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Resumé

Siden opdagelsen af Kvante Hall effekten i 1980, har emnet været af stor interesse inden for
faststoffysikken, og mere end 6000 forskningsartikler er blevet udgivet inden for området. I denne
afhandling beskrives de teoretiske aspekter i dette fysiske fænomen, og essentielle elementer
som Hall effekten, dannelsen af Landau niveauer, lokalisering af tilstande og tilstedeværelsen af
strømbærende kanttilstande bliver gennemgået. Et udtryk for konduktansen i 1-dimensionelle
kanaler beregnes ved brug af Landauer-Büttiker formalismen og udtrykket udvides til at beskrive
prøver med flere kontakter. Den heltallige kvante Hall effekt undersøges med dette udtryk og den
kvantiserede Hall modstand og forsvindende longitudinelle modstand udledes i overensstemmelse
med eksperimenter.

Det undersøges, hvordan forskellige kontakter kan påvirke fase kohærente og inkohærente
systemer. I det kohærent regime vises det, at den heltallige kvante Hall effekt kan observeres,
når nogle kontakter er urene og andre rene, men ikke når alle kontakter er urene. I dekohærente
systemer bliver kanttilstandene ækvilibrerede, hvilket medfører, at kontakternes renhed ikke har
nogen indvirkning på observationen af den heltallige kvante Hall effekt.

Det beskrives hvordan elektron-elektron vekselvirkninger fører til energigab ved bestemte
fraktionelle fyldningsgrader, hvilket er det essentielle i den fraktionelle kvante Hall effekt. Kon-
ceptet med strømbærende kantkanaler udvides, så det også gælder i dette regime. Kontakters
indvirkning på effekten diskuteres og for tilpas store og rene prøver, hvor både ækvilibrering
mellem kanalerne finder sted og hvor alle fraktionelle kanaler forbinder kontakterne, vil der ikke
være afvigelser i en FQHE måling.

Abstract

The quantum Hall effect has been a source of great interest ever since its discovery in 1980, and
more than 6000 research articles have been published on the topic. In this thesis, the effect is
described theoretically starting from the Hall effect, the formation of Landau levels, localization
of bulk states and the existence of current carrying edge states. The picture of edge channels is
treated using the Landauer-Büttiker formalism from which the conductance of a perfect channel
is derived. The expression is expanded in order to describe the multiterminal Hall geometry,
and it is used to examine the currents in a integer quantum Hall measurement.

The effect of contact purity is examined in phase coherent and decoherent conductors alike. It
is shown that in a phase coherent sample, the integer quantum Hall effect can be observed when
some contacts are clean and some are disordered, but it breaks down if all contacts are disordered.
In decoherent systems, inelastic scattering equilibrates the edge states in the same way as an
ideal contact, and it is proven that disordered contacts have no effect on the quantization in this
regime.

It is described how the Coulomb interactions between electrons lead to energy gaps at certain
filling factors, which is crucial in the FQHE. The concept of current carrying edge channels is
extended, so that it is valid in the fractional regime. The influence of contacts on the FQHE is
discussed and for the optimal FQHE measurement a sufficiently large and pure sample should
be used, where all fractional channels equilibrate and where the highest filling factor reaches all
contacts.



Acknowledgment

Many thanks to Karsten Flensberg for spending hours explaining and discussing with me.
Thanks to Anne for care and endless patience during the project and to Jes for thorough

proofreading.



Contents

1 Introduction 1

2 The Hall effect 1

3 Landau levels 2
3.1 The quantum mechanical derivation . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Broadening of Landau levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 Edge states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4 Zeeman splitting of the Landau levels . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Landaur-Büttiker formalism 6
4.1 Two-terminal phase coherent conductance . . . . . . . . . . . . . . . . . . . . . . 6

4.1.1 The S-matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1.2 Unitarity of the S-matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1.3 Scattering states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1.4 The Landauer formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.2 The quantum point contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Landauer-Büttiker formalism in multiterminal systems . . . . . . . . . . . . . . . 11

5 The integer quantum Hall effect 12
5.1 Integer quantum Hall effect in phase coherent conductors . . . . . . . . . . . . . 12

5.1.1 Hall geometry with ideal contacts . . . . . . . . . . . . . . . . . . . . . . . 12
5.1.2 Hall geometry conductor with both ideal and disordered contacts . . . . . 13
5.1.3 Four terminal conductor with disordered contacts . . . . . . . . . . . . . . 15

5.2 The quantum Hall effect in macroscopic samples . . . . . . . . . . . . . . . . . . 16
5.3 Limitations in the integer quantum Hall effect . . . . . . . . . . . . . . . . . . . . 17

6 The experimental observation of the QHE 17

7 The fractional quantum Hall effect 18
7.1 Laughlin’s wave function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.2 Edge channels in the FQHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.3 Contact effects in the FQHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

8 Conclusion 21

References 22



1 Introduction

The study of current carrying samples in magnetic fields has been of increasing interest to the
scientific community ever since the discovery of the electromagnetism by H.C. Ørsted in 1820. In
1879, it was observed that a transverse voltage difference builds up, when a conducting sheet is
placed in a magnetic field, which is denoted the Hall effect. A century later, quantum oscillations
had been observed in similar setups, but in 1980, von Klitzing showed the exact quantization
of the Hall resistance at values h

Ne2
for integer N in a 2DEG in strong magnetic fields [1]. The

theoretical explanations of the IQHE followed in the years after the experimental observation.
Halperin demonstrated that current-carrying edge states played a crucial role [2], and Büttiker
calculated the current in these perfect edge channels for multiterminal conductors, and found
the quantized values in agreement with the experiments [3][4]. The IQHE is going to play an
important role in metrology in the mid 2010s, because it can be used to define the kilogram with
great accuracy (according to Klitzing in his Nobel lecture, April 10, 2013).

Only a few years after the discovery of the IQHE, Tsui et al. observed plateaus in the
Hall resistance at fractional values of N [5]. The theory of the fractional quantum Hall effect
was strongly influenced by Laughlin, who pointed out that the Coulomb interactions between
electrons played a crucial role, and he came up with a wave function which described the stable
fractional states remarkably well. The FQHE has great similarities to the IQHE, and the picture
of current carrying edge channels was extended by Beenakker in 1990 [6]. Nobel Prizes have
been awarded both for the integer and fractional quantum Hall effects, and research is still being
done on the topic.

In this thesis, the fundamental theory needed to verify that the current in the integer quan-
tum Hall effect is carried by edge states is described and the perfect-channel-picture is treated
using the Landauer-Büttiker formalism. The effects of the contact purity is discussed in both
phase coherent and decoherent regimes. The formation of stable states at certain fractional
filling factors in very strong magnetic fields is discussed, and a picture of edge channels valid in
this regime is shown. A multiterminal Landauer-Büttiker expression is derived and the contact
effects in the FQHE is discussed. The starting point will be the ordinary Hall effect.

2 The Hall effect

When a current carrying sample is placed in a weak magnetic field perpendicular to the current,
the moving charges get affected by the Lorentz force. If the current is in the x-direction and
the magnetic field in the z-direction, electrons are forced toward the −y-direction as shown on
figure 1. A charge difference builds up, which causes an electric field in the −y-direction, and
at some point the force from the electric field on the electrons cancels the Lorentz force. This
means that the current will flow in the x-direction in the same way as without a magnetic field,
while no current flows in the y-direction. The charge difference gives rise to a transverse Hall
voltage Vy (fig. 1).

The effect can be described mathematically using the Drude model, in which electrons in a
solid are considered free. The electrons do not feel any Coulomb interactions, and move freely
for a collision time τ after which they scatter. When placing such an electron with mass m in
an electromagnetic field, the equation of motion reads

m
dvd
dt

= −e(E + vd ×B)− mvd
τ

, (2.1)

where vd is the drift velocity. In the stationary state, there is no change in the velocity and for
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a two-dimensional system the electric fields are(
Ex
Ey

)
=

(
−m/eτ −B
B −m/eτ

)(
vd,x
vd,y

)
(2.2)

=

(
m/e2neτ B/ene
−B/ene m/e2neτ

)(
jx
jy

)
, (2.3)

where the current density is j = −enevd, with ne being the electron density. As explained, there
is no current flowing in the y-direction in the stationary state. The so-called longitudinal and
Hall resistivities can be read off from the resistivity tensor in equation 2.3:

ρxx =
m

e2neτ
=

1

σ0
, (2.4)

ρyx = − B

ene
. (2.5)

Thus, there is no magnetoresistivity in the x-direction with resistivity given by the inverse
drude conductivity σ0, while the Hall resistance is proportional to the magnetic field. The
constant RH =

Ey
jxB

= − 1
ene

is denoted the Hall coefficient. A Hall measurement is used to
characterize semiconductor films, as both the electron density ne and the mobility µ = eτ

m
can be determined. The Hall effect was discovered by Edwin Hall in 1879, when he did a
current/voltage measurement on a rectangular gold sheet placed in a magnetic field [8]. This
was about a decade before the Lorentz force was derived, so he could not describe the effect at
this point. The experimental observation of the classical Hall effect is seen in the weak magnetic
field in figure 9a.

3 Landau levels

As a homogeneous magnetic field only affects electron motion in two dimensions, two dimensional
electron gases (2DEG) will be used throughout this thesis. A 2DEG rises experimentally in a
heterojunction between a n-type (AlGaAs) and an intrinsic (GaAs) semiconductor. The Fermi
energy is between the valence and the conduction bands, but in the junction the conduction
band is below Fermi energy. At sufficiently low temperatures, the electrons are in only one
particular mode in the direction perpendicular to the junction, thus the electrons are confined
to two dimensions.

When a high mobility sample is placed in a strong magnetic field, electrons move in circular
orbits due to the Lorentz force. This was not possible in the Hall effect described in the previous
section, as the electrons scattered before completing the orbits. A simple classical calculation of
the energy of the system can be done, in which it is used that the circumference of the orbit must

j

Vx

B

F

Vy
z

y

x
v
dr

orbit

Figure 1: A Hall measurement with current flowing in the x-direction in a magnetic field in the z-direction.
The moving electrons are forced to one side of the sample due to the Lorentz force so that a transverse voltage
difference Vy builds up, depending on the strength of the magnetic field. From [7].
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3.1 The quantum mechanical derivation

be equal to an integer n times the wavelength (nλ = n h
mv = 2πrc). By using that the velocity is

v = rcωc where ωc is the cyclotron frequency, the kinetic energy is found to be E = 1
2nh̄ωc. This

calculation illustrates that the continuous energy turns into discrete energy levels, but to get the
correct result the problem has to be treated quantum mechanically (the quantum mechanical
derivation is done with inspiration from [9][7]).

3.1 The quantum mechanical derivation

For electrons in a magnetic field, the Lorentz force is incorporated into the Hamiltonian by
replacing the canonical momentum p with the kinetic momentum p + eA, where A is the
vector potential. The magnetic field is given by the curl of the vector potential (B = ∇×A).
Considering free noninteracting electrons in a magnetic field

1

2m

(
h̄

i
∇ + eA

)2

ψ(r) = εψ(r) . (3.1)

For a magnetic field in the z-direction, different vector potentials can be chosen, e.g. the Landau
gauge A = B0(0, x, 0) and the symmetric gauge A = 1

2B0(−y, x, 0). Here the Landau gauge is
used, and for a two dimensional system the Hamiltonian becomes

H =
p2
x

2m
+

(py + exB0)2

2m
(3.2)

=
p2
x

2m
+

p2
y

2m
+

1

2
mω2

cx
2 + pyωcx , (3.3)

where ωc = eB0
m is the cyclotron frequency. By using that the wave function is that of a free

particle in the y-direction

ψ(x, y) = u(x)eikyy , (3.4)

the energy can be found in the following way:

Hψ = eikyy

(
p2
x

2m
+
h̄2k2

y

2m
+

1

2
mω2

cx
2 + h̄kyωcx

)
u(x) = εu(x)eikyy , (3.5)

(
p2
x

2m
+

1

2
mω2

c

(
x+ l20ky

)2)
u(x) = εu(x) , (3.6)

where l0 =
√

h̄
mωc

is the magnetic length. Equation (3.6) is recognized as the Schrödinger
equation for a one dimensional harmonic oscillator with frequency ωc centered around x0 =
−l20ky. Thus, the energy of electrons become discrete in a magnetic field with values

εn =
(
n+ 1

2

)
h̄ωc , (3.7)

where n = 0, 1, 2... In 1930, Lev Landau was the first to derive this expression for quantized
energy steps using the symmetric gauge [10]. The energy levels are therefore known as Landau
levels. The electrons which had energies in the interval [0; h̄ωc] without the magnetic field
collapses into the the lowest Landau level n = 0. The electrons in the energy interval [h̄ω; 2h̄ωc]
collapses into the next Landau level n = 1 and so on. As the magnetic field is increased, more
and more electrons collapses into each LL, because ωc = eB

m . The degeneracy of each LL can
be determined from the allowed values of ky and in the above described picture, the degree of
degeneracy is the number of harmonic oscillators with the same quantum number n but with
different locations, as x0 = − h̄

mωc
ky. Since the location of the oscillators has to be inside the

sample 0 < x0 < Lx the ky-values have to fulfill the inequality −mωc
h̄ Lx < ky < 0. Using
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3.2 Broadening of Landau levels

E

D(E)

E

D(E) hωc

E

D(E) hωc

ext ext ext

loc loc loc

(a) (b) (c)

Figure 2: The density of states of electrons in zero magnetic field (a) and in a magnetic field without (b) and
with (c) disorder. In (c), the states around half filling factor are extended, while the states around integer filling
factor are localized. (c) is from [11].

periodic boundary conditions, each ky-value take the space 2π/Ly and the number of states in
each Landau level nL per unit area is

nL =
1

A
mωc
h̄

Lx

(
2π

Ly

)−1

=
eB

h
. (3.8)

To keep track of the number of filled Landau levels, the filling factor ν is introduced

ν =
ne
nL

=
hne
eB

, (3.9)

where ne is the electron density. When the filling factor is an integer i, the i lowest Landau
levels are completely filled, while the higher Landau levels are all empty. Notice that the filling
factor depends both on the magnetic field and the electron density, which means that it can be
altered experimentally in two ways.

The density of states D(E,B) for the described system of free electrons is shown for B = 0
and in a fixed finite magnetic field in fig 2a and 2b respectively. The density of states is given
by

D(E,B) = nL
∑
n

δ(E − εn) (3.10)

=
eB

h

∑
n

δ

(
E − (n+ 1

2)h̄
eB

m

)
. (3.11)

If instead the energy is fixed at the Fermi energy and the magnetic field is changed, the delta
peaks appear periodically in 1/B. In the derivation of Landau levels, scattering has been ignored.
In the next section, it is discussed that the density of states does not consist of perfect delta
peaks when taking the existence of impurities into account.

3.2 Broadening of Landau levels

The sharp delta function in the density of states shown in figure 2b is only valid for pure systems.
In a disordered sample, the elastic scattering processes broaden the Landau levels as shown in 2c.
The semiclassical explanation is that the trajectories of the electrons that collide with impurities
can differ from the perfect orbits as for free electrons. They are therefore allowed to have energies
that differ from the Landau levels.

From the above semiclassical consideration, for a model where no edge effects are considered,
the electrons in the energy area between two Landau levels are trapped in the vicinity of an
impurity. Thus these states are strongly localized in space which, is indicated in figure 2c. The
states with energies around the Landau levels are extended which can be shown from computer
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3.3 Edge states

simulations [12]. In section 3.3 this will be illustrated, when a potential is added in the derivation
of Landau levels and it is shown that states at the edges are extended at all energies.

On increasing the magnetic field at a fixed energy, these broadened peaks in the density of
states become further separated and more intense, according to equation (3.11). For sufficiently
strong magnetic fields the oscillations in the density of states can be observed in a Hall measure-
ment in both the longitudinal and the transverse resistivities. This is known as the Shubnikov-de
Hass effect and it is observed around 0.5T < B < 1.5T in the data presented in figure 9 (section
6). The calculation of these oscillations is rather complex and not of interest for the purpose of
this thesis, so it will not be described any further.

3.3 Edge states

The importance of edge effects in the description of the integer quantum Hall effect was shown by
Halperin in 1982 [2]. This can be demonstrated by adding a potential energy to the Hamiltonian
in equation (3.2). Both in the vicinity of impurity atoms and near the edges, there is an increase
in the potential energy, which can take shape as illustrated in figure 3a. For strong magnetic
fields the cyclotron frequency ωc becomes large, which means that the harmonic oscillator states
are very localized around x0. For potential energies that vary sufficient slowly, it is therefore
reasonable to assume that the potential is constant for each harmonic oscillator φ(x) ≈ φ(x0).
The addition of the confinement potential in the x-direction gives the energies

εn(xo) = h̄ωc(n+ 1
2) + φ(x0) . (3.12)

The Landau levels therefore get lifted as illustrated in figure 3b, because x0 = − h̄
mωc

ky. The
drift velocity can be found from the slope of the energy dispersion, which gives

vy =
1

h̄

∂εn(ky)

∂ky
= − 1

mωc

∂φ(x)

∂x

∣∣∣
x=x0

= − 1

eB

∂φ(x)

∂x

∣∣∣
x=x0

. (3.13)

Thus the electron velocity is proportional to the negative slope of the potential energy. It is
the electrons around the Fermi energy that contribute to the net current, which means that the
intersections between the Fermi energy and the dispersions are the points of interest. For the
Fermi energy shown in 3b, the bulk states are localized around impurities, which is shown in
figure 3c. This agrees with the discussion of localized bulk states in section 3.2. The impurities
play a crucial role in the quantum Hall effect, because of this localization. At the edges, the
states are extended at all energies. In the situation depicted in fig. 3b, the edges of two Landau
levels intersect with the Fermi energy, which means that two edge states can contribute to the
conductance. Because of the localized states in the bulk, electrons are not allowed to cross the
sample from one edge to the other. As electrons move in the same direction at each edge, this
makes it impossible for an electron to backscatter. The above described picture is valid, when
the filling factor ν is around an integer number, because the bulk states are localized in this

ε
n
(ky)

EF

(a) (b) (c)φ(x)

x ky

n=2

x

y

B

n=1

Figure 3: The confinement potential of a disordered sample with a finite size in the x-direction (a). The
potential energy is added to the Landau levels in (b), and as the electron velocity is proportional to the negative
dispersion slope, the electrons move in space as illustrated in (c). In the bulk, the states are localized around
impurities, while they are unidirectional along the edges.
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3.4 Zeeman splitting of the Landau levels

region. In an effort to describe the conductance through these perfect edge channels, which will
lead to the integer quantum Hall effect, the Landauer-Büttiker formalism is introduced in the
next section.

Around half filling factor (where the Fermi energy is at a Landau level) the states in the bulk
overlap, which makes it possible for electrons to cross between the two edges. In other words,
the states in the bulk become extended at half filling factor, which is consistent with fig 2c and
the explanation in section 3.2. In this regime, the picture of ideal edge channels breaks down.

In the potential depicted in figure 3a, the electrostatic between electrons has been neglected.
When taken into account, the potential become more sharp due to the screening effect [13].

3.4 Zeeman splitting of the Landau levels

So far the effect of the electron spin has not been taken into account. Energy levels, which are
spin degenerate in zero magnetic field, split up when a magnetic field is applied. Thus, the effect
has to be taken into account when discussing the quantum Hall effect. The energies become

εnσ =
(
n+ 1

2

)
h̄ω + φ(x0)− 1

2geµBBσ , (3.14)

where µB = eh̄
2m is the Bohr magneton, ge is the spin g-factor, and σ = ±1 is the spin orientation.

When the conductance is derived in the channel picture in section 4 the spin effect is neglected
as a starting point, but it is incorporated into the important expressions in the end.

4 Landaur-Büttiker formalism

The picture of current carrying channels can be treated in the Landauer-Büttiker formalism. For
simplicity, the starting point will be a two-probe system, which is used to derive the important
Landauer formula that describes the conductance in the channel formalism. The two-terminal
quantum point contact, in which perfect channels exists, is described in section 4.2 and the
Landauer formula is expanded to describe a multiprobe system such as the Hall bar in subsection
4.3. This section is written with great inspiration from [14].

4.1 Two-terminal phase coherent conductance

We will start to examine a mesoscopic region connected by perfect leads to two reservoirs, as
shown in figure 4. In a mesoscopic region the inelastic scattering length is longer than the sample
size and the transport through the sample is therefore phase-coherent. Electrons coming from
reservoir 1 are therefore distributed according to the distribution function of reservoir 1. If these
electrons reach reservoir 2, they become equilibrated at the chemical potential and temperature
of reservoir 2. This is ensured by using macroscopic conductors as reservoirs, so that the entering
electrons scatter inelastically and thereby become equilibrated. By using reflectionless contacts,
so that all electrons leaving the mesoscopic region enter the reservoirs, the contacts are denoted
clean according to the nomenclature of Büttiker [4]. In sections 5.1.2-5.2 the effects of disorder
at a contact is discussed.

The leads in figure 4 are set to be parallel to the x axis, and in the leads the electrons are
only allowed to be in an area A in the y-z plane with impenetrable walls at the boundary. It is
therefore a 2-dimensional-particle-in-a-box problem in the z-y plane, which has the solution of
plane waves χn with corresponding discrete energies εn. For lead α = 1, 2 the Hamiltonian and
the eigenstates read

Hα =
p2
x

2m
+
p2
⊥

2m
, r⊥ ∈ A , (4.1)

φ±αnE(x, r⊥) =

√
m

2πh̄2

1√
kn(E)

χn(r⊥)e±ikn(E)x, (x, r⊥) ∈ α , (4.2)
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4.1 Two-terminal phase coherent conductance

a
1

b
1

1 2

Mesoscopic

region
Lead 1 Lead 2Reservoir 1 Reservoir 2

a
2

b
2

Figure 4: A mesoscopic region is connected to two reflectionless reservoirs at chemical potentials µ1 and µ2 by
perfect leads. The wavefunction in lead α = 1, 2 can be written as a superposition of the incoming and outgoing
waves (equation (4.6)) with coefficients aα and bα respectively.

where the plus states move to the right and the minus states move to the left both with the

wavenumber kn(E) =

√
2m(E−εn)

h̄ . Each of the eigenstates can carry a current and the positive
integer n can therefore be seen as a channel index. An eigenstate with a sufficiently large number
n > M is never occupied by an electron, and the lead α is therefore said to have Mα channels.

The eigenstates are normalized in such a way, that they all carry the same current. When an
eigenstate is inserted into the current operator, the result has units of current per energy, but
when summing up the contributions from more eigenstates, the current unit appears. This is
seen by converting the k-sum. A sum over k for eigenstates with the usual normalization φ̃k =
eikx/

√
L can be written as

∑
k〈φ̃k|A|φ̃k〉 →

L
2π

∫∞
0 dk〈φ̃k|A|φ̃k〉. In the chosen normalization,

the sum becomes ∑
k

〈φαnE |A|φαnE〉 →
1

2π

2πh̄2

m

∫ ∞
0

dk k〈φαnE |A|φαnE〉 (4.3)

=
h̄2

m

∫ ∞
0

dE
k

dE/dk
〈φαnE |A|φαnE〉 (4.4)

=

∫ ∞
0

dE〈φαnE |A|φαnE〉 . (4.5)

This is used in section 4.1.4, when the current is calculated. The states are labeled with E
instead of k because of this normalization.

The wavefunctions in lead α can be written as a superposition of the eigenstates (equation
(4.2)) with coefficients aαn and bαn for incoming and outgoing waves respectively where n denotes
the channel. At energy E,

ψE(x, r⊥) =


∑

n a
1
nφ

+
1nE(x, r⊥) +

∑
n b

1
nφ
−
1nE(x, r⊥) , (x, r⊥) ∈ Lead 1 ,

ψMSR,E(x, r⊥) , (x, r⊥) ∈ MSR ,∑
n b

2
nφ

+
2nE(x, r⊥) +

∑
n a

2
nφ
−
2nE(x, r⊥) , (x, r⊥) ∈ Lead 2 ,

(4.6)

where MSR denotes the mesoscopic region. The current through the leads is the same as
the current through the mesoscopic region, which means that it is not necessary to know the
wavefunction ψMeso,E(x, r⊥) in order determine the conductance. Instead, the coefficients for the
outgoing waves can be related to the coefficients of the incoming waves through the amplitudes
of reflection and transmission in this region in the so-called S-matrix.

4.1.1 The S-matrix

Consider an electron that enters the system in figure 4 in the lowest energy channel in the lead
1, a1

1 = 1. In the mesoscopic sample the electron can either be reflected back into lead 1 in the
n’th channel with the reflection amplitude rn1 or it can be transmitted into the n’th channel in

7



4.1 Two-terminal phase coherent conductance

lead 2 with the amplitude tn1. The equivalent happens if the electron comes from lead 2, where
the amplitudes for getting reflected or transmitted from channel n to n’ are r′n′n and t′n′n . For
a simple case with only two channels in each lead, the outgoing coefficients can be determined
in the following way 

b11
b12
b21
b22

 =


r11 r12 t′11 t′12

r21 r22 t′21 t′22

t11 t12 r′11 r′12

t21 t22 r′21 r′22



a1

1

a1
2

a2
1

a2
2

 . (4.7)

The 4 × 4 matrix is called the scattering matrix or the S-matrix. For the more general case
with M channels, the coefficients can be written as vectors, e.g. b1 = (b11, b

1
2, ..., b

1
M ) and the

S-matrix can be separated into four M ×M submatrices: two reflection matrices r and r′ and
two transmission matrices t and t′.

cout =

(
b1

b2

)
=

(
r t′

t r′

)(
a1

a2

)
= Scin (4.8)

This formalism can be used to define some new states, so-called scattering states, where an
incoming coefficient is set to 1 and the outgoing coefficients are found from the S-matrix. These
states are described in subsection 4.1.3.

4.1.2 Unitarity of the S-matrix

Due to current conservation, the amount of incoming waves has to equal the amount of outgoing
waves. In terms of the coefficients

∑
n(|b1n|2 + |b2n|2) =

∑
n(|a1

n|2 + |a2
n|2), which can also be

written as c†outcout = c†incin. On rewriting this quantity in the following way

c†outcout = c†outScin = c†inS
†Scin , (4.9)

it is seen that S†S = 1, which means that the S-matrix is unitary. Writing this out explicitly

S†S =

(
r† t†

t′† r′†

)(
r t′

t r′

)
= 1 =

(
r t′

t r′

)(
r† t†

t′† r′†

)
= SS† , (4.10)

it is more easily seen that

r†r + t†t = rr† + t′t′
† . (4.11)

Taking the trace on both sides in equation (4.11) and realizing that the trace can be rewritten
in the following way Tr[r†r] =

∑
nn′ |rnn′ |2 = Tr[rr†] it is found that

Tr[t†t] = Tr[t′†t′] , (4.12)

which will be used, when deriving the conductance in section 4.1.4.

4.1.3 Scattering states

In order to determine the conductance through the mesoscopic region it is not necessary to
know the particular wavefunction ψMSR,E , but it can be determined from the reflection and
transmission coefficients shown in section 4.1.1. A useful way is to introduce states, where only
one wave is incoming in lead α in channel n (aαn = 1). The outgoing coefficients can be found
by applying the S-matrix to this state. For a wave incoming in lead 1 in channel n,

ψ1nE(x, r⊥) =

{
φ+

1nE(x, r⊥) +
∑

n′ rn′nφ
−
1n′E(x, r⊥) (x, r⊥) ∈ Lead 1∑

n′ tn′nφ
+
2n′E(x, r⊥) (x, r⊥) ∈ Lead 2 , (4.13)

8



4.1 Two-terminal phase coherent conductance

where the unknown wavefunction ψMSR,E(x, r⊥) in the middle region has been excluded. These
states are called scattering states and for an incoming wave in channel n in lead 2 the scattering
state is

ψ2nE(x, r⊥) =

{ ∑
n′ t′n′nφ

−
1n′E(x, r⊥) (x, r⊥) ∈ Lead 1

φ−2nE(x, r⊥) +
∑

n′ r′n′nφ
+
2n′E(x, r⊥) (x, r⊥) ∈ Lead 2 . (4.14)

These scattering states are useful in order to derive the conductance, which is done in the next
section.

4.1.4 The Landauer formula

The electric current carried by a wavefunction Ψ(x, r⊥) through a cross-section A can be found
using the following expression

I = − eh̄

2mi

∫
A
dr⊥

[
Ψ∗(x, r⊥)

(
∂xΨ(x, r⊥)

)
−
(
∂xΨ∗(x, r⊥)

)
Ψ(x, r⊥)

]
. (4.15)

This expression can be derived from the continuity equation. By inserting a scattering state
from equation (4.13), the electric current per energy carried by this state can be determined.
For an incoming state in channel n in lead 1

I1nE = − eh̄

2mi

∫
A
dr⊥[ψ∗1nE(∂xψ1nE)− (∂xψ

∗
1nE)ψ1nE ] (4.16)

= − e

2ih

∫
A
dr⊥

[(
1√
kn
χ∗ne

−iknx +
∑
n′

r∗n′n
1√
kn′
χ∗n′eikn′x

)

×

(
i
√
knχne

iknx − i
∑
n′′

rn′′n

√
kn′′χn′′e−ikn′′x

)

−

(
−i
√
knχ

∗
ne
−iknx + i

∑
n′′′

r∗n′′′n

√
kn′′′χ∗n′′′eikn′′′x

)

×

(
1√
kn
χne

iknx +
∑
n′′′′

rn′′′′n
1√
kn′′′′

χn′′′′e−ikn′′′′x

)]
(4.17)

= − e

2h

[
1−

∑
n′′

δnn′′rn′′n

√
kn′′
√
kn

e−iknxe−ikn′′x + r∗nne
2iknx −

∑
n′

r∗n′nrn′n

+ 1 + rnne
−2iknx − r∗nne2iknx −

∑
n′′′

r∗n′′′nrn′′′n

]
(4.18)

= − e
h

[
1−R11

n

]
= − e

h
T 21
n . (4.19)

where the energy dependence of kn has been suppressed to simplify the notation. The total
probability that the wave incoming in channel n is reflected into any other channel n′ in lead 1
is introduced Rααn =

∑
n′ |rn′n|2. The amount that is not reflected has to be transmitted and

the total transmission probability from lead 1 to lead 2 is introduced T 21
n . This transmission

probability can also be expressed using the following matrix element T 21
n = (t†t)nn. From

equation (4.17) to (4.18) it is used that the transverse eigenfunctions are orthonomal, so that
the integration over χ∗nχn′ gives one when n and n′ are equal and zero if they are not equal.
For simplicity, the Kronecker’s delta has only been written explicitly in one term. The electric
current per energy carried by scattering states coming from lead 2 can be derived in the same
way, which yields
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4.2 The quantum point contact

I2nE =
e

h

[
1−R22

n

]
=
e

h
T 12
n . (4.20)

The total electric current is found by summing up all current contributions from all channels
and incoming in both leads and integrating over the energy. In the definition of the scattering
states, it is assumed that all incoming waves have the coefficient 1, which means that it is certain
that such a state is occupied |aαn|2 = 1. As mentioned earlier, electrons incoming from reservoir
α are distributed in energy in the same way as in this reservoir. Each current contribution
therefore has to be multiplied by the Fermi-Dirac distribution function for the incoming lead.
Thus the total electric current is

I = − e
h

∑
n

∫ ∞
0

dE
[
T 21
n f(E − µ1)− T 12

n f(E − µ2)
]
, (4.21)

= − e
h

∫ ∞
0

dE Tr[t†t] [f(E − µ+ eV1)− f(E − µ+ eV2)] . (4.22)

Here the expression (4.12) found from the unitarity condition of the S-matrix is used, because∑
n T

21
n =

∑
n(t†t)nn = Tr[t†t] = Tr[t′†t′]. The current is now expanded in eV around µ,

which is valid for small voltages. It is used that the Fermi-Dirac distribution function becomes a
Heaviside step function, which is 1 below and 0 above the Fermi energy, when the temperature is
very low. The derivative of the distribution function is therefore a negative Dirac delta function

I = − e
h

∫ ∞
0

dE Tr[t†t]
∂f

∂E

∣∣∣
µ
(eV1 − eV2) (4.23)

T→0
=

e2

h
Tr[t†t](V1 − V2) . (4.24)

The transmission matrices actually depend on energy, which has been suppressed so far. For
sufficiently low temperatures and voltages it is reasonable to assume that they are constant in
energy, so that the above integration is valid. The conductance is G = I/(V1 − V2), which gives
the Landauer formula:

G =
e2

h
Tr[t†t] =

e2

h

∑
n

T 21
n . (4.25)

The spin degree of freedom has not been taken into account so far to keep the notation simple. In
order to do so, the trace has to include a trace over the spin orientations; G = e2/h

∑
nσ T

21
nσ =

e2/h
∑

nσ

∑
n′σ′ |tn′n,σ′σ|2. This just gives twice as many channels with the same factor e2

h in
front. In the quantum point contact, which is discussed in the next section, the states are spin
degenerate, so that a factor of 2 appears. Except for the section about the QPC, the spin index
will be included in n so that equation (4.25) still holds.

An interesting thing about the Landauer formula is that a perfect channel contributes with
e2

h to the conductance. In order to describe the conductance of the perfect edge channels in the
quantum Hall effect, a Landauer-Büttiker formula valid for multiprobe systems is needed. This
is derived in section 4.3 but first the quantum point contact, in which perfect channels can be
observed, is described.

4.2 The quantum point contact

In 1988, both van Wees et al. and Wharam et al. measured the conductance through a bal-
listic 2DEG on top of which they put two gate electrodes [15][16]. The situation is illustrated
schematically in figure 5a. By varying the gate voltage in such a setup, the confinement potential
of the electrons can be controlled. Without going into any mathematical details, the transverse
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4.3 Landauer-Büttiker formalism in multiterminal systems

V1 V2

Gate voltage ( V)

G
(2
e

2
/h

)

2 1.8 1.6 1.4 1.2 1
0

2

4

6

8

10

Gate voltage (V)

Gate voltage ( V)
(a) (b)

I

Figure 5: A schematic illustration of a quantum point contact connected to current source and drain at the
voltages V1 and V2 (a). The conductance through a QPC varies in steps of 2e2

h
when changing the gate voltage

(b). (b) is reprinted data from [15].

direction in the leads can be thought of as a 1D particle in a box. In the middle region, the gate
voltage squishes the hard walls together and thereby the transverse kinetic energies are raised.
For a sufficiently large negative gate voltage, none of the electrons coming from the current
source (reservoir 1) have enough energy to pass through this middle region. When the gate
voltage is reduced, the discrete energy levels of the 1D particle in a box in the middle region are
lowered as well. At some point, the lowest energy level ε1 becomes lower than the energy of the
incoming electrons in the middle region, which means that the electrons in this channel have a
100% chance of being transmitted.

The data from van Wees et al. is shown in figure 5b, where it is seen that electrons can
propagate through the constriction in the lowest channel n = 1 with perfect transmission around
a gate voltage Vg = −2, 05V . By varying the gate voltage, the number of available channels can
be modified which is the reason for the staircase shape of the data. For N available channels,
the conductance is

G =
2e2

h
N . (4.26)

Notice the factor of 2, which comes from the spin degeneracy of each channel. It is remarkable
to notice that even though the 2DEG is ballistic, there is a resistance R = h

2e2
associated with

each channel. This is often called the contact resistance and it can be explained in the following
way: An electron coming from the current source does not lose any energy in the QPC, but
when it reaches the current drain, it relaxes and thus thermal energy is generated.

4.3 Landauer-Büttiker formalism in multiterminal systems

The derivation of the Landauer formula for multiterminal systems is similar to that of the two
probe system. Notice that channels with different spin orientations have different numbers n
in this section. The electric currents per energy carried by the scattering states (αnE) and
(β 6= α, nE) in lead α are given by

IααnE = − e
h

∑
β 6=α

T βαn , IαβnE =
e

h
Tαβn . (4.27)

The total electrical current in lead α is found by summing up the current contributions multiplied
by the distribution functions of the incoming reservoirs
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Iα =
∑
βn

∫ ∞
0

dE IαβnE f(E − µ+ eVβ) (4.28)

= − e
h

∑
β 6=α,n

∫ ∞
0

dE
[
T βαn f(E − µ+ eVα)− Tαβn f(E − µ+ eVα)

]
(4.29)

T→0
=

e2

h

∑
β 6=α

(T βαVα − TαβVβ) , (4.30)

where Tαβ =
∑

n T
αβ
n is the total transmission probability from lead β to α. For the multiprobe

system the total transmission probability is not necessarily the same from contact α to β as
from β to α, which was the case for the two probe system (see equation (4.12)). In the literature
equation (4.30) is often written as

Iα =
e2

h

(Mα −Rαα)Vα −
∑
β 6=α

TαβVβ

 , (4.31)

where Mα is the number of channels in lead α and Rαα =
∑M

n Rααn is the total reflection
probability of the incoming waves. Due to current conservation and the fact that no voltage
difference between contacts lead to no currents, the following relations appear

(Mα −Rαα)−
∑
β 6=α

T βα = 0 , (Mα −Rαα)−
∑
β 6=α

Tαβ = 0 . (4.32)

The formulas presented in this section will be used in the following to describe the currents in
a Hall bar.

5 The integer quantum Hall effect

The integer quantum Hall effect arise when using the multiprobe Landauer Büttiker formalism
on a system of Hall geometry in the region of integer filling factor, where edges conduct as
perfect channels. The effects of decoherence and contact disorder is discussed in order to show
that the IQHE can be done with almost no sources of error. The simplest example, which is
done in textbooks, is to assume that all contacts in a Hall bar are ideal (e.g. [11]). This will be
the starting point.

5.1 Integer quantum Hall effect in phase coherent conductors

5.1.1 Hall geometry with ideal contacts

As mentioned, the simplest example is to assume that all contacts in a Hall measurement are
clean as shown in figure 6, where contact 1 is the current source and contact 4 the current
drain. There are N edge states available, and for simplicity holes are said to carry the current
to avoid confusion with the direction of the electric current. The holes coming from contact 1,
equilibrated at the voltage V1, follow the upper edge as explained earlier with no probability of
being scattered to the other edges, and all of them are absorbed into contact 2. As the current
from reservoir 1 into a perfect channel is e

2

h V1, the current into the N edge states is e
2

h NV1. Thus,
equation (4.30) becomes very simple as T β1 = 0 for β 6= 2 and T 21 = N , while the incoming
current in contact 1 only comes from contact 6, T 16 = N . In matrix form equation (4.30) for
this example is
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5.1 Integer quantum Hall effect in phase coherent conductors

V2 = V1 V3 = V1

V5 = V4V6 = V4

V1 V4

Figure 6: A Hall bar connected to six reservoirs in an ideal manner. The contacts 1 and 4 are considered the
current source and drain respectively, while no net current flows in the other contacts. The arrows indicate the
direction of the electric current.



I1

I2

I3

I4

I5

I6

 =
e2

h



N 0 0 0 0 −N
−N N 0 0 0 0

0 −N N 0 0 0
0 0 −N N 0 0
0 0 0 −N N 0
0 0 0 0 −N N





V1

V2

V3

V4

V5

V6

 . (5.1)

The total current is I = I1 = −I4 = (e2/h)N(V1 − V4). As contact 1 and 4 are current source
and drain, there is no current carried by the other contacts, which leads to V1 = V2 = V3 and
V4 = V5 = V6 from (5.1). This means that there is no potential drop between e.g. contacts 2
and 3 and thus there is no longitudinal resistance

RL = R14,65 =
V6 − V5

I
= 0 , (5.2)

where the first two indices (14) in the resistance indicate the current flow and the last two indices
(65) indicate where the voltage is measured. The Hall resistance is

RH = R14,26 =
V2 − V6

I
=

h

e2

1

N
. (5.3)

This spectacular result that the longitudinal resistance disappears and the Hall resistance is
quantized around integer filling factors is denoted the integer quantum Hall effect. Experimental
results will be shown in section 6. In this simplified textbook example, even the resistance R14,14

has the same values as the Hall resistance. The situation becomes more complicated, when all
contacts are not considered ideal.

5.1.2 Hall geometry conductor with both ideal and disordered contacts

Following the work done by Büttiker [4], a more complicated situation is now considered where
the current source and drain are disordered as shown in figure 7a. It will be shown in section 5.2,
that this problem is almost identical to the problem, where all contacts are considered disordered
in a macroscopic sample. The problem will therefore be discussed thoroughly.

A disordered contact can be thought of as an ideal contact with a disordered region separating
the reservoir and the sample. The contact can be treated in the same way as the two-terminal
sample in section 4.1, where the total transmission and reflection probabilities for holes coming
from the sample are Tα and Rα. Holes coming from reservoir α have the total probabilities T ′α
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5.1 Integer quantum Hall effect in phase coherent conductors

V1

V2 V3=V2

V1

V5=V6V6

T1

R1

T4

R4

I1 I1 I1

I2 I2 I2

V2

V6
V4V4

V=0

(a) (b)

Figure 7: a) A Hall bar with disordered current source and drain (contact 1 and 4 respectively). A current
I1 flows along the upper edge, while a current I2 flows along the lower edge. b) The currents injected by each
reservoir can be expressed using the voltage differences with respect to any voltage of choice. Relative to a zero
point, all of the green pillars indicate the currents, while the currents relative to V4 are light green.

and R′α. Current conservation requires that N = Tα + Rα and Mα = T ′α + R′α, where N is the
number of edge states and Mα is the number of channels in lead α. Due to the condition in eq.
(4.12) the two total transmission probabilities are equal T ′α = Tα.

Consider first the current I1 from contact 1 to contact 2 as shown in figure 7a. The holes
penetrating the disordered contact from reservoir 1 contributes to this current, but also holes
from reservoir 6 that are reflected at contact 1 contribute. Due to the phase coherent transport,
the holes maintain the distribution functions of the incoming reservoirs, and thus it does not
make sense to talk about an equilibrated chemical potential between these contacts. Reservoir
2 and 3 injects the current I1 or expressed another way e2

h NV2 and e2

h NV3, respectively. Hence
the contacts have the same voltage, V2 = V3. The current along the upper edge is

I1 =
e2

h
T1V1 +

e2

h
R1V6 =

e2

h
NV2 . (5.4)

A similar expression for the current I2 along the lower edge can be found. Here holes from
reservoir 3 and 4 contributes to the current between contact 4 and 5 and because reservoir 5
and 6 injects the same current, V5 = V6. The current along the lower edge is

I2 =
e2

h
R4V2 +

e2

h
T4V4 =

e2

h
NV6 . (5.5)

Combining equation (5.4) and (5.5), the following expressions for the voltages show up

V2 = V4 +
NT1

N2 −R1R4
(V1 − V4) , (5.6)

V6 = V4 +
R4T1

N2 −R1R4
(V1 − V4) . (5.7)

To check the result, T1 = T4 = N can be inserted which makes the contacts ideal and as expected
the result, V2 = V1 and V6 = V4, from section 5.1.1 is recovered. If the transmission probabilities
are lowered from N , V2 is lowered as well. The physical interpretation of this is that a larger
amount holes distributed around a lower voltage V6 reaches contact 2, which lowers the overall
voltage of the reservoir. Similarly V6 is slightly larger than V4, which can be explained using the
same argumentation. The total current I flowing from reservoir 1 to 4 can be found by adding
up the two contributions from equation (5.4) and (5.5).

I = I1 − I2 =
e2

h
N(V2 − V6) =

e2

h

NT1T4

N2 −R1R4
(V1 − V4) . (5.8)
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5.1 Integer quantum Hall effect in phase coherent conductors

From this expression, it is easily seen that the Hall resistance quantized. The longitudinal
resistance is 0 as well, but the two-terminal resistance differs from the one found in last section.

RH =
h

e2

1

N
, RL = 0 , R14,14 =

h

e2

N2 −R1R4

NT1T4
. (5.9)

Thus the integer quantum Hall effect can be observed in a mesoscopic Hall bar even when the
current contacts are disordered.

Another starting point would be to express the current contributions using voltages with
respect to the V4 [4]. The current along the upper edge would then be I1 = e2

h T1(V1 − V4) +
e2

h R1(V6− V4) = e2

h N(V2− V4) while the current along the lower edge would be I2 = e2

h R4(V2−
V4) = e2

h N(V6 − V4). The difference is illustrated schematically in figure 7b, where the light
green pillars indicate the current injected by the reservoirs using büttiker’s starting point. Of
course, the same result appears.

It is remarkable to notice that the current I2 flows from the current drain to the current
source and is proportional to the voltage difference V1 − V4. The current can be thought of as
a circular current that follows the edges around the Hall bar, which is reflected back and forth
from contact 1 to contact 4.

As it will be shown in section 5.2, the solution to the problem in figure 7a is the same for
a macroscopic sample with disordered contacts. But first it is shown that the integer quantum
Hall effect cannot be observed in a mesoscopic sample, when all contacts are disordered.

5.1.3 Four terminal conductor with disordered contacts

In the discussion of a Hall measurement where all contacts are disordered, a four terminal
system as shown in figure 8a is chosen to simplify the calculations. This problem is quite more
complicated as a hole from a reservoir can reach all other reservoirs. As an example, a hole
from reservoir 1 can reach reservoir 4 with the main contribution to the probability T1R2R3T4.
Instead of using the transmission and reflection probabilities at each contact, the probabilities
Tαβ introduced in equation (4.30) will be used. This general treatment of a four-terminal sample
was done by Büttiker in 1986 [3]. As a starting point, equation (4.31) is written in its matrix
form 

I1

I2

I3

I4

 =
e2

h


M1 −R11 −T 12 −T 13 −T 14

−T 21 M2 −R22 −T 23 −T 24

−T 31 −T 32 M3 −R33 −T 34

−T 41 −T 42 −T 43 M4 −R44



V1

V2

V3

V4

 . (5.10)

For the general case where the current flows from contact 1 to 3 and from 2 to 4, the condition
I1 = −I3 leads to

(V3 − V4) =
T 12 + T 32

S
(V2 − V4)− T 41 + T 21

S
(V1 − V3) , (5.11)

S = T 12 + T 14 + T 32 + T 34 = T 21 + T 41 + T 23 + T 43 , (5.12)

where the relations (4.32) that each column and row in (5.10) add up to zero have been used.
Equation (5.12) can be verified using these relations as well. After a tedious derivation using
the relations (4.32) to a great extend, the following expressions for the currents appear(

I1

I2

)
=
e2

h

(
γ11 −γ12

−γ21 γ22

)(
V1 − V3

V2 − V4

)
, (5.13)
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5.2 The quantum Hall effect in macroscopic samples

V1 V4

T1

R1

T4

R4

V2=VA

T2 R2 T3 R3

R6T6 R5T5

VA

VB

V3=VA

V6=VB V5=VB

V1

T1

R1

V3

T3

R3

V2

T2 R2

V4

R4T4

(a) (b)

Figure 8: a) A four terminal phase-coherent Hall with disordered contacts. b) A macroscopic Hall bar, in which
electrons scatter inelastically when moving from one contact to the other. The inelastic scattering (illustrated
by a star) equilibrates the edge states.

where the γ-coefficients are

γ11 = (M1 −R11)− (T 41 + T 41)(T 12 + T 14)

S
, (5.14)

γ12 =
T 12T 34 − T 32T 14

S
, (5.15)

γ21 =
T 43T 21 − T 23T 41

S
, (5.16)

γ22 = (M2 −R22)− (T 12 + T 32)(T 21 + T 23)

S
. (5.17)

For a Hall measurement where contact 1 and 3 are current source and drain and the voltage is
measured at contact 2 and 4, I2 = 0. The Hall resistance in this setup is

RH = R13,24 =
V2 − V4

I1
=

γ21

γ11γ22 − γ12γ21
. (5.18)

This equation cannot be reduced to the quantized Hall resistance found in the two previous
sections, and thus the quantum Hall effect cannot be observed in a phase-coherent conductor
with disordered contacts [4].

This general result could have been used to solve the problems in section 5.1.1 and 5.1.2. For
a four terminal sample with contact 2 and 4 being ideal and contact 1 and 3 being disordered,
the total transmission coefficients would be


M1 −R11 T 12 T 13 T 14

T 21 M2 −R22 T 23 T 24

T 31 T 32 M3 −R33 T 34

T 41 T 42 T 43 M4 −R44

 =


T1 0 0 T1

T1 N 0 R1

0 T3 T3 0
0 R3 T3 N

 . (5.19)

When inserting these coefficients into equation (5.18), the quantized Hall resistance is recov-
ered. The integer quantum Hall effect has now been described thoroughly in phase-coherent
conductors. In the next section, the effect of decoherence is described.

5.2 The quantum Hall effect in macroscopic samples

Consider the macroscopic Hall bar in figure 8b, where the distances between the disordered
contacts are larger than the inelastic scattering length. In an inelastic scattering event, the edge
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5.3 Limitations in the integer quantum Hall effect

states are equilibrated so that e.g. the holes coming from contact 1 and 6 toward contact 2
are equilibrated and distributed at the new voltage VA [4]. Choosing contact 1 and 4 to be the
current source and drain, no net current is leaving the other contacts. A current e2

h T2VA enters
contact 2, while the current e2

h T2V6 leaves the contact, and since these contributions have to
be equal, contact 2 is at the same chemical potential as the phase-randomized incoming holes,
V2 = VA. The same happens at contact 3, and similarly along the lower edge, where the states
are equilibrated at the voltage VB.

From the description given above, it is clear that the inelastic scattering events have the
same effect as an ideal contact, which also equilibrates the incoming carriers. In order to find
the resistances the macroscopic sample can therefore be treated in the same way as the sample
depicted in figure 7a. Thus the equations (5.4)-(5.9) are valid when converting V2 → VA and
V6 → VB and the quantized Hall resistance and vanishing longitudinal resistances (eq. 5.9) are
recovered.

5.3 Limitations in the integer quantum Hall effect

There are no upper size limit of a Hall bar, in which the integer quantum Hall effect can be
observed, but deviations occur if the sample gets too small. For small samples, phase coherence
and disordered contacts breaks the effect. Another important thing is that if the edges come to
close, electrons can travel from one edge to the other.

Impurities play a crucial role because they localize the bulk states, so that the current is only
running on the edges in a large range of magnetic fields. If the sample gets too clean, the plateaus
would be shorter. On the other hand, too many impurities can lead to an overlap between
the wavefunctions, so that electrons can cross the Hall bar. Quantitatively considerations are
complicated, as it both depends on the impurity density, the impurity locations and the shape
of the impurity’s contribution to the electrostatic potential.

6 The experimental observation of the QHE

The integer quantum Hall effect was observed experimentally by Klaus von Klitzing in 1980 [1],
for which he was awarded the Nobel prize. He did a Hall measurement on a 2DEG in a MOSFET
(methal-oxide-semiconductor field-effect transistor) in a strong magnetic field of order 15 T.
Upon changing the gate voltage and thereby the carrier density, he observed the appearance of
plateaus in the Hall resistivity and corresponding disappearance of the the longitudinal resistivity
at these points.

The results of a Hall measurement with fixed carrier density but varying magnetic field is
shown in figure 9a. At low magnetic field (around 0 < B < 0.4T ), the Hall effect is observed
with the resistivities derived from the Drude model (equations (2.4)-(2.5)), while the Shubnikov-
de Haas effect is observed in the range around 0.5T < B < 1.5T . For stronger field, the
integer quantum Hall effect is observed with plateaus around integer filling factors at values
ρxy = h

Ne2
= 25.8kΩ

N and corresponding disappearing longitudinal resistivities. At around half
filling factors, the bulk states become extended as discussed, which leads to backscattering and
breakdown of the perfect channel description. This is seen as a finite longitudinal resistivity and
the smeared out Hall steps.

In 1982, Tsui et at. observed the existence of plateaus in the hall resistivity and corresponding
minima in the longitudinal resistivity at fractional filling factors [5]. The effect which is seen in
figure 9b is denoted the fractional quantum Hall effect. For the fractional filling factor ν = p/q,
it is seen that q is odd at all plateaus (even denominators have been observed [17]). Around
ν = 1/2 great similarities to the integer quantum Hall effect at zero magnetic field show up, which
leads to the consideration of new quasiparticles. The theoretical description of the fractional
quantum Hall effect is given in the next section, where the edge channel picture is extended.
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Figure 9: (a) The integer quantum Hall effect observed in a measurement of the longitudinal and Hall resistivities
in a GaAs/AlGaAs 2DEG (from [11]). (b) A Hall measurement again in a GaAs/AlGaAs heterostructure in a
stronger magnetic field. The formation of Hall plateaus and corresponding minima in the longitudinal resistivity
are seen at fractional filling factors (from [17]).

7 The fractional quantum Hall effect

Until this point, electrons have been considered non-interacting, but in order to describe the
fractional quantum Hall effect, the Coulomb interactions between electrons have to be taken
into account. For sufficiently strong magnetic fields, where the filling factor ν < 1, electrons
are in the lowest Landau levels with the same kinetic energy. The kinetic energy is therefore an
unimportant factor and the Coulomb interactions become important. By including the electron
interaction term in the Hamiltonian, the problem changes from a single-body to a many-body
problem.

7.1 Laughlin’s wave function

The ground state energy of a two-dimensional system with a few interacting electrons was
calculated shortly after the experimental observation of the FQHE [18]. It was found that the
internal energy u has a downward cusp at filling factor ν = 1/3. The chemical potential can
be thought of as the change in internal energy when adding an electron to the system, and it
is given by du/dn. Therefore this cusp leads to a discontinuity in the chemical potential, which
implies that the filling factor is constant (ν = 1/3) in some range of chemical potential [19]. In
other words, there is an energy gap at ν = 1/3, which means that it is energetically favorable
for the system to be at this filling factor. The compressibility, which for an electronic system is
κ = (n2dµ/dn)−1, is zero at this gap and the state is said to be incompressible.

In the same year, Laughlin proposed a ground state wave function, which turned out to
describe the interacting electrons at the filling factor ν = 1/m very well [20]. The wave function
has the form

ψm =
∏
j<k

(zj − zk)me−
1
4

∑
l |zl|2 , (7.1)

where zj = xj + iyj is the coordinate of the j’th electron in complex notation. The prefactor
is used to minimize the Coulomb interaction between the electrons by creating a node when
the electrons come close to each other. For odd values of m, the interchange of two electrons
yields a minus sign, so that the function obeys Fermi statistics. The exponential factors are
equivalent to the exponentials in the single-body states of the lowest Landau level (derived
using the symmetric gauge in [20]). Laughlin found that it is energetically favorable to be in
these states [20], which agrees with both the numeric solution and Monte-Carlo simulations [21].
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7.2 Edge channels in the FQHE
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Figure 10: The filling factor ν is lowered when moving from the bulk towards the edges, due to the electrostatic
potential φ (a). Because of the energy gap in the chemical potential du/dn, incompressible bands form at certain
values νp. Using gate electrodes the uppermost edge channels can be ”turned off”. In (b), the channel p=2 is
turned off.

Since then it has been found that incompressible states form at a large range of fractional filling
factors. In the following only the states νp = p

3 will be considered for simplicity.
Because of these energetically favorable states, the filling factor remains constant for some

range of magnetic field, which is crucial for the FQHE to be observed. The physical explanation
for the pinned filling factor could be that electrons are transferred from a reservoir to change
the electron density locally [19].

7.2 Edge channels in the FQHE

In 1990, Beenakker extended the concept of edge channels to the FQHE [6]. Consider a 2DEG
conductor as the one shown in a figure 3c placed in a very strong magnetic field, so that the
above described theory applies. As the electrostatic potential φ is getting stronger at the edges,
the electron density drops to zero and so does the filling factor [6]. If the change in φ is less than
the energy gap associated with a filling factor νp within the magnetic length l0, an incompressible
band forms at this value. When moving from the bulk towards the edge, incompressible and
compressible states appear alternately as shown in figure 10a. The regions are extended along
the edge in the y-direction and they are referred to as bands. As it will be shown in the following,
the compressible bands can carry a current, while the incompressible ones cannot.

If the electrochemical potential is raised by ∆µ in one end of the conductor, the electron
density is changed by

∆n =
δn

δµ

∣∣∣∣
φ

∆µ = −δn
δφ

∣∣∣∣
µ

∆µ , (7.2)

where it is used that the electrochemical potential is µ = du/dn+ φ. The net current density is
driven by these electrons, j = −e∆nvd, where the drift velocity in the y-direction is proportional
to the slope of the electrostatic potential as found in (3.13). By insertion the following current
density is found

j = − e
h

∆µ
∂ν

∂x
, (7.3)
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7.3 Contact effects in the FQHE

where the expression for the filling factor (eq. (3.9)) has been used. Only in the compressible
bands, ν changes with x and hence only these bands contribute to the current. By integrating
over one compressible band in x, the current carried by this is Ip = e

h∆µ(νp − νp−1). The total
current through this two-terminal conductor is found by summing up the current carried by all
compressible edge channels, and the conductance is

G =
e

∆µ

P∑
p=1

Ip =
e2

h

P∑
p=1

∆νp . (7.4)

If ∆νp = 1 for all p, the picture of perfect edge channels in a two-terminal system is recovered
(equation 4.25 for T 21

n = 1). Notice that the different channels can carry different amounts
of current, depending on the size of ∆νp. The expression can be expanded to a multiterminal
sample. The incoming current e2

h ναVα in lead α can either be reflected or transmitted into any
other reservoir and hence the current can be expressed in the following way

Iα =
e2

h

∑
β 6=α

(
T βαVα − TαβVβ

)
, (7.5)

where the total transmission probability from reservoir α to β is T βα =
∑Pα

p=1 T
βα
p ∆νp, in which

T βαp is the probability that the current injected in the p’th edge channel in α will reach β. Again,
if ∆νp = 1 for all p, the multiterminal Landauer-Büttiker formula (4.30) is recovered.

In my opinion, Beenakker exaggerates the importance of the separated incompressible and
compressible bands [6]. If an impurity is placed near the edge, the steep increase in electrostatic
potential exceeds the energy gap over a magnetic length, so that the imcompressible band
collapses. Two compressible bands therefore become adjacent to each other, which allows for
scattering between the channels to happen [22]. This does not break down the FQHE. The
crucial thing for the effect to be observed is instead that the filling factor is pinned at certain
values in the middle regions.

7.3 Contact effects in the FQHE

It has been shown, that the edge channels can be restricted in some regions by changing the filling
factor locally, which verifies Beenakker’s edge channel picture. This was done by Kouwenhoven
et al., who placed gate electrodes across some of the contacts, as shown schematically in figure
10b, in order to lower the electron density [23]. They showed that the uppermost channels
p could be turned off, Tp = 0, at a particular voltage, indicating that the local filling factor
underneath the gate changed to p− 1. In figure 10b, the uppermost channel, p = 2, is restricted
from entering contacts 1 and 4, so that it is not contributing to the conductance in a fractional
quantum Hall measurement.

In a real FQHE experiment, the low impurity density cannot turn off a channel in the same
way as a gate electrode. If the current injected in the p’th channel is not perfectly transmitted
to the following reservoir, deviations from the exact fractional quantizations can occur. The
discussion whether deviations occur or not is similar to that in section 5.1.2 and 5.2, and it
depends on whether scattering between the edge channels happens on the distance between the
contacts. If this scattering occurs, the edges are equilibrated and the fractional quantum Hall
effect can be observed even when some of the current is reflected.

If the contacts are too narrow, so that the filling factor in the bulk does not stretch all
the way to the reservoirs, the uppermost plateaus cannot be observed. The reason is that the
electrostatic potential suppresses the electron density in the same way as the gate electrode did
in the experiment in figure 10b. To sum up, the FQHE can be observed when the sample is so
large that carriers are equilibrated between contacts and the highest filling factor stretches to
all contacts.
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Research is still being done on the topic of edge channels. In a recent work, Venkatachalam
et al. connects the outermost edge channel to reservoirs by both quantum point contacts and
quantum dots [24]. They find that the even though charges are transported downstream, heat
can be transported upstream in the edge channel.

8 Conclusion

In this thesis, the energy levels of electrons in a magnetic field was derived and by applying a
electrostatic potential, it was shown that bulk states in a sample are localized while states at
the edges are extended. This implies that perfect one-dimensional channels carry the current at
the edges, and the conductance of such channels was derived. The expression was expanded to
describe multiterminal systems and the quantized Hall resistivity and disappearing longitudinal
resistivity were found, when the expression was applied to a Hall geometry.

The influence of contact disorder on the quantization was discussed, and it was shown that
ideal or both ideal/disordered contacts give perfect quantization in the phase coherent regime.
When all contacts are disordered, perfect steps can be observed in phase decoherent samples,
while deviations appear in phase coherent samples.

Energy gaps appear at certain fractional filling factors when taking Coulomb interactions
between electrons into consideration. The caps cause that the filling factor gets pinned at these
values, so that plateaus are observed in the Hall resistivity. For sufficiently large and pure
samples, the fractional edge channels reach all contacts and are equilibrated, so that all gaps
can be observed. In the other limit, derivations will occur.

21



REFERENCES

References
[1] K. von Klitzing, G. Dorda, and M. Pepper, “New method for high accuracy determination of fine structure

constant based on quantised hall resistance,” Physical Review Letters, vol. 45, p. 494, 1980.

[2] B. Halperin, “Quantized hall conductance, current-carrying edge states, and the existence of extended states
in a two-dimensional disordered potential,” Physical Review B, vol. 25, no. 4, pp. 2185–2190, 1982.

[3] M. Buttiker, “Four-terminal phase-coherent conductance,” Physical Review Letters, vol. 57, no. 14, pp. 1761–
1764, 1986.

[4] M. Buttiker, “Absence of backscattering in the quantum hall-effect in multiprobe conductors,” Physical
Review B, vol. 38, no. 14, pp. 9375–9389, 1988.

[5] D. Tsui, H. Stormer, and A. Gossard, “Two-dimensional magnetotransport in the extreme quantum limit,”
Physical Review Letters, vol. 48, no. 22, pp. 1559–1562, 1982.

[6] C. Beenakker, “Edge channels for the fractional quantum hall-effect,” Physical Review Letters, vol. 64, no. 2,
pp. 216–219, 1990.

[7] J. Solyom, Fundamentals of the Physics of Solids. 2007.

[8] E. H. Hall, “On a new action of the magnet on electric currents,” American Journal of Mathematics, vol. 2,
pp. 287–292, 1879.

[9] L. Landau and E. Lifshitz, Quantum Mechanics. Pergamon Press, 1977.

[10] L. Landau, “Diamagnetism of metals,” Zeitschrift fur Physik, vol. 64, no. 9-10, pp. 629–637, 1930.

[11] T. Ihn, Semiconductor Nanostructures - Quantum States and Electronic Transport. 1 ed., 2010.

[12] H. Aoki, “Computer-simulation of 2-dimensional disordered electron-systems in strong magnetic-fields,” Jour-
nal of Physics C-Solid State Physics, vol. 10, no. 14, pp. 2583–2593, 1977.

[13] D. Chklovskii, B. Shklovskii, and L. Glazmann, “Electrostatics of edge channels,” Physical Review B, vol. 46,
no. 7, pp. 4026–4034, 1992.

[14] H. Bruus and K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics. Oxford University
Press, 2009.

[15] B. van Wees, H. Vanhouten, C. Beenakker, J. Williamson, L. Kouwenhoven, D. Vandermarel, and C. Foxon,
“Quantized conductance of point contacts in a two-dimensional electron-gas,” Physical Review Letters, vol. 60,
no. 9, pp. 848–850, 1988.

[16] D. Wharam, T. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. Frost, D. Hsko, D. Peacock, D. Ritchie, and
G. Jones, “One-dimensional transport and the quantization of the ballistic resistance,” Journal of Physics
C - Solid State Physics, vol. 21, no. 8, pp. L209–L214, 1988.

[17] R. Willett, J. Eisenstein, H. Stormer, D. Tsui, A. Gossard, and J. English, “Observation of an even-
denominator quantum number in the fractional quantum hall-effect,” Physical Review Letters, vol. 59, no. 15,
pp. 1776–1779, 1987.

[18] D. Yoshioka, B. Halperin, and P. Lee, “Ground-state of two-dimensional electrons in strong magnetic-fields
and 1/3 quantized hall-effect,” Physical Review Letters, vol. 50, no. 16, pp. 1219–1222, 1983.

[19] B. Halperin, “Theory of the quantized hall conductance,” Helvetica Physica Acta, vol. 56, no. 1-3, pp. 75–102,
1983.

[20] R. Laughlin, “Anomalous quantum hall-effect - an incompressible quantum fluid with fractionally charged
excitations,” Physical Review Letters, vol. 50, no. 18, pp. 1395–1398, 1983.

[21] J. M. Caillol, D. Levesque, J. J. Weis, and J. P. Hansen, “A monte-carlo study of the classical two-dimensional
one-component plasma,” Journal of Statistical Physics, vol. 28, no. 2, pp. 325–349, 1982.

[22] C. L. Kane and M. P. A. Fisher, “Contacts and edge-state equilibration in the fractional quantum hall effect,”
Physical Review B, vol. 52, no. 24, pp. 17393–17405, 1995.

[23] L. P. Kouwenhoven, B. J. van Wees, N. C. Vandervaart, C. J. P. M. Harmans, C. E. Timmering, and C. T.
Foxon, “Selective-population and detection of edge channels in the fractional quantum hall regime,” Physical
Review Letters, vol. 64, no. 6, pp. 685–688, 1990.

[24] V. Venkatachalam, S. Hart, L. Pfeiffer, K. West, and A. Yacoby, “Local thermometry of neutral modes on
the quantum hall edge,” Nature Physics, vol. 8, no. 9, pp. 676–681, 2012.

22


