Modelling Relativistic Astrophysics at the Large and Small Scale

General Relativistic MHD
&
Collisionless Shocks

Troels Haugbølle

PhD Thesis
May 2005

Niels Bohr Institute
Faculty of Science
Copenhagen University
ACKNOWLEDGEMENTS

I would like to thank the people whom I have been working with the last couple of years, and who have made this thesis not only possible but also a joy to complete. The biggest thanks goes to my supervisor Åke Nordlund; without him there would be no thesis, and he has always been willing to answer my questions at all times and guide me through the labyrinth of numerical astrophysics, not least in this last stressing month. But fortunately I have not been left alone on this quest. It has been a privilege to be part of the plasma gang; had it not been for Christian and Trier, my PhD would not have been the same. They deserve thanks for the countless discussions over memorable Friday beers, I owe much of my thesis to them, not least for the many discussions about pair plasmas and the global structure of collisionless shocks, and even though some of us may shift subjects in the future I will remember this as the best cooperation I have ever had; I even believe that in the end they have managed to teach me a bit of that pesky plasma physics. The world is not only made of plasma though, nor Friday beers, and I am grateful to Jakob Hunsballe for the CVS wars we have waged over the fluid code lately.

The GrMHD code was initiated during a stay in Kyoto in 2003-2004, where I had the pleasure of working with the group around Shibata-san. My Japanese may have passed away since then, but I do remember the good and warm atmosphere and the excellent hospitality I received there. I learnt a lot about relativistic fluid dynamics, but also about Japanese culture, the art of eating with chopsticks, and how everything can be so different and yet you feel at home; to all of you in Kyoto, specially Shibata-san, Hiro and Mizuno-san: Thank you for a fantastic half a year in Kyoto, I hope to return soon again.

Last but not least I am grateful to my proof readers; in spite of their limited interest in the details of astrophysics, they made excellent suggestions and enlightened the language at times where I myself was too tired to do so. Not only I, but also the readers should thank them: Ana, Gemma and Sune in this last stressing month, you have made all the difference. If errors remain, be it linguistic or in the physics, I surely must have introduced them in the last minute!
ABSTRACT

In this thesis different numerical methods, as well as applications of the methods to a number of current problems in relativistic astrophysics, are presented.

In the first part the theoretical foundation and numerical implementation of a new general relativistic magnetohydrodynamics code is discussed. A new form of the equations of motion using global coordinates, but evolving the dynamical variables from the point of view of a local observer is presented. No assumptions are made about the background metric and the design is ready to be coupled with methods solving the full Einstein equations.

In the second part of the thesis important results concerning the understanding of collisionless shocks, obtained from experiments with a relativistic charged particle code, are presented. Relativistic collisionless shocks are important in a range of astrophysical objects; in particular in gamma ray burst afterglows and other relativistic jets. It is shown that a strong small scale, fluctuating, and predominantly transversal magnetic field is unavoidably generated by a two-stream instability. The magnetic energy density reaches a few percent of equipartition.

A new acceleration mechanism for electrons in ion-electron collisionless shocks is proposed. The mechanism is capable of creating a powerlaw electron distribution in a collisionless shocked region. The non-thermal acceleration of the electrons is directly related to the ion current channels generated by the two-stream instability and is local in nature. Thus the observed radiation field may be tied directly to the local conditions of the plasma and could be a strong handle on the physical processes.

Experiments of colliding pair plasmas are presented and the formation of a macrophysical shock structure is observed. A comparable relativistic fluid simulation is performed and good agreement is found, implying that the full structure of the shock has been resolved. The extent of the shock transition region in a pair plasma is estimated to 50-100 electron skin depths.

In the third part of the thesis a new particle-in-cell code is discussed. It solves the full Maxwell equations, together with direct microphysical particle-particle interactions, such as relativistic scattering, pair production, decay, and annihilation of particles. The inclusion of such relativistic interaction process enables users of the code to extract self consistent synthetic photon spectra directly from numerical experiments, thereby gaining the ability to directly compare models with observations.
CONTENTS

1. Introduction .. 1
 1.1 A Swiss Army Knife for Relativistic Astrophysics 3
 1.2 General Relativistic Magneto-Hydrodynamics 3
 1.3 Magnetic Field Generation in Collisionless Shocks 4
 1.4 Non-Fermi Powerlaw Acceleration in Astrophysical Plasma Shocks .. 6
 1.5 The Global Structure of Collisionless Shocks 9
 1.6 A Next Generation PIC Code 11

2. General Relativistic Magneto-Hydrodynamics 13
 2.1 Motivation ... 14
 2.2 The GrMHD equations .. 15
 2.2.1 3+1 Formulation of general relativity 15
 2.2.2 Different coordinate systems 16
 2.2.3 Basic equations 18
 2.2.4 Selecting evolution variables 19
 2.2.5 Hydrodynamic equations 19
 2.2.6 Artificial viscosity 21
 2.2.7 Electromagnetic fields 22
 2.2.8 Ohm’s Law .. 23
 2.3 The Numerical Algorithm 24
 2.3.1 Primitive variables 25
 2.3.2 Artificial viscosity 26
 2.3.3 The magnetic field 27
 2.4 Testing the Code .. 27
 2.4.1 Hydrodynamical tests 28
 2.4.2 Magnetohydrodynamical tests 34
 2.5 Astrophysical Applications 41
 2.5.1 Decaying magnetic fields in the early universe 41
 2.5.2 Relativistic jets 43
 2.6 Code Implementation: Performance and Scalability 45
 2.6.1 The stagger code 45
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6.2</td>
<td>The paper code: Optimal parallelisation and cache reuse</td>
<td>47</td>
</tr>
<tr>
<td>2.7</td>
<td>Discussion</td>
<td>52</td>
</tr>
<tr>
<td>3.</td>
<td>Magnetic Field Generation in Collisionless Shocks; Pattern Growth</td>
<td>55</td>
</tr>
<tr>
<td>3.2</td>
<td>Simulations</td>
<td>56</td>
</tr>
<tr>
<td>3.3</td>
<td>Results and Discussions</td>
<td>58</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Magnetic field generation, pattern growth and field transport</td>
<td>58</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Thermalisation and plasma heating</td>
<td>61</td>
</tr>
<tr>
<td>3.4</td>
<td>Conclusions</td>
<td>63</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>65</td>
</tr>
<tr>
<td>4.2</td>
<td>A New Acceleration Mechanism</td>
<td>66</td>
</tr>
<tr>
<td>4.3</td>
<td>Computer Experiments</td>
<td>70</td>
</tr>
<tr>
<td>4.4</td>
<td>Conclusions</td>
<td>73</td>
</tr>
<tr>
<td>5.</td>
<td>The Global Structure of Collisionless Shocks</td>
<td>77</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>78</td>
</tr>
<tr>
<td>5.2</td>
<td>Collisionless Pair Plasma Shocks</td>
<td>78</td>
</tr>
<tr>
<td>5.3</td>
<td>Collisionless Ion-Electron Shocks and Limits to Current Experiments</td>
<td>82</td>
</tr>
<tr>
<td>5.4</td>
<td>Conclusions</td>
<td>87</td>
</tr>
<tr>
<td>6.</td>
<td>A Next Generation PIC Code</td>
<td>89</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>89</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Motivation</td>
<td>90</td>
</tr>
<tr>
<td>6.2</td>
<td>Implementation</td>
<td>92</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Concepts</td>
<td>92</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Neutron decay</td>
<td>97</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Compton scattering</td>
<td>97</td>
</tr>
<tr>
<td>6.3</td>
<td>Results</td>
<td>99</td>
</tr>
<tr>
<td>6.4</td>
<td>Discussion</td>
<td>99</td>
</tr>
<tr>
<td>7.</td>
<td>Summary & Conclusions</td>
<td>103</td>
</tr>
</tbody>
</table>

Appendix

A. The Relativistic Maxwell Distribution 108
A.1 The standard relativistic distribution 108
A.2 Boosting the Maxwell distribution 109
A.3 The boosted Maxwell velocity distribution 110

B. Transformation of tensors between different metrics 111
1. INTRODUCTION

During the last decade we have seen fundamental advances in the observation of compact objects, active galactic nuclei, gamma ray bursts, and other objects characterised by their extreme physical conditions and emittance of light over the full electromagnetic spectrum. This branch of astrophysics has aptly been named “extreme astrophysics”, and advances in the field are driven by the technical development and launch of new satellites, such as Beppo/Sax, Chandra, XMM and Swift, and the construction of powerful ground based facilities, such as the HESS telescope and the Auger observatory to measure X-rays and gamma rays. Moreover the technique of combining radio telescopes to perform interferometric observations with synthetic dishes comparable to the entire globe has played an important role for resolving the inner engines of active galactic nuclei (AGN).

In 1997 the first afterglow from a gamma ray burst (GRB) was observed, placing GRBs firmly out of reach at cosmological distances and earning them the title as the most violent explosions in the Universe. Very high energy gamma rays have also been observed from AGNs, and with the increasing resolution of high frequency radio interferometers, we will soon be able to resolve the launching region of the jets associated with AGNs, only a few Schwarzschild radii from the central supermassive black hole.

In the decade to come we can foresee that two entirely new windows to the Universe will be opened to complement the observations of electromagnetic radiation and cosmic rays that are made today: On the south pole the IceCube project will detect cosmic neutrinos generated in the core of supernovae and possibly in GRBs and other cataclysmic events, while laser interferometers on the ground, such as LIGO, VIRGO and GEO 600, together with the space interferometer LISA, will have reached levels of sensitivity where the gravitational waves from the coalescence of compact objects and super massive black holes may be detected.

A decade ago cosmology was still the branch of astrophysics where one could get along with back-of-the-envelope calculations, since fundamental parameters such as the Hubble expansion rate, the age and the matter content of the Universe were all quoted with error bars as large as the numbers themselves. This is all in the past now. The Hubble space telescope has
finally determined the expansion rate. Observations of supernovae of type Ia at moderate and high redshifts have led to the surprising conclusion that the Universe is in fact accelerating in its expansion. The Boomerang and Maxima balloon missions and later the WMAP telescope have nailed down fluctuations in the cosmic microwave background radiation (CMBR) with high precision and determined the overall geometry of the Universe to be... flat! Euclid was right. The pieces in the cosmological puzzle are slowly falling into place. Current and future dedicated facilities to observe the CMBR, together with large scale galaxy redshift surveys such as the SLOAN digital sky survey and the 2DF survey, will give strong limits on the distribution of matter and fields in the early Universe.

It is thus fair to say that both extreme astrophysics and cosmology, together known as relativistic astrophysics, are in a golden age and are slowly but firmly entering the realm of “messy astrophysics”, where predictions cannot be based on sketchy ideas anymore but instead detailed physical models must be worked out, tested, and validated or falsified by observations.

Parallel to the development in observational relativistic astrophysics, there has been a revolution in the tools employed by theoretical astrophysicists. The computational power has for decades been rising exponentially, doubling every 18 months in accordance with Moores law. At the end of the nineties three-dimensional computer models of astrophysical objects became affordable, and for some time computer modelling has been indispensable in understanding the Universe.

In order to interpret observations, we have to develop theories that in simple terms grasp the central physical mechanisms and let us understand how fundamental parameters are related. As the observations become more complicated, and the quality of the data improves, so must the theories to be successful in explaining these new details. Astronomy is different from other natural sciences, in that we cannot perform experiments in the laboratory, and in most cases the timescales are so long that we cannot even wait and watch them unfold in the Universe.

In compact objects and in the early Universe many different physical processes play important roles to shape the final picture, ranging from the large scale fluid dynamics, the curvature of space, the interactions in the plasma between matter and electromagnetic fields, all the way to the microphysical generation and scattering of the light, which, ultimately, is observed on Earth. The computer gives us, as a complement to observations, the ability to create models, and in contrast to the real Universe, we can spin our models around and visualise the data in three dimensions, instead of the projected, two-dimensional view which is the only one that the real Universe offers. In this sense computer models have become the virtual laboratory of the astro-
physicist. The physical insights gained from these models are essential, and often the complexity of the phenomena leaves us at loss without access to such models.

1.1 A Swiss Army Knife for Relativistic Astrophysics

In this thesis I present the application, development and implementation of several computer codes which may be used to model relativistic astrophysics. They span a range of scales and interactions. The GrMHD code, presented in Chapter 2, may be used to describe the flow of matter from cosmological scales down to the scales of black holes. The charged particle code, used in Chapters 3–5, is applied to understanding the small scale structure in collisionless shocks. Finally, the photon plasma code, presented in Chapter 6, will enable us to study a fuller range of plasma physics, including microphysical interactions, scatterings and the detailed propagation of radiation.

1.2 General Relativistic Magneto-Hydrodynamics

In Chapter 2 I present a reformulation of the equations of motion for general relativistic magneto-hydrodynamics (GrMHD) that is well suited for numerical purposes, and the implementation in a three-dimensional numerical code that solves the equations. Before starting the implementation of the code, I carefully considered the approaches employed in the handful of existing codes worldwide. My main idea has been to make a conscious split between the reference frame in which we measure our coordinates, and the reference frame in which we measure our physical variables.

The coordinate system, naturally, has to cover the whole physical domain. In the case of compact objects, it is normal to use a coordinate system connected to observers at infinity. But there is no a priori reason why we should measure physical variables, such as density, velocity, and internal energy, as seen by observers at infinity. If one measures them in a locally defined frame, which is related to a local inertial frame, then the physics, by the equivalence principle, becomes almost like the physics of special relativity, for arbitrary background space times.

All equations have been derived without placing any constraints on the metric tensor. It is important to keep everything completely general, to allow the code in the future to be enhanced with procedures that solve the Einstein equations and evolve the metric tensor.

The code is based on finite difference techniques, and to handle discontinuities we have to include some form of artificial viscosity to enhance the
1.3 Magnetic Field Generation in Collisionless Shocks

Chapter 3 was published by Frederiksen, Hededal, Haugbølle and Nordlund [26]. Using three-dimensional particle simulations we report on the evolution of an ion-electron dominated counter-streaming collisionless shock. Our experiment consists initially of two populations. An in-streaming population, with a Lorentz boost of $\Gamma = 3$ upstream of the shock interface, and a pop-
1.3 Magnetic Field Generation in Collisionless Shocks

Fig. 1.2: A highly relativistic shock tube. The solution is shown at $t = 0.2$, just before the two shock waves collide.

Fig. 1.3: Left: The initial conditions for our experiment. Right: Electron (top) and ion (bottom) currents, averaged over the x-direction. The plasma is streaming from left to right.

ulation at rest downstream of the shock interface (see Fig. 1.3 to the left). It is predicted theoretically, that colliding collisionless plasmas are susceptible to the Weibel– or two-stream instability. Microscopic fluctuations in the magnetic field deflect the particles that in turn enhance the fluctuation and an exponential growth of the fluctuations results in the generation of strong current channels. In our simulations this is confirmed and we observe the instability develop in the shock interface. In Fig. 1.3 to the right is shown the current densities at late times. Associated with the current channels is a strong transversal magnetic field. The magnetic field energy density reaches a few percent of the kinetic energy in the in-coming beam. For an ion-electron plasma this is in fact a two stage process. Initially when the electrons encounter the shock interface, being the lighter particles they are rapidly deflected into first caustic surfaces and then current channels. The magnetic field keeps growing in scale and strength, until the ions undergo the same process and similarly ion current channels are formed. Because
of charge separation, the electrons will be attracted to the ions, and the electron instability is quenched. Instead the electrons start to Debye shield the ions, forming a fuzzy cloud around the ion channels (see Fig. 1.3). The Debye shielding partly neutralises the ion channels, and helps stabilise the evolution. The electrons are fully thermalised, but the ions are only slightly deflected from their initial distribution, due to the strong shielding of the electrons, and thermalisation might be significantly slower than predicted simply by extrapolating with the mass ratio. The ion current channels mutually attract each other and a self similar merging process commences, where neighbouring channels merge to form larger channels. With the capacity of current computers, the ions cannot be followed all the way to thermalisation, and merging of current channels is ongoing when they reach the end of the box and stream out at the open boundary.

To generate the radiation seen in observations of GRB afterglows, a magnetic field containing \(10^{-5} - 10^{-1}\) of the kinetic energy is required. The two-stream instability seen to occur in our experiments is a strong candidate for explaining the generation of this magnetic field, since it is in avoidable in collisionless shocks with low degrees of magnetisation. It then follows that the magnetic field cannot be taken as a free parameter, but is a consequence of the parameters of the shock, such as the inflow velocity and the density contrast. These findings do not only pertain to GRB afterglows, but also imply that magnetic field generation may be an important ingredient in all weakly magnetised collisionless shocks, and therefore occurs in a range of objects from supernovae remnants to internal shocks in outflows from AGN, all harbouring collisionless shocks.

1.4 Non-Fermi Powerlaw Acceleration in Astrophysical Plasma Shocks

In Chapter 4 I present the results published by Hededal, Haugbølle, Frederiksen and Nordlund [32]. We study highly relativistic charged ion-electron particle dynamics in collisionless shocks. The numerical experiment reported on here is different from the one in Chapter 3 in that the in-streaming plasma has a higher Lorentz factor \((\Gamma = 15)\) and the computational box employed is about 3 times longer in the streaming direction, enabling us to follow the process further downstream of the shock interface and for a longer period of time, until the shock structure has been more fully developed.

We find a powerlaw distribution of accelerated electrons, which turns out to originate from an acceleration process that is a direct consequence of the two-stream instability observed in Chapter 3 and is local in nature. The
electrons are accelerated and decelerated when passing through the cores of the ion current channels generated by the two-stream instability, and the process is fundamentally different from recursive acceleration processes, such as Fermi acceleration. We find a powerlaw slope of 2.7, in concordance with that inferred from observations of the afterglow in gamma ray bursts, and the process may explain more generally the origin of part of the non-thermal radiation from relativistic jets, supernovae remnants and shocked inter– and circum-stellar regions.

When two collisionless plasmas interpenetrate, current channels are formed through the two-stream instability. The ion current channels dominate the dynamics, due to the heavier mass of the ions, and downstream of the shock the channels merge in a hierarchical manner forming increasingly stronger patterns. The electrons act to Debye shield the channels yielding charge neutrality at large distances. At distances less than the Debye length the ion channels are surrounded by an intense transverse electric field that accelerate the electrons toward the channels and then decelerate them, when they move away from the channel. This can be seen in Fig. 1.4, where we in part (A)

![Fig. 1.4](image.png)

Fig. 1.4: (A) Ray traced electron paths (red) and current density (blue). The colours of the electron paths reflect their four velocity according to the colour table in the inset (B). The shadows are equivalent to the x and y projections of their paths. The ion current density is shown with blue colours according to the colour table in the inset. The inset also shows the ion current density (blue) integrated along the x axis with the spatial distribution of fast moving electrons (red) over plotted.

have ray traced two selected electron paths and colour coded them according to the velocity and in part (B) have shown the spatial distribution on the fastest electrons in the box overplotted on top of the ion current distribu-
tion. Notice the strong correlation between fast moving electrons and high ion current density.

To analyse the process quantitatively we have constructed a toy model, idealising the ion channel as a solid cylinder of moving ions. Given an electron we can calculate the maximal energy gained in the acceleration towards the cylinder (see Fig. 1.5 to the left). We have compared the acceleration predicted by this model with the acceleration observed in the experiment and find good agreement.

![Diagram](image)

Fig. 1.5: Left: A toy model of the acceleration process. Electrons in the vicinity of the current channels are subject to an electromagnetic force, working to accelerate them along the ion flow. Crossing the centre of the channel the process reverses leading to an oscillating movement along the channel. Right: The normalised electron particle distribution function downstream of the shock. The dot–dashed line is a powerlaw fit to the non–thermal high energy tail. The inset shows a similar histogram for ion current density sampled in each grid point in the same slice as the electrons.

To the right in Fig. 1.5 we have plotted the particle distribution function for the electrons in a small slice in the box. We observe a powerlaw distribution. This should be understood as consequence of 1) the acceleration mechanism described above that directly relates the maximum kinetic energy of the electrons to the local ion current density and 2) the powerlaw distribution of the ion currents, as a consequence of the two-stream instability, seen as an inset in the figure. The maximum acceleration observed is around $v\gamma \approx 80$. Using the toy model and rescaling the ion to electron ratio of 16, used in the experiment, to the real value of 1836, we find the maximum energy gained by the electrons to be around $5GeV$.

The presented acceleration mechanism is essentially due to the electrons oscillating in a potential, though as seen in Fig. 1.4 the true paths of the
electrons are more complicated, and the radiative efficiency can be very high, because there are no free high energy electrons carrying away the kinetic energy such as in recursive acceleration scenarios. Moreover the properties of the process depend primarily on the local conditions of the plasma.

In the chapter we estimate the thermalisation length for the ions, and find by extrapolating the fractional thermalisation observed at the boundary of the box, that the ions should thermalise in approximately 1500 ion skin depths. Using typical values for density in a gamma ray burst afterglow this is equivalent to $10^8 m$. We emphasise that the thermalisation length depends on the inflow velocity and mass ratio of ions to electrons among others, and a parameter study is necessary to uncover the true interdependence of parameters.

Even though the two-streaming shock interface is estimated to be relatively thin, the high radiative efficiency implies that the non-thermal radiation observed in gamma ray burst afterglows and relativistic jets in general could be emitted from such a thin shell.

1.5 The Global Structure of Collisionless Shocks

Collisions in “collisionless shocks” are mediated by the collective electromagnetic field, and the scattering of the particles on the field slowly heats the particles. At some point the two-stream instability cannot be sustained, and the current channels become unfocused and decay, due to the thermal motion of the individual particles, which creates a warm turbulent medium with no significant large scale magnetic field. In Chapters 3 & 4 it is shown how magnetic field generation and particle acceleration are integral parts of relativistic collisionless shocks in the case of weak or absent large scale magnetic fields.

To understand the impact on observations it is essential to investigate how far down stream of the initial shock that the two-stream unstable region extends. With this in mind, in Chapter 5 I discuss the global structure of collisionless shocks. A range of experiments are presented, both three-dimensional models of pair plasmas and two-dimensional models of ion-electron plasmas. There is a fundamental difference between ion-electron shocks, where the mass difference leads to the ions dominating the dynamics and the electrons stabilising the ion channels, and a pair plasma, where the electrons and positrons form channels on the same timescale, and no shielding occurs. In the latter case the two-stream unstable region is significantly smaller than in the case of ion-electron shocks.

In the three-dimensional computer experiments we observe that the elec-
trons and positrons thermalise fully, and the medium contains five different regions: The unperturbed upstream medium coming in from the left of the box; the first discontinuity in the velocity, with a two-stream unstable region; a warm thermalised region that is separated into a high and a low density state; another two-stream unstable discontinuity, where the warm shocked medium collides with the unperturbed downstream medium; and finally the unperturbed downstream medium. To verify that I have in fact resolved the full shock structure in a satisfactory manner, and the jump conditions have been established, I compare the experiment with a fluid simulation and find good agreement. From this experiment we can estimate that the two-stream unstable regions for electron-positron plasmas decay after 50-100 electron skin depths.

In the second part of Chapter 5 I consider the global structure of ion-electron dominated collisionless shocks. With current computer capacities it is impossible to correctly model the global structure of an ion-electron shock in three dimensions. Two-dimensional collisionless shocks, being less costly computationally, remain a promising alternative, and I have investigated the applicability to understanding real three-dimensional models by performing large scale two-dimensional experiments (see Fig. 1.6), comparing them to the three-dimensional experiment discussed in Chapter 4.

The particle distribution functions (PDFs) of the electrons for the two-dimensional and three-dimensional experiments are compared in Fig. 1.7. The slope indicated in Fig. 1.7 depends on the amount of heating in the upstream population, impacting the high energy part of the spectrum, and the down stream population, impacting the low energy part of the spectrum. A warmer upstream population will be broader in phase space, and consequently the maximum is lower, giving rise to a steeper slope. The two-dimensional experiments have a slope index of 2.1, while the three-dimensional experiment has a slope index of 1.55. The difference in heating rates is understood in terms of the toy model, introduced above in section 1.4 and discussed in Chapter 4, as a consequence of the different geometries.

The physical significance of the the two-stream instability remains directly related to the extent of the two-stream unstable region, and caution should be voiced about uncritically generalising results from two-dimensional experiments to three dimensions. My experiments seem to indicate that one will observe a faster thermalisation rate in two-dimensional experiment than what may be expected from three-dimensional experiments.
1.6 A Next Generation PIC Code

In Chapter 6 I present, together with C. Hededal, the first results from a new particle-in-cell code in development. The particle code that has been used to obtain the results described in Chapters 3–5 is limited to modelling the dynamics of charged particles under the influence of electromagnetic fields. In the new code, the concept of particles is generalised; most notably we

Fig. 1.6: The current density of the ions in a high resolution two-dimensional experiment. The dashed lines indicate the region used for constructing particle distribution functions. Length units are given in electron skin depths.
have introduced photons, and we consider microphysical interactions such as scatterings, decay, annihilation and pair production.

Even though work still has to be done before we may start to investigate non trivial astrophysical scenarios, solid progress has already been made, and to test the infrastructure of the new code we have implemented Compton scattering as a simple scattering mechanism. The results are very promising; there is excellent agreement with the theoretical prediction.

The new code will enable us to target problems that reside in the grey zone between the MHD and collisionless plasma domains. This grey zone covers many astrophysical scenarios of great interest, among others internal shocks in gamma-ray bursts, solar flares and magnetic substorms, compact relativistic objects, and aspects of supernova remnants.
2. GENERAL RELATIVISTIC MAGNETOHYDRODYNAMICS

Electromagnetic fields are ubiquitous ingredients in most astrophysical objects. In the case of very compact objects or at cosmological scales, not only do electromagnetic fields interact with matter directly, but they also become a source of energy-momentum and impact on the metric curvature. Several general relativistic magnetohydrodynamics (GrMHD) computer codes have been developed and implemented recently for the study of compact relativistic objects and their surroundings [e.g. 3, 18, 19, 23, 40, 42], using both conserved and non-conserved formulations of the basic equations of motion. They are well-suited for their different purposes, but most of the implementations above are designed for static space time backgrounds with diagonal spatial terms.

In this chapter I present the analytic basis for and numerical implementation of a code to solve the GrMHD equations. My approach is inspired by the pioneering work of Koide et al. [42] and related in spirit to the methods of Anón et al. [3] and Pons et al. [67]. From the beginning it has been designed to be general enough to solve the GrMHD matter evolution equations on any general time-dependent metric. This is an essential requirement if the code ultimately is to be coupled with numerical codes solving the Einstein equations, which evolve the metric. As far as the implementation is concerned I have currently implemented a fully parallelised 3D version of special relativistic MHD and a general relativistic extension of the hydrodynamics.

In the following section I describe some of my motivations for developing the code. In section 1.3 I present the fundamental equations for GrMHD and adapt them to our specific approach. The equations are well known (e.g. [79]), but I make an effort to rewrite them in a form that is suited for my numerical purpose. For clarity I first consider hydrodynamics and discuss the question of artificial viscosity and imperfect fluids, to then extend the system to include electromagnetic fields. In section 1.4, I present the numerical algorithm that I have chosen to implement the equations with. Section 1.5 contains a large test bed of demanding problems. Section 1.6 contains some astrophysics related tests of the code and finally, in section 1.7 I consider the crucial aspects of performance and scalability among others.
2.1 Motivation

An important motivation for developing this kind of code is to make it possible to study the evolution of cosmological magnetic fields in the primordial universe, taking into account the metric back reaction and coupling of gravitational waves with the electromagnetic field. The WMAP satellite has already detected the first polarization signal in the cosmic microwave background radiation (CMBR) [63]. The Planck satellite and ground/balloon based experiments will improve the quality of the signal further in the coming years. Even though primordial magnetic fields make a very small contribution to the CMBR, in contrast to other imprints, they source vector perturbations and hence it may be possible to disentangle the weak signal from other sources through its unique character [29, 58, 66]. Turbulent primordial magnetic fields can arise naturally during a phase transition, such as the transitions from an electroweak plasma and from the quark gluon phase to normal matter [80]. Alternatively, they may be produced during inflation [4]. If a signal from primordial magnetic fields is indeed detected, we would have yet another probe to understand early universe physics. Galaxies and clusters of galaxies at high redshift have been observed to contain magnetic fields comparable to present day galaxies. They have only rotated a few times during their short life, and this is difficult to explain without invoking primordial magnetic fields at some level. Dynamo theory alone does not seem to be enough [6, 29]. MHD simulations of turbulent helical fields have shown that an inverse cascade process operates which transfers small scale power to larger scales, changing the simple energy decay due to the expansion of the universe [15]. Until now, except from purely analytical analyses, the question of evolving magnetic fields in the early universe has primarily been tackled in two different ways. 1) Simple 3D turbulence experiments have been made, using existing non-relativistic MHD codes to address the possibility of inverse cascades which could alter significantly the longevity of large scale primordial fields; 2) Semi analytical arguments have been used to explore the couplings between primordial magnetic fields and the metric, neutrinos, effects from Silk-dampening, etc [46] If imprints in the cosmological microwave background from primordial magnetic fields are detected, it will be crucial to understand the evolution of the fields in a realistic manner, in order to constrain possible generation scenarios. I have verified the results by Christensson et al [15] using a purely special relativistic version of the code. With the code developed here, these questions may be addressed in a unified way, by performing large scale 3D experiments including general relativistic effects and couplings between the magnetic field and the metric perturbations.
Another strong motivation for developing a GrMHD code is the fact that it provides the perfect complement to the particle- and photon plasma codes, presented in the subsequent chapters, for the study of extreme astrophysics around compact objects and in jets. To understand the complex physics, we need to consider processes happening at many different time and length scales. A GrMHD code can be used to model the large scale dynamical flow and, as detailed in Chapter 6, provide realistic boundary conditions for microphysical studies of plasma instabilities and radiative processes.

We note that the first results of coupling the full Einstein equations to the MHD equations has been published [20] only very recently, and that the field is still in its infancy.

2.2 The GrMHD equations

2.2.1 3+1 Formulation of general relativity

In numerical relativity it has proven very fruitful to exploit the so called 3+1 split of the metric. Instead of working with a four dimensional manifold and the Einstein equations in the form of an elliptic nonlinear set of partial differential equations, an explicit split between temporal and spatial dimensions is imposed (though see [55] for an alternative four dimensional approach). Assuming that we can construct a foliation of space time — usually a very reasonable condition except maybe for near (naked) singularities — it is then possible to rewrite the Einstein equations as a hyperbolic set of evolution equations, some elliptic constraint equations and an associated Cauchy data set describing the initial conditions. This formulation lends itself easily to a numerical implementation and has been named the 3+1 approach.

The standard way of writing the metric in 3+1 form\(^1\) is:

\[
\text{d} s^2 = -\alpha^2 \text{d}t^2 + \gamma_{ij} \left(\text{d}x^i + \beta^i \text{d}t \right) \left(\text{d}x^j + \beta^j \text{d}t \right)
\]

where \(\alpha\) is called the lapse function, \(\beta\) is the shift or shear and \(\gamma\) is the spatial 3-metric. The contravariant version of the metric \(g^{\mu \nu}\) is written

\[
g^{\mu \nu} = \begin{pmatrix}
\frac{1}{\alpha^2} & \frac{\beta^i}{\alpha^2} \\
\frac{\partial \beta_i}{\partial \alpha} & \gamma^{ij}
\end{pmatrix}
\]

This form of the metric has the same number of degrees of freedom, namely ten, as in the obvious form \(g_{\mu \nu}\). Here they are spread out as one for the lapse,

\(^1\) Up to a plus or minus sign and a factor of \(\alpha^{-1}\) for \(\beta\)
three for the shear and finally six in the spatial curvature. Therefore, any metric which is not null may be written in this form.

In this thesis I only consider the evolution of matter and fields in a background space time although through the Einstein equation they are sources for the metric fields. Thus, it is important to leave α, β and γ_{ij} unspecified, making the design ready for integration with evolving metric fields.

2.2.2 Different coordinate systems

The global coordinate system Eq. (2.1) is often called the star fixed coordinate system (SFCS), because in most applications it is asymptotically flat and, therefore, connected to inertial observers at infinity. If we consider instead local observers who do not observe any shear and measure time in terms of local clocks, their line element must be given as

$$ds^2 = -dt^2 + \gamma_{ij} dx^i dx^j.$$ (2.3)

I will from now on refer to this coordinate system as the local laboratory frame (LOLA frame), and denote any quantity in this coordinate system with a hat. In the LOLA frame in many interesting cases γ_{ij} is almost diagonal and one could then easily rescale the problem as done by Koide et al. [42] to evolve matter and fields as seen by local observers, or FIDOs\(^2\) instead.

I have done so but to keep my approach general, I have exploited the idea to always rescale the diagonal in the metric, even though it may well be non diagonal. Because the off diagonal terms in the spatial part of the metric often are comparable in size to the diagonal ones, I have effectively normalised the metric. Since the metric is almost a FIDO metric I have named it the pseudo FIDO frame (PFIDO) frame. In this frame the metric tensor is given as

$$ds^2 = -dt^2 + \tilde{\gamma}_{ij} d\tilde{x}^i d\tilde{x}^j.$$ (2.4)

$$\tilde{\gamma}_{ij} = \frac{\gamma_{ij}}{\sqrt{\gamma_{ii} \gamma_{jj}}},$$ (2.5)

and there are only three non-trivial terms in the PFIDO metric, because all but the non diagonal terms in Eq. (2.4) have been normalised.

The central idea of our numerical scheme is to use the PFIDO frame to measure all physical quantities. The PFIDO frame is only defined locally and we still need to use the global coordinates connected to the SFCS to measure distances. The general way to construct an equation is first to derive it in the\(^2\) FIDOs are fiducial observers whose metric is defined as that seen by observers in local inertial frames.
SFCS and then to transform the tensors and vectors from the SFCS to the PFIDO frame, while keeping the derivatives and differentials with respect to the SFCS. It is central that the transformation from the SFCS to PFIDO frame is completely linear and simple, even for generally evolving coordinates. Had we, instead, chosen to go all the way to a FIDO frame in the general case, we would have had to invert a matrix, the metric, at every point for every time step. The PFIDO frame is a healthy in-between, which gives us almost all of the advantages of the FIDO frame but at a much lower cost.

Intuitively it is clear that when going to a local frame of reference the curvature of space only manifests itself as extra external Coriolis–like forces, giving some extra terms in the evolution equations below. From a numerical view point there is an added benefit when we consider space times with a strong shear or frame dragging, i.e. points where β^i is large. The standard example of this is the Kerr metric in Boyer-Lindquist coordinates. Inside the ergosphere, from the point of view of the SFCS, everything is rotating around the black hole in the same direction as the spin of the hole. The closer we are to the event horizon, the faster the rotation induced by the shear. From a local observers point of view in the PFIDO frame though, there is no shear and the locally defined velocity is much smaller. The locally defined velocity is the truly interesting velocity, since it arises due to physical processes, while the apparent high velocity seen by an observer attached to the SFCS is partly due to the geometrical structure of the background space time and partly due to physical processes, thus, a result of the chosen reference frame. Near the horizon the shear-induced frame dragging velocity is much greater than the local velocity, and we can run into problems with numerical cancellations smearing out variations in the local velocity. Yet this is avoided by choosing to work in the PFIDO frame.

From the line elements Eq. (2.1) and Eq. (2.4) we may derive the transformation laws. In particular we have

$$\alpha dt = d\tilde{t}$$
$$\gamma_{ii}(dx^i + \beta^i dt) = d\tilde{x}^i;$$

and coordinate differentials are contravariant vectors. Then, any contravariant vector U^μ transforms like

$$\tilde{U}^t = \alpha U^t \quad \tilde{U}^i = \sqrt{\gamma_{ii}} (U^i + \beta^i U^t)$$

It is a matter of linear algebra to show that covariant vectors transform like

$$\tilde{U}_t = \frac{1}{\alpha} (U_t - \beta^i U_i) \quad \tilde{U}_i = \frac{1}{\sqrt{\gamma_{ii}}} U_i$$
2.2 The GrMHD equations

Tensors transform as the product of vectors by their very definition. We refer the reader to App. B for a complete list of transformation relations that have proven useful when deriving the equations in this chapter.

2.2.3 Basic equations

The basic fluid equations follow from conservation laws. The conservation of the baryon current gives

\[\nabla_\mu (\rho U^\mu) = 0 \]

(2.10)

where \(\nabla_\mu \) is the covariant derivative, \(\rho \) is the rest mass density and \(U^\mu \) is the four velocity in the SFCS coordinate system. The conservation of the energy–momentum tensor \(T^\mu_\nu \) leads to a similar expression

\[\nabla_\mu T^\mu_\nu = 0 \]

(2.11)

The version that we have chosen to use of the energy–momentum tensor for a fluid is given as

\[T^\mu_{{(HD)\nu}} = \rho h U^\mu U_\nu + \delta^\mu_\nu P - 2 \eta \sigma^\mu_\nu, \]

(2.12)

where \(e_{\text{int}} \) is the internal energy, \(P \) is the pressure, \(h = 1 + e_{\text{int}} + P/\rho \) is the relativistic enthalpy and \(\eta \sigma^\mu_\nu \) is the shear viscosity. It has the definition

\[\sigma^{\mu\nu} = \frac{1}{2} (h^{\mu\alpha} \nabla_\alpha U^\nu + h^{\nu\alpha} \nabla_\alpha U^\mu) \]

(2.13)

where \(h^{\mu\nu} \) projects into the fluid rest frame

\[h^{\mu\nu} = U^\mu U^\nu + g^{\mu\nu} \]

(2.14)

We consider the energy–momentum tensor in mixed form as the basic hydrodynamical object to evolve, because even for general metrics the pressure term disappears in Eq. (2.12) for off-diagonal components [27]. This is not the case for the purely co- or contravariant versions.

The energy momentum tensor of the electromagnetic field is

\[T^\mu_{{(EM)\nu}} = F^{\mu\sigma} F_{\sigma\nu} - \frac{1}{4} \delta^\mu_\nu F^{\kappa\sigma} F_{\kappa\sigma} \]

(2.15)

where \(F^{\mu\nu} \) is the electromagnetic field strength tensor.
2.2 The GrMHD equations

We can simplify the covariant derivatives significantly by using the following identities

\[\nabla_{\mu} f U^{\mu} = \frac{1}{\sqrt{-|g|}} \partial_{\mu} \left(\sqrt{-|g|} f U^{\mu} \right) \]
\[\nabla_{\mu} T^{\mu}_{\nu} = \frac{1}{\sqrt{-|g|}} \partial_{\mu} \left(\sqrt{-|g|} T^{\mu}_{\nu} \right) - \frac{1}{2} T^{\kappa\sigma} \partial_{\nu} g_{\kappa\sigma} \]
\[\nabla_{\mu} F^{\mu}_{\nu} = \frac{1}{\sqrt{-|g|}} \partial_{\mu} \left(\sqrt{-|g|} F^{\mu}_{\nu} \right) \]

where \(f \) is a scalar function, \(U^{\mu} \) a vector, \(T^{\mu}_{\nu} \) any symmetric tensor, \(F^{\mu}_{\nu} \) any antisymmetric tensor and \(|g| \) is the determinant of the metric.

2.2.4 Selecting evolution variables

We have chosen our field variables with respect to the PFIDO frame and the basic evolution variables take the form

\[D = \gamma \rho \bar{U}^{t} = \gamma \rho W \]
\[E = -\gamma \bar{T}_{i}^{t} - D = \gamma \left(\rho h W^{2} - P - \rho W \right) \]
\[P_{i} = \sqrt{\gamma_{i} \gamma} \bar{T}_{i}^{t} = \sqrt{\gamma_{i} \gamma} \rho h W \bar{U}_{i} \],

where \(W = \bar{U}^{t} \) is the Lorentz factor of the fluid with respect to the PFIDO frame and \(\gamma = \sqrt{|g|} \) is the square root of the determinant of the spatial metric. Looking at Eq. (2.16) and Eq. (2.8) we see that the reason for choosing the factor \(\gamma \) in front of the variables in Eqs. (2.17)–(2.19) is to cancel out \(\sqrt{-|g|} \) in Eq. (2.16). The subtraction of the relativistic mass density in the definition of the total fluid energy density is done in order to cancel the rest mass energy density, which could otherwise jeopardise a numerical implementation when the flow is non-relativistic.

2.2.5 Hydrodynamic equations

In order to highlight the physical content I first write down the equations of motion in the case where there are no electromagnetic fields: \(T^{\mu\nu} = T^{\mu\nu}_{(HD)} \). To find the equations of motion, we use Eqs. (2.8)–(2.9) and their extension to mixed typed two-tensors (see App. B) together with the rules for covariant derivatives Eq. (2.16) and the fundamental equations of motion in the SFCS
Eq. (2.10) and Eq. (2.12)

\[
\frac{\partial_t D}{D} = -\partial_j D\bar{v}^j \\
\frac{\partial_t}{t} [E + \Sigma^i_t] = -\partial_j \left[(E + \gamma P) \bar{v}^j + \sum \bar{v}^j_i \right] \\
+ \frac{1}{\alpha} \left[P_i (\partial_i + \bar{v}^j \partial_j) + \Sigma^i_t \partial_t + \sum \bar{v}^j_i \partial_j \right] \beta^i \\
- \left[D\bar{v} W (\partial_t + \bar{v}^2 \partial_j) + \gamma P (\partial_t - \beta^j \partial_j) \right] \\
+ \Sigma^i_t \partial_t + \sum \bar{v}^j_i \partial_j \right] \ln \alpha \\
- \partial_j (\gamma P \beta^j) + (\beta^i M_i - \mathcal{M}_i) \\
\frac{\partial_t}{t} [P_i + \Sigma^i_t] = -\partial_j \left[P_i \bar{v}^j + \sum \bar{v}^j_i \right] - \partial_i [\alpha \gamma P] + \alpha \mathcal{M}_i,
\]

where the normal three-velocity has the usual definition

\[
\bar{v}^\mu = \frac{\bar{U}^\mu}{\bar{U}^t} = \frac{\bar{U}^\mu}{W},
\]

the transport velocity is the three-velocity seen from the SFCS

\[
\bar{v}^i = \frac{\alpha}{\sqrt{\gamma_{ii}}} \bar{v}^i - \beta^i \frac{U^i}{U^t},
\]

the geometrical terms \(M_\mu\) are

\[
\mathcal{M}_\mu = \frac{1}{2} \gamma T^{\alpha\nu} \partial_{\mu} g_{\alpha\nu}
\]

and the viscosity terms are

\[
\Sigma^i_t = -\gamma \bar{\sigma}^i_t \\
\Sigma^i_t = \sqrt{\gamma_{ii}} \gamma \bar{\sigma}^i_t \\
\Sigma \bar{v}^i_j = -\gamma \left[\frac{\alpha}{\gamma_{ij}} \bar{\sigma}^j_i - \beta^j \bar{\sigma}^i_t \right] \\
\Sigma \bar{v}^j_i = \sqrt{\gamma_{iij}} \gamma \left[\frac{\alpha}{\gamma_{ij}} \bar{\sigma}^j_i - \beta^j \bar{\sigma}^i_t \right]
\]

Even though the evolution equation for the energy has become a bit more complicated than in the special relativistic case \((\alpha = \gamma = \sqrt{\gamma_{ii}} = 1, \beta = 0)\), it represents a substantial simplification in that relations between the different variables reduce almost to the special relativistic form. Hence for example the Lorentz factor \(W\) may be computed as \(W = [1 + \bar{\gamma}_{ij} \bar{U}^i \bar{U}^j]^{1/2}\) bearing in
mind that the diagonal is already normalised. Let us consider a space time without any off-diagonal spatial components but with an arbitrary shear. For example, Boyer Lindquist coordinates in an extreme astrophysics context or the uniform curvature gauge in a cosmological context. In these examples, the shear viscosity is identical to the special relativistic form. This is because the PFIDO frame reduces to a FIDO frame of reference. To handle coordinate systems that penetrate the event horizon of a black hole, for example the Kerr–Schild coordinates, we need at least one off-diagonal spatial component [17]. In this case extra terms in the shear tensor arise, but changes are minimal.

2.2.6 Artificial viscosity

It was argued by Anninos & Fragile [2] that in order to make a consistent relativistic finite difference code with artificial viscosity (AV) it is crucial to use a viscosity, that has been defined in a physically sensible manner, otherwise, it will break down for flows with high Lorentz factors. An efficient AV should be covariant in its definition, such that, the code can easily be adapted to general relativity, be physically meaningful, respect energy conservation, and reduce to some normal Newtonian AV formulation in the non relativistic limit. We know of no implementation so far that has respected all of the above points. Indeed it seems that the prevalent thing is constructing a mock-up “viscous pressure” using the prescription $P \to P + Q_{visc}$ and then include a directional dependence such that the effective energy-momentum tensor takes the form

$$T^\mu{}_{(HD)} = (\rho h + Q_{visc})U^\mu U^\nu + g^{\mu\nu}P + Q^{\mu\nu}$$

Such a viscosity may be able to deal with mildly relativistic shocks but it does not even reduce properly in the non relativistic limit.

A general imperfect fluid energy–momentum tensor may be written

$$T^\mu{}_{(HD)} = \rho h U^\mu U^\nu + g^{\mu\nu}P + Q^{\mu\nu}$$

$$Q^{\mu\nu} = -2\eta \sigma^{\mu\nu} - \xi \theta h^{\mu\nu},$$

where η and ξ is the shear and bulk viscosity coefficients, $\theta = \nabla \mu U^\mu$ is the expansion of fluid world lines, and $\sigma^{\mu\nu}$ is the spatial shear tensor (see Eq. (2.13)). In the non relativistic limit we find that

$$T^{tt} \to D \to \frac{1}{2} \rho v^2 + \rho e_{int}$$

$$T^{ti} \to \rho v^i$$
which shows that any viscosity should reduce as

\[(Q^{ij}, Q^{ij}) \rightarrow (v^j \tau_{ij}, \tau_{ij})\]

\[\tau_{ij} = \nu_{ij} (\partial_i v^j + \partial_j v^i)\]

in the non relativistic limit. Here \(\nu_{ij}\) is some viscous constant, which could depend on the numerical grid spacing \(dx^i\), the local sound speed and other factors. Neither the viscous pressure formulation (Eq. (2.30)) nor the bulk viscosity \(\xi \theta h^{\mu\nu}\) reduce properly in the limit. Only the shear viscosity \(\eta \sigma^{\mu\nu}\) does so. The shear viscosity is included directly in the energy-momentum tensor and it is by construction covariant and preserves energy and momentum.

2.2.7 Electromagnetic fields

The 3 + 1 formulation of Maxwell’s equations was originally calculated by Thorne & MacDonald [79] and may be written (see also Baumgarte & Shapiro [8])

\[\partial_i \gamma E^i = 4\pi \gamma \rho_e,\]

\[\partial_i \gamma B^i = 0,\]

\[\partial_t \gamma E^i = \epsilon^{ijk} \partial_j (\alpha \gamma \partial_k) - 4\pi \alpha \gamma J^i + \partial_j \left[\beta^j \gamma E^i - \beta^i \gamma E^j \right],\]

\[\partial_t \gamma B^i = -\epsilon^{ijk} \partial_j (\alpha \gamma \partial_k) + \partial_j \left[\beta^j \gamma B^i - \beta^i \gamma B^j \right]\]

where \(E^i, B^i, \rho_e\) and \(J^i\) are the electric field, magnetic field, charge density and current density as seen by observers in the SFCS frame. With the goal of simplifying the equations, we absorb the determinant of the 3-metric in the definition of the different fields. Furthermore we use the fields as seen by observers in the PFIDO frame. The Maxwell equations then become

\[\partial_i \mathcal{E}^i = 4\pi \mathcal{P}_e,\]

\[\partial_i \mathcal{B}^i = 0,\]

\[\partial_t \mathcal{E}^i = \epsilon^{ijk} \partial_j (\alpha \mathcal{B}_k) - 4\pi \alpha \mathcal{J}^i + \partial_j \left[\beta^j \mathcal{E}^i - \beta^i \mathcal{E}^j \right],\]

\[\partial_t \mathcal{B}^i = -\epsilon^{ijk} \partial_j (\alpha \mathcal{E}_k) + \partial_j \left[\beta^j \mathcal{B}^i - \beta^i \mathcal{B}^j \right]\]

where \(\mathcal{B}^i = \frac{\gamma}{\sqrt{\alpha_0}} \tilde{B}^i = \gamma B^i, \mathcal{B}_i = \sqrt{\gamma} \gamma \tilde{B}_i = \gamma B_i, \mathcal{E}^i = \frac{\gamma}{\sqrt{\alpha_0}} \tilde{E}^i = \gamma E^i, \mathcal{E}_i = \sqrt{\gamma} \gamma \tilde{E}_i = \gamma E_i, \mathcal{P}_e = \gamma \rho_e\) and \(\mathcal{J}^i = \frac{\gamma}{\sqrt{\alpha_0}} \tilde{J}^i\). Except for the shift terms and some lapse factors, this equation set is identical to the special relativistic Maxwell equations.
2.2 The GrMHD equations

The energy and momentum equations are modified in the presence of electromagnetic fields, reflecting the transfer between fields and fluids.

\[
\nabla_{(\nu} T^\mu_{(HD)\nu} = -\nabla_{(\nu} T^\mu_{(EM)\nu} = F_{\nu\mu} J^{\mu} \tag{2.45}
\]

where \(J^{\mu} \) is the four current vector. After some algebra we find

\[
\partial_t \mathcal{E} = \ldots + \gamma \left[\beta^i F_{i\mu} J^{\mu} - F_{i\mu} J^{\mu} \right] = \ldots + \frac{\alpha}{\gamma} \mathcal{J} \cdot \mathcal{E} \tag{2.46}
\]

\[
\partial_t \mathcal{P}_i = \ldots + \alpha \gamma F_{i\mu} J^{\mu} = \ldots + \frac{\alpha}{\gamma} \left[\epsilon_{ijk} \mathcal{J}^j B^k + \mathcal{P}_e \mathcal{E}_i \right] \tag{2.47}
\]

It is worth noticing that the result practically reduces to special relativity except for the prefactor \(\alpha \gamma^{-1} \).

2.2.8 Ohm’s Law

If we consider relativistic MHD, we have to supply an Ohm’s law to link the electric and magnetic fields with the current density. A relativistic version of the standard non-relativistic Ohm’s law may be written \[8, 47, 54\]

\[
\eta_c J^i = U^\nu F_{i\nu} = \alpha \mathcal{E}_i U^t + \epsilon_{ijk} \left(U^j + \beta^j U^t \right) B^k, \tag{2.48}
\]

where \(\eta_c \) is the resistivity. Using Eq. (2.8) it reduces to

\[
\mathcal{E}_i = \frac{\eta_c}{W} \mathcal{J}_i - \frac{1}{\sqrt{\gamma_{ii}}} \epsilon_{ijk} \bar{v}^j B^k \]

\[
= \frac{\eta_c}{W} \mathcal{J}_i - \frac{1}{\sqrt{\gamma_{ii}}} \bar{v}^j \times \bar{B}^k \tag{2.49}
\]

Except for the Lorentz factor \(W \) and the single geometric factor, this is identical to the standard non relativistic result.

In this thesis the ideal MHD condition will not be used directly, since resistivity is applied in the code. However, taking \(\eta_c = 0 \) and assuming the ideal MHD condition Faradays law Eq. (2.44) in the SFCS may be reduced to \[8\]

\[
\partial_t \gamma B^i = \partial_j \left((U^t)^{-1} U^j \gamma B^j - (U^t)^{-1} U^j \gamma B^j \right), \tag{2.50}
\]

which in our notation is

\[
\partial_t B^i = \partial_j \left(\bar{\gamma} B^j - \bar{\gamma} B^j \right) \tag{2.51}
\]
2.3 The Numerical Algorithm

I have used the equations of motion Eqs. (2.20), (2.46), (2.47), (2.44) together with Eq. (2.43) for the current density and an Ohms law Eq. (2.49) as a basis for the general relativistic code, but even though many mathematically equivalent forms of the equations of motion exist, they may lead to numerical implementations with radically different success rates. In this section, I detail some of the concepts I have used to deal with the problems that inevitably arise when solving a set of equations numerically.

The most important choice is to determine if we want to exploit the characteristic structure of the equations or just directly use finite differencing to solve the equations. In keeping with the tradition in Copenhagen I have chosen the latter. This has helped to develop the code in a relatively short time span and I am indebted in my reuse of techniques and tricks from the non relativistic codes developed in Copenhagen.

The next fundamental choice is the form of the equations. Either we can use a flux conservative or a non conservative formulation. There are benefits to both: In the flux conservative formulation, the Rankine-Hugoniot jump conditions are automatically satisfied across shock fronts even if the model does not resolve the shocks entirely. This is not the case for a non conservative formulation. On the other hand: In a flux conservative formulation, one of the conserved variables is the total energy. It contains contributions both from the fluid and from the electromagnetic fields. If the plasma is strongly dominated by the electromagnetic fields, the internal energy, the difference between the total and electromagnetic energies, can be swamped by numerical noise and round off. Another problem — albeit technical — is that the conservative variables in the MHD case are related algebraically to the so called primitive variables through a sixth order polynomial. There is no analytical solution to the problem, and an expensive numerical root finder method has to be used.

I have chosen a cross breed solution: I use conservative variables for the hydrodynamics, while in the case of MHD, I do not include the magnetic energy and momentum in the total energy \mathcal{E} and covariant momentum \mathcal{P}_i. The basic reason for not using conservative variables is due to the problems with magnetically dominated plasmas. As an added benefit, I circumvent the problems of finding primitive variables through non analytical methods. Nonetheless, still at every time step it is necessary to find the four velocity \vec{U}^μ and enthalpy h from the total hydrodynamic energy \mathcal{E} and covariant momentum \mathcal{P}_i.
2.3 The Numerical Algorithm

2.3.1 Primitive variables

Given the dynamical variables D, E and P_i in Eqs. (2.17)-(2.19) together with the equation of state for an ideal gas

$$P = (\Gamma - 1)\rho e_{int} = \frac{\Gamma - 1}{\Gamma} \rho(h - 1),$$

(2.52)

where Γ is the adiabatic index, I define two derived quantities

$$X \equiv \frac{\mathcal{E}}{D} = (h - 1)W + W - 1 - \frac{\Gamma - 1}{\Gamma} h - 1$$

(2.53)

$$Y \equiv \frac{\mathcal{P}_i \mathcal{P}^i}{D^2} = h^2(W^2 - 1)$$

(2.54)

Using Eq. (2.54) to solve for W and inserting the solution into Eq. (2.53) a fourth order polynomial in $h_m = h - 1$ may be constructed, which only contains X, Y and Γ in the coefficients, viz.

$$h_m^4 + 2[\Gamma + 1] h_m^3 + [1 + \Gamma(4 - \Gamma X(2 + X) + 2Y)] h_m^2 +$$

$$[1 - \Gamma X(X + 2) + (1 + \Gamma)Y] h_m +$$

$$\Gamma^2(1 + Y)(Y - X^2 - 2X) = 0$$

(2.55)

When the desired root has been found, it is trivial from Eq. (2.54) to obtain $\bar{U}^i \bar{U}_i = W^2 - 1$ and then any other desired quantity. Fourth order polynomials may be solved iteratively using a range of different root finder methods, such as the Newton–Raphson method. I tried this, and even though it most often worked flawlessly and was fast, for certain corner cases, it is both unstable and slow. Slowness in a few cases may be acceptable, but if the method crashes, the simulation crashes. Stability is the key. An alternative is to use an analytic formula for the roots, but great care has to be taken. In any naïve implementation, for example taking directly the output from Mathematica, the coefficients will cancel numerically at the slightest difference in scale of the four velocity and the Lorentz boost and the result will be imprecise. In the end I settled on a method detailed in [1] to reformulate the problem in terms of roots in one third order and four second order polynomials. I find the roots using stable formulae, which guard for cancellations, from [69]. With this approach the code runs most tests using single precision variables and only for the most extreme cases (high Lorentz boost and very low pressure), we have to fall back to double precision. The solver is not only rock solid but also very fast. Properly implemented with no if-lines and all calculations vectorised, it takes approximately 20% of a time step, and therefore does not, in any way, dominate the problem. Note that a related approach has been reported in [19].
2.3.2 Artificial viscosity

I do not try to solve, neither exactly nor approximately, the Riemann problem at cell boundaries. Instead, I use finite difference derivatives. To stabilise the algorithm it is critical to add AV. During the development of the code I have tried many different formulations both inspired by the non relativistic codes developed in Copenhagen, classical formulations of AV and the self consistent AV detailed in [2]. In the end I settled for an AV based on a physical model of shear viscosity derived from the energy momentum tensor of an imperfect fluid (see Sec. 2.2.6). To determine the viscosity coefficient η in front of the shear viscosity in Eq. (2.12) I have extended the prescription already used in the non relativistic codes in Copenhagen [61], and use a Richtmeyer–Morton type hyper viscosity that depends on the local conditions in the fluid:

$$\eta_{ij} = \Delta x_{ij} \left[\nu_1 c_s + \nu_3 |\tau| + \nu_2 \Delta l |\partial_\mu \tilde{U}^\mu|_{<0} \right]$$

$$\Delta x_{ij} = \frac{1}{2} D h \left[\Delta x^i + \Delta x^j \right]$$

where c_s is the relativistic sound speed, $\Delta l = \max(\Delta x^i)$ and $|\cdot|_{<0}$ means that the strong shock viscosity only is operative where there is a compression of the fluid. Except for the sound speed, the only other changes in the coefficient ν_{ij} compared to [61] are the use of $D h$, as seen by an observer in the local PFIDO, frame instead of the mass density ρ, and the use of the divergence of the four velocity in the relativistic case compared to the normal divergence of the spatial three velocity in the non relativistic case. It is non trivial to find the time derivative of the Lorentz boost W. We found by experimenting with different, mathematically equivalent prescriptions, that by far the most stable formulation is

$$\partial_t W = \frac{1}{2W} \partial_\mu \tilde{U}^\mu \tilde{U}_i$$

The shear viscosity, given in Eq. (2.13), contains time derivatives of the four velocity too. In the code I use a third order Runge–Kutta integrator for the normal dynamical variables. I evaluate the four velocity derivatives by explicit derivatives, storing old velocities three sub time steps back in time. This way I get third order correct time derivatives. Unfortunately they are not correctly time centred and I speculate that some of the problems I see in the test problems below for high Lorentz boosts may be due to the time derivatives lagging approximately half a full time step compared to the rest of the terms. In the energy and the momentum equations (2.21) and (2.22) AV terms arise both on the right hand side and in the time derivative. I have currently not included the time derivative of the shear viscosity in the code.
2.3.3 The magnetic field

The equations are evolved on a staggered mesh (see below) and the divergence free condition Eq. (2.38) of the magnetic field is naturally conserved. To raise the entropy in magnetically driven shocks I use the exact same formulation as in [61] for the resistivity η_c since the Maxwell equations by construction comply with special relativity, and the only change has been to substitute a relativistic correct expression for the fast mode speed.

Ohms law Eq. (2.49) and Amperes law Eq. (2.43) are used to derive the electric field and the current density respectively. We use an explicit time derivative to evaluate the displacement current. Even though it is lagging behind with half a time step, like the time derivatives of the four velocity, it has proven very effective in limiting the magnetically driven wave speeds except when the Alfvén velocity becomes close to the speed of light. The magnetic part of the code is calculated following the scheme

- Calculate the resistivity η_c. It is proportional to $\nu_B \nu_3$.
- Estimate the electric field: $\mathcal{E}_i^* = -\frac{1}{\sqrt{\eta_i}} \tilde{\epsilon}^j \times \tilde{B}^k$.
- Calculate \mathcal{E}^*i and find the displacement current using an explicit time derivative.
- Calculate an estimate for the current $\alpha \mathcal{T}^i = \epsilon^{ijk} \partial_j (\alpha B_k) + \partial_j [\beta^j \mathcal{E}^*i - \beta^i \mathcal{E}^*j]$.
- Lower the current and find the final electric field $\mathcal{E}_i = \frac{\eta_i}{\alpha} \mathcal{T}_i^* + E_i^*$.
- Use the displacement current to update the current $\mathcal{T}_i = \mathcal{T}_i^* - \frac{1}{\alpha} \partial_i \mathcal{E}^*i$.

I have tested different variations of the scheme above using the full version of the current density \mathcal{T}, including the displacement current, to find the final electric field. Even though formally better, it turned out to be less stable, giving short wave oscillations and essentially the same results.

2.4 Testing the Code

I have implemented an MHD version of the above equations, currently restricted to special relativity. A pure HD version has been made for general relativity with diagonal metrics. To test the code, I have applied a battery of tests that are presented below. In all tests I have used a 3 dimensional version
of the code. The boundary conditions are implemented in the y direction by
design, and therefore our 1D box has the size $(1, N_y, 1)$. If not stated otherwise,
in all runs, the weak shock viscosity coefficients are $\nu_1 = \nu_3 = 0.029$,
the strong shock viscosity coefficient is $\nu_2 = 0.55$, the magnetic resistivity
coefficient (see [61]) is $\nu_B = 1$ and the Courant limit is $C_{dt} = 0.3$. The code
can handle more extreme problems by tuning the different numbers, but I feel
that it is important that the code “just works”; in real physical applications
the results should not rely too much on the tuning of these technical parameters,
since that would question the validity of the results. As an example,
by just decreasing the Courant limit and the weak viscosity ν_1 I am able to
run the wall shock test with a $W_{inflow} = 5$ and obtain satisfactory results.
Only in two of the magnetic tests, I have tuned the coefficients to facilitate
the comparison with other codes.

2.4.1 Hydrodynamical tests

The code has been developed without extending any preexisting relativistic
fluid dynamics code, and it is important to demonstrate that it can solve
correctly a variety of purely hydrodynamical problems. Fortunately, the
analytic solution to hydrodynamic shock tubes is known [49, 68, 78]. I have
used the Riemann program published by Martí and Müller [50] to generate
the analytic solutions.

Blast waves

The blast wave is a problem with two domains initially at rest with a discon-
tinuous jump in the density and pressure. A blast wave is launched at the
interface with a very thin shell of high density. The fluid separates in five
different states. Two initial states at the left and right boundary, a rarefac-
tion wave, the contact discontinuity and a shock wave. This setup is ideal
for testing how diffusive the scheme is, since the shock wave, for suitable pa-
rameters, is very thin. The initial states for the three problems we consider
are shown in Table I.

<table>
<thead>
<tr>
<th>Problem I</th>
<th>Problem II</th>
<th>Problem III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blast waves</td>
<td>Left</td>
<td>Right</td>
</tr>
<tr>
<td>Pressure</td>
<td>13.33</td>
<td>0.001</td>
</tr>
<tr>
<td>Density</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Gas Gamma</td>
<td>5/3</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Problem I, shown in Fig. 2.1, is a classic shock tube, that most relativistic
codes have been tested against (see [50] for a compilation). Ideally the right
Fig. 2.1: Problem I: A mildly relativistic blast wave problem. Notice the slight oscillation at the edge of the shock front. This is due to the large jump in pressure at that point.

state should have zero pressure but due to numerical reasons we have set it to 0.001. A small weakness of the code is already visible in this test. When a high mass density region separates from a low density region, such as at the contact discontinuity in Fig. 2.1, there is a certain amount of stickiness. It is in fact a feature to avoid low density regions to develop into true vacuums, making the code crash, but it also makes advecting high density blobs become more diffusive at the trailing edge. The shock velocity is maintained to a very high precision and the rarefaction wave is near perfect too, even at low resolutions.

Problem II is a more relativistic variation of problem I. The shock wave is propagating with 0.92c. At $t = 0.4$ the shell has a thickness of $\Delta y = 0.023$ or 11 grid zones at a resolution of 500 points. The AV spreads out the
discontinuity over 6 points and this explains why the shock wave is under resolved at this resolution. 2000 points are needed to get a reasonable solution at $t = 0.4$. Notice also, that the diffusion in the density impacts on the flat profiles of pressure and velocity. Problem III is the most extreme shock tube. To make a different setup I have removed the rigid boundaries and instead imposed periodic boundaries (see Fig. 2.4). A similar problem was considered by Martí and Müller [49]. Compared to problem II, the pressure in the right zone is also lowered, and the equation of state is more sensitive to the pressure.

When the two shock waves collide at $t = 0.26$ a very dense shell is created. To track the evolution in an easy way, I have plotted the maximum density
Fig. 2.3: Problem III: Colliding blast waves. The evolution of the maximum in density as a function of time is shown. A resolution of 8000 points is needed to resolve the very thin shell of high density that is created when the two blast waves collide, and to accurately calculate the post shock profile, while with 2000 points we marginally resolve the preshock solution at $t = 0.26$.

Fig. 2.4: Problem III: The solution at $t = 0.2$, just before the two shock waves collide.
2.4 Testing the Code

Fig. 2.5: Problem III: The system, at the collision at $t = 0.265$. Notice we have changed the scale of both the x- and y-axis to reflect the large change in density, and visualise the thin structures. See Fig. 2.4 for legend.

Fig. 2.6: Problem III: The system, after the collision at $t = 0.3$. See Fig. 2.4 for legend.

Fig. 2.7: Problem IV: The wall shock problem. The solution is shown at $t = 2$ and the resolution is 200 points.
2.4 Testing the Code

Inflow four velocity = 2.0

Inflow four velocity = 1.5

Inflow four velocity = 1.0

Fig. 2.8: Problem IV: The same as in Fig. 2.7, but the resolution is 400 points. Notice that the number of points in the shock interface stays the same for different resolutions; about 3, 2 and 1 1/2 points for the different velocities.

as a function of time in Fig. 2.3 for different resolutions. To resolve the preshock state reasonably well, at least 2000 points are needed, while 8000 points are necessary to resolve the high density region and the post shocks. In [49] 4000 points were needed using a shock capturing PPM method to accurately model their problem.

The wall shock

The last hydrodynamical problem I have tested against is the wall shock. A cold fluid comes in from the right and hits a wall at the left edge where it is reflected. The inflow density is \(\rho = 1 \) and the adiabatic index is \(\Gamma = 4/3 \). When reflected a warm dense medium builds up. Figs. 2.7 and 2.8 show the solution at different resolutions and time \(t = 2 \) for mildly relativistic velocities of \(v_s = 0.9 \) and downwards. The analytic solution to the wall shock problem may be found in [2] and [50].

It is clear from the above tests that the code is working very well up to a Lorentz factor of about \(W = 2.5 \). For higher Lorentz factors the current artificial viscosity implementation becomes problematic. I believe there are two problems with the current implementation: We use explicit time derivatives for the four velocities, but exactly because they are explicit, for a given time step \(t \) they are found at \(t - \frac{1}{2} dt \), and if the fluid is highly relativistic this will make a difference. In the wall shock, I observe that only decreasing the Courant limiter from the stock 0.3 to 0.01, I can reach an inflow velocity with a Lorentz boost of 3.5. Anninos & Fragile [2] have developed, to our best
knowledge, the only explicit AV based code that can handle high Lorentz factors. This is possible, because they include the time derivatives of the viscosity.

2.4.2 Magnetohydrodynamical tests

To validate the magnetic aspects of the code, I have performed a range of tests. Unfortunately, in relativistic MHD, no analytic solution is known to the Riemann problem, and I have to rely on comparison with tests considered by other groups using different codes and methods. Komissarov published in 1999 a testbed [43] (hereafter K99) with different shock tubes. Unfortunately there were some errors in the tables, which are corrected in [44]. Some of the tests were used by De Villiers and Hawley [18] and Gammie et al [27] to validate their respective GrMHD codes. I have continued this trend by performing the same tests as in [18]. They augmented the testbed of K99 with an Alfvén pulse test that tests for correct wave speed of Alfvén waves at different background fluid speeds and degrees of magnetisation, and a more complete set of magnetosonic shocks. Presented below are tests of magnetosonic shocks, magnetised shock tubes and similar Alfvén pulses.

Magnetosonic shocks

In Fig. 2.9 I present a collection of four different standing magnetosonic shock waves. The parameters of the different waves may be found in table II and have been taken from [18]. In the most extreme shock, the Fast Shock III, we had to decrease the Courant limit to \(C_{dt} = 0.1 \) and the shock viscosities to \((\nu_1, \nu_2) = (0.001, 0.03) \).

For all cases the solution is in excellent agreement with the analytical solution. Only in the case of the slow shock a slight over density has built up and is propagating away from the shock wave. This might be due to a relaxation of slightly imperfect initial conditions, and the solution has instead settled to a new static solution with a small difference in the parameters. In the cases of the fast shocks initially there is a perturbation too, but only as a small temporary ripple. In the cases of the Fast Shock II and III (the lower plots in Fig. 2.9) the ripple has already been advected out of the box, while in the case of the Fast Shock I it can still be seen at the right edge of the figure.

Magnetised shock tubes

I have performed two magnetised shock tube tests and the parameters may be found in table II. The first is a relativistic version of the classic shock
2.4 Testing the Code

Fig. 2.9: Problem V: Magnetosonic shocks. The slow shock is top left, fast shock I is top right, fast shock II bottom left and fast shock III is bottom right. The buildup in the right side of the slow shock is due to interaction with the boundary. In the other shocks, the solution is close to perfect and buildup does not occur.
2.4 Testing the Code

Fig. 2.10: Problem VI: Magnetised shock tubes. To the left is the relativistic version of the Brio & Wu shock tube, to the right the K99 shock tube. Compared to Figs. 6 and 7 in [18] and Fig. 6 in [43] it is clear that most of the different waves have the correct amplitude, but there are problems with too high wave speed and therefore errors in the rarefaction wave. This is most pronounced for the K99 shock tube to the right.
Fig. 2.11: Problem VII: Alfvén pulse test. We start two Alfvén pulses at $y = 1.5$. The wave speeds depend on the background fluid velocity and the degree of magnetisation. We begin to get significant errors when $v_A \gtrsim 0.7c$. In all figures, the time is selected to have the two waves line up. This is not the case for ALF1 and ALF3.
Table II: Slow Shock ($V_s = 0.5$) vs Fast Shock I ($V_s = 0$)

<table>
<thead>
<tr>
<th></th>
<th>Slow Shock</th>
<th>Fast Shock I</th>
<th>Grid size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>Right</td>
<td>Left</td>
<td>Right</td>
</tr>
<tr>
<td>Pressure</td>
<td>10</td>
<td>55.33</td>
<td>2.015</td>
</tr>
<tr>
<td>Density</td>
<td>1</td>
<td>3.322</td>
<td>1.406</td>
</tr>
<tr>
<td>Four Vel</td>
<td>(0.1,53,0)</td>
<td>(0.0,957,-0.682)</td>
<td>(0.1,78,0.114)</td>
</tr>
<tr>
<td>Mag Field</td>
<td>(0.10,18.28)</td>
<td>(0.10,14.49)</td>
<td>(0.33,2.5)</td>
</tr>
<tr>
<td>Gamma</td>
<td>$4/3$</td>
<td>$4/3$</td>
<td>$4/3$</td>
</tr>
<tr>
<td>t_{final}</td>
<td>2.0</td>
<td>2.5</td>
<td>512</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Slow Shock</th>
<th>Fast Shock II ($V_s = 0.2$)</th>
<th>Fast Shock III ($V_s = 0.2$)</th>
<th>Grid size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>Right</td>
<td>Left</td>
<td>Right</td>
<td>Grid size</td>
</tr>
<tr>
<td>Pressure</td>
<td>2.015</td>
<td>2.655</td>
<td>2.015</td>
<td>34.99</td>
</tr>
<tr>
<td>Density</td>
<td>1.406</td>
<td>1.725</td>
<td>1.406</td>
<td>8.742</td>
</tr>
<tr>
<td>Four Vel</td>
<td>(0.1,78,0.114)</td>
<td>(0.1,479,0.28)</td>
<td>(0.3,649,0.114)</td>
<td>(0.0,715,0.231)</td>
</tr>
<tr>
<td>Mag Field</td>
<td>(0.33,2.5)</td>
<td>(0.33,3.25)</td>
<td>(0.33,2.5)</td>
<td>(0.33,6.52)</td>
</tr>
<tr>
<td>Gamma</td>
<td>$4/3$</td>
<td>$4/3$</td>
<td>$4/3$</td>
<td>$4/3$</td>
</tr>
<tr>
<td>t_{final}</td>
<td>2.5</td>
<td>2.5</td>
<td>1024</td>
<td>512</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Relativistic Brio & Wu</th>
<th>Shock tube 2 from K99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>Right</td>
<td>Left</td>
</tr>
<tr>
<td>Pressure</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Density</td>
<td>1.0</td>
<td>0.13</td>
</tr>
<tr>
<td>Mag Field</td>
<td>(0.0,75,1.0)</td>
<td>(0.0,75,-1.0)</td>
</tr>
<tr>
<td>Gamma</td>
<td>$4/3$</td>
<td>$4/3$</td>
</tr>
<tr>
<td>t_{final}</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table III: Alfvén pulse tests

<table>
<thead>
<tr>
<th>Test</th>
<th>β</th>
<th>v_y</th>
<th>v_y^+</th>
<th>v_a^+</th>
<th>$10^4 \times A^+$</th>
<th>$10^4 \times A^-$</th>
<th>time</th>
<th>B^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALF1</td>
<td>0.05</td>
<td>0.0</td>
<td>1.04(0.85)</td>
<td>-1.04(-0.85)</td>
<td>5.0(5.0)</td>
<td>5.0(5.0)</td>
<td>1.17</td>
<td>7.8</td>
</tr>
<tr>
<td>ALF2</td>
<td>0.315</td>
<td>0.249</td>
<td>0.48(0.47)</td>
<td>0.00(0.00)</td>
<td>4.8(4.7)</td>
<td>5.2(5.3)</td>
<td>2.13</td>
<td>5.4</td>
</tr>
<tr>
<td>ALF3</td>
<td>0.1</td>
<td>0.8</td>
<td>1.09(0.95)</td>
<td>0.33(0.34)</td>
<td>3.8(2.5)</td>
<td>6.2(7.5)</td>
<td>1.46</td>
<td>10.7</td>
</tr>
<tr>
<td>ALF4</td>
<td>0.315</td>
<td>0.088</td>
<td>0.33(0.33)</td>
<td>-0.17(0.17)</td>
<td>0.49(0.49)</td>
<td>0.51(0.51)</td>
<td>4.04</td>
<td>5.0</td>
</tr>
</tbody>
</table>
2.4 Testing the Code

The shock tube is not very extreme and with a resolution of 2048 points, just like in [18] we clearly resolve all shock waves. The solution is shown at $t = 1$. Comparing with Fig. 7 in [18] we see that the wave speeds are wrong. The right rarefaction wave has reached $y = 1.1$ and is superluminal while it should have reached $y = 0.9$. The left rarefaction wave is in good agreement with Fig. 7 in [18] propagating with $v \approx 0.68$.

I was only able to obtain a stable solution of shock tube 2 of K99 by lowering the viscosity to $\nu_1 = 0.001$ and enhancing the magnetic resistivity to $\nu_B = 3.0$. The shock tube is on the limit of the codes capability; small oscillations in the density ρ just behind the shock wave in Fig. 2.10 are evident and there are large errors in the rarefaction wave, which propagates superluminally at $v = 1.2c$. The forward going shock wave is only slightly wrong propagating with $v \approx 1$, where it should be going with $v = 0.95$.

Alfvén Pulse test

The test is conceptually very simple. In a background with constant magnetic field and velocity in the y direction we set up a small square pulse in the perpendicular velocity component v^z. It splits into two waves that travel with the Alfvén velocity. The test is presented in [18] and although simple in concept it will easily reveal any errors in the wave speed. Since we use a direct finite difference technique to solve for the magnetic field it is critical that the displacement current is calculated correctly when the Alfvén speed approaches the speed of light. It is already evident from the shock tube test above that this is not always the case, and this test has been invaluable during the implementation, for assessing different schemes to calculate the displacement current.

Initially there is a constant background magnetic field B^y and a constant background fluid velocity v^y. On top of that a small square pulse with transverse velocity v^z is superimposed. The pulse will split in two waves travelling with the Alfvén velocity, given by [18]

$$v_a^\pm = \frac{v^y \pm \xi \sqrt{\xi^2 + W^{-2}}}{1 + \xi^2} \quad (2.59)$$

where $\xi^2 = |b|^2/(\rho h W^2)$ and b^μ is the magnetic field measured in the fluid rest frame. The size of the magnetic field in the fluid rest frame in a flat space time is related to B^i as

$$|b|^2 = \frac{1}{W^2} B^2 + \left[v^i B_i\right]^2 \quad (2.60)$$

Notice there is a factor of 4π in difference with [18], due to different conventions for B^i.

We may parametrise the problem, by the using the usual definition of $\beta = \sqrt{2P/|b|^2}$ as the ratio of gas to magnetic pressure in the fluid rest frame. For an ideal equation of state, in terms of β and P, ξ is written
\[
\xi^2 = \frac{2P}{\rho + \frac{\Gamma}{\Gamma-1}P\beta^2W^2}
\] (2.61)
To facilitate comparison, I have used the same box size, $0 < y < 3$, pressure $P = 1/3 \times 10^{-2}$, background density $\rho = 1$ and amplitude of the perturbation, $A_0 = 10^{-3}$, as in [18]. The adiabatic index is relativistic with $\Gamma = 4/3$. The pulses are set up with a square formed wave in v^z:
\[
v^z = \begin{cases}
A_0 & \text{if } 1 \leq y < 1.5 \\
-A_0 & \text{if } 1.5 \leq y < 2 \\
0 & \text{elsewhere}
\end{cases}
\] (2.62)
and for fixed ρ and P the Alfvén velocities v_a^\pm only depend on β and v^θ. The parameters are given in table III and Fig. 2.11 shows v^z at the time given in table III. The times have been selected to those moments in time where the two pulses line up exactly one after the other, and by visual inspection it is easy to see how the test fare.

The amplitudes of the two waves are inversely proportional to their Lorentz factors [18]:
\[
\frac{A^+}{A^-} = \frac{W(v_a^-)}{W(v_a^+)}
\] (2.63)
and because the starting amplitude A_0 is very small, the waves should not interact with each other. Then, the sum of the amplitudes is equal to the initial amplitude $A_0 = A^+ + A^-$. In table III, I have given the measured velocities and amplitudes together with the expected ones derived from Eqs. (2.59) and (2.63).

The tests are selected to highlight different regimes of Eq. (2.59). In ALF1, we have a very low β and consequently the Alfvén velocity is close to the speed of light. The code does not fare well, showing 22\% disagreement with the expected value. In ALF2 the background fluid velocity is selected such that one pulse is frozen. It can be verified from the figure, that the test is passed. In ALF3 $v^\theta = 0.8$ and both pulses are travelling to the right. For the fast moving pulse, again the wave speed is too high with a 15\% overshoot and the amplitudes are furthermore wrong. In ALF4 I have adjusted v^θ to yield two pulses with $v_a^+ = -2v_a^-$, and there are no problems with the test.

The tests indicate that the code begins to significantly overestimate the Alfvén velocity when $v_a^+ \gtrsim 0.75$, but in all cases the sum of the amplitudes is conserved. This is in accordance with the results from the shocktubes, where
correct jumps where observed albeit propagating with different velocities.

The many tests presented in this section document both the strengths and weaknesses of the code. It is essential to know the limits of the code, not only in terms of stability, but also when to trust the physical models produced using it.

It is clear that there are some stability problems with high Lorentz boosts, it is too viscous in the advection of high density blobs away from low density areas, and that it overestimates the Alfvén speed, when it is relativistic. The cures to these problems are twofold:

- The time derivatives of four velocities and the electric field have to be properly centred.
- The time derivatives of the shear viscosity in Eqs. (2.21) and (2.22) have to be included.

On the positive side the results all show flux conservation and reproduction of the proper jump conditions across discontinuities both in HD and MHD tests. We can successfully model problems with severe pressure and density contrasts and in most cases faithfully resolve sharp features with very few points. This is done without showing oscillatory behaviour. Even though the largest fraction of the CPU time is spent calculating the shear viscosity, the gains in stability and the sharpness of discontinuous features increased fundamentally when I shifted from using a “mockup viscosity” to a full physically motivated one.

The two points above are not fundamental or unsurmountable in any way and will be addressed in future work.

2.5 Astrophysical Applications

We can already apply the code to the understanding of mildly relativistic phenomena. Here I present first results from two applications related to the areas which motivated the development of the code.

2.5.1 Decaying magnetic fields in the early universe

In the introduction, we considered the evolution of magnetic fields in the early universe. Many analytical studies show that, at best, it will be very hard to find traces or fingerprints of primordial magnetic fields in the cosmic microwave background radiation, but these analyses do not take into account
Fig. 2.12: Evolution of the power spectrum and the total energy density for a turbulent magnetic field. The curves to the left are, in decaying order, for $t = [0, 3, 9, 12, 15, 18]$.

the non linear coupling between the different wave modes and the possibility of inverse cascades transferring energy from the small to the large scales.

Christensson et al [15, 16] argued that, in fact, if a turbulent helical magnetic field was created, for example at the electro weak phase transition, it would undergo an inverse cascade, while a non-helical field would not.

As a nontrivial 3D test of the code I have initialised a simple turbulent non-helical magnetic field and a turbulent velocity field with power spectra given as

$$P_B(k) = \langle |B_k|^2 \rangle = P_0 k^{n_B} \exp \left[- \left(\frac{k}{k_c} \right)^4 \right],$$

$$P_v(k) = \langle |v_k|^2 \rangle = P_0 k^{n_v} \exp \left[- \left(\frac{k}{k_c} \right)^4 \right],$$

where the index k indicates the Fourier transform and due to causality, the exponents are constrained to $n_v \geq 0$, $n_B \geq 2$. In accordance with [15], I have taken them to be at their minimal value. The cut-off k_c is introduced to limit numerical noise near the Nyquist frequency. In a 96^3 run, with a box size of $[0, 2\pi]^3$, where $k = 1$ corresponds to the largest mode in the box, I found that a value of $k_c = 10$ was sufficient to quench the numerical noise. To generate proper divergence free initial conditions, I first calculate the corresponding vector potential and then take the curl. The initial magnetic and kinetic energy are both 5×10^{-3} and the average density is $\rho = 1$. The internal energy is initialised such that the sound speed is relativistic, $c_s^2 = 1/3$.

Simulations of turbulence are very sensitive to the type and amount of
viscosity used, since it can alter the long time evolution of high frequency modes significantly. We have made a series of runs with less and less viscosity and noticed, that with coefficients $\nu_{1,3} < 0.003$ and $\nu_2 < 0.06$ there was no change in the decay rate of the spectrum. To the left in Fig. 2.12 is shown the magnetic power spectrum at different times for a run with $\nu_{1,3} = 0.0003$ and $\nu_2 = 0.006$. Correspondingly, to the right is shown the evolution of the magnetic energy in the box that I find decays as $E_M \propto t^{-1}$. Comparing my results with [15] I find good agreement. They found a $E_M \propto t^{-1.1}$ scaling law. The main difference between my runs and theirs is that they evolve the non relativistic equations, while I use the relativistic equations.

2.5.2 Relativistic jets

Relativistic jets seem ubiquitous in the universe, to be found over a large range of scales, from sub parsecs to kilo parsecs [50]. It is one of the purest displays of special relativity at work. While the other application tested the impact of the viscosity in the code, a jet is an excellent test of the codes capability to handle strong shocks.

Taking into account the large computer resources a 3D jet takes, I have chosen to make a 2D jet. At the moment, only Cartesian geometry is implemented in the code and I have constructed a slab jet, which is periodic in the z-direction. The injection happens in the y-direction, where rigid boundaries are imposed, while there are periodic boundaries in the x-direction. To avoid significant collision of the bow shock with itself, the computational domain is a square with $(N_x, N_y) = (800, 800)$. I have tried both to inject the jet in an purely hydrodynamic medium void of magnetic fields and in a medium with a parallel magnetic field B^y. As expected the main difference was further collimation of the jet due to magnetic confinement. Similar experiments have been reported by other authors [41, 43]. The jet has an injection radius of $R_j = 5$ cells, the density contrast is $\rho_{\text{ambient}}/\rho_{\text{jet}} = 10$ and the pressure is $P = 1$. There is pressure equilibrium between the jet and the ambient medium. We inject the jet with a Lorentz factor of $W = 1.5$ and the adiabatic index is set to be relativistic with $\Gamma = 4/3$. In Fig. 2.13 a sequence of snapshots are shown. The large resolution and thin injection radius makes it possible to follow the jet until it becomes unstable and decays. At $t = 500$ we see a classic jet. At the jet head there is a Mach shock, and material that has passed through the head is slowly forming a backflow along the jet, building up a shear layer. Furthest out is the bow shock. The jet is unstable, and at later times the jet head disintegrates into a number of vortices and looses most of the kinetic energy. The perturbation runs backwards, slowly unwinding the spine of the jet.
Fig. 2.13: From top to bottom: The jet at $t = 500, 1000, 1500, 2000$.
2.6 Code Implementation: Performance and Scalability

To successfully exploit modern massively parallel computers and clusters of computers, which at national centres of supercomputing often consist of hundreds of CPUs, the numerical implementation has to be carefully crafted. The program has to run at the optimal speed for small problems on a single CPU on a variety of architectures, while at the same time, it is important to distribute the workload evenly over all CPU’s in the machine (be it a large shared memory computer or a cluster of off-the-shelf workstations).

2.6.1 The stagger code

All of the fluid dynamics codes currently in use in Copenhagen are based on or derived from a common base code, the so called stagger code. The first version was made by Nordlund and Galsgaard in 1995 [61]. The GrMHD code makes use of the same basic principles. The equations of motion Eqs. (2.43), (2.44), (2.46), (2.47) are solved with finite differences through direct differentiation, and the variables are staggered on the grid. Scalar variables D and E, and derived scalar quantities are centred in each cell. The primary vector quantities P_i and B_i are calculated on the faces of the cell while the derived vector quantities E^i and J^i are calculated on the edges (see Fig. 2.14). The boundary conditions are implemented as in [61].

The differentiation operators are sixth order in space. Derivatives are calculated at half grid points and use a stencil of 6 points. In many cases this gives a natural placement of the variables, since the different quantities already are staggered in space. For example, the electric current J^i is found located at the edges and according to Eq. (2.43) is the curl of B^i (for the sake of simplicity in this example we disregard the displacement current, α and shear β^i). B^i is located at the face of each cell, and in the code the calculation of the current can be packed into three simple lines:

\begin{align}
J^x &= ddydn(B^z) - ddzdn(B^y) \\
J^y &= ddzdn(B^x) - ddxdn(B^z) \\
J^z &= ddxdn(B^y) - ddydn(B^x)
\end{align}

(2.66)

In some cases, most notably the complicated viscosity operator, the differentiation does not place the variables at the desired position on the grid, and interpolation has to be done. The corresponding interpolation operator is of fifth order. It also uses a stencil of 6 points [61]. A crucial addition to the original method described in [61], which later has been employed in most of the stagger based codes is the use of exponentials and logarithms to produce
Fig. 2.14: The basic staggering of different quantities on the grid. The figure was adapted from [24]. To make the figure visually easier to understand I have on purpose drawn a left handed coordinate system. I use a right handed coordinate system in the code.

Geometric interpolation. As an analogy, the geometric mean of two numbers may be rewritten in terms of the arithmetic mean of the logarithms:

\[
G(a, b) = \sqrt{a \cdot b} = \exp \left[\frac{1}{2} (\ln a + \ln b) \right] = \exp [H(\ln a, \ln b)] \quad (2.67)
\]

Geometric interpolation has two very appealing qualities, when dealing with discontinuities across shocks. First of all, positive definite quantities, such as the density and the energy, stay positive. Secondly, geometric interpolation is a much better measure when the density or pressure is changing with orders of magnitude over a few points. This happens at shock fronts and surface transitions.

To make the code easily readable and hide all the loops, where the different interpolations and differentiations are done, all operators are hidden in a set of subroutines. In fact, Eq. (2.66) corresponds exactly to the simple version of the code. In the production version, we make an effort to optimise memory references and reuse the cache memory at each CPU, but even with full parallelisation the \(\mathbf{\nabla} \times \mathbf{B} \) term only expands to

!---
! Electric current \(\mathbf{I} = \mathbf{\nabla} \times \mathbf{B} \)
2.6 Code Implementation: Performance and Scalability

![---]

do kk=ks,ke
 call ddydn_set(Bz,Jx) ! Jx = ddydn(Bz) - ddzdn(By)
 call ddzdn_sub(By,Jx)
 call ddxdn_set(By,Jz) ! Jz = ddxdn(By) - ddydn(Bx)
 call ddydn_sub(Bx,Jz)
 call ddzdn_set(Bx,Jy) ! Jy = ddzdn(Bx) - ddxdn(Bz)
 call ddxdn_sub(Bz,Jy)
end do

The reason why sixth order differentiation and fifth order interpolation operators are used in the stagger code is a question of balance between precision and computational load. The highest wavenumber a given method can resolve depends not only on the resolution of the mesh, but also on the order of the interpolation and differentiation operators. It was found empirically by Nordlund and Galsgaard [61] that sixth order gives effectively a better resolution than fourth order operators, even after the somewhat larger computational cost of the 6th order operations are considered. Maron [48] made a formal investigation of the effective resolution of different methods and orders and found that a fourth order scheme can resolve up to 0.24 of the maximal wave number k_{max}, while a sixth order scheme resolves waves with up to 0.34 k_{max}. Going to eighth order the maximal wave number is 0.4 k_{max}. At higher wave numbers the gain is negligible if one takes into account the added communication and amount of ghost zones that have to be allocated.

2.6.2 The paper code: Optimal parallelisation and cache reuse

Together with J. Hunsballe [37] I performed what essentially amounts to a complete rewrite of the stagger code. We still retain the qualities that have been described above. The basic physical equations are the same, and artificial viscosity is implemented in the same manner. We use the same high order interpolation and differentiation operators. The difference is in the technical details: Our goal has been to produce a very high level object oriented code, that is easily readable, runs at the highest possible speed and scale to hundreds of CPUs.

In the stagger code the basic scope for any operator (such as a differentiation operator) has been the full three dimensional array. For example, to interpolate the density to face values one would write:

call xdn_set(rho,xdnr)
call ydn_set(rho,ydnr)
call zdn_set(rho,zdnr)
The problem with this approach is that, on modern computers, the bandwidth between the main memory and the CPU is much lower than the computational power. There is also a big latency involved. It can easily take 200 clock cycles from the moment the CPU asks for a specific block of memory until it actually is delivered. To alleviate this problem, there is a small amount of very fast memory, the cache, often integrated directly on the CPU. On current high end architectures, such as the Itanium, Power, Alpha, Sparc and Mips based machines the cache size is of the order of 3-8 MB per CPU, while a normal Opteron or Pentium based CPU has 1 MB cache. On a small problem, of today's standards, such as a 128^3 mesh per CPU, the amount of cache taken by just one array is already 8 MB. That means the stagger code is already beginning to be memory bandwidth limited, and not limited by the speed of the CPU at this problem size. In the new Paper Code, the basic scope is instead a slice in the $x - y$ plane (see Fig. 2.15); hence the name. The above lines of code would then be written:

```fortran
    do kk=ks,ke
        call xdn_set(rho,xdnr)
        call ydn_set(rho,ydnr)
        call zdn_set(rho,zdnr)
    end
```

where the kk-loop runs over the papers. The code is almost identical, since we hide the loop index in a global variable, but the characteristics are radically different. Because we use a sixth order scheme we now only required to store 5 “papers” for the z-operator that needs values from different papers of ρ, in the cache to keep the CPU running at maximal speed. Even for a 512^3 problem 5 papers only take up 5 MB of memory, and by testing on an SGI Altix machine with 3 MB of cache, we have found that performance starts to decrease around 400^3, while at $1024^2 \times 20$ performance has fallen to $2/3$ of maximum. All modern CPUs are able to vectorise and pipeline simple instructions. By default, we have therefore chosen the innermost dimension, the x-direction, to be as simple as possible, with periodic boundary conditions. Then, the compiler will be able to schedule essentially all operations as SIMD instructions. The middle dimension, the y-direction, does not have any significance and is the best place to calculate boundary conditions, for problems that only contain boundaries in one direction. This way any computational load from the boundary is spread evenly over the all papers.

So far in Copenhagen we have had good access to shared memory machines. By far the easiest way to parallelise the code is then to use OpenMP. However, shared memory machines are relatively expensive and limited in
2.6 Code Implementation: Performance and Scalability

Fig. 2.15: The basic scope for any calculation in the new Paper Code is the $x - y$ plane giving optimal reuse of cache, vectorisation and simple implementation of boundary conditions.

size. A few versions exist of the stagger code that use MPI to run on clusters. One of the major current technology trends is the integration of two (Intel, AMD, Sun) or more (IBM) CPU cores on a single piece of silicon. We can only expect that all CPUs in the future will be massively multi threaded. Then the optimal approach to parallelisation will be a hybrid one with OpenMP inside a single CPU node and MPI between nodes. Current and future parallelisation strategies have been sketched in Fig. 2.16.

In the Paper Code we have effectively hidden the parallel nature of the code. Each CPU is automatically assigned a number of papers from k_s to k_e, and in the main part of the code, where the physics are calculated, one only has to consider dependencies in the z-direction and insert synchronisation points as appropriate. As an example consider the use of geometric means to interpolate the density to face values

$$
\rho_x = \exp(xdn(ln(\rho))) , \quad \rho_y = \exp(ydn(ln(\rho))) , \quad \rho_z = \exp(zdn(ln(\rho))) \, ,
$$

where $i dn$ denotes interpolation half a point down in the i direction. This may be coded in two blocks:

```fortran
  do kk=ks,ke
    lnr(:, :, kk) = alog(rho(:, :, kk))
  enddo
  !$omp barrier !<-- Sync: zdnr=zdn_set(lnr)
```
Fig. 2.16: Parallelisation strategies. We have demonstrated perfect scalability up to 128 CPUs with our current OpenMP implementation. Future implementations will be based on a hybrid OpenMP/MPI model. An added benefit of a hybrid model is the improved cache reuse for very large box sizes (i.e. 1024^3 and beyond).

Notice that geometric interpolation is a common operation and to streamline things we have made special interpolation operators, that automatically applies the exponential.

A barrier works as a synchronisation point. The CPUs have to stop at a barrier and wait until all of them have arrived. When only using a small number of CPUs the number of barriers are not very important, but when considering hundreds of CPUs, it is essential that the barrier count is minimised. Any small disturbance for one CPU will make all the others wait at each barrier. To take an example: If there in each time step are 100 barriers, and a CPU is randomly disturbed once during a time step, giving a slowdown of 1%, this extra noise will for two CPUS give rise to a 2% slowdown. For hundred of CPUs the same disturbance, since it occurs
in random sections, gives on average at least a 50% slowdown. By carefully analysing the numeric implementation, we have found that in a full update of the cells the minimum number of barriers needed to calculate any part of the code is 6. The old stagger code based MHD was logically structured in different sections, according to the different physics. First, the calculation of velocities from momentum, then, the pressure, the viscosity, the stress tensor, the MHD equations and at last the equation of motion for the internal energy. Since all parts need between 4 and 6 barriers, one ends up having at least 20 barriers. With the new code, we have applied a “principle of origami” folding the logical structure of the code. After each barrier, we consider all the different equations and calculate the maximum amount of physics. When threading the 5 small MHD parts, 6 viscosity parts etc together we end up having only 6 barriers. Recently, we had the opportunity to have the paper code tested on the NASA Columbia supercomputer and the code scaled efficiently on up to at least 128 CPUs.

We have implemented a full HD/MHD code, including self gravity & turbulent driving, and a special relativistic HD/MHD version of the code described in this thesis. Both codes show spectacular performance. The MHD code can update 1.2 million cells per CPU per second and it runs at 30% of theoretical peak performance on the SGI Altix machine. A normal grid based MHD code, even when optimised, performs at between 5% and 10% of peak performance (see [62] for a detailed analysis of five state of the art codes). In fact, we believe that the paper code is one of the highest
performing codes of its kind. This is both due to the low absolute cost of evaluating the MHD equations for a single cell and the effectiveness with which we have implemented the algorithm. The special relativistic MHD version runs at 250,000 zone updates per second, which is also well above quoted numbers in the literature.

2.7 Discussion

In this chapter I have discussed the theoretical foundation and numerical implementation of a new general relativistic magnetohydrodynamics code. When designing a new code without building upon existing work, it is tempting to use an already existing theoretical basis. However, instead of this, I have derived a new form of the equations of motion with global coordinates evolving the dynamical variables from the point of view of a local observer. This approach makes it possible to employ a highly sophisticated artificial viscosity. This is just but an example of the possibilities the new formulation opens up for. The implication of my approach is that any new physics that is implemented and working in special relativity in the future, be it a new equation of state, radiative transfer, or a perturbative implementation of gravity, may easily be reused in the general relativistic version of the code. This may be done because the special and the general relativistic versions are related through the simple formulas given in App. B. When deriving the equations of motion, I have not made any assumptions about the background metric, so that the design is ready to be coupled with methods solving the full Einstein equations, such as the CactusCode.

This new GrMHD code has been tested on a variety of demanding problems, and it has been demonstrated that it is able to deal with huge pressure and density gradients. It shows some problems in the case of flows with high Lorentz factors, but they can be addressed and will be solved in the near future. The tests carried out include both synthetic benchmarks that tests a certain aspect of the code, and real astrophysical applications.

The computer code is based on a refinement of the current infrastructure for fluid dynamics used in Copenhagen, that has been developed together with J. Hunsballe. It shows a spectacular performance on modern computer architectures, exploiting up to 30% of the theoretical peak performance. The special relativistic versions of the hydrodynamics and magnetohydrodynamics codes are three dimensional and have been fully parallelised. They have been tested and scale to hundreds of CPUs, making it possible to exploit massive supercomputers at national centres to the full extent.

I plan to employ the code in combination with the other numerical tools
presented in this thesis in order to understand extreme astrophysics near compact objects. A first joint application of the particle code and this code is presented in Chapter 5. Furthermore, observational cosmology is reaching a level of quality, where soon not everything can be addressed in terms of simple one dimensional linear perturbation theory, and I plan to employ the code in the understanding of the non-trivial evolution of magnetic fields in the early universe.
3. MAGNETIC FIELD GENERATION IN COLLISIONLESS SHOCKS; PATTERN GROWTH AND TRANSPORT

In this chapter I present results from three-dimensional particle simulations of collisionless shock formation, with relativistic counter-streaming ion-electron plasmas first published in Fredriksen et al. [26]. Particles are followed over many skin depths downstream of the shock. Open boundaries allow the experiments to be continued for several particle crossing times. The experiments confirm the generation of strong magnetic and electric fields by a Weibel-like kinetic streaming instability, and demonstrate that the electromagnetic fields propagate far downstream of the shock. The magnetic fields are predominantly transversal, and are associated with merging ion current channels. The total magnetic energy grows as the ion channels merge, and as the magnetic field patterns propagate down stream. The electron populations are quickly thermalised, while the ion populations retain distinct bulk speeds in shielded ion channels and thermalise much more slowly. The results help reveal processes of importance in collisionless shocks, and may help to explain the origin of the magnetic fields responsible for afterglow synchrotron/jitter radiation from Gamma-Ray Bursts.

3.1 Introduction

The existence of a strong magnetic field in the shocked external medium is required in order to explain the observed radiation in Gamma-Ray Burst afterglows as synchrotron radiation [e.g. 65]. Nearly collisionless shocks, with synchrotron-type radiation present, are also common in many other astrophysical contexts, such as in supernova shocks, and in jets from active galactic nuclei. At least in the context of Gamma-Ray Burst afterglows the observed synchrotron radiation requires the presence of a stronger magnetic field than can easily be explained by just compression of a magnetic field already present in the external medium.

Medvedev & Loeb [53] showed through a linear kinetic treatment how a two-stream magnetic instability – a generalisation of the Weibel instability [81, 84] – can generate a strong magnetic field (ϵ_B, defined as the ratio of
magnetic energy to total kinetic energy, is 10^{-5}-10^{-1} of equipartition value) in collisionless shock fronts [see also discussion in 71]. We note in passing that this instability is well-known in other plasma physics disciplines, e.g. laser-plasma interactions [14, 82], and has been applied in the context of pulsar winds by Kazimura et al. [38].

Using three-dimensional particle-in-cell simulations to study relativistic collisionless shocks (where an external plasma impacts the shock region with a bulk Lorentz factor $\Gamma = 5-10$), Frederiksen et al. [25], Nishikawa et al. [60], and Silva et al. [73] investigated the generation of magnetic fields by the two-stream instability. In these first studies the growth of the transverse scales of the magnetic field was limited by the dimensions of the computational domains. The durations of the Nishikawa et al. [60] experiments were less than particle travel times through the experiments, while Silva et al. [73] used periodic boundary conditions in the direction of streaming. Further, Frederiksen et al. [25] and Nishikawa et al. [60] used electron-ion (e^-p) plasmas, while experiments reported upon by Silva et al. [73] were done with e^-e^+ pair plasmas.

Here, we report on 3D particle-in-cell simulations of relativistically counter-streaming e^-p plasmas. Open boundaries are used in the streaming direction, and experiment durations are several particle crossing times. Our results can help reveal the most important processes in collisionless shocks, and help explain the observed afterglow synchrotron radiation from Gamma-Ray Bursts. We focus on the earliest development in shock formation and field generation. Late stages in shock formation will be addressed in Chapter 5.

3.2 Simulations

Experiments were performed using a self-consistent 3D3V electromagnetic particle-in-cell code originally developed for simulating reconnection topologies [36], redeveloped by Frederiksen [24] to obey special relativity and to be second order accurate in both space and time.

The code solves Maxwell’s equations for the electromagnetic field with continuous sources, with fields and field source terms defined on a staggered 3D Yee-lattice [83]. The sources in Maxwell’s equations are formed by weighted averaging of particle data to the field grid, using quadratic spline interpolation. Particle velocities and positions are defined in continuous $(\mathbf{r}, \gamma \mathbf{v})$-space, and particles obey the relativistic equations of motion.

The grid size used in the main experiment was $(x, y, z) = 200 \times 200 \times 800$, with 25 particles per cell, for a total of 8×10^8 particles, with ion to electron mass ratio $m_i/m_e = 16$. To adequately resolve a significant number
of electron and ion skin-depths (δ_e and δ_i), the box size was chosen such that $L_{x,y} = 10\delta_i \sim 40\delta_e$ and $L_z \sim 40\delta_i \sim 160\delta_e$. Varying aspect and mass ratios were used in complementary experiments.

Two counter-streaming – initially quasi-neutral and cold – plasma populations are simulated. At the two-stream interface (smoothed around $z = 80$) a plasma ($z < 80$) streaming in the positive z-direction, with a bulk Lorentz factor $\Gamma = 3$, hits another plasma ($z \geq 80$) at rest in our reference frame. The latter plasma is denser than the former by a factor of 3. Experiments have been run with both initially sharp and initially smooth transitions, with essentially the same results. The long simulation time gradually allows the shock to converge towards self-consistent jump conditions. Periodic boundaries are imposed in the x– and y–directions, while the boundaries at $z = 0$ and $z = 800$ are open, with layers absorbing transverse electromagnetic waves. Inflow conditions at $z = 0$ are fixed, with incoming particles supplied at a constant rate and with uniform speed. At $z = 800$ there is free outflow of particles. The maximum experiment duration is $480 \omega^{-1}$ (where ω is the electron plasma frequency), sufficient for propagating $\Gamma \approx 3$ particles 2.8 times through the box.
3.3 Results and Discussions

The extended size and duration of these experiments make it possible to follow the two-stream instability through several stages of development; first exponential growth, then non-linear saturation, followed by pattern growth and downstream advection. We identify the mechanisms responsible for these stages below.

3.3.1 Magnetic field generation, pattern growth and field transport

Encountering the shock front the incoming electrons are rapidly (being lighter than the ions) deflected by field fluctuations growing due to the two-stream instability [53]. The initial perturbations grow non-linear as the deflected electrons collect into first caustic surfaces and then current channels (Fig. 3.1). Both streaming and rest frame electrons are deflected, by arguments of symmetry.

In accordance with Ampere’s law the current channels are surrounded by approximately cylindrical magnetic fields (illustrated by arrows in Fig. 3.1), causing mutual attraction between the current channels. The current channels thus merge in a race where larger electron channels consume smaller, neighbouring channels. In this manner, the transverse magnetic field grows in strength and scale downstream. This continues until the fields grow strong enough to deflect the much heavier ions into the magnetic voids between the electron channels. The ion channels are then subjected to the same growth mechanism as the electrons. When ion channels grow sufficiently powerful, they begin to experience Debye shielding by the electrons, which by then have been significantly heated by scattering on the increasing electromagnetic field structures. The two electron populations, initially separated in γv-space, merge to a single population in approximately $20\delta_e (z = 80–200)$ as seen in Fig. 3.6. The same trend is seen for the ions – albeit the merging rate might be significantly slower than predicted by extrapolating with m_i/m_e, since Debye shielding stabilises the ion channels.

The Debye shielding quenches the electron channels, while at the same time supporting the ion-channels; the large random velocities of the electron population allow the concentrated ion channels to keep sustaining strong magnetic fields. Fig. 3.1, shows the highly concentrated ion currents, the more diffuse – and shielding – electron currents, and the resulting magnetic field. The electron and ion channels are further illustrated in Fig. 3.2. Note the limited z-extent of the electron current channels, while the ion current channels extend throughout the length of the box, merging to form larger
scales downstream. Because of the longitudinal current channels the magnetic field is predominantly transversal; we find $|B_z|/|B_{tot}| \sim 10^{-1} - 10^{-2}$.

Figure 3.3 shows the temporal development of the transverse magnetic field scales around $z = 250$. The power spectra follow power-laws, with the largest scales growing with time. The dominant scales at these z are of the order δ_i at early times. Later they become comparable to $L_{x,y}$. Figure 3.4 captures this scaling behaviour as a function of depth for $t = 2400$.

The time evolutions of the electric and magnetic field energies are shown in Fig. 3.5. Seeded by fluctuations in the fields, mass and charge density, the two-stream instability initially grows super-linearly ($t = 80 - 100$), reflecting approximate exponential growth in a small sub-volume. Subsequently the total magnetic energy grows more linearly, reflecting essentially the increasing volume filling factor as the non-linearly saturated magnetic field structures are advected downstream.

At $t \approx 1100$ the slope drops off, due to advection of the generated fields out of the box. The continued slow growth, for $t > 1100$, reflects the increase of the pattern size with time (cf. Fig. 3.3). A larger pattern size corresponds, on the average, to a larger mean magnetic energy, since the total electric current is split up into fewer but stronger ion current channels. The magnetic energy scales with the square of the electric current, which in turn grows in inverse proportion to the number of current channels. The net effect is that the mean magnetic energy increases accordingly.
The magnetic energy density keeps growing throughout our experiment, even though the duration of the experiment ($480 \omega_{pe}^{-1}$) significantly exceeds the particle crossing time, and also exceeds the advection time of the magnetic field structures through the box. This is in contrast to the results reported by Silva et al. [73], where the magnetic energy density drops back after about $10-30 \omega_{pe}^{-1}$. It is indeed obvious from the preceding discussion that the ion-electron asymmetry is essential for the survival of the current channels.

From the requirement that the total plasma momentum should be conserved, the (electro)magnetic field produced by the two-stream instability acquires part of the z-momentum lost by the two-stream population in the shock; this introduces the possibility that magnetic field structures created in the shock migrate downstream of the shock and thus carry away some of the momentum impinging on the shock.

Our experiments show that this does indeed happen; the continuous injection of momentum transports the generated field structures downstream at an accelerated advection speed. The dragging of field structures through
3.3 Results and Discussions

Fig. 3.4: Relative electromagnetic energy density ϵ_B. The contour colour plot shows the power in the transverse magnetic field through the box distributed on spatial Fourier modes at $t = 2400$, with the dotted line marking the wavenumber with maximum power. Superposed is the spatial distribution of ϵ_B, averaged across the beam, at $t = 2320$ (dashed-dotted) and $t = 2400$ (full drawn), highlighting how EM-fields are advected down through the box.

The dense plasma acts as to transfer momentum between the in-streaming and the shocked plasmas.

3.3.2 Thermalisation and plasma heating

At late times the entering electrons are effectively scattered and thermalised: The magnetic field isotropises the velocity distribution whereas the electric field generated by the $e^- - p$ charge separation acts to thermalise the populations. Figure 3.6 shows that this happens over the ~ 20 electron skin depths from around $z = 80 - 200$. The ions are expected to also thermalise, given sufficient space and time. This fact leaves the massive ion bulk momentum constituting a vast energy reservoir for further electron heating and acceleration. Also seen in Fig. 3.6, the ions beams stay clearly separated in phase space, and are only slowly broadened (and heated).

We do not see indications of a super-thermal tail in the heated electron distributions, and there is thus no sign of second order Fermi-acceleration in the experiment presented in this Letter. [60] and [73] reported acceleration of particles in experiments similar to the current experiment, except for more limited sizes and durations, and the use of an $e^- - e^+$ plasma [73]. On closer examination of the published results it appears that there is no actual
disagreement regarding the absence of accelerated particles. Whence, [60] refer to transversal velocities of the order of $0.2c$ (their Fig. 3b), at a time where our experiment shows similar transversal velocities (cf. Fig. 3.6) that later develop a purely thermal spectrum. [73] refer to transversal velocity amplitudes up to about $0.8c$ (their Fig. 4), or $v\gamma \sim 2$, with a shape of the distribution function that appears to be compatible with thermal. In comparison, the electron distribution illustrated by the scatter plot in Fig. 3.6 covers a similar interval of $v\gamma$, with distribution functions that are close to Lorentz boosted relativistic Maxwellians (see App. A for a discussion of Lorentz boosted thermal profiles). Thus, in the experiment reported on in this chapter there is no compelling evidence for non-thermal particle acceleration. Thermalisation is a more likely cause of the increases in transversal velocities.

Frederiksen et al. [25] reported evidence for particle acceleration, with electron gammas up to ~ 100, in experiments with an external magnetic field present in the up-stream plasma. This is indeed a more promising scenario for particle acceleration experiments (although in the experiments by [60] results
3.4 Conclusions

The experiment reported upon in this chapter illustrates a number of fundamental properties of relativistic, collisionless shocks:

1. Even in the absence of a magnetic field in the up-stream plasma, a small scale, fluctuating, and predominantly transversal magnetic field is unavoidably generated by a two-stream instability reminiscent of the Weibel-instability. In the current experiment the magnetic energy density reaches a few percent of the energy density of the in-coming beam.

2. In the case of an e^-p plasma the electrons are rapidly thermalised, with an external magnetic field were similar to those without. Figure 3.6 shows the presence of a population of back-scattered electrons ($v_z \gamma < 0$). In the presence of an external magnetic field in the in-streaming plasma, this possibly facilitates Fermi acceleration in the shock.

Fig. 3.6: Thermalisation and longitudinal acceleration, illustrated by scatter plots of the electron (orange) and ion (blue) populations. Note the back-scattered electron population ($v_z \gamma(v) < 0$).
while the ions form current channels that are the sources of deeply penetrating magnetic field structures. The channels merge in the downstream direction, with a corresponding increase of the average magnetic energy with shock depth. This is expected to continue as long as a surplus of bulk relative momentum remains in the counter-streaming plasmas.

3. The generated magnetic field patterns are advected downstream at speeds intermediate of the streaming and rest frame plasmas. The electromagnetic field structures thus provide scattering centres that interact with both the fast, in-coming plasma, and with the plasma that is initially at rest. As a result the electron populations of both components quickly thermalise and form a single, Lorentz-boosted thermal electron population. The two ion populations merge much more slowly, with only gradually increasing ion temperatures.

4. The observed strong turbulence in the field structures at the shocked streaming interface provides a promising environment for particle acceleration.

We emphasise that quantification of the interdependence and development of ϵ_U and ϵ_B is accessible by means of such experiments as reported upon here.

Rather than devising abstract scalar parameters ϵ_B and ϵ_U, that may be expected to depend on shock depth, media densities etc., a better approach is to compute synthetic radiation spectra directly from the models, and then apply scaling laws to predict what would be observed from corresponding, real supernova remnants and Gamma-Ray Burst afterglow shocks.
4. NON–FERMI POWER LAW ACCELERATION IN ASTROPHYSICAL PLASMA SHOCKS

Collisionless plasma shock theory, which applies for example to the afterglow of gamma ray bursts, still contains key issues that are poorly understood. In this chapter I discuss the results of charged particle dynamics in a highly relativistic collisionless shock numerically using \(\sim 10^9 \) particles first published by Hededal et al. [32]. We find a power law distribution of accelerated electrons, which upon detailed investigation turns out to originate from an acceleration mechanism that is decidedly different from Fermi acceleration. Electrons are accelerated by strong filamentation instabilities in the shocked interpenetrating plasmas and coincide spatially with the powerlaw distributed current filamentary structures. These structures are an inevitable consequence of the now well established Weibel–like two–stream instability that operates in relativistic collisionless shocks. The electrons are accelerated and decelerated instantaneously and locally; a scenery that differs qualitatively from recursive acceleration mechanisms such as Fermi acceleration. The slopes of the electron distribution powerlaws are in concordance with the particle powerlaw spectra inferred from observed afterglow synchrotron radiation in gamma ray bursts, and the mechanism can possibly explain more generally the origin of non–thermal radiation from shocked inter– and circum–stellar regions and from relativistic jets.

4.1 Introduction

Given the highly relativistic conditions in the outflow from gamma ray bursts (GRBs), the mean free path for particle Coulomb collisions in the afterglow shock is several orders of magnitude larger than the fireball itself. In explaining the microphysical processes that work to define the shock, MHD becomes inadequate and collisionless plasma shock theory stands imperative. In particular two key issues remain, namely the origin and nature of the magnetic field in the shocked region, and the mechanism by which electrons are accelerated from a thermal population to a powerlaw distribution \(N(\gamma)d\gamma \propto \gamma^{-p} \). Both ingredients are needed to explain the observed after-
glow spectra (e.g. [45, 64]).

Regarding the origin of the magnetic field in the shocked region, observations are not compatible with a compressed inter–stellar magnetic field, which would be orders of magnitude smaller than needed [30]. It has been suggested that a Weibel–like two–stream instability can generate a magnetic field in the shocked region (see Chapter 3, and Medvedev & Loeb [53]; Frederiksen et al. [25]; Nishikawa et al. [60]; Silva et al. [73]). Computer experiments presented in Chapter 3 and [26] showed that the nonlinear stage of a two–stream instability induces a magnetic field in situ with an energy content of a few percent of the equipartition value, consistent with that required by observations.

Fermi acceleration [22] has, so far, been widely accepted as the mechanism that provides the inferred electron acceleration. It has been employed extensively in Monte Carlo simulations (e.g. [59] and references therein), where it operates in conjunction with certain assumptions about the scattering of particles and the structure of the magnetic field. The mechanism has, however, not been conclusively demonstrated to occur in ab initio particle simulations. As pointed out by Niemiec & Ostrowski [59], further significant advance in the study of relativistic shock particle acceleration is unlikely without understanding the detailed microphysics of collisionless shocks. Also, recently Baring and Braby [7] found that particle distribution functions (PDFs) inferred from GRB observations are in contradistinction with standard acceleration mechanisms such as diffusive Fermi acceleration.

In this chapter we study ab initio the particle dynamics in a collisionless shock with bulk Lorentz factor $\Gamma = 15$. We find a new particle acceleration mechanism, which is presented in Sec. 2. Detailed numerical results are presented and interpreted in Sec. 3, while Sec. 4 contains the conclusions.

4.2 A New Acceleration Mechanism

A series of numerical experiments have been performed where collisionless shocks are created by two colliding plasma populations. These experiments are described in more detail below, but a common feature is that the electron PDF has a high energy tail which is powerlaw distributed. By carefully examining the paths of representative accelerated electrons, tracing them backwards and forwards in time, it has been possible to identify the mechanism responsible for their acceleration. The acceleration mechanism, which was presented for the first time in [32], works as follows:

When two non–magnetised collisionless plasma populations interpenetrate, current channels are formed through a Weibel–like two–stream instabil-
Fig. 4.1: (A) Ray traced electron paths (red) and current density (blue). The colours of the electron paths reflect their four velocity according to the colour table in the inset (B). The shadows are equivalent to the x and y projections of their paths. The ion current density is shown with blue colours according to the colour table in the inset. The inset also shows the ion current density (blue) integrated along the x axis with the spatial distribution of fast moving electrons (red) over plotted.

ity (see Chapter 3; Medvedev & Loeb [53]; Frederiksen et al. [25]; Nishikawa et al. [60]; Silva et al. [73]). In the nonlinear stage of evolution of this instability, ion current channels merge into increasingly stronger patterns, while electrons act to Debye shield these channels, as shown in Chapter 3. Further it was showed that a Fourier decomposition of the transverse structure of the ion current filaments exhibits powerlaw behaviour which has been recently confirmed by Medvedev et al. [52].

At distances less than the Debye length, the ion current channels are surrounded by transverse electric fields that accelerate the electrons toward the current channels. However, the magnetic fields that are induced around the current channels act to deflect the path of the accelerated electrons, boosting them instead in the direction of the ion flow. Since the forces working are due to quasi-stationary fields the acceleration is a simple consequence of potential energy being converted into kinetic energy. Therefore the electrons are decelerated again when leaving the current channel, and reach their maximal velocities at the centres of the current channels. Hence, as illustrated by Fig. 4.1B, the spatial distribution of the high energy electrons is a direct match to the ion current channels and the properties of the accelerated electrons depend primarily on the local conditions in the plasma.

One might argue that the near-potential behaviour of the electrons, where
4.2 A New Acceleration Mechanism

Fig. 4.2: An ion current channel surrounded by an electric – and a magnetic field. Electrons in the vicinity of the current channels are thus subject to a Lorentz force with both an electric and magnetic component, working together to accelerate the electrons along the ion flow. Crossing the centre of the channel the process reverses leading to an oscillating movement along the channel.

they essentially must lose most of their energy to escape from the current channels, would make the mechanism uninteresting as an acceleration mechanism since fast electrons cannot easily escape. However, this feature may instead be a major advantage, since it means that energy losses due to escape are small, and that the electrons remain trapped long enough to have time to lose their energy via a combination of bremsstrahlung and synchrotron or jitter radiation. We observe that only a very small fraction of the electrons manage to escape, while still retaining most of their kinetic energy. This happens mainly at sudden bends or mergers of the ion channels, where the electron orbits cannot be described in terms of a particle moving in a static electromagnetic field.

To analyse the acceleration scenario quantitatively we construct a toy model. It has been sketched in Fig. 4.2. We assume that the ion current channel has radius R, that the total charge inside the cylinder per unit length is λ and the ions all stream with velocity u and Lorentz factor Γ in the laboratory rest frame (see Fig. 4.2 and inset for definition of rest frames).

Consider an electron with charge $-q$ and mass m at a distance r from the centre of the channel, initially having no velocity components perpendicular to the cylinder, and four velocity $\gamma_0 v_{z,0}$ parallel to the cylinder, and disregard
4.2 A New Acceleration Mechanism

for the moment any other shielding electrons.

By analysing everything in the ion channel rest frame the problem reduces to electrostatics and it is possible to analytically calculate the change in four velocity of the electron when it reaches the surface of the cylinder. In the ion channel rest frame the electron has the Lorentz factor and four velocity

\[\gamma_0' = \gamma_0(1 - uw_{z,0}) \]
\[\gamma_0'v'_{z,0} = \gamma_0(v_{z,0} - u) . \]

(4.1)
(4.2)

where quantities in the ion channel rest frame are denoted with a prime. The ions were before moving with velocity \(u \), and hence subject to a Lorentz contraction, but are now in their rest frame. The line charge density is reduced by a factor of \(\Gamma' = \lambda/\Gamma \). The electron will be attracted to the cylinder and will gain downward momentum in the \(r \)-direction. This is simply a free fall in the electric potential and the final velocity, when the electron reaches the outer edge of the cylinder, can be found by calculating the change in potential energy.

\[\Delta E'_{pot} = - \int_{R}^{r_0} E' \cdot \hat{r}_r \, dr = -\frac{\lambda'}{2\pi\varepsilon_0} \ln(\frac{r_0}{R}) \]

(4.3)

The change in the Lorentz boost \(\gamma' \) is then \(mc^2 \Delta \gamma' = \Delta E'_{kin} = -\Delta E'_{pot} \). The electric force only works along the \(r \)-axis and the four velocity along the \(z \)-axis of the electron is conserved in the ion channel rest frame. Exploiting this we can calculate not only the total change in energy but also the change in the different velocity components. Returning to the laboratory rest frame we find

\[\Delta \gamma_{electron} = -\frac{q\lambda}{2\pi mc^2\varepsilon_0} \ln \frac{r}{R} \]
\[\Delta (v_z)_{electron} = u\Delta \gamma_{electron} . \]

(4.4)
(4.5)

The change in the Lorentz boost is directly proportional to the total charge inside the channel and inversely proportional to the electron mass. In reality the Debye shielding reduces the electric field further away from the ion channel, so the estimate above is only valid for distances smaller than a Debye length. Inside the ion channel the electron is accelerated too, but the amount depends on the detailed charge distribution of the ions, and one should remember, that in general the electrons do indeed have velocity components perpendicular. The above estimate then can be understood as an upper limit to the observed acceleration.
4.3 Computer Experiments

The experiments were performed with the three-dimensional relativistic kinetic and electromagnetic particle-in-cell code described briefly in Chapter 3 and more thoroughly in [24]. The code works from first principles, by solving Maxwell’s equations for the electromagnetic fields and solving the Lorentz force equation of motion for the particles.

Two colliding plasma populations are set up in the rest frame of one of the populations (downstream, e.g. a jet). A less dense population (upstream, e.g. the ISM) is continuously injected at the left boundary with a relativistic velocity corresponding to a Lorentz factor \(\Gamma = 15 \). The two populations initially differ in density by a factor of 3. We use a computational box with \(125 \times 125 \times 2000 \) grid points and a total of \(8 \times 10^8 \) particles. The ion rest frame plasma frequency in the downstream medium is \(\omega_{pi} = 0.075 \), rendering the box 150 ion skin depths long. The electron rest frame plasma frequency is \(\omega_{pe} = 0.3 \) in order to resolve also the microphysics of the electrons. Hence the ion-to-electron mass ratio is \(m_i/m_e = 16 \). Other mass ratios and plasma frequencies were used in complementary experiments. Initially, both plasma populations are unmagnetised.

The maximum experiment duration has \(t_{max} = 340 \omega_{pi}^{-1} \), which is sufficient for the continuously injected upstream plasma (\(\Gamma = 15 \), \(v \sim c \)) to travel 2.3 times the length of the box. The extended size and duration of these experiments enable observations of the streaming instabilities and concurrent particle acceleration through several stages of development [26]. Momentum losses to radiation (cooling) are presently not included in the model. We have, however, verified that none of the accelerated particles in the experiment would be subject to significant synchrotron cooling. The emitted radiation may thus be expected to accurately reflect the distribution of accelerated electrons.

When comparing numerical data with Eq. (4.4) we take \(r \) to be the radius where Debye shielding starts to be important. Using a cross section approximately in the middle of Fig. 4.1 we find \(\Delta(\gamma v_z)_{\text{electron}} = 58 \ln(r/R) \). It is hard to determine exactly when Debye shielding becomes effective, but looking at electron paths and the profile of the electric field we estimate that \(\ln(r/R) \approx 1.3 \). Consequently, according to Eq. (4.4), the maximally attainable four velocity in this experiment is in the neighbourhood of \((\gamma v_z)_{\text{max}} = 75 \). This is in good agreement with the results from our experiments, where the maximum four velocity is \((\gamma v_z)_{\text{max}} \approx 80 \).

The theoretical model does of course not cover all details of the experiment. For example, in general the electrons also have velocity components parallel to the magnetic field; instead of making one dimensional harmonic
Fig. 4.3: A scatter plot of the local ion current density J_{Ion} versus the four velocity of the electrons in a region downstream of the shock. Over plotted is a line (thin) showing the average four velocity as a function of J_{Ion}, and a line (thick) showing a straight line fit. Because 'cold' trapped thermal electrons (indicated with the ellipse) exist inside the ion current channel they count towards lowering the average four velocity at high J_{Ion}. If the scatter plot was cleaned, statistically removing all thermal electrons, we would see a much tighter relation. Such cleaning, though, is rather delicate and could introduce biases by itself. The trend is clearly there though even for the 'raw' data.

Oscillations in the plane perpendicular to the current channel the electrons will describe complicated ellipsoidal paths. Fig. 4.1A shows the path of two electrons in the vicinity of an ion channel. But, overall, the electrons behave as expected from the model considerations. Consequently, high speed electrons are tightly coupled to the ion channels, as clearly illustrated by Fig. 4.1B.

Figure 4.4 shows that the electrons are powerlaw distributed at high energies, with index $p = 2.7$. The electrons at the high gamma cut-off are found where the ion current peaks, as may be seen from Fig. 4.3. The maximum
ion current is limited by the size of our box; larger values would probably be found if the merging of current channels could be followed further downstream. The PDF is not isotropic in any frame of reference due to the high anisotropy of the Weibel generated electromagnetic field. The powerlaw in the electron PDF is dominant for $10 < \gamma < 30$. Likewise, a powerlaw dominates the ion current channel strength, J_{Ion}, for $100 < J_{\text{Ion}} < 1000$ (inset). A relation between the powerlaw distributions of these two quantities on their respective intervals is provided with Fig.4.3: We see that the average four velocity is proportional (straight line fit) to a power of the local ion current density on their respective relevant intervals, $10 < \gamma < 30$ and $100 < J_{\text{Ion}} < 1000$. Their kinship stems from the fact that acceleration is local. J_{Ion} has a powerlaw tail and its potential drives the high energy distribution of the electrons according to Eq. (4.4), thus forming a powerlaw distributed electron PDF.

Measuring the rate at which the in-streaming ions transfer momentum to the ion population initially at rest allows us to make a crude estimate of the length scales over which the two-stream instability in the current experiment would saturate due to ion thermalisation. A reasonable estimate appears to be approximately 10 times the length of the current computational box, or about 1500 ion skin depths. Assuming that the shock propagates in an interstellar environment with a plasma density of $\sim 10^6$ m$^{-3}$ we may calculate a typical ion skin depth. Comparing this value with the upstream ion skin depth from our experiments, we find that the computational box corresponds to a scale of the order of 10^7 m, or equivalently that the collisionless shock transition region of the current experiment corresponds to about 10^8 m. For an ion with a Lorentz factor $\gamma = 15$ this length corresponds roughly to 40 ion gyro radii in the average strength of the generated magnetic field. But it should be stressed that the in-streaming ions actually do not really gyrate since they mainly travel inside the ion current channels where the magnetic field, by symmetry, is close to zero. Also, the strong electromagnetic fields generated by the Weibel instability and the non-thermal electron acceleration, which is crucial from the interpretation of GRB afterglow observations, emphasise the shortcoming of MHD in the context of collisionless shocks.

In the computer experiments presented here we have used a mass ratio $m_i/m_e = 16$ in order to resolve the dynamics of both species. Eq. (4.4) suggests that reducing the electron mass to $1/1836 m_i$ will increase the acceleration of the electrons to maximum energies in the neighbourhood of 5 GeV. Even further acceleration may occur as ion channels keep growing downstream, outside of our computational box.

The scaling estimates above depend, among other things, on plasma densities, the bulk Lorentz factor, and the mass ratio (m_i/m_e). A parameter
study is necessary to explore these dependencies, but this is beyond the scope of the present chapter. We thus stress that the extrapolations performed here are speculative and that unresolved physics could influence the late stages of the instability in new and interesting ways as discussed in the following chapter.

When the in–streaming ions are fully thermalised they can no longer support the magnetic field structures. Thus one might speculate that the radiating region of the GRB afterglow is actually very thin, as suggested by Rossi & Rees [71]. Further, traditional synchrotron radiation theory does not apply to intermittent magnetic field generated by the two–stream instability, since the electron gyro radii often are larger than the scales of the magnetic field structures. We emphasise the importance of the theory of jitter radiation for understanding the generated radiation [51].

4.4 Conclusions

In this chapter we have proposed an acceleration mechanism for electrons in collisionless shocks. The theoretical considerations were suggested by particle–in–cell computer experiments, which also allowed quantitative comparisons with the theoretical predictions. We have shown that the non–thermal acceleration of electrons is directly related to the ion current channels in the shock transition zone. The results are applicable to interactions between relativistic outflows and the interstellar medium. Such relativistic outflows occur in GRB afterglows and in jets from compact objects [21]. The suggested acceleration scenario might overcome some of the problems pointed out by Baring & Braby [7] regarding the apparent contradiction between standard Fermi acceleration and spectral observations of GRBs.

The mechanism has important implications for the way we understand and interpret observations of collisionless shocks:

1. The acceleration mechanism is capable of creating a powerlaw electron distribution in a collisionless shocked region. In the computer experiment presented here a bulk flow with $\Gamma = 15$ results in a powerlaw slope $p = 2.7$ for the electron PDF. Additional experiments will be needed to disentangle what determines the exact value of the slope.

2. The acceleration is local; electrons are accelerated to a powerlaw in situ. Therefore the observed radiation field may be tied directly to the local conditions of the plasma and could be a strong handle on the physical processes.

3. Our results strengthen the point already made in Chapter 3; that the fractions of the bulk kinetic energy that go into in the electrons and the mag-
4.4 Conclusions

Fig. 4.4: The normalised electron particle distribution function downstream of the shock. The dot-dashed line is a powerlaw fit to the non-thermal high energy tail, while the dashed curve is a Lorentz boosted thermal electron population. The histogram is made from the four velocities of electrons in a thin slice in the z-direction of the computational box. The inset shows a similar histogram for ion current density sampled in each grid point in the same slice. The bump in the inset is a statistical fluctuation due to a single ion channel.

The magnetic field, ϵ_e and ϵ_B respectively, are not free and independent parameters of collisionless shock theory. Most likely they represent interconnected parts of the same process.

4. In the case of a weak or no upstream magnetic field, the Weibel-like two-stream instability is able to provide the necessary electromagnetic fields. We have shown here that the collisionless shocked region is relatively thin, and we suggest that the non-thermal radiation observed from GRB afterglows and relativistic jets in general is emitted from such a relatively thin shell.

It is clear that the non-thermal electron acceleration, the ion current filamentation, the magnetic field amplification/generation, and hence the strong
non-thermal radiation from the shock, is beyond the explanatory capacity of MHD. Whether or not the relativistic MHD jump conditions become valid on any larger scale is not possible to decide from the simulations presented in this chapter.
5. THE GLOBAL STRUCTURE OF COLLISIONLESS SHOCKS

In collisionless shocks the mean free path of a particle is greater than the extent of the shock interface. Hence the particle distribution functions are highly anisotropic and one cannot study them using fluid methods. Rather, the dominant means of collision is indirect, mediated by the collective electromagnetic field. In Chapter 3 it was demonstrated that in collisionless shocks, where no large scale magnetic field exists beforehand, the resulting electromagnetic field is largely dictated by the evolution of two-stream instabilities. In this chapter I study global charged particle dynamics in relativistic collisionless e^+e^- pair-plasma shocks numerically, using three dimensional computer experiments with up to $\sim 10^9$ particles, and present results on the application and limitations of two dimensional simulations for the study of the global structure in ion-electron plasmas. The pair plasma simulations are advanced to a quasi-steady state, and compared to a fluid model. There is good agreement with the fluid model for physically relevant quantities, such as bulk density and momentum, which shows that the evolution can be extrapolated to larger timescales. We find that the two-stream instability decays over 50-100 electron skin depths and hence for a pair plasma shock remains firmly in the microphysical domain. This type of microphysical experiment may be used to determine empirically an effective equation of state in a collisionless shock, and the necessary sink and source terms that describe the conversion of kinetic to magnetic energy due to the two-stream instability, which could then be implemented in global fluid models, leading to more accurate large scale simulations of phenomena such as gamma ray bursts and relativistic jets from AGN’s, where collisionless shocks are of importance. The technique would be similar in spirit to the role played by subgrid models in understanding large scale turbulence, where models of the small scale behaviour are integrated into the fluid simulations to extend the dynamical range.
5.1 Introduction

Three dimensional particle-in-cell experiments of ion-electron collisionless shocks with open boundaries in the streaming direction have been considered in Chapters 3 & 4, and by Fredriksen et al. [25, 26], Hededal et al. [32, 33] and Nishikawa et al. [60], but as shown in Chapter 4 the estimated true extent of a collisionless ion-electron shock is much larger than the computational domains that have been considered up to now. In Chapter 4 I found that for a mass ratio of \(m_i/m_e = 16 \) the shock extends at least 1500 ion skin depths. Unfortunately, with current computer technology there is no hope of performing three dimensional experiments that resolve scales all the way from sub electron-skin depths to 1500 ion skin depths.

In Chapter 3 a qualitative difference between ion-electron shocks and pair plasma shocks was noted: In the case of an ion-electron plasma the heavier ions disrupt the electron channels and the electrons form a Debye shielding cloud around the ion channels. This cloud of electrons stabilises the ion channels; indeed this is why the channels survive significantly longer and ions from the upstream and downstream mediums interact less. The consequence is that thermalisation of the ions and decay of the two-stream instability in an ion-electron dominated shock interface happens on a fundamentally longer time scale than in a shock interface dominated by a pair plasma.

Even though full three dimensional ab initio experiments of ion-electron shocks are out of reach, that is not so for pair plasma shocks. In a pair plasma the electrons and positrons generate channels on the same time scale, and with no shielding they are quickly disrupted. In terms of the electron skin depth time scale \(\omega_p/c \), thermalisation is faster than in the ion-electron case. Furthermore, the electrons and positrons have the same mass, and therefore many more skin depths can be resolved in a single box.

5.2 Collisionless Pair Plasma Shocks

The two-stream instability deflects particles in the transverse direction to the flow, and to correctly describe a collisionless shock the model has to be fully multi-dimensional. It was shown in Chapter 3, that the current channels merge in a self similar process generating a powerlaw distributed magnetic field. Medvedev et al. [52] investigated the problem theoretically and demonstrated that the magnetic field correlation length in the shock interface grows with the speed of light for relativistic shocks.

It is therefore necessary that our computational domain perpendicular to the shock is comparable in size to the longest two-stream unstable regions in
the box. Otherwise the process may be limited numerically, and with periodic boundaries perpendicular to the shock interface the experiment reaches a state containing just a few self interacting current channels; then it cannot be entirely clear if the saturation of the magnetic field, decay of the current channels, and thermalisation of the particles happen due to numerical or physical effects.

The basic setup of the numerical experiment has already been described in the previous chapters. In this section I consider three variants of the same experiment. All are pure pair plasmas. Initially the dense downstream medium is at rest. The density jump is a factor 3, and the inflow Lorentz factor of the upstream medium is 3. The only differences between the setups are in the box sizes and the plasma frequencies considered. They all contain initially 8 particles per species per cell in the medium at rest. In the main experiment, A, the box size is $nx \times ny \times nz = 80 \times 80 \times 2800$ and the plasma frequency is $\omega_p = 0.42$. In the two complementary experiments, B and C, the box sizes are $160 \times 160 \times 1400$ and $80 \times 80 \times 2800$, with plasma frequencies of $\omega_p = 0.21$ and $\omega_p = 0.105$ respectively.

Fig. 5.1: The evolution of the total magnetic energy in the box as a function of time for the three runs.
In experiment A plasma oscillations are resolved with only 2.4 cells, which is close to the Nyquist frequency of the grid, and indeed there is a higher level of small scale numerical noise than in experiments B and C. While it would have been preferable with an experiment with a smaller plasma oscillation frequency, the presented runs are at the limit of current computer capacities, containing up to a billion particles, and only experiment A settles to a steady state with selfsimilar evolution. Experiment B and C are used to validate the behaviour for early times. In fact the first stages of a thermalised shock is observed in experiment B, but it does not separate into different states before reaching the edge of the box. Specifically, the evolutions in averaged current and mass densities are equal for early times in the different experiments. Figure 5.1 shows the evolution of the total magnetic energy in the box. There is a clear difference in the initial level of fluctuations between the experiments, due to the difference in plasma oscillation frequencies, but the growth rate is the same for the three cases, and the experiments show the same late time behaviour. We can separate the evolution in three phases: First an initial inflow phase, where the particles have not yet undergone the two-stream instability. At around $t = 10 \omega_p^{-1}$ the two-stream instability commences, and it is saturated at around $t = 40 - 100 \omega_p^{-1}$. From then on the region containing shocked material and a diffuse turbulent magnetic field expands, while a reverse and a forward shock are formed, and a slow rise in the total magnetic field is seen. Both at the forward and the reverse shock interface a permanent two-stream instability is observed.

The large scale structure at $t = 1100 \omega_p^{-1}$ for experiment A is shown in Fig. 5.2. The average density profile has a pile-up of matter from $Z = 350 - 700$, this is the shocked area. In Fig. 5.2 (a) profiles for earlier and later times have been overplotted to illustrate how the shocked area expands with time, with the forward shock to the right moving faster than the reverse shock to the left. Panel (b) in Fig. 5.2 shows the relative amount of power in the strongest mode of a Fourier transform of the transverse magnetic field compared to the integrated power. It has been calculated by taking the Fourier transform of the magnetic field in the $x - y$ plane, finding the largest amplitude mode, and then dividing that with the integrated power. In the two-streaming shock interface, the largest transverse scale of the box is dominant, and the ratio is close to 1, while in the centre of the shocked medium the magnetic field has decayed and power is distributed over a range of scales. In (c) the magnetic energy in the field is plotted and the two shock interfaces are clearly seen to be separated. From Fig.5.2 (c) it can be estimated that the two-stream unstable regions have a width of between 50 and 100 electron skin depths.

In order to validate that the jump conditions are satisfied I have used the
5.2 Collisionless Pair Plasma Shocks

Fig. 5.2: The large scale structure at $t = 1100 \omega_p^{-1}$. (a) The average density of electrons in an $x-y$ slice, with similar plots for $t = 1016 \omega_p^{-1}$ and $t = 1184 \omega_p^{-1}$ as dashed lines. (b) The relative amount of power in the dominating mode compared to the total power in a two dimensional Fourier transform of the transverse magnetic field. (c) Average energy density in the magnetic field. (d) Average four velocity in the z-direction and a similar profile from an HD run. (e) Density from an HD run.

fluid code described in Chapter 2 to setup a similar shock problem, but in fluid dynamics. I have chosen a relativistic equation of state with $\Gamma = 4/3$ and a density jump of 3, an inflow four velocity of 1.7 and a uniform pressure of $P = 0.2$. The velocities and densities are taken in accordance with the unperturbed states seen in experiment A around $t = 1100 \omega_p^{-1}$. A priori it is not clear how to measure the pressure, since there are contributions from the random magnetic field, the two-stream generated magnetic field, heating from backscattered particles to the left of the shock, and heating from particles that were not scattered to the right of the shock. Instead of trying to measure an ill defined pressure, I have chosen the pressure P such that the maximum density in the right shock wave is in accordance with the particle data. This is a reasonable approach, because by fixing the pressure according to one single parameter, we see good agreement between the two models for the velocity profile and density profile in the other parts of the shock wave. Furthermore the shock profile is seen to move with a velocity of
0.6 (Approximately 50 skin depths in 84 skin depth times, see Fig. 5.2 (a)), while the corresponding fluid shock, in good agreement, is moving with a velocity of 0.65. Naturally, the profiles and bulk velocities do not correspond exactly, since not all facets of the particle experiment are reflected in the fluid shock. The hydrodynamical experiment does not include magnetic fields in any way, since no magnetic fields are present in the initial state. In contrast to that, in experiment A, strong magnetic field generation at the discontinuities in the velocity profile is seen. Moreover, the discontinuities are still rather smooth in experiment A, due to the collisionless nature of the shock. To take an example, some of the upstream particles, coming from the left, do not scatter in the shocked region. As a result there is a smooth transition in velocity and density at the forward shock front to the right. If the box size was larger, and the shock could be followed for longer times, making the extent of the shocked medium larger compared to the two-stream interfaces and effective mean free path, this smooth transition would stay constant and the solution would converge even better to that of a fluid shock. A detailed analysis between larger experiments running for longer timescales and MHD shock tubes with a range of magnetic field configurations has to be done to fully understand the implications for the jump conditions of the two-stream instability; but this first experiment has shown that indeed it is possible to recreate the fluid representation ab initio of a pair plasma collisionless shock using a particle code and working from first principles.

Recently similar experiments were presented by Spitkovsky [74], and his results are in agreement with our findings.

The relatively short thermalisation length observed in this experiment implies that in the case of a pair plasma shock for astrophysical applications, the two-stream instability remains a purely microphysical phenomenon, which probably has little impact on any observed quantities in astrophysical shocks, simply due to the small volume in which it takes place.

5.3 Collisionless Ion-Electron Shocks and Limits to Current Experiments

The computer experiments presented in last section are only a few of a series of large scale experiments that I have performed during the last year. The aim is to understand the global structure in ion-electron dominated collisionless shocks, by performing a series of three-dimensional experiments with lower and lower mass ratios in order to finally obtain a thermalised profile, and furthermore with this body of experiments to be able to rescale the results to realistic mass ratios. But even using mass ratios down to $m_i/m_e = 4$, with
current computer limitations of around a billion particles, it is not possible to reach a state in the experiments, where both the ions and electrons fully thermalise and two shock interfaces emerge.

A related but possible project is instead to understand collisionless shocks in two dimensions. Two-dimensional collisionless shocks have been considered for some time in the literature (e.g. Califano et al. [14] and Kazimura et al. [38]), but until now no large scale 2D simulations have been made with open boundaries (though see Medvedev et al. [52] for an experiment with periodic boundaries in the streaming direction, and the work by Hededal [31]).

To compare 2D and 3D simulations, in this section I present two experiments with exactly the same initial conditions as the 3D experiment considered in Chapter 4 (from now on experiment \mathcal{C}). They both have an inflow Lorentz boost of $\Gamma = 15$, an electron plasma frequency of $\omega_{p,e} = 0.3$ and a mass ratio of $m_i/m_e = 16$. I use 8 particles per species per cell. Experiment \mathcal{A} has the same box size transverse to the flow as experiment \mathcal{C} with $n_x \times n_z = 125 \times 4000$, while experiment \mathcal{B} is much wider with $n_x \times n_z = 1600 \times 4000$.

I have selected the two experiments to address the following questions: 1) How much do 2D and 3D experiments differ, both quantitatively but also in the underlying physical process. 2) What is the impact of the narrow boxes that have been considered until now. In nature a collisionless shock is much wider than the shock interface is long, and during the instability, the different regions, by causality, can only interact with a finite area of the shock front. But in some of the 3D experiments, to grasp the streaming nature of the shock properly, the boxes have been far too small in the transverse direction of the shock.

In Fig. 5.3 the size of the current densities for the three experiments are shown at time $t = 125 \omega_{p,e}^{-1}$. We see basic agreement between experiment \mathcal{A} and experiment \mathcal{C} for the morphology, though the ion current channels in experiment \mathcal{C} are thicker and more well structured.

Comparing experiment \mathcal{A} and \mathcal{B} we see that the larger box size leads to a much more complex picture than the simple idea of current channels streaming strictly in the direction of the flow. There is a dazzling array of interactions going on, with nontrivial interactions between the channels. In the lower right of experiment \mathcal{B} there is an almost square formed complex of current channels, which in itself is wider than both experiments \mathcal{A} and \mathcal{C}. The filamentary structure is sustained, but in contrast to the simple toy model presented in Chapter 3 and by Medvedev et al. [52], one cannot speak of a merging hierarchy of ion channels, and the lifetime of an individual channel is quite small.
5.3 Collisionless Ion-Electron Shocks and Limits to Current Experiments

Fig. 5.3: From top to bottom: The current density of the ions and electrons of experiment B, experiment A and the averaged current density in the y-direction of experiment C, reported on in Chapter 4. The dashed lines indicate the region used for constructing particle distribution functions. The figure is shown with the correct aspect ratio and the snapshots are taken at $t = 125 \omega_{pe}^{-1}$. Length units are given in electron skin depths.

The process is initially ignited by the two-stream instability, and in experiment B abundant examples of forming channels may be found, not only at the initial interface at $Z = 200$, but also downstream of the first generation, due to two-stream like configurations of the magnetic field. Moreover we observe direct merging and head on collisions between the individual channels. Counteracting this process and partly responsible for the decay of ion channels is the electric potential. Near the centre of the channel there is a strong over density of positive charges and even after taking into account a relativistic time dilation factor – or equivalently – the self generated magnetic fields of the channels, they will “explode”. In two dimensions they leave a cone-like structure containing two trails of ions, with some symmetry, since everything happens at the speed of light, while in three dimensions a ring-like structure is created. A three-dimensional version of this explosion may be seen in Fig. 4.1B, where, except for the helix structure, everything is stabilised and symmetric due to selfinteraction of the channel. This electrostatic
Explosion makes the evolution of collisionless shocks even more dynamic and intermittent. It is important to point out that the effect depends on the effectiveness by which the electrons Debye shield the ion channels, and therefore on the mass ratio of the experiment. At higher, more realistic mass ratios, the shielding is more effective and the timescale for the breakup of the ion channel longer.

The relatively short time scale of experiment B does not make it possible to assess what the long time implications are of this richer structure, but does show that it is important to have an adequate resolution transverse to the flow, and not only in the streaming direction, if a full understanding of collisionless ion-electron shocks is to be obtained. The highly dynamic nature and evolution along the streaming direction also show that streaming experiments with open boundaries are essential to understand the state of the plasma far downstream of a collisionless shock interface.

It is important to understand if there are differences in the morphology of the currents observed in experiments with two- and three-dimensional shocks. But in order to make a more formal and quantitative investigation we have to look at the particle statistics. I have measured the particle distribution functions (PDFs) for the electrons in a slice of the domain delimited in Fig. 5.3 by dashed lines for the three experiments. The slice has been selected to lie at the point in the shock where the electrons are on the brink of merging to one single continuous population, but still the form of the PDF is dominated by remnants of the initial upstream and downstream populations. The slope of the PDF indicated in the figure depends on the amount of heating in the populations. A warmer upstream population will be broader in phase

Fig. 5.4: Particle distribution function for the electrons in a slice around $Z = 400 \omega_{pe}^{-1}$. To the left is shown the PDF for experiment B and to the right the PDF for experiment C. The PDF for experiment A is identical to B.
space, and consequently the maximum is lower, giving rise to a steeper slope. It should be emphasised that the perceived power law seen in the figure is but a consequence of the merging populations. It can easily be verified by noting that the “powerlaw” breaks at around $v\gamma = 15$, the velocity of the instreaming population. We find perfect agreement between the PDFs of the two-dimensional experiment A and B, and they both have a slope index of 2.1, while experiment C has a slope index of 1.55 (see Fig. 5.4). The reason for this significant difference in the heating rates of the electrons in two-dimensional shocks compared to three dimensional is the same as the reason for the lower lifetime of the ion channels in the two-dimensional experiments.

Essentially we can understand the differences between two- and three-dimensional simulations by considering the real space available in the two cases. 1) There is a difference in the dynamics of the ion channels: If we make a transverse cut through the flow in the three-dimensional case, the channels may be likened to 1D particles in a plane (see Fig. 3.1 in Chapter 3 for an illustration of this). We have carefully studied the time evolution of this 1D gas of current channels in the experiment considered in Chapter 3. It is found that, if channels collide head on, they will generally not coalesce, and instead in many cases destabilise, because of the inertia of each channel, while in cases where the impact parameter is very low, or the two channels slightly miss each other, a much smoother collision process is initiated by the in-spiralling of the two channels, ultimately leading to the formation of a single channel. In a two-dimensional simulation, though, the two-dimensional transverse plane reduces to a one dimensional line, and consequently two merging channels will always collide head on, making coalescence more difficult, the transverse velocities, i.e. the temperature, of the ions higher, and the lifetime of the channels lower. 2) There is a difference in the dynamics of the electrons: The electrons Debye shield the ion channels, and move generally in accordance with the toy model described in Chapter 4. In the three-dimensional case the paths of two such electrons have been depicted in Fig. 4.1 in Chapter 4. In general the electrons do not move exactly through the centre of the current channel, but instead traverse some kind of complicated ellipsoidal path. In the two-dimensional case though, because there is no “third dimension” to miss the centre in, the electrons have to go right through the centre of the ion channel, and gain the maximum amount of acceleration. The acceleration is to a large extend potential, and the electron looses most of the energy climbing out of the potential well, but because of the time dependence of the fields, statistically there will be some momentum transfer. In the two-dimensional case the electrons have to pass through the local minimum of the electrostatic potential, and hence the heating is more effective than in the three-dimensional case.
The experiments presented in this section have shown that, while the basic morphology and dynamics do carry over from three to two dimensions, there are some quantitative differences. The heating of electrons and ions is more effective and the two-stream generated ion channels are not as stable in two as in three-dimensional experiments. Nonetheless, if we take these differences into consideration when interpreting two-dimensional experiments, these experiments are still the most promising tools for understanding the global structure of ion-electron collisionless shocks. From the above discussion it is clear that the extent of the two-streaming region in an ion-electron collisionless shock, as inferred from future two-dimensional experiments of the global shock structure, will most likely be smaller than in the case of a three-dimensional shock. This conclusion may be drawn directly from the higher heating rate alone, as observed in Fig. 5.4.

5.4 Conclusions

Collisionless shocks arise in many astrophysical objects and the correct understanding of relativistic collisionless shocks have implications for the observations of outflows from compact objects, such as gamma ray burst afterglows and relativistic jets. We have seen in the preceding chapters that magnetic field generation and particle acceleration are integral parts of collisionless shocks in the case of weak or absent large scale magnetic fields. To understand the impact on observations it is essential to investigate how far down stream of the initial shock the two-stream unstable region extends. With this in mind I have, in the current chapter, discussed the global structure of collisionless shocks.

In the first part of the chapter I have presented a fully three-dimensional model of colliding pair plasmas using a particle-in-cell code, and observed the thermalisation of the plasma due to the collective electromagnetic field, and the formation of a macro physical shock structure. Comparing the results to a fluid simulation, with the same initial conditions, good agreement is found, implying that the full structure of the shock has been resolved.

Crucially, I have estimated that the decay of the two-streaming region and subsequent thermalisation happens over 50-100 electron skin depths. Thus, for the specific case we have considered it renders the two-stream instability for pair plasmas completely microphysical. Hence, the two-stream instability in collisionless shocks comprised purely of leptonic matter may have few direct observational consequences.

In the second part of the chapter I have considered the global structure of ion-electron dominated collisionless shocks. With current computer capaci-
ties it is impossible to correctly model the global structure of an ion-electron shock in three dimensions. Two-dimensional collisionless shocks remain a promising alternative, and I have investigated their applicability in understanding three-dimensional models. It has been shown that while indeed two-dimensional shocks, for the time being, are our best hope to grasp numerically the global structure of ion-electron collisionless shocks, there are some differences, and caution should be voiced in directly generalising results from two-dimensional experiments to three dimensions. The ion channels that form due to the two-stream instability are less stable, and the heating rate of the electrons is higher. Both factors contribute to a faster thermalisation than what can be expected from three-dimensional experiments in the future, and hence give rise to an underestimation of the extent of the two-stream unstable region. Nonetheless, the overall physical picture is the same, and these differences can be taken into account.
6. A NEXT GENERATION PIC CODE

6.1 Introduction

Over the last couple of years the Copenhagen group has been using PIC models that include electromagnetic fields and charged particles to understand the plasma microphysics of collisionless shocks [25, 26, 32, 33]. It has turned out to be a very successful tool, but it is still limited in the scope of phenomena that may be addressed. Even though a large class of astrophysical environments are indeed collisionless, scattering and collision processes do play an important role in several key scenarios. Examples are given below. Another key ingredient, which has been missing in charged particle simulations, is a full treatment of photon propagation. It can be argued that photons are represented directly on the mesh by electromagnetic waves, which certainly is correct. But the mesh can only represent waves with frequencies smaller than the Nyquist frequency. The physical length of a typical cell has in our applications typically been $10^5 - 10^6$ cm and hence it is clear that only low frequency radio waves can be represented. High frequency photons have to be implemented as particles that propagate through the box and interact, either indirectly through messenger fields on the mesh, or directly with other particles. A valuable consequence of modeling the detailed photon transport is that extraction of electromagnetic spectra is trivial. Even in cases where the photon field is only a passive participant, this fact should not be underestimated as it enables direct comparison with observations.

There exists Monte Carlo based particle codes (see e.g. [76] and references therein) that address various particle interactions, but one of their main shortcomings is the poor spatial resolution. This makes it impossible to couple the particle aspects to a self consistent evolution of the plasma.

Our goal has been to develop a framework where both electromagnetic fields and scattering processes are included in a consistent way. We can then correctly model the plasma physics and the radiative dynamics. The scattering processes include, but are not limited to, simple particle-particle scattering, decay and annihilation/creation processes. Our new code is not limited in any way to charged particles, but can also include neutrals such as photons and neutrons.
In the next section we describe some of the physics that can be addressed with this new code. In section 6.2 we discuss how the code has been implemented, the general framework and in detail which physical processes that are currently implemented. In section 6.3 we present the first results in the form of a toy experiment that we have performed to validate the code. In the last section 6.4 we summarize.

6.1.1 Motivation

Before we continue and describe in detail the methods, physics and test problems we have implemented and used, it is important to consider the general class of scenarios we have had in mind as motivation for developing the code. There are several key objects, where only the bulk dynamics is understood, and we are lacking detailed understanding of the microphysics.

Internal shocks in gamma ray bursts

In the internal/external GRB shock model, the burst of gamma-rays is believed to be generated when relativistic shells collide and dissipate their relative bulk energy \cite{56, 70}. The nature of the radiation is presumably inverse Compton scattering and synchrotron radiation. Particle/photon interactions might also play an important role in the very early afterglow as suggested by \cite{9, 77}: Even though the medium that surrounds the burst (ISM or wind) is optically very thin to gamma-rays, a tiny fraction of the gamma-rays will Compton scatter on the surrounding plasma particles. This opens up for the possibility of pair-creation between back scattered and outgoing gamma-rays. The creation of pairs may increase the rate of back scattered photons in a run-away process \cite{75}. The Compton scattering may accelerate the pair-plasma through the surrounding medium with many complicated and non-linear effects, including streaming plasma instabilities and electromagnetic field generation. Hence, it is crucial that plasma simulations of internal GRB plasma shocks include lepton-photon interactions.

Solar corona and the solar wind

Space weather (defined as the interaction of the solar wind on the Earth) is in high focus for several reasons. Not only is the Sun our closest star, providing us with invaluable data for stellar modeling, but coronal mass ejections from the Sun potentially have impact on our everyday life. The strong plasma outflows from the sun can induce large electrical discharges in the Earths ionosphere. This may disrupt the complex power grids on Earth, causing rolling blackouts such as the one in Canada and North America.
in 1989. Also high-energy particles can be hazardous to astronauts and airline passengers. Computer simulations have provided a successful way of obtaining insight in these complex plasma physical processes. However, in the solar coronal and in the solar wind plasma out to distances beyond the earth orbit, difficulties arise in finding the right formalism to describe the plasma. Neither a collisionless model based on the Vlasov equation nor an MHD fluid model provides a adequate framework for investigation. The problem has already been studied using three dimensional PIC simulations but without taking collisions into account (e.g. [13, 35]).

The corona of compact objects

The bulk dynamics of accreting compact objects have been modeled for many years using fluid based simulations (e.g. [5] and references therein). Nevertheless, it has been a persistent problem to extract information about the radiating processes. Furthermore in the corona the MHD approximation becomes dubious, just as in the solar corona. The environment around a compact object is much more energetic than the solar corona, and therefore radiative scattering processes play an important role. Pair production is also believed to be abundant. Using our new code it would be possible to model a small sub box of the corona. The main problem here – as in most numerical implementations – is to come up with realistic boundaries for the local model. A shearing box approach may be appropriate, but in fact we can do even better.

The size of a stellar mass black hole is around 10^6 cm. In a fluid simulation we want to model the accretion disk–compact object system out to hundreds of radii of the compact object. The normal approach is to use a non uniform mesh. Nonetheless, the Courant criterion, which determines the time step, is still limited by the sound crossing time of the compact object. I.e. the time step is limited by the size of the innermost (and smallest) cells in the mesh. The very small time step corresponds to those found in a typical particle simulation, where the strict time step arises from the need to resolve plasma oscillations. Hence data from an MHD simulation could provide temporally well resolved fluxes on the boundaries of the much smaller sub box containing the particle simulation.

In this sense the particle simulation will act as a probe or thermometer of the fluid model. The particle model includes the full microphysics in a realistic manner and most importantly includes photon transport. Realistic spectra could be obtained indirectly from the fluid model, testing fluid theory against observations. We have already worked on interfacing fluid models with the old PIC code.
Pre-acceleration in cosmic ray acceleration

Accepting Fermi acceleration as a viable mechanism for accelerating electrons and creating the non-thermal cosmic ray spectrum is still left with some big unanswered questions. One is that the Fermi mechanism requires injection of high energy electrons while still keeping a large, low-energy population to sustain the magnetic turbulence. Hence, a pre-acceleration mechanism needs to be explained.

The shocks in supernova remnants are believed to be cosmic ray accelerators. However, the Fermi acceleration process in shocks is still not understood from first principles but rely on assumptions on the electromagnetic scattering mechanism. PIC codes would seem ideal in exploring the mechanism from first principles, since they include field generation mechanisms and the back-reaction that the high energy particles have on this scattering agent. In Supernova remnants however, the mean free path for Coulomb collisions are comparable to the system and particle-particle interactions cannot be fully neglected.

6.2 Implementation

Implementing any state-of-the-art large scale numerical code is a big undertaking, and can easily end up taking several man years. We estimate that the final version of the next generation code will contain more than 50,000 lines of code. Starting in February this year, it has taken us three man months to implement the current incarnation of the code which has already grown to approximately 10,000 lines. Besides T. Haugbølle and C. B. Hededal, the development is done together with A. Nordlund and J. T. Frederiksen. Fortunately we have a good tradition and expertise for numerical astrophysics in Copenhagen and we have been able to port different technical concepts and solutions from our suite of fluid codes and to a lesser extent from the old PIC code. The aim is to build an extremely scalable code that is able to run on thousands of CPUs on modern cluster architectures and utilize MPI as the inter node communication protocol. In this chapter we will not go further into technical details. Instead we will put emphasis on the important concepts and physics and how we have implemented these.

6.2.1 Concepts

The two fundamental objects in a particle-in-cell code are the mesh and the particles. We have adopted the solver and interpolation routines from the old PIC code to solve the Maxwell equations and find fluxes and densities
on the mesh. The mesh is used to distribute messenger fields – such as the electromagnetic fields – and to calculate volume averaged fluxes and densities of the particles. The latter are used as source terms in the evolution of the messenger fields. The particles really represent an ensemble of particles and are often referred to as pseudoparticles [10] or large particles. A so called smoothing kernel describes the density distribution of a single pseudoparticle on the mesh. In our implementation the volume of a particle is comparable to a cell in the mesh.

Pseudoparticles with variable weights

The concept of pseudoparticles is introduced since the “real space” particle density easily exceeds any number that is computationally reasonable (i.e. of the order of a billion particles). The pseudoparticle charge to mass ratio is kept the same as the ratio for a single particle.

In ordinary PIC codes the weight of each pseudoparticle of a given species is kept constant throughout the simulation. The benefit is a simple code and a unique identity for each particle. The first is a convenience in the practical implementation, the second important when understanding the detailed dynamics and history of a single particle.

Notwithstanding possible conveniences, as detailed below in section 6.2.1, we have decided to improve this concept to a more dynamical implementation where each pseudoparticle carries an individual weight. Particles are then allowed to merge and split up when a cell contains too many/few particles, or when particles are scattered. The concept is sometimes used in smooth particle hydrodynamics (SPH), where different techniques have been proposed for the splitting and merging of particles. It is both used to adjust the density of individual particles [11] and in the conversion of gas–to–star particles in galaxy formation models [28]. An important quality of SPH is its adaptive resolution capabilities. These are important in the description of collapsing self-gravitating systems, ranging from core collapse supernovae to the formation of galaxy clusters, scenarios where matter is collapsing many orders of magnitude, and therefore the smoothing length or volume of the individual particles is readjusted accordingly. Consequently, when splitting particles or adjusting the weights in an SPH code, it is important to match precisely the spatial density distribution of the parent particle to the spatial distribution of the child particles. In PIC codes, though, the spatial size or smoothing parameter of an individual particle is determined beforehand by the mesh spacing. This is reasonable since we are not interested in adaptive resolution but rather a kinetic description of the plasma dynamics. Splitting a *parent* particle with weight \(w_p \) into *child* particles with weights \(w_c \) is
therefor trivial. The requirements of conservation of mass and four velocity together with conservation of the density and flux distribution in the box, can all be satisfied by setting

\[w_p = \sum_{i=1}^{n} w_e^i \quad e_p = e_c^i \quad \gamma_p \vec{v}_p = \gamma_c \vec{v}_c \]

(6.1)
since the smoothing kernel is determined by the mesh spacing, not the mass of the individual particle.

The merging or renormalization of pseudoparticles requires a much more thorough analysis. Up to now we have investigated two schemes, one that respects conservation of mass, energy and four velocity by merging three particles into two at a time, and one where only mass, energy and average direction is conserved by merging two particles into one particle. While these schemes probably work well for approximately thermal distributions, it will easily give rise to a large numerical heating when considering head on beam collisions. We believe it can be improved by first selecting a random “merger particle” and then find other particles in the local cell, that are close to the merger particle in momentum space. A more radical approach is to resample the full phase distribution in a cell every time the number density becomes above a certain threshold. Nevertheless, it requires testing of different extreme situations to find the optimal method to merge particles, and it is still a work in progress.

To obtain the results that we present in section 6.3, we ran the code without merging of the pseudoparticles activated.

Scattering processes and splitting of particles

In Monte Carlo based particle codes the generic way to compute an interaction is first to calculate the probability for the interaction \(P_s \), then compute a random number \(\alpha \). If \(\alpha \leq P_s \) then the full pseudoparticle is scattered otherwise nothing happens. This probabilistic approach is numerically rather efficient and simple to implement, but it can be noisy, especially when very few particles are present in a cell. In large particle Monte Carlo codes the typical cell contains up to \(10^4 \) particles per species per cell (hence “large particle”). In our PIC code typical numbers are \(10^1 - 10^2 \) particles per species per cell, since we need many cells to resolve the plasma dynamics. For our requirements the probabilistic approach would result in an unacceptable level of noise. For example, in a beam experiment the spectra of the first generation of scattered particles may come out relatively precise, but the spectra of higher generation scattered particles (i.e. particles that are scattered more
Laboratory frame

Target restframe

Fig. 6.1: To implement the scattering of two pseudoparticles we transform to the rest frame of the target particle (shown as red/light gray) and computes the probability \(P(n) \) that a single incident particle (shown as blue/dark gray) during a time step \(\Delta t \) is scattered on the \(n \) target particles. If the incident particle has weight \(m \), then \(k = P(n)m \) particles will interact and two new pseudoparticles are created.

than once) will come out with poor resolution or require an excessive amount of particles. Another well known consequence of the probabilistic approach is that for a given experiment the precision goes in the best case inversely proportional to the square root of the number of particles used in the experiment. To increase effective spectral resolution we have instead decided to take a more direct approach. For simplicity we will here describe the method for a two-particle interaction, and disregard all factors converting code units to physical units. For example, the weight of a pseudoparticle is proportional to the number of physical particles in the pseudoparticle. Although, these prefactors all represent trivial conversions of units, they must be taken into account in the real code.

Consider a single cell containing a single pseudoparticle (red) with weight \(w_t = n \) and a single pseudoparticle (purple) with weight \(w_i = m \), where \(n > m \) (see Fig. 6.1). We first select the red particle as the target, since \(n > m \), and the purple as the incident particle. We then transform the four velocity of the incident particle to the rest frame of the target particle, and calculate the total cross section \(\sigma_t \) of the interaction. Conceptually we consider the process as a single incident particle approaching a slab of the target particle. The number density of target particles in the slab can be calculated from the weight \(w_t \) as \(\rho_t = w_t / \Delta V \), where \(\Delta V = \Delta x \Delta y \Delta z \) is the volume of a single cell. Given the number density the probability that a
single incident particle is scattered *per unit length* is

\[P_l = \rho_l \sigma_l = \frac{w_l \sigma_l}{\Delta V} \]

(6.2)

During a time step \(\Delta t \) the incident particle travels \(\Delta l = v_i \Delta t \), and the probability that a single incident particle is scattered then becomes

\[P_S = 1 - \exp\left[-P_l \Delta l\right] = 1 - \exp\left[-\frac{w_l \sigma_l v_i \Delta l}{\Delta V}\right] \]

(6.3)

The weight of the incident pseudoparticle is \(w_i = m \). Pseudoparticles represent an ensemble of particles. Therefore \(P_S \) is the fraction of incident particles that are scattered on the target. To model the process we create two new particles with weight \(w_{\text{new}} = w_i P_S = k \). Given the detailed interaction, we can calculate the theoretical angular distribution of scattered particles in accordance with the differential scattering cross section. Drawing from this distribution we find the momentum and energy of the new scattered particles. The weights of the target and incident particles are decreased to \(w_t = n - k \) and \(w_i = m - k \) respectively (see Fig. 6.1).

Our method faithfully represents the actual physics even for small cross sections. However, if all the particles are allowed to interact, the number of particles in the box will increase at least proportionally to the total number of particles squared. This is potentially a computational run away. Normally we will have on the order of up to 100 particles per species per cell, but to be computationally efficient we only calculate interactions for a subset of the particles in a cell. This subset is chosen at random according to an arbitrary distribution we are free to select. If the probability that two particles are selected for scattering in a given time step is \(Q \) then the traveling length \(\Delta l \) simply has to be adjusted as \(\Delta l/Q \). If this arbitrary distribution is chosen cleverly, the particles with the largest cross section are actually the ones selected most often for scattering, and everything ends up as a balanced manner: We only calculate the full cross section and scattering as often as needed, and the computational load that is given to a certain particle is proportional to the probability of that particle to scatter. We rely on the merging of particles as described above to avoid the copious production of pseudoparticles. Every time the number of pseudoparticles in a given cell crosses a threshold, pseudoparticles are merged and this way the computational load per cell is kept within a given range.
6.2 Implementation

6.2.2 Neutron decay

Free neutrons not bound in a nucleus will decay with a half-life a little longer than ten minutes. The neutron decays into an electron and a proton and an electron antineutrino to satisfy lepton number conservation

\[n \rightarrow p + e^- + \bar{\nu}_e \] \hspace{1cm} (6.4)

The rest mass difference of the process (0.78 MeV) goes into kinetic energy of the proton, electron and neutrino. Let the neutron lifetime be \(\tau \) in code units. If \(\tau \) is comparable to or less than a typical time step, then practically all neutrons decay in one iteration, and it is irrelevant to include them. If \(\tau \) is much larger than the total runtime, the neutron can be considered a stable particle (unless the neutron density in the box is much larger than the proton– or electron density). If instead \(\tau \approx \alpha \Delta t \) where \(\alpha \approx 100 \), then we can select a fraction \(f \) of the pseudoparticle neutrons in each cell and let them decay. This is done in an analogous manner to the generic scattering process described above in section 6.2.1. The weight of the selected neutron is decreased with a factor

\[\exp \left[-\frac{f \Delta t}{\gamma \tau} \right], \] \hspace{1cm} (6.5)

where \(\gamma \) is the Lorentz boost of the neutron pseudoparticle and \(f \) is chosen to give reasonable values for the decrease in the weight. At the same time a pair of electron and proton pseudoparticles is created with the same weight. The generated particles share the excess mass of the process (where the neutrino is neglected for now, but could be included in the future). The momenta are selected to give an isotropic distribution in the rest frame of the decaying neutron.

6.2.3 Compton scattering

Here we briefly describe a specific physical scattering mechanism which has already been implemented in the code, namely Compton scattering.

Compton scattering is the relativistic generalization of the classical Thompson scattering process, where a low energy photon scatters off on a free electron. In the rest frame of the electron, the photon changes direction and loses energy to the electron which is set in motion. The cross section for Thompson scattering is [72]

\[\sigma_T = \frac{8\pi}{3} r_0^2 \] \hspace{1cm} (6.6)

where \(r_0 \equiv e^2/(mc^2) \) is called the classical electron radius. The Thompson scattering approximation is valid as long as the photon energy is much lower
Fig. 6.2: Schematic view of the Compton scattering process. Impinging on the electron, an incoming photon with energy ϵ_1 is scattered into the angle θ with energy ϵ_2. In the initial rest-frame of the electron, the electron will be recoiled to conserve energy and momentum.

than the electron rest mass $h\nu \ll m_e c^2$ and the scattering can be regarded as elastic. For photon energies comparable to, or larger than, the electron rest mass, recoil effects must be taken into account. Measured in the electron rest frame we define ϵ_1 as the photon energy before the scattering, ϵ_2 as the photon energy after the scattering and θ the photon scattering angle (6.2). By conservation of energy and momentum one can show (e.g. [72]) that

$$\epsilon_2 = \frac{\epsilon_1}{1 + \frac{\epsilon_1}{m_e c^2}(1 - \cos \theta)}$$

(6.7)

The differential cross section as a function of scattering angle is given by the Klein-Nishina formula [34, 39]

$$\frac{d\sigma}{d\Omega} = \frac{r_0^2 \epsilon_2^2}{2 \epsilon_1^2} \left(\frac{\epsilon_1}{\epsilon_2} + \frac{\epsilon_2}{\epsilon_1} - \sin^2 \theta \right)$$

(6.8)

The Klein-Nishina formula takes into account the relative intensity of scattered radiation, it incorporates the recoil factor, (or radiation pressure) and corrects for relativistic quantum mechanics. The total cross section is then

$$\sigma_C = \sigma_T \left[\frac{3}{4} \frac{1 + x}{x^3} \left\{ \frac{2x(1 + x)}{1 + 2x} - \ln(1 + 2x) \right\} + \frac{1}{2x} \ln(1 + 2x) - \frac{1 + 3x}{(1 + 2x)^2} \right]$$

(6.9)

where $x \equiv h\nu/(mc^2)$.
To test the new code and its capabilities in regard to the inclusion of collisions, we have implemented and tested a simple scenario involving Compton scattering.

In the test setup, we place a thin layer of cold electron-positron pair plasma in the computational box. From the boundary, we inject a monochromatic beam of photons all traveling perpendicular to the pair-layer (Fig. 6.3 left panel). As the beam passes through the plasma layer, photons are scattered (Fig. 6.3 left panel).

For each scattered photon we sample the weight of the photon and its direction (remembering that all particles are pseudoparticles that represent whole groups of particles). Fig. 6.4 shows the theoretical cross section as function of scattering angle compared with the result from the simulations. Four plots for different energies of the incoming photon beam are shown. We find excellent agreement between the simulation results and the theoretical predictions.

6.4 Discussion

A next generation PIC code that includes many different kinds of scattering process is under development. It will enable us to target problems that
6.4 Discussion

Fig. 6.4: The theoretical Compton scattering differential cross section. We have performed a test experiment with an incoming laser beam on a very cold electron population. Over plotted the differential distribution is the theoretical curve according to Eqs. (6.8) and (6.7).

...resides in the grey zone between the MHD and collisionless plasma domains. This domain covers many astrophysical scenarios of great interest counting internal shocks in gamma-ray bursts, solar flares and magnetic substorms, compact relativistic objects, supernova remnants and many more.

The concept of splitting/merging particles and keeping individual weights of each particle carry many important features. Variable weights represent the true statistics of a scattering process in an optimal way compared to the Monte Carlo approach. Also, for MPI-parallelization it is crucial that the number of particles per cell is kept more or less constant to ensure an optimal CPU load-balancing. To localize calculations we are employing a sorting algorithm that maintains neighboring particles on the mesh as neighbors in memory. This is not only good for parallelization, but also makes all computations very cache efficient; a crucial requirement on modern computer architectures.
6.4 Discussion

To test the infrastructure of the new code we have implemented Compton scattering as a simple scattering mechanism. The first results are very promising in form of excellent agreement with the theoretical prediction. We note that a recent paper by [57] provide an interesting test suite for various kind of particle-photon interactions that can be tested in the future. Merging particles has not been satisfactorily implemented yet. Parallelization of code is still not there yet, and is necessary to obtain the capability of performing truly large scale experiments. In summary: Work has still to be done before we can start to investigate non trivial astrophysical scenarios, nevertheless solid progress has already been made.

This chapter has been written jointly by Christian Hededal and Troels Haugbolle, reflecting the fact that the development process of the next generation PIC code has been highly team based. Essentially everybody have contributed time and effort to every single source file of the code. It would not make sense to write the chapter separately, essentially repeating each other and reusing the same figures.
7. SUMMARY & CONCLUSIONS

In the past chapters of this thesis I have presented different numerical methods, as well as applications of the methods to a number of current problems in relativistic astrophysics. The thesis is logically structured into three parts, and below I would like to summarise the most important points of the work presented.

In the first part (Chapter 2) I have presented the theoretical foundation and numerical implementation of a new general relativistic magnetohydrodynamics code. I have derived a new form of the equations of motion, with global coordinates evolving the dynamical variables from the point of view of a local observer. When deriving the equations of motion, I have not made any assumptions about the background metric, so the design is ready to be coupled with methods solving the full Einstein equations. The code has been tested on a variety of demanding problems, and it has been demonstrated that it is able to deal with huge pressure and density gradients. The computer code is fully three-dimensional and parallelised and shows a spectacular performance on modern computer architectures exploiting up to 30% of the theoretical peak performance. It has been tested and verified to scale to hundreds of CPUs, making it possible to exploit massive supercomputers at national centres to the full extent.

In the second part of the thesis (Chapters 3–5) I have presented important results in the understanding of collisionless shocks using a charged relativistic particle-in-cell code. Together with Jacob Trier Frederiksen, Christian Hedelad and Åke Nordlund I have investigated the fundamental consequences of the two-stream instability for observations of collisionless shocks in general, and the implications for gamma ray afterglows in particular. In Chapter 5 I extended our analysis and presented results on the global structure and transition of collisionless shocks to fluid shocks.

In Chapter 3 we have shown that even in the absence of a magnetic field in the up-stream plasma, a small scale, fluctuating, and predominantly transversal magnetic field is unavoidably generated by a two-stream insta-
bility reminiscent of the Weibel-instability. In the current experiments the magnetic energy density reaches a few percent of the energy density of the in-coming beam.

In Chapter 4 we proposed an acceleration mechanism for electrons in ion-electron collisionless shocks. The acceleration mechanism is capable of creating a powerlaw electron distribution in a collisionless shocked region. The theoretical considerations were suggested by particle–in–cell computer experiments, which also allowed quantitative comparisons with the theoretical predictions. We have shown that the non–thermal acceleration of electrons is directly related to the ion current channels in the shock transition zone and is local in nature. The electrons are accelerated to a powerlaw in situ. Therefore the observed radiation field may be tied directly to the local conditions of the plasma and could be a strong handle on the physical processes.

To understand the impact on observations it is essential to investigate how far down stream of the initial shock the two-stream unstable region extends. With this in mind I have analysed, in Chapter 5 the global structure of collisionless shocks. I have presented three-dimensional experiments of colliding pair plasmas using the particle-in-cell code, and observed the thermalisation of the plasma, due to the collective electromagnetic field, and the formation of a macrophysical shock structure. Comparing the results to a fluid simulation, made using the code presented in Chapter 2, with the same initial conditions, good agreement is found, implying that the full structure of the shock has been resolved. I have estimated that the decay of the two-streaming region and subsequent thermalisation happens over 50-100 electron skin depths. Hence, the two-stream instability in collisionless shocks comprised purely of leptonic matter may have few direct observational consequences.

In the second part of Chapter 5 I have considered the global structure of ion-electron dominated collisionless shocks. I have investigated the applicability of global models using two-dimensional shocks – just possible with current computer technology – in the understanding of the complete three-dimensional shock structure. It is demonstrated that caution should be observed in generalising results from two-dimensional experiments to three dimensions. In two dimensions the ion channels that form due to the two-stream instability are less stable, and the heating rate of the electrons is higher. Both factors contribute to a faster thermalisation than what may be expected from three-dimensional experiments in the future, and hence cause an underestimation of the extent of the two-stream unstable region. Nonetheless, the overall physical picture is the same, and these differences may be taken into account.
In the third part of the thesis (Chapter 6) together with Christian Hededal I have presented a new code under development by our group, which will enable us to study not only charged particle dynamics, but also the propagation of neutral particles, such as photons and neutrons, as well as interactions between these.

The code is an extension of the current particle-in-cell code, and also solves the full Maxwell equations, but furthermore considers particle-particle interactions and microphysical processes, such as scattering, pair production, decay, and annihilation of particles.

Especially the inclusion of photons and related radiative processes is important. In the future we will be able to extract self consistent spectra from our numerical experiments, thereby gaining the ability to directly compare our models with observations.

Even though the different tools presented in this thesis per se are not connected, they all revolve around the same physical problems. In Chapter 5 we saw the first example of connecting the codes, to obtain different points of view on the same physical situation. In conclusion, and with a look to the future, I believe that the coupling of the GrMHD code with the new photon plasma code yields a great potential for obtaining realistic synthetic light curves from fluid simulations, connecting them directly with observations.
APPENDIX
A. THE RELATIVISTIC MAXWELL DISTRIBUTION

In this appendix I briefly consider the relativistic Maxwell distribution. When working with data from the particle code, we have often needed to assess how thermal or non thermal a given particle distribution function (PDF) for a subset of the particles is, and evaluate the temperature and the overall Lorentz boost of the population. Even if the particles are in fact thermally distributed, they can still be moving with an overall velocity u. To find the temperature and the boost factor we need to compare our data, not to the standard Maxwell distribution, but rather a Lorentz boosted Maxwell distribution.

In principle this is a straight forward exercise, but it becomes complicated because the different components of the velocity couple through the Lorentz factor. Then, the Maxwell distribution of a Lorentz boosted thermal population is not merely the Lorentz boost of the Maxwell distribution of the population at rest.

Below in Eq. (A.11) and Eq. (A.12) I present the Maxwell distribution functions as function of the boost factor Γ, boost velocity u and temperature T.

A.1 The standard relativistic distribution

The standard Maxwell distribution for a population at rest in its most basic form can be written

$$dN = N(T) \exp \left(-\frac{\gamma - 1}{T} \right) dv_x dv_y dv_z$$ \hspace{1cm} (A.1)

where dN is the number of particles per $dv_x dv_y dv_z$ and $N(T)$ is an overall normalisation factor. Going to spherical coordinates and integrating out the angle dependence it changes to

$$dN = 4\pi N(T) \exp \left(-\frac{\gamma - 1}{T} \right) v^2 dv ,$$ \hspace{1cm} (A.2)
A.2 Boosting the Maxwell distribution

while the most convenient system for boosting the distribution is cylindrical coordinates, where it can be written

$$dN = 2\pi N(T) \exp \left(-\frac{\gamma - 1}{T} \right) v_\perp dv_\perp dv_z. \quad (A.3)$$

When considering PDFs, from a numerical point of view, the most natural variable to work in is not the normal velocity. The three velocity is bounded by the speed of light and the PDFs are squeezed towards c at high temperatures. Instead normally the four velocity $v\gamma$ is used, which is linear all the way from non relativistic to ultra relativistic velocities. The Maxwell distribution in terms of $v\gamma$ and γ is

$$dN = 4\pi N(T) \frac{\gamma}{\gamma^4} \exp \left(-\frac{\gamma - 1}{T} \right) d\gamma \quad (A.4)$$

and

$$dN = 4\pi N(T) \frac{(v\gamma)^2}{1 + (v\gamma)^2}^{5/2} \exp \left(-\frac{\gamma - 1}{T} \right) d(v\gamma) \quad (A.5)$$

A.2 Boosting the Maxwell distribution

To generalise the above distributions to those seen by observers moving with four velocity $u\Gamma$ along the z-axis we need to Lorentz transform the variables. The Lorentz transformation together with the inverse transformation between the two rest frames are

$$\gamma' = \Gamma \gamma (1 - uv_z) \quad \Rightarrow \quad \gamma = \Gamma \gamma' (1 + uv_z')$$

$$(A.6)$$

$$v_z' = \frac{v_z - u}{1 - uv_z} \quad \Rightarrow \quad v_z = \frac{v_z' + u}{1 + uv_z'}$$

$$(A.7)$$

$$v_\perp = \frac{v_\perp'}{\Gamma(1 + uv_z')} \quad \Rightarrow \quad v_\perp' = \frac{v_\perp}{\Gamma(1 - uv_z)},$$

$$(A.8)$$

where v_\perp is a velocity component perpendicular to the boost direction and prime denots the boosted reference frame. To derive the Maxwell distribution, as seen by an observer moving in the z–direction, we have to transform either Eq. (A.2) or Eq. (A.3) and reexpress it in terms of the new coordinates. The Maxwell distribution in cylindrical coordinates is best suited, since from Eq. (A.6) we see that the transformation of γ will pick up a dependence on v_z'. Using Eqs. (A.7) and (A.8) to evaluate the Jacobian of the
dN = 2\pi N(T) \exp \left(-\frac{\Gamma \gamma'(1 + uw'_z) - 1}{T} \right) \frac{v'_\perp}{[\Gamma(1 + uw'_z)]^4} dv'_\perp dv'_z \quad (A.9)

In this form the distribution function cannot be compared directly with PDFs obtained from numerical data, since it is still two dimensional. We need to marginalise one of the two dimensions, to reduce it to a one dimensional PDF.

A.3 The boosted Maxwell velocity distribution

To find the velocity distribution we shift to spherical coordinates, setting

\[v'_z = v' \cos(\theta) \quad v'_\perp = v' \sin(\theta) \quad (A.10) \]

where \(\theta \in [0, \pi] \), \(v' \in [0, 1] \). Inserting the new coordinates in Eq. (A.9) and integrating over angles after some algebra the boosted Maxwell distribution binned linearly in the velocity is

\[dN = 2\pi N(T) T^{\gamma' \beta} \frac{v'dv'}{\Gamma u} \int_{\alpha_-}^{\alpha_+} e^{-\beta d\beta} \frac{e^{-\beta}}{(1 + T\beta)^4}, \quad (A.11) \]

where the temperature dependent integral has the limits \(\alpha_\pm = \frac{\Gamma \gamma'(1 \pm uw')^{-1}}{T} \).

As mentioned above, when analysing particle data it is important to compute the PDFs with a linear behaviour from sub- to ultra relativistic velocities. Changing from \(dv' \) to \(d\gamma' v' \) we find the final result

\[dN = 2\pi N(T) T \frac{(v' \gamma')d(v' \gamma')}{\Gamma u \sqrt{1 + (v' \gamma')^2}} \int_{\alpha_-}^{\alpha_+} e^{-\beta d\beta} \frac{e^{-\beta}}{(1 + T\beta)^4}, \quad (A.12) \]

The integral in Eq. (A.12) may be simplified by repeated partial integration

\[\int \frac{e^{-\beta} d\beta}{(1 + T\beta)^4} = \frac{-(1 + T\beta)^2 + T(1 + T\beta) - 2T^2}{6T^3(1 + T\beta)^3} e^{-\beta} - \frac{1}{6T^3} \int \frac{e^{-\beta} d\beta}{(1 + T\beta)}, \quad (A.13) \]

and everything reduces to an exponential integral, that depends on \(T \).

When analysing data I use IDL. It already contains a function to evaluate the exponential integral, and it is rather trivial to implement Eq. (A.12) into a computer program that, given a set of particles, evaluates the PDF, fits a boosted Maxwell distribution and finds the corresponding temperature and velocity.
B. TRANSFORMATION OF TENSORS BETWEEN DIFFERENT METRICS

In Chapter 2 it was argued that calculating variables in a local frame, retaining at the same time global coordinates is the best approach for our numerical method. Methods used for special relativity may then be employed with minimal changes in arbitrary space times.

In this appendix, I give the detailed transformation rules for vectors and two tensors. I consider the transformation between three different frames. The global star fixed coordinate system (SFCS) has the metric:

\[ds^2 = -\alpha^2 dt^2 + \gamma_{ij} (dx^i + \beta^i dt) \ (dx^j + \beta^j dt) \]

(B.1)

The local laboratory (LOLA) frame has the metric

\[ds^2 = -d\hat{t}^2 + \gamma_{ij} d\hat{x}^i d\hat{x}^j \]

(B.2)

while the pseudo fiducial observer (PFIDO) frame has the metric

\[ds^2 = -d\bar{t}^2 + \sum_{i,j} \frac{\gamma_{ij}}{\sqrt{\gamma_{ii} \gamma_{jj}}} d\bar{x}^i d\bar{x}^j \]

(B.3)

In the case that the metric contains no off diagonal spatial components, the PFIDO frame is, in fact, the frame of a fiducial observer. In the worst case the PFIDO metric contains three non-trivial components.

The three metrics are related by the relations

\[(dx^i + \beta^i dt) = d\hat{x}^i \]

(B.4)

\[\sqrt{\gamma_{ii}} d\bar{x}^i = d\hat{x}^i \]

\[\alpha dt = d\hat{t} \]

\[d\bar{t} = d\hat{t} \]

(B.5)

The differentials transform as contravariant vectors. The transformation laws for contravariant vectors may be found by multiplying with metrics and doing a bit of linear algebra. Tensors by definition transform as the product of the corresponding vectors and it is a straightforward, though tedious, exercise to find all the combinations. I have written them down here, since they are essential for the implementation of any physics; deriving how the local
variables are related to the global one. The following relations have been of
interest when transforming to and from different frames:

SFCS ↔ LOLA frame:

(vectors)

\[
\dot{U}^t = \alpha U^t \\
\ddot{U}_i = \frac{1}{\alpha}(U_t - \beta^i U_i) \\
U^t = \frac{1}{\alpha} \dot{U}^t \\
U_i = \alpha \ddot{U}_i + \beta^i \dot{U}_i \\
U^t = \frac{1}{\alpha} U^t \\
U_i = \dot{U}_i
\]

(B.6) (B.7) (B.8) (B.9) (B.10)

SFCS → LOLA frame:

(contravariant two-tensors)

\[
T^{tt} = \frac{1}{\alpha^2} \dot{T}^{tt}
\]

(B.11)

\[
T^{ti} = \frac{1}{\alpha} \left(\dot{T}^{ti} - \frac{\beta^i}{\alpha} \dot{T}^{ut} \right)
\]

(B.12)

\[
T^{ij} = \dot{T}^{ij} - \frac{\beta^i}{\alpha} \dot{T}^{tj} - \frac{\beta^j}{\alpha} \left(\dot{T}^{ut} - \frac{\beta^i}{\alpha} \dot{T}^{tt} \right)
\]

(B.13)

(mixed type two-tensors)

\[
T_t^t = \dot{T}_t^t + \frac{\beta^i}{\alpha} \dot{T}_i^t
\]

(B.14)

\[
T_i^t = \frac{1}{\alpha} \dot{T}_i^t
\]

(B.15)

\[
T_i^t = \alpha \left(\dot{T}_i^t - \frac{\beta^i}{\alpha} \dot{T}_t^t \right) + \beta^j \left(\dot{T}_j^j - \frac{\beta^i}{\alpha} \dot{T}_j^t \right)
\]

(B.16)

\[
T_j^i = \dot{T}_j^i - \frac{\beta^i}{\alpha} \dot{T}_j^t
\]

(B.17)

(covariant two-tensors)

\[
T_tt = \alpha^2 \dot{T}_{tt} + \frac{\beta^j}{\alpha} \dot{T}_{tj} + \alpha \beta^i \left(\dot{T}_t^t + \frac{\beta^j}{\alpha} \dot{T}_{ij} \right)
\]

(B.18)

\[
T_{ti} = \alpha \left(\dot{T}_{ti} + \frac{\beta^j}{\alpha} \dot{T}_{ji} \right)
\]

(B.19)

\[
T_{ij} = \dot{T}_{ij}
\]

(B.20)
LOLA \rightarrow SFCS frame:

(contravariant two-tensors)

\[
\hat{T}^{tt} = \alpha^2 T^{tt} \tag{B.21}
\]
\[
\hat{T}^{ti} = \alpha (T^{ti} + \beta^i T^{tt}) \tag{B.22}
\]
\[
\hat{T}^{ij} = T^{ij} + \beta^i T^{tj} + \beta^j (T^{tt} + \beta^i T^{tt}) \tag{B.23}
\]

(mixed type two-tensors)

\[
\hat{T}^t_i = T^t_i - \beta^i T^t_i \tag{B.24}
\]
\[
\hat{T}^i_t = \alpha T^i_t \tag{B.25}
\]
\[
\hat{T}^i_i = \frac{1}{\alpha} [T^i_i + \beta^i T^t_i - \beta^j (T^j_j + \beta^i T^t_j)] \tag{B.26}
\]
\[
\hat{T}^j_j = T^j_j + \beta^i T^j_i \tag{B.27}
\]

(covariant two-tensors)

\[
\hat{T}_u = \frac{1}{\alpha} \left(T_u - \beta^i T_{ij} - \beta^u T_{ti} + \beta^i \beta^j T_{ij} \right) \tag{B.28}
\]
\[
\hat{T}_i = \frac{1}{\alpha} (T_{ti} - \beta^i T_{ji}) \tag{B.29}
\]
\[
\hat{T}_{ij} = T_{ij} \tag{B.30}
\]

LOLA frame \leftrightarrow PFIDO frame:

(vectors)

\[
\hat{U}^t = \tilde{U}^t \null \quad \hat{U}^i = \frac{1}{\sqrt{\gamma_{ii}}} \tilde{U}^i \tag{B.31}
\]
\[
\tilde{U}^t = U^t \null \quad \tilde{U}^i = \sqrt{\gamma_{ii}} U^i \tag{B.32}
\]

(contravariant two-tensors)

\[
\hat{T}^{tt} = \tilde{T}^{tt} \null \quad \hat{T}^{ti} = \frac{1}{\sqrt{\gamma_{ii}}} \tilde{T}^{ti} \tag{B.33}
\]
\[
\hat{T}^{ij} = \frac{1}{\sqrt{\gamma_{ij} \gamma_{jj}}} \tilde{T}^{ij} \tag{B.34}
\]

(mixed type two-tensors)

\[
\hat{T}^t_i = \tilde{T}^t_i \tag{B.35}
\]
\[
\hat{T}^i_t = \sqrt{\gamma_{ii}} \tilde{T}^i_t \tag{B.35}
\]
\[
\hat{T}^i_j = \sqrt{\gamma_{ij} \gamma_{jj}} \tilde{T}^i_j \tag{B.36}
\]
(covariant two–tensors)

\[
\begin{align*}
\hat{T}_{tt} &= \hat{T}_{tt} \\
\hat{T}_{ij} &= \sqrt{\gamma_{ii} \gamma_{jj}} \hat{T}_{ij}
\end{align*}
\]

\[\hat{T}_{ti} = \sqrt{\gamma_{ii}} \hat{T}_{ti}\] \hspace{1cm} (B.37)\]

\[\hat{T}_{ij} = \sqrt{\gamma_{ii} \gamma_{jj}} \hat{T}_{ij}\] \hspace{1cm} (B.38)
BIBLIOGRAPHY

