138dBm.

a) Movement in IQ-space
1.1 b)
1
. 2 09
@ o 08
o 0.7
[0}
2 4
g -0.2 0 0.2
= x
S zZ I (uV)
Q [}
2 3
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Figure 8: Simulated response with the change in C) given by AC, = 9aF. The response
is defined as the movement in IQ-space with the —80dBm incident power and a noise
level of —138dBm. a) The distance as a function of frequency and varactor bias. b-c)
The distance plotted in a) at two values of varactor bias and frequency. The middle
point has AC, = 0aF the other AC}, = 9aF.
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Figure 9: Same distance calculated as in figure [§| with the varactor capacitance fixed at
Zero.

When the varactor capacitance is zero we get a SNR of 1.4 for an interdot transition
with an integration time of 625us, which is largely consistent with 1 SNR at 350us
found in [I9] for an InAs nanowire DQD. When adding varactor capacitance our SNR
goes as high as 6.8. Integration time is proportional to the square of the reciprocal
noise. Increasing the SNR from 1.4 to 6.8 with a varactor capacitance corresponds to 22
times faster readout. This means a readout time for interdot transitions of 16us. The
relaxation time T} in InAs nanowire DQDs was found to be much greater than 1us [20],
promising single-shot readout.

The amount the varactor capacitance will improve response is strongly dependent
on the achievable @-factor, which is controlled by the line resistance R;. If R; = 502
the system is already in match, and the varactor capacitance will only make the readout
worse. The lower the line resistance get, the higher the Q-factor in resonance achieved
by varactor tuning.

Surprisingly the best readout for the case of no varactor capacitance, just the RLC-
circuit, is reached at the lowest line resistance. Meaning, as mentioned earlier, that
if you try to tune the RLC-circuit into match by adding line resistance you get worse
sensitivity. On figure |§| the response is in the case of no varactor capacitor.

5 Data analysis

To investigate the models validity I made measurements on the readout circuit without
a device attached, and analysed the results with the model.

5.1 Setup

A picture of the circuit can be seen in figure The varactors used was a MACOM
MA46H070 0.3-1.2pF and a Toshiba 1SV186 0.7-4pF. In parallel to these was a 5.6pF
capacitor. The bias to the varactors was supplied through a 5k resistor with a 100pF
capacitance to ground, such that the RF-signal sees ground. I have also added a bias-T
consisting of a 220pF capacitor and a 5k} resistance to the voltage line, in case we
wanted to connect a device. The DC-line was grounded and not used in the experiment.
The inductor was a 150nH surface mount inductor. The experiments was done in a
dilution refrigerator with a base temperature below 50mK to replicate actual dispersive
readout as much as possible. The tank circuit used was explained in section [3.1]
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Figure 10: Picture of measured readout circuit. 1) 150nH inductor. 2) Bias-T grounded
in experiment consisting of 5k resistor and 220pF capacitor. 3) Varactor bias supply
consisting of 5k{) resistor and 100pF capacitor to ground. 4) The two varactors. 5) A
5.6pF capacitor to ground in parallel with the varactors. 6) RF feed line.

Figure shows the magnitude of the power reflection coefficient measured with
a network analyser. In the tank circuit there was more amplification coming up than
attenuation going down. This explains why the power reflection coefficient measured
is higher than 0dB. I found that the overall reflection increased at lower temperature.
This is most likely due to some temperature dependent attenuation in the system.

The data was taken at a temperature of 45K where the match was within the range
of the varactor capacitance. It was possible to tune into a match by varying the varactor
bias. This proves the concept I set out to measure. However, I found that the model
does not fully explain the data.

5.2 Dataset with zero varactor bias

The position of the match as a function of varactor bias changed with temperature.
The temperature dependence is clear in figure [[2h. Plotted is the power reflection
coeflicient at zero varactor bias. Calculating the varactor capacitance from datasheets
gives C, = 13pF at zero bias. As the temperature changes the resonance frequency
moves until 33K. At lower temperatures the resonance keeps the same frequency but the
depth still changes.
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Figure 11: Data comparable to ﬁgurem a) Measured power reflection coefficient at 45K.
b) Line cuts of the power reflection coefficient fitted with the model in figure[6f ¢) Phase
the reflection along the lines in a.
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The normalization was done to subtract the overall difference in power level at vary-
ing temperatures. The normalization factor was extracted from each dataset as a fit
parameter. The fits, also normalized with the same factor, is plotted along the datasets
in figure . The fitting was done with the equations @D and . The number which
was measured by the network analyser, M, is connected to the reflection coefficient the
following way:

M = 10log(A) + 10log (11330) — 10log (A (511)2) = 20log (\/ZSH) (15)

Where 10log(A) is the overall gain in dB from the tank circuit. These fits allowed me
to extract the circuit parameters from the datasets, figure b—d). Throughout all fits
in this thesis the inductance was held constant at 150nH.

We expect that the varactor capacitance extracted from the fits would have a constant
value close to 13pF. What we see is around 9.5pF except for high temperatures.

For the parasitic capacitance C, we see a linear dependence with temperature until
33K at which temperature we also see the best match. At lower temperatures Cp stays
around the same value.

The form of the line resistance does not fit any of the used materials resistance
temperature dependence. Had it been purely temperature dependent it would have
looked almost constant. The peak is also curiously placed right when the circuit is in
match.

Because this dataset has a fixed varactor capacitance I also tried to fit the data
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Figure 12: a) Normalized voltage reflection coefficient with 0 varactor bias at different
temperatures. Fitted to the simulated model shown in figure [6k with L fixed at 150nH.
Extracted values from fits for b) line resistance R; c) parasitic capacitance C, and
varactor capacitance C.
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Figure 13: a) Extracted values for the line resistance R; when L = 150nH and C, =
13pF. b) The quality of the fits in resonance when C, was held constant at 13pF.

keeping the varactor capacitance at the calculated 13pF in addition to the inductor at
150nH, figure

The temperature dependence of the parasitic capacitance is almost unchanged from
the plot in firgure and is not shown. In the simulation I found that the parasitic
capacitance and the inductor determined the resonance frequency, while the depth and
bandwidth of the resonance was determined by the varactor capacitance and line resis-
tance. This is also the observation we make here. Fixing the varactor capacitance at the
theoretical value of 13pF only influences the line resistance. This also argues that the
temperature at which the parasitic capacitance stabilizes is uncorrelated to the match.

For the line resistance we see that the peak disappears, but now we see a temperature
dependence at higher temperature. Furthermore this is definitely not an optimal fit as
can be seen in firgure [[3p. Leading us to conclude that the assumption of Cy, = 13pF is
likely not true.

Fixing C, = 9.5pF gives good fits, which is achieved by lowering the line resistance by
aboout 0.1—0.3Q2 at high temperatures where the varactor capacitance was substantially
different from 9.5pF. Fixing the value of the line resistance at 3 instead also gives good
fits at the cost of a small peak in the varactor capacitance around the resonance.

Above we are plotting a resonance with 3 or 4 parameters. With this amount of
parameters it is not surprising that we can get good fits even if the model is not entirely
true. The model compensates for that by letting the parameters vary in a non-physical
way. Which I think is the explanation for the peak in line resistance around match.

5.3 Data at constant temperature

The data in figure 0] was taken at a constant temperature. Fitting these resonance lines
will allow us to see how the fit parameters behave when crossing the match by varying
the varactor capacitance.

I fixed the value of the parasitic capacitance to C), = 166.25fF under the assumption,
that the observed change in figure [12]is due to temperature change only. On figure
the movement of the varactor capacitance and the line resistance are shown.

Even with both C), and L fixed the fits looked good both in match and out of
match, which supports the hypothesis that the change in parasitic capacitance is only
temperature dependent.

The movement of the varactor capacitance as a function of varactor bias is in the
correct diretion, but it is too small compared to the datasheets. In both this dataset and
the set above we see the varactor behaving different from the datasheets. This could be
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Figure 14: Extracted values from fitting the resonance lines in figure [12h. with L =
150nH and C, = 166.25fF.

a physical change due to temperature. We again see a peak in the line resistance around
the resonance. From this together with the observations in the subsection above we can
conclude that it is most likely an incorrect model we are using.

A plausible correction to the model may be found in the inductor. The inductor
manufacturer has a model, which includes a capacitor and resistor in parallel to the
inductor. I did not have time to make any fits with this model. However, I made a few
calculation to consider the impact on my simulations. The premature results show that
the overall picture presented in section [£.1] and [£.2] is unchanged. From this I conclude
that my simulation still holds, although it is with added uncertainty to the quantitative
numbers.

6 Conclusion

A simple varactor diode was introduced into the dispersive readout scheme. Simulations
show that the varactor diode allows for in situ tuning of the match in the resonant
readout circuit. I found that characterizing the dispersive readout response as either a
phase or amplitude change is insufficient. Instead I propose characterization of signal as
the magnitude of change in IQ-space. This allowed me to do measurement simulations
with a dispersive shift of 9aF.

These results indicates 22 times faster readout times compared to the current dis-
persive readout circuit. The increase in sensitivity should enable single shot readout in
InAs singlet-triplet qubits, and will also be useful as a general improvement for disper-
sive readout. Viable readout methods for qubits without a separate mesoscopic structure
would greatly simplify scaled up systems.

Experiments were performed on the new readout circuit to prove or disprove the
validity of the simulated model. It was possible to tune the resonance of the circuit
as desired. However, changes in fitting parameters do not quantitatively agree with
the physical expectations of the different electrical components. This hints that the
simulated model does not completely explain the circuit. The fact that it was possible
to tune into a match using only the varactor diode and the general qualitative agreement
with the model argue that the simulation might only need a small correction.

In further studies it could be interesting to fit the data using the more elaborate
model for the surface mount inductor. The next experimental step will be to attach a
device and experimentally demonstrate sensitivity sufficient for single-shot readout.
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