Fusion of ferredoxin and cytochrome P450 enables direct light-driven biosynthesis

Research output: Contribution to journalJournal articleResearchpeer-review

Documents

Cytochrome P450s (P450s) are key enzymes in the synthesis of bioactive natural products in plants. Efforts to harness these enzymes for in vitro and whole-cell production of natural products have been hampered by difficulties in expressing them heterologously in their active form, and their requirement for NADPH as a source of reducing power. We recently demonstrated targeting and insertion of plant P450s into the photosynthetic membrane, and photosynthesis-driven, NADPH-independent P450 catalytic activity mediated by the electron carrier protein ferredoxin. Here we report the fusion of ferredoxin with P450 CYP79A1 from the model plant Sorghum bicolor, which catalyzes the initial step in the pathway leading to biosynthesis of the cyanogenic glucoside dhurrin. Fusion with ferredoxin allows CYP79A1 to obtain electrons for catalysis by interacting directly with photosystem I. Furthermore, electrons captured by the fused ferredoxin moiety are directed more effectively towards P450 catalytic activity, making the fusion better able to compete with endogenous electron sinks coupled to metabolic pathways. The P450-ferredoxin fusion enzyme obtains reducing power solely from its fused ferredoxin and outperforms unfused CYP79A1 in vivo. This demonstrates greatly enhanced electron transfer from photosystem I to CYP79A1 as a consequence of the fusion. The fusion strategy reported here therefore forms the basis for enhanced partitioning of photosynthetic reducing power toward P450-dependent biosynthesis of important natural products.

Original languageEnglish
JournalACS chemical biology
Volume11
Issue number7
Pages (from-to)1862-1869
Number of pages8
ISSN1554-8929
DOIs
Publication statusPublished - 2016

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 160973949