
 

 

 

  

F ACULTY  O F  S C I EN CE  
U N I V E R S I T Y  O F  C O P E N H A G E N  

Bacheloropgave
Simon Brink

Correlation effects in Molecules

Jens Paaske

June 11, 2013



1 Reserving on an aggregated level

R =
n∑

i=2

Ri =
n∑

i=2

Di(n+1−i)

 n−1∏
j=n+1−i

f̂j − 1



2



Simon Brink Bachelor thesis June 12, 2013

Contents

Abstract 2

Resume 2

Introduction 3

Molecular orbital method & LCAO 4
Example: H2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Heitler-London approximation 9
Example: H2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Coupled Quantum Dots 13
Single particle Quantum Dots . . . . . . . . . . . . . . . . . . . . . . . 14
Two particle Quantum Dots . . . . . . . . . . . . . . . . . . . . . . . . 15

Conclusion 17

References 18

1 of 18



Simon Brink Bachelor thesis June 12, 2013

Abstract

In this thesis we will examine two different kind of approximations that describes
correlation effects in molecules. In the first part we will look at the linear
combination of atomic orbitals and how that leads to bonding/antibonding.
We will then look at the description of a H2 molecule that this approximation
provides.

A new approximation will then be introduced, the Heitler-London approxi-
mation. We will again look at how it describes the correlation effects, and then
lead on to the description of a H2 molecule. The two approximations provided
thus far will then be compared against each other, choosing the most appro-
priate to apply to a coupled quantum dot system in a quantum wire. Though
LCAO has a slightly shorter bonding length, the bonding energy is much better
in the Heitler-London approach.

The Heitler-London approximation is then applied to the coupled quantum
dots and the ground and first exited state of the single particle coupled quantum
dot states are examined.

Finally the approximation is applied to the two particle coupled quantum
dots, providing us with the exchange coupling. It is then clear that the lowest
energy state of the two particle quantum dots is the singlet state, though the
difference decays as the distance between the two quantum dots increases.

Resume

I dette Bachelorprojekt vil vi undersøge to forskellige approksimationer der
beskriver korrelations effekterne i molekyler. I den første del vil vi kigge p̊a
lineare kombinationer af atomare orbitaler og hvordan det leder os til bond-
ing/antibonding. Vi vil derefter se p̊a beskrivelsen af et H2 molekyle som denne
approksimation giver.

A ny approksimation vil s̊a blive introduceret, Heitler-London approksima-
tionen. Vi vil igen undersøge dens beskrivelse af korrelations effekter, og s̊a føre
videre til beskrivelsen af et H2 molekyle. De to approksimationer vi har nu
vil derefter blive sammenlignet for at vælge den bedst egnede til bruge p̊a et
koblet kvanteø system in en quantum wire. Selvom LCAO har en anelse kortere
bindings længde s̊a er bindings energien meget bedre i Heitler-London tilgangen.

Heitler-London approksimatinen bliver herefter brugt p̊a de koblede kvanteøer
og grundtilstanden samt den første ekciterede tilstand af enkelt partikel kvanteøen
undersøges.

Til sidst bruges approksimationen p̊a to partikel kvanteø systemet og giver
os udvekslings koblingen. Det er herefter klart at den laveste energi tilstand
a to partikel kvanteøerne er singlet tilstanden, selvom differensen falder som
afstanden mellem de to kvanteøer øges.
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Introduction

With the increase in the usage of quantum dots in nano electronics and the
hope for their use in such areas as nano electronics and quantum computation
eg. quantum gates[1], it becomes increasingly more important to understand
and increase our knowledge of quantum dots. Through controlling electric gates
along a nanowire it is possible to confine charges in all 3 dimension and obtain
these artificial atoms. It is furthermore possible to obtain coupled quantum
dots through this method[2], and it is this system that I will eventually look at.

A prerequisite for this study is an understanding of the correlation effects
between two atoms, and two different approaches at describing a hetero molecule
with two atoms will be examined. These two approximations are respectively the
linear combination of atomic orbital (LCAO) and the Heitler-London approach.
In the case with a two atomic hetero molecule the LCAO consists of two identical
atomic orbitals in a linear combination. However, some of the correlation effects
are left out and thus it might be a lesser approximation compared to the Heitler-
London approach where more correlation effects are included.

A system of two coupled quantum dots are then treated to the Heitler-
London approximation as it proves to be the best approximation. The Heitler-
London approximation is then used to examine whether the singlet or triplet
state is more energy favourable. Furthermore, the exchange coupling is exam-
ined to see how the coupling changes as the distance between the two quantum
dots is varied.
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Molecular orbital method & LCAO

There are several ways to approximate a two particle problem. The molecu-
lar orbital method is one way. In this method you first take the one-electron
two-atom states and then add another electron. In this approximation the
Hamiltonian is split into two parts[3]

H = H1 +H2

with

Hi = − ~2

2me
∇2
i −

e2

|ri −RA|
− e2

|ri −RB |
+ Ueff (ri), i = 1, 2

This method includes the average potential caused by the other electron in the
Ueff term.

The following eigenstate is then obtained for the two-atom, one-electron
Schrödinger equation with the eigenfunction ψi(r) and is called the molecular
orbital. [

− ~2

2me
∇2 − e2

|r−RA|
− e2

|r−RB |
+ Ueff (r)

]
ψi(r) = εiψi(r)

If the molecular orbitals are known the wave function of the two-electron system
can be written as a product of the wave functions of one-electron systems due
to the separation of the Hamiltonian.

ψ(r1, r2) = ψi(r1)ψj(r2)

However, the Pauli exclusion principle has to be observed and the wave function
needs to to be accompanied by a spin dependent part. If the same molecular
orbital is chosen for both electrons the spin dependent part has to be antisym-
metric. In the case with different molecular orbitals there are two possibilities.
If a symmetric combination of r1 and r2 is chosen, the spin dependent part has
to be chosen antisymmetric and the wave function is

ψ(r1, r2) =
1√
2

[ψi(r1)ψj(r2) + ψi(r2)ψj(r1)]

with the singlet spin part

χs(s1, s2) =
1√
2

[| ↑〉1| ↓〉2 − | ↓〉1| ↑〉2.

If an antisymmetric combination of r1 and r2 is chosen, the spin dependant part
is chosen to be symmetric, and the wave function is thus

ψ(r1, r2) =
1√
2

[ψi(r1)ψj(r2)− ψi(r2)ψj(r1)]

with the triplet spin part

χt(s1, s2) =


| ↑〉1| ↑〉2
1√
2

[| ↑〉1| ↓〉2 + | ↓〉1| ↑〉2]

| ↓〉1| ↓〉2
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A form of this molecular orbital method is the LCAO (Linear Combinations
of Atomic Orbitals), in which linear combinations of atomic wave functions are
used. If the solutions to the Schrödinger equation are known, ψA(r) and ψB(r)
, the molecular orbital can be constructed in the following way.

ψi(r) = cAψA(r) + cBψB(r)

If it’s a diatomic molecule with the same two atoms, the atomic functions are
expected to have the same probability. Thus cA = ±cB depending on whether
the wave function is symmetric or antisymmetric. Furthermore, one has to take
into account the overlap integral between the two atomic wave functions since
they are not orthogonal to each other, 〈ψA|ψB〉 =

∫
ψ∗A(r)ψB(r)dr = SAB . We

then obtain the normalized eigenfunctions of H

ψ±(r) =
1√

2± (SAB + S∗AB)
[ψA(r)± ψB(r)]

where ψ+ is the bonding state and ψ− is the antibonding state. When εA = εB
one obtain the corresponding energy given by 〈ψ±|H|ψ±〉 and the result

ε± = 2εA +
±(εAB + ε∗AB)

2± (SAB + S∗AB)

with

εA =

∫
ψ∗A(r)H1ψA(r)dr

εAB =

∫
ψ∗A(r)H1ψB(r)dr.

In the spatially symmetric configuration is called the bonding state since the
electron density between the two atom cores is large. The exact opposite is the
case for the antisymmetric configuration since it has a small electron density
between the two cores and it is thus called the antibonding state, this is showed
in figure 1.

Figure 1: Sketch of a bonding state vs. an antibonding state[4]. It is clear that
in the bonding state the electron density is large between the two atoms while
it is smaller in the case of Antibonding.
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Example: H2

To illustrate the above mentioned approximation, it will be used on the hydrogen
molecule. The chosen eigenstate for the singlet wave function is the hydrogen
ground state

ψ0(r) =
1√
πa3

0

e−r/a0 = ψA(r) = ψB(r)

where a0 is the Bohr radius. The bonding/antibonding wave function is then

ψ±(r1, r2) =
1√

2± (SAB + S∗AB)
[ψ0(r1)± ψ0(r2)]

where

r1 = |r−RA|
r2 = |r−RB |

The energy of the system is then

〈ψ±|H|ψ±〉 =
1

2± 2SAB
〈ψ∗A(r)± ψ∗B(r)|H|ψA(r)± ψB(r)〉

=
1

2 + 2SAB
(〈ψ∗A(r)|H|ψA(r)〉+ 〈ψ∗B(r)|H|ψB(r)〉

± 〈ψ∗A(r)|H|ψB(r)〉 ± 〈ψ∗B(r)|H|ψA(r)〉) .

The first task is to calculate SAB and thus the normalization factor. The
position of the molecule is chosen so that RA is at the origin and RB is on the
z-axis at a distance R (figure 2) and thus

r1 = r

r2 =
√
r2 + R2 − 2rR cos θ.

Figure 2: Sketch of the dihydrogen molecule in the LCAO approximation.

We then obtain[5]

SAB = S∗AB =
1

πa3
0

∫ 2π

0

∫ π

0

∫ R

0

e−r/a0e−
√
r2+R2−2rR cos Θ/a0r2 sin θdrdθdΦ

= e−R/a0

[
1 +

(
R

a0

)
+

1

3

(
R

a0

)2
]
.

6 of 18



Simon Brink Bachelor thesis June 12, 2013

We now have to evaluate the Hamiltonian and start off with exchange inte-
gral, εAB

εAB =

∫
ψ∗A(r1)H1ψB(r2)dr = − 1

πa3
0

e2

4πε0

∫ 2π

0

∫ π

0

∫ R

0

e−r/a0
∣∣∣∣ 1

r1
+

1

r2

∣∣∣∣ e−r2/a0r2 sin θdrdθdφ

=
−2

a3
0

e2

4πε0

∫ π

0

∫ R

0

e−r/a0−r2/a0r2

∣∣∣∣ 1

r1
+

1

r2

∣∣∣∣ drdφ
We then substitute r2 and do the θ integral∫ π

0

e−
√
r2+R2−2r cos θ/a0 =

−a0

rR

[
e−(r+R)/a0(r +R+ a0)− e−|r−R|/a0(|r −R|+ a0)

]
Combining this we now get

εAB =
4

a2
0R

e2

4πε0

[
−e−R/a0

∫ ∞
0

(r +R+ a0)e−2r/a0dr + e−R/a0
∫ R

0

(R− r + a0)dr

+ eR/a0
∫ ∞
R

(r −R+ a0)e−2r/a0

]
=

2e2

4πε0

1

a0

a0 +R

a0
e−R/a0 .

However,
e2

4πε0

1

a0
is equal to the ground state energy of the hydrogen atom,

E1,h, and thus the result can be written as

εAB = 2

(
a0 +R

a0
e−R/a0

)
E1,h

Since the two atoms have identical wave functions we get another identical term

for ε∗AB . Furthermore, with the Hamiltonian being
1

r1
+

1

r2
we twice the number,

resulting in a total of 4 times this term.
Now all that remains is to evaluate εA and εB

εA = 〈ψ∗A(r)|H|ψA〉 = 〈ψ∗A(r)| − ~2

2me
∇2 − e2

4πε0

(
1

r1
+

1

r2

)
|ψA(r)〉

However

〈ψ∗A(r1)| − ~2

2me
∇2 − e2

4πε0r1
|ψA(r1)〉 = E1,h

is equal to the energy of a hydrogen atom in it’s ground state, e1,h. The last
part of of εA is calculated in a similar way to how the normalization integral
was done. After changing coordinates and doing the integrals one arrives at

〈ψ∗A(r)| e2

4πε0r2
ψA(r)〉 =

e2

4πε0

(
1

R
− a0 +R

a2
0

e−R/a0
)

=

(
a0

R
− a0 +R

a0
e−R/a0

)
E1,h
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Combining this and the previous result we finally arrive at

εA =

(
1 +

a0

R
− a0 +R

a0
e−R/a0

)
E1,h

The same argument that was used to get ε∗AB can be applied to εA and we thus
get the same result for εB .

When we combine all of this we get the energy of the H2 molecule to be

ε± =
1

±SAB
(εA + εAB) .

It is now quite clear when plotting the above function that the singlet state is
the favourable one, furthermore, this approximation provides a binding energy
of 2.6eV and a binding length of 0.85 · 10−10 as seen in figure 3.

Figure 3: The bonding and antibonding energies as the distance between the
two atom cores increases. The bonding state gives a binding energy of 2.6eV
and a binding length of 0.85 · 10−10
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Heitler-London approximation

Whether the antiparallel spin alignment of two electrons is more favourable than
the parallel spin alignment depends on the singlet-triplet energy splitting. This
can be approximated through various methods, among those the Heitler-London
approximation which is the second approximation we will be looking at, and the
approximation the following section will be focused on.

In the tight-binding method the one-electron stationary-state wavefunction
is a linear combination of atomic stationary-state wave functions centered at
the lattice point r[6]. In the case of N = 2 the linear combinations become:

ψ0(r) = ψA(r) + ψB(r),

ψ1(r) = ψA(r)− ψB(r).

It then follows that the singlet and triplet states become:

ψs(r1, r2) = ψA(r1)ψB(r2) + ψA(r2)ψB(r1)

+ ψA(r1)ψA(r2) + ψB(r1)ψB(r2),

ψt(r1, r2) = 2[ψA(r1)ψB(r2)− ψA(r2)ψB(r1)].

These equations provide a good approximation for the ground state when
electron-electron interactions are ignored, however, when they are not ignored
the result is poor. The last two terms of the singlet state have both electrons
localized around the same ion core and their interaction energy is not negligi-
ble. The triplet state doesn’t suffer from this defect and thus provides a lower
mean energy. The ground state, however, doesn’t have to be a triplet state. A
symmetric state is obtainable in the case where an electron is placed on each
ion core and described by the first two terms of the singlet state above. This
then gives us the following results that are proportional to the Heitler-London
approximation:

ψs(r1, r2) = ψA(r1)ψB(r2) + ψA(r2)ψB(r1)

ψt(r1, r2) = [ψA(r1)ψB(r2)− ψA(r2)ψB(r1)]

Since the wave functions around the two ion cores are not orthogonal they
overlap and the overlap integral SAB =

∫
ψ∗A(r)ψB(r)d3r has to be taken into

account. A normalization factor is then obtained:

N± =
1√

2(1± |S12|2)

Thus we obtain the new wavefunctions:

ψs(r1, r2) = N+[ψA(r1)ψB(r2) + ψA(r2)ψB(r1)]

ψt(r1, r2) = N−[ψA(r1)ψB(r2)− ψA(r2)ψB(r1)]
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Figure 4: Schematic over the different interactions in the Heitler-London ap-
proximation. A and B are the atom cores while 1 and 2 are the electrons.

The Hamiltonian is then introduced

H = H +Hint = − ~2

2m
∇2 − e2

4πε0

(
1

rA1
+

1

rB2

)
+

e2

4πε0

(
1

r12
+

1

R
− 1

rB1
− 1

rA2

)
where all the interactions are shown in figure 41 and we get

〈ψ±|H|ψ±〉 = N2
±〈ψ∗A(r1)ψ∗B(r2)± ψ∗A(r2)ψ∗B(r1)|H|ψA(r1)ψB(r2)± ψA(r2)ψB(r1)〉

= 2N2
± (〈ψ∗A(r1)ψ∗B(r2)|H|ψA(r1)ψB(r2)〉 ± 〈ψ∗A(r1)ψ∗B(r2)|H|ψA(r2)ψB(r1)〉) .

This gives us exactly the energy of the singlet/triplet configuration

ε± = εA + εB +
C ± I

1± |SAB |2
.

where

C =

∫
ψ∗A(r1)ψ∗B(r2)HintψA(r1)ψB(r2) d3r

I =

∫
ψ∗A(r1)ψ∗B(r2)HintψB(r1)ψA(r2) d3r

Example: H2

As was the case with LCAO the approximation will be tested on H2. Once again
the wavefunction being used for both atoms is the wavefunction of the hydrogen
ground state, ψ0 = ψA = ψB . The Heitler-London approximation then gives
the singlet state as

ψs,t(r1, r2) = N±[ψA(r1)ψB(r2)± ψA(r2)ψB(r1)].
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Again we start by getting the normalization factor

N± =
1√

2(1± |SAB |2)
,

SAB =

∫
ψ∗A(r1)ψB(r2) d3r =

1

πa3
0

∫
e−r/a0e−r2/a0 d3r

= eR/a0

[
1 +

(
R

a0

)
+

1

3

(
R

a0

)2
]
.

Next step is to calculate the first part of the Hamiltonian

〈ψ∗A(r1)ψ∗B(r2)|H|ψA(r1)ψB(r2)〉.

This is equal to

ε1 =
e2

4πε0a0

a0

R

(
1 +

5

8

R

a0
− 3

4

R2

a2
0

− 1

6

R3

a3
0

)
e−2R/a0

The last part of the Hamiltonian is quite a bit more difficult due to the
1

r1 − r2
part, however, according to Y. Sugiura[7] it becomes

X =
e2

20πε0a0

[
−e−2R/a0

(
−25

8
+

23

4

R

a0
+ 3

R2

a2
0

+
1

3

R3

a3
0

)
+

6a0

R

(
s

(
γ + log

(
R

a0

)))
+s′e2R/a0Ei

(
−4

R

a0

)
− 2
√
s · s′Ei

(
−2

R

a0

)]
.

where

s =

(
1 +

R

a0
+

1

3

R2

a2
0

)
s′ =

(
1− R

a0
+

1

3

R2

a2
0

)2

and Ei is the exponential integral while γ is Euler’s constant. The rest of the
integral gives

ε2 = X +
e2

4πε0a0

sa0

R
− 2e2

4πε0a0

(
1 + 2

R

a0
+

4

3

R2

a2
0

+
1

3

R3

a3
0

)
e−2R/a0

When combining these results we get the singlet and triplet energies, which
are plottet in figure 5.

With the Heitler-London approximation we obtain a binding length of 0.87 ·
10−10m and a binding energy of 3.14eV. Comparing this result to the LCAO
method we see that the binding length is slightly worse, while the binding energy
is much improved.

There are, however, some limitations to the Heitler-London approximation.
When the two atoms get too close and form a helium atom, the wavefunctions
in the Heitler-London approximation are one-electron wavefunctions for a sin-
gle charged atom while a much better description would be the one-electron
wavefunctions for a double charged atom, such as the independent electron
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Figure 5: The singlet and triplet energies as the distance between the two cores
increase. The singlet state gives a binding energy of 3.14 eV at a binding length
of 0.87 ∗ 10−10m

approximation. Thus the Heitler-London approximation breaks when the two
atoms are too close to each other, which is expected since the approximation
was intended to describe situations where the atoms are further from each other.
It is therefore unexpected that the approximation also breaks down when the
atoms are too far from each other. In the case of hydrogen the approximation
breaks when the distance between the two atoms exceeds 50 a0. This happens
in the limit of R → ∞ where the energy difference between the singlet and
triplet state becomes

〈H〉s − 〈H〉t →
[
−56

45
+

4

15
γ +

4

15
log

(
R

a0

)](
R

a0

)3

exp

(
−2R

a0

)
,

where γ is Euler’s constant. Due to the log term that arises from the
1

r1 − r2
part of the Hamiltonian the energy difference changes from being negative to
positive for values of R higher than the mentioned 50 a0. This is a problem
since the singlet state should always be lower than the triplet state. Thus, as
Yoshida[8] writes: ”The Heitler-London model does not give the correct asymp-
totic form in the limit R→∞”. This problem, however, has been described by
Herring[9] and he notices that ”the Heitler-London approximation ignores (part
of) the electron correlation effect and gives the unreasonable result in the limit
R→∞”. We thus have to keep this in mind when utilizing the Heitler-London
approximation.
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Coupled Quantum Dots

In the previous sections two different approximation methods have been de-
scribed and used on H2 as an example. H2, however, is not used as foundation
for a lot of experiments these days. Artificial atoms such as quantum dots are
used in abundance though. It is therefore interesting to test the Heitler-London
approximation on two coupled quantum dots. The following calculations and
approximations are based on the numbers supplied in the article by Zhang et
al[10].

Figure 6: Left: Schematic of the quantum wire quantum dots. Gate 1 and 5
define the outer barrier, while gate 3 controls the interdot coupling. Gate 2 and
4 is used to tune the confinement in each quantum dot. Right: Potential of the
QD’s with a interdot distance of 60 nm, d = 30 nm

In this article, through manipulation of gates along the quantum wire, it
is possible to confine electrons along the wire. As seen in figure 6 Gate 1 and
5 defines the outer barrier while Gate 2 and 4 controls the potential at the
quantum dots. Gate 3 is not used treatment of the system, but it is possible
to control the interdot coupling through that gate. Furthermore, the magnetic
field is ignored since only a magnetic field along the z-axis is considered and
this does nothing but increase the xy-plane confinement. The potential in the
z direction is described as a linear combination of 2 Gaussians.

V (z) = −V0

{
exp

[
− (z − d)2

l2z

]
+ exp

[
− (z + d)2

l2z

]}
where V0 is set to 20 meV, 2d is the distance between the quantum dots, and
lz is the radius of the quantum dots. In the xy plane the system is described as
a parabolic potential

V (ρ) = mω2
ρρ

2/2

where

ωρ = ~/m(D/2)2

with D being the width of the nanowire. The Hamiltonian of the system

Ĥ = ĥ1 + ĥ2 +
e2

4πε0|r1 − r2|

ĥi =
p2
ρi

2m
+ V (ρi) +

p2
zi

2m
+ V (zi).
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In accordance with the Heitler-London approximation, the trial wavefunc-
tions used are:

χ±(r) =
φL(r)± φR(r)√

2(1± S)

for the single particle ground and first excited state, while

Ψ±(r1, r2) =
φL(r1)φR(r2)± φL(r2)φR(r1)√

2(1± S2)

is used for the two particle singlet and triplet state. S denotes the overlap
between the wavefunctions localized in the left and right quantum dots. There
are no indexes since the two wavefunctions are identical and you end up with
2S and 2S2 respectively. The specific expressions for the wavefunctions are

φL/R(r) =
(mωρ
π~

)1/2

exp
[
−mωρ

2~
(x2 + y2)

] (mωz
π~

)1/4

exp
[
−mωz

2~
(z ± a)2

]
.

where

ωz =
√

2V0/ml2z

Single particle Quantum Dots

In the case of the single electron quantum dots scenario we have to get the
normalization and thus the overlap integral.

S = 〈φL|φR〉 =

∫
φ∗L(r)φR(r) d3r

= 0.99 exp−3.66∗1015d2

Figure 7: The overlap S as the distance between the two quantum dots is
increased. It rapidly falls off as the distance d increases, furthermore it is worth
noting that S >> 1

In the case of the single particle particle we have a ground state given by

〈χ+|ĥ|χ+〉 =
1

2 + 2S
〈φL(r) + φR(r)|ĥ|φL(r) + φR(r)〉
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and the first excited state given by

〈χ−|ĥ|χ−〉 =
1

2− 2S
〈φL(r)− φR(r)|ĥ|φL(r)− φR(r)〉.

Calculating these values with the only unknown quantity being the interdot
distance of 2d we get the following plot in figure 9.

Figure 8: Left: Ground state energy of the single particle quantum dots scenario;
Right: First excited energy state of the single particle quantum dots scenario.

Since 〈χ+|ĥ|χ+〉 is the ground state energy it is supposed to always have a
lower energy than the first excited state, luckily, this is also the case as seen in
figure 9.

Figure 9: Single particle quantum dots ground state, E0, and first excited state,
E1. It is clear that the ground state is the lowest energy state, even as d
increases.

So far we’ve known whether the singlet state or the triplet state was the most
energy favourable, however, this is no more the case. To get this information
the singlet triplet splitting is the first thing to calculate.

Two-particle Quantum Dots

Once again we have to get the overlap integral, but in the case of the two-particle
Quantum Dot the wave function consists of

φL(r)φR(r)± φL(r)φR(r)

N±
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and we then get the normalization of N± =
1√

2 + 2S2
. If we wanted to calculate

the singlet and triplet state energies we would have to calculate

〈Ψ+|Ĥ|Ψ+〉 =
1

2 + 2S2
〈φL(r1)φR(r2) + φL(r2)φR(r1)|Ĥ|φL(r1)φR(r2) + φL(r2)φR(r1)〉

for the singlet state energy and

〈Ψ−|Ĥ|Ψ−〉 =
1

2− 2S2
〈φL(r1)φR(r2)− φL(r2)φR(r1)|Ĥ|φL(r1)φR(r2)− φL(r2)φR(r1)〉

for the triplet state energy. Fortunately that is not necessary since all we need
to calculate is the exchange integral. According to the Heitler-London approxi-
mation we have

εs > εt =
C + I

1 + S2
>

C − I
1− S2

and in the case where S � 1, as it is in our case, the sign of I will determine
whether the singlet or triplet energy state is the favourable one. To do this we
do the following

I =
1

2
(E− − E+).

Where

E± = 〈ψ±|
e2

4πε0|r1 − r2|
|ψ±〉

=
1

1± S2
(〈φL(r1)φR(r2)| e2

4πε0|r1 − r2|
|φL(r1)φR(r2)〉

± 〈φL(r1)φR(r2)| e2

4πε0|r1 − r2|
|φR(r1)φL(r1)〉

This is plotted in figure 10, however, due to limited computational power, it
is based on 40 data points with various degrees of convergence. The trend,
however, is still clear in that it decays rapidly with increased interdot distance
d, and furthermore the values are positive. From that it can be concluded
that the most energy favourable state is the singlet and thus the electrons have
opposite spin.

There is clearly a coupling between the two quantum dots, up to several meV
at an interdot distance of 40 nm. It is, however, also clear that this coupling
diminishes as the interdot distance increases, and once the quantum dots is at
a distance of 120 nm the coupling is a factor of 106 lower than at 40 nm.
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Figure 10: The exchange coupling, I, in the two particle quantum dots scenario.
Due to limited computational power the graph is based on a limited number of
data points (40), and slightly varied degrees of convergence.

Conclusion

To conclude we have seen how LCAO was used to successfully describe a H2

molecule giving a good estimate for the binding length, however, the bind-
ing energy was far off. After performing similar calculations but utilizing the
Heitler-London approximation a much improved binding energy was obtained.
The binding length was slightly worse though, and the approximation falls short
when the distance between the two atoms are too short, or, surprisingly, if the
the distance is above 50 Bohr radii.

With this in mind it was used to describe two coupled quantum dots on a
quantum wire. Successfully the one particle ground state and first exited state
was calculated for the two couple quantum dots. Furthermore, in the case of
the two particle coupled quantum dots, the exchange coupling was examined.
Even though the data set could have been improved, had it not been for insuffi-
cient computational power, it showed clearly that the lowest energy state of the
system was the singlet and the electron thus having opposite spin. In addition
it was also clear that as the distance between the two coupled quantum dots
increased, the exchange coupling decayed as would be expected. This method
could be expanded and used on a triple coupled quantum dot to examine the
possibilities of using such a system as a qubit.
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