Hole spin coherence in a Ge/Si heterostructure nanowire

Publikation: Bidrag til tidsskriftTidsskriftartikelfagfællebedømt

Standard

Hole spin coherence in a Ge/Si heterostructure nanowire. / Higginbotham, Andrew P; Larsen, Thorvald Wadum; Yao, Jun; Yan, Hao; Lieber, Charles M; Marcus, Charles M; Kuemmeth, Ferdinand.

I: Nano Letters, Bind 14, Nr. 3582, 05.05.2014, s. 3582-3586.

Publikation: Bidrag til tidsskriftTidsskriftartikelfagfællebedømt

Harvard

Higginbotham, AP, Larsen, TW, Yao, J, Yan, H, Lieber, CM, Marcus, CM & Kuemmeth, F 2014, 'Hole spin coherence in a Ge/Si heterostructure nanowire', Nano Letters, bind 14, nr. 3582, s. 3582-3586. https://doi.org/10.1021/nl501242b

APA

Higginbotham, A. P., Larsen, T. W., Yao, J., Yan, H., Lieber, C. M., Marcus, C. M., & Kuemmeth, F. (2014). Hole spin coherence in a Ge/Si heterostructure nanowire. Nano Letters, 14(3582), 3582-3586. https://doi.org/10.1021/nl501242b

Vancouver

Higginbotham AP, Larsen TW, Yao J, Yan H, Lieber CM, Marcus CM o.a. Hole spin coherence in a Ge/Si heterostructure nanowire. Nano Letters. 2014 maj 5;14(3582):3582-3586. https://doi.org/10.1021/nl501242b

Author

Higginbotham, Andrew P ; Larsen, Thorvald Wadum ; Yao, Jun ; Yan, Hao ; Lieber, Charles M ; Marcus, Charles M ; Kuemmeth, Ferdinand. / Hole spin coherence in a Ge/Si heterostructure nanowire. I: Nano Letters. 2014 ; Bind 14, Nr. 3582. s. 3582-3586.

Bibtex

@article{5fd8693258ef406f9e7357d68f78d8e4,
title = "Hole spin coherence in a Ge/Si heterostructure nanowire",
abstract = "Relaxation and dephasing of hole spins are measured in a gate-defined Ge/Si nanowire double quantum dot using a fast pulsed-gate method and dispersive readout. An inhomogeneous dephasing time T2(*)≈ 0.18 μs exceeds corresponding measurements in III-V semiconductors by more than an order of magnitude, as expected for predominately nuclear-spin-free materials. Dephasing is observed to be exponential in time, indicating the presence of a broadband noise source, rather than Gaussian, previously seen in systems with nuclear-spin-dominated dephasing.",
author = "Higginbotham, {Andrew P} and Larsen, {Thorvald Wadum} and Jun Yao and Hao Yan and Lieber, {Charles M} and Marcus, {Charles M} and Ferdinand Kuemmeth",
note = "Preprint available at http://arxiv.org/abs/1403.2093.",
year = "2014",
month = may,
day = "5",
doi = "10.1021/nl501242b",
language = "English",
volume = "14",
pages = "3582--3586",
journal = "Nano Letters",
issn = "1530-6984",
publisher = "American Chemical Society",
number = "3582",

}

RIS

TY - JOUR

T1 - Hole spin coherence in a Ge/Si heterostructure nanowire

AU - Higginbotham, Andrew P

AU - Larsen, Thorvald Wadum

AU - Yao, Jun

AU - Yan, Hao

AU - Lieber, Charles M

AU - Marcus, Charles M

AU - Kuemmeth, Ferdinand

N1 - Preprint available at http://arxiv.org/abs/1403.2093.

PY - 2014/5/5

Y1 - 2014/5/5

N2 - Relaxation and dephasing of hole spins are measured in a gate-defined Ge/Si nanowire double quantum dot using a fast pulsed-gate method and dispersive readout. An inhomogeneous dephasing time T2(*)≈ 0.18 μs exceeds corresponding measurements in III-V semiconductors by more than an order of magnitude, as expected for predominately nuclear-spin-free materials. Dephasing is observed to be exponential in time, indicating the presence of a broadband noise source, rather than Gaussian, previously seen in systems with nuclear-spin-dominated dephasing.

AB - Relaxation and dephasing of hole spins are measured in a gate-defined Ge/Si nanowire double quantum dot using a fast pulsed-gate method and dispersive readout. An inhomogeneous dephasing time T2(*)≈ 0.18 μs exceeds corresponding measurements in III-V semiconductors by more than an order of magnitude, as expected for predominately nuclear-spin-free materials. Dephasing is observed to be exponential in time, indicating the presence of a broadband noise source, rather than Gaussian, previously seen in systems with nuclear-spin-dominated dephasing.

U2 - 10.1021/nl501242b

DO - 10.1021/nl501242b

M3 - Journal article

C2 - 24797219

VL - 14

SP - 3582

EP - 3586

JO - Nano Letters

JF - Nano Letters

SN - 1530-6984

IS - 3582

ER -

ID: 109878587